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Abstract

In this paper, we present a probabilistic tracking frame-
work that combines sound and vision to achieve more robust
and accurate tracking of multiple objects. In a cluttered or
noisy scene, our measurements have a non-Gaussian, multi-
modal distribution. We apply a particle filter to track mul-
tiple people using combined audio and video observations.
We have applied our algorithm to the domain of tracking
people with a stereo-based visual foreground detection al-
gorithm and audio localization using a beamforming tech-
nique. Our model also accurately reflects the number of
people present. We test the efficacy of our system on a se-
quence of multiple people moving and speaking in an indoor
environment.

1. Introduction
As the trend to expand computing away from the desktop
continues, new research challenges arise. One goal is to
make indoor spaces more intelligent, more natural and eas-
ier to use by allowing them to use the same visual and au-
dio interface modalities that humans take for granted. Sim-
ple things, like presence, posture, gaze, and sounds are ex-
tremely important cues in communication between people,
and they should be with computers as well. Such pervasive
environments would need to determine the location, activ-
ity, and identity of its inhabitants. As a result, tracking peo-
ple in known environments has recently become an active
area of research in computer vision. Previous approaches to
tracking multiple people have mostly been limited to using
solely vision or audio. In this paper, we propose a multi-
modal tracking architecture to track using audio and video
observations.

To achieve optimal performance with multiple sensing
modalities, a tracking system must exploit not just the statis-
tics of each modality alone but also relationships between
the two. Consider a system that tracks moving objects.
Such a system may use video data to track the spatial loca-
tion of an object. If an object emits sound, the system may
use audio data captured by a microphone array to track its
location using the time delay of arrival (TDOA) of the audio

signals detected at different microphones. A tracker that ex-
ploits both these modalities may be more robust and achieve
better performance than one that uses either one alone. For
example, a tracker using only video data may mistake the
background for the object or lose track of the object due to
occlusion; whereas, a tracker that also uses audio data could
continue tracking the object by following its sound pattern.
Conversely, video data could help in situations where an
audio tracker alone may fail, such as when the tracked ob-
ject stops emitting sound or is masked by some background
noise.

In a cluttered or noisy scene, measurements will often
have a non-Gaussian, multi-modal distribution. Particle fil-
tering is an approximation technique for tracking non-linear
and non-Gaussian distributions. Particle filters are sequen-
tial Monte Carlo methods based upon point mass represen-
tations of probability densities that can be applied to any
state space model.

In this paper, we incorporate both audio and video ob-
servations within a particle filtering framework for tracking
multiple people in an indoor environment. In Section 2, we
review related work on different approaches to tracking peo-
ple. Following that, we introduce our multi-modal dynamic
model in Section 3. In Sections 4 and 5, we describe our
probabilistic observation models for video and audio, and
in Section 6, we show how to combine these modalities in
order to track multiple people. In Section 7 we evaluate the
performance of our multi-modal tracker. Finally in Section
8, we summarize our contributions and discuss extensions
of this work.

2. Previous Work
Much success has been achieved in tracking single objects
in a scene using vision alone. One method is to model the
foreground object as an ellipse in the image plane. The ob-
ject is matched from frame to frame either by correlation
[16] or by using some statistical properties of the object
such as color histograms [1]. To track accurately over time,
many systems usually include a model of dynamics. The
tracking systems described in [8, 3] use a constant veloc-
ity predictor followed by a search for the closest match of a
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foreground area in the neighborhood of the prediction. The
Kidsroom [4] tracker uses color, position, velocity, and size
of the blobs to compute distance measures at each frame.
The measures are then combined into a match score ma-
trix, which is used to determine object-to-blob correspon-
dence. These tracking methods can be very effective in sim-
ple scenes where only one object is present. Some track-
ing systems build spatio-temporal representations of mov-
ing regions in a scene. Kornprobst and Medioni developed
an approach that uses a tensor voting methodology to en-
force smoothness in space and time of the trajectories of
tracked objects [7]. Darrell et al. use an approach where tra-
jectory estimation is implemented by running a connected-
components analysis in a spatio-temporal plan-view volume
[2].

Kalman filters are commonly used to perform tracking
of a single object using a Gaussian uncertainty model and
linear dynamics. This approach has been applied in both the
audio and video domains. For example, Sturim et al. apply a
Kalman filter to spatially smooth raw time delay estimates
in the acoustic localization domain [11]. The M2Tracker,
a stereo-vision-based vision person tracking system, uses
Kalman filters to track object blob centroids over time [9].
However in a cluttered or noisy scene, Kalman filtering is
inadequate because measurements will often have a non-
Gaussian, multi-modal distribution.

Particle filtering is an approximation technique for the
non-linear and non-Gaussian cases. In vision, Isard and
Blake [5] developed and applied the CONDENSATION al-
gorithm, a type of particle filter, to track curves in dense
visual clutter. In the audio domain, Vermaak and Blake
[13] proposed a new framework for TDOA source local-
ization based on a particle filtering approach. In their ap-
proach, time delay estimates (TDEs) are calculated using
cross-correlation and then a likelihood model is used to de-
termine the source location based on the obtained TDEs.
By using this multi-hypothesis approach, this method has
the advantage that it can cope with spurious peaks in the
cross-correlation function caused by reverberations. Ward
and Williamson used beamformer-based source localization
within the particle filter framework [15]. This scheme has
the advantage that it does not require intermediate calcu-
lation of time-delay estimates. However, the specific state
representation adopted in these approaches does not explic-
itly support hypotheses containing a different number of ob-
jects.

Extending the particle filters to track a varying number
of objects presents additional challenges. BraMBLE, a mul-
tiple blob tracker, is an implementation of a particle filter in
which the number of objects being tracked may vary [6].
The key innovation of this system is a multi-blob likelihood
function that assigns comparable likelihoods to hypotheses
containing different numbers of objects. Tao et al. [12] pro-

posed a hierarchical sampling method for multiple-object
particle filtering. One level tracks the motions of individ-
ual objects while the other level handles object addition and
deletion.

These unimodal probabilistic trackers have achieved
some success; however, we believe that while all sensors
have their specific strengths and weaknesses, there is no sin-
gle modality for object tracking that always outperforms all
others. Therefore, it is desirable to integrate the information
of various sensor modalities to exploit the benefits of each.
Pingali et al. combine head tracking and TDOA measure-
ments in a non-probabilistic framework to detect people in
a room and determine whether they are speaking [10]. Ver-
maak and Blake [14] show that by using a particle filter,
sound and vision can be fused effectively to achieve a more
robust tracking of a single object than any of the modalities
on their own. To track a speaker, they use a pair of om-
nidirectional microphones to collect TDOA measurements
for their audio observation model and use head contours
for their video observation model. Zotkin et al. [17] fuse
video data obtained from multiple cameras and audio data
obtained using microphone arrays to track a single moving
object.

To our knowledge, the system presented in this paper
is the first to combine audio-visual person tracking with a
multi-object particle filtering framework.

3 The Model

3.1 State-Space Model

The multiple person tracking problem can be formulated in
a state-space estimation framework by associating the loca-
tions of all possible configurations of people at timet with
an unobserved state vectorXt. We can denote a state of the
world as

Xt = (nt, χ
1
t , . . . , χ

n
t ) (1)

wherent is the number of people, andχi
t = [x, y, d, s] de-

scribes an object in the configuration. We track a person’s
[x, y] floor position and sized. The boolean variables de-
notes whether or not the person is speaking.

3.2 Dynamic Model

We use a zeroth order motion model with a random excita-
tion force applied to the particles. Ifα(t) = (x, y) is a 2D
vector of the target coordinates at timet then the dynamics
can be written as:

α(t + δt) = α(t) + Fδt (2)

d(t + δt) = d(t) + Gδt (3)



1. For each objectχi
t−1 in a particleXt−1

(a) Predictχi
t by propagatingχi

t−1 according to
dynamic model.

(b) With probability (1 − υremain), deleteχi
t and

update the person countnt

2. With probabilityυadd and nt < Nmax, create new
χnt

t according to the new object location prior and
update person countnt

Figure 1:Algorithm for predicting multiple objects

whereF andG are independent random excitation forces
that are distributed as a Gaussian with zero mean and vari-
ancesσ2

α and σ2
d respectively. We treats as a two state

Markov chain. Initially, the particles are uniformly dis-
tributed.

We apply a prediction model similar to [6] which states
that at each time step each object will remain in the scene
with probability υremain and new objects will enter the
scene with probabilityυadd. New object locations are cho-
sen according to a new object location prior distribution.
Currently our prior distribution is uniform within a creation
zone near the entrances. We only generate new objects at
time t if nt−1 < Nmax, whereNmax is the maximum num-
ber of tracked objects. The algorithm for generating a new
particle hypotheses{Xi

t} from the previous set of particles
{X̃i

t−1} is shown in Figure 1.

4 Observation Model for Vision

Our video observationszv consist of plan-view images of
detected foreground points as shown in Figure 2(a). These
foreground points are detected using a range-based back-
ground model as described in [2].

4.1 Likelihood Model

At each time stept, we observe a binary plan-view image
of the foreground pointsI. For each multi-object configura-
tion X, we create a maskMX which represents a set of im-
age locations(x, y) where the hypothesized objects should
generate foreground points.

MX =
n⋃

i=1

Mχi (4)

whereMχi is a square mask of sized centered on the hy-
pothesized object location. For a given configuration, the
likelihood function,pv(zv|Xt), measures how well the hy-
pothesized state supports the image data. From our obser-

0 1 2 3 4 5

2.5

2

1.5

1

0.5

0

0.5

1

1.5

Length of room (meters)

W
id

th
 o

f r
oo

m
 (

m
et

er
s)

(a)

3

4

5

6

7

8

9

10

11

12

13

x 10
13

0 1 2 3 4 5

2.5

2

1.5

1

0.5

0

0.5

1

1.5

Length of room (meters)

W
id

th
 o

f r
oo

m
 (

m
et

er
s)

P
ow

er (in arbitrary units)

(b)

Figure 2:(a) Video observations consist of binary plan-view im-
ages of foreground points. (b) 2D map of audio power in the mi-
crophone array coordinate system. Brighter colors correspond to
locations of high power.

vations, we calculate the following measurements:

zf =
|I ∩ MX |
|MX | (5)

zb =
|I ∩ MX |
|MX | (6)

wherezf is the fraction of the mask area covered by fore-
ground points andzb is the fraction of the non-mask area
covered by foreground points. In a training phase, we
empirically determined the distributions of these measure-
ments. We model the distribution ofzf with a Gaussian
whose parameters,σf andµf , were determined from the
training data. This yields the likelihood function:

pf (zf |Xt) =
1√

2πσf

e

−(zf −µf )2

2σ2
f (7)

We model the distribution ofzb as an exponential distribu-
tion:

pb(zb|Xt) = λve
−λvzb (8)

The above equations implicitly depend onXt since it was
used to calculatezf andzb. Finally, the overall likelihood
of a configuration is given by,

pv(zv|Xt) = pf (zf |Xt) · pb(zb|Xt) (9)

5 Observation Model for Sound

The sound measurement system consists ofM omnidirec-
tional microphones that are synchronized in time. These mi-
crophones form a steerable array that can be used to localize
sound sources in the room. To use the array for source local-
ization, we steer it to a fixed set of locations in the room and
calculate the response power at each location. The response



power is calculated for the delay-and-sum beamformer de-
scribed by:

Y (t) =
M∑

m=1

αmXm(t − ∆m) (10)

whereXm is the signal for themth microphone,αm is a
scaling factor, and∆m is the delay between the source sig-
nal and microphonem. In practice, the array signals are
bandpass filtered before beamforming to ignore frequen-
cies that contain more noise than speech energy. The beam
power is then calculated as the integral over a time period
of the square of the beamformed signal:

Ȳ (τ) =
∫ τ+T

τ

|Y (t)|2dt (11)

where T is a fixed-length time window. If the beam-
former were steered toward the true source location, then
one would expect the beamformer output power to be large.
Figure 2(b) is a 2D visualization of an audio observation.

5.1 Likelihood Model

The likelihood functionpa(za|Xt) measures how well the
stateXt supports the audio data at timet. In our system,
za is a 2-dimensional response map denoted byBobs(x, y).
We compareza to a response pattern,BX(x, y), that we
synthesize based on a simple anechoic sound propagation
model. We synthesize this response pattern by generating
synthetic signals with a spectrum similar to that of speech
and delaying these signals appropriately for each hypothe-
sized speaker location. These signals are then used to cal-
culate array response powers as described above. Our re-
sponse map representation has the advantage of making ex-
plicit the spatial distribution of audio power while taking
into account sidelobe patterns. These features would be dif-
ficult to incorporate into a TDE formulation of the problem.

Our simple propagation model yields plausible response
patterns; however, the peaks in the synthesized response
patterns tend to be narrower than peaks in actual observa-
tions due to unmodelled noise and reverberation in the en-
vironment. To compensate for these narrow peaks, we blur
each synthesized response pattern with a Gaussian kernel of
standard deviation 28 centimeters.

In practice, we synthesize these response patterns by
precomputing a separate response pattern,Bx′,y′(x, y), for
each possible speaker location(x′, y′). We generate multi-
speaker response patterns by taking linear combinations of
our precomputed patterns:

BX(x, y) =
∑
i∈V

Bxχi ,yχi (x, y) (12)

whereV is the set of people inX who are speaking (sχi =
1).

Form an initial set of particles{X(i)
0 , i = 1, . . . , Ns} and

give them uniform weights{w(i)
0 = 1/Ns}, i = 1, . . . , Ns.

As each new frame of data is received:

1. Resample the particles from the previous frame
{X(i)

t−1} according to their weights{w(i)
t−1} to form a

resampled set of particles{X̃(i)
0 , i = 1, . . . , Ns}

2. Predict a new set of particles{X(i)
t } by propagating

{X̃(i)
t−1} according to dynamic model described in Fig-

ure 1.

3. For each particleXt, calculate the video likelihood ac-
cording to the function

pv(zv|Xt) = pf (zf |Xt) · pb(zb|Xt)

and each audio likelihood according to the function

pa(za|χt) = λae−λaC

The combined audio and video likelihood is computed
by

ptotal(Z|Xt) = pv(zv|Xt) · pa(za|Xt)

4. Weight the new particles according to the total likeli-
hood function

w
(i)
t = ptotal(Z|X(i)

t ) · pn(n)

and normalize so that
∑

i w
(i)
t = 1

5. Store the particles and their weights{X(i)
t , w

(i)
t , i =

1, . . . , Ns}

Figure 3:Algorithm for multi-modal multiple person particle fil-
ter

To compare our synthesized response pattern to the ob-
served pattern, we first normalize each pattern to lie in the
interval [0, 1]. We then compute the L2 norm of the differ-
ence between the two patterns and model the audio likeli-
hood as an exponential function of this norm:

C = ‖B̃X(x, y) − B̃obs(x, y)‖2 (13)

pa(za|Xt) = λae−λaC (14)

whereB̃ are normalized response patterns.

6 Combined Audio and Video Proba-
bility

In addition to the above likelihood functions, we employ
a prior on the number of people in the scene to penalize
unnecessarily complicated explanations of the observation.
In particular, configurations with more objects tend to have



more foreground pixels. We model this by:

pn(n) = e
−(n−|I|/κ)2

2σ2
n (15)

whereκ andσ2
n are the expected number of pixels per per-

son and the variance on number of people respectively. This
term is used when calculating the particle weights in the up-
date stage of the filter. Without this term, a hypothesis that
includes an additional person hiding behind the true loca-
tion of an occupant would be just as likely as the hypothesis
without the hidden person.

The combined probabilityptotal(Z|Xt) for both audio
and video data is obtained by multiplying the corresponding
likelihoods from the audio and video models.

ptotal(Z|Xt) = pv(zv|Xt) · pa(za|Xt) (16)

We use this likelihood function and prior in a particle fil-
tering framework to track multiple objects. Figure 3 is an
overview of our algorithm.

Our particle filter provides a probabilistic model of the
state of the world. To decide on a single consistent explana-
tion of the scene, we use the following algorithm.

1. Calculate the marginal distribution of the number of
people and use it to find a maximum-likelihood esti-
mate for the number of people:

m̂ = arg max
i∈S

∑
mj=i

wj (17)

whereS = {1, . . . , Nmax}
2. Estimate the tracked position as the weighted sum of

the person locations:

E{Xt} =
∑
i∈m̂

w
(i)
t χ

(i)
t (18)

7 Experiments

Our test environment, depicted in Figure 4, is a confer-
ence room equipped with 15 omnidirectional microphones
spread across the ceiling and one stereo camera on the wall.
Our system can easily be extended to incorporate video data
from multiple stereo cameras as in [2]. The audio and video
subsystems were calibrated independently, and for our ex-
periments, we performed a joint calibration by finding the
least-squares best-fit alignment between the two coordinate
systems.

The multi-modal multiple person tracker is a prototype
system that was developed in Matlab. Experiments were
conducted offline on synchronized audio and video feeds.
We expect a real-time system to be possible with an opti-
mized implementation.

Figure 4: The test environment. A schematic view of the envi-
ronment with stereo cameras represented by black triangles and
microphones represented by empty circles.

7.1 Overview

We illustrate our system on a test sequence of three people
interacting in our test environment. This sequence tests the
performance of our tracker in tracking multiple people. It
consists of 700 frames, captured at 12 frames per second,
of one to three people walking around the room. In this
sequence, the subjects were carrying on a conversation in
which typically only one person was speaking. In this ex-
periment, the particle filter was run with 750 particles and
the parameter values listed in Table 1.

7.2 Analysis

Figure 6 presents key frames of the sequence being tracked
using audio and video. The tracking result is visualized as
foreground points superimposed on the audio response pat-
tern observed by the microphone array. The squares rep-
resent the state of the world as estimated by the algorithm
described in Section 6. The colors of the squares range from
white to orange, where the amount of orange represents our
estimate of whether the person is talking. In the audio re-
sponse map “hotter” colors denote higher audio power. Af-
ter the first few frames, the particles are able to lock onto
the initial occupant of the room and track his location as
shown in Figure 6(a). At frame 50, our estimation algorithm
chooses an incorrect configuration in which it describes the
scene with a large silent person and a small talking person.
However, by frame 100 the tracker recovers to the correct
configuration as shown in Figure 6(b). By frame 150, an-
other person has entered and the system responds appropri-
ately. In frame 200, the audio response map indicates that a
third person has entered the room. Although the third per-
son is not yet in the field of view of the camera, the tracker
has used audio to detect him. In frames 250 to 500, as the
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Figure 5: These plots show one person’s trajectory in the x and
y directions as a function of time. The solid blue line is the hand
labeled trajectory (“ground truth”). The dotted green line is the
trajectory ofχ1, the first person in the state. Since we are not
tracking identity, the tracker cannot guarantee thatχ1 is always the
same person, but the tracker dynamics usually preserve continuity
in the scene. The dashed red line is the trajectory of the closestχi

to the ground truth reported by the tracker.

moving occupants take turns talking, the tracker fuses audio
and video to track them. Shortly before frame 550, one of
the non-speaking subjects has moved out of the field of view
of the camera. As a result, our estimation algorithm reports
only two people. By frame 600, the tracker has recovered.

Figure 5 shows one person’s trajectory in the x and y
directions as a function of time. The solid blue line is the
hand labeled trajectory (“ground truth”) which was obtained
by hand segmenting the location of one of the occupants in
every fifth frame. The dashed red line is the trajectory of
the closestχi to the ground truth reported by the tracker.
On this sequence, the subject moved about in our4m by7m
room, the RMS error was16cm.

Symbol Meaning Value
σα Speed std dev 2.8m/s
σd Person size std dev 4.3cm
vremain Object survival probability 0.99
vadd New object arrival probability 0.02
Nmax Maximum number of people 4
σ2

f Foreground likelihood variance 0.79
µf Foreground likelihood mean 0.3304
λv Scale parameter for background 357
T Time window for beam power 1s
λa Scale parameter for audio 0.35
κ Expected number of pixels per person330
σ2

n Variance on the number of people 2

Table 1: Parameter values used for experiments

8 Conclusion and Future Work

This paper describes a multi-modal tracking architecture to
track using audio and video observations. We apply a parti-
cle filter to track multiple people using a stereo-based visual
foreground detection algorithm and spatial audio responses
based on delay-and-sum beamforming. Also, our model ac-
curately reflects the number of people present.

There are many interesting extensions to the work pre-
sented in this paper. For example, the incorporation of ad-
ditional modalities such as color distributions might lead to
increased system robustness.

Currently, our system tracks objects on a ground plane.
We would like to explore different observational models.
For example, in vision, rather than track foreground den-
sities on a ground plane, foreground disparities could be
tracked. This might result in better occlusion reasoning
since the full 3D information about objects is available. By
tracking in 3D, the sampling space is larger so more com-
plicated sampling techniques are required.

Also, different audio source localization techniques
should be explored to improve the audio subsystem. More
complicated beamforming techniques such as minimum
variance distortionless response beamforming could be in-
corporated.

These extensions and a real-time implementation will
hopefully lead to a system that can determine the location
and activity of its inhabitants in a pervasive computing en-
vironment.
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Figure 6:Sequence of multiple people. Foreground points are superimposed on the audio response pattern observed by the microphone
array. In the audio response map “hotter” colors denote higher audio power. The squares represent the state of the world as determined by
our estimation algorithm. The colors of the squares range from white to orange, where the amount of orange represents our estimate of
whether the person is talking.
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