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Abstract

We propose a fast 3D model acquisition system that
aligns intensity and depth images, and reconstructs a tex-
tured 3D mesh. 3D views are registered with shape align-
ment based on intensity gradient constraints and a global
registration algorithm. We reconstruct the 3D model using
a new Cubic Ray Projection merging algorithm which takes
advantage of a novel data structure: the linked voxel space.
Finally, we present experiments to test the accuracy of our
approach on 3D face modeling using real-time stereo im-
ages.

1. Introduction

We present a technique for building textured 3D mod-
els which stitches together synchronized range and intensity
frames from stereo cameras. Range from real-time stereo
provides the basis for a modeling tool that is small and
hand-held, requires one-time only calibration, is completely
passive, produces almost instant 3D models, and provides
real-time feedback as the model is being acquired.

The acquisition process is divided in two steps, common
to most reconstruction algorithms [4]: 1) registering the
frames to recover their relative positions in the real world
and 2) reconstructing a 3D model by merging these frames.
A registration step is necessary because the shape of most
objects cannot be observed from only one view: we must
scan the object from several directions and bring these scans
into registration. But because frames can rarely be brought
into exact registration, a merging phase is required to re-
solve these conflicts by forcing points to lie on a 2D mani-
fold.

Using correlation-based stereo yields significantly nois-
ier range information than traditional range scanners, re-
quiring model acquisition methods that take advantage of
intensity information for alignment. Our gradient-based
registration algorithm employs an efficient global registra-
tion technique that allows it to take into consideration all
frames in the sequence simultaneously, improving registra-

tion significantly. The outcome of the registration phase is a
3D mesh transformed to a canonical pose where each vertex
correspond to a valid image pixel.

Due to noise in the imager and imperfect registration,
the vertices will not lie on a 2D manifold, but will instead
form a fuzzy cloud around the desired surface. The Cubic
Ray Projection algorithm non-rigidly deforms each mesh
so that vertices are forced toward a 2D manifold. To fa-
cilitate the creation of connected meshes from unstructured
range data, we use a linked voxel space during the merg-
ing process. The linked voxel space is easily turned into a
connected mesh for rendering.

The system presented is extremely fast. Many 3D views
are merged together, reducing noise in the final model.
When used with a real-time stereo camera, it is possible to
capture 3D models interactively and unobtrusively.

1.1. Previous Work

Many algorithms have been proposed for registering
range data. These differ notably in the energy function min-
imized during registration, and whether the registration pro-
cedure ensures global consistency.

The method of Stoddart and Hilton[16] minimizes a
function corresponding to the energy stored in a spring sys-
tem connecting corresponding points across frames. This
algorithm provides global consistency, but requires corre-
spondences to be known.

The registration algorithm of [6] brings each point of a
scan as close as possible to its closest point on the model ac-
quired so far, thus avoiding the need for correspondences.
However, since this method does not produce a globally
consistent model, as accumulated registration errors against
the model eventually cause the model to become inconsis-
tent (see [15] for a discussion).

The Iterated Closest Point (ICP) framework proposed
by Besl and McKay [1] iteratively assigns correspondences
and then minimizes the resulting distance metric by rigidly
transforming the scans [12, 3]. Chen and Medioni [3] em-
ploy this technique to minimize the distance between each
point of a scan and the closest tangent plane in the corre-



sponding scan. They perform this minimization jointly over
the pose of all scans. Because each iteration must involve
all pairs of corresponding points, the optimization is expen-
sive.

To reduce the complexity of this minimization, Pulli [12]
first aligns scans pairwise, obtaining relative pose estimates
between many redudant pairs of scans. Global consistency
is obtained by assigning each frame a pose such that the
pairwise relative alignments are minimally perturbed. This
optimization is fast as it does not require correspondances to
be recomputed at each iteration of the optimization and only
matches up frame poses poses instead of individual points.

Our approach uses the combined depth and intensity
constraint of [7] to obtain relative pose changes between
each frame and several other base frames. The pose changes
describe the rigid transformation required for bringing each
frame into registration with its base frames. The global reg-
istration method we present is based on [13] and is similar
in structure to [12] in that, during global registration, poses
are relaxed to find a registration which is consistent with the
measured pairwise pose changes.

The following sections reviews the pose change estima-
tion algorithm of [7] and the global pose consistency algo-
rithm of [13]. Section 3 describes our novel 3D model re-
construction algorithm called Cubic Ray Projection, which
is applied after frames have been globally registered. We
then show how our system can be used to build 3D models
of human heads.

2. Registration

To recover the motion between two frames, we ap-
ply the traditional Brightness Change Constraint Equation
(BCCE) [9] jointly with the Depth Change Constraint Equa-
tion (DCCE) of [7] on range and intensity imagery of stereo
camera. The BCCE finds motion parameters which mini-
mize the appearance difference between the two frames in a
least-squares sense:

Æ� = argmin
Æ

�BCCE(Æ)
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whereu(x; Æ) is the image flow at pixelx, parameterized
by the details of a particular motion model. In the case of
3D rigid motion under a perspective camera, the image flow
becomes:
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whereX is the world coordinate of the image pointx, Æ! is
the infinitesimal rotation of the object,Æ� is its infinitesimal
translation, andf is the focal length of the camera[2].

The DCCE of [7] uses the same functional form as equa-
tion (1) to constrain changes in depth. But since depth is not
preserved under rotation, the DCCE includes an adjustment
term:

�DCCE =
X
x

kZt(x)� Zt+1(x+ u(x; Æ)) + Vz(x; Æ)k
2;

whereVz is the flow towards the Z direction induced by
Æ. Note that the DCCE is robust to lighting changes since
lighting does not affect the depth map. We combine the
BCCE and DCCE into one function optimization function
with a weighted sum:

Æ� = argmin
Æ

�BCCE(Æ) + ��DCCE(Æ);

The only unknown variables are the pose parameters, since
Z is available from the depth maps. For an approximate
way to optimize this function, see [7], where one iteration
of Newton-Raphson is shown to be adequate for tracking.

2.1. Global Registration

Given a method for computing the pose differenceÆts be-
tween framesIs and It, one approach for estimating the
pose�t of frameIt relative to the first frameI0 is to accu-
mulate the pose difference between adjacent framesIs and
Is+1, for s = 0::t � 1. But since each pose change mea-
surement is noisy, the accumulation of these measurements
becomes noisier with time, resulting in unbounded drift.

To curb this drift, we compute the pose change between
It and several base frames. When the trajectory of the target
crosses itself, its pose change is computed against recently
acquired scans as well as past scans near the current pose.
These pose differences are combined to not only obtain a
more robust and drift-free pose estimate of the current scan,
but also to adjust the pose of past frames by incorporating
knowledge about the closed trajectory.

Several authors have proposed an optimization frame-
work to implement this techique [14, 12, 11]. Poses are
assigned to each scan so that the predicted pose changes
between pairs of scans are as similar as possible to the ob-
served pose changes. Assuming a functiond(�s; �t) which
returns the pose change between two poses, we wish to min-
imize: X

(s;t)2P

kÆts � d(�s; �t))k
2
�st

all poses�i. P is the set of frame indices between which
pose changes have been computed, andk:k� is the Maha-
lanobis distance. Poses are parametrized using local rota-
tions so thatd(�s; �t) = �s��t. Optimizating (2.1) involves
solving a sparse linear system, which can be performed ef-
ficiently using conjugate gradient descent, for example. For
more details, see [14].



3. 3D Model Reconstruction
Once frames have been globally registered, they are non-

rigidly deformed during the reconstruction phase to produce
a smooth triangular mesh.

To construct this mesh, frames are individually converted
to meshes by using the pixel adjacency information in the
original range scan. Each vertexq on a mesh is assigned
the 3D locationX, surface normaln and intensityI of its
corresponding point in the registered scan. The uncertainty
in these variables is computed by combining the effects of
measurement uncertainty and registration error and stored
along the other parameters:

q = f[ Xq nq Iq ]; �qg

Reconstruction then involves a discretization of these
vertices into a linked voxel space (described in the follow-
ing section), followed by a merging of nearby voxels us-
ing the Cubic Ray Projection algorithm of section 3.2. The
linked voxel space is finally converted to a triangular mesh
and rendered.

3.1. Linked Voxel Space

To maintain an intermediate representation of the final
3D model, we use a voxel space. However, for our purposes,
the simple voxel model has two main disadvantages: 1) the
connectivity of meshes cannot be represented, and 2) con-
verting this volumetric model to a mesh is difficult[8, 10].
To solve these problems, we use an augmented version of
the voxel space called the linked voxel space.

In a linked voxel space, voxels maintain information
about their connectivity beyond their immediate neighbors
in the space. When converting a mesh to a linked voxel
space, edges between vertices of the mesh are converted to
links between voxels. In our representation, each voxelv is
represented by a vertexqv centered in the voxel and a list of
linksLv, initially empty.

v = f qv Lv g

After registration, each frame is converted to a mesh.
The mesh is transformed to the pose recovered during the
global registration phase, and accumulated into the linked
voxel space.

The location of each vertexq in the mesh is quantized
and mapped to a voxelv. This voxelv is updated as follows:

� The covariance�v of v is updated with
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� The mean surface normalnv at the voxel is updated
with the normalnq of q using:
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where�q is the uncertainty in the node.

� The intensity valueIv is updated as follow

Iv = �v
new
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�

� Each edgei of the vertexq points to a neighboring
nodeqi which is mapped to a voxelvi. A link Lvi is
added tov if the voxelvi is not already linked withv.

The mean surface normal of the voxels are used to guide
the Cubic Ray Projection merging phase and ultimately be-
come the normals of the final mesh model.

3.2. Cubic Ray Projection

The next stage of reconstruction thins out the voxel space
by projecting voxels on one of the six faces of a cube that
delimits the voxel space, merging voxels which fall on the
same projection ray. As voxels are merged, the link infor-
mation of the voxels is updated, resulting in a voxel space
which can be trivially turned into a mesh.

This process aims to identify voxels which represent the
same point on the object being modelled but which have
been incorrectly registered by the registration process. We
employ the heuristic that if two voxels are nearby, have
the same normal, and lie along the same projection ray to
the camera, they represent the same point and should be
merged. The cube projection algorithm identifies such vox-
els by quantizing the normal vectors and providing an effi-
cient data structure to aid the search. As a result, merging
is an O(n) algorithm, where n is the number of voxels.

Figure 1 depicts the merging process. The inverse of the
covariance of a voxel is represented by the size of the dot.
The arrow shows the direction of the normal. The high-
lighted line in the figure represent a projection ray to the
left face of the cube. Along this ray, only voxels with a nor-
mal vector pointing in the direction of left face are selected.
Voxels which are nearby and which are mapped to the same
location on the surface of the cube are then merged. Merg-
ing two voxels involves updating one of them and unlinking
the other.

The merging algorithm updates the mean normal, the in-
tensity value and the adjacency information of the voxel
with the lowest covariancev1. The voxel with the highest
covariancev2 is unlinked from the rest of the voxel space.
The specifics of the update are similar to the discretization
step: 1

� Average normaln1, intensityI1 and covariance�1 are
updated as described in section 3.1.

� Each linksL2
vi

are added tov1 if the voxel vi is not
already linked withv1.



Figure 1. Result of voxels merging on one layer of the
voxel cube. Occupied voxels are represented by a dot (in-
verse of the covariance) and an arrow (normal vector). The
figure shows the projection of the voxels on two faces of the
cube.

� All the links from vi to v2 are removed during the
unlinking stage. This step is possible since the voxel
space is double linked.

Note that the update throws away only a small amount
of information: it discards the voxel with the largest covari-
ance, but updates the voxel with the lowest covariance with
the former’s normal and link information. This voxel merg-
ing step is in some ways similar to that of[5] where only
one merging plane is used (instead of a cube) and all voxels
along a ray contribute to a weighted average distance to the
merging plane (instead of a weighted normal).

Merging all voxels which satisfy the merging criterion
results in a representation where no two nearby voxels with
similar normals project to the same face of the encompass-
ing cube. This thinned spatial representation has associated
adjacency information which make it readily available as a
triangular mesh.

4. Results

When integrated with a real-time stereo camera, our sys-
tem makes it possible to capture 3D models interactively
and unobtrusively. Using SRI’s Small Vision System, we
captured about 10 seconds worth of range and intensity
frames of a person moving in front of the camera. Figure
2 shows some typical frames from the sequence. The sub-
ject rotated his head from left to right, making a 70 degree
arc about the vertical axis. Notice that the range informa-
tion is missing for much of the face and must be recovered
by incorporating many views.

Figure 2. Sample images from the sequence. Left: Inten-
sity images. Right: Depth images.

Figure 3. Progress of the model acquisition.

The ZBCCE registration step aligns all the 3D views to-
gether to create a dense 3D model. Figure 3 shows the pro-
gression of the 3D model during the registration step. We
can observe that the face model is completed as the person
turn his head. The registration runs online at the same time
as the stereo processing, at about 7 fps on a 1.5Ghz Pentium
4.

The Cubic Ray Projection phase merges all the views
into a linked voxel space. This step reduces the number of
vertices from 200,000 to 18,000. Figure 4 shows the re-
constructed 3D voxel space, along with the accompanying
texture map. A solid arc of about 180 degrees was recov-
ered from the 70 degrees of rotation. Global registration,
3D reconstruction, and rendering together took less than 1
second.



Figure 4. Final 3D mesh viewed from different directions.

5. Conclusion

We have demonstrated an efficient system for produc-
ing textured 3D models from range and intensity data. The
system uses stereo cameras to obtain synchronized range
and intensity frames, and hence does not require subsequent
texture alignment. Our algorithm allows the object to be
moved around freely to expose different views.

The frames first undergo a registration phase which com-
putes relative pose estimates between pairs of frames, and
globally solves for the optimal set of poses for all frames.
Our registration algorithm uses range as well as intensity
data in an image gradient-based approach, compensating
for the poor quality of range from correlation-based stereo.
The recovered poses are used to warp all frames to a canon-
ical position, and a 3D model reconstruction step merges
the registered frames together to build a 3D mesh of the ob-
ject. We have demonstrated our system by reconstructing a
model of a human head as the subject underwent a 70 de-
gree rotation.
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