
MATHEMATICAL METHODS
FOR

BRAIN CONNECTIVITY

Held in Conjunction with the International Conference on Medical Image Computing and
Computer Assisted Intervention

September 22, 2013
Nagoya, Japan

Archana Venkataraman MIT CSAIL
Bertrand Thirion Neurospin
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Preface

Connectivity analysis is a burgeoning sub-field of medical imaging that focuses on pairwise
relationships between brain regions. For example, anatomical connectivity informs us about
neural pathways, which represent the internal wiring of the brain. In contrast, functional
connectivity assesses neural synchrony, which relates to communication patterns within the
brain. These interactions are crucial to building a comprehensive understanding of the brain
that can guide the development of imaging biomarkers.

The 2013 workshop on Mathematical Methods for Brain Connectivity (MMBC) focuses
on novel techniques that address the practical applications of brain connectivity. The five
original research papers collected in this proceedings clearly demonstrate that the field
remains as vibrant and diverse as ever. Topics range from empirical studies of structural
connectivity to multimodal analyses that further our insight into the complex nature of
the brain. This workshop, held in conjunction with the 16th International Conference on
Medical Image Computing and Computer Assisted Intervention, provides a snapshot of the
current state-of-the-art methods and highlights some open challenges in the field.

We would like to express our gratitude towards members of the Program Committee for
ensuring the high quality of accepted papers. It is now our distinct pleasure to welcome
participants to MMBC 2013 and to provide this record of the novel research presented at
the workshop.
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Rachid Deriche
Ragini Verma

i



Table of Contents

Preface i

Table of Contents ii

Workshop Organization iii

Oral Session I: Properties of Structural Connectivity 1

Disrupted Brain Connectivity in Alzheimers Disease: Effects of Network Thresholding . . . . . . 2

Madelaine Daianu, Emily L. Dennis, Neda Jahanshad, Talia M. Nir, Arthur W. Toga,
Clifford R. Jack, Jr., Michael W. Weiner and Paul M. Thompson for the Alzheimer’s
Disease Neuroimaging Initiative

Rich Club Analysis of Structural Brain Connectivity at 7 Tesla versus 3 Tesla . . . . . . . . . . . . . . . 10

Emily L. Dennis, Liang Zhan, Neda Jahanshad, Bryon A. Mueller, Yan Jin,
Christophe Lenglet, Essa Yacoub, Guillermo Sapiro, Kamil Ugurbil, Noam Harel,
Arthur W. Toga, Kelvin O. Lim and Paul M. Thompson

Oral Session II: Multimodal & Population Analysis of Connectivity 18

Coupled Intrinsic Connectivity: A Principled Method for Exploratory Analysis of Paired
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Dustin Scheinost, Xilin Shen, Emily Finn, Rajita Sinha, R. Todd Constable, and
Xenophon Papademetris

Power Estimates for Voxel-Based Genetic Association Studies using Diffusion Imaging . . . . . . 27

Neda Jahanshad, Peter Kochunov, David C. Glahn, John Blangero, Thomas E.
Nichols, Katie L. McMahon, Greig I. de Zubicaray, Nicholas G. Martin, Margaret J.
Wright, Clifford R. Jack, Jr., Matt A. Bernstein, Michael W. Weiner, Arthur W.
Toga and Paul M. Thompson for the Alzheimer’s Disease Neuroimaging Initiative

Global Changes in the Connectome in Autism Spectrum Disorders . . . . . . . . . . . . . . . . . . . . . . . . 35

Caspar J. Goch, Basak Oztan, Bram Stieltjes, Romy Henze, Jan Hering, Luise
Poustka, Hans-Peter Meinzer, Bülent Yener and Klaus H. Maier-Hein

ii



Workshop Organization

Archana Venkataraman MIT CSAIL

Bertrand Thirion Neurospin
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Abstract. Diffusion imaging is accelerating our understanding of the human 
brain. As brain connectivity analyses become more popular, it is vital to 
develop reliable metrics of the brain’s connections, and their network 
properties, to allow statistical study of factors that influence brain ‘wiring’. 
Here we chart differences in brain structural networks between normal aging 
and Alzheimer’s disease (AD) using 3-Tesla whole-brain diffusion-weighted 
images (DWI) from 66 subjects (22 AD/44 normal elderly). We performed 
whole-brain tractography based on the orientation distribution functions. 
Connectivity matrices were compiled, representing the proportion of detected 
fibers interconnecting 68 cortical regions. We found clear disease effects on 
anatomical network topology in the structural backbone – the so-called ‘k-
core’ – of the anatomical network, defined by varying the nodal degree 
threshold, k. However, the thresholding of the structural networks – based on 
their nodal degree – affected the pattern and interpretation of network 
differences discovered between patients and controls.   
 
Keywords. brain connectivity, k-core, threshold, DTI, tractography, graph theory 

 
1. Introduction 

 
Diffusion imaging has recently been added to several large-scale neuroimaging 

studies, including the Alzheimer’s Disease Neuroimaging Initiative (ADNI), to monitor 
white matter deterioration using metrics not available with standard anatomical MRI. 
Diffusion MRI yields measures sensitive to fiber integrity and microstructure, such as the 
mean diffusivity and fractional anisotropy of local water diffusion [1]; in addition, 
tractography can be used to infer neural pathways and connectivity patterns, yielding 
additional, more complex mathematical metrics describing fiber networks.   

Despite the enthusiasm for using diffusion imaging to map brain connectivity and 
how it changes with disease, there is a lack of serious groundwork validating these 
methods to see if the connections they map are correct and how acquisition and analysis 
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protocols affect them. Post-processed connectivity data is also affected by the level of 
thresholding applied to the brain connectivity matrices; thresholding is commonly applied 
to retain key information on the most crucial subnetworks, while eliminating false positive 
fibers or connections inaccurately inferred due to noise and imaging artifacts. There is no 
consensus about what might be the ideal level of thresholding to retain only the most 
relevant information in post-processed connectivity data. A common approach filters 
networks based on the nodal degree, leaving only the most highly connected nodes. As 
this loses information, some groups advocate defining metrics on the entire set of 
networks at all thresholds, using concepts such as the Rips filtration [2]. 

Here we studied anatomical fiber networks in 44 controls and 22 identically scanned 
people with Alzheimer’s disease (AD) using novel mathematical network metrics derived 
from the ‘structural backbone’ – or k-core – of the human brain. Based on prior studies 
[3], we were interested in understanding how the different number of nodes, N, in filtered 
networks from healthy and diseased subjects affects graph theory measures computed 
from thresholded connectivity matrices. In the end, it would be unwise to infer that AD 
affects networks in a particular way, if networks filtered differently showed different 
disease effects. To explore this, we computed the network’s structural core using a k-core 
decomposition [4] to find important sets of nodes that are highly and mutually 
interconnected. The level of the k-core, k, serves as a threshold to retain nodes in the 
connectivity matrix with degree k or higher. We systematically varied the values of k 
(k=1, …, 20) and analyzed the changes in the resulting network measures to understand 
how they are affected by thresholding the size or degree of the networks (N, k). We 
calculated global measures sensitive to anatomical network topology: the clustering 
coefficient (CC), characteristic path length (CPL), efficiency (EFF), and nodal degree 
(NOD) for all 66 subjects at each of the 20 k-core levels. All network measures showed 
group differences that depended heavily on the nodal degree and size of the threshold 
applied to the network. We aimed to find out which network measures are most and least 
sensitive to variation in the N and k levels, in terms of their ability to resolve differences 
between the healthy and diseased groups. 

 
2. Methods 
 
2.1. Subjects and Diffusion Imaging of the Brain 
 
We analyzed diffusion-weighted images (DWI) from 66 subjects scanned as part of 

phase 2 of the Alzheimer’s Disease Neuroimaging Initiative (ADNI2), a large multi-site 
longitudinal study to evaluate biomarkers to assist diagnosis and track disease 
progression. Table 1 shows subject demographics and diagnostic information; data 
collection is ongoing. All 66 subjects underwent whole-brain MRI scanning on 3-Tesla 
GE Medical Systems scanners, at a variety of sites across North America, with the same 
protocol, which had been optimized for SNR. Standard anatomical T1-weighted SPGR 
(spoiled gradient echo) sequences were collected (256x256 matrix; voxel size = 
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1.2x1.0x1.0 mm3; TI = 400 ms, TR = 6.984 ms; TE = 2.848 ms; flip angle = 11°) in the 
same session as the diffusion-weighted images (DWI; 256x256 matrix; voxel size: 
2.7x2.7x2.7 mm3; scan time = 9 min). 46 separate images were acquired for each DTI 
scan: 5 T2-weighted mages with no diffusion sensitization (b0 images) and 41 diffusion-
weighted images (b = 1000 s/mm2).  
 
Table 1. Demographic information for 44 controls and 22 AD patients scanned with diffusion MRI 
as part of ADNI. Their ages ranged from 55.7 to 90.4 years.  

	
   Controls	
   AD	
   Total	
  
N	
   44	
   22	
   66	
  
Age	
   72.7	
  ±	
  5.9	
  SD	
   75.5	
  ±	
  10.0	
  SD	
   73.6	
  ±	
  7.5	
  SD	
  
Sex	
   22M/22F	
   14M/8F	
   36M/30F	
  

2.2 Image Analysis 

Pre-processing and Co-registration 
Non-brain regions were automatically removed from each T1-weighted MRI scan, and 

from a T2-weighted image from the DWI set using the FSL tool “BET” 
(http://fsl.fmrib.ox.ac.uk/fsl/). Anatomical scans subsequently underwent intensity 
inhomogeneity normalization using the MNI “nu_correct” tool 
(www.bic.mni.mcgill.ca/software/). All T1-weighted images were linearly aligned using 
FSL (with 6 DOF) to a common space with 1mm isotropic voxels and a 220×220×220 
voxel matrix. The DWI were corrected for eddy current distortions using the FSL tools 
(http://fsl.fmrib.ox.ac.uk/fsl/).  For each subject, the 5 images with no diffusion 
sensitization were averaged, linearly aligned and resampled to a downsampled version of 
their T1-weighted image (110×110×110, 2×2×2mm). b0 maps were elastically registered 
to the T1-weighted scan to compensate for susceptibility artifacts or EPI induced 
distortions.  

Tractography and Cortical Extraction  
The transformation matrix from linearly aligning the mean b0 image to the T1-

weighted volume was applied to each of the 41 gradient directions to properly re-orient 
the orientation distribution functions (ODFs). We also performed whole-brain 
tractography as described in [5] on the sets of DWI volumes. We used a method based on 
the Hough transform to recover fibers, using a constant solid angle orientation density 
function to model the local diffusion propagator. The angular resolution of the ADNI data 
is deliberately limited to avoid long scan times that may increase patient attrition, but the 
ODF model makes best use of the limited available angular resolution.   

Elastic deformations obtained from the EPI distortion correction, mapping the average 
b0 image to the T1-weighted image, were then applied to each recovered fiber’s 3D 
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coordinates to more accurately align the anatomy. Each subject’s dataset contained 
~10,000 useable fibers (3D curves) in total. 34 cortical labels per hemisphere, as listed in 
the Desikan-Killiany atlas [6], were automatically extracted from all aligned T1-weighted 
structural MRI scans using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) [7].  

NxN Matrices Representing Structural Connectivity  
 For each subject, a baseline 68x68 connectivity matrix was created, based on 34 right 
hemisphere ROIs and 34 left hemisphere ROIs. Each element described the estimated 
proportion of the total number of fibers, in that subject, that passes through each pair of 
ROIs. We note that various normalizations could be applied (e.g., using the volume or 
area of the target ROIs, or to turn these counts into densities), but for simplicity we here 
just used the fiber counts (normalized to the total number of fibers detected in the brain).   

2.3 Brain Network Measures  
Topological differences in the brain’s networks may be analyzed using graph theory, 
which represents the brain network as a set of nodes and edges. The network’s N nodes 
are typically defined as ROIs, usually on the cortex, segmented from anatomical MRI. 
These network nodes are linked by ‘edges’ whose weights denote some measure of 
connectivity between the two regions, such as the density or integrity of fiber tracts in DTI 
studies [8]. An NxN connection matrix may therefore be compiled to describe the 
network. A square matrix can represent any network of connections, and may also be 
displayed as a graph, i.e., a discrete set of nodes and edges [8], leading the way for 
analyses through the branch of mathematics known as graph theory. In our analysis, the 
matrix entries store the total proportion of fibers connecting each pair of regions (the 
nodes); these could also be considered as the “weights” of the edges that connect a pair of 
nodes [8].  

From the connection matrices, we applied a threshold by computing the k-core for 20 
levels of the nodal degree threshold, k, using a decomposition algorithm that identifies 
subsets of graphs (k-cores) by recursively removing nodes with degrees lower than k, such 
that k serves as a degree threshold for nodes [9]. For a graph 𝐺 = 𝑁,𝐸  with   𝑁 = 𝑛 
nodes and 𝐸 = 𝑒 edges, a k-core is computed by assigning a subgraph, 𝐻 = 𝐵,𝐸|𝐵  
where set 𝐵 ⊆ 𝑁 is a k-core of order k iff ∀  𝑣 ∈ 𝐵: degreeH  ≥ k, and H is the maximal 
subgraph (most highly connected one) satisfying this property [9]. In other words, to 
compute the k-core of the connectivity matrix, we kept all nodes with a degree k or higher. 
These then become new 68x68 matrices, each being a somewhat thresholded version of 
the original; weights of nodes that did not satisfy the k-cutoff were replaced with zeroes.  

We obtained the k-core matrices by varying k from 1 to 20 for both controls and AD 
subjects. The global graph theory measures (CC, CPL, EFF, and NOD) were derived from 
each k-core matrix for each subject, to yield four representative network measures at each 
k-level (i.e., each subject had 20 global metrics for CC, CPL, EFF and NOD). NOD was 
computed as a nodal measure first, and then averaged overall all 70 cortical regions for 
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each subject to output a global measure. These widely-used measures are detailed in [8], 
although their use in brain connectivity and AD research is yet to be extensively explored. 
CC and CPL measures were normalized based on 100 randomized networks of equal size 
and similar connectivity distribution. We tested for between-group differences using a 
linear regression, controlling for age and sex, with AD coded as 1 and controls as 0. We 
tested for differences between groups of controls and AD subjects for CC, CPL, EFF and 
NOD at each k-core value for the brain network. We also tested for within-group 
differences for network measures EFF and NOD, which were found to be “most 
significant” in the between-group comparison. For this, we compared every k-level across 
subjects within one diagnostic group with every other k-level in that group (i.e., EFF for 
controls at k1=1,2…19 was compared to EFF for controls at k2=(k1+1)…20) using a 2-
tailed paired t-test. We applied an FDR correction on all (20*20-20)/2 comparisons.  
 

3. Results 
The variation in the k-core levels (k=1, …, 20) affected the networks and, as 

expected, resulted in changing graph theory measures (CC, CPL, EFF and NOD) in each 
diagnostic group.  

 

 
Figure 1. Average and global CC, CPL, EFF and NOD for the whole brain in 44 controls (blue) and 
22 AD subjects (red), based on thresholding the network at k=1, …, 20. Error bars show the 
standard errors.  

 
We performed between group comparisons to find out how effect sizes for group 

differences depended on the network degree threshold. Relative to controls, the AD group 
had a higher global CC (FDR critical p-value=6.26E-03) for the entire range of k-core 
values (k=1-20) and a higher global CPL (p-value=5.72E-3) for k-cores in the range k=1-
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18. Obtaining a higher CC in AD, relative to controls, may not be entirely intuitive, but 
the CC can be disproportionately influenced by nodes with low degree [8]. NOD (FDR 
critical p-value=3.65E-05) and EFF (FDR critical p-value=6.21E-05) were lower in AD 
over the whole range of k-core values (k=1-20), relative to controls. Averaged network 
measures (Figure 1) and p-values (Figure 2) are plotted.  

Furthermore, we tested for within group differences in all subjects for NOD and EFF, 
as these measures showed greatest effect sizes in the diagnostic group comparisons. The 
results are shown in a 20x20 matrix, where the EFF was calculated from matrices 
thresholded at each k-level. We compared the EFF network measure to the same network 
measure calculated from the other k-levels – always within the same diagnostic group, to 
avoid incorporating disease effects (Figure 3). EFF changed significantly as k varied in 
both controls and AD (FDR critical p-value=1.42E-02 for controls and 1.27E-02 for AD). 
Within-group measures for NOD were not significantly different across any k-levels in 
either group.  

 

 
Figure 2. P-values from a regression controlling for age and sex, testing for significant differences 
between AD subjects and controls for whole-brain global CC, CPL, EFF and NOD in AD subjects 
versus controls. Red points highlight p-values that are less than the p-value threshold (CC p-
value=6.26E-03, EFF p-value=6.21E-05, NOD p-value=3.65E-05 and CPL p-value=5.72E-03) that 
controls the FDR at 5%. This FDR correction allows us to state that the groups truly differ, even 
though multiple thresholds were tested.  
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Figure 3. Matrix (20x20) representing the p-values from the within group comparisons for EFF 
across all k-levels within each group (FDR critical p-value=1.42E-02 for controls and 1.27E-02 for 
AD). A given cell (x,y) in this matrix gives the p-value for the t-test comparing the value of EFF 
between k-cores where the minimum nodal degree is x and y, respectively. As expected, greatest 
differences in network measures were found between lowest and highest k-levels (red p-values).  
 

4. Discussion 
Graph theory has been widely used to assess functional and anatomical networks in 

the brain, but not nearly so much attention has been paid to analyzing network variations 
due to choices made in analysis methods (i.e., network thresholding) and how they impact 
network topology comparisons. With the growing interest in connectivity analyses, it is 
important to understand how stable network measures are, and develop reliable guidelines 
when applying them to study disease. The interpretation of network breakdown in disease 
may be somewhat different depending on the criteria used to compare or filter networks.  

Here we analyzed brain connectivity in cognitively impaired patients with AD and 
matched normal controls. We varied the nodal degree threshold applied to the 
connectivity matrices for both groups by using a wide range of k-core values (k=1, …, 
20). Some network measures - CC, CPL, EFF and NOD - declined across all subjects as 
nodal degree threshold levels were increased. Network measures that showed the greatest 
differences between diagnostic groups over k levels ranging from 1 to 20 are in the 
following order (i.e., with the greatest size effect and smallest p-values): NOD, EFF, CPL, 
and CC. NOD and EFF were found to have greatest size effects among all measures (FDR 
critical p-value=3.65E-05 and 6.21E-05) (Figures 1 and 2). This led us to analyze within-
group differences for NOD and EFF; we found that increasing levels of k significantly 
affects the apparent efficiency of the overall network in both controls and AD, while NOD 
was not affected by varying k levels (Figure 3).  

The decline in all network measures with increasing k levels is expected in both 
diagnostic groups. This is because networks thresholded at higher k levels required a 
greater number of nodes to be connected (e.g., at k=20, approximately 30% of the nodes 
are connected). Similarly, AD is known to disrupt the overall network topology of the 
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brain [2,3] leading to fewer nodes when compared to controls. This is why NOD had the 
greatest effect size in the between-group comparisons.  

An ideal network threshold for this data is in the range of k=15-18. This includes at 
least 22-26% of the nodes in each brain network, yielding the ‘most significant’ effects in 
both between and within group comparisons. Ideally, this threshold would tend to suppress 
noise and some imaging artifacts, removing weak connections while emphasizing stronger 
connections altered in disease. This range may vary with study-specific parameters. 

We studied the effect sizes for the group differences here, to clarify how network 
filtering parameters influence the differentiation of diseased versus normal groups based 
on graph theory metrics. Although there is no universal method and no definitive answer 
as to how networks of different sizes and connectivity densities should be accurately 
compared and analyzed [10], maintaining these measures consistent across study groups is 
crucial for obtaining comparable results. Normalizing the network measures using 
randomized networks with the same number of nodes and connections may make graph 
metrics more stable with respect to differences in N and k [10]. In the end, methods based 
on network filtrations may supersede those applied to thresholded networks, if they better 
detect disease effects on brain connectivity.  
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Abstract 
The ‘rich club’ is a relatively new concept in brain connectivity anal-
ysis, which identifies a core of densely interconnected high-degree 
nodes. Establishing normative measures for rich club organization is 
vital, as is understanding how scanning parameters affect it. We 
compared the rich club organization in 23 subjects scanned at both 7 
and 3 Tesla, with 128-gradient high angular resolution diffusion im-
aging (HARDI). The rich club coefficient (RCC) did not differ sig-
nificantly between low and high field scans, but the field strength did 
affect which nodes were included in the rich club. We also examined 
3 subjects with Alzheimer’s disease and 3 healthy elderly controls to 
see how field strength affected the statistical comparison. RCC did 
not differ with field strength, but again, which nodes differed be-
tween groups did. These results illustrate how one key parameter, 
scanner field strength, impacts rich club organization - a promising 
concept in brain connectomics research.  

 
1 Introduction 

 
The ‘rich club’ is an emerging concept in the graph theoretical analysis of brain net-
works. Initially described in [1], it was first applied to brain networks in [2]. In graph-
based analyses of brain connectivity, brain regions are represented as nodes and a set 
of edges represent the connections between them. These connections may be defined 
based on fiber tracts extracted from diffusion MRI, or based on time-course correla-
tions between different brain regions in functional MRI data. For brain networks, the 
rich club is defined as a central core of high-degree nodes that are more highly inter-
connected than would be expected simply from their high degree. Some authors argue 
that the rich club is crucial for understanding global network efficiency; an attack on 
rich club nodes disproportionately affects global efficiency [2]. Rich club connectivity 
organization changes with age as brain connectivity strengthens [3]. Brain networks 
are complex, and the rich club concept offers a principled approach for dimension 
reduction: it identifies a key set of crucial nodes that contribute maximally to network 
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efficiency. The rich club coefficient, φ(k), represents the density of connections be-
tween the rich club nodes according to the following equation:                  

Eq. 1      𝜙(𝑘) =      𝐸!𝑘  
𝑁!𝑘(𝑁!𝑘!!)

 

Here k is the degree of the nodes, E>k is the number of links between nodes with de-
gree k or greater, and N>k is the total number of possible connections if those nodes of 
degree k were fully connected. Van den Heuvel and Sporns also introduced φnorm(k), 
which is φ(k) divided by the rich club coefficient calculated in a series of random 
networks (φrandom(k)) of the same size with a similar distribution of edges [2]. A 
φnorm(k) value > 1 indicates rich-club organization in the network.  

The rich club, as it pertains to brain networks, is a new topic of interest, and little 
is known about its stability across MRI scanning parameters. If network parameters 
depend on the scanner field strength or other imaging parameters, researchers need to 
be aware of this, to ease pooling of multi-site data and resolve apparent discrepancies 
among studies. We hypothesized that the brain’s fiber network could be imaged re-
producibly at 7 and 3 Tesla to yield the same rich club content and coefficient, despite 
differences in scanning protocols (high-field versus standard magnetic field strength). 
We set out to examine how MR field strength affects rich club properties in 23 young 
adults scanned at both 7 and 3 T. In pilot work, we also examined 3 subjects with 
Alzheimer’s disease (AD) and 3 age- and sex-matched healthy controls (HC) to see 
how statistical comparisons might be affected by field strength. These data come from 
prior work by our group examining how MR field strength affects connectivity, in-
cluding more basic tractography measures [4].  
 
2 Methods 

 
2.1 Subject demographic and image acquisition 
Whole brain anatomical and DW-MRIs at both 7 and 3 T were collected from 23 
young adults (11 female, mean age=23.8, SD=2.6) and 6 elderly subjects (3 AD: 2 
female, mean age=76.1, SD=3.2; 3 HC: 2 female, mean age=78.3, SD=2.4); the pro-
tocols are detailed in [5,6]. Standard head coils were used on both systems: the 12-
channel receive-only array on the 3T, and a Nova 24 channel transmit/receive coil on 
the 7T. The reconstruction method for the 3T scanner was adaptive recombine (AC), 
while the default multi-channel reconstruction method for the DWI data on the 7T 
scanner was sum-of-squares (SOS). 3T DW-images were acquired with the following 
acquisition parameters: GRAPPA mode; acceleration factor PE=2; TR/TE=7800/82 
ms; FOV=192x192 mm, isotropic voxel size=2 mm. 143 images were collected per 
subject: 15 b0 and 128 diffusion-weighted (b=1000 s/mm2). 7T DW-images were 
acquired with the following acquisition parameters: GRAPPA mode; acceleration 
factor, PE=2; TR/TE=5700/57 ms; FOV=256x256 mm, isotropic voxel size=2 mm. 
143 images were collected per subject: 15 b0 and 128 diffusion-weighted (b=1000 
s/mm2). T1-weighted anatomical images were acquired at 3 Tesla with the following 
acquisition parameters: GRAPPA mode; acceleration factor PE=2; 
T1/TR/TE=1100/2530/3.65 ms; echo spacing = 8.5 ms; flip angle = 7°; slice thickness 
= 1.0 mm, with an acquisition matrix of 256x256. All subjects gave informed consent 
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after study protocols were explained.  
 
2.2 Image preprocessing and registration 
All DWI data were visually inspected by an experienced rater for evidence of the 
known Siemens vibration dropout artifact [7]. No dropout artifact was found in the 
DW data. All raw DWI images were corrected for distortions due to eddy currents and 
motion using the eddy_correct function from the FSL toolbox 
(http://fsl.fmrib.ox.ac.uk/fsl) [8,9]. Geometric distortions due to magnetic susceptibil-
ity were then corrected using a field map collected just before the DTI, using the FSL 
prelude and fugue functions. Non-brain regions were removed from a T2-weighted 
image (b0) in the corrected DWI dataset using the bet function in FSL. A trained neu-
roanatomical expert manually edited the T2-weighted scans to refine the brain extrac-
tion and to ensure the same brain coverage among different protocols. This step was 
important to avoid bias, as different connectivity patterns might be recovered if brain 
coverage varies. All analyses below are based on this preprocessed dataset. 
 
2.3 Brain connectivity computation 
Tractography and cortical networks were computed in the native space of the data. 
The Diffusion Toolkit (http://trackvis.org/dtk/, [10]) uses these parameters to generate 
3D fiber tracts, using the Orientation Distribution Function model, computed using 
the 2nd order Runge-Kutta method [11]. We used all voxels (with FA≥ 0.2) as seed 
voxels to generate the fibers. Paths were stopped when they reached a region with FA 
< 0.2; they were also stopped if the fiber direction encountered a sharp turn (critical 
angle threshold ≥30°). After tractography, a spline filter was applied to each generat-
ed fiber, with units expressed in terms of the minimum voxel size of the dataset (2 
mm). Each subject’s dataset contained 25,000-40,000 useable fibers (3D curves). 
Duplicate fibers and very short fibers (< 10mm) were removed. Although we did not 
do this here, some researchers normalize fiber count by ROI volume at this point [12]. 

Cortical and subcortical ROIs were defined using the Harvard Oxford Cortical 
and Subcortical probabilistic atlases [13]. Midline cortical masks were bisected into 
left and right components, to define separate hemispheric ROIs for each cortical re-
gion. Since this is a probabilistic atlas, the masks were set to a liberal threshold of 
10% to include tissue along the gray-white matter interface, where fiber orientation 
mapping and tractography are most reliable [14]. To register these ROIs to each sub-
ject’s DTI space, we used FSL’s flirt function to determine the optimal affine trans-
formation between the MNI152 T1 average brain (in which the Harvard Oxford prob-
abilistic atlases are based) and each subject’s unique FA image. We used a 12 degree-
of-freedom registration with a mutual information cost function. We applied the re-
sulting transformation to register the 110 ROIs to each subject’s DTI space using 
nearest neighbor interpolation. To ensure that ROI masks did not overlap with each 
other after registration, each voxel was uniquely assigned to the mask for which it had 
the highest probability of membership. For a list of ROIs, see [4]. We did not include 
the brainstem and cerebellum ROIs, giving us a total of 110 ROIs. 

For each pair of ROIs, the number of detected fibers connecting them was deter-
mined from the tractography results. A fiber was considered to connect two ROIs if it 
intersected both ROIs. This process was repeated for all pairs, resulting in an 110x110 
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matrix. This matrix is symmetric and has a zero diagonal (no self-connections).  
 

2.4 Rich club analyses 
On these 110x110 matrices, we used the Brain Connectivity Toolbox ([15]; 
https://sites.google.com/a/brain-connectivity-toolbox.net/bct/ Home) to compute the 
rich club coefficient (φ(k)). We calculated the φ(k) over values of k (the degree of the 
nodes) ranging from 0-110 to capture all possible values. To generate the normalized 
rich club coefficient (φnorm(k)), we simulated 50 random networks. These matrices 
were first binarized so the actual weights of the edges were not factored in, simply the 
number of connections. Analyses comparing φ(k) and φnorm(k) were performed across 
all subjects. In order to compare rich club organization, we constructed average 
graphs for the 3T and 7T datasets. For the young cohort, these were averaged across 
all 23 subjects, and the group-averaged matrices were thresholded to include only 
connections found in at least 75% of subjects; this step is helpful to suppress false 
positive fibers arising from tractography errors. For the elderly cohort, these were 
averaged separately for the AD and HC subjects. Given the small sample size, we did 
not threshold the group-averaged matrices. To determine the k cut-off for rich club 
membership, we used the same criteria as [2]: we included nodes having a degree at 
least one standard deviation above the average degree. For the young cohort, the aver-
age degree for the 3T group-averaged network was 57.4, while for the 7T network it 
was 54.7. This was not a significant difference, however.  This resulted in a k cutoff 
of 69 at 7T and 71 at 3T, and we used these thresholds for Figure 1. We will call 
these ‘analogous k-levels’ from here on in the paper. For the elderly cohort, the aver-
age degree for the 3T AD group-averaged network was 93.5, and in HC it was 91.2; 
this group difference was significant (p=0.025). For the 7T group-averaged networks, 
the average degree for AD was 73.0, and in HC it was 79.9, a difference that was also 
significant (p=2.1x10-16). These averages are higher than for the young cohort because 
we could not filter these networks in the same way, given the small sample size.  
 
3 Results 

 
3.1 Rich club coefficient (φ(k) and φnorm(k)) 
We ran a paired-sample t-test at each k-level (the nodal degree threshold) to look for 
protocol effects on our subjects’ connectomes, by studying both φ(k) and φnorm(k) 
across subjects. We did not detect any significant differences in rich club coefficient, 
either φ(k) or φnorm(k), between protocols in the young cohort. We also did not detect 
any differences in φ(k) or φnorm(k) between AD and HC at 3T or 7T, although admit-
tedly we were underpowered to pick up group differences.   
 
3.2 Rich club organization – Young cohort results 
When k=69 for 7T and k=71 for 3T, as justified above, there were differences in the 
rich club organization of the group-averaged 3T and 7T matrices. These mostly re-
sulted from the fact that the 3T rich club at k=71 included 21 nodes, while the 7T rich 
club at k=69 included only 19 nodes. This was due to a slight difference in average 
degree, as mentioned above. These results are shown in Figure 1. 
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Figure 1. Differences in rich club organization between 3T and 7T scanning protocols. 
Green nodes are unique to one rich club, blue are common to both. Black edges are common to 
both rich clubs, blue edges are unique to one rich club but among common nodes, green edges 
are unique to one rich club due to the unique nodes. 3T k-level=71, 7T k-level=69. The red 
highlighted nodes are unique to the 3T rich club when Nnode was kept constant at 19, instead of 
k-level, blue highlighted nodes are unique to the 7T rich club in the Nnode analysis. 
 

Knowing that a difference in degree impacted rich club membership, we also 
compared rich club organization when the number of nodes was held constant, rather 
than looking analogous k-levels, as before. When the node-number (symbolized here 
by Nnode) was held constant at 19 nodes, there were still differences in rich club mem-
bership. When held constant at Nnode=19, the common nodes between the two connec-
tomes were nodes 6-21, as listed in Figure 1. Those unique to the 7T rich club were 
nodes 22-24, highlighted in blue, while those unique to the 3T rich club were nodes 2, 
4, and 5, highlighted in red. Interestingly, those unique to the 3T rich club are all sub-
cortical, while those unique to the 7T rich club, when Nnode=19, are all cortical. Fol-
lowing up on this Nnode analysis, we compared φ(k) when node number was held con-
stant. Table 1 shows these results, across a range of Nnode tested. To do this, we 
looked at the number of nodes present at k-levels 69-75 for 7T, and then found where 
this Nnode boundary was in the 3T network. The Nnode comparisons are not exact be-
tween 3T and 7T, as that would require arbitrarily cutting off nodes that had the same 
k-level. As we were comparing φ(k), which is still calculated based on level, arbitrari-
ly cutting off nodes would make comparing the φ(k) values invalid. This kind of anal-
ysis is intended to give a clearer idea of the relationship between the φ(k) of the 3T 
and 7T connectomes when the number of nodes is held constant. As seen in Table 1, 
φ(k) is significantly greater in the 3T connectome across most of this range. We chose 
to look at a range beginning with 7T k-level=69, as that was the ‘high degree’ thresh-
old for 7T mentioned above, and ending with the last k-threshold at which rich club 
organization was detectable (75 for 7T, 77 for 3T). We ran a paired-sample t-test on 
the distribution of φ(k) at a given k-level between protocols, and used the false dis-
covery rate method (FDR) to correct for multiple comparisons (q<0.05, [16]).  
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Table 1. Comparison of high-field and standard field protocols maintaining Nnode. Across a 
range, φ(k) was averaged across all subjects. Nnode indicates the number of nodes at a given k-
level. P denotes the p value for a two-tailed t-test comparing the means of the φ(k) for the 3T 
and 7T protocols at a given k-level. All results are corrected for multiple comparisons, with the 
FDR method (q<0.05). 

7T k level 69 70 71 72 73 74 75 
Nnode 19 14 14 11 10 9 8 
Avg. φ(k) 0.9217 0.9332 0.9434 0.9529 0.9603 0.9674 0.9732 
3T k level 72 74 74 75 75 76 77 
Nnode 19 15 15 11 11 9 9 
Avg. φ(k) 0.947 0.9577 0.9577 0.9652 0.9652 0.9712 0.9758 
p  0.0014 0.0039 0.066 0.073 0.47 0.55 0.64 

 
3.3 Rich club organization – AD/HC comparison 
We compared which nodes were included at the statistically determined k cut-offs for 
rich club membership (3T AD=104, 3T HC=105; 7T AD=90, 7T HC=96). We ex-
pected to find differences between the AD and HC subjects, but were most interested 
in how the differences between groups varied with field strength. Given our small 
sample size (3 AD, 3 HC), these results are preliminary. These are summarized in 
Figure 2. There were many differences that were only detectable at 3T. Both groups 
had larger rich clubs at 3T, like the young cohort, again due to lower degree at 7T.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Differences in the comparison of AD versus HC subjects between 3T and 7T scan-
ning protocols. Left image shows rich club nodes with connections, as averaged across all 
subjects (thresholded to include connections found in at least 66% of subjects), right image 
shows just the nodes, for clarity. Small nodes showed no effect of field strength, large nodes 
showed an effect of field strength; black nodes both groups had; blue nodes present in AD only; 
cyan nodes present in HC only; green nodes had group diff. only in 3T; yellow nodes had group 
diff. only in 7T. The right side of the image denotes the left side of the brain. 
 
4  Discussion 
In this paper we used a unique dataset, comparing rich clubs recovered from the same 
groups of subjects scanned at both 3T and 7T. As the rich club is a relatively new 
metric in brain connectivity analyses, it is important to know how much measures 
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vary across key scan parameters. In a prior paper studying this same dataset [4], the 
7T protocol had higher SNR than the 3T protocol, as expected from MR theory, but 
this did not affect the estimates of FA (fractional anisotropy). We ran binary graph 
theory analyses (not weighted), so some of the more subtle differences between pro-
tocols may be washed out. We did not have the space here to consider weighted rich 
club analyses, but will do so in the future. 

One might expect the rich club to contain more nodes at higher field, based on 
the presumably more accurate and complete recovery of connections. The more ex-
tensive rich club seen in the 3T connectome may be due to the higher noise level in 
this dataset compared to the 7T connectome, which increases the likelihood of false 
positive fibers. In our group-averaged networks, we did threshold the connectivity 
matrices to include only those connections found in at least 75% of the subject pool, 
which should decrease the number of false positives. If specific areas of the brain, 
such as subcortical structures, are particularly vulnerable to false positives with the 3T 
protocol, consistent tractography errors may even be made across subjects that are 
able to survive this thresholding. A weighted analysis might be more sensitive to this, 
if the false positive connections are weak. We intend to pursue these analyses.    

Comparing networks of analogous k-levels is intuitive, as the rich club is defined 
by statistically high degree nodes. Even so, an analysis of networks thresholded to 
contain the same number of nodes (retaining those with highest degree) is comple-
mentary, as it can reveal the true direction of associations masked by differences in 
degree. When we compared φ(k) between connectomes, keeping the Nnode constant (or 
closer than it would be in a k-level analysis), we found significant differences in φ(k), 
across a range of nodal degree thresholds, k, and Nnodes. Across these significant rang-
es, φ(k) was higher in the 3T connectome than the 7T connectome. Higher φ(k) indi-
cates a greater density of connections between rich club nodes. This could also be due 
to differences in signal to noise as discussed above. The 7T protocol revealed a more 
‘trimmed down’ rich club network. We started out with a binarized analysis, but a 
weighted analysis may reveal a very different rich club, as significant increases have 
been found in the density of subcortical connections in the 7T protocol [4]. Other 
parcellations will obviously yield different results. 

In our elderly dataset, we compared the rich clubs of AD and HC subjects at both 
3T and 7T to see how field strength might affect group comparisons. Again, the 3T 
rich clubs included more nodes than the 7T rich clubs, which led to 12 nodes showing 
group differences in the 3T matrices that no longer showed group differences at 7T. 
This could be due to increased noise in the 3T data, or decreased resolution for sub-
cortical structures, or increased susceptibility artifacts in the 7T data.  These are only 
preliminary data, but have important implications for future work using rich club 
measures to investigate the effects of neurological disorders, especially if rich club is 
ever to be used as a biomarker of disease. 
 
5 Conclusion 
 

Here we compared the rich club coefficient (φ(k)) and anatomical network organi-
zation at 3T and 7T in a group of 23 subjects scanned with both protocols. φ(k) did 
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not depend on field strength when compared at analogous k-levels, but it did differ 
when the Nnode was kept constant. The 3T connectivity matrices had a higher average 
degree than did the 7T matrices, leading to our comparing φ(k) on networks with the 
same Nnode, as well as on a k-level. When comparing rich clubs at an analogous k-
level, we found a number of differences in which nodes were included in the rich club 
between protocols. The 3T connectome had a far more extensive rich club than the 7T 
connectome. When we examined our elderly AD and HC subjects, we similarly found 
differences only in which nodes were included in the rich club. These preliminary 
results need further analysis, however, for rich club measures to be reliable bi-
omarkers. As the rich club coefficient is a new metric intended to represent a crucial 
contributor to network efficiency, we believe these results are important for under-
standing some of the fundamental factors that may affect rich club calculations. 

 
References  
1.  Colizza, V. et al. (2006). Detecting rich-club ordering in complex networks. Nat Phys, 2, 
110-115. 
2.  Van den Heuvel, M. & Sporns, O. (2011). Rich-club organization of the human connectome. 
J Neuroscience, 31(44), 15775-15786. 
3.  Dennis, E. L. et al. (2013). Development of the “Rich Club” in Brain Networks from 438 
Adolescents and Adults Aged 12 To 30. IEEE ISBI, 620-623. 
4.  Zhan, L. et al. (2013). Magnetic resonance field strength effects on diffusion measures and 
brain connectivity networks. Brain Connectivity, 3(1), 72-86. 
5.  Stanisz, G. J. et al. (2005). T1, T2 relaxation and magnetization transfer in tissue at 3T. 
Magn Reson Med, 54, 507–512. 
6.  Yacoub, E. et al. (2003). Spin-echo fMRI in humans using high spatial resolutions and high 
magnetic fields. Magn Reson Med, 49, 655–664. 
7.  Gallichan, D. et al. (2010). Addressing a systematic vibration artifact in diffusion-weighted 
MRI. Hum Brain Mapp, 31, 193–202. 
8.  Smith, S. M. et al. (2004). Advances in functional and structural MR image analysis and 
implementation as FSL. NeuroImage, 23, 208–219. 
9.  Woolrich, M. W. et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neu-
roImage, 45, S173–S186. 
10.  Wang, R. et al. (2007). Diffusion Toolkit: A Software Package for Diffusion Imaging Data 
Processing and Tractography. Proc Intl Soc Magn Reson Med, 15. 
11.  Basser, P. J. et al. (2000). In vivo fiber tractography using DT-MRI data. Magn Reson 
Med, 44, 625–632. 
12.  Duarte-Carvajalino, J. M. et al. (2012) Hierarchical topological network analysis of ana-
tomical human brain connectivity and differences related to sex and kinship. NeuroImage, 59 
(4), 3784-3804. 
13.  Desikan, R. S. et al. (2006). An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980. 
14.  Morgan, V. L. et al. (2009). Integrating functional and diffusion magnetic resonance imag-
ing for analysis of structure-function relationship in the human language network. PLoS One, 
4, e6660. 
15.  Rubinov, M. & Sporns, O. (2010). Complex network measures of brain connectivity: uses 
and interpretations. NeuroImage, 52, 1059-1069. 
16.  Benjamini, Y & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J Roy Stat Soc B, 57(1), 289-300. 

17



ORAL SESSION II

Multimodal & Population Analysis of Connectivity

18



Coupled Intrinsic Connectivity: A Principled
Method for Exploratory Analysis of Paired Data

Dustin Scheinost, Xilin Shen, Emily Finn, Rajita Sinha,
R. Todd Constable, and Xenophon Papademetris

Departments of Biomedical Engineering, Diagnostic Radiology,
Interdepartmental Neurosceince Program, Psychiatry, and Nuerosurgery

Yale University, New Haven, CT

Abstract. We present a novel voxel-based connectivity approach for
paired functional magnetic resonance imaging (fMRI) data collected un-
der two different conditions labeled the Coupled Intrinsic Connectivity
Distribution (coupled-ICD). Our proposed method jointly models both
conditions to incorporate additional spatial information into the connec-
tivity metric. When presented with paired data, conventional voxel-based
methods analyze each condition separately. However, nonlinearities in-
troduced during processing can cause this approach to underestimate
differences between conditions. We show that commonly used methods
can underestimate functional changes and evaluate our coupled-ICD so-
lution using a study comparing cocaine-dependent subjects and healthy
controls. Our approach detected differences between paired conditions in
similar brain regions as the conventional approaches while revealing ad-
ditional changes. Follow-up seed-based analysis confirmed, via cross val-
idation, connectivity differences between conditions in regions detected
by coupled-ICD that were undetected using conventional methods. This
approach of jointly analyzing paired connectivity data provides a new
and important tool with many clinically relevant applications.

Keywords: Functional Connectivity, Resting-state, fMRI, Cocaine

1 Introduction

Functional connectivity holds promise as a clinical tool to detect abnormal brain
organization in clinical populations. The most common approaches rely on re-
gions of interests (ROIs) or “seeds” to characterize connectivity; however, seed-
based approaches can only examine connectivity in reference to the seed region.
Choosing which seeds to examine is often a difficult question as the wrong choice
in seed regions could occlude important patterns of connectivity.

Voxel-based metrics can be used as a data-driven way to define seed regions
for further analysis [1–3]. However, voxel-based approaches and seed approaches
can often produce seemingly conflicting results. For example, voxel-based results
may suggest an increase in connectivity for a region while follow-up seed analy-
sis with the region may show decreases in connectivity to the region. This dis-
crepancy arises because each approach is fundamentally different. Voxel-based
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metrics essentially work as compression mechanisms, reducing all information
about the connections to a voxel into a few summary parameters used for group
comparisons. This compression of information is nessessary as connectivity ma-
trix genernated from voxel-based approaches (typically 20,000x20,000 matrix
at fMRI resolutions) are difficult to interpret and are problematic for statisti-
cal inferences. In contrast, seed-based approaches directly compare correlations
between regions at the group level rather then these summary parameters.

For the special case of paired data such as pre- and post-treatment, the stan-
dard approach with voxel-based metrics is to compure the summary parameters
separately for each condition and then perform statistical analysis to compare
the two. We observe that this approach is suboptimal as the compression into a
summary parameters is performed twice (once for each condition). Thus, with
this approach, comparisons are made on how these summary parameters change
rather then how correlations between regions change. Further, non-linearities
introduced during processing – such as only examining the positive correlations
[1, 4] – guarantee that the difference in the summary parameter is not the same
as the summary parameter of a difference. Hence, information about how each
correlation changes due to the treatment is also lost with current approaches.

In this work, we propose a method where within-subject differences across
conditions are first computed and then a single summary measure can be calcu-
lated for these differences. We label our approach the coupled Intrinsic Connec-
tivity Distribution (coupled-ICD) as it extends the recently developed Intrinsic
Connectivity Distribution (ICD) method [9]. Unlike other voxel-based metrics,
coupled-ICD mimics seed-based approaches by directly comparing correlations
between each condition and, then, summarizing these changes into summary
parameters for group comparisons. Thus, coupled-ICD should produce regions
more suitable for seed-based connectivity. To assess our coupled-ICD measure,
we used a data set of cocaine-dependent subjects and healthy controls scanned
while presented with relaxing and drug-related imagery cues. We show that our
coupled-ICD has higher sensitivity than conventional approaches for detecting
differences between conditions. Finally, using cross-validation on separate, inde-
pendent sub-sample of our data, we show regions detected by coupled-ICD are
predictive of seed-based difference in connectivity.

2 Theory

Voxel-based measures of functional connectivity [4, 1, 9] aim to reduce large
amounts of information to a voxel into a much smaller set of summary parame-
ters. Typically, this compression is formulated based on graph theory [8] where
the brain is treated as a graph or network and each voxel represents a node in
this graph. These nodes (or voxels) are connected to each other by edges based
on the similarity of their timecourses.

Measures of node centrality such as the measure degree are the primary met-
rics used for compression. For any voxel x, these measures can be calculated
from the distribution of connection strength, f(x, r), where x is the current
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voxel, and r is a correlation or any other measure of timecourse similarity. First,
f(x, r) is estimated by computing the histogram of the correlations r for the
timecourse at voxel x to the timecourse at every other voxel in the brain. Degree
can be estimated as the integral of this distribution from any threshold τ to 1, or∫ 1

τ
f(x, r)dr. Weighted degree measures such as weighted Global Brain Connec-

tivity (wGBC) [1] can be estimated as the mean of this distribution. In contrast,
ICD models the corresponding survival function to f(x, r). Each point on the
survival function is simply degree evaluated at that particular threshold τ and,
thus, ICD parameterizes how degree for a voxel changes as the threshold used to
determine if two voxels are connected is increased. Previously, it was shown that
a stretch exponential decay with unknown variance parameter α and shape pa-
rameter β was sufficient to model this survival function. Modeling the survival
function with a stretch exponential is equivalent to modeling the underlying
distribution as a Weibull distribution: f(x, r, α, β) = β

α ( rα )β−1 exp(−( rα )β).

The presented approach, coupled-ICD, extends conventional voxel-based con-
nectivity in a critical way as the graph summarized by coupled-ICD is a graph
defined by differences in correlations and not simply the correlations. As such,
coupled-ICD takes advantage of the paired nature of the data by explicitly com-
paring the same edge under two conditions. Typically, graphs at the voxel level
become difficult to analyze due to memory constraints and multiple comparison
issues with groups of 10 or more subjects. However, for the special case of paired
scans, only two graphs need to be analyzed simultaneously. Paired scans reduce
the complexity of this problem.

Directly comparing each correlation (like seed-based appoarches) allows ad-
ditional spatial information about changes of corresponding edges to be incorpo-
rated into a summary parameter of connectivity for a single subject. Specifically,
computing the differences between the weights of corresponding edges of a graph
and then summarizing the differences takes into account the topological (spatial)
structure of the graphs. With this approach, information about how each edge
has changed due to condition or time can be incorporated into the summary pa-
rameter for the subject. This information is lost with current approaches. Due
to non-linearities in the calculation of these summary parameters, the difference
between the summary parameters (degree, wGBC, or ICD) of two graphs is not
the same as the summary parameter of the difference between the graphs. For
example, given the ambiguity of negative correlations, many current approaches
examine only the positive correlations [4, 9, 1].

Given a set of paired data, coupled-ICD can be computed by repeatedly cal-
culating conventional seed connectivity maps treating each voxel as a seed, and
summarizing the difference between the seed maps for each condition (Fig. 1).
First, for any voxel x, the correlation between the timecourse at voxel x to the
timecourse at every other voxel in the gray matter is calculated for each condition
in the paired data. These correlation maps are then subtracted from one another.
Coupled-ICD then summarizes this map of differences in the same way that ICD
(or degree) summarizes a map of connections to a voxel. First, for each voxel, a
distribution of these differences is estimated with a histogram. Second, this dis-
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Fig. 1. Flow chart describing coupled-ICD. For paired data, coupled-ICD jointly
analyzes both conditions and then creates a summary of the difference in connectivity
between conditions for each voxel. First, a seed connectivity map is created for a voxel
(shown as the blue square through the flow chart) in each condition. The resulting
survival function of the distribution of the difference (labeled coupled-ICD curve) is
calculated and modeled with a stretched exponential. This process is repeated for each
voxel in the gray matter. The final output is an image where each voxel represents a
summary of the difference between two seed maps using that voxel as the seed region.

tribution is modeled as a Wiebull distribution which corresponds to modeling the
survival function of the histogram as a stretch exponential. Group comparisons
can be performed by comparing the parameters with standard methods.

Coupled-ICD can be used to model increases in connectivity, decreases in
connectivity, or the magnitude of the changes in connectivity. For simplicity, we
focus only on modeling magnitude of the changes in connectivity noting that
the modeling and the interpretation of the parameters is similar for the other
cases. When modeling the magnitude of changes, a larger α parameter indicates
a larger variance in the distribution and that a larger number of connections
exhibit a strong change in correlations between the two conditions.

3 Functional Connectivity Estimation

Subjects: The data set consisted of 28 cocaine-dependent (CD) subjects and
38 healthy control (HC) subjects aimed at examining influence of cue state and
diagnostic group on brain activity. Subjects performed four fMRI scans while
listening to imagery scripts of either neutral relaxing cues or drug related cues
(two scans of each). Complete details can be found elsewhere [7, 10].
Preprocessing: Images were slice-time corrected using sinc interpolation and
motion corrected using SPM5. All further analysis was performed using in-house
software. Several covariates of no interest were regressed from the data including
linear and quadratic drift, six rigid-body motion parameters, mean cerebral-
spinal fluid (CSF) signal, mean white matter signal and mean global signal.
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Finally, the data were temporally smoothed with a zero mean unit variance
Gaussian filter (cutoff frequency=0.12Hz). A gray matter mask was applied to
the data so that only voxels in the gray matter were used in the calculation.

ICD and Degree: The timecourse for voxel x was correlated with the time-
course for every other voxel in the gray matter. As the removal of the global
mean makes the signs of the correlation ambiguous [4], only the positive corre-
lation was used in analysis. For each voxel, a distribution of connection strength
was estimated for the positive correlation coefficients using a 100 bin histogram.
ICD was used to model this distribution. First, the histogram was converted to
the corresponding survival function and this survival function was modeled with
a stretched exponential. This results in two summary parameters for each voxel
reflecting that voxels connectivity to the rest of the brain; the α parameter was
used in the group comparisons. As this survival function describes how the net-
work theory measure degree changes with connection threshold, degree at any
threshold can be estimated as a single point on the survival function. Degree
was estimated with a connection threshold of r = 0.25. ICD or degree maps for
each paired condition were then subtracted from each other resulting in a single
map per subject describing the difference in connectivity between conditions.

Coupled-ICD: Similar to the ICD and degree estimations, the timecourse for
voxel x was correlated with the timecourse for every other voxel in the gray
matter. As coupled-ICD operates on paired data, this process was performed on
both conditions resulting in two seed connectivity maps with voxel x as the seed.
These maps are then subtracted. A distribution of the differences in connection
strength was estimated for the absolute value of the differences using a 200 bin
histogram. A larger number of bins was used to keep the bin width the same
as the ICD analysis while accommodating the wider range of possible values
(difference in correlations has a range of [−2, 2] while correlation has a range
of [−1, 1]). We chose to model the absolute value of the differences to highlight
regions of the brain that show large differences between two conditions. A similar
procedure can be used to analyze the increases or decreases between conditions.
As described above, this histogram was converted to the corresponding survival
function and this survival curve was modeled with a stretched exponential.

Seed Connectivity: A follow-up seed-based analysis (similar to [4, 2, 3]) was
performed on a sample region showing large differences as detected using coupled-
ICD. The voxel-based analysis and follow-up seed-based analysis were run on
independant data by spliting the data into two groups by subjects. Fourteen
CD subjects and 19 HC subjects were randomly chosen for voxel-based analysis.
The remaining subjects were used for seed-based analysis. Splitting the data into
two groups allows the seed connectivity results to act as a cross-validation of the
coupled-ICD results. A seed was placed in putamen based on voxels showing
significant differences (p < 0.05, corrected) between HC and CD subjects. The
timecourse of the reference region in a given subject was then computed as the
average timecourse across all voxels in the reference region. This timecourse was
correlated with the timecourse for every other voxel in the gray matter to cre-
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Fig. 2. Evaluation of coupled-ICD. A) Coupled-ICD detects widespread differ-
ences in connectivity while subjects are experiencing either relaxing or drug-related
imagery for both (top) the cocaine-dependent (CD) subjects. and (middle) healthy con-
trols (HC). (Bottom) Group level comparisons (CD vs HC) revealed that the groups
significantly (p < 0.05, corrected) differ in response to the imagery conditions. B)
Conventional ICD analysis detected significant group differences (p < 0.05 corrected)
in the parietal and occipital lobes. C) Coupled-ICD detected significant (p < 0.05,
corrected) difference in these areas as well as several other areas. This result highlights
the additional information that can be captured by jointly analyzing paired conditions.

ate a map of r-values, reflecting Seed-to-whole-brain connectivity. These r-values
were transformed to z-values using Fisher’s transform.
Group Analysis: To facilitate group statistics, all single subject results were
spatially smoothed with a 6mm Gaussian filter and non-linearly warped to com-
mon space using Bioimage Suite [5]. Between group differences were calculated
using two-sample t-test with significance assessed at p < 0.05. AFNI’s Alphasim
was used for multiple comparison correction.

4 Results

Coupled-ICD detected widespread significant differences due to condition be-
tween the two groups. The coupled-ICD maps for each group and the between-
group comparisons are shown in Fig. 2. Both groups showed large differences
between the drug-related and relaxing imagery in the posterior cingulate cor-
tex, bilateral angular gyrus, bilateral insular cortex, bilateral putamen, medial
prefrontal/anterior cingulate cortex, and visual processing areas. The CD group
showed significantly greater differences between conditions in many of these re-
gions and additionally in the prefrontal lobe.

The between-group differences detected by coupled-ICD were compared with
between-group differences detected by the conventional ICD and degree ap-
proaches. Conventional ICD detected two clusters that satisfied our criteria for
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Fig. 3. Seed validation. A follow-up, seed-based connectivity analysis was performed
on independant data using a region in the left insula detected by coupled-ICD but not
by conventional ICD and degree analysis. Several areas of significant differences were
detected (p < 0.05, corrected). As the seed analysis was performed on independant
data, the seed-based results provide evidence via cross-validation that coupled-ICD is
detecting an effect not detected by conventional analysis

significant differences-in the parietal and occipital lobes-while the degree ap-
proach did not detect any significant differences. Group differences for both
coupled-ICD and ICD are shown in Fig. 2. Coupled-ICD identifies both clusters
detected by conventional ICD along with additional widespread changes.

To explore the differences detected by coupled-ICD, a follow-up seed-based
analysis was performed using a seed defined in the left putamen where significant
between-group differences were found using coupled-ICD. The left putamen was
chosen as a seed due to the substantial literature (see [7] for example) implicating
this region in addiction. Significant (p < 0.05, corrected) interactions between
group and condition were observed in right frontal lobe (Fig. 3).

5 Discussion

We present a principled method for exploratory analysis of paired conditions to
detect regions that differ significantly in their connectivity patterns between con-
ditions. We show that our coupled-ICD approach is superior in detecting group
differences in connecitivity due to paired conditions. We show that coupled-
ICD is a viable solution as a data-driven way to pick seeds for further analysis.
Standard seed-based analysis, performed on data independent from the coupled-
ICD results, showed that the regions detected by coupled-ICD exhibit signifi-
cant differences in seed connectivity. While similar to conventional voxel-based
metrics of connectivity, the present approach extends connectivity in a critical
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way, coupled-ICD summaries differences in correlations, rather compute differ-
ence in summaries of correlation. This extension allows coupled-ICD to mimic
seed-based approaches and gain additional information for group comparisons.

Numerous clinical applications could benefit from measuring changes in the
functional organization of the brain at the voxel level for paired data, yet the
translational technology for detecting changes in connectivity remains elusive.
Coupled-ICD represents a principled method for exploratory analysis of paired
conditions to detect regions that differ significantly in their connectivity patterns
between conditions. Thus, coupled-ICD could potentially fill this important void
not currently covered by conventional approaches.
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Abstract: The quest to discover genetic variants that affect the human brain 
will be accelerated by screening brain images from large populations. Even so, 
the wealth of information in medical images is often reduced to a single 
numeric summary, such as a regional volume or an average signal, which is 
then analyzed in a genome wide association study (GWAS). The high cost and 
penalty for multiple comparisons often constrains us from searching over the 
entire image space. Here, we developed a method to compute and boost power 
to detect genetic associations in brain images. We computed voxel-wise 
heritability estimates for fractional anisotropy in over 1100 DTI scans, and used 
the results to threshold FA images from new studies. We describe voxel 
selection criteria to optimally boost power, as a function of the sample size and 
allele frequency cut-off. We illustrate our methods by analyzing publicly-
available data from the ADNI2 project.   

Keywords: Neuroimaging genetics, heritability, GWAS, DTI, multiple 
comparisons correction. 

1   Introduction 

Imaging genetics is an emerging field in which variations in the human genome are 
related to brain differences. Genome-wide association studies (GWAS), for example, 
test for statistical associations between brain measures and up to a million single 
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nucleotide polymorphisms (SNPs1) in the genome. To simplify the screening effort, 
studies often focus on a single measure extracted from brain scans, such as the overall 
volume of the hippocampus [1]. Despite successful findings with simple summary 
measures, the image space contains many more features, e.g., at individual voxels, 
which can be used for genetic testing. Testing all these features, however, imposes a 
high cost of multiple comparisons. GWAS tests at each voxel are computationally 
feasible but underpowered, due to the large number of tests performed [2]. Efforts to 
boost voxelwise power include set-based multivariate tests (multilocus genetic tests), 
ICA [3], and sparse regression methods in the image and/or genome [4-6]. If we are 
able to analytically reduce the image space a priori to only those regions where we 
expect sufficient power for association, we could maximize our search space while 
minimizing the penalty for multiple comparisons.  
 Power in GWAS is a topic of great interest, as any algorithms to boost power 
would make genetic studies more efficient, faster, or more cost-effective. Power 
calculations can inform data collection, i.e., how many subjects to recruit. Power can 
be computed for a GWAS analysis of a single measure, or (conversely) to find how 
many subjects are required to detect a pre-defined effect size on a brain measure, for 
one single nucleotide polymorphism (SNP) with a given minor allele frequency 
(MAF). One commonly used tool for calculating power is the Genetic Power 
Calculator [7]. Power and required sample sizes can be computed for association tests 
with binary outcomes (e.g., diagnosis in a case-control study) [8], or quantitative traits 
such as brain measures. Another approach to optimize power is to select subjects non-
randomly, to optimize power to detect effects of rare variants [9]. However, in large 
neuroimaging studies, often data have already been collected, sometimes without 
genetic discovery in mind, and the challenge is to compute image features to 
maximize power to detect genetic associations. A key goal is to prioritize the list of 
>100,000 possible voxelwise phenotypes2 to only those that meet a desired expected 
power threshold, of say 80%, for a given sample size, N.  
 Power calculators depend on distributional assumptions, and may require 
certain parameters to be known, such as the means and variances of the trait in each of 
the genotype groups. Often, we may not know these means and standard deviations 
[10]. One approach [11] suggests the use of heritability to avoid the need to specify 
the mean and variance required for the non-centrality parameter. Other common 
assumptions are that allele frequencies and genotype counts are known. However, 
these are often not known beforehand, and ignoring uncertainties can lead to overly 
optimistic power estimates [12]. Even with a fixed population sample with allele 
frequencies in Hardy-Weinberg equilibrium (HWE), the genotype distribution of the 
actual sample can vary. It becomes essential to compute the expected power by taking 
into account the expected genotype distribution, as has been shown for single alleles 
[12, 13]. While these problems have been addressed in the context of single variants, 
with known or unknown allele frequencies, p, power analysis for GWAS studies is 
still challenging. In GWAS, over one million alleles may be tested, all with different 

                                                
1 At each location on the genome, a person has a specific “letter” or nucleotide; SNPs are 

common variants in the genetic code, carried by at least 1% of the population.  
2 A phenotype is a biological measure that is subjected to genetic analysis, such as the 

size of a brain region, or a diffusion imaging measure in a specific region. 

28



minor allele frequencies (MAFs). For gene discovery, including GWAS studies of 
brain imaging phenotypes, all these alleles will have unknown and varying genotype 
counts, although a limit can be set as to how much the SNP deviates from HWE, 
where HWE represents the expected genotype frequencies for each allele given the 
MAF in the population of interest. If, for example, the allele MAF=0.3 for a given 
population, then with a sample size of N=1000, N*p2=90 people in the cohort would 
be expected to have 2 copies of the minor allele (n2), 2*N*p*(1-p)=420 people should 
have 1 copy, (n1), and N*(1-p)2 = 490 people should have 0 (n0). Deviations from this 
count are assessed using a χ2 test with one degree of freedom (dof); samples with 
genotype counts that differ significantly, are not in HWE.  

Studies using DTI have reported moderate correlations between DTI-based 
measures of fractional anisotropy (FA) and common variants in specific candidate 
genes (e.g., CLU, HFE, NTRK1, and BDNF) known to associate with neurological 
diseases and disorders. This motivates the use of FA as phenotypes for GWAS, as 
they may implicate genes that affect disease risk. Recently, we [14] computed the first 
large-scale heritability study on voxelwise FA maps, using meta-analysis methods on 
two cohorts comprising a total of over 1100 subjects. Here, we use these existing 
voxelwise measures of heritability to estimate the power of GWAS at each voxel of a 
new dataset. We limit our multiple comparisons correction problem by filtering SNPs 
based on a user-defined threshold for the MAF. We compute the expected power at 
each voxel, with appropriate limits on the number of subjects in the genotype groups, 
based on the HWE. This allows us to focus on voxels of the FA map where we would 
expect a certain level of power for detecting a genetic effect, given a specific N.  

2   Methods 

2.1   Heritability and Power Estimates    

We can use linear regression to test the effect of a genetic variant on a quantitative 
trait, such as a brain imaging measure. In this way, the expected value for the trait is 
modeled as µi = µ0 +β * i+βx * x +ε , where i =0,1,2 represents the number of copies of 
the minor allele, and βX and x represent the nuisance variables such as age and sex.  
Here the F-ratio can be used to test the equality of the means (H0: β=0, HA: β≠0). The 
F-ratio follows a non-central F-distribution with 1 and N-2 dof, with a non-centrality 
parameter λ:
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and σ is the within-group SD. The 

power is π = Pr F1,N−2,λ > Fc( ) , where Fc is the (1-α)*100 percentile of the central F-
distribution, and α is the significance threshold (e.g., 0.05). Note that if we add d 
covariates to the model, our distribution would have 1 and N-2-d dof. However, the 
means and variances within the groups may be unknown - or impractical to calculate - 
for each of the possible GWAS SNPs.  
 Alternatively, the heritability of a trait (h2) is defined as the proportion of the 
observed variance in a trait (here a brain measure) that is attributable to genetic 
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variation; h2= Vg/VT – or, the model sum-of-squares, divided by the total sum-of-
squares (SSM/SST= 1-(SSE/SST)). As suggested in [11], the F-statistic can be 
directly calculated as a function of h2 and N. This is because according to an ANOVA 
table for a regression (Table 1), the F-statistic=(SSM*DFE)/(SSE*DFM); as SSE= 
(1-h2)*SST and SSM= h2*SST, then

F = h2 *DFE
(1− h2 )*DFM

, and in the case of one explanatory 

variable, d=1, F = h
2 *(N − 2)
1− h2

. We can therefore use the trait’s h2 to calculate power, π.  
 

Table 1 ANOVA table for a multiple regression model, with d explanatory variables. 
ANOVA dof Sum of squares Mean squares F 

Model DFM=1 SSM= MSM=SSM/DFM MSM/MSE 

Error DFE=N-d-1 SSE= MSE=SSE/DFE  

Total DFT=N-1 SST=SSM+SSE MST=SST/DFT  
 
Recently, we [14] meta-analyzed voxelwise measures of heritability from FA 

maps in two family-based cohorts totaling over 1100 subjects.  One cohort was a 
sample of Caucasians imaged at 4T with 94 directional gradients and voxels of size 
1.7x1.7x2mm, and the other was a Mexican-American sample imaged at 3T with 64 
gradients and 1.8x1.8x3mm voxels. Given differences in cohort demographics and 
scanning protocols, and the overall large sample size (1100+), we treat these meta-
analyzed values as the best available heritability estimates for the voxelwise 
phenotypes in any studies of FA mapped to the same space. We carry these 
heritability measures forward, to estimate power in a new GWAS study of unrelated 
individuals. We express the power as a function of N, calculating the probability 
under the F-distribution (1 and N-2 dof) for the heritability at every voxel. 

2.2 HWE, MAF, and multiple comparisons correction  

Tests of HWE assess whether the sample genotype frequency is aligned with the 
frequency expected based on reference data compiled from human populations (such 
as HapMap). Including SNPs with significant deviations from HWE can be 
problematic [16], but the threshold for determining significant deviations is often 
different between studies [17]. Thresholding this deviation at more stringent values 
eliminates group formations that could artificially appear to enhance power. A direct 
filter on the SNPs involves thresholding the MAF, to remove rare variants and SNPs 
with allele frequencies too low to be adequately sampled. Given the relatively lower 
N in imaging studies compared to other genetic studies, filtering out low frequency 
SNPs can reduce the number of tests, alleviating the multiple comparisons penalties, 
without compromising power. We filter SNPs based on MAF, and adjust possible 
outcomes with HWE deviations. Once SNPs have been filtered, the significance 
threshold can be based on the number of SNPs (NSNPs). The false discovery rate (FDR) 
q-value which ensures that the false positive rate across all voxels, is controlled at 
qFDR= 0.05/NSNPs. We count the number of voxels (NVOX) that pass the threshold. Now 
power may be calculated as π = Pr Fh > Fc( ) , with Fc determined by α=0.05/ NSNPs/NVOX. 
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2.3 Accounting for uncertainties in genotype frequency 

As mentioned in [12, 13], for a given allele frequency p, the expected power is the 
weighting of the estimate π (here a function of h2 and N) by the probabilities of the 
multinomial counts, n=(n0, n1, n2). By contrast with prior papers, we limit n to only 
those combinations that fall within HWEc. 
  Additionally in this work, as opposed to those mentioned above, we are 
conducting a GWAS of all SNPs with p > MAFc (a lower bound on the MAF of the 
SNPs) rather than a single SNP. Therefore, rather than setting a beta-prior on p, we 
sum over all possible frequencies, each one with respect to only the possible n in 
HWE, and all possible p > MAFc. Note that, by definition, the MAF ≤ 0.5. 

Ε(v)GWAS π (h
2,N ) |nHWE"# $%=

Pr(p, p+Δ)
Pr(MAFc ≤ p ≤ 0.5)

π (h2,N )
ni=N ;ni≥0∀i∑
∑

p=MAFc ,Δp

0.5−Δ

∑ N!
n0 !n1!n2 !

2n1 p2n0+n1 (1− p)n1+2n2
 

This estimates power for GWAS at the individual voxel, v – and we only include 
those voxels that pass the FDR correction as mentioned above. The estimated power 
is a weighted function of: (1) the probability that the p falls within a given interval, Δ, 
and (2) the probability of the genotype group distribution within HWE. π can now be 
taken out of both summations, and a single weight, wt(MAFc,HWEc), is given to each 
voxel. E(v) can be written as π(h2(v),N)*wt. As an example, we use data from the 
second phase of the Alzheimer’s Disease Neuroimaging Initiative study (ADNI2; 
publicly available at http://adni.loni.ucla.edu), and show the proportion of SNPs that 
fall across a range of allele frequencies (Figure 1). Using the formulation above, we 
compute the NVOX that surpass a power threshold while varying the NSNPs examined by 
varying MAFc and HWEc, as well as how this estimate is modified by sample size, N. 

2.4 Voxelwise GWAS of the ADNI2 dataset 

To date, ADNI2 has genotyped 78 Caucasian subjects scanned with DTI. Scans were 
processed and aligned to the heritability map detailed in [14]. Limiting our search 
space to only voxels that pass the 0.8 power threshold with MAFc=0.1 and 
HWEc=1x10-5, we ran a GWAS at all remaining voxels using an additive model; this 
is modeled with a linear regression for each SNP.   

3   Results 

3.1 Voxels with power > 0.8 as functions of N, MAFc, HWEc 

The whole-brain white matter skeleton of the DTI FA-template consists of 97158 
voxels total. In Figure 2, we show how the expected NVOX changes as we threshold the 
MAF from 0.01 to 0.2 in step sizes of 0.01, and as we become more stringent with the 
HWEc. We do not eliminate SNPs due to divergence, but rather filter out the possible 
combinations of subjects that could result in the given p. Therefore, as we are more 
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strict with HWEc (1x10-6 < …< 0.01 < 0.05), more possibilities are deemed divergent 
and possibly biased, so power is lower, and fewer voxels are selected.  

3.2 Voxelwise GWAS in the ADNI2 dataset 

In our real data analysis, we first find the number of voxels that will have an expected 
power EGWAS(v) > 0.8 with MAFc = 0.1 (NSNPs = 522,077 out of 661,478), in the 
ADNI2 dataset of 78. As this is a dataset including several patients with Alzheimer’s 
disease, we would not necessarily expect the HWE to be upheld, as disease could 
impact the frequency of some alleles – especially AD risk alleles. We were therefore 
less strict with HWEc, selecting p<10-5 as our cutoff. We obtained a mask consisting 
of 1664 voxels (Figure 3A), and ran a GWAS at all voxels.  

When correcting for all the voxels and the SNPs tested, no SNP had a 
significance level less than 0.05/(1664*522,077) =5.75x10-11 in the ADNI2 sample. 
However, as these voxels were chosen to have the highest power to detect a genetic 
association, we show that when plotting the minimum p-values at each voxel, against 
what would be expected from a null distribution (here, a Beta distribution with 
parameters (1,NSNPs) [18]) in a Q-Q plot (Figure 3B), we show our p-values tended to 
be lower than what would be expected from a null distribution. 

4   Discussion 

We have presented a method to estimate power for imaging genetics studies that 
apply genome-wide scanning to multiple phenotypes; in fact, the same method could 
also be adapted to prioritize targets for genetic analysis. Most power estimates for 
GWAS studies are computed to plan future data collection, but here we assume 
imaging data has already been collected (or there is an upper limit on N). We then 
show how to optimize the study to focus the GWAS on the most powerful regions of 
the high-dimensional image space.  Our approach is also flexible - users can select a 
MAF or HWE cutoff to estimate the best thresholds to optimize the search space. 

Limitations of our study include the following: (1) the heritability presented 
here may differ from that of the population a user is studying. However, we used the 
best available estimates of heritability of FA to date, given the large sample size, and 
the use of meta-analysis to mitigate differences in demographics and imaging 
protocols; (2) Studies have also shown that choosing the inappropriate model for the 
SNP (e.g., additive when in fact it has a dominant effect) can bias power calculations 
[13]. Even so, most GWAS studies assume an additive model for each SNP, so we 
follow this convention. (3) Here, we do not account for the correlation between 
voxels, or the linkage disequilibrium (LD) structure of the SNPs. If LD is considered, 
tests are not all independent and we can reduce the number of effective tests, reducing 
the multiple comparisons penalty. Our method can incorporate this correlation, so our 
power estimates (assuming SNP independence) are somewhat conservative. 
Regardless, our methods can estimate the power of voxelwise association tests, 
providing a starting ground for GWAS of spatially extended phenotypes. 
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Additionally, it is possible that limiting rarer variants by removing the SNPs with low 
MAF, may result in removal of SNPs that may have the greatest effect sizes, however 
with a limited number of scans, it is unlikely that the effect of these rare variants 
would be accurately obtained.  

Here, we show that meta-analyzed heritability estimates are useful for 
genetic studies on the entire image space. We focus on voxelwise analyses, but so 
long as heritability estimates have been made on multiple imaging phenotypes, this 
method can be extended beyond maps of FA values, to mean volume or anisotropy 
values within regions of interest, or to all of the individual network elements that 
make up the human connectome.     
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Figure 1 Histograms of frequency and percent (Δ=0.001,0.05) of SNP MAFs in ADNI2.  

 

 
Figure 2: The top row shows the number of voxels with sufficient power to detect a genetic 

effect (>80% power) with respect to the MAF cutoff (MAFc) and the divergence threshold for 
HWE (HWEc), for samples with N=100 and N=500 subjects. As the MAF threshold is 
increased, fewer SNPs are tested, and this reduces the multiple comparisons correction and 
increases power for those tested SNPs, if there is a true associated variant in the group. As in 
prior GWAS power studies, the bottom row shows the number of subjects, regardless of MAFc 
or HWEc, and has a far larger influence than either one. The number of voxels with sufficient 
power levels off here, as N > 500. 

 
Figure 3: The 1664 voxels found to have sufficient power (> 80%) in the ADNI2 sample 

(N=78) were used for GWAS, and are highlighted in red.  Plotting the minimum p-value at 
each voxel against what would be expected from the null hypothesis shows trends towards 
significance in this subsample of voxels. 
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Abstract. There is an increasing interest in connectomics as means to
characterize the brain both in healthy controls and in disease. Connec-
tomics strongly relies on graph theory to derive quantitative network
related parameters from data. So far only a limited range of possible
parameters have been explored in the literature. In this work, we uti-
lize a broad range of global statistic measures combined with supervised
machine learning and apply it to a group of 16 children with autism spec-
trum disorders (ASD) and 16 typically developed (TD) children, which
have been matched for age, gender and IQ. We demonstrate that 86.7%
accuracy is achieved in distinguishing between ASD patients and the
TD control using highly discriminative graph features in a supervised
machine learning setting.

Keywords: connectomics, network analysis, diffusion imaging, autism,
classification

1 Introduction

The past decades have seen an increasing interest in using diffusion weighted
imaging to examine the way the human brain is connected [1]. Differences in these
connections have been found for many mental illnesses, e.g. autism spectrum
disorders (ASD) [2]. These techniques have mainly been used to look at the
integrity of single tracts [3] or a few global measures of the connectome, especially
small-worldness and the clustering coefficient [4]. A few recent studies also looked
at local changes in different brain areas, especially those related to speech [5, 6].
A disadvantage of these approaches is the need for anatomical knowledge about
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the areas of interest and the lack of global information. Therefore, changes not
localized in these specific areas are typically overlooked.

Recent studies focused on a limited number of measures to characterize the
changes induced by ASD in connectome. However, the understanding and diag-
nosis of ASD can be improved upon a comprehensive evaluation of the connec-
tome topology with a large number of network features at global scale. Global
scale graph features are shown to successfully characterize structure-function
relationships in various biological systems. Specifically, in histopathological im-
age analysis and tissue modeling applications, cell-graphs are utilized for the
computer-aided diagnosis of brain, breast, and bone cancers [7–10] and also for
the modeling of stem cells [11], cell-mediated collagen remodeling [12], and sali-
vary gland branching morphogenesis [13]. In this paper, we extend quantitative
connectomics by investigating the roles of global graph features in capturing ASD
induced changes. We demonstrate that support vector machines based supervised
learning achieves 86.7% accuracy in classifying the ASD and TD connectomes.

2 Materials and Methods

Data Acquisition: Evaluation was performed on a group of 18 right-handed chil-
dren (16 male and 2 female) with a mean (standard deviation) chronological
age of 9.7 (2.1) with a diagnosis of Asperger Syndrome or High Functioning
Autism. The control group of 18 typically developed children of age 9.7 (1.9)
was matched for age, sex and IQ. Data acquisition was done using a 1.5 T scan-
ner (Siemens Avanto). T1 images for parcellation were taken with the following
settings: MPRAGE TR/TE/TI/α = 1.9 s/4 ms/1.1 s/8 ◦, FOV = 256 × 256
mm2, matrix = 256 × 256, scan time 6 min). Diffusion weighted imaging was
performed using single shot EPI with a dual bipolar diffusion gradient and a
double spin echo for reduction of eddy currents with the following parameters:
TR/TE 4700/78, FOV 192 mm, data matrix of 96 × 96 yielding an in-plane
resolution of 2.0 mm, 50 axial slices with a thickness of 2.0 mm and no gap,
with six gradient directions (b=1000 s/mm2) and a b=0 image. This scheme
was repeated 15 times.

Preprocessing and Fiber Tracking: The entire image processing pipeline is de-
picted in Fig. 1. The T1 weighted image was used to create a parcellation of
the brain using freesurfer [14] as well as a binary mask of the brain. DWI data
was motion and eddy-current corrected using FSL [15]. Q-ball images were then
generated using solid angle reconstruction as provided by MITK [16]. Fiber
tractography was performed on the q-ball images using the global tractography
approach as presented by Neher et al. [17] using the brain mask to restrict the
search space for possible fibers. To evaluate the robustness of our chosen trac-
tography algorithm and the influence of the probabilistic tracking on our results
we did four independent trackings for each patient. The same settings were used
for each tracking: 108 iterations, particle length of 3.7 mm, particle width of
0.1 mm, particle weight of 0.0015, start temperature of 0.1, end temperature of
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0.001, energy balance of 0, minimal fiber length of 20 mm and curvature thresh-
old of 45◦. Two patients and two controls were excluded due to heavy image
artifacts and a resulting failure of the processing pipeline.

Fig. 1. Preprocessing pipeline. 1. Diffusion images are used to create a fiber image.
2. The anatomical MR image is used to create a parcellation of the brain. 3. The
parcellation and the fiber image are used to create a network.

Network Generation: Connectivity matrices were created from the tractogra-
phy result and the parcellation. DWI data and T1 images were registered using
ANTs1 for affine registration. Each label of the freesurfer segmentation was rep-
resented by one node if at least one fiber originated or ended within it. Two
nodes were linked by an edge if at least one fiber connected the corresponding
volumes. If a fiber could not be assigned two different non-white-matter labels
it was disregarded. After network creation edges between nodes were eliminated
if they represented less than N fibers to remove connections induced by noise.
For this purpose, we performed a parameter search where we varied N between
14 and 30 with steps equal to 1 and select the value that yield the highest clas-
sification accuracy. Our analysis indicated N = 26 corresponded to the best
classification performance.

Extraction of Connectome Features: We extracted 32 features for each patient’s
connectome. These features quantify the compactness, clustering, and spatial
uniformity of the hypothesized connections within the brain. Graph features
and their explanations are given in Table 1.

1 http://www.picsl.upenn.edu/ANTS/
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Table 1. Extracted graph features and their descriptions.

Feature Name Description

Number of Nodes Number of regions in brain
Number of Edges Number of hypothesized communications
Average Degree Number of edges per node
Clustering Coefficient C Ratio of total number of edges among the neighbors of the node to

the total number of edges that can exist among the neighbors of the
node per node

Clustering Coefficient D The average of the ratio of the links a node’s neighbors have in be-
tween to the total number that can possibly exist

Clustering Coefficient E Ratio of total number of edges among the neighbors of the node to
the total number of edges that can exist among the neighbors of the
node per node excluding the isolated nodes

Average Eccentricity Average of node eccentricities, where the eccentricity of a node is the
maximum shortest path length from the node to any other node in
the graph

Diameter Maximum of node eccentricities
Radius Minimum of node eccentricities
Average Path Length Average distance between the nodes of a graph, where the distance

between two nodes is the number of edges in the shortest path that
connects them

Average Betweenness Average of node betweenness, where the betweenness of a node is
the number of shortest paths from all nodes to all others that pass
through that node

Giant Connected Component
Ratio

Ratio between the number of nodes in the largest connected compo-
nent in the graph and total the number of nodes

Number of Connected Com-
ponents

Number of clusters in the graph excluding the isolated nodes

Average Connected Compo-
nent Size

Number of nodes per connected component

Percentage of Isolated Points Percentage of the isolated nodes in the graph, where an isolated node
has a degree of 0

Percentage of End Points Percentage of the end nodes in the graph, where an end node has a
degree of 1

Number of Central Points Number of nodes within the graph whose eccentricity is equal to the
graph radius

Percentage of Central Points Percentage of nodes within the graph whose eccentricity is equal to
the graph radius

Spectral Radius Largest valued eigenvalue of adjacency matrix
Second Largest Second largest values eigenvalue of adjacency matrix
Adjacency Trace Sum of the eigenvalues of adjacency matrix
Adjacency Energy Sum of the squares of eigenvalues of adjacency matrix
Spectral Gap Number of 0 valued eigenvalues of adjacency matrix
Laplacian Trace Sum of the eigenvalues of laplacian matrix
Laplacian Energy Sum of the squares of eigenvalues of laplacian matrix
Number of 0s Number of eigenvalues that are equal to 0 in normalized laplacian

matrix
Number of 1s Number of eigenvalues that are equal to 1 in normalized laplacian

matrix
Number of 2s Number of eigenvalues that are equal to 2 in normalized laplacian

matrix
Lower slope The slope of the line fitted for the eigenvalues of the normalized lapla-

cian matrix that are between 0 and 1 when sorted
Upper slope The slope of the line fitted for the eigenvalues of the normalized lapla-

cian matrix that are between 1 and 2 when sorted
Normalized Laplacian Trace Sum of the eigenvalues of normalized laplacian matrix
Normalized Laplacian Energy Sum of the squares of eigenvalues of normalized laplacian matrix
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Classification and Validation: Support vector machine (SVM) classification was
employed for the classification of the two groups. Though alternate supervised
learning techniques may also be utilized, as we shall see in the next section, SVM
classifier yielded the highest classification accuracy among the other well known
candidates. We used radial basis function, also referred to as Gaussian kernel, in

the form of K(xi,xj) = exp(− |xi−xj |2
2σ2 ) to transform the increase in the dimen-

sionality of the data for better separability. We performed a parameter search to
identify σ that achieves the highest classification accuracy. We sought σ in the
set of candidate values that varied from 1.0 to 6.0 with 0.1 steps and determined
that σ equaling 3.6 achieved the best performance in the identification of the
patient’s state.

The data is normalized so that the features have zero mean and unit variance
to reduce the scale differences within different features. In order to obtain un-
biased performance estimates, patient-based leave-one-out cross-validation was
performed. The feature set was first divided into 32 disjoint partitions for each
patients data. For each patient, a classifier was trained with the remaining 31
patients data and then tested on the retained data. The results for each patient
were then combined to find the overall classification accuracy.

3 Results

We generated brain connectome networks as described previously for 32 patients
each of which with four independent trackings. We then characterized the graphs
using the 32 features described in Table 1 and using SVM classifier with RBF
kernel we discriminated ASD patients from TD control with leave-one-patient-
out cross-validation.

Given the large number of features, we performed feature selection based on
t-statistic to identify the most discriminative features. For a given feature i, the
t-statistic to test whether the population means are different is calculated as

t(i) =
|µ1(i)− µ2(i)|√
σ2
1(i)
N1

+
σ2
2(i)
N2

(1)

where µk(i), σk(i), and Nk are the sample mean, standard deviation, and size
of the kth class (k ∈ {1, 2}) for ith feature, respectively. The features with high
discriminative power get higher score. We tested the grading accuracy of the
feature sets constituted by the first M most discriminative features. We varied
M from 1 to 32, and report the grading accuracy in Fig. 2. It is seen that
a classification accuracy of 86.72% can be achieved using the top four or five
features. When we investigated the results of this case, it is seen that 9 out of
64 ASD trackings were identified as TD control and eight out of 64 TD control
trackings were classified as ASD, and the rest of the trackings were classified
accurately.

In order to compare our result to our earlier study that only considered the
betweenness centrality of speech related locations in the brain [6], we also per-
formed classification using the average betweenness centrality alone. Our result
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Fig. 2. Left: Influence of the number of discriminative features selected for classifica-
tion on the classification accuracy. Highest grading accuracy achieved either the top
four or five features selected. Right: Receiver operating characteristics for the SVM
classifier with RBF kernel. The area under the curve is 0.9067.

showed 78.9% classification accuracy can be achieved using this feature alone. It
is clear that considering additional features improved the classification accuracy
significantly.

Independent of the learning method, we could achieve a consistent classi-
fication accuracy over 80%. Table 2 compares the classification accuracies of
different classification methods. It is clear that SVM classifier achieves the high-
est overall accuracy in identifying the patient’s neurological state. This is not
unexpected as SVM classifiers are known to be highly successful in biomedical
applications [18].

Table 2. Classification accuracy for different learning methods. SVM with RBF kernel
yields the highest classification accuracy.

Learning Method Classification Accuracy (%)

Support Vector Machines (RBF Kernel) 86.72
Support Vector Machines (Linear Kernel) 85.16

Linear Discriminant Analysis 84.38
Näıve Bayes Classifier 78.13

AdaBoost (Decision Stumps) 81.25

We then investigated how often a feature was in the top five of features for
classification for a range of thresholds where the discriminative influence of each
feature was given by t-statistic. Table 3 shows the frequency of discriminative
features that appear in the top five feature for different thresholds. The Giant
Connected Component Ratio was consistently a discriminative feature for every
threshold in the range. For threshold N = 26, with the highest classification
accuracy the top five features with the highest t-statistics were Clustering Coef-
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ficient D, Giant Connected Component Ratio, Average Connected Component
Size, Normalized Laplacian Trace, and Normalized Laplacian Energy.

Table 3. Histogram of highest discriminative features where the frequency shows the
number of times the feature was in the top five discriminative features according to
t-statistic for a link threshold (N) ranging from 14 to 30.

Feature Frequency

Giant Connected Component Ratio 17
Clustering Coefficient D 16
Normalized Laplacian Trace 15
Average Connected Component Size 11
Normalized Laplacian Energy 10
Second Largest Eigenvalue Adjacency 7
Clustering Coefficient C 4
Average Betweenness Centrality 1

Finally, we give the receiver operating characteristics (ROC) to evaluate the
performance of the classification. ROC curve plots the sensitivity against the
1−specificity at different threshold settings. For the SVM classifier, we used
the distance from the maximum-margin hyperplane as the decision threshold.
Figure 2 shows the ROC curve for our classifier. The area under the curve (AUC)
is 0.9067, which is considered as a well-discriminating classifier.

4 Discussion

We show that global connectome features are useful to divide a group into pa-
tients suffering from ASD and healthy controls with good accuracy. A range of
features, which have been neglected in the literature so far can be a valuable
tool in identifying changes in the structure of the connectome.

Our patients have been matched for IQ and as such provide a sample of ASD
that is closest to a normal population and as such presents the most prominent
challenge considering classification in the context of ASD. In this light, our
classification results are surprisingly good. Thus, quantitative connectomics may
provide a powerful tool to further the understanding of the functioning of the
human brain, both under normal conditions as well as in disease.

Identification of the features of the connectome which are consistently and
significantly affected in disease using the full power of network graph analysis is
an important step in this direction.
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