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Abstract. We present a novel voxel-based connectivity approach for
paired functional magnetic resonance imaging (fMRI) data collected un-
der two different conditions labeled the Coupled Intrinsic Connectivity
Distribution (coupled-ICD). Our proposed method jointly models both
conditions to incorporate additional spatial information into the connec-
tivity metric. When presented with paired data, conventional voxel-based
methods analyze each condition separately. However, nonlinearities in-
troduced during processing can cause this approach to underestimate
differences between conditions. We show that commonly used methods
can underestimate functional changes and evaluate our coupled-ICD so-
lution using a study comparing cocaine-dependent subjects and healthy
controls. Our approach detected differences between paired conditions in
similar brain regions as the conventional approaches while revealing ad-
ditional changes. Follow-up seed-based analysis confirmed, via cross val-
idation, connectivity differences between conditions in regions detected
by coupled-ICD that were undetected using conventional methods. This
approach of jointly analyzing paired connectivity data provides a new
and important tool with many clinically relevant applications.
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1 Introduction

Functional connectivity holds promise as a clinical tool to detect abnormal brain
organization in clinical populations. The most common approaches rely on re-
gions of interests (ROIs) or “seeds” to characterize connectivity; however, seed-
based approaches can only examine connectivity in reference to the seed region.
Choosing which seeds to examine is often a difficult question as the wrong choice
in seed regions could occlude important patterns of connectivity.

Voxel-based metrics can be used as a data-driven way to define seed regions
for further analysis [1–3]. However, voxel-based approaches and seed approaches
can often produce seemingly conflicting results. For example, voxel-based results
may suggest an increase in connectivity for a region while follow-up seed analy-
sis with the region may show decreases in connectivity to the region. This dis-
crepancy arises because each approach is fundamentally different. Voxel-based
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metrics essentially work as compression mechanisms, reducing all information
about the connections to a voxel into a few summary parameters used for group
comparisons. This compression of information is nessessary as connectivity ma-
trix genernated from voxel-based approaches (typically 20,000x20,000 matrix
at fMRI resolutions) are difficult to interpret and are problematic for statisti-
cal inferences. In contrast, seed-based approaches directly compare correlations
between regions at the group level rather then these summary parameters.

For the special case of paired data such as pre- and post-treatment, the stan-
dard approach with voxel-based metrics is to compure the summary parameters
separately for each condition and then perform statistical analysis to compare
the two. We observe that this approach is suboptimal as the compression into a
summary parameters is performed twice (once for each condition). Thus, with
this approach, comparisons are made on how these summary parameters change
rather then how correlations between regions change. Further, non-linearities
introduced during processing – such as only examining the positive correlations
[1, 4] – guarantee that the difference in the summary parameter is not the same
as the summary parameter of a difference. Hence, information about how each
correlation changes due to the treatment is also lost with current approaches.

In this work, we propose a method where within-subject differences across
conditions are first computed and then a single summary measure can be calcu-
lated for these differences. We label our approach the coupled Intrinsic Connec-
tivity Distribution (coupled-ICD) as it extends the recently developed Intrinsic
Connectivity Distribution (ICD) method [9]. Unlike other voxel-based metrics,
coupled-ICD mimics seed-based approaches by directly comparing correlations
between each condition and, then, summarizing these changes into summary
parameters for group comparisons. Thus, coupled-ICD should produce regions
more suitable for seed-based connectivity. To assess our coupled-ICD measure,
we used a data set of cocaine-dependent subjects and healthy controls scanned
while presented with relaxing and drug-related imagery cues. We show that our
coupled-ICD has higher sensitivity than conventional approaches for detecting
differences between conditions. Finally, using cross-validation on separate, inde-
pendent sub-sample of our data, we show regions detected by coupled-ICD are
predictive of seed-based difference in connectivity.

2 Theory

Voxel-based measures of functional connectivity [4, 1, 9] aim to reduce large
amounts of information to a voxel into a much smaller set of summary parame-
ters. Typically, this compression is formulated based on graph theory [8] where
the brain is treated as a graph or network and each voxel represents a node in
this graph. These nodes (or voxels) are connected to each other by edges based
on the similarity of their timecourses.

Measures of node centrality such as the measure degree are the primary met-
rics used for compression. For any voxel x, these measures can be calculated
from the distribution of connection strength, f(x, r), where x is the current
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voxel, and r is a correlation or any other measure of timecourse similarity. First,
f(x, r) is estimated by computing the histogram of the correlations r for the
timecourse at voxel x to the timecourse at every other voxel in the brain. Degree
can be estimated as the integral of this distribution from any threshold τ to 1, or∫ 1

τ
f(x, r)dr. Weighted degree measures such as weighted Global Brain Connec-

tivity (wGBC) [1] can be estimated as the mean of this distribution. In contrast,
ICD models the corresponding survival function to f(x, r). Each point on the
survival function is simply degree evaluated at that particular threshold τ and,
thus, ICD parameterizes how degree for a voxel changes as the threshold used to
determine if two voxels are connected is increased. Previously, it was shown that
a stretch exponential decay with unknown variance parameter α and shape pa-
rameter β was sufficient to model this survival function. Modeling the survival
function with a stretch exponential is equivalent to modeling the underlying
distribution as a Weibull distribution: f(x, r, α, β) = β

α ( rα )β−1 exp(−( rα )β).

The presented approach, coupled-ICD, extends conventional voxel-based con-
nectivity in a critical way as the graph summarized by coupled-ICD is a graph
defined by differences in correlations and not simply the correlations. As such,
coupled-ICD takes advantage of the paired nature of the data by explicitly com-
paring the same edge under two conditions. Typically, graphs at the voxel level
become difficult to analyze due to memory constraints and multiple comparison
issues with groups of 10 or more subjects. However, for the special case of paired
scans, only two graphs need to be analyzed simultaneously. Paired scans reduce
the complexity of this problem.

Directly comparing each correlation (like seed-based appoarches) allows ad-
ditional spatial information about changes of corresponding edges to be incorpo-
rated into a summary parameter of connectivity for a single subject. Specifically,
computing the differences between the weights of corresponding edges of a graph
and then summarizing the differences takes into account the topological (spatial)
structure of the graphs. With this approach, information about how each edge
has changed due to condition or time can be incorporated into the summary pa-
rameter for the subject. This information is lost with current approaches. Due
to non-linearities in the calculation of these summary parameters, the difference
between the summary parameters (degree, wGBC, or ICD) of two graphs is not
the same as the summary parameter of the difference between the graphs. For
example, given the ambiguity of negative correlations, many current approaches
examine only the positive correlations [4, 9, 1].

Given a set of paired data, coupled-ICD can be computed by repeatedly cal-
culating conventional seed connectivity maps treating each voxel as a seed, and
summarizing the difference between the seed maps for each condition (Fig. 1).
First, for any voxel x, the correlation between the timecourse at voxel x to the
timecourse at every other voxel in the gray matter is calculated for each condition
in the paired data. These correlation maps are then subtracted from one another.
Coupled-ICD then summarizes this map of differences in the same way that ICD
(or degree) summarizes a map of connections to a voxel. First, for each voxel, a
distribution of these differences is estimated with a histogram. Second, this dis-
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Fig. 1. Flow chart describing coupled-ICD. For paired data, coupled-ICD jointly
analyzes both conditions and then creates a summary of the difference in connectivity
between conditions for each voxel. First, a seed connectivity map is created for a voxel
(shown as the blue square through the flow chart) in each condition. The resulting
survival function of the distribution of the difference (labeled coupled-ICD curve) is
calculated and modeled with a stretched exponential. This process is repeated for each
voxel in the gray matter. The final output is an image where each voxel represents a
summary of the difference between two seed maps using that voxel as the seed region.

tribution is modeled as a Wiebull distribution which corresponds to modeling the
survival function of the histogram as a stretch exponential. Group comparisons
can be performed by comparing the parameters with standard methods.

Coupled-ICD can be used to model increases in connectivity, decreases in
connectivity, or the magnitude of the changes in connectivity. For simplicity, we
focus only on modeling magnitude of the changes in connectivity noting that
the modeling and the interpretation of the parameters is similar for the other
cases. When modeling the magnitude of changes, a larger α parameter indicates
a larger variance in the distribution and that a larger number of connections
exhibit a strong change in correlations between the two conditions.

3 Functional Connectivity Estimation

Subjects: The data set consisted of 28 cocaine-dependent (CD) subjects and
38 healthy control (HC) subjects aimed at examining influence of cue state and
diagnostic group on brain activity. Subjects performed four fMRI scans while
listening to imagery scripts of either neutral relaxing cues or drug related cues
(two scans of each). Complete details can be found elsewhere [7, 10].
Preprocessing: Images were slice-time corrected using sinc interpolation and
motion corrected using SPM5. All further analysis was performed using in-house
software. Several covariates of no interest were regressed from the data including
linear and quadratic drift, six rigid-body motion parameters, mean cerebral-
spinal fluid (CSF) signal, mean white matter signal and mean global signal.
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Finally, the data were temporally smoothed with a zero mean unit variance
Gaussian filter (cutoff frequency=0.12Hz). A gray matter mask was applied to
the data so that only voxels in the gray matter were used in the calculation.

ICD and Degree: The timecourse for voxel x was correlated with the time-
course for every other voxel in the gray matter. As the removal of the global
mean makes the signs of the correlation ambiguous [4], only the positive corre-
lation was used in analysis. For each voxel, a distribution of connection strength
was estimated for the positive correlation coefficients using a 100 bin histogram.
ICD was used to model this distribution. First, the histogram was converted to
the corresponding survival function and this survival function was modeled with
a stretched exponential. This results in two summary parameters for each voxel
reflecting that voxels connectivity to the rest of the brain; the α parameter was
used in the group comparisons. As this survival function describes how the net-
work theory measure degree changes with connection threshold, degree at any
threshold can be estimated as a single point on the survival function. Degree
was estimated with a connection threshold of r = 0.25. ICD or degree maps for
each paired condition were then subtracted from each other resulting in a single
map per subject describing the difference in connectivity between conditions.

Coupled-ICD: Similar to the ICD and degree estimations, the timecourse for
voxel x was correlated with the timecourse for every other voxel in the gray
matter. As coupled-ICD operates on paired data, this process was performed on
both conditions resulting in two seed connectivity maps with voxel x as the seed.
These maps are then subtracted. A distribution of the differences in connection
strength was estimated for the absolute value of the differences using a 200 bin
histogram. A larger number of bins was used to keep the bin width the same
as the ICD analysis while accommodating the wider range of possible values
(difference in correlations has a range of [−2, 2] while correlation has a range
of [−1, 1]). We chose to model the absolute value of the differences to highlight
regions of the brain that show large differences between two conditions. A similar
procedure can be used to analyze the increases or decreases between conditions.
As described above, this histogram was converted to the corresponding survival
function and this survival curve was modeled with a stretched exponential.

Seed Connectivity: A follow-up seed-based analysis (similar to [4, 2, 3]) was
performed on a sample region showing large differences as detected using coupled-
ICD. The voxel-based analysis and follow-up seed-based analysis were run on
independant data by spliting the data into two groups by subjects. Fourteen
CD subjects and 19 HC subjects were randomly chosen for voxel-based analysis.
The remaining subjects were used for seed-based analysis. Splitting the data into
two groups allows the seed connectivity results to act as a cross-validation of the
coupled-ICD results. A seed was placed in putamen based on voxels showing
significant differences (p < 0.05, corrected) between HC and CD subjects. The
timecourse of the reference region in a given subject was then computed as the
average timecourse across all voxels in the reference region. This timecourse was
correlated with the timecourse for every other voxel in the gray matter to cre-
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Fig. 2. Evaluation of coupled-ICD. A) Coupled-ICD detects widespread differ-
ences in connectivity while subjects are experiencing either relaxing or drug-related
imagery for both (top) the cocaine-dependent (CD) subjects. and (middle) healthy con-
trols (HC). (Bottom) Group level comparisons (CD vs HC) revealed that the groups
significantly (p < 0.05, corrected) differ in response to the imagery conditions. B)
Conventional ICD analysis detected significant group differences (p < 0.05 corrected)
in the parietal and occipital lobes. C) Coupled-ICD detected significant (p < 0.05,
corrected) difference in these areas as well as several other areas. This result highlights
the additional information that can be captured by jointly analyzing paired conditions.

ate a map of r-values, reflecting Seed-to-whole-brain connectivity. These r-values
were transformed to z-values using Fisher’s transform.
Group Analysis: To facilitate group statistics, all single subject results were
spatially smoothed with a 6mm Gaussian filter and non-linearly warped to com-
mon space using Bioimage Suite [5]. Between group differences were calculated
using two-sample t-test with significance assessed at p < 0.05. AFNI’s Alphasim
was used for multiple comparison correction.

4 Results

Coupled-ICD detected widespread significant differences due to condition be-
tween the two groups. The coupled-ICD maps for each group and the between-
group comparisons are shown in Fig. 2. Both groups showed large differences
between the drug-related and relaxing imagery in the posterior cingulate cor-
tex, bilateral angular gyrus, bilateral insular cortex, bilateral putamen, medial
prefrontal/anterior cingulate cortex, and visual processing areas. The CD group
showed significantly greater differences between conditions in many of these re-
gions and additionally in the prefrontal lobe.

The between-group differences detected by coupled-ICD were compared with
between-group differences detected by the conventional ICD and degree ap-
proaches. Conventional ICD detected two clusters that satisfied our criteria for
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Fig. 3. Seed validation. A follow-up, seed-based connectivity analysis was performed
on independant data using a region in the left insula detected by coupled-ICD but not
by conventional ICD and degree analysis. Several areas of significant differences were
detected (p < 0.05, corrected). As the seed analysis was performed on independant
data, the seed-based results provide evidence via cross-validation that coupled-ICD is
detecting an effect not detected by conventional analysis

significant differences-in the parietal and occipital lobes-while the degree ap-
proach did not detect any significant differences. Group differences for both
coupled-ICD and ICD are shown in Fig. 2. Coupled-ICD identifies both clusters
detected by conventional ICD along with additional widespread changes.

To explore the differences detected by coupled-ICD, a follow-up seed-based
analysis was performed using a seed defined in the left putamen where significant
between-group differences were found using coupled-ICD. The left putamen was
chosen as a seed due to the substantial literature (see [7] for example) implicating
this region in addiction. Significant (p < 0.05, corrected) interactions between
group and condition were observed in right frontal lobe (Fig. 3).

5 Discussion

We present a principled method for exploratory analysis of paired conditions to
detect regions that differ significantly in their connectivity patterns between con-
ditions. We show that our coupled-ICD approach is superior in detecting group
differences in connecitivity due to paired conditions. We show that coupled-
ICD is a viable solution as a data-driven way to pick seeds for further analysis.
Standard seed-based analysis, performed on data independent from the coupled-
ICD results, showed that the regions detected by coupled-ICD exhibit signifi-
cant differences in seed connectivity. While similar to conventional voxel-based
metrics of connectivity, the present approach extends connectivity in a critical
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way, coupled-ICD summaries differences in correlations, rather compute differ-
ence in summaries of correlation. This extension allows coupled-ICD to mimic
seed-based approaches and gain additional information for group comparisons.

Numerous clinical applications could benefit from measuring changes in the
functional organization of the brain at the voxel level for paired data, yet the
translational technology for detecting changes in connectivity remains elusive.
Coupled-ICD represents a principled method for exploratory analysis of paired
conditions to detect regions that differ significantly in their connectivity patterns
between conditions. Thus, coupled-ICD could potentially fill this important void
not currently covered by conventional approaches.
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