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Abstract: The quest to discover genetic variants that affect the human brain 
will be accelerated by screening brain images from large populations. Even so, 
the wealth of information in medical images is often reduced to a single 
numeric summary, such as a regional volume or an average signal, which is 
then analyzed in a genome wide association study (GWAS). The high cost and 
penalty for multiple comparisons often constrains us from searching over the 
entire image space. Here, we developed a method to compute and boost power 
to detect genetic associations in brain images. We computed voxel-wise 
heritability estimates for fractional anisotropy in over 1100 DTI scans, and used 
the results to threshold FA images from new studies. We describe voxel 
selection criteria to optimally boost power, as a function of the sample size and 
allele frequency cut-off. We illustrate our methods by analyzing publicly-
available data from the ADNI2 project.   

Keywords: Neuroimaging genetics, heritability, GWAS, DTI, multiple 
comparisons correction. 

1   Introduction 

Imaging genetics is an emerging field in which variations in the human genome are 
related to brain differences. Genome-wide association studies (GWAS), for example, 
test for statistical associations between brain measures and up to a million single 



nucleotide polymorphisms (SNPs1) in the genome. To simplify the screening effort, 
studies often focus on a single measure extracted from brain scans, such as the overall 
volume of the hippocampus [1]. Despite successful findings with simple summary 
measures, the image space contains many more features, e.g., at individual voxels, 
which can be used for genetic testing. Testing all these features, however, imposes a 
high cost of multiple comparisons. GWAS tests at each voxel are computationally 
feasible but underpowered, due to the large number of tests performed [2]. Efforts to 
boost voxelwise power include set-based multivariate tests (multilocus genetic tests), 
ICA [3], and sparse regression methods in the image and/or genome [4-6]. If we are 
able to analytically reduce the image space a priori to only those regions where we 
expect sufficient power for association, we could maximize our search space while 
minimizing the penalty for multiple comparisons.  
 Power in GWAS is a topic of great interest, as any algorithms to boost power 
would make genetic studies more efficient, faster, or more cost-effective. Power 
calculations can inform data collection, i.e., how many subjects to recruit. Power can 
be computed for a GWAS analysis of a single measure, or (conversely) to find how 
many subjects are required to detect a pre-defined effect size on a brain measure, for 
one single nucleotide polymorphism (SNP) with a given minor allele frequency 
(MAF). One commonly used tool for calculating power is the Genetic Power 
Calculator [7]. Power and required sample sizes can be computed for association tests 
with binary outcomes (e.g., diagnosis in a case-control study) [8], or quantitative traits 
such as brain measures. Another approach to optimize power is to select subjects non-
randomly, to optimize power to detect effects of rare variants [9]. However, in large 
neuroimaging studies, often data have already been collected, sometimes without 
genetic discovery in mind, and the challenge is to compute image features to 
maximize power to detect genetic associations. A key goal is to prioritize the list of 
>100,000 possible voxelwise phenotypes2 to only those that meet a desired expected 
power threshold, of say 80%, for a given sample size, N.  
 Power calculators depend on distributional assumptions, and may require 
certain parameters to be known, such as the means and variances of the trait in each of 
the genotype groups. Often, we may not know these means and standard deviations 
[10]. One approach [11] suggests the use of heritability to avoid the need to specify 
the mean and variance required for the non-centrality parameter. Other common 
assumptions are that allele frequencies and genotype counts are known. However, 
these are often not known beforehand, and ignoring uncertainties can lead to overly 
optimistic power estimates [12]. Even with a fixed population sample with allele 
frequencies in Hardy-Weinberg equilibrium (HWE), the genotype distribution of the 
actual sample can vary. It becomes essential to compute the expected power by taking 
into account the expected genotype distribution, as has been shown for single alleles 
[12, 13]. While these problems have been addressed in the context of single variants, 
with known or unknown allele frequencies, p, power analysis for GWAS studies is 
still challenging. In GWAS, over one million alleles may be tested, all with different 

                                                
1 At each location on the genome, a person has a specific “letter” or nucleotide; SNPs are 

common variants in the genetic code, carried by at least 1% of the population.  
2 A phenotype is a biological measure that is subjected to genetic analysis, such as the 

size of a brain region, or a diffusion imaging measure in a specific region. 



minor allele frequencies (MAFs). For gene discovery, including GWAS studies of 
brain imaging phenotypes, all these alleles will have unknown and varying genotype 
counts, although a limit can be set as to how much the SNP deviates from HWE, 
where HWE represents the expected genotype frequencies for each allele given the 
MAF in the population of interest. If, for example, the allele MAF=0.3 for a given 
population, then with a sample size of N=1000, N*p2=90 people in the cohort would 
be expected to have 2 copies of the minor allele (n2), 2*N*p*(1-p)=420 people should 
have 1 copy, (n1), and N*(1-p)2 = 490 people should have 0 (n0). Deviations from this 
count are assessed using a χ2 test with one degree of freedom (dof); samples with 
genotype counts that differ significantly, are not in HWE.  

Studies using DTI have reported moderate correlations between DTI-based 
measures of fractional anisotropy (FA) and common variants in specific candidate 
genes (e.g., CLU, HFE, NTRK1, and BDNF) known to associate with neurological 
diseases and disorders. This motivates the use of FA as phenotypes for GWAS, as 
they may implicate genes that affect disease risk. Recently, we [14] computed the first 
large-scale heritability study on voxelwise FA maps, using meta-analysis methods on 
two cohorts comprising a total of over 1100 subjects. Here, we use these existing 
voxelwise measures of heritability to estimate the power of GWAS at each voxel of a 
new dataset. We limit our multiple comparisons correction problem by filtering SNPs 
based on a user-defined threshold for the MAF. We compute the expected power at 
each voxel, with appropriate limits on the number of subjects in the genotype groups, 
based on the HWE. This allows us to focus on voxels of the FA map where we would 
expect a certain level of power for detecting a genetic effect, given a specific N.  

2   Methods 

2.1   Heritability and Power Estimates    

We can use linear regression to test the effect of a genetic variant on a quantitative 
trait, such as a brain imaging measure. In this way, the expected value for the trait is 
modeled as µi = µ0 +β * i+βx * x +ε , where i =0,1,2 represents the number of copies of 
the minor allele, and βX and x represent the nuisance variables such as age and sex.  
Here the F-ratio can be used to test the equality of the means (H0: β=0, HA: β≠0). The 
F-ratio follows a non-central F-distribution with 1 and N-2 dof, with a non-centrality 
parameter λ:
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power is π = Pr F1,N−2,λ > Fc( ) , where Fc is the (1-α)*100 percentile of the central F-
distribution, and α is the significance threshold (e.g., 0.05). Note that if we add d 
covariates to the model, our distribution would have 1 and N-2-d dof. However, the 
means and variances within the groups may be unknown - or impractical to calculate - 
for each of the possible GWAS SNPs.  
 Alternatively, the heritability of a trait (h2) is defined as the proportion of the 
observed variance in a trait (here a brain measure) that is attributable to genetic 



variation; h2= Vg/VT – or, the model sum-of-squares, divided by the total sum-of-
squares (SSM/SST= 1-(SSE/SST)). As suggested in [11], the F-statistic can be 
directly calculated as a function of h2 and N. This is because according to an ANOVA 
table for a regression (Table 1), the F-statistic=(SSM*DFE)/(SSE*DFM); as SSE= 
(1-h2)*SST and SSM= h2*SST, then

F = h2 *DFE
(1− h2 )*DFM

, and in the case of one explanatory 

variable, d=1, F = h
2 *(N − 2)
1− h2

. We can therefore use the trait’s h2 to calculate power, π.  
 

Table 1 ANOVA table for a multiple regression model, with d explanatory variables. 
ANOVA dof Sum of squares Mean squares F 

Model DFM=1 SSM= MSM=SSM/DFM MSM/MSE 

Error DFE=N-d-1 SSE= MSE=SSE/DFE  

Total DFT=N-1 SST=SSM+SSE MST=SST/DFT  
 
Recently, we [14] meta-analyzed voxelwise measures of heritability from FA 

maps in two family-based cohorts totaling over 1100 subjects.  One cohort was a 
sample of Caucasians imaged at 4T with 94 directional gradients and voxels of size 
1.7x1.7x2mm, and the other was a Mexican-American sample imaged at 3T with 64 
gradients and 1.8x1.8x3mm voxels. Given differences in cohort demographics and 
scanning protocols, and the overall large sample size (1100+), we treat these meta-
analyzed values as the best available heritability estimates for the voxelwise 
phenotypes in any studies of FA mapped to the same space. We carry these 
heritability measures forward, to estimate power in a new GWAS study of unrelated 
individuals. We express the power as a function of N, calculating the probability 
under the F-distribution (1 and N-2 dof) for the heritability at every voxel. 

2.2 HWE, MAF, and multiple comparisons correction  

Tests of HWE assess whether the sample genotype frequency is aligned with the 
frequency expected based on reference data compiled from human populations (such 
as HapMap). Including SNPs with significant deviations from HWE can be 
problematic [16], but the threshold for determining significant deviations is often 
different between studies [17]. Thresholding this deviation at more stringent values 
eliminates group formations that could artificially appear to enhance power. A direct 
filter on the SNPs involves thresholding the MAF, to remove rare variants and SNPs 
with allele frequencies too low to be adequately sampled. Given the relatively lower 
N in imaging studies compared to other genetic studies, filtering out low frequency 
SNPs can reduce the number of tests, alleviating the multiple comparisons penalties, 
without compromising power. We filter SNPs based on MAF, and adjust possible 
outcomes with HWE deviations. Once SNPs have been filtered, the significance 
threshold can be based on the number of SNPs (NSNPs). The false discovery rate (FDR) 
q-value which ensures that the false positive rate across all voxels, is controlled at 
qFDR= 0.05/NSNPs. We count the number of voxels (NVOX) that pass the threshold. Now 
power may be calculated as π = Pr Fh > Fc( ) , with Fc determined by α=0.05/ NSNPs/NVOX. 
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2.3 Accounting for uncertainties in genotype frequency 

As mentioned in [12, 13], for a given allele frequency p, the expected power is the 
weighting of the estimate π (here a function of h2 and N) by the probabilities of the 
multinomial counts, n=(n0, n1, n2). By contrast with prior papers, we limit n to only 
those combinations that fall within HWEc. 
  Additionally in this work, as opposed to those mentioned above, we are 
conducting a GWAS of all SNPs with p > MAFc (a lower bound on the MAF of the 
SNPs) rather than a single SNP. Therefore, rather than setting a beta-prior on p, we 
sum over all possible frequencies, each one with respect to only the possible n in 
HWE, and all possible p > MAFc. Note that, by definition, the MAF ≤ 0.5. 

Ε(v)GWAS π (h
2,N ) |nHWE"# $%=

Pr(p, p+Δ)
Pr(MAFc ≤ p ≤ 0.5)

π (h2,N )
ni=N ;ni≥0∀i∑
∑
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n0 !n1!n2 !
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This estimates power for GWAS at the individual voxel, v – and we only include 
those voxels that pass the FDR correction as mentioned above. The estimated power 
is a weighted function of: (1) the probability that the p falls within a given interval, Δ, 
and (2) the probability of the genotype group distribution within HWE. π can now be 
taken out of both summations, and a single weight, wt(MAFc,HWEc), is given to each 
voxel. E(v) can be written as π(h2(v),N)*wt. As an example, we use data from the 
second phase of the Alzheimer’s Disease Neuroimaging Initiative study (ADNI2; 
publicly available at http://adni.loni.ucla.edu), and show the proportion of SNPs that 
fall across a range of allele frequencies (Figure 1). Using the formulation above, we 
compute the NVOX that surpass a power threshold while varying the NSNPs examined by 
varying MAFc and HWEc, as well as how this estimate is modified by sample size, N. 

2.4 Voxelwise GWAS of the ADNI2 dataset 

To date, ADNI2 has genotyped 78 Caucasian subjects scanned with DTI. Scans were 
processed and aligned to the heritability map detailed in [14]. Limiting our search 
space to only voxels that pass the 0.8 power threshold with MAFc=0.1 and 
HWEc=1x10-5, we ran a GWAS at all remaining voxels using an additive model; this 
is modeled with a linear regression for each SNP.   

3   Results 

3.1 Voxels with power > 0.8 as functions of N, MAFc, HWEc 

The whole-brain white matter skeleton of the DTI FA-template consists of 97158 
voxels total. In Figure 2, we show how the expected NVOX changes as we threshold the 
MAF from 0.01 to 0.2 in step sizes of 0.01, and as we become more stringent with the 
HWEc. We do not eliminate SNPs due to divergence, but rather filter out the possible 
combinations of subjects that could result in the given p. Therefore, as we are more 



strict with HWEc (1x10-6 < …< 0.01 < 0.05), more possibilities are deemed divergent 
and possibly biased, so power is lower, and fewer voxels are selected.  

3.2 Voxelwise GWAS in the ADNI2 dataset 

In our real data analysis, we first find the number of voxels that will have an expected 
power EGWAS(v) > 0.8 with MAFc = 0.1 (NSNPs = 522,077 out of 661,478), in the 
ADNI2 dataset of 78. As this is a dataset including several patients with Alzheimer’s 
disease, we would not necessarily expect the HWE to be upheld, as disease could 
impact the frequency of some alleles – especially AD risk alleles. We were therefore 
less strict with HWEc, selecting p<10-5 as our cutoff. We obtained a mask consisting 
of 1664 voxels (Figure 3A), and ran a GWAS at all voxels.  

When correcting for all the voxels and the SNPs tested, no SNP had a 
significance level less than 0.05/(1664*522,077) =5.75x10-11 in the ADNI2 sample. 
However, as these voxels were chosen to have the highest power to detect a genetic 
association, we show that when plotting the minimum p-values at each voxel, against 
what would be expected from a null distribution (here, a Beta distribution with 
parameters (1,NSNPs) [18]) in a Q-Q plot (Figure 3B), we show our p-values tended to 
be lower than what would be expected from a null distribution. 

4   Discussion 

We have presented a method to estimate power for imaging genetics studies that 
apply genome-wide scanning to multiple phenotypes; in fact, the same method could 
also be adapted to prioritize targets for genetic analysis. Most power estimates for 
GWAS studies are computed to plan future data collection, but here we assume 
imaging data has already been collected (or there is an upper limit on N). We then 
show how to optimize the study to focus the GWAS on the most powerful regions of 
the high-dimensional image space.  Our approach is also flexible - users can select a 
MAF or HWE cutoff to estimate the best thresholds to optimize the search space. 

Limitations of our study include the following: (1) the heritability presented 
here may differ from that of the population a user is studying. However, we used the 
best available estimates of heritability of FA to date, given the large sample size, and 
the use of meta-analysis to mitigate differences in demographics and imaging 
protocols; (2) Studies have also shown that choosing the inappropriate model for the 
SNP (e.g., additive when in fact it has a dominant effect) can bias power calculations 
[13]. Even so, most GWAS studies assume an additive model for each SNP, so we 
follow this convention. (3) Here, we do not account for the correlation between 
voxels, or the linkage disequilibrium (LD) structure of the SNPs. If LD is considered, 
tests are not all independent and we can reduce the number of effective tests, reducing 
the multiple comparisons penalty. Our method can incorporate this correlation, so our 
power estimates (assuming SNP independence) are somewhat conservative. 
Regardless, our methods can estimate the power of voxelwise association tests, 
providing a starting ground for GWAS of spatially extended phenotypes. 



Additionally, it is possible that limiting rarer variants by removing the SNPs with low 
MAF, may result in removal of SNPs that may have the greatest effect sizes, however 
with a limited number of scans, it is unlikely that the effect of these rare variants 
would be accurately obtained.  

Here, we show that meta-analyzed heritability estimates are useful for 
genetic studies on the entire image space. We focus on voxelwise analyses, but so 
long as heritability estimates have been made on multiple imaging phenotypes, this 
method can be extended beyond maps of FA values, to mean volume or anisotropy 
values within regions of interest, or to all of the individual network elements that 
make up the human connectome.     
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Figure 1 Histograms of frequency and percent (Δ=0.001,0.05) of SNP MAFs in ADNI2.  

 

 
Figure 2: The top row shows the number of voxels with sufficient power to detect a genetic 

effect (>80% power) with respect to the MAF cutoff (MAFc) and the divergence threshold for 
HWE (HWEc), for samples with N=100 and N=500 subjects. As the MAF threshold is 
increased, fewer SNPs are tested, and this reduces the multiple comparisons correction and 
increases power for those tested SNPs, if there is a true associated variant in the group. As in 
prior GWAS power studies, the bottom row shows the number of subjects, regardless of MAFc 
or HWEc, and has a far larger influence than either one. The number of voxels with sufficient 
power levels off here, as N > 500. 

 
Figure 3: The 1664 voxels found to have sufficient power (> 80%) in the ADNI2 sample 

(N=78) were used for GWAS, and are highlighted in red.  Plotting the minimum p-value at 
each voxel against what would be expected from the null hypothesis shows trends towards 
significance in this subsample of voxels. 
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