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Abstract: The quest to discover genetic variants that affect the human brain
will be accelerated by screening brain images from large populations. Even so,
the wealth of information in medical images is often reduced to a single
numeric summary, such as a regional volume or an average signal, which is
then analyzed in a genome wide association study (GWAS). The high cost and
penalty for multiple comparisons often constrains us from searching over the
entire image space. Here, we developed a method to compute and boost power
to detect genetic associations in brain images. We computed voxel-wise
heritability estimates for fractional anisotropy in over 1100 DTI scans, and used
the results to threshold FA images from new studies. We describe voxel
selection criteria to optimally boost power, as a function of the sample size and
allele frequency cut-off. We illustrate our methods by analyzing publicly-
available data from the ADNI2 project.

Keywords: Neuroimaging genetics, heritability, GWAS, DTI, multiple
comparisons correction.

1 Introduction

Imaging genetics is an emerging field in which variations in the human genome are
related to brain differences. Genome-wide association studies (GWAS), for example,
test for statistical associations between brain measures and up to a million single



nucleotide polymorphisms (SNPs!) in the genome. To simplify the screening effort,
studies often focus on a single measure extracted from brain scans, such as the overall
volume of the hippocampus [1]. Despite successful findings with simple summary
measures, the image space contains many more features, e.g., at individual voxels,
which can be used for genetic testing. Testing all these features, however, imposes a
high cost of multiple comparisons. GWAS tests at each voxel are computationally
feasible but underpowered, due to the large number of tests performed [2]. Efforts to
boost voxelwise power include set-based multivariate tests (multilocus genetic tests),
ICA [3], and sparse regression methods in the image and/or genome [4-6]. If we are
able to analytically reduce the image space a priori to only those regions where we
expect sufficient power for association, we could maximize our search space while
minimizing the penalty for multiple comparisons.

Power in GWAS is a topic of great interest, as any algorithms to boost power
would make genetic studies more efficient, faster, or more cost-effective. Power
calculations can inform data collection, i.e., how many subjects to recruit. Power can
be computed for a GWAS analysis of a single measure, or (conversely) to find how
many subjects are required to detect a pre-defined effect size on a brain measure, for
one single nucleotide polymorphism (SNP) with a given minor allele frequency
(MAF). One commonly used tool for calculating power is the Genetic Power
Calculator [7]. Power and required sample sizes can be computed for association tests
with binary outcomes (e.g., diagnosis in a case-control study) [8], or quantitative traits
such as brain measures. Another approach to optimize power is to select subjects non-
randomly, to optimize power to detect effects of rare variants [9]. However, in large
neuroimaging studies, often data have already been collected, sometimes without
genetic discovery in mind, and the challenge is to compute image features to
maximize power to detect genetic associations. A key goal is to prioritize the list of
>100,000 possible voxelwise phenotypes? to only those that meet a desired expected
power threshold, of say 80%, for a given sample size, N.

Power calculators depend on distributional assumptions, and may require
certain parameters to be known, such as the means and variances of the trait in each of
the genotype groups. Often, we may not know these means and standard deviations
[10]. One approach [11] suggests the use of heritability to avoid the need to specify
the mean and variance required for the non-centrality parameter. Other common
assumptions are that allele frequencies and genotype counts are known. However,
these are often not known beforehand, and ignoring uncertainties can lead to overly
optimistic power estimates [12]. Even with a fixed population sample with allele
frequencies in Hardy-Weinberg equilibrium (HWE), the genotype distribution of the
actual sample can vary. It becomes essential to compute the expected power by taking
into account the expected genotype distribution, as has been shown for single alleles
[12, 13]. While these problems have been addressed in the context of single variants,
with known or unknown allele frequencies, p, power analysis for GWAS studies is
still challenging. In GWAS, over one million alleles may be tested, all with different

! At each location on the genome, a person has a specific “letter” or nucleotide; SNPs are
common variants in the genetic code, carried by at least 1% of the population.

2 A phenotype is a biological measure that is subjected to genetic analysis, such as the
size of a brain region, or a diffusion imaging measure in a specific region.



minor allele frequencies (MAFs). For gene discovery, including GWAS studies of
brain imaging phenotypes, all these alleles will have unknown and varying genotype
counts, although a limit can be set as to how much the SNP deviates from HWE,
where HWE represents the expected genotype frequencies for each allele given the
MAF in the population of interest. If, for example, the allele MAF=0.3 for a given
population, then with a sample size of N=1000, N*p’=90 people in the cohort would
be expected to have 2 copies of the minor allele (n,), 2*N*p*(1-p)=420 people should
have 1 copy, (n,), and N*(1-p)* = 490 people should have 0 (n,). Deviations from this
count are assessed using a y* test with one degree of freedom (dof); samples with
genotype counts that differ significantly, are not in HWE.

Studies using DTI have reported moderate correlations between DTI-based
measures of fractional anisotropy (FA) and common variants in specific candidate
genes (e.g., CLU, HFE, NTRK1, and BDNF) known to associate with neurological
diseases and disorders. This motivates the use of FA as phenotypes for GWAS, as
they may implicate genes that affect disease risk. Recently, we [14] computed the first
large-scale heritability study on voxelwise FA maps, using meta-analysis methods on
two cohorts comprising a total of over 1100 subjects. Here, we use these existing
voxelwise measures of heritability to estimate the power of GWAS at each voxel of a
new dataset. We limit our multiple comparisons correction problem by filtering SNPs
based on a user-defined threshold for the MAF. We compute the expected power at
each voxel, with appropriate limits on the number of subjects in the genotype groups,
based on the HWE. This allows us to focus on voxels of the FA map where we would
expect a certain level of power for detecting a genetic effect, given a specific N.

2 Methods

2.1 Heritability and Power Estimates

We can use linear regression to test the effect of a genetic variant on a quantitative
trait, such as a brain imaging measure. In this way, the expected value for the trait is
modeled as ;= y +p*i+pB *x+e, Where i =0,1,2 represents the number of copies of

the minor allele, and By and x represent the nuisance variables such as age and sex.
Here the F-ratio can be used to test the equality of the means (H,: =0, H,: f#0). The
F-ratio follows a non-central F-distribution with 1 and N-2 dof, with a non-centrality
parameter A: (E" (- _u)]z ,where Snei San and o is the within-group SD. The

power is .7[=PI'( Fya,> E) , where F, is the (1-a)*100 percentile of the central F-

distribution, and a is the significance threshold (e.g., 0.05). Note that if we add d
covariates to the model, our distribution would have 1 and N-2-d dof. However, the
means and variances within the groups may be unknown - or impractical to calculate -
for each of the possible GWAS SNPs.

Alternatively, the heritability of a trait (h°) is defined as the proportion of the
observed variance in a trait (here a brain measure) that is attributable to genetic



variation; h’= V. /Vy — or, the model sum-of-squares, divided by the total sum-of-
squares (SSM/SST= 1-(SSE/SST)). As suggested in [11], the F-statistic can be
directly calculated as a function of 4° and N. This is because according to an ANOVA
table for a regression (Table 1), the F-statistic=(SSM*DFE)/(SSE*DFM); as SSE=
(1-7*)*SST and SSM= A?*SST, thenF_ W*DFE ,and in the case of one explanatory
(1-h*)* DFM
h**(N-2). We can therefore use the trait’s 4°to calculate power, 7.
1-1

variable, d=1, Fe

Table 1 ANOVA table for a multiple regression model, with d explanatory variables.

ANOVA dof Sum of squares Mean squares F
Model DFM=1 SSM= 3(5,-y) MSM=SSM/DFM | MSM/MSE
Error DFE=N-d-1 SSE= S(y,-3) MSE=SSE/DFE
Total DFT=N-1 SST=SSM+SSE MST=SST/DFT

Recently, we [14] meta-analyzed voxelwise measures of heritability from FA
maps in two family-based cohorts totaling over 1100 subjects. One cohort was a
sample of Caucasians imaged at 4T with 94 directional gradients and voxels of size
1.7x1.7x2mm, and the other was a Mexican-American sample imaged at 3T with 64
gradients and 1.8x1.8x3mm voxels. Given differences in cohort demographics and
scanning protocols, and the overall large sample size (1100+), we treat these meta-
analyzed values as the best available heritability estimates for the voxelwise
phenotypes in any studies of FA mapped to the same space. We carry these
heritability measures forward, to estimate power in a new GWAS study of unrelated
individuals. We express the power as a function of N, calculating the probability
under the F-distribution (1 and N-2 dof) for the heritability at every voxel.

2.2 HWE, MAF, and multiple comparisons correction

Tests of HWE assess whether the sample genotype frequency is aligned with the
frequency expected based on reference data compiled from human populations (such
as HapMap). Including SNPs with significant deviations from HWE can be
problematic [16], but the threshold for determining significant deviations is often
different between studies [17]. Thresholding this deviation at more stringent values
eliminates group formations that could artificially appear to enhance power. A direct
filter on the SNPs involves thresholding the MAF, to remove rare variants and SNPs
with allele frequencies too low to be adequately sampled. Given the relatively lower
N in imaging studies compared to other genetic studies, filtering out low frequency
SNPs can reduce the number of tests, alleviating the multiple comparisons penalties,
without compromising power. We filter SNPs based on MAF, and adjust possible
outcomes with HWE deviations. Once SNPs have been filtered, the significance
threshold can be based on the number of SNPs (Ngy,). The false discovery rate (FDR)
g-value which ensures that the false positive rate across all voxels, is controlled at
qrpr= 0.05/Ngyp,. We count the number of voxels (Nyy) that pass the threshold. Now
power may be calculated as 5 = Pr(F,>F,)> with F determined by 0=0.05/ Ngyp/Nyox-




2.3 Accounting for uncertainties in genotype frequency

As mentioned in [12, 13], for a given allele frequency p, the expected power is the
weighting of the estimate 7t (here a function of 4° and N) by the probabilities of the
multinomial counts, n=(n,, n,, n,). By contrast with prior papers, we limit n to only
those combinations that fall within HWE,.

Additionally in this work, as opposed to those mentioned above, we are
conducting a GWAS of all SNPs with p > MAF, (a lower bound on the MAF of the
SNPs) rather than a single SNP. Therefore, rather than setting a beta-prior on p, we
sum over all possible frequencies, each one with respect to only the possible n in
HWE, and all possible p > MAF.. Note that, by definition, the MAF <0.5.

0.5-A
Pr(p,p+A) 2 N! m o 2ngn m+2n
EW) s | w(h*,N)In,,, [= — P w(h*,N 2" pPth (1 = p)"ri
Waas[TH N Iy ] =Y Pr(MAE»Spso‘S)EHE BNy 2P =)

Pp=MAF, ,Ap =Nnz0¥i

This estimates power for GWAS at the individual voxel, v — and we only include
those voxels that pass the FDR correction as mentioned above. The estimated power
is a weighted function of: (1) the probability that the p falls within a given interval, A,
and (2) the probability of the genotype group distribution within HWE.  can now be
taken out of both summations, and a single weight, wi(MAF ., HWE,), is given to each
voxel. E(v) can be written as m(h’(v),N)*wt. As an example, we use data from the
second phase of the Alzheimer’s Disease Neuroimaging Initiative study (ADNI2;
publicly available at http://adni.loni.ucla.edu), and show the proportion of SNPs that
fall across a range of allele frequencies (Figure 1). Using the formulation above, we
compute the N,y that surpass a power threshold while varying the Ng,,, examined by
varying MAF, and HWE_, as well as how this estimate is modified by sample size, N.

2.4 Voxelwise GWAS of the ADNI2 dataset

To date, ADNI2 has genotyped 78 Caucasian subjects scanned with DTI. Scans were
processed and aligned to the heritability map detailed in [14]. Limiting our search
space to only voxels that pass the 0.8 power threshold with MAF=0.1 and
HWE_=1x10", we ran a GWAS at all remaining voxels using an additive model; this
is modeled with a linear regression for each SNP.

3 Results

3.1 Voxels with power > 0.8 as functions of N, MAF , HWE,

The whole-brain white matter skeleton of the DTI FA-template consists of 97158
voxels total. In Figure 2, we show how the expected N,y changes as we threshold the
MAF from 0.01 to 0.2 in step sizes of 0.01, and as we become more stringent with the
HWE,. We do not eliminate SNPs due to divergence, but rather filter out the possible
combinations of subjects that could result in the given p. Therefore, as we are more



strict with HWE, (1x10° < ...<0.01 < 0.05), more possibilities are deemed divergent
and possibly biased, so power is lower, and fewer voxels are selected.

3.2 Voxelwise GWAS in the ADNI2 dataset

In our real data analysis, we first find the number of voxels that will have an expected
power Egwas(v) > 0.8 with MAF, = 0.1 (Ngyp, = 522,077 out of 661,478), in the
ADNI2 dataset of 78. As this is a dataset including several patients with Alzheimer’s
disease, we would not necessarily expect the HWE to be upheld, as disease could
impact the frequency of some alleles — especially AD risk alleles. We were therefore
less strict with HWE,, selecting p<10~ as our cutoff. We obtained a mask consisting
of 1664 voxels (Figure 3A), and ran a GWAS at all voxels.

When correcting for all the voxels and the SNPs tested, no SNP had a
significance level less than 0.05/(1664%522,077) =5.75x10"" in the ADNI2 sample.
However, as these voxels were chosen to have the highest power to detect a genetic
association, we show that when plotting the minimum p-values at each voxel, against
what would be expected from a null distribution (here, a Beta distribution with
parameters (1,Ngyp,) [18]) in a Q-Q plot (Figure 3B), we show our p-values tended to
be lower than what would be expected from a null distribution.

4 Discussion

We have presented a method to estimate power for imaging genetics studies that
apply genome-wide scanning to multiple phenotypes; in fact, the same method could
also be adapted to prioritize targets for genetic analysis. Most power estimates for
GWAS studies are computed to plan future data collection, but here we assume
imaging data has already been collected (or there is an upper limit on N). We then
show how to optimize the study to focus the GWAS on the most powerful regions of
the high-dimensional image space. Our approach is also flexible - users can select a
MAF or HWE cutoff to estimate the best thresholds to optimize the search space.
Limitations of our study include the following: (1) the heritability presented
here may differ from that of the population a user is studying. However, we used the
best available estimates of heritability of FA to date, given the large sample size, and
the use of meta-analysis to mitigate differences in demographics and imaging
protocols; (2) Studies have also shown that choosing the inappropriate model for the
SNP (e.g., additive when in fact it has a dominant effect) can bias power calculations
[13]. Even so, most GWAS studies assume an additive model for each SNP, so we
follow this convention. (3) Here, we do not account for the correlation between
voxels, or the linkage disequilibrium (LD) structure of the SNPs. If LD is considered,
tests are not all independent and we can reduce the number of effective tests, reducing
the multiple comparisons penalty. Our method can incorporate this correlation, so our
power estimates (assuming SNP independence) are somewhat conservative.
Regardless, our methods can estimate the power of voxelwise association tests,
providing a starting ground for GWAS of spatially extended phenotypes.



Additionally, it is possible that limiting rarer variants by removing the SNPs with low
MAF, may result in removal of SNPs that may have the greatest effect sizes, however
with a limited number of scans, it is unlikely that the effect of these rare variants
would be accurately obtained.

Here, we show that meta-analyzed heritability estimates are useful for
genetic studies on the entire image space. We focus on voxelwise analyses, but so
long as heritability estimates have been made on multiple imaging phenotypes, this
method can be extended beyond maps of FA values, to mean volume or anisotropy
values within regions of interest, or to all of the individual network elements that
make up the human connectome.
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Figure 1 Histograms of frequency and percent (A=0.001,0.05) of SNP MAFs in ADNI2.
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Figure 2: The top row shows the number of voxels with sufficient power to detect a genetic
effect (>80% power) with respect to the MAF cutoff (MAF,) and the divergence threshold for
HWE (HWE)), for samples with N=100 and N=500 subjects. As the MAF threshold is
increased, fewer SNPs are tested, and this reduces the multiple comparisons correction and
increases power for those tested SNPs, if there is a true associated variant in the group. As in
prior GWAS power studies, the bottom row shows the number of subjects, regardless of MAF,
or HWE_, and has a far larger influence than either one. The number of voxels with sufficient
power levels off here, as N > 500.
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Figure 3: The 1664 voxels found to have sufficient power (> 80%) in the ADNI2 sample
(N=78) were used for GWAS, and are highlighted in red. Plotting the minimum p-value at
each voxel against what would be expected from the null hypothesis shows trends towards
significance in this subsample of voxels.



