
Global changes in the connectome in autism
spectrum disorders

Caspar J. Gocha?, Basak Oztanb?, Bram Stieltjesc, Romy Henzec,d, Jan
Heringa, Luise Poustkae, Hans-Peter Meinzera, Bülent Yenerb and Klaus H.

Maier-Heina,c

aGerman Cancer Research Center, Medical and Biological Informatics, Heidelberg,
Germany;

bRensselar Polytechnic Institute, Computer Science Department, Troy, New York,
United States of America;

cGerman Cancer Research Center, Quantitative Imaging-based Disease
Characterization, Heidelberg, Germany;

dHeidelberg University Hospital, Child and Adolescent Psychiatry, Section Disorders
of Personality Development, Heidelberg, Germany;

eDepartment of Child and Adolescent Psychiatry and Psychotherapy, Central
Institute of Mental Health, Mannheim, Germany
? These authors contributed equally to this work.

Abstract. There is an increasing interest in connectomics as means to
characterize the brain both in healthy controls and in disease. Connec-
tomics strongly relies on graph theory to derive quantitative network
related parameters from data. So far only a limited range of possible
parameters have been explored in the literature. In this work, we uti-
lize a broad range of global statistic measures combined with supervised
machine learning and apply it to a group of 16 children with autism spec-
trum disorders (ASD) and 16 typically developed (TD) children, which
have been matched for age, gender and IQ. We demonstrate that 86.7%
accuracy is achieved in distinguishing between ASD patients and the
TD control using highly discriminative graph features in a supervised
machine learning setting.
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1 Introduction

The past decades have seen an increasing interest in using diffusion weighted
imaging to examine the way the human brain is connected [1]. Differences in these
connections have been found for many mental illnesses, e.g. autism spectrum
disorders (ASD) [2]. These techniques have mainly been used to look at the
integrity of single tracts [3] or a few global measures of the connectome, especially
small-worldness and the clustering coefficient [4]. A few recent studies also looked
at local changes in different brain areas, especially those related to speech [5, 6].
A disadvantage of these approaches is the need for anatomical knowledge about
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the areas of interest and the lack of global information. Therefore, changes not
localized in these specific areas are typically overlooked.

Recent studies focused on a limited number of measures to characterize the
changes induced by ASD in connectome. However, the understanding and diag-
nosis of ASD can be improved upon a comprehensive evaluation of the connec-
tome topology with a large number of network features at global scale. Global
scale graph features are shown to successfully characterize structure-function
relationships in various biological systems. Specifically, in histopathological im-
age analysis and tissue modeling applications, cell-graphs are utilized for the
computer-aided diagnosis of brain, breast, and bone cancers [7–10] and also for
the modeling of stem cells [11], cell-mediated collagen remodeling [12], and sali-
vary gland branching morphogenesis [13]. In this paper, we extend quantitative
connectomics by investigating the roles of global graph features in capturing ASD
induced changes. We demonstrate that support vector machines based supervised
learning achieves 86.7% accuracy in classifying the ASD and TD connectomes.

2 Materials and Methods

Data Acquisition: Evaluation was performed on a group of 18 right-handed chil-
dren (16 male and 2 female) with a mean (standard deviation) chronological
age of 9.7 (2.1) with a diagnosis of Asperger Syndrome or High Functioning
Autism. The control group of 18 typically developed children of age 9.7 (1.9)
was matched for age, sex and IQ. Data acquisition was done using a 1.5 T scan-
ner (Siemens Avanto). T1 images for parcellation were taken with the following
settings: MPRAGE TR/TE/TI/α = 1.9 s/4 ms/1.1 s/8 ◦, FOV = 256 × 256
mm2, matrix = 256 × 256, scan time 6 min). Diffusion weighted imaging was
performed using single shot EPI with a dual bipolar diffusion gradient and a
double spin echo for reduction of eddy currents with the following parameters:
TR/TE 4700/78, FOV 192 mm, data matrix of 96 × 96 yielding an in-plane
resolution of 2.0 mm, 50 axial slices with a thickness of 2.0 mm and no gap,
with six gradient directions (b=1000 s/mm2) and a b=0 image. This scheme
was repeated 15 times.

Preprocessing and Fiber Tracking: The entire image processing pipeline is de-
picted in Fig. 1. The T1 weighted image was used to create a parcellation of
the brain using freesurfer [14] as well as a binary mask of the brain. DWI data
was motion and eddy-current corrected using FSL [15]. Q-ball images were then
generated using solid angle reconstruction as provided by MITK [16]. Fiber
tractography was performed on the q-ball images using the global tractography
approach as presented by Neher et al. [17] using the brain mask to restrict the
search space for possible fibers. To evaluate the robustness of our chosen trac-
tography algorithm and the influence of the probabilistic tracking on our results
we did four independent trackings for each patient. The same settings were used
for each tracking: 108 iterations, particle length of 3.7 mm, particle width of
0.1 mm, particle weight of 0.0015, start temperature of 0.1, end temperature of
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0.001, energy balance of 0, minimal fiber length of 20 mm and curvature thresh-
old of 45◦. Two patients and two controls were excluded due to heavy image
artifacts and a resulting failure of the processing pipeline.

Fig. 1. Preprocessing pipeline. 1. Diffusion images are used to create a fiber image.
2. The anatomical MR image is used to create a parcellation of the brain. 3. The
parcellation and the fiber image are used to create a network.

Network Generation: Connectivity matrices were created from the tractogra-
phy result and the parcellation. DWI data and T1 images were registered using
ANTs1 for affine registration. Each label of the freesurfer segmentation was rep-
resented by one node if at least one fiber originated or ended within it. Two
nodes were linked by an edge if at least one fiber connected the corresponding
volumes. If a fiber could not be assigned two different non-white-matter labels
it was disregarded. After network creation edges between nodes were eliminated
if they represented less than N fibers to remove connections induced by noise.
For this purpose, we performed a parameter search where we varied N between
14 and 30 with steps equal to 1 and select the value that yield the highest clas-
sification accuracy. Our analysis indicated N = 26 corresponded to the best
classification performance.

Extraction of Connectome Features: We extracted 32 features for each patient’s
connectome. These features quantify the compactness, clustering, and spatial
uniformity of the hypothesized connections within the brain. Graph features
and their explanations are given in Table 1.

1 http://www.picsl.upenn.edu/ANTS/
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Table 1. Extracted graph features and their descriptions.

Feature Name Description

Number of Nodes Number of regions in brain
Number of Edges Number of hypothesized communications
Average Degree Number of edges per node
Clustering Coefficient C Ratio of total number of edges among the neighbors of the node to

the total number of edges that can exist among the neighbors of the
node per node

Clustering Coefficient D The average of the ratio of the links a node’s neighbors have in be-
tween to the total number that can possibly exist

Clustering Coefficient E Ratio of total number of edges among the neighbors of the node to
the total number of edges that can exist among the neighbors of the
node per node excluding the isolated nodes

Average Eccentricity Average of node eccentricities, where the eccentricity of a node is the
maximum shortest path length from the node to any other node in
the graph

Diameter Maximum of node eccentricities
Radius Minimum of node eccentricities
Average Path Length Average distance between the nodes of a graph, where the distance

between two nodes is the number of edges in the shortest path that
connects them

Average Betweenness Average of node betweenness, where the betweenness of a node is
the number of shortest paths from all nodes to all others that pass
through that node

Giant Connected Component
Ratio

Ratio between the number of nodes in the largest connected compo-
nent in the graph and total the number of nodes

Number of Connected Com-
ponents

Number of clusters in the graph excluding the isolated nodes

Average Connected Compo-
nent Size

Number of nodes per connected component

Percentage of Isolated Points Percentage of the isolated nodes in the graph, where an isolated node
has a degree of 0

Percentage of End Points Percentage of the end nodes in the graph, where an end node has a
degree of 1

Number of Central Points Number of nodes within the graph whose eccentricity is equal to the
graph radius

Percentage of Central Points Percentage of nodes within the graph whose eccentricity is equal to
the graph radius

Spectral Radius Largest valued eigenvalue of adjacency matrix
Second Largest Second largest values eigenvalue of adjacency matrix
Adjacency Trace Sum of the eigenvalues of adjacency matrix
Adjacency Energy Sum of the squares of eigenvalues of adjacency matrix
Spectral Gap Number of 0 valued eigenvalues of adjacency matrix
Laplacian Trace Sum of the eigenvalues of laplacian matrix
Laplacian Energy Sum of the squares of eigenvalues of laplacian matrix
Number of 0s Number of eigenvalues that are equal to 0 in normalized laplacian

matrix
Number of 1s Number of eigenvalues that are equal to 1 in normalized laplacian

matrix
Number of 2s Number of eigenvalues that are equal to 2 in normalized laplacian

matrix
Lower slope The slope of the line fitted for the eigenvalues of the normalized lapla-

cian matrix that are between 0 and 1 when sorted
Upper slope The slope of the line fitted for the eigenvalues of the normalized lapla-

cian matrix that are between 1 and 2 when sorted
Normalized Laplacian Trace Sum of the eigenvalues of normalized laplacian matrix
Normalized Laplacian Energy Sum of the squares of eigenvalues of normalized laplacian matrix
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Classification and Validation: Support vector machine (SVM) classification was
employed for the classification of the two groups. Though alternate supervised
learning techniques may also be utilized, as we shall see in the next section, SVM
classifier yielded the highest classification accuracy among the other well known
candidates. We used radial basis function, also referred to as Gaussian kernel, in

the form of K(xi,xj) = exp(− |xi−xj |2
2σ2 ) to transform the increase in the dimen-

sionality of the data for better separability. We performed a parameter search to
identify σ that achieves the highest classification accuracy. We sought σ in the
set of candidate values that varied from 1.0 to 6.0 with 0.1 steps and determined
that σ equaling 3.6 achieved the best performance in the identification of the
patient’s state.

The data is normalized so that the features have zero mean and unit variance
to reduce the scale differences within different features. In order to obtain un-
biased performance estimates, patient-based leave-one-out cross-validation was
performed. The feature set was first divided into 32 disjoint partitions for each
patients data. For each patient, a classifier was trained with the remaining 31
patients data and then tested on the retained data. The results for each patient
were then combined to find the overall classification accuracy.

3 Results

We generated brain connectome networks as described previously for 32 patients
each of which with four independent trackings. We then characterized the graphs
using the 32 features described in Table 1 and using SVM classifier with RBF
kernel we discriminated ASD patients from TD control with leave-one-patient-
out cross-validation.

Given the large number of features, we performed feature selection based on
t-statistic to identify the most discriminative features. For a given feature i, the
t-statistic to test whether the population means are different is calculated as

t(i) =
|µ1(i)− µ2(i)|√
σ2
1(i)
N1

+
σ2
2(i)
N2

(1)

where µk(i), σk(i), and Nk are the sample mean, standard deviation, and size
of the kth class (k ∈ {1, 2}) for ith feature, respectively. The features with high
discriminative power get higher score. We tested the grading accuracy of the
feature sets constituted by the first M most discriminative features. We varied
M from 1 to 32, and report the grading accuracy in Fig. 2. It is seen that
a classification accuracy of 86.72% can be achieved using the top four or five
features. When we investigated the results of this case, it is seen that 9 out of
64 ASD trackings were identified as TD control and eight out of 64 TD control
trackings were classified as ASD, and the rest of the trackings were classified
accurately.

In order to compare our result to our earlier study that only considered the
betweenness centrality of speech related locations in the brain [6], we also per-
formed classification using the average betweenness centrality alone. Our result
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Fig. 2. Left: Influence of the number of discriminative features selected for classifica-
tion on the classification accuracy. Highest grading accuracy achieved either the top
four or five features selected. Right: Receiver operating characteristics for the SVM
classifier with RBF kernel. The area under the curve is 0.9067.

showed 78.9% classification accuracy can be achieved using this feature alone. It
is clear that considering additional features improved the classification accuracy
significantly.

Independent of the learning method, we could achieve a consistent classi-
fication accuracy over 80%. Table 2 compares the classification accuracies of
different classification methods. It is clear that SVM classifier achieves the high-
est overall accuracy in identifying the patient’s neurological state. This is not
unexpected as SVM classifiers are known to be highly successful in biomedical
applications [18].

Table 2. Classification accuracy for different learning methods. SVM with RBF kernel
yields the highest classification accuracy.

Learning Method Classification Accuracy (%)

Support Vector Machines (RBF Kernel) 86.72
Support Vector Machines (Linear Kernel) 85.16

Linear Discriminant Analysis 84.38
Näıve Bayes Classifier 78.13

AdaBoost (Decision Stumps) 81.25

We then investigated how often a feature was in the top five of features for
classification for a range of thresholds where the discriminative influence of each
feature was given by t-statistic. Table 3 shows the frequency of discriminative
features that appear in the top five feature for different thresholds. The Giant
Connected Component Ratio was consistently a discriminative feature for every
threshold in the range. For threshold N = 26, with the highest classification
accuracy the top five features with the highest t-statistics were Clustering Coef-
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ficient D, Giant Connected Component Ratio, Average Connected Component
Size, Normalized Laplacian Trace, and Normalized Laplacian Energy.

Table 3. Histogram of highest discriminative features where the frequency shows the
number of times the feature was in the top five discriminative features according to
t-statistic for a link threshold (N) ranging from 14 to 30.

Feature Frequency

Giant Connected Component Ratio 17
Clustering Coefficient D 16
Normalized Laplacian Trace 15
Average Connected Component Size 11
Normalized Laplacian Energy 10
Second Largest Eigenvalue Adjacency 7
Clustering Coefficient C 4
Average Betweenness Centrality 1

Finally, we give the receiver operating characteristics (ROC) to evaluate the
performance of the classification. ROC curve plots the sensitivity against the
1−specificity at different threshold settings. For the SVM classifier, we used
the distance from the maximum-margin hyperplane as the decision threshold.
Figure 2 shows the ROC curve for our classifier. The area under the curve (AUC)
is 0.9067, which is considered as a well-discriminating classifier.

4 Discussion

We show that global connectome features are useful to divide a group into pa-
tients suffering from ASD and healthy controls with good accuracy. A range of
features, which have been neglected in the literature so far can be a valuable
tool in identifying changes in the structure of the connectome.

Our patients have been matched for IQ and as such provide a sample of ASD
that is closest to a normal population and as such presents the most prominent
challenge considering classification in the context of ASD. In this light, our
classification results are surprisingly good. Thus, quantitative connectomics may
provide a powerful tool to further the understanding of the functioning of the
human brain, both under normal conditions as well as in disease.

Identification of the features of the connectome which are consistently and
significantly affected in disease using the full power of network graph analysis is
an important step in this direction.
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