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Abstract 
The ‘rich club’ is a relatively new concept in brain connectivity anal-
ysis, which identifies a core of densely interconnected high-degree 
nodes. Establishing normative measures for rich club organization is 
vital, as is understanding how scanning parameters affect it. We 
compared the rich club organization in 23 subjects scanned at both 7 
and 3 Tesla, with 128-gradient high angular resolution diffusion im-
aging (HARDI). The rich club coefficient (RCC) did not differ sig-
nificantly between low and high field scans, but the field strength did 
affect which nodes were included in the rich club. We also examined 
3 subjects with Alzheimer’s disease and 3 healthy elderly controls to 
see how field strength affected the statistical comparison. RCC did 
not differ with field strength, but again, which nodes differed be-
tween groups did. These results illustrate how one key parameter, 
scanner field strength, impacts rich club organization - a promising 
concept in brain connectomics research.  

 
1 Introduction 

 
The ‘rich club’ is an emerging concept in the graph theoretical analysis of brain net-
works. Initially described in [1], it was first applied to brain networks in [2]. In graph-
based analyses of brain connectivity, brain regions are represented as nodes and a set 
of edges represent the connections between them. These connections may be defined 
based on fiber tracts extracted from diffusion MRI, or based on time-course correla-
tions between different brain regions in functional MRI data. For brain networks, the 
rich club is defined as a central core of high-degree nodes that are more highly inter-
connected than would be expected simply from their high degree. Some authors argue 
that the rich club is crucial for understanding global network efficiency; an attack on 
rich club nodes disproportionately affects global efficiency [2]. Rich club connectivity 
organization changes with age as brain connectivity strengthens [3]. Brain networks 
are complex, and the rich club concept offers a principled approach for dimension 
reduction: it identifies a key set of crucial nodes that contribute maximally to network 



efficiency. The rich club coefficient, φ(k), represents the density of connections be-
tween the rich club nodes according to the following equation:                  

Eq. 1      𝜙(𝑘) =      𝐸!𝑘  
𝑁!𝑘(𝑁!𝑘!!)

 

Here k is the degree of the nodes, E>k is the number of links between nodes with de-
gree k or greater, and N>k is the total number of possible connections if those nodes of 
degree k were fully connected. Van den Heuvel and Sporns also introduced φnorm(k), 
which is φ(k) divided by the rich club coefficient calculated in a series of random 
networks (φrandom(k)) of the same size with a similar distribution of edges [2]. A 
φnorm(k) value > 1 indicates rich-club organization in the network.  

The rich club, as it pertains to brain networks, is a new topic of interest, and little 
is known about its stability across MRI scanning parameters. If network parameters 
depend on the scanner field strength or other imaging parameters, researchers need to 
be aware of this, to ease pooling of multi-site data and resolve apparent discrepancies 
among studies. We hypothesized that the brain’s fiber network could be imaged re-
producibly at 7 and 3 Tesla to yield the same rich club content and coefficient, despite 
differences in scanning protocols (high-field versus standard magnetic field strength). 
We set out to examine how MR field strength affects rich club properties in 23 young 
adults scanned at both 7 and 3 T. In pilot work, we also examined 3 subjects with 
Alzheimer’s disease (AD) and 3 age- and sex-matched healthy controls (HC) to see 
how statistical comparisons might be affected by field strength. These data come from 
prior work by our group examining how MR field strength affects connectivity, in-
cluding more basic tractography measures [4].  
 
2 Methods 

 
2.1 Subject demographic and image acquisition 
Whole brain anatomical and DW-MRIs at both 7 and 3 T were collected from 23 
young adults (11 female, mean age=23.8, SD=2.6) and 6 elderly subjects (3 AD: 2 
female, mean age=76.1, SD=3.2; 3 HC: 2 female, mean age=78.3, SD=2.4); the pro-
tocols are detailed in [5,6]. Standard head coils were used on both systems: the 12-
channel receive-only array on the 3T, and a Nova 24 channel transmit/receive coil on 
the 7T. The reconstruction method for the 3T scanner was adaptive recombine (AC), 
while the default multi-channel reconstruction method for the DWI data on the 7T 
scanner was sum-of-squares (SOS). 3T DW-images were acquired with the following 
acquisition parameters: GRAPPA mode; acceleration factor PE=2; TR/TE=7800/82 
ms; FOV=192x192 mm, isotropic voxel size=2 mm. 143 images were collected per 
subject: 15 b0 and 128 diffusion-weighted (b=1000 s/mm2). 7T DW-images were 
acquired with the following acquisition parameters: GRAPPA mode; acceleration 
factor, PE=2; TR/TE=5700/57 ms; FOV=256x256 mm, isotropic voxel size=2 mm. 
143 images were collected per subject: 15 b0 and 128 diffusion-weighted (b=1000 
s/mm2). T1-weighted anatomical images were acquired at 3 Tesla with the following 
acquisition parameters: GRAPPA mode; acceleration factor PE=2; 
T1/TR/TE=1100/2530/3.65 ms; echo spacing = 8.5 ms; flip angle = 7°; slice thickness 
= 1.0 mm, with an acquisition matrix of 256x256. All subjects gave informed consent 



after study protocols were explained.  
 
2.2 Image preprocessing and registration 
All DWI data were visually inspected by an experienced rater for evidence of the 
known Siemens vibration dropout artifact [7]. No dropout artifact was found in the 
DW data. All raw DWI images were corrected for distortions due to eddy currents and 
motion using the eddy_correct function from the FSL toolbox 
(http://fsl.fmrib.ox.ac.uk/fsl) [8,9]. Geometric distortions due to magnetic susceptibil-
ity were then corrected using a field map collected just before the DTI, using the FSL 
prelude and fugue functions. Non-brain regions were removed from a T2-weighted 
image (b0) in the corrected DWI dataset using the bet function in FSL. A trained neu-
roanatomical expert manually edited the T2-weighted scans to refine the brain extrac-
tion and to ensure the same brain coverage among different protocols. This step was 
important to avoid bias, as different connectivity patterns might be recovered if brain 
coverage varies. All analyses below are based on this preprocessed dataset. 
 
2.3 Brain connectivity computation 
Tractography and cortical networks were computed in the native space of the data. 
The Diffusion Toolkit (http://trackvis.org/dtk/, [10]) uses these parameters to generate 
3D fiber tracts, using the Orientation Distribution Function model, computed using 
the 2nd order Runge-Kutta method [11]. We used all voxels (with FA≥ 0.2) as seed 
voxels to generate the fibers. Paths were stopped when they reached a region with FA 
< 0.2; they were also stopped if the fiber direction encountered a sharp turn (critical 
angle threshold ≥30°). After tractography, a spline filter was applied to each generat-
ed fiber, with units expressed in terms of the minimum voxel size of the dataset (2 
mm). Each subject’s dataset contained 25,000-40,000 useable fibers (3D curves). 
Duplicate fibers and very short fibers (< 10mm) were removed. Although we did not 
do this here, some researchers normalize fiber count by ROI volume at this point [12]. 

Cortical and subcortical ROIs were defined using the Harvard Oxford Cortical 
and Subcortical probabilistic atlases [13]. Midline cortical masks were bisected into 
left and right components, to define separate hemispheric ROIs for each cortical re-
gion. Since this is a probabilistic atlas, the masks were set to a liberal threshold of 
10% to include tissue along the gray-white matter interface, where fiber orientation 
mapping and tractography are most reliable [14]. To register these ROIs to each sub-
ject’s DTI space, we used FSL’s flirt function to determine the optimal affine trans-
formation between the MNI152 T1 average brain (in which the Harvard Oxford prob-
abilistic atlases are based) and each subject’s unique FA image. We used a 12 degree-
of-freedom registration with a mutual information cost function. We applied the re-
sulting transformation to register the 110 ROIs to each subject’s DTI space using 
nearest neighbor interpolation. To ensure that ROI masks did not overlap with each 
other after registration, each voxel was uniquely assigned to the mask for which it had 
the highest probability of membership. For a list of ROIs, see [4]. We did not include 
the brainstem and cerebellum ROIs, giving us a total of 110 ROIs. 

For each pair of ROIs, the number of detected fibers connecting them was deter-
mined from the tractography results. A fiber was considered to connect two ROIs if it 
intersected both ROIs. This process was repeated for all pairs, resulting in an 110x110 



matrix. This matrix is symmetric and has a zero diagonal (no self-connections).  
 

2.4 Rich club analyses 
On these 110x110 matrices, we used the Brain Connectivity Toolbox ([15]; 
https://sites.google.com/a/brain-connectivity-toolbox.net/bct/ Home) to compute the 
rich club coefficient (φ(k)). We calculated the φ(k) over values of k (the degree of the 
nodes) ranging from 0-110 to capture all possible values. To generate the normalized 
rich club coefficient (φnorm(k)), we simulated 50 random networks. These matrices 
were first binarized so the actual weights of the edges were not factored in, simply the 
number of connections. Analyses comparing φ(k) and φnorm(k) were performed across 
all subjects. In order to compare rich club organization, we constructed average 
graphs for the 3T and 7T datasets. For the young cohort, these were averaged across 
all 23 subjects, and the group-averaged matrices were thresholded to include only 
connections found in at least 75% of subjects; this step is helpful to suppress false 
positive fibers arising from tractography errors. For the elderly cohort, these were 
averaged separately for the AD and HC subjects. Given the small sample size, we did 
not threshold the group-averaged matrices. To determine the k cut-off for rich club 
membership, we used the same criteria as [2]: we included nodes having a degree at 
least one standard deviation above the average degree. For the young cohort, the aver-
age degree for the 3T group-averaged network was 57.4, while for the 7T network it 
was 54.7. This was not a significant difference, however.  This resulted in a k cutoff 
of 69 at 7T and 71 at 3T, and we used these thresholds for Figure 1. We will call 
these ‘analogous k-levels’ from here on in the paper. For the elderly cohort, the aver-
age degree for the 3T AD group-averaged network was 93.5, and in HC it was 91.2; 
this group difference was significant (p=0.025). For the 7T group-averaged networks, 
the average degree for AD was 73.0, and in HC it was 79.9, a difference that was also 
significant (p=2.1x10-16). These averages are higher than for the young cohort because 
we could not filter these networks in the same way, given the small sample size.  
 
3 Results 

 
3.1 Rich club coefficient (φ(k) and φnorm(k)) 
We ran a paired-sample t-test at each k-level (the nodal degree threshold) to look for 
protocol effects on our subjects’ connectomes, by studying both φ(k) and φnorm(k) 
across subjects. We did not detect any significant differences in rich club coefficient, 
either φ(k) or φnorm(k), between protocols in the young cohort. We also did not detect 
any differences in φ(k) or φnorm(k) between AD and HC at 3T or 7T, although admit-
tedly we were underpowered to pick up group differences.   
 
3.2 Rich club organization – Young cohort results 
When k=69 for 7T and k=71 for 3T, as justified above, there were differences in the 
rich club organization of the group-averaged 3T and 7T matrices. These mostly re-
sulted from the fact that the 3T rich club at k=71 included 21 nodes, while the 7T rich 
club at k=69 included only 19 nodes. This was due to a slight difference in average 
degree, as mentioned above. These results are shown in Figure 1. 



 
  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Differences in rich club organization between 3T and 7T scanning protocols. 
Green nodes are unique to one rich club, blue are common to both. Black edges are common to 
both rich clubs, blue edges are unique to one rich club but among common nodes, green edges 
are unique to one rich club due to the unique nodes. 3T k-level=71, 7T k-level=69. The red 
highlighted nodes are unique to the 3T rich club when Nnode was kept constant at 19, instead of 
k-level, blue highlighted nodes are unique to the 7T rich club in the Nnode analysis. 
 

Knowing that a difference in degree impacted rich club membership, we also 
compared rich club organization when the number of nodes was held constant, rather 
than looking analogous k-levels, as before. When the node-number (symbolized here 
by Nnode) was held constant at 19 nodes, there were still differences in rich club mem-
bership. When held constant at Nnode=19, the common nodes between the two connec-
tomes were nodes 6-21, as listed in Figure 1. Those unique to the 7T rich club were 
nodes 22-24, highlighted in blue, while those unique to the 3T rich club were nodes 2, 
4, and 5, highlighted in red. Interestingly, those unique to the 3T rich club are all sub-
cortical, while those unique to the 7T rich club, when Nnode=19, are all cortical. Fol-
lowing up on this Nnode analysis, we compared φ(k) when node number was held con-
stant. Table 1 shows these results, across a range of Nnode tested. To do this, we 
looked at the number of nodes present at k-levels 69-75 for 7T, and then found where 
this Nnode boundary was in the 3T network. The Nnode comparisons are not exact be-
tween 3T and 7T, as that would require arbitrarily cutting off nodes that had the same 
k-level. As we were comparing φ(k), which is still calculated based on level, arbitrari-
ly cutting off nodes would make comparing the φ(k) values invalid. This kind of anal-
ysis is intended to give a clearer idea of the relationship between the φ(k) of the 3T 
and 7T connectomes when the number of nodes is held constant. As seen in Table 1, 
φ(k) is significantly greater in the 3T connectome across most of this range. We chose 
to look at a range beginning with 7T k-level=69, as that was the ‘high degree’ thresh-
old for 7T mentioned above, and ending with the last k-threshold at which rich club 
organization was detectable (75 for 7T, 77 for 3T). We ran a paired-sample t-test on 
the distribution of φ(k) at a given k-level between protocols, and used the false dis-
covery rate method (FDR) to correct for multiple comparisons (q<0.05, [16]).  



Table 1. Comparison of high-field and standard field protocols maintaining Nnode. Across a 
range, φ(k) was averaged across all subjects. Nnode indicates the number of nodes at a given k-
level. P denotes the p value for a two-tailed t-test comparing the means of the φ(k) for the 3T 
and 7T protocols at a given k-level. All results are corrected for multiple comparisons, with the 
FDR method (q<0.05). 

7T k level 69 70 71 72 73 74 75 
Nnode 19 14 14 11 10 9 8 
Avg. φ(k) 0.9217 0.9332 0.9434 0.9529 0.9603 0.9674 0.9732 
3T k level 72 74 74 75 75 76 77 
Nnode 19 15 15 11 11 9 9 
Avg. φ(k) 0.947 0.9577 0.9577 0.9652 0.9652 0.9712 0.9758 
p  0.0014 0.0039 0.066 0.073 0.47 0.55 0.64 

 
3.3 Rich club organization – AD/HC comparison 
We compared which nodes were included at the statistically determined k cut-offs for 
rich club membership (3T AD=104, 3T HC=105; 7T AD=90, 7T HC=96). We ex-
pected to find differences between the AD and HC subjects, but were most interested 
in how the differences between groups varied with field strength. Given our small 
sample size (3 AD, 3 HC), these results are preliminary. These are summarized in 
Figure 2. There were many differences that were only detectable at 3T. Both groups 
had larger rich clubs at 3T, like the young cohort, again due to lower degree at 7T.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Differences in the comparison of AD versus HC subjects between 3T and 7T scan-
ning protocols. Left image shows rich club nodes with connections, as averaged across all 
subjects (thresholded to include connections found in at least 66% of subjects), right image 
shows just the nodes, for clarity. Small nodes showed no effect of field strength, large nodes 
showed an effect of field strength; black nodes both groups had; blue nodes present in AD only; 
cyan nodes present in HC only; green nodes had group diff. only in 3T; yellow nodes had group 
diff. only in 7T. The right side of the image denotes the left side of the brain. 
 
4  Discussion 
In this paper we used a unique dataset, comparing rich clubs recovered from the same 
groups of subjects scanned at both 3T and 7T. As the rich club is a relatively new 
metric in brain connectivity analyses, it is important to know how much measures 



vary across key scan parameters. In a prior paper studying this same dataset [4], the 
7T protocol had higher SNR than the 3T protocol, as expected from MR theory, but 
this did not affect the estimates of FA (fractional anisotropy). We ran binary graph 
theory analyses (not weighted), so some of the more subtle differences between pro-
tocols may be washed out. We did not have the space here to consider weighted rich 
club analyses, but will do so in the future. 

One might expect the rich club to contain more nodes at higher field, based on 
the presumably more accurate and complete recovery of connections. The more ex-
tensive rich club seen in the 3T connectome may be due to the higher noise level in 
this dataset compared to the 7T connectome, which increases the likelihood of false 
positive fibers. In our group-averaged networks, we did threshold the connectivity 
matrices to include only those connections found in at least 75% of the subject pool, 
which should decrease the number of false positives. If specific areas of the brain, 
such as subcortical structures, are particularly vulnerable to false positives with the 3T 
protocol, consistent tractography errors may even be made across subjects that are 
able to survive this thresholding. A weighted analysis might be more sensitive to this, 
if the false positive connections are weak. We intend to pursue these analyses.    

Comparing networks of analogous k-levels is intuitive, as the rich club is defined 
by statistically high degree nodes. Even so, an analysis of networks thresholded to 
contain the same number of nodes (retaining those with highest degree) is comple-
mentary, as it can reveal the true direction of associations masked by differences in 
degree. When we compared φ(k) between connectomes, keeping the Nnode constant (or 
closer than it would be in a k-level analysis), we found significant differences in φ(k), 
across a range of nodal degree thresholds, k, and Nnodes. Across these significant rang-
es, φ(k) was higher in the 3T connectome than the 7T connectome. Higher φ(k) indi-
cates a greater density of connections between rich club nodes. This could also be due 
to differences in signal to noise as discussed above. The 7T protocol revealed a more 
‘trimmed down’ rich club network. We started out with a binarized analysis, but a 
weighted analysis may reveal a very different rich club, as significant increases have 
been found in the density of subcortical connections in the 7T protocol [4]. Other 
parcellations will obviously yield different results. 

In our elderly dataset, we compared the rich clubs of AD and HC subjects at both 
3T and 7T to see how field strength might affect group comparisons. Again, the 3T 
rich clubs included more nodes than the 7T rich clubs, which led to 12 nodes showing 
group differences in the 3T matrices that no longer showed group differences at 7T. 
This could be due to increased noise in the 3T data, or decreased resolution for sub-
cortical structures, or increased susceptibility artifacts in the 7T data.  These are only 
preliminary data, but have important implications for future work using rich club 
measures to investigate the effects of neurological disorders, especially if rich club is 
ever to be used as a biomarker of disease. 
 
5 Conclusion 
 

Here we compared the rich club coefficient (φ(k)) and anatomical network organi-
zation at 3T and 7T in a group of 23 subjects scanned with both protocols. φ(k) did 



not depend on field strength when compared at analogous k-levels, but it did differ 
when the Nnode was kept constant. The 3T connectivity matrices had a higher average 
degree than did the 7T matrices, leading to our comparing φ(k) on networks with the 
same Nnode, as well as on a k-level. When comparing rich clubs at an analogous k-
level, we found a number of differences in which nodes were included in the rich club 
between protocols. The 3T connectome had a far more extensive rich club than the 7T 
connectome. When we examined our elderly AD and HC subjects, we similarly found 
differences only in which nodes were included in the rich club. These preliminary 
results need further analysis, however, for rich club measures to be reliable bi-
omarkers. As the rich club coefficient is a new metric intended to represent a crucial 
contributor to network efficiency, we believe these results are important for under-
standing some of the fundamental factors that may affect rich club calculations. 
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