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Abstract—We describe a method for automatically building
statistical shape models from a training set of example bound-
aries/surfaces. These models show considerable promise as a basis
for segmenting and interpreting images. One of the drawbacks
of the approach is, however, the need to establish a set of dense
correspondences between all members of a set of training shapes.
Often this is achieved by locating a set of “landmarks” manually
on each training image, which is time consuming and subjective
in two dimensions and almost impossible in three dimensions.
We describe how shape models can be built automatically by
posing the correspondence problem as one of finding the param-
eterization for each shape in the training set. We select the set of
parameterizations that build the “best” model. We define “best”
as that which minimizes the description length of the training
set, arguing that this leads to models with good compactness,
specificity and generalization ability. We show how a set of shape
parameterizations can be represented and manipulated in order
to build a minimum description length model. Results are given
for several different training sets of two-dimensional boundaries,
showing that the proposed method constructs better models than
other approaches including manual landmarking—the current
gold standard. We also show that the method can be extended
straightforwardly to three dimensions.


Index Terms—Active shape models, automatic landmarking,
correspondence problem, minimum description length (MDL),
point distribution models, statistical shape modeling.


I. INTRODUCTION


STATISTICAL models of shape show considerable promise
as a basis for segmenting and interpreting images [1]. The


basic idea is to establish, from a training set, the pattern of
“legal” variation in the shapes and spatial relationships of struc-
tures for a given class of images. Statistical analysis is used to
give an efficient parameterization of this variability, providing a
compact representation of shape and allowing shape constraints
to be applied effectively during image interpretation [2]. One
of the main drawbacks of the approach is, however, the need to
establish dense correspondence between shape boundaries over
a reasonably large set of training images. It is important to es-
tablish the “correct” correspondences: if the points that are cor-
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responded are not anatomically equivalent, the apparent shape
variability can be exaggerated and the application of shape con-
straints during interpretation becomes less effective (see Fig. 1).
In practice, correspondence has often been established using
manually defined “landmarks” this is both time consuming and
subjective. The problems are exacerbated when the approach is
applied to three-dimensional images.


Several previous attempts have been made to automate
model building [3]–[9]. The problem of establishing dense
correspondence over a set of training boundaries can be posed
as that of defining a parameterization for each of the training
set, leading to a dense correspondence between equivalently
parameterized boundary points. Arbitrary parameterizations of
the training boundaries have been proposed [3], [6], but these
fail to address the issue of optimality. Shape “features” (e.g.,
regions of high curvature) have been used to establish point
correspondences, with boundary length interpolation between
these points [9]–[12]. Although this approach corresponds
with human intuition, it is still not clear that it is in any sense
optimal. A third approach and that followed in this paper, is to
treat finding the correct parameterization of the training shape
boundaries as an explicit optimization problem.


The optimization approach has been described by several au-
thors [4], [7], [13] and is discussed in more detail in Section III.
The basic idea is to find the parameterizations of the training
shapes that yield, in some sense, the “best” model. Kotcheff and
Taylor [7] describe an approach in which the best model is de-
fined in terms of “compactness,” as measured by the determi-
nant of its covariance matrix. The parameterization of each of
a set of training shapes was explicitly represented and a genetic
algorithm search was used to optimize the model with respect to
the parameterizations. Although this work showed promise and
laid out much important theoretical groundwork, there were sev-
eral problems: the objective function, although reasonably intu-
itive, could not be rigorously justified, the method was described
for two-dimensional (2-D) shapes and could not easily be ex-
tended to three dimensions and the optimization often failed to
converge to an acceptable solution.


In this paper, we define a new objective function with a rig-
orous theoretical basis and describe a new representation of cor-
respondence/parameterization that extends to three dimensions
and also results in improved convergence. Our objective func-
tion is defined in an information theoretic framework. The key
insight is that the “best” model is that which describes theentire
training setas efficiently as possible, thus, we adopt a minimum
description length (MDL) criterion.


In Section II, we describe statistical shape models and out-
line the model-building problem. Section III reviews previous
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Fig. 1. The first three modes of variation (�3�) of two shape models built from the training set of hand outlines but parameterized differently. ModelA was
parameterized using manual “landmarks” and modelB was parameterized using arc-length parameterization. The figure demonstrates that modelB can represent
invalid shape instances.


attempts to automate the model-building process. Section IV
provides a detailed derivation of the MDL objective function. In
Section V, we show how shape parameterizations can be repre-
sented explicitly and manipulated to build the best model. Sec-
tion VI presents experimental results of applying the method to
several training sets of object outlines.


II. STATISTICAL SHAPE MODELS


A 2-D statistical shape model is built from a training set of
example outlines, aligned to a common coordinate frame. Each
shape, , ( ), can (without loss of generality) be
represented by a set of points sampled along the boundary
at equal intervals, as defined by some parameterizationof
the boundary path. This allows each shapeto be represented
by an -dimensional ( -D) shape vector , formed by con-
catenating the coordinates of its sample points. Using principal
component analysis, each shape vector can be expressed using
a linear model of the form


(1)


where is the mean shape vector, are the eigenvec-
tors of the covariance matrix (with corresponding eigenvalues


) that describe a set of orthogonal modes of shape varia-
tion, and are shape parameters that control the modes
of variation.


Since our training shapes are continuous, we are interested
in the limit . This leads to an infinitely large covari-
ance matrix, but we note that there can only be, at most,
eigenvalues that are not identically zero (although they may be
computationally zero). This means that in the summation above,
the index only takes values in the range one to .


To calculate the nonzero eigenvalues, we consider the
data matrix constructed from the set of vectors


. The covariance matrix is given by
with eigenvectors and eigenvalues


thus


(2)


If we define to be the eigenvectors and eigenvalues
of the matrix, then


From (2) :


(3)


premultiplying by


Similarly: (4)


Therefore, for all , we can assign indices such that


and (5)


Thus, the eigenvalues of , which are not identically
zero, can be obtained directly from and the eigenvectors are
a weighted sum of the training shapes. As shown in [7], in the
limit the th element of is given by the inner
product of shapesand


(6)


where is the mean shape and is a
continuous representation of parameterized by . The inte-
gral can be evaluated numerically.


New examples of the class of shapes can be generated by
choosing values of within the range found in the training
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set. The utility of the linear model of shape shown in (1) depends
on the appropriateness of the set of boundary parameterizations


that are chosen. An inappropriate choice can result in the
need for a large set of modes (and corresponding shape parame-
ters) to approximate the training shapes to a given accuracy and
may lead to “legal” values of generating “illegal” shape
instances. For example, consider two models generated from a
set of 17 hand outlines. ModelA uses a set of parameteriza-
tions of the outlines that cause “natural” landmarks such as the
tips of the fingers to correspond. ModelB uses one such corre-
spondence but then uses a simple arc-length parameterization to
position the other sample points. Some “corresponding” points
from each parameterization are shown in Fig. 2. The variance of
the three most significant modes of modelsA andB are (1.06,
0.58, 0.30) and (2.19, 0.78, 0.54), respectively. This suggests
that modelA is more compact than modelB. All the example
shapes generated by modelA using values of within the
range found in the training set are “legal” examples of hands,
whilst modelB generates implausible examples, as can be seen
in Fig. 1.


The set of parameterizations used for modelA were obtained
by marking the “natural” landmarks manually on each training
example, then using simple arc-length parameterization to
sample a fixed number of equally spaced points between them.
This manual mark-up is a time-consuming and subjective
process. In principle, the modeling approach extends to three
dimensions, but in practice, manual landmarking becomes
impractical.


III. A UTOMATIC MODEL-BUILDING


Various attempts have been made to automate the construc-
tion of statistical shape models from sets of training outlines.
The simplest approach is to select a starting point and equally
space landmarks along the boundary of each shape, but as we
have shown in the previous section, this can result in poor
models. A similar scheme is advocated by Baumberg and
Hogg [3] who equally space spline control points around shape
contours. Kelemenet al. [6] use spherical harmonic descriptors
to parameterize their training shapes but resulting models are
not in any obvious sense optimal.


Rueckertet al. [8] use a method of nonrigid registration
to maximize the normalized mutual information of a set of
biomedical images. The nonrigid registration is performed
by manipulating a grid of B-spline control points. Principal
component analysis is then performed on the resulting defor-
mation field to build a statistical shape model. This tends to
minimize the variance of the model but the correspondences
are essentially arbitrary.


Tagare [12], Benayounet al.[10], Kambhamettu and Goldgof
[11] and Wanget al. [9] use shape features to select landmark
points. It is not, however, clear that corresponding points will al-
ways lie on regions that have similar curvature. Also, since these
methods consider onlypairwisecorrespondences, they may not
find the best global solution.


A more robust approach to automatic model building is to
treat the task as an optimization problem. Hill and Taylor [4]
attempt this by minimizing the total variance of a shape model,


Fig. 2. Some examples of the training set and some “corresponding” points
used to construct modelsA andB. The points “correspond” according to their
parameterization.


as measured by the sum of the eigenvalues of the covariance
matrix. They choose an iterative local optimization scheme,
re-building the model at each stage. This makes the approach
prone to becoming trapped in local minima and consequently
depends on a good initial estimate of the correct landmark
positions. Rangarajanet al. [14] describe a method of shape
correspondence that also minimizes the total model variance by
simultaneously determining a set of correspondences and the
similarity transformation required to register pairs of contours.


Bookstein [13] describes an algorithm for landmarking sets
of continuous contours represented as polygons. Points are al-
lowed to move along the contours to minimize a bending energy
term. Again, it is not obvious that optimizing an energy term will
lead to good statistical shape models.


Kotcheff and Taylor [7] describe an objective function
based on the determinant of the model covariance. This favors
compact models with a small number of significant modes of
variation, though no rigorous theoretical justification for this
formulation is offered. They use an explicit representation of
the set of shape parameterizations and optimize the model
directly with respect to using genetic algorithm search.
Their representation of is, however, problematic and
does not guarantee a diffeomorphic mapping. They correct the
problem when it arises by reordering correspondences, which is
workable for 2-D shapes but does not extend obviously to three
dimensions. Although some of the results produced by their
method are better than hand-generated models, the algorithm
did not always converge.


IV. A N INFORMATION THEORETICOBJECTIVEFUNCTION


We wish to define a criterion for selecting the set of param-
eterizations that are used to construct a statistical shape
model from a set of training boundaries . Our aim is to
choose so as to obtain the “best possible” model. In Sec-
tion III, we reviewed the following possible objective functions
but none of these guarantee a shape model with ideal properties.
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Generalization Ability: The model can describe any instance
of the object—not just those seen in the training set.


Specificity: The model can only represent valid instances of
the object.


Compactness:The variation is explained with few parame-
ters.


To achieve this, we follow the principle of Occams razor
which can be paraphrased: “simple descriptions generalize
best.” As a quantitative measure of “simplicity,” we choose to
apply the The MDL principle [15], [16]. This is based on the
idea of transmitting data as a coded message, where the coding
is based on some prearranged set of parametric statistical
models. The full transmission then has to include not only
the encoded data values, but also the coded model parameter
values. Thus, MDL balances the model complexity, expressed
in terms of the cost of sending the model parameters, against
the quality of fit between the model and the data, expressed
in terms of the coding length of the data. Comparison of
description lengths calculated using models from different
classes can be used as a way of solving the model selection
problem [17]. However, our emphasis here is not on selecting
the class of model, but on using the description length for a
single class of model as an objective function for optimization
of correspondence between the shapes.


We will use the simple two-part coding formulation of MDL.
Although this does not give us a coding which is of the absolute
minimum length [18], it does however give us a functional form
which is computationally simple to evaluate, hence, suitable to
be used as an objective function for numerical optimization.


A. The Model


Our training set of shapes is sampled according to the pa-
rameterizations to give a set of -D shape vectors .
We choose to model this set of shape vectors using a multivariate
Gaussian model. The initial step in constructing such a model
is to change to a coordinate system whose axes are aligned with
the principal axes of the data set. This corresponds to the orien-
tation of the linear model defined earlier (1)


(7)


The eigenvectors lie in the space of shapes, they span
the subspace which contains the training set and they are aligned
with the principal axes. We now order these vectors in terms of
nondecreasing eigenvalue and construct the orthonormal set


to (8)


Our new coordinates with respect to this set of axes are defined,
thus


(9)


This corresponds to projectinginto the subspace and then ro-
tating the axes about the original origin. To describe this trans-
formation, we have to transmit the set of , -D vectors


. The code length for this transmission is a function of
and only, hence, is constant for a given training set and


number of sample points and will not be considered further.


B. The Description Length


For each direction , we now have to transmit the set of
values to . Since we have aligned our
coordinate axes with the principal axes of the data, each direc-
tion is now modeled using a one-dimensional (1-D) Gaussian. In
Appendix I, we derive an expression for the description length
of one-dimensional, bounded, and quantized data, coded using
a Gaussian model. To utilize this result, we first have to calcu-
late a strict upper-bound on the range of our data and also
estimate a suitable value for a quantization parameter.


Suppose that, for our original shape data, we know that the
coordinates of our sample points are strictly bounded, thus


for all to to (10)


Then, the upper-bound for the coordinates is given by


so that for all (11)


The data quantization parametercan be determined by quan-
tizing the coordinates of our original sample points. Compar-
ison of the original shape and the quantized shape then allows
a maximum permissible value of to be determined. For ex-
ample, for boundaries obtained from pixellated images,will
typically be of the order of the pixel size. This also determines
our lower bound on the modeled variance . The pa-
rameters and are constant for a given training set, hence,
we need not consider the description length for the transmission
of these values.


Our original data values are now replaced by their quan-
tized values .1 The quantized mean of the quantized data
in each direction is determined and the variance of the
data about this mean calculated, thus


(12)


The description length for each direction is then given by
(see Appendix I)


• If


• If but the range of


• Else


1We will useâ to denote the quantized value of the corresponding continuum
valuea.
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Fig. 3. A demonstration of how a circle is sampled according to its parameterization. To sample points on the shape, we uniformly sample the bottom axisof
the parameterization function (t) and read the values off the vertical axis (�(t)). As there is a one-to-one correspondence between the vertical axis (�(t)) and the
shape boundary; points are sampled according to the shape of the parameterization function.


C. The Objective Function


Let us define to be the number of directions for which
the first of the above criteria holds and the number which
satisfy the second. Then, since the directions are ordered in
terms of nonincreasing eigenvalue/variance, the total descrip-
tion length for our training set can be written, thus


(13)


The leading term is the cost of transmitting the mean shape. For
a given training set, the quantities and will be held con-
stant, so that we can drop the leading term, to give the objective
function


(14)


We now consider the form of this objective function. For the
linear model defined earlier (1)


where (15)


In the limit , the quantized values of and approach
their continuum values, so that


and (16)


If we also consider the limit where is sufficiently large, it can
be seen that the functions and can be written in the
form


(17)


where is some function which depends only on, and .
So, in this dual limit, the part of the objective function which
depends on the contains terms similar to the determinant
of the covariance matrix (that is ) used by Kotcheff and
Taylor [7]. However, our objective function is well defined, even
in the limit , where in fact such a direction makesno
contribution to the objective function. Whereas in the form used
previously, without the addition of artificial correction terms, it
would have an infinitely large contribution.


V. SELECTING CORRESPONDENCES


In order to build a statistical shape model, we need to sample
a number ofcorrespondingpoints on each shape. As demon-
strated in Section II, the choice of correspondences determines
the quality of the model.


We choose to cast this correspondence problem as one of
defining the parameterization function, of each shape. These
parameterization functions explicitly define how points are sam-
pled on each shape (see Fig. 3). We can consequently minimize
the value of in (14) by manipulating the set of parameteriza-
tion functions .


Our training shapes are represented parametrically as curves
in two dimensions


where


and to (18)


In order to constrain the point ordering—and, hence, the corre-
spondences—the parameterization of each shape must
be a monotonically increasing function of. That is


so that


where (19)


Each must be one-to-one, onto and invertible, i.e., a dif-
feomorphism of a circle (for closed curves) or a line (for open
curves).


We describe below a novel, piecewise-linear representation of
parameterization and describe how stochastic optimization can
be used to find the set of parameterizations that minimize.
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Fig. 4. This figure demonstrates the proposed method for representing the parameterization. The top row shows the parameterization and the bottom row shows
how points would be sampled on a circle. The circles represent daughter nodes and squares parent nodes. The brackets on the parameterization show the range
that each node is allowed to move. The node has a value of zero at the bottom of the bracket, one at the top, and 0.5 in the middle. The parameter values for this
example are: [Origin, 0.65 (0.65 (0.4, 0.8), 0.8 (0.5, 0.2)].


A. Representing the Parameterizations


We choose to use a piecewise-linear representation of the pa-
rameterization. In two dimensions, we could ensure that is
monotonic by enforcing the ordering of points on the boundaries
according to arc-length. On surfaces, however, no such ordering
exists. To overcome this, we have developed a novel method of
representation that guarantees a diffeomorphic mapping without
using arc-length ordering—allowing straightforward extension
to surfaces in three dimensions.


We define the piecewise linear parameterization for each
training shape by recursively defining the parameterization,
inserting nodes between those already present. The position of
each daughter node is coded in terms of its fractional distance
between its two parent nodes. Thus, by constraining the posi-
tions of daughter nodes to lie in the range (where the node
has a value of zero if it is positioned on its left neighbor, one
on its right neighbor, and 0.5 in the center) we can enforce an
implicit ordering. This is illustrated by the example in Fig. 4,
which demonstrates the parameterization of a circle.


Additional nodes are added until the parameterization is suit-
ably defined, where in general the degree of refinement required
depends on the complexity of the training shapes.


The parameterization is fully described by the set of fractional
distances defining the positions of the daughter nodes relative to
their parents. Any such set of positive fractions describes a valid
parameterization.


Once a parameterization has been constructed in this
way for each shape in the training set, an arbitrary number of
corresponding points can be obtained by sampling the training
shapes at equally spaced intervals of . These sampled
shapes (and, hence, the generated correspondences) can then
be evaluated using the objective functionin (14).


In summary, the algorithm for closed curves can be described
as follows.


Recursive Parameterization of a Single Shape:


• An initial node defines an origin and endpoint.
• Given a set of nodes, a daughter node is created between


each adjacent pair of parent nodes. The parameter de-
scribing each daughter node is then its fractional distance
along the curve between the parent nodes.


• The set of parent and daughter nodes together form the
initial set of nodes for the next level of recursion.


Optimization:


• Generate a parameterization for each shape recursively, to
the same level.


• Sample the shapes according to the correspondence de-
fined by the parameterization.


• Build a model from the sampled shapes.
• Calculate the objective function.
• Vary the parameterization of each shape until the optimum


value of the objective function is found.


The representation of parameterization is similar to that used
by Tagare [12] and Kotcheff and Taylor [7] but as it only uses
an implicit ordering, it can be extended to build statistical shape
models of surfaces in three dimensions (see Appendix II for
details).


B. Optimizing the Parameterizations


We wish to manipulate the set of parameterizations in
order to minimize our objective function . One way that
can be minimized is for all the points on all shapes to collapse
to a single part of the boundary. To avoid this, we must select a
“reference shape” whose parameterization is fixed.
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In practice, 10–30 nodes are required to sufficiently define the
parameterization for each shape—creating a high-dimensional
configuration space. The behavior ofover this space is highly
nonlinear and contains many local minima leading us to prefer
a stochastic optimization method such as simulated annealing
[19] or genetic algorithm search [20]. We chose to use a genetic
algorithm to perform the experiments reported in Section VI.


VI. RESULTS


We present qualitative and quantitative results of applying our
method to several sets of outlines of 2-D biomedical objects.
The parameters used for the genetic algorithm were (crossover
rate: 100%; mutation rate: 0.05%; population size: 4000; noneli-
tist, sigma-scaled rank selection [21]). A single corresponding
point was chosen on each shape and used as the origin.2 Pro-
crustes alignment [22] was performed on the shapes (parameter-
ized by arc-length) to transfer them into a common coordinate
frame. Four levels of refinement were used to give
15 nodes.


We also investigated how our objective function behaves
around the minimum and how it selects the correct dimension-
ality of the final model.


A. Shape Data


The method was evaluated using several training sets of
biomedical objects:


Infarcts: Permanent focal cerebral ischaemia was induced in
rats and multislice T2-weighted MRI was performedin vivo,
as described previously [23]. For this study, only data from
saline-treated animals were used, giving a total of 23 outlines.
The shape of the infarct in this case represents the territory of
the middle cerebral artery. Following segmentation, an atlas of
anatomy [24] was used to select a single slice corresponding to
an anatomic location 6.3 mm posterior to the bregma.


Kidneys: Wistar, Sprague-Dawley and Fisher rats were im-
aged using an MRI system (“Inova,” Varian, Palo Alto, CA) in-
corporating a 400 mm bore 4.7 T magnet (Oxford Instruments,
Oxford, U.K.), a 150 mm bore 200 mT/m pulsed field gradient
set (Oxford Instruments) and a 63 mm bore quadrature bird-
cage transceiver (Varian). Multislice T2-weighted MRI was per-
formed in the transverse plane with repetition time (TR) 2 s;
echo time (TE) 20 ms, and slice thickness 1 mm, with 41 con-
tiguous slices. Images were acquired with a 6464 mm field of
view and a 256 256 41 image matrix. Following segmenta-
tion, a single transverse slice was selected from the right kidney
that included most evidence of the collecting apparatus.


Knee Cartilage: Sagittal images of the articular cartilage of
the lateral femoral condyle were acquired from asymptomatic
human subjects using T1-weighted MRI and segmented as de-
scribed previously [25]. A single sagittal slice was chosen from
the center of the lateral femoral condyles. As the width of the
femur varies from subject to subject, comparable slices were
identified by selecting the slices halfway between 1, the first
evidence of the lateral aspect of the meniscal horn and 2, the
full extent of the posterior cruciate ligament.


2The position of the origin can be optimized but the algorithm takes longer
to converge.


Fig. 5. The first three modes (m = 1,m = 2, andm = 3) of variation of the
automatically generated model of the hand outlines The shape instances were
obtained by varying the values offb g by (�2�).


Hand Outlines: 17 hand outlines were segmented from im-
ages of different poses from the same subject.


Hip Prostheses:24 outlines of hip prostheses were
segmented from clinical radiographs of subjects who had
undergone total joint replacement [26]. Plane-film X-ray was
used to acquire the image where the beam was centerd on the
symphysis pubis so that the radiograph captured the full pelvis
and contralateral hip.


Left Ventricle: 38 outlines of the left ventricle of the heart
were segmented from transcostal, long-axis echocardiograms
[27]. The outlines were randomly selected from 33 image pairs
of different subjects.


B. Results on 2-D Outlines


We tested our method on the training sets described
in Section IV-A. In Figs. 5–10, we show qualitative re-
sults by displaying the variation captured by the first
three modes of each model ( varied by
( 2 ). We also give
quantitative results in Tables I–VI, tabulating the value of,
the total variance and variance explained by each mode for
each of the models, comparing the automatic result with those
for models built using manual landmarking and arc-length
parameterized (equally spaced) points.


The quantitative results show that the automatically gener-
ated models are significantly more compact (have less variance
per mode) than either the models built by manual landmarking
or by arc-length parameterization. It is interesting to note that
the models produced by arc-length parameterization of the hip
prostheses and heart ventricles have a lower value of the objec-
tive function than the manual model. This is because there are
few salient anatomical landmarks, thus, errors in the manual an-
notation adds extra noise that is captured as statistical variation.
It is also interesting to note that, although the variance of the
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Fig. 6. The first three modes (m =1,m = 2, andm = 3) of variation of the
automatically generated model of the hip prostheses.


Fig. 7. The first three modes (m = 1,m = 2, andm = 3) of variation of the
automatically generated model of the heart ventricles.


manual heart ventricle model is less than the arc-length model,
the value of the objective function is higher.


To test the generalization ability of the models, we performed
leave-one-out tests on each to determine the accuracy of with
which the model was able to approximate unseen examples of
the same class. In Fig. 11, we report the results for the hand out-
lines, although the same trends appear in all datasets. As can
be seen from the figure, the optimized model performs signifi-
cantly better than both the manual and arc-length parameterized
models for any number of retained modes, indicating better gen-
eralization ability.


Fig. 8. The first three modes (m = 1,m = 2, andm = 3) of variation of the
automatically generated model of the knee cartilage.


Fig. 9. The first three modes (m = 1,m = 2, andm = 3) of variation of the
automatically generated model of the infarcts.


C. The Behavior of


In Fig. 12, we show the effect on of adding Gaussian
random noise to the position of each point on each shape for
the automatically generated hand model. Points are constrained
to move along the curve, so that the object outline is effectively
unchanged, but the parameterization is perturbed. As can
be seen from the figure, the objective function gives a clear
minimum for zero noise, corresponding to our original optimal
solution.


D. The Effective Dimensionality of the Model


We generated a set of 49 artificial shapes, generated to have
exactly one mode of variation (varying the position of a semi-
circular bump along an edge of a rectangle). Taking the orig-
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Fig. 10. The first three modes (m = 1,m = 2, andm = 3) of variation of
the automatically generated model of the kidneys.


TABLE I
A QUANTITATIVE COMPARISON OF THEHAND OUTLINE MODELS SHOWING


THE VARIANCE EXPLAINED BY EACH MODE. V IS THE TOTAL VARIANCE


AND F IS THE VALUE OF THE OBJECTIVE FUNCTION


TABLE II
A QUANTITATIVE COMPARISON OF THEHIP PROSTHESESMODELS SHOWING


THE VARIANCE EXPLAINED BY EACH MODE. V IS THETOTAL VARIANCE AND


F IS THE VALUE OF THE OBJECTIVE FUNCTION


inal arc-length correspondence and the final optimized corre-
spondence, we then calculated the contribution to the objective
function from each dimension of the model (see Fig. 13). As
can be seen from the figure, the initial parameterization gives a
nonzero variance, hence, nonzerofor all dimensions of


TABLE III
A QUANTITATIVE COMPARISON OF THEHEART VENTRICLE MODELSSHOWING


THE VARIANCE EXPLAINED BY EACH MODE. V IS THETOTAL VARIANCE AND


F IS THE VALUE OF THE OBJECTIVE FUNCTION


TABLE IV
A QUANTITATIVE COMPARISON OF THEKNEE CARTILAGE MODELS SHOWING


THE VARIANCE EXPLAINED BY EACH MODE. V IS THETOTAL VARIANCE AND


F IS THE VALUE OF THE OBJECTIVE FUNCTION


TABLE V
A QUANTITATIVE COMPARISON OF THEINFRACT MODELS SHOWING THE


VARIANCE EXPLAINED BY EACH MODE. V IS THE TOTAL VARIANCE AND F


IS THE VALUE OF THE OBJECTIVE FUNCTION


TABLE VI
A QUANTITATIVE COMPARISON OF THEKIDNEY MODELS SHOWING THE


VARIANCE EXPLAINED BY EACH MODE. V IS THE TOTAL VARIANCE AND F


IS THE VALUE OF THE OBJECTIVE FUNCTION
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Fig. 11. The result of running leave-one-out reconstructions on each model of
the hand outlines. The model is built with all but one example and then fitted
to the unseen example. The plot shows the mean squared approximation error
against the number of modes used. This measures the ability of the model to
represent unseen shape instances of the object.


the model. For the final optimized parameterization, the objec-
tive function for all modes other than the first is identically zero,
showing that we have correctly matched the dimensionality of
the modeled variation to the actual known dimensionality of the
shape variation.


VII. D ISCUSSION ANDCONCLUSION


We have derived an objective function that provides a prin-
cipled measure of the quality of a statistical shape model. The
expression we use is grounded in information theory and con-
siders both model complexity and quality of model fit to data in
a unified way. The objective function bears some similarities to
that used by Kotcheff and Taylor [7], but does not suffer from
the problem of requiring ad hoc correction terms.


We have also described a new method of representing param-
eterization of curves in two dimensions, that has a natural ex-
tension to the parameterization of surfaces in three dimensions.


When coupled with stochastic optimization, the objective
function allows us to automatically build models that are
substantially better than those built using manual landmarking.
We have shown that these automatic models, as well as being
quantitatively more compact than manually landmarked models
(as measured in terms of the total variance), also have improved
generalization ability.


As with any stochastic optimization technique, our search re-
quires a large number of function evaluations. Each of the re-
sults in this paper typically took several hours to produce. Al-
though this is a one-off, off-line process, it is likely to become
impractical when a larger set of training shapes is used because
its complexity is at least . We are currently working on
finding faster ways of locating the optimum.


We note that the MDL based objective function, being a gen-
eral measure of model quality, can also be used to determine the
values of other quantities than the parameterization. We intend


Fig. 12. A plot ofF against the standard deviation of the random Gaussian
noise on each control point to show how noise on the control points affects the
value of the objective function.


Fig. 13. A plot of the value ofF for each mode for the initial parameterization
(open circles) and the final optimized parameterization (closed circles) for the
artificial data example.


to investigate this and use the objective function to improve on
such things as the Procrustes alignment. Hence, different aspects
of model building will then be combined into a single, unified
optimization framework.


APPENDIX I
DESCRIPTIONLENGTH FOR1 -D GAUSSIAN MODELS


In this appendix, we show how to construct an expression for
the description length required to send a 1-D data set using a
Gaussian model. The total description length is computed as the
sum of the description length for coding the parameters of the
Gaussian model and the description length for coding the data
using the model.


We take our data set to to lie within a
strictly bounded region. We then quantize the data values using
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a parameter , so that to ,3 where
for any quantized value from any possible data set


and (20)


Our data model is the family of Gaussian distributions, defined
by parameters and


(21)


We will use the fundamental result that the ideal-coding code-
word length for a value , encoded using a statistical model


is given by the Shannon Coding codeword length [28]4


bits, or nats. (22)


A. Coding the Parameters


Consider first the parameter. This should obviously be
related to the mean of the actual data. Given that the data
is bounded, we can see that the allowed values ofshould
be similarly bounded. We here make the simplest modeling
choice, which is to quantize the allowed values ofto the same
accuracy as our data. So, we define the allowed values of the
quantized parameter to be


where and (23)


where we choose the valuewhich is closest to the actual mean
of the quantized data. Given the absence of any prior knowledge,
we will assume a flat distribution for over this range. This then
gives us the ideal codeword length forof


(24)


For the parameter, we will assume that its allowed values
are bounded and quantized, thus


and (25)


which then gives us a codeword length


(26)


Note that our receiver cannot decrpyt the value ofwithout
knowing the value of . So we now have to consider the code-
word length for transmitting . Assuming the quantization pa-
rameter is of the form


(27)


then it can easily be seen that it can be coded directly with a
codeword length


bits nats (28)


where the additional bit/nat codes for the sign in the exponent
of .


3We will use� to denote continuum values and�̂ to denote the corresponding
quantized value.


4In what follows, we will restrict ourselves to natural logarithms and work in
units of nats. However, expressions can easily be converted back into bit-lengths
by noting that1 bit � ln 2 nats.


So, our total code length for transmitting the parameters is
given by


(29)


B. Coding the Data


For our Gaussian data model, the probability associated
with a bin centered at is given by


(30)


It can be shown numerically that this is a very good approx-
imation (to better than 99% of the exact value) for all values


, hence, we will take


(31)


The code length for the data set is then


(32)
The variance of the quantized data about the quantized mean is


and (33)


In general, will differ from its quantized value , thus


(34)


So, averaging over an ensemble of data sets and assuming a flat
distribution for over this range, we find


(35)


Substituting these expressions into (32) then gives us the fol-
lowing expression for the description length of the data:


(36)


Substituting from (33) and keeping only terms up to


(37)


The total description length is then


(38)
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Fig. 14. A diagram to demonstrate the representation of parameterization on a surface. The solid circles represent new daughter nodes and hollow points represent
nodes that are already in place. Each daughter node is allowed to move anywhere inside the spherical triangle formed by its three parent nodes.


By differentiating with respect to and setting the derivative to
zero, we find that the optimum value ofis


(39)


which then allows us to write the above expression as


(40)


In the case where , but the data occupies more than one
bin, we will model the data using a Gaussian of width and a
quantization parameter . An analogous deriva-
tion to that given above then gives us the description length


(41)


Note that this contains terms of a similar form to those in the
expression for in (36), but with rather than . The
explicit data term is, hence, left in and allows us to calculate the
increase in description length caused by the nonoptimal choice
of . The remaining case is where all the data lies in
one bin; we then only have to transmit the position of the mean,
with a description length


(42)


APPENDIX II
EXTENSION OF SHAPE PARAMETERIZATION TO THREE


DIMENSIONS


In this appendix, we describe how the representation of the
parameterization can be extended to build statistical shape
models from surfaces in three dimensions.


A similar construction can be performed for the case of open
surfaces.


Each surface in our training set is represented as a triangu-
lated mesh. For surfaces which are topologically equivalent to


spheres,5 we obtain an initial parameterization by mapping each
mesh to a unit sphere, where the mapping must be such that there
is no folding or tearing. Each mapped mesh can then be repre-
sented, thus


(43)


where is the set of original positions of the mesh vertices for
the th surface in Euclidean space and ( ) are the spherical
polar coordinates of each mapped vertex. Various approaches
have been described to achieve such mappings [29]–[32]. Since
the final parameterization is obtained by optimizing the objec-
tive function, the final result will, in general, not depend on the
particular initial mapping chosen.


Changes in parameterization of a given surface, hence, cor-
respond to altering the positions of the mapped vertices on the
sphere. That is


where


and (44)


Note that we have seperate parameterization functions
for each surface. Valid parameterization func-


tions correspond to exact homeomorphic mappings of the
sphere. That is, mappings that are continuous, one-to-one and
onto. The piecewise-linear representation of the parameteri-
zation proposed in Section V-A must now be extended. As in
two dimensions, we construct an explicit representation of the
parameterization by the use of a recursive process.


The construction is initialized by first selecting four nodes
on the sphere, which form the initial mesh of four spherical
triangles. Given a spherical triangulated mesh of nodes on the
sphere, the next recursive level is defined by adding new nodes.
Each spherical triangle in the mesh of nodes is subdivided into
three smaller triangles by adding a new daughter node, which
is constrained to lie inside the parent spherical triangle. If,


and are the position vectors (with respect to the center of
the sphere) of the parent nodes at the vertices of the spherical
triangle, then the new daughter node can be represented by


(45)


The constraint that lies within theplanar triangle formed by
, and can be satisfied, thus


and (46)


5The same method can be used on open surfaces but for clarity, we limit our
discussion to the closed case.
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which then gives two degrees of freedom to optimize for each
new node. The position of the daughter node on the sphere is
then given by projecting, thus


(47)


The new mesh of nodes is then given by the set of parent nodes
and their daughters and the process is repeated. The construction
is illustrated in Fig. 14.
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