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A Minimum Description Length Approach to
Statistical Shape Modeling

Rhodri H. Davies*, Carole J. Twining, Tim F. Cootes, John C. Waterton, and Chris. J. Taylor.

Abstract—We describe a method for automatically building responded are not anatomically equivalent, the apparent shape
statistical shape models from a training set of example bound- variability can be exaggerated and the application of shape con-
aries/surfaces. These models show considerable promise as a bas'§traints during interpretation becomes less effective (see Fig. 1).
for segmenting and interpreting images. One of the drawbacks . - .
of the approach is, however, the need to establish a set of denseIn practice, (?orrespondence ha_s Qﬁen bgen establlshed using
correspondences between all members of a set of training shapesManually defined “landmarks” this is both time consuming and
Often this is achieved by locating a set of “landmarks” manually ~subjective. The problems are exacerbated when the approach is
on each training image, which is time consuming and subjective applied to three-dimensional images.
in two dimensions and almost impossible in three dimensions. Several previous attempts have been made to automate
We describe how shape models can be built automatically by S s
posing the correspondence problem as one of finding the param- model building [3]-[9]. The pro?'?m of estat_)llshlng dense
eterization for each shape in the training set. We select the set of Correspondence over a set of training boundaries can be posed
parameterizations that build the “best” model. We define “best” as that of defining a parameterization for each of the training
as that which minimizes the description length of the training set, leading to a dense correspondence between equivalently
set, arguing that this leads to models with good compaciness, 4 rameterized boundary points. Arbitrary parameterizations of

specificity and generalization ability. We show how a set of shape . .
parameterizations can be represented and manipulated in order the training boundaries have been proposed [3], [6], but these

to build a minimum description length model. Results are given fail to address the issue of optimality. Shape “features” (e.g.,
for several different training sets of two-dimensional boundaries, regions of high curvature) have been used to establish point

ShI:JWing that tf;]e prpp?sg.d method ﬁOPStéUCtSIBEttef ?Odds than correspondences, with boundary length interpolation between
other approaches including manual landmarking—the current ; _ ;
gold standard. We also show that the method can be extended th‘?ﬁi pomtsf {glt. [12].',[ .Altr,:.?IUth t?ls ?Ep,:(?ta.(:h. corresponds
straightforwardly to three dimensions. with human intuition, it is still not clear that it is in any sense
_ _ _ optimal. A third approach and that followed in this paper, is to
Index Terms—Active shape models, automatic landmarking, et finding the correct parameterization of the training shape
correspondence problem, minimum description length (MDL), boundaries as an explicit optimization problem
point distribution models, statistical shape modeling. At p p p o
The optimization approach has been described by several au-
thors [4], [7], [13] and is discussed in more detail in Section IlI.
. INTRODUCTION The basic idea is to find the parameterizations of the training

TATISTICAL models of shape show considerable promisghapes thatyield, in some sense, the “best” model. Kotcheff and
Sas a basis for segmenting and interpreting images [1]. T}I_,’gylor [7] describe an approach in which the best model is de_—
basic idea is to establish, from a training set, the pattern #€d in terms of “compactness,” as measured by the determi-
“legal” variation in the shapes and spatial relationships of stru@@nt of its covariance matrix. The parameterization of each of
tures for a given class of images. Statistical analysis is usecBt§et of training shapes was explicitly represented and a genetic
give an efficient parameterization of this variability, providing &/90rithm search was used to optimize the model with respect to
compact representation of shape and allowing shape constraifisParameterizations. Although this work showed promise and
to be applied effectively during image interpretation [2]. Onktid outmuch important theoretical groundwork, there were sev-
of the main drawbacks of the approach is, however, the needf@! problems: the objective function, although reasonably intu-
establish dense correspondence between shape boundariesiby@rcould notbe rigorously justified, the method was described
a reasonably large set of training images. It is important to 8! two-dimensional (2-D) shapes and could not easily be ex-
tablish the “correct” correspondences: if the points that are cégnded to three dimensions and the optimization often failed to

converge to an acceptable solution.
In this paper, we define a new objective function with a rig-
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Fig. 1. The first three modes of variatioft:80) of two shape models built from the training set of hand outlines but parameterized differently. Model
parameterized using manual “landmarks” and m@&felas parameterized using arc-length parameterization. The figure demonstrates tha® cadetpresent
invalid shape instances.

attempts to automate the model-building process. Section 4\~ 1, - --n,}. Then, x n, covariance matrix is given blp =
provides a detailed derivation of the MDL objective function. I /n,n, WW? with eigenvectors and eigenvalu¢p™, \™}
Section V, we show how shape parameterizations can be reqhets

sented explicitly and manipulated to build the best model. Sec-

tion VI presents experimental results of applying the method to Dp™ = A"p™. )

several training sets of object outlines. If we define{p’™, X'™, } to be the eigenvectors and eigenvalues

of then, x n, matrix, D' = 1 WTW then
[l. STATISTICAL SHAPE MODELS s % 1 /s

A 2-D statistical shape model is built from a training set of D'p™ =\"p"™
example outlines, aligned to a common coordinate frame. Each From (2) :Dp™ =\"'p™
shape,S;, (¢ = 1---n,), can (without loss of generality) be Tom _ \m.m
represented by a set ef points sampled along the boundary = npns WW7p™ =A"p ®)

at equal intervals, as defined by some parameterizatioof o T

the boundary path. This allows each shapéo be represented Premultiplying byW

by ann,-dimensional ,-D) shape vectok;, formed by con- ~ D/(WT m) A (WT m)
catenating the coordinates of its sample points. Using principal o I;m o . I/’m
component analysis, each shape vector can be expressed using Similarly: D(Wp'™) =A""(Wp'™). (4)

a linear model of the form Lo
! Therefore, for all™ £ 0, we can assign indices such that

X, =X+Pb; =%+ > p"t}" (1)

m

wherex is the mean shape vectd®?, = {p™} are the eigenvec-  Thus, then, — 1 eigenvalues oD, which are not identically
tors of the covariance matrix (with corresponding eigenvaluggro, can be obtained directly frobY and the eigenvectors are
{\}) that describe a set of orthogonal modes of shape varfaweighted sum of the training shapes. As shown in [7], in the
tion, andb = {i™} are shape parameters that control the modé#&it 7, — oo thez;jth element ofD’ is given by the inner

of variation. product of shapesand;

Since our training shapes are continuous, we are interested B B
in the limit n, — oo. This leads to an infinitely large covari- ~ Dj; = /dt(Si(¢i(t)) =S()) - (S;(¢;(1) = S5() (6)
ance matrix, but we note that there can only be, at mgst; 1
eigenvalues that are not identically zero (although they may iddereS = 1/n, > ., S; is the mean shape arftj(¢;) is a
computationally zero). This means that in the summation abowentinuous representation §f parameterized by;. The inte-
the indexm only takes values in the range onertp— 1. gral can be evaluated numerically.

To calculate the nonzero eigenvalues, we considet then, New examples of the class of shapes can be generated by
data matrixXW constructed from the set of vectoféx; — X) :  choosing values ofb™} within the range found in the training

)\rn — )\/rn andp’nl — Wp/’nl. (5)
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set. The utility of the linear model of shape shown in (1) depen

on the appropriateness of the set of boundary parameterizati \
{¢#:} that are chosen. An inappropriate choice can resultin t \
need for a large set of modes (and corresponding shape para Model Q
ters) to approximate the training shapes to a given accuracy ¢ A
may lead to “legal” values ofb™} generating “illegal” shape /

instances. For example, consider two models generated frot d ]

set of 17 hand outlines. Mod& uses a set of parameteriza:
tions of the outlines that cause “natural” landmarks such as t

tips of the fingers to correspond. Modgluses one such corre- 'y’\
spondence but then uses a simple arc-length parameterizatic / <
position the other sample points. Some “corresponding” poir Model N\
from each parameterization are shown in Fig. 2. The variance B

the three most significant modes of modalsndB are (1.06,

0.58, 0.30) and (2.19, 0.78, 0.54), respectively. This sugge

that modelA is more compact than modBl All the example

shapes generated by modelsing values of 4™} within the \

range found in the training set are “legal” examples of hanas,

whilst modelB generates implausible examples, as can be sggf) 2. some examples of the training set and some “corresponding” points

in Fig. 1. used to construct modefsandB. The points “correspond” according to their
The set of parameterizations used for modlelere obtained Parameterization.

by marking the “natural” landmarks manually on each training . ]
example, then using simple arc-length parameterization 3 Measured by the sum of the eigenvalues of the covariance

sample a fixed number of equally spaced points between théﬁﬁm)_(- _They choose an iterative local pptimization scheme,
This manual mark-up is a time-consuming and subjectiVg-Puilding the model at each stage. This makes the approach
process. In principle, the modeling approach extends to thig@ne to becoming trapped in local minima and consequently

dimensions, but in practice, manual landmarking becom@dgpends on a good initial estimate of the correct landmark
impractical. positions. Rangarajaet al. [14] describe a method of shape

correspondence that also minimizes the total model variance by
simultaneously determining a set of correspondences and the
ll. A UTOMATIC MODEL-BUILDING similarity transformation required to register pairs of contours.

Various attempts have been made to automate the con:strucE’OOk_Stem [13] describes an algorithm for Iandmarking Sets
tion of statistical shape models from sets of training outlineS’ co(;mnuous ccl)ntourr? represented as 'pollygont;s. F;qmts are al-
The simplest approach is to select a starting point and equAW’e to move along the contours to minimize a bending energy
space landmarks along the boundary of each shape, but ad IR Again, itis n_ot_obwousthat0pt|m|zmg an energy term will
have shown in the previous section, this can result in po@lad to good statistical shape mod_els. - .
models. A similar scheme is advocated by Baumberg a dKotcheff and Tayllor [7] describe an obJ-ect|ve fupctlon
Hogg [3] who equally space spline control points around shagésed on th%dletermr:nant Oflfhe mgdel ?oyarlince. Thlsdfavo;s
contours. Kelement al.[6] use spherical harmonic descriptor§OmpaCt models with a small number of significant modes o

to parameterize their training shapes but resulting models é{péiation, though no rigorous theoretical justification for this
not in any obvious sense optimal formulation is offered. They use an explicit representation of

Rueckertet al. [8] use a method of nonrigid registrationthe set of _shape parameterizat[t{ﬂg} and_optimizg the model
to maximize the normalized mutual information of a set thre'ctly with respgct o} using genetic algorithm gearch.
biomedical images. The nonrigid registration is pen‘ormegihEIr representation of¢;} is, however, problematic and

by manipulating a grid of B-spline control points. Principa oes not guarantee a diffeomorphic mapping. They correct the

component analysis is then performed on the resulting def&r_oblem when it arises by reordering correspondences, which is

mation field to build a statistical shape model. This tends %orkab!e for 2-D shapes but does not extend obviously to thre_e
minimize the variance of the model but the correspondenc (nensions. Although some of the results produced by thelr
are essentially arbitrary. method are better than hand-generated models, the algorithm
Tagare [12], Benayouet al.[10], Kambhamettu and Goldgof did not always converge.
[11] and Wanget al.[9] use shape features to select landmark
points. Itis not, however, clear that corresponding points will al-
ways lie on regions that have similar curvature. Also, since theseWe wish to define a criterion for selecting the set of param-
methods consider onlyairwisecorrespondences, they may noeterizations{¢; } that are used to construct a statistical shape
find the best global solution. model from a set of training boundari¢s; }. Our aim is to
A more robust approach to automatic model building is tchoose{¢;} so as to obtain the “best possible” model. In Sec-
treat the task as an optimization problem. Hill and Taylor [4]on I, we reviewed the following possible objective functions
attempt this by minimizing the total variance of a shape moddlut none of these guarantee a shape model with ideal properties.

IV. AN INFORMATION THEORETIC OBJECTIVE FUNCTION
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Generalization Ability: The model can describe any instancép™}. The code length for this transmission is a function of
of the object—not just those seen in the training set. n, andn, only, hence, is constant for a given training set and
Specificity: The model can only represent valid instances afumber of sample points and will not be considered further.

the object.
Compactness:The variation is explained with few parame-B. The Description Length

ters. For each directiopp™, we now have to transmit the set of
To achieve this, we follow the principle of Occams razogy| esy™ = {y™ : i = 1ton,}. Since we have aligned our
which can be paraphrased: “simple descriptions generalggordinate axes with the principal axes of the data, each direc-
best.” As a quantitative measure of “simplicity,” we choose tgon js now modeled using a one-dimensional (1-D) Gaussian. In
apply the The MDL principle [15], [16]. This is based on thexppendix I, we derive an expression for the description length
idea of transmitting data as a coded message, where the cogjpgne-dimensional, bounded, and quantized data, coded using
is based on some prearranged set of parametric statistiggbayssian model. To utilize this result, we first have to calcu-
models. The full transmission then has to include not onf4ie 3 strict upper-bound on the range of our data and also
the encoded data values, but also the coded model paramgig§imate a suitable value for a guantization paraméter
values. Thus, MDL balances the model complexity, expressedsuppose that, for our original shape data, we know that the

in terms of the cost of sending the model parameters, agaigbrdinates of our sample points are strictly bounded, thus
the quality of fit between the model and the data, expressed

in terms of the coding length of the data. Comparison of _" « Tio < "foralla=1ton,.i=1to Ng. (10)
description lengths calculated using models from different 2" 2 v

classes can be used as a way of solving the model selectigien, the upper-bound for the coordinafes} is given by
problem [17]. However, our emphasis here is not on selecting

the class of model, but on using the description length for a  _ r /iy, S0 that- E_ g < R for all i.m (11)
single class of model as an objective function for optimization b -7 =2 T

of\(,:\;)rreﬁlpondehnce_ betlween ihe shaé)_es.f lati ¢ MDL The data quantization paramet®ican be determined by quan-
e will use the simple two-part coding formulation o 'tizing the coordinates of our original sample points. Compar-

AI.th.ough this does noF gveusa codmg.wh|ch is of the abSOIUi@on of the original shape and the quantized shape then allows

minimum length [1,8]’ It doe§ however give us afunctlongl for maximum permissible value @ to be determined. For ex-

which is computa_tlon_ally S|mple to evaluatg, henc_e, .Su't_ableé?nple, for boundaries obtained from pixellated imagesyill

be used as an objective function for numerical optimization. typically be of the order of the pixel size. This also determines

our lower bound on the modeled variancg;, = 2A. The pa-

A. The Model rametersk and A are constant for a given training set, hence,
Our training set of:; shapes is sampled according to the pawve need not consider the description length for the transmission

rameterizationg ¢, } to give a set of1,,-D shape vector§x,}. of these values.

We choose to model this set of shape vectors using a multivariat®©ur original data value¥™ are now replaced by their quan-

Gaussian model. The initial step in constructing such a modided value§ ™. The quantized megii™ of the quantized data

is to change to a coordinate system whose axes are aligned witleach direction is determined and the variage®)? of the

the principal axes of the data set. This corresponds to the oriélata about this mean calculated, thus

tation of the linear model defined earlier (1)

n

1 - AT ~m
no—1 (6™) = - Z (@ — am)?. (12)
X; = X+ Z prnbgn. (7) 7 =1
m=1 The description lengtt,,, for each direction is then given by

Then, —1 eigenvectorp™ lie in the space of shapes, they spar(1See Appendix 1)
the subspace which contains the training set and they are aligned If o™ > owmin
with the principal axes. We now order these vectors in terms of

R .

nondecreasing eigenvalue and construct the orthonormal set Dy =1n <Z) +DW (Y"’, R, A)

P = —Himn,m =1tons— 1. (8) ¢ If 0™ < o but the range oF ™ > A

. . . , R -
Our new coordinates with respect to this set of axes are defined, D, =In <Z) +D® (Y"’, R, A)
thus

R * Else
y"=x-p" ©)
i PR D, =In <—)

This corresponds to projectinginto the subspace and then ro- A

tating t_he axes about the orig?nal origin. To describe this transayye will use to denote the quantized value of the corresponding continuum
formation, we have to transmit the set:af — 1, n,,-D vectors valuea.
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Fig. 3. A demonstration of how a circle is sampled according to its parameterization. To sample points on the shape, we uniformly sample the béttom axis
the parameterization function)(and read the values off the vertical axig)). As there is a one-to-one correspondence between the vertical@xj$ &nd the
shape boundary; points are sampled according to the shape of the parameterization function.

C. The Objective Function wheref is some function which depends only &) A andn.,.
hS0, in this dual limit, the part of the objective function which

the first of the above criteria holds amg;, the number which dePends on thés™} contains terms similar to the determinant
satisfy the second. Then, since the directions are orderecd®fi€ covariance matrix (that}s, In A™) used by Kotcheff and

terms of nonincreasing eigenvalue/variance, the total descrfg!°r [7]. However, our objective function is well defined, even
tion length for our training set can be written, thus in the limit A™ — 0, where in fact such a direction makes

contribution to the objective function. Whereas in the form used

R e - reviously, without the addition of artificial correction terms, it
= (n. — i ¢H) ( P ) p Y, ,
D =(n, = 1)n <A> + E:ID YnR A would have an infinitely large contribution.
p=

Let us definen, to be the number of directions for whic

Ng+Nmin
+ Y Dp® (Y47R7 A) . (13) V. SELECTING CORRESPONDENCES
1=ng+1 In order to build a statistical shape model, we need to sample

The leading term is the cost of transmitting the mean shape. Bonumber ofcorrespondingpoints on each shape. As demon-
a given training set, the quantitigs and A will be held con- strated in Section Il, the choice of correspondences determines
stant, so that we can drop the leading term, to give the objectit® quality of the model.
function We choose to cast this correspondence problem as one of
ng defining the parameterization functign, of each shape. These
F= Z DM (YP, R, A) parameterization functions explicitly define how points are sam-
p=L1 pled on each shape (see Fig. 3). We can consequently minimize
Mg +Nmin the value ofF" in (14) by manipulating the set of parameteriza-
+ > D@ (Y‘I,R, A). (14) tion functions{¢;}.
q=ng+1 Our training shapes are represented parametrically as curves
We now consider the form of this objective function. For thi two dimensions
linear model Seﬂned earlier (1) ) Si(8) = (Sui(t), Sys(t)) € R where0 < ¢ < 1
1 a2 _ 1 & P
npA" = — ™ — 4™ whereg™ = — ™. (15 andé =110 n,. (18)
» - ; (wi" =™ 7= ;u (15)
In order to constrain the point ordering—and, hence, the corre-
spondences—the parameterizatitit) of each shapeé must
be a monotonically increasing function ©fThat is

In the limit A — 0, the quantized values &f and/: approach
their continuum values, so that

i — g ando™ — \/npAm. (16)

If we also consider the limit where, is sufficiently large, it can
be seen that the functiod3*) and D(® can be written in the

S; —S! so that
Si(t) =S.(¢i(t)), whereg; : [0,1] — [0,1].  (19)

2 be used to find the set of parameterizations that minimize

Omin

form Eachg; () must be one-to-one, onto and invertible, i.e., a dif-
D (Y™ R,A) =f(R,A,n,)+ (ns —2)Ino™ feomorphism of a circle (for closed curves) or a line (for open
DO (Y™, R, A) = f (R, A,n5) + (ns — 2) I 0 ourves). o _
2 We describe below a novel, piecewise-linear representation of
+ (ns +3) < o ) _ 1] (17) parameterization and describe how stochastic optimization can
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9(t)

Origin Level 1 Level 2 Level 3

S S

Fig. 4. This figure demonstrates the proposed method for representing the parameterization. The top row shows the parameterization and thehHmt®om ro

how points would be sampled on a circle. The circles represent daughter nodes and squares parent nodes. The brackets on the parameterizaingeshow the r
that each node is allowed to move. The node has a value of zero at the bottom of the bracket, one at the top, and 0.5 in the middle. The parameteasvalues for th
example are: [Origin, 0.65 (0.65 (0.4, 0.8), 0.8 (0.5, 0.2)].

A. Representing the Parameterizations In summary, the algorithm for closed curves can be described

We choose to use a piecewise-linear representation of the g ollows. o _
rameterization. In two dimensions, we could ensuredhé is ~ Recursive Parameterization of a Single Shape:
monotonic by enforcing the ordering of points on the boundaries * An initial node defines an origin and endpoint.
according to arc-length. On surfaces, however, no such ordering® Given a set of nodes, a daughter node is created between
exists. To overcome this, we have developed a novel method of €ach adjacent pair of parent nodes. The parameter de-
representation that guarantees a diffeomorphic mapping without ~ scribing each daughter node is then its fractional distance
using arc-length ordering—allowing straightforward extension  along the curve between the parent nodes.
to surfaces in three dimensions. » The set of parent and daughter nodes together form the
We define the piecewise linear parameterization for each initial set of nodes for the next level of recursion.
training shape by recursively defining the parameterization, Optimization:

inserting nodes between those already present. The position of. Generate a parameterization for each shape recursively, to
each daughter node is coded in terms of its fractional distance the same level.

between its two parent nodes. Thus, by constraining the posi-. sample the shapes according to the correspondence de-
tions of daughter nodes to lie in the rar{@el] (where the node fined by the parameterization.

has a value of zero if it is positioned on its left neighbor, one . Byild a model from the sampled shapes.

on its right neighbor, and 0.5 in the center) we can enforce an . cajculate the objective function.

implicit ordering This is illustrated by the example in Fig. 4, . Vary the parameterization of each shape until the optimum
which demonstrates the parameterization of a circle. value of the objective function is found.

abf;/dgét;izgzl r\:\?:;z ?rzzzgg?adl tuhr:atIlitehgerg::)i?ﬁ'eiif;ﬁa;g:;szili It The representation of parameterization is similar to that used
depends on,the complexity of the training shapes )g_Taggr_e [12] a_md I_(otcheff and Taylor [7] bUt as .It (_)nly USes

The parameterization is fully described by the se.t offraction%!-I implicit ordering, ftcan be e>_<tende_d to build stat|st|ca_| shape
. . . - models of surfaces in three dimensions (see Appendix Il for
distances defining the positions of the daughter nodes relative té:fails)
their parents. Any such set of positive fractions describes a vaﬂ '
parameterization.

Once a parameterizatiap;(¢) has been constructed in this
way for each shape in the training set, an arbitrary number ofWe wish to manipulate the set of parameterizatigss} in
corresponding points can be obtained by sampling the trainiagler to minimize our objective functiof'. One way that?”’
shapes at equally spaced intervals¢ft). These sampled can be minimized is for all the points on all shapes to collapse
shapes (and, hence, the generated correspondences) canttharmsingle part of the boundary. To avoid this, we must select a

be evaluated using the objective functibnn (14). “reference shape” whose parameterization is fixed.

B. Optimizing the Parameterizations
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In practice, 10—30 nodes are required to sufficiently define tl
parameterization for each shape—creating a high-dimensio Mode
configuration space. The behaviorigfover this space is highly
nonlinear and contains many local minima leading us to pref |
a stochastic optimization method such as simulated anneal
[19] or genetic algorithm search [20]. We chose to use a gene

algorithm to perform the experiments reported in Section VI.
VI. RESULTS
We present qualitative and quantitative results of applying o 2
method to several sets of outlines of 2-D biomedical object
The parameters used for the genetic algorithm were (crosso
rate: 100%; mutation rate: 0.05%; population size: 4000; none
tist, sigma-scaled rank selection [21]). A single correspondit
point was chosen on each shape and used as the arigjio- 3
crustes alignment [22] was performed on the shapes (parame
ized by arc-length) to transfer them into a common coordina
frame. Four levels of refinement were used to dive2+4+8 =
15 nodes.

We also investigated how our objective function behaves

Fig. 5. The first three modes{ = 1, m = 2, andm = 3) of variation of the

around the minimum and how it selects the correct d|men5|ozﬂftomatically generated model of the hand outlines The shape instances were

=22

-2C 4 P +235

ality of the final model. obtained by varying the values 6™} by (+20).

A. Shape Data Hand Outlines: 17 hand outlines were segmented from im-
The method was evaluated using several training sets agfes of different poses from the same subject.

biomedical objects: Hip Prostheses:24 outlines of hip prostheses were

Infarcts: Permanent focal cerebral ischaemia was induced$egmented from clinical radiographs of subjects who had
rats and multislice T2-weighted MRI was performiedvivo, undergone total joint replacement [26]. Plane-film X-ray was
as described previously [23]. For this study, only data fromsed to acquire the image where the beam was centerd on the
saline-treated animals were used, giving a total of 23 outlinesymphysis pubis so that the radiograph captured the full pelvis
The shape of the infarct in this case represents the territoryasfd contralateral hip.
the middle cerebral artery. Following segmentation, an atlas ofLeft Ventricle: 38 outlines of the left ventricle of the heart
anatomy [24] was used to select a single slice correspondingtere segmented from transcostal, long-axis echocardiograms
an anatomic location 6.3 mm posterior to the bregma. [27]. The outlines were randomly selected from 33 image pairs

Kidneys: Wistar, Sprague-Dawley and Fisher rats were inef different subjects.
aged using an MRI system (“Inova,” Varian, Palo Alto, CA) in-
corporating a 400 mm bore 4.7 T magnet (Oxford Instrumen®8, Results on 2-D Outlines
Oxford, U.K.), a 150 mm bore 200 mT/m pulsed field gradient \y,e tested our method on the training sets described
set (Oxford Instruments) and a 63 mm bore quadrature bitd- section IV-A. In Figs. 5-10, we show qualitative re-
cage transceiver (Varian). Multislice T2-weighted MRl was pegyts by displaying the variation captured by the first
formed in the transverse plane with repetition time (TR) 2 $hree modes of each model"((m = 1---3) varied by
echo time (TE) 20 ms, and slice thickness 1 mm, with 41 CONt-2[standard deviations over training sct]). We also give
tiguous slices. Images were acquired with a684 mm field of  qyantitative results in Tables I-VI, tabulating the valuefqf
view and a 256< 256 x 41 image matrix. Following segmenta-he total variance and variance explained by each mode for
tion, a single transverse slice was selected from the right kidngch of the models, comparing the automatic result with those
that included most evidence of the collecting apparatus. for models built using manual landmarking and arc-length

Knee Cartilage: Sagittal images of the articular cartilage Obarameterized (equally spaced) points.
the lateral femoral condyle were acquired from asymptomaticThe quantitative results show that the automatically gener-
human subjects using T1-weighted MRI and segmented as ggsd models are significantly more compact (have less variance
scribed previously [25]. A single sagittal slice was chosen fro[;br mode) than either the models built by manual landmarking
the center of the lateral femoral condyles. As the width of thg by arc-length parameterization. It is interesting to note that
femur varies from subject to subject, comparable slices weff models produced by arc-length parameterization of the hip
identified by selecting the slices halfway between 1, the firgiostheses and heart ventricles have a lower value of the objec-
evidence of the lateral aspect of the meniscal horn and 2, §i& function than the manual model. This is because there are
full extent of the posterior cruciate ligament. few salient anatomical landmarks, thus, errors in the manual an-

2The position of the origin can be optimized but the algorithm takes |Onggotation adds extra noise that is captured as statistical variation.
to converge. It is also interesting to note that, although the variance of the
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Mode
Mode
1
1
2
3
—20 ¢ P +2G
-G 4 y +26 Fig. 8. The first three modes{ = 1, m = 2, andm = 3) of variation of the

automatically generated model of the knee cartilage.

Fig. 6. The first three modes{ =1, m = 2, andm = 3) of variation of the Mode
automatically generated model of the hip prostheses.

|
Mode Q Q % %
1
3 s NINEN
3 Q G G —20 4 P +20
Fig. 9. The first three modes{ = 1, m = 2, andm = 3) of variation of the
—26 4 b+ automatically generated model of the infarcts.

C. The Behavior of”

Fig. 7. The first three modes{ = 1, m = 2, andm = 3) of variation of the
automatically generated model of the heart ventricles. In Fig. 12, we show the effect o’ of adding Gaussian
random noise to the position of each point on each shape for

manual heart ventricle model is less than the arc-length modée automatically generated hand model. Points are constrained

the value of the objective function is higher. to move along the curve, so that the object outline is effectively
To test the generalization ability of the models, we performainchanged, but the parameterization is perturbed. As can

leave-one-out tests on each to determine the accuracy of wigh seen from the figure, the objective function gives a clear

which the model was able to approximate unseen examplegpimum for zero noise, corresponding to our original optimal

the same class. In Fig. 11, we report the results for the hand cilution.

lines, although the same trends appear in all datasets. As can ] ) ) )

be seen from the figure, the optimized model performs signif?- 1he Effective Dimensionality of the Model

cantly better than both the manual and arc-length parameterizetlVe generated a set of 49 artificial shapes, generated to have

models for any number of retained modes, indicating better gaxactly one mode of variation (varying the position of a semi-

eralization ability. circular bump along an edge of a rectangle). Taking the orig-
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Mode
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Fig. 10. The first three modeso = 1, m = 2, andm = 3) of variation of
the automatically generated model of the kidneys.

TABLE |
A QUANTITATIVE COMPARISON OF THEHAND OUTLINE MODELS SHOWING
THE VARIANCE EXPLAINED BY EACH MODE. V- IS THE TOTAL VARIANCE
AND F' IS THE VALUE OF THE OBJECTIVE FUNCTION

533

TABLE Il
A QUANTITATIVE COMPARISON OF THEHEART VENTRICLE MODELS SHOWING
THE VARIANCE EXPLAINED BY EACH MODE. V- IS THE TOTAL VARIANCE AND

F |Is THE VALUE OF THE OBJECTIVE FUNCTION

Mode | Manual | Arc-length | Automatic
1 2.45 2.48 1.98
2 1.21 1.98 1.56
3 0.81 0.87 0.69
4 0.35 0.31 0.25
5 0.26 0.21 0.17
6 0.17 0.14 0.11
Vr 5.65 6.35 5.07
F 12396 | 12391 [ 12064
TABLE IV

A QUANTITATIVE COMPARISON OF THEKNEE CARTILAGE MODELS SHOWING
THE VARIANCE EXPLAINED BY EACH MODE. Vi IS THE TOTAL VARIANCE AND

F' |s THE VALUE OF THE OBJECTIVE FUNCTION

Mode | Manual | Arc-length | Automatic
1 171.5 171.6 146.5
2 27.7 27.8 12.7
3 14.3 14.2 6.8
4 4.8 49 3.7
3 3.8 38 24
6 2.3 2.3 1.8
Vr 229.1 229.4 177.1
F | 1443 | 1443 | 1403
TABLE V

A QUANTITATIVE COMPARISON OF THEINFRACT MODELS SHOWING THE
VARIANCE EXPLAINED BY EACH MODE. V7 IS THE TOTAL VARIANCE AND F'
IS THE VALUE OF THE OBJECTIVE FUNCTION

Mode | Manual | Arc-length | Automatic
1 3.35 6.91 3.33
2 1.84 247 1.57
3 0.96 1.71 0.89
4 0.80 1.0 0.48
5 0.24 0.57 0.16
6 0.23 0.41 0.09
Vr 7.94 13.7 6.69
F ] 3081 [ 3114 | 2926
TABLE 1l

A QUANTITATIVE COMPARISON OF THEHIP PROSTHESESMODELS SHOWING
THE VARIANCE EXPLAINED BY EACH MODE. V1 IS THE TOTAL VARIANCE AND
F' |s THE VALUE OF THE OBJECTIVE FUNCTION

Mode | Manual | Arc-length | Automatic
1 1.25 1.39 1.38
2 0.62 0.27 0.22
3 0.21 0.12 0.11
4 0.18 0.01 0.02
5 0.10 0.01 0.01
6 0.05 0.01 0.01
Vr 2.49 1.84 1.76
F | 5655 | 4837 [ 4815

inal arc-length correspondence and the final optimized corre-
spondence, we then calculated the contribution to the objective
function from each dimension of the model (see Fig. 13). As
can be seen from the figure, the initial parameterization gives a
nonzero variance, hence, nonzétdor all n, — 1 dimensions of

Mode | Arc-length | Automatic
1 931.0 306.6
2 283.0 59.5
3 251.9 54.7
4 574 36.6
5 40.7 27.1
6 35.1 22.3
Vr 1710 1239
F | 3767 | 3604
TABLE VI

A QUANTITATIVE COMPARISON OF THEKIDNEY MODELS SHOWING THE
VARIANCE EXPLAINED BY EACH MODE. Vi IS THE TOTAL VARIANCE AND F'

IS THE VALUE OF THE OBJECTIVE FUNCTION

Mode | Arc-length | Automatic
1 499.3 128.2
2 164.3 54.0
3 74.9 33.7
4 42.2 28.6
5 25.8 14.5
6 17.8 8.6
Vir 862.3 284.5
F | 2046 1912
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Fig. 11. The_ resuit of runnlng_leavg—on_e—out reconstructions on each modeE Efse on each control point to show how noise on the control points affects the
the hand outlines. The model is built with all but one example and then fitt lue of the objective function

to the unseen example. The plot shows the mean squared approximation error
against the number of modes used. This measures the ability of the model to
represent unseen shape instances of the object.
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400§
the model. For the final optimized parameterization, the obje

tive function for all modes other than the firstis identically zerc 3%
showing that we have correctly matched the dimensionality
the modeled variation to the actual known dimensionality of tt
shape variation.

300

N
g
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VII. DiscussioON ANDCONCLUSION

g

We have derived an objective function that provides a pril 100
cipled measure of the quality of a statistical shape model. T
expression we use is grounded in information theory and cc
siders both model complexity and quality of model fitto datai o} 1
a unified way. The objective function bears some similarities . . . . . ‘ ‘ . .
that used by Kotcheff and Taylor [7], but does not suffer fror *o 5 15 20 25 3 3% 40 45 50
the problem of requiring ad hoc correction terms.

We have also described a new method of representing pardig-13. A plot of the value of” for each mode for the initial parameterization
eterization of curves in two dimensions. that has a natural e(Qpen circles) and the final optimized parameterization (closed circles) for the

. - T . . artificial data example.
tension to the parameterization of surfaces in three dimensions.

When coupled with stochastic optimization, the objective
function allows us to automatically build models that arto investigate this and use the objective function to improve on
substantially better than those built using manual landmarkirgych things as the Procrustes alignment. Hence, different aspects
We have shown that these automatic models, as well as bedignodel building will then be combined into a single, unified
guantitatively more compact than manually landmarked modelptimization framework.

(as measured in terms of the total variance), also have improved
generalization ability.

As with any stochastic optimization technique, our search re-
quires a large number of function evaluations. Each of the re-
sults in this paper typically took several hours to produce. Al- In this appendix, we show how to construct an expression for
though this is a one-off, off-line process, it is likely to becoméhe description length required to send a 1-D data set using a
impractical when a larger set of training shapes is used beca@issian model. The total description length is computed as the
its complexity is at leasD(n,2). We are currently working on sum of the description length for coding the parameters of the
finding faster ways of locating the optimum. Gaussian model and the description length for coding the data

We note that the MDL based objective function, being a gensing the model.
eral measure of model quality, can also be used to determine th&Ve take our data sét = {y; : ¢ = 1 ton,} to lie within a
values of other quantities than the parameterization. We intestdictly bounded region. We then quantize the data values using

501 4

APPENDIX |
DESCRIPTIONLENGTH FOR1 -D GAUSSIAN MODELS
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a parameten, so thatl” — Y = {¢; : ¢ = 1ton,}3 where So, our total code length for transmitting the parameters is

for any quantized valug from any possible data set given by

—g < :l) < g andg) = mA, mel. (20) ['parameters = ['ﬂ +Ls + Ls. (29)
Our data model is the family of Gaussian distributions, defined
by parameters and. B. Coding the Data

) 1 RV For our Gaussian data model, the probabiltty;) associated
Ply i) = o/ 2m eXp( 2 (=) ) ‘ (1) with a bin centered aj is given by

We will use the fundamental result that the ideal-coding code- R §+A/2
word length for a valuej, encoded using a statistical model P(9) _/ dkp(k; 0, 1)
P(3) is given by the Shannon Coding codeword length {28] ‘IZA/Q .
m——exp |~ (- ). (30)
oV2w 20

L(g; P) = —log, P(7) bits, or— In P() nats. (22) It can be shown numerically that this is a very good approx-

imation (to better than 99% of the exact value) for all values
A. Coding the Parameters o > 2A, hence, we will take

Consider first the parametegr. This should obviously be Omin = 24, (31)
related to the mean of the actual data. Given that the dqlﬁl .
is bounded, we can see that the allowed valueg should e code length for the data set is then
be similarly bounded. We here make the simplest modeling 5
choice, which is to quantize the allowed valuegdb the same ~data \7) = —7s A+ hl 2m5%) 52
accuracy as our data. So, we define the allowed values of the (32)
quantized parametégr to be

The variance of the quantized data about the quantized mean is

1 R R n
= + =} AwheremeZ and— — < i < — 23 1 &<
ft <m 2) me 5 SAS S (23) o2 = _Z@i _ ) andoge = g (33)

Ng
where we choose the valgenhich is closest to the actual mean 7 =1

of the quantized data. Given the absence of any prior knowledgiegeneral & will differ from its quantized valué, thus

we will assume a flat distribution fgt over this range. This then s
gives us the ideal codeword length foof 0 =0+do |do| < 5. (34)
L. =In <R> ) (24 So, averaging over an ensemble of data sets and assuming a flat
g distribution ford,, over this range, we find
For the paramete#, we will assume that its allowed values o 81 1 52 64
are bounded and quantized, thus )== 5= |1+-—=}+0
12" & o 402

o= 716,71 N and min S 5 S max 25 62 64

7 ‘ 7 =7 (29) (In6?) =lno? — -t <—4> (35)
which then gives us a codeword length 120 o

O — Omin Substituting these expressions into (32) then gives us the fol-
Lo =1 <f) (26) lowing expression for the description length of the data:
. N . 2

Note _that our receiver cannot decrpyt the valu_eyof\nthout Lunia = — naln A + "1 (27r0_2) _ngb
knowing the value ob. So we now have to consider the code- 2 2402

word length for transmitting. Assuming the quantization pa- 1 NN, .2 8
rameters is of the form Toz \1 T2 Z (0 — 1) i
=1

§=2% LeN (27) (36)

then it can easily be seen that it can be coded directly withsybstituting from (33) and keeping only terms upes? /o?)
codeword length 52
Ns

_ Mg 9 s
L5 =1+ |log, 8| bits~ 1+ |In 4| nats 28)  Laata=—nsmA+ I (2m0%) + 4 25 (37)
where the additional bit/nat codes for the sign in the exponehie total description length is then

of 6. 1
['( ) ['parameters + ['data
3We will usea to denote continuum values addo denote the corresponding R Io — O
_1 + 1n + 1 max 6 min + | 1n6|

quantized value.

4In what follows, we will restrict ourselves to natural logarithms and work in

. . . R L 2
units of nats. However, expressions can easily be converted back into bit-lengths N 2 Ng ngd
by noting thatl bit = In 2 nats. —nsIn A+ o In (270 ) + 5 + 1202° (38)




536 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

N jF A
/N / VAN RN
/ S

s

) / 4 / ] \
/ \ ) //'\\a | M&) ./_/ o .

Imtial Level 1 Level 2 Final Pointset

Fig. 14. Adiagram to demonstrate the representation of parameterization on a surface. The solid circles represent new daughter nodes and reyilesqrdin
nodes that are already in place. Each daughter node is allowed to move anywhere inside the spherical triangle formed by its three parent nodes.

By differentiating with respect t6 and setting the derivative to spheres,we obtain an initial parameterization by mapping each
zero, we find that the optimum value 6fis mesh to a unit sphere, where the mapping must be such that there
is no folding or tearing. Each mapped mesh can then be repre-

8 (o,ms) = min <1, oy /E> (39) sented, thus
ur

which then allows us to write the above expression as
wheresS; is the set of original positions of the mesh vertices for
£ —1n <§> +DpW (Y7 R, A) . (40) theith surface in Euclidean space artd+) are the spherical
A polar coordinates of each mapped vertex. Various approaches
In the case where < omin, but the data occupies more than on8ave been described to achieve such mappings [29]-{32]. Since
bin, we will model the data using a Gaussian of width,, anda the final parameterization is obtained by optimizing the objec-
quantization parametér= 6* (o in, 7, ). An analogous deriva- tive function, the final result will, in general, not depend on the

tion to that given above then gives us the description length particular initial mapping chosen.
Changes in parameterization of a given surface, hence, cor-

£® 141 <§> +1n <M) + |In§| respond to altering the positions of the mapped vertices on the

6 sphere. That is
2
—n,Iln A+ % In (27r012nin) — 2252 S; =S 0 — 0, —
, “min where S;(6,v) =S, (6, 4)
5 — :

np (1 o ) S (- ) and ' =¢{(0.), o = 6*(0,0).  (44)

min min /=1 Note that we have seperate parameterization functions

R N (8 Y . L i

—n(Z) 4 p® (Y,R, A) ' (41) <7.>, = (¢7,¢;) for each surface. Valid parameterization func
A tions ¢; correspond to exact homeomorphic mappings of the

Note that this contains terms of a similar form to those in thseo?ers_.\r.hThaF IS, m_appl!ngs that are c?ntt_lnuoufs:{hone-to-onet af.‘d
EXpIession folga, in (36), but Withoy,, rather thany. The onto. The piecewise-linear representation of the parameteri-

explicit data term is, hence, left in and allows us to calculate tgation proposed in Section V-A must now be extended. As in

increase in description length caused by the nonoptimal chollo dimensions, we construct an explicit representation of the

of o = omin. The remaining case is where all the data lies HArameterization by the use of a recursive process.

one hin; we then only have to transmit the position of the meanh-r,:;]e cor;]structlorr:_ 'E :cnlt|allfhed b% f'lrSt se:]ectfmfg four Qoo_lesl
with a description length on the sphere, which form the initial mesh of four spherical

triangles. Given a spherical triangulated mesh of nodes on the
£® 1 <§> (42) sphere, the next recursive level is defined by adding new nodes.

’ Each spherical triangle in the mesh of nodes is subdivided into
three smaller triangles by adding a new daughter node, which
is constrained to lie inside the parent spherical triangley If

E - APFF:END'X I T g2 andqz are the position vectors (with respect to the center of
XTENSION OF AP[E)IMAEEAS'\I/'OE’\ER'ZAT'ON TO THREE the sphere) of the parent nodes at the vertices of the spherical

triangle, then the new daughter node can be represented by

In this appendix, we describe how the representation of the Qo = aqi + Ba2 + ¥qs. (45)
parameterization can be extended to build statistical shaﬂ? . . I .
. . : e constraint thadjg lies within theplanartriangle formed by

models from surfaces in three dimensions.

A similar construction can be performed for the case of opé’ﬁ’ q2 andgs can be satisfied, thus
surfaces. a=1—-fF—v,anda>0,8>0,v>0 (46)

Each surface in our tralnln_g setis represgnted as a triangrhe same method can be used on open surfaces but for clarity, we limit our
lated mesh. For surfaces which are topologically equivalentdigcussion to the closed case.
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which then gives two degrees of freedom to optimize for eaclu?]
new node. The position of the daughter node on the sphere is
then given by projecting, thus [13]

q0
o 47
7 aol] @0 g

The new mesh of nodes is then given by the set of parent nodé€s]
and their daughters and the process is repeated. The construction
is illustrated in Fig. 14. [16]
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