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Problem Set1

<«— Back wall
of camera

Digital =~
camera

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html



Source:ikipedia

"a camera obscura has been used ... to bring
images from the outside into a darkened room”

Chris Fraser Aberlado Morell







Accidental pinholes in outdoor scenes
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Pierre Moreels father (source: facebook)
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Accidental pinhole camera










Window turned into a pinhole View outside




Making a pinhole with home materials
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Window open Window turned into a pinhole







Making a pinhole with home materials
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An hotel room,
contrast enhanced.  The view from my window
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Accidental pinholes produce images that are
unnoticed or misinterpreted as shadows
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Accidental pinhole camera

Aperture

See Zomet, A.; Nayar, S.K. CVPR 2006 for a detailed analysis.



Visualizing the convolution




Anti-pinhole or Pinspeck cameras

Adam L. Cohen, 1982

OPTICA ACTA, 1982, vor. 29, no. 1, 63-67

Anti-pinhole imaging

ADAM LLOYD COHEN

Parmly Research Institute, Loyola University of Chicago,
Chicago, Illinois 60626, US.A.

(Received 16 April 1981 ; revision recerved 8 July 1981)

Abstract. By complementing a pinhole to produce an 1solated opaque spot, the
light ordinarily blocked from the pinhole image is transmitted, and the light
ordinarily transmitted is blocked. A negative geometrical image is formed,
distinct from the familiar ‘bright-spot’ diffraction image. Anti-pinhole, or
‘pinspeck’ images are visible during a solar eclipse, when the shadows of objects
appear crescent-shaped. Pinspecks demonstrate unlimited depth of field, free-
dom from distortion and large angular field. Images of different magnification
may be formed simultaneously. Contrast is poor, but is improvable by averaging
to remove noise and subtraction of a d.c. bias, Pinspecks may have application in
X-ray space optics, and might be emploved in the eves of simple organisms.




Pinhole and Anti-pinhole cameras
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Adam L. Cohen, 1982



Natural eyes

Lenses Pinholes Anti-pinholes




Shadows
Accidental anti-pinhole cameras?




Shadows
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Acudental anti- plnhole cameras




Shadows
Acudental antl plphole cameras




Background image
R

Input vide
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Negative
— of the
shadow
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Mixed accidental pinhole and
“anti-pinhole cameras




Mixed accidental pinhole and
anti-pinhole cameras




Mixed accidental pinhole and
anti-pinhole cameras

Room with a window Person in front of the window Difference image
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Mixed accidental pinhole and

anti-pinhole cameras




Mixed accidental pinhole and
anti-pinhole cameras

Body as the occluder View outside the window




Looking for a small. accidental occluder
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Looking for a small accidental occluder

Body as the occluder Hand as the occluder View outside the window
;; ?:;;,:\_‘ .




Venice: The Arsenal
1755-60, Francesco Guardi

http://www.nationalgallery.org.uk/paintings/francesco-guardi-venice-the-arsenal




Notice the cast shadows under the Sun and under the building’s shadow

Venice: The Arsenal
1755-60, Francesco Guardi



Optional Problem set

Send me pictures of accidental images




Camera Models




Right - handed system
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Perspective projection

l
J Cartesian coordinates:

We have, by similar triangles, that
(X, Y, Z) -> (f XIZ, fY/Z, 'f)

Ignore the third coordinate, and get

(x.3.2) = (F . F )
< <



Geometric properties of projection

* Points go to points

 Lines go to lines

* Planes go to whole image or half-planes.
* Polygons go to polygons

 Degenerate cases
— line through focal point to point
— plane through focal point to line
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Vanishing point

\ camera




oYere Untitled1

The castle ‘up close’

Vanishing Points close to the object

4 »

http://lwww.ider.herts.ac.uk/school/courseware/
graphics/two_point_perspective.html



Vanishing points

« Each set of parallel lines
(=direction) meets at a
different point

— The vanishing point for this
direction

» Sets of parallel lines on
the same plane lead to
collinear vanishing points.

— The line is called the
horizon for that plane




Line in 3-space

Perspective projection

of that line
X X, + at
x(t)=x,+at x'(t)=f—=f( o + a1)
( ) b Z Tyt Ct
yi)=y,+0t
2(t) = z, +ct y(ry =22 o Lot 20
0 Z Ty, +Ct
In the limit as [ — +00 x'(1) > fa
we have (for ~ = ()): . C
This tells us that any set of parallel y' (t) > fb
lines (same a, b, c parameters) project C

to the same point (called the
vanishing point).



What if you photograph a brick wall
head-on?




Brick wall line in 3-space Perspective projection of that line
x(f)=x,+at (x, + at

( ) 0 X'(t) _ f ( 0 )
() =y, <0

z(t) = z, V(1) = J Y
<o

All bricks have same z,. Those in same row have same y,

Thus, a brick wall, photographed head-on, gets rendered as set of parallel
lines in the image plane.



Other projection models:
Orthographic projection

(x,y,2) = (x, )

- i
|



Other projection models:
Weak perspective

Issue

— perspective effects, but not
over the scale of individual
objects

— collect points into a group
at about the same depth,
then divide each pointby
the depth of its group

— Adv: easy
— Disadyv: only approximate




Three camera projections

3-d point 2-d image position

]

(1) Perspective: ()C, e Z) g (fx ) fy)

Z Z

(2) Weak perspective: (x,v,2) — (fx , fy)

Zy 2y

(3) Orthographic:  (x, y,z) — (x, y)



Three camera projections

Perspective projection Parallel (orthographic) projection

Weak perspective?



Homogeneous coordinates
* |Is this a linear transformation??

* no—division by z is nonlinear
Trick: add one more coordinate:

x
T
(z,y) = | ¥y (z,y,2) = J
1 z
- - ] 1 ]
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates

y | = (@/w,y/w) | = (@/wy/w, zfw)

Slide by Steve Seitz



Perspective Projection

Projection is a matrix multiply using homogeneous
coordinates:

- _-x- - -

1 0 0 O X

o1 0 of]| =]y =(ff,fl)
Z < <

0 0 1/f of z/f

This is known as perspective projection
* The matrix is the projection matrix

Slide by Steve Seitz



Perspective Projection

How does scaling the projection matrix change the transformation?

1 0
0 1
0 0

o o =

S -+ O

0
0

1/ f

_— O O

0

0

O-

o
y
Z
1

"
Y
Z

_1-

Slide by Steve Seitz



Orthographic Projection

Special case of perspective projection
» Distance from the COP to the PP is infinite

» Also called “parallel projection”

« What's the projection matrix?
x — -

=1y | = (z,9)
1

R\ S

Slide by Steve Seitz



Orthographic Projection

Special case of perspective projection
» Distance from the COP to the PP is infinite

« Also called “parallel projection”

« What's the projection matrix?

"1 000717 BN

0 O =y | = (z,y)
0 1| 1

0 1
00

[\ N

- - Slide by Steve Seitz



Matrix form of cross product

0 -a; a, |[bH]
I - a-c=0
axb =| a, 0 -aqa||b|=c T.x_0
0 =

-a, q, 0 [|b,

Can be expressed as a matrix multiplication.

0 —-a; a,
[ax ]= a, 0 -aq, Gxb = la, ]l;
-a, aq, 0

Slide credit: Kristen Grauman



Homogeneous coordinates

2D Points:

X

Y

— > p'=

p=

X

Y

_1-

2D Lines: ax+by+c=0

[a b c]y=0

n d]



Homogeneous coordinates

Intersection between two lines:

~

a,x+b,y+c,=0 \\\\
l

ax+by+c =0

l1=[a1 b, Cl]

lz=[az b, Cz]

—_—



Homogeneous coordinates

Line joining two points:

JZaN

N\ ax+by+c=0

— l=p xp,




2D Transformations

P 4

tr anslatlon
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2D Transformations

_—7

tr anslatlon

Euclldean

sumlal 1ty

athne

pr OJec'm e

Example: translation

r =x -+t

1_1 O
ty




2D Transformations

_—7

T /
translation

R
similarity Q projective

-

Example: translation

r =x -+t

1_1 O
ty

—y
Euclidean affine

:c'z[I t]a‘c
H_ OB N
0 1 ty

1




2D Transformations

_—7

I
y‘ / " m Q projective
translation

Example: translation

r =x -+t

1_1 O
ty

a:’z[I t]a‘:
H_BOE N
0 1 ty

1

—Y
Euclidean affine >
X

T = L1 T
|l oT 1
H_ HiR R
0O 1 ty
O 0 1

Now we can chain transformations



Translation and rotation, written

In each set of coordinates

Non-homogeneous coordlnates

—> B_>
Homogeneous coordinates
B— B A—
P=4 C'p
= — — | I
where BR B ?
B~ _| A A
A C _ |




Camera calibration

Use the camera to tell you things about the
world:

— Relationship between coordinates in the world
and coordinates in the image: geometric
camera calibration, see Szeliski, section 5.2,
5.3 for references

— (Relationship between intensities in the world
and intensities 1n the 1mage: photometric image
formation, see Szeliski, sect. 2.2.)



Camera calibration

* Intrinsic parameters

Image coordinates relative to camera < - Pixel coordinates

« EXtrinsic parameters

Camera frame 1 €<-> Camera frame 2



Camera calibration

* Intrinsic parameters



Intrinsic parameters: from idealized
world coordinates to pixel values

Pinhole
e
WU Co
C
u
Forsyth&Pon \/\ Physical
retina
X
Perspective projection U = —
Z



Intrinsic parameters

op

J.‘
\ > O\
z X
' Pinhole

—
e
-
-
-

u
J Physical
retina
X

But “pixels” are in some U= —
arbitrary spatial units z

a?’
Z

V =



Intrinsic parameters

J_\
< op
O
z X
Pinhole

u
J Physical
retina

Maybe pixels are not Uu=0 —
square z

<
Q
|
x
?




Intrinsic parameters

op

J)
\ » - \
z X
[ Pinhole

-
e
-
-
-

u
J Physical
retina
X

We don’t know the origin 1y = (¥ — + MO
of our camera pixel z

coordinates
Y
V=0 =+V,
Z




Intrinsic parameters

_____ opP

\
Pinhole

—
-
-
-
-

| u
u )
‘\/“ Physical V Sln(H) =V
retina ,

u' =u-cos(6)v' =u-cot(6)v

May be skew between
camera pixel axes

u =a£—acot(6’)l+uo

Z
v_/a’y "

sin(f) z




Intrinsic parameters, homogeneous coordinates

2 —— S — -« J —
\ : 17 ‘\'\A )
, \ b
! Pinhole

L ° u=0:£—0:(:0t(6’)l+uO
\ N z z
/" retna . ./3 X+v0
sin(f) z
Using homogenous coordinates, ( \
we can write this as: X
(\ [a —acot®) u, @
Y
V)= : b v, O
| sin(0) Z
Ao o 1 0/\1/
In pixels ——» ]_j — K /C'l_ﬁ

In camera-based coords



Camera calibration

* EXtrinsic parameters



Extrinsic parameters: translation
and rotation of camera frame

C = CR W= C7
— + Non-homogeneous
p 14 p W coordinates
() (- - o | \( \ Homogeneous
C — | -
D _ W(/? R — Vgt D coordinates




Combining extrinsic and intrinsic calibration
parameters, iIn homogeneous coordinates

pixels\ s _ K C—

T

C c 1|V #

coordinates —

P—/P
Camera u i) /
C —
p

\)\OOO 1)\/

Intrinsic

World coordinate

Extrinsic

p=K(WR §i)"p

Forsyth&Ponce



Other ways to write the same equation

pixel coordinates

\ world coordinates
W

p=M "p
W 4 m. - P
(10) / mlT \( px\ u = 1 =
’ Wpy ) m3°P
Vi=]. m; . . sz m2°P
\ 1) -~ myP

Conversion back from homogeneous
coordinates leads to:



Camera parameters

A camera is described by several parameters
« Translation T of the optical center from the origin of world coords
* Rotation R of the image plane
« focal length f, principle point (X, y';), pixel size (s, s)
» Dblue parameters are called “extrinsics,” red are “intrinsics”

Projection equation /
e
SX %k ko ok
Y
X=|sy|l=|* * * * - IIX [ (e, ye)
S * %k ok ok Z
1 _— >

» The projection matrix models the cumulative effect of all parameters
« Useful to decompose into a series of operations

—fs. 0 X1 00 0 —

identity matrix

I1=| O —fsy y‘c O1 0 O R3x3 03x1 ISx3 TSM]
o o0 1o o 1 oft% THhs 1
intrinsics projection rotation translation

« The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another



Stereo vision




Depth without objects
Random dot stereograms (Bela Julesz)

oo~ o] "] ©
olejr]ole ~lo| ©| « -
“l~lo|X|>|>|X%X] ||~
ogle|~|ajx| |9 "o "
elv|clala|a| |||
rleole|a| x| <|af~]—|®
o|l~jr| || jaijr-|o| e
elol=lol~]~|~|e|lc| e
olo|cl+||Ol~]|a||
—|=|lo|oe|~|o|rl~|e|e
rlolofjr|=|le|~] | T|®
o|le|~|lojo|"|e|e|T|"
“ivje|l el | o]l 7] 7|7
oloe|l—|la|a|lw| <] T|O|"
(=1 B B <| €| <X |l o] |7
joloe| x|ey{<|al =|~|®
ol ri>»|x|x|>l-]°|°
~lo|lvlo|~|||e|O]e
ocleje|l=|le|~|cl~|"
=l-]|lo]|Oo|~]|o|~] ~]—|<

, 1971

Julesz

P o mm..

b
T R AL i ......n.;..”.
v b el

FIGURE 8.13



Depth for familiar objects

(Gregory 1970; Hill and Bruce 1993, 1994; Papathomas and DeCarlo 1999)



Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly
different viewpoints and display so that each eye sees
only one of the images.

Invented by Sir Charles Wheatstone, 1838 Image courtesy of fisher-price.com

Slide credit: Kristen Grauman



Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

e credit: Kristen Grauman



Anaglyph pinhole camera




Autostereograms

Images from magiceye.com

Exploit disparity as
depth cue using single
Image.

(Single image random
dot stereogram, Single
image stereogram)

Slide credit: Kristen Grauman



Estimating depth with stereo

e Stereo: shape from disparities between two views
* We'll need to consider:

— Info on camera pose ( “calibration” )

— Image point correspondences

scene point

.

><_ image|plane /
¢ ®
optical

center

Slide credit: Kristen Grauman



Geometry for a simple stereo system

* Assume a simple setting:
— Two identical cameras
— parallel optical axes
— known camera parameters (i.e., calibrated cameras).




image point ; image point

, A . . wee. ) optical
optical O w.center
center (J&ft ™ (right)

baseline T

http//www.cse . psu.edu/~zyin/Demo/Stereo%20geometry jpg



Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters
(i.e., calibrated cameras). We can triangulate via:

Similar triangles (p,, P, p,) and
(O, P, O)):

l+x-x. T
/-1 4
T

Z=f
disparity

Slide credit: Kristen Grauman



Depth from disparity

image 1(x,y) Disparity map D(x,y) image I"(x",y’)

X%y )=(x*+D(x,y), y)

Slide credit: Kristen Grauman



Stereo Topics

Special, simple system, main idea
More general camera conditions, epipolar constraints
— epipolar geometry

— epipolar algebra

Image rectification

Stereo matching (likelihood term)
Stereo regularization (prior term)
Inference

— dynamic programming

— graph cuts

Structured light



General case, with calibrated cameras

 The two cameras need not have parallel optical axes.

/A\. P

Vs.

Slide credit: Kristen Grauman



Stereo correspondence constraints

d.

« Given p in left image, where can corresponding
pointp’ be?

Slide credit: Kristen Grauman



Stereo correspondence constraints

“ \

Slide credit: Kristen Grauman



Epipolar constraint

Geometry of two views constrains where the corresponding pixel for some image point
in the first view must occur in the second view:

It must be on the line carved out by a plane connecting the world point and optical
centers.

Why is this useful?

Slide credit: Kristen Grauman



Epipolar constraint

This is useful because it reduces the correspondence
problem to a 1D search along an epipolar line.

Image from Andrew Zisserman Slide credit: Kristen Grauman



Epipolar geometry

p’Epipolar Line

 Epipolar Plane

Baseline

« Baseline: line joining the camera centers

« Epipole: point of intersection of baseline with the image plane

« Epipolar plane: plane containing baseline and world point

« Epipolar line: intersection of epipolar plane with the image plane

« All epipolar lines intersect at the epipole
* An epipolar plane intersects the left and right image planes in epipolar lines

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html Slide credit: Kristen Grauman




Example

Slide credit: Kristen Grauman



Example: parallel cameras

/ / Where are the
/ / epipoles?
/ / pPIp !
%/, | / -
o v

Figure from Hartley & Zisserman Slide credit: Kristen Grauman



Example: converging cameras

Figure from Hartley & Zisserman Slide credit: Kristen Grauman



« So far, we have the explanation in terms of
geometry.

 Now, how to express the epipolar constraints
algebraically?

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

Main idea

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to

camera reference frame 2.

Rotation: 3 x 3 matrix R; translation: 3 vector T.
Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

R

If the stereo rig is calibrated, we know :

how to rotate and translate camera reference frame 1 to get to

camera reference frame 2. ' !
X' =RX +T

Slide credit: Kristen Grauman



From geometry to algebra

X world point

/
TxX = =()
Normal Eo the plane

=TxRX

Slide credit: Kristen Grauman



Aside: cross product

|
X
Sl
Il
0]
o Ql
] o
1l
e

Vector cross product takes two vectors and
returns a third vector that’ s perpendicular to

both inputs.

So here, c is perpendicular to both a and b,
which means the dot product = 0.

Slide credit: Kristen Grauman



Another aside:
Matrix form of cross product

0 -a, a, |[D]
Lo . a-c=0
axb=| a, 0 —qa/|lb|=cC Fox_n
-a, q, 0 (|5,

Can be expressed as a matrix multiplication.

0 —-a; a, ]
[ax]= a, 0 -—q ZI’XI;:[aX]l;
-a, q, 0

Slide credit: Kristen Grauman



From geometry to algebra

X world point

X'= RX + T
\TxX'}=TxRX+T><T

Normal Eo the plane

=TxRX

X'-(TxX')=X'-(TxRX)

Slide credit: Kristen Grauman



Essential matrix

X' (TxRX)=0
X'-(T: RX)=0
Let E=T.R R
XTEX =0

E is called the essential matrix, and it relates
corresponding image points between both cameras,
given the rotation and translation.

If we observe a point in one image, its position in other
image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.



x and x’ are scaled versions of X and X’

X world point




X"(T'xRX) =0
X!_ (T!x RX) — O » X world point
et E=T R

XrTEX _ O v ] R

x'T E X = O pts x and x” in the image planes are scaled versions of X and X’ .

E is called the essential matrix, and it relates corresponding image points
between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is constrained
to lie on line defined by above.

Note: these points are in camera coordinate systems.



Essential matrix example: parallel cameras

pITEp — O

For the parallel cameras,
image of any point must lie
on same horizontal line in
each image plane.

p =[x9yaf]
p'=[x,)", 1]

Slide credit: Kristen Grauman



image 1(x,y) Disparity map D(x,y)

image I'(x",y")

Y )F(X+D(X,y

),Y)

What about when cameras’ optical axes are not parallel?

Slide credit: Kristen Grauman



Stereo image rectification

In practice, it is
convenient if image
scanlines (rows) are the
epipolar lines.

Reproject image planes onto é commo
plane parallel to the line between optica
centers

Pixel motion is horizontal after this transformation

Two homographies (3x3 transforms), one for each
Input image reprojection
See Szeliski book, Sect. 2.1.5, Fig. 2.12, and

“Mapping from one camera to another” p. 56
Adapted from Li Zhang

Slide credit: Kristen Grauman



Stereo image rectification: example




Your basic stereo algorithm

FTT7 T HON. ABRATIAM LINCOLN, President of United States. S5ggs

: . ‘.{,.'T . » {

. O

For each epipolar line
For each pixel in the left image
« compare with every pixel on same epipolar line in right image
« pick pixel with minimum match cost

Improvement: match windows

Slide credit: Rick Szeliski 126



Image block matching

How do we determine correspondences?

* block matching or SSD (sum squared differences)

E(ZE,y, d) — Z [IL($/+d7 y/)_IR(mlay/)]z
(2 y)eN (z,y)

d is the disparity (horizontal motion)

Slide credit: Rick Szeliski 127

How big should the neighborhood be?



Neighborhood size

Smaller neighborhood: more details

Slide credit: Rick Szeliski 128



Matching criteria

Raw pixel values (correlation)

Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, ...]

Edges [many people...]

Gradients [Seitz 89; Scharstein 94]

Rank statistics [Zabih & Woodfill 94]

Slide credit: Rick Szeliski 129



L ocal evidence framework

For every disparity, compute raw matching
costs

Eo(z,y;d) = p(Ip(2' + d,y') — Ir(a',y'))

Why use a robust function?
occlusions, other outliers

Can also use alternative match criteria

Slide credit: Rick Szeliski 130



L ocal evidence framework

Aggregate costs spatially

E(ﬂi‘,y, d) — Z EO('xlay/)d)

(z/,y')eEN(x,y)
d

Here, we are using a box filter
(efficient moving average
implementation)

Can also use weighted average,
[non-linear] diffusion...

Slide credit: Rick Szeliski

§
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L ocal evidence framework

Choose winning disparity at each pixel
d(xz,y) = arg min E(x,y,d)

Interpolate to sub-pixel accuracy

\

d¥ d

E(d)

Slide credit: Rick Szeliski

132



L ocal evidence framework

Advantages:
 gives detailed surface estimates
« fast algorithms based on moving averages
« sub-pixel disparity estimates and confidence

Limitations:
* narrow baseline = noisy estimates
« fails in textureless areas
« gets confused near occlusion boundaries

Slide credit: Rick Szeliski 133



Energy minimization

1-D example: approximating splines
Fiotal(d) = FEgata(d) + AEsmoothness(d)
Edata(d) Z(d:v,y Rz y)2

Z(da:,y g 1,y)2
Ethin plate(d) Z(de,y Ay — 1,y — dw-l-l,y)z

dx,y o o

/_\o/
ZX,y

o

Emembrane(d)

Slide credit: Rick Szeliski 134



Dynamic programming

Evaluate best cumulative cost at each pixel

Fiotal(d) = FEgata(d) + AEsmoothness(d)
Fgata(d) = Z(dx,y — Zw,y)z
L,y

EsmoothneSS(d) — Z ‘dm,y — da:—l,y|
x,y

Slide credit: Rick Szeliski 135



Dynamic programming

1-D cost function

Ed) = ) ppldyy1y—daey) + D Eo(z,y; d)
T,y LY

E(x,y,d) = Eo(z,y;d)+

F g
\\ l = ; ‘.
\\ : \ | v
d W z1
.....--..l|.>.\.......-..... d=0
| ~ }_ .
x

Slide credit: Rick Szeliski 136



Dynamic programming

Sample result
(note horizontal
streaks)

[Intille & Bobick]

b)

c)

Fig. 12, Results of two stereo algoeithms on Figure 1. (a) Original left image. (b) Cox et al algonthm| 14], and (¢} the algonthm described
1 this paper.

Slide credit: Rick Szeliski 137



Stereo Topics

Special, simple system, main idea
More general camera conditions, epipolar constraints
— epipolar geometry

— epipolar algebra

Image rectification

Stereo matching (likelihood term)
Stereo regularization (prior term)
Inference

— dynamic programming

— graph cuts

Structured light



graph cuts home page:  http://www.cs.cornell.edu/~rdz/graphcuts.html

Graph cuts

Solution technique for general 2D problem
Etotal(d) — Edata(d) +>\Esmoothness(d)

Edata(d) — me,y(d:n,y)

Esmooth ness(d)

Z P(dm,y Ay 1,y)
+ Z,O(dx,y — a:,y—l)
L,y

(a) original image  (b) observed image (¢} local min wor.t.  (d) local min w.r.t.
standard moves  a-expansion moves

Slide credit: Rick Szeliski 139



graph cuts home page:  http://www.cs.cornell.edu/~rdz/graphcuts.html

Graph cuts

- swap
expansion
modify smoothness penalty based on edges

compute best possible match within integer
disparity
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graph cuts home page:  http://www.cs.cornell.edu/~rdz/graphcuts.html

Graph cuts

Two different kinds of moves:

=y Y

(a) initial labeling (b) standard move (¢) a-/-swap () a-expansion
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Bayesian inference

Formulate as statistical inference problem
Prior model Pp(d)
Measurement model py(l,, Iz| d)
Posterior model
Pm(d [ 1L, 1) o Pp(d) Pu(lL, Il d)
Maximum a Posteriori (MAP estimate):
maximize py(d | I, Ig)

Slide credit: Rick Szeliski
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Markov Random Field

Probability distribution on disparity field d(x,y)

pP(dac,y‘d) — pP(dm,y|{dm/’y/7 (CC/, y/) S N(QC, y)})

pp(d) = > e F | |

P

Ep(d) => pp(dyt1y—day)+pp(dyyt1—dey)
Y

Enforces smoothness or coherence on field
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Measurement model

Likelihood of intensity correspondence

1 .
pM(IL, IR|d) - —e_EO(ajayvd)
ZnM

Eo(x,y;d) = p(Ir(z' + d,y') — Ir(z',y"))

Corresponds to Gaussian noise for quadratic p

Slide credit: Rick Szeliski 144



MAP estimate

Maximize posterior likelihood
E(d) = —logp(d|iy,IR)

= > pp(dyti,y — day) + pp(dyyt1 — duy)
Z,y

+ > L@+ dey,y) — Ir(z,y))
L,Y

Equivalent to regularization (energy
minimization with smoothness constraints)
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Why Bayesian estimation?

Principled way of determining cost function
Explicit model of noise and prior knowledge

Admits a wide variety of optimization
algorithms:

gradient descent (local minimization)
stochastic optimization (Gibbs Sampler)
mean-field optimization

graph theoretic (actually deterministic) [Zabih]
[loopy] belief propagation

large stochastic flios [Swendsen-Wang]
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Depth Map Results

e e~ ~AMAaan finlA - ..
Slide credit- Rick Szeliski Graph cuts |4,



Stereo evaluation

/ vision.middlebury.edu

stereo|* mview « MRF « flow
Stereo Evaluation  Datasets « Code ¢ Submit

Daniel Scharstein = Richard Szeliski

Welcome to the Middlebury Stereo Vision Page, formerly located at
www.middlebury edu/stereo. This website accompanies our taxonomy and comparison of
two-frame stereo correspondence algorithms [1]. It contains:

An on-line evaluation of current algorithms
Many stereo datasets with ground-truth disparities
Our stereo correspondence software

An on-line submission script that allows you to evaluate your stereo algorithm in
our framework

How to cite the materials on this website:

We grant permission to use and publish all images and numerical results on this
website. If you report performance results, we request that you cite our paper [1].
Instructions on how to cite our datasets are listed on the datasets page. If you want to
cite this website, please use the URL "vision.middlebury.edu/stereo/".

References:

[1] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision, 47(1/2/3):7-42, April-June 2002.
Microsoft Research Technical Report MSR-TR-2001-81, November 2001.
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Stereo—Dbest algorithms

CSE

Error Threshold = 1 Sort by nonocc Sort by all Sort by disc
Error Threshold... ¥ v v v
Nigoritem Avg. g%‘%h gr::en:l::lth groI\f\%ith griuon:et:.lth
Rank |nonocc  all disc |nonocc all disc |nonocc all disc |nonocc all disc
\/ \J \J \J \/
AdaptingBP [17] -1,110 1372 5797|010 0212 1441 | 4224 7062 1184 | 2481 7922 7321
DoubleBP2 [35 29 0881 1291 4761|0132 0455 1875|3532 8302 9.63+| 2902 878s 7792
DoubleBP [15] -m: 1292 4762 0145 06012 2007 | 3552 8715 9702 | 2904 92411 7802
SubPixDoubleBP [30]| 56 (124w 1761+ 5982 | 0122 046e¢ 1744 | 345+ 8384 1002|2935 8737 7914
AdaptOvrSegBP [33] -Jj_azz 20421 5645|0144 0201 1472 70414 1117 164113601 89610 8.84 10
SymBP+occ [7] 108 | 0974 17512 5094 | 0165 0332 219z | 6472 1076 17.014|47924 10721 10920
PlaneFitBP [32] 108 | 0975 18314 5265|0177 0518 1712 | 6.659 12112 1477 (41720 10720 10.6 13
AdaptDispCalib [36] - 1198 1424 6153|0235 0344 25011|7.8019 13.621 17.317|3.6212 93312 9.7215
Seagm-+visib [4] 122 (1301 1575 692107921 1061 6.7622| 5005 6541 1235|3721 8625 10217
C-SemiGlob [19] -zﬂa 32924 9.8927|0.2512 0.57 10 3.24 15| 5148 1188 13.08| 2772 8354 8205
SO+borders [29 128 | 1291 1712 68315/ 02512 0539 2269|7021 12214 1639 (3901 9851w 10.2 1
DistinctSM [27] 1219 17511 6.3911|03514 06916 263 13|74512 13.017 18.113/3.911@ 9911 8327
CostAgar+occ[39] | 143 13817 19617 71412/ 044w 11313 4871368011 1191w 173w | 36010 8575 93612




Stereo Topics

Special, simple system, main idea
More general camera conditions, epipolar constraints
— epipolar geometry

— epipolar algebra

Image rectification

Stereo matching (likelihood term)
Stereo regularization (prior term)
Inference

— dynamic programming

— graph cuts

Structured light



Active stereo with structured light

Li Zhang’ s one-shot stereo

camera 1 camera 1
projector projector
camera 2

Project “structured” light patterns onto the object
 simplifies the correspondence problem

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. In Proceedings of the 1st International
Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Padova, Italy,
June 19-21, 2002, pp. 24-36.
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Surface 010107 M

A
(0.60.10.1)
(-0.8-0.10.1)
q’/ Yer /T N \e“’ ié (0.10.7-0.1) i-+1
// \\ 2| 010106 ;
// \ Bl (0.1409-0.1)
4 N E (-0.20.40.2)
[lluminant Camera (-0.10.60.1)
(@) (0.90.10.1)
(R G B) _] T
SO GO0 @0 8)
l
Projector Scanline
(b) (©) (d)

-igure 2. Summary of the one-shot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the
eflected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and
mage. If the image planes are rectified as shown, the displacement is purely horizontal (one-dimensional). (b) An example of
he projected stripe pattern and (c) an image captured by the camera. (d) The grid used for multi-hypothesis code matching. The
1orizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence,
yoth taken for one projector and rectified camera scanline pair. A match represents a path from left to right in the grid. Each
rertex (j,i) has a score, measuring the consistency of the correspondence between ¢;, the color gradient vectors shown by the
rertical axis, and g;, the color transition vectors shown below the horizontal axis. The score for the entire match is the summation
)f scores along its path. We use dynamic programming to find the optimal path. In the illustration, the camera edge in bold italics
orresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

Li Zhang, Brian Curless, and Steven M. Seitz
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