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Abstract

We propose a novel unsupervised learning framework to model activities and interactions in crowded

and complicated scenes. Under our framework, hierarchical Bayesian models are used to connect three

elements in visual surveillance: low-level visual features, simple “atomic” activities, and interactions.

Atomic activities are modeled as distributions over low-level visual features, and multi-agent interactions

are modeled as distributions over atomic activities. These models are learnt in an unsupervised way.

Given a long video sequence, moving pixels are clustered into different atomic activities and short video

clips are clustered into different interactions. In this paper, we propose three hierarchical Bayesian

models, Latent Dirichlet Allocation (LDA) mixture model, Hierarchical Dirichlet Processes (HDP)

mixture model, and Dual Hierarchical Dirichlet Processes (Dual-HDP) model. They advance existing

language models, such as LDA [1] and HDP [2]. Directly using existing LDA and HDP models under

our framework, only moving pixels can be clustered into atomic activities. Our models can cluster

both moving pixels and video clips into atomic activities and into interactions. LDA mixture model

assumes that it is already known how many different types of atomic activities and interactions occur

in the scene. HDP mixture model automatically decides the number of categories of atomic activities.

Dual-HDP automatically decides the numbers of categories of both atomic activities and interactions.

Our data sets are challenging video sequences from crowded traffic scenes and train station scenes

with many kinds of activities co-occurring. Without tracking and human labeling effort, our framework

completes many challenging visual surveillance tasks of broad interest such as: (1) discovering and

providing a summary of typical atomic activities and interactions happening in the scene; (2) segmenting

long video sequences into different interactions; (3) segmenting motions into different activities; (4)

detecting abnormality; and (5) supporting high-level queries on activities and interactions. In our work,

these surveillance problems are formulated in a transparent, clean and probabilistic way compared with

the ad hoc nature of many existing approaches.

Index Terms

Hierarchical Bayesian model, Visual surveillance, Activity analysis, Abnormality detection, Video

segmentation, Motion segmentation, Clustering, Dirichlet Process, Gibbs sampling, Variational inference.

I. INTRODUCTION

The goal of this work is to understand activities and interactions in a crowded and complicated

scene, e.g. a crowded traffic scene, a busy train station or a shopping mall (see Figure 1). In

such scenes it is often not easy to track individual objects because of frequent occlusions among
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(a) (b) (c) (d)
Fig. 1. Examples of crowded and complicated scenes, such as traffic scenes, train stations, and shopping malls.

objects, and because many different types of activities often happen simultaneously. Nonetheless,

we expect a visual surveillance system to: (1) discover typical types of single-agent activities

(e.g. car makes a U-turn) and multi-agent interactions (e.g. vehicles stop waiting for pedestrians

to cross the street) in these scenes, and provide a summary of them; (2) label short video

clips in a long sequence as different interactions, and localize different activities involved in an

interaction; (3) detect abnormal activities, e.g. pedestrians cross the road outside the crosswalk;

and abnormal interactions, e.g. jay-walking (people cross the road while vehicles pass by); and

(4) support queries about interactions which have not yet been discovered by the system. Ideally,

a system would learn models of the scene to answer such questions in an unsupervised way.

These visual surveillance tasks become extremely difficult in crowded and complicated scenes.

Most of the existing activity analysis approaches are expected to fail in these scenes (see more

details in Section I-A).

To answer these challenges, we must determine how to model activities and interactions in

crowded and complicated scenes. In this work, we refer to atomic activities, such as cars stopping,

cars turning right, pedestrians crossing the street, etc., as the basic units for describing more

complicated activities and interactions. An atomic activity usually causes temporally continuous

motion and does not stop in the middle. Interaction is defined as a combination of different

types of co-occurring atomic activities, such as a car stops to wait for a pedestrian passing by.

However we do not consider interactions with complicated temporal logic, such as two people

meet each other, walk together, and then separate. Instead, we just model co-occurrences of

atomic activities. Atomic activities and interactions are modeled using hierarchical Bayesian

models under our framework.

Our system diagram is shown in Figure 2. We compute local motions (moving pixels) as

our low-level visual features. This avoids difficult tracking problems in crowded scenes. We
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Fig. 2. Our framework connects: low-level visual features, atomic activities and interactions. (a) The video sequence is divided

into short clips as documents. In each clip, local motions are quantized into visual words based on location and motion direction.

The four quantized directions are represented by colors. Each video clip has a distribution over visual words. (b) Atomic activities

(e.g. pedestrians cross the road) are discovered and modeled as distributions over visual words. (c) Each video clip is labeled

by type of interaction, modeled as a distribution over atomic activities.

do not adopt global motion features ([3], [4]), because in these complicated scenes multiple

different types of activities often occur simultaneously and we want to separate them. Each

moving pixel is labeled by location and direction of motion to form our basic feature set. A

long video sequence can be divided into many short video clips. Local motions caused by

the same kind of atomic activities often co-occur in the same short video clips, since atomic

activities cause temporally continuous motions. Interaction is a combination of atomic activities

occurring in the same video clip. Thus there exist two hierarchical structures in both our data

set (long video sequence → short video clips → moving pixels) and visual surveillance tasks

(interactions → atomic activities). So it is natural to employ a hierarchical Bayesian approach

to connect three elements in visual surveillance: low-level visual features, atomic activities and

interactions. Atomic activities are modeled as distributions over low-level visual features, and
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interactions are modeled as distributions over atomic activities. Moving pixels are clustered into

atomic activities and video clips are clustered into interactions. As explained in [5] a hierarchical

Bayesian model learnt from a data set with hierarchical structure has the advantage of using

enough parameters to fit the data well while avoiding overfitting problems, since it is able to

use a population distribution to structure some dependence into the parameters. In our case, the

same type of atomic activities repeatedly occur in different video clips. By sharing a common

set of atomic activity models across different video clips, the models of atomic activities can be

well learnt from enough data. On the other hand, atomic activities are used as components to

further model more complicated interactions, which are clusters of video clips. This is a much

more compact representation than directly clustering high dimensional motion feature vectors

computed from video clips. Under hierarchical Bayesian models, surveillance tasks such as video

segmentation, activity detection and abnormality detection are formulated in a transparent, clean

and probabilistic way compared with the ad hoc nature of many existing approaches.

There are some hierarchical Bayesian models for language processing, such as LDA [1] and

HDP [2], from which we can borrow. Under LDA and HDP models, words often co-existing in

the same documents are clustered into the same topic. HDP is a nonparametric model and auto-

matically decides the number of topics while LDA requires knowing that in advance. We perform

word-document analysis on video sequences. Moving pixels are quantized into visual words and

short video clips are treated as documents. Directly applying LDA and HDP to our problem,

atomic activities (corresponding to topics) can be discovered and modeled, however modeling

interactions is not straightforward, since these models cannot cluster documents. Although LDA

and HDP allow inclusion of more hierarchical levels corresponding to groups of documents,

they require first manually labeling documents into groups. For example, [2] modeled multiple

corpora but required knowing to which corpus each document belonged; [6] used LDA for scene

categorization, but had to label each image in the training set into different categories. These

are supervised frameworks. We propose three novel hierarchical Bayesian models, LDA mixture

model, HDP mixture model and Dual-HDP model. They co-cluster words and documents in an

unsupervised way. In the case of visual surveillance, this means we can learn atomic activities

as well as interactions without supervision. In fact, the problems of clustering moving pixels

into atomic activities and of clustering video clips into interactions are closely related. The

interaction category of a video clip provides a prior for possible activities happening in that

January 31, 2008 DRAFT



SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

clip. On the other hand, first clustering moving pixels into atomic activities provides an efficient

representation for modeling interactions since it dramatically reduces the data dimensionality.

We solve these two problems together under a co-clustering framework. LDA mixture model

assumes that the number of different types of atomic activities and interactions happening in the

scene is known. HDP mixture model automatically decides the number of categories of atomic

activities. Dual-HDP automatically decides the numbers of categories of both atomic activities

and interactions.

A. Related Work

Most existing approaches to activity analysis fall into two categories. In the first, objects of

interest are first detected, tracked, and classified into different object categories. Then object

tracks are used to model activities [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

For example, Stauffer and Grimson [7] classified tracks into different activity categories based

on the positions, speeds, moving directions, sizes and silhouettes of objects along the tracks.

Wang and Grimson [9] used the modified Hausdorff distance to compare the distance between

two tracks and clustered tracks into activities. Oliver and Pentland [8] used a coupled HMM to

model the interaction between two tracks. Intille and Bobick [11] used a Bayesian network to

analyze the strategies in a football game. Since it was hard to track objects in such a crowded

scene, they manually marked tracks. With the help of tracking, the activity of one object can be

separated from other co-occurring activities. However, tracking based approaches are sensitive

to tracking errors. If tracking errors happen only in a few frames, the future track could be

completely wrong. These approaches fail when object detection, tracking, and/or recognition do

not work well, especially in crowded scenes. Many of these approaches are supervised. Some

systems model primitive events, such as “move, stop, enter-area, turn-left”, which are similar to

our atomic activities, and use these primitives as components to model complicated activities

and interactions [10], [19]. However, these primitive events were learnt from labeled training

examples, or their parameters were manually specified. When switching to a new scene, new

training samples must be labeled and parameters must be tuned or re-learnt.

The second kind of approaches [3], [4], [20], [21], [22], [23] directly use motion feature

vectors instead of tracks to describe video clips. For example, Zelnik-Manor and Irani [4]

modeled and clustered video clips using multi-resolution histograms. Zhong et al. [3] also
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computed global motion histograms and did word-document analysis on video. However, their

words were frames instead of moving pixels. They clustered video clips through the partition of

a bipartite graph. Without object detection and tracking, a particular activity can not be separated

from other activities simultaneously occurring in the same clip, as is common in crowded scenes.

These approaches treat a video clip as an integral entity and flag the whole clip as normal or

abnormal. They are often applied to simple data sets where there is only one kind of activity in a

video clip. It is difficult for these approaches to model both single-agent activities and multi-agent

interactions. Although there are actions/events modeling approaches [24], [25], [26], [27], [28],

which allowed one to detect and separate co-occurring activities, they are usually supervised.

At the training stage, they required manually isolating activities or a training video clip only

contained one kind of activity.

In computer vision, hierarchical Bayesian models have been applied to scene categorization [6],

object recognition [29], [30], [31], and human action recognition [26]. [6], [31], [32], and [26]

are supervised learning frameworks in the sense that they need to manually label the documents.

The video clip in [26] usually contains a single activity and [26] did not model interactions

among multiple objects. [29] and [30], which directly applied an LDA model, were unsupervised

frameworks assuming a document contains only one major topic. These methods will not directly

transfer to our problem where each document typically contains several topics. These approaches

could not model interactions either.

Our approach avoids tracking in crowded scenes, using only local motion as features. It

can separate co-occurring activities in the video clip by modeling activities and interactions.

The whole learning procedure is unsupervised without manual labeling of video clips or local

motions. The rest of this paper is organized as following. Section II describes how to compute

the low-level visual features. Three novel hierarchical Bayesian models are proposed in Section

III. Section IV explains how to employ these models to solve visual surveillance tasks and

shows experimental results from a traffic scene and a train station scene. In Section V, we

discuss the limitations and possible extensions of this work.

II. LOW-LEVEL VISUAL FEATURES

Our data sets are video sequences from far-field traffic scenes (Figure 1 (a)) and train

station scenes (Figure 1 (c)) recorded by a fixed camera. There are myriads of activities and
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interactions in the video data. It also involves many challenging problems, such as lighting

changes, occlusions, a variety of object types, object view changes and environmental effects.

We compute local motions as our low-level features. Moving pixels are detected in each frame

as follows. We compute the intensity difference between two successive frames, on a pixel basis.

If the difference at a pixel is above a threshold, that pixel is detected as a moving pixel. The

motion direction at each moving pixel is obtained by computing optical flow [33]. The moving

pixels are quantized according to a codebook, as follows. Each moving pixel has two features:

position and direction of motion. To quantize position, the scene (480×720) is divided into cells

of size 10 by 10. The motion of a moving pixel is quantized into four directions as shown in

Figure 2(a). Hence the size of the codebook is 48×72×4, and thus each detected moving pixel

is assigned a word from the codebook based on rough position and motion direction. Deciding

the size of the codebook is a balance between the descriptive capability and complexity of the

model. The whole video sequence is uniformally divided into non-overlapping short clips, each

10 seconds in length. In our framework, video clips are treated as documents and moving pixels

are treated as words for word-document analysis as described in Section III.

III. HIERARCHICAL BAYESIAN MODELS

LDA [1] and HDP [2] were originally proposed as hierarchical Bayesian models for language

processing. In these models, words that often co-exist in the same documents are clustered into

the same topic. We extend these models by enabling clustering of both documents and words,

thus finding co-occurring words (topics) and co-occurring topics (interactions). For far-field

surveillance videos, words are quantized local motions of pixels; moving pixels that tend to co-

occur in clips (or documents) are modeled as topics. Our goal is to infer the set of activities (or

topics) from video by learning the distributions of features that co-occur, and to learn distributions

of activities that co-occur, thus finding interactions. Three new hierarchical Bayesian models are

proposed in this section: LDA mixture model, HDP mixture model, and Dual-HDP model.

A. LDA Mixture Model

Figure 3(a) shows the LDA model of [1]. Suppose the corpus has M documents. Each

document is modeled as a mixture of K topics, where K is assumed known. Each topic k

is modeled as a multinomial distribution βk = [βk1, . . . , βkW ] over a word vocabulary of size
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Fig. 3. (a) LDA model proposed in [1]; (b) our LDA mixture model.

W . β = {βk}. α = [α1, . . . , αK ] is a Dirichlet prior on the corpus. For each document j,

a parameter πj = [πj1, . . . , πjK ] of the multinomial distribution over K topics is drawn from

Dirichlet distribution Dir(πj|α). For each word i in document j, a topic label zji = k is drawn

with probability πjk, and word xji is drawn from a discrete distribution given by βzji . πj and

zji are hidden variables. α and β are hyperparameters to be optimized. Given α and β, the joint

distribution of topic mixture πj , topics zj = {zji}, and words xj = {xji} is:

p(xj, zj, πj|α, β) = p(πj|α)

Nj∏
i=1

p(zji|πj)p(xji|zji, β)

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

πα1−1
j1 · · · παK−1

jK

Nj∏
i=1

πjzjiβzjixji (1)

where Nj is the number of words in document j. Unfortunately, the marginal likelihood p(xj|α, β)

and thus the posterior distribution p(πj, zj|α, β) are intractable for exact inference. Thus in [1],

a Variational Bayes (VB) inference algorithm used a family of variational distributions:

q(πj, zj|γj, φj) = q(πj|γj)
Nj∏
i=1

q(zji|φji) (2)

to approximate p(πj, zj|α, β), where the Dirichlet parameter γj and multinomial parameters {φji}

are free variational parameters. The optimal (γj, φj) is computed by finding a tight lower bound

on log p(xj|α, β).
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This LDA model in [1] does not model clusters of documents. All the documents share the

same Dirichlet prior α. In activity analysis, we assume that video clips (documents) of the same

type of interaction would include a similar set of atomic activities (topics), so they could be

grouped into the same cluster and share the same prior over topics. Our LDA mixture model is

shown in Figure 3(b). The M documents in the corpus will be grouped into L clusters. Each

cluster c has its own Dirichlet prior αc. For a document j, the cluster label cj is first drawn

from discrete distribution η, and πj is drawn from Dir(πj|αcj). Given {αc}, β, and η, the joint

distribution of hidden variables cj , πj , zj and observed words xj is

p(xj, zj, πj, cj|{αc}, β, η) = p(cj|η)p(πj|αcj)
N∏
i=1

p(zji|πj)p(xji|zji, β) (3)

The marginal log likelihood of document j is:

log p(xj|{αc}, β, η) = log
L∑

cj=1

p(cj|η)p(xj|αcj , β) (4)

Our LDA mixture model is relevant to the model proposed in [6]. However, the hidden variable

cj in our model was observed in [6]. So [6] required manually labeling documents in the training

set, while our framework is totally unsupervised. This causes a different inference algorithm to

be proposed for our model. Using VB [1], log p(xj|αcj , β) can be approximated by a tight lower

bound L1(γjcj , φjcj ;αcj , β),

log p(xj|αcj , β) = log

∫
πj

∑
zj

p(πj, zj, xj|αcj , β)dπj

= log

∫
πj

∑
zj

p(πj, zj, xj|αcj , β)q(zj, πj|γjcj , φjcj)
q(zj, πj|γjcj , φjcj)

dπj

≥
∫
πj

∑
zj

q(zj, πj|γjcj , φjcj) log p(xj, zj, πj|αcj , β)dπj

−
∫
πj

∑
zj

q(zj, πj|γjcj , φjcj) log q(zj, πj|γjcj , φjcj)dπj

= L1(γjcj , φjcj ;αcj , β). (5)

However because of the marginalization over cj , hyperparameters are still coupled even using

VB. So we use both EM and VB to estimate hyperparameters. After using VB to compute the

lower bound of log p(xj|αcj , β), an averaging distribution q(cj|γjcj , φjcj) can provide a further
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lower bound on the log likelihood,

log p(xj|{αc}, β, η) ≥ log
L∑

cj=1

p(cj|η)eL1(γjcj ,φjcj ;αcj ,β)

= log
L∑

cj=1

q(cj|γjcj , φjcj)
p(cj|η)eL1(γjcj ,φjcj ;αcj ,β)

q(cj|γjcj , αjcj)

≥
L∑

cj=1

q(cj|γjcj , φjcj)
[
log p(cj|η) + L1(γjcj , φjcj ;αcj , β)

]
−

L∑
cj=1

q(cj|γjcj , φjcj) log q(cj|γjcj , φjcj)

= L2(q(cj|γjcj , φjcj), {αc}, β, η) (6)

L2 is maximized when choosing

q(cj|γjcj , φjcj) =
p(cj|η)eL1(γjcj ,φjcj ;αcj ,β)∑
cj
p(cj|η)eL1(γjcj ,φjcj ;αcj ,β)

. (7)

Our EM algorithm for hyperparameters estimation is:

1) For each document j and cluster cj , find the optimal values of the variational parameters

{γ∗j,cj , φ
∗
j,cj

: j = 1, . . . ,M ; cj = 1, . . . , L} to maximize L1 (using VB [1]).

2) Compute q(cj|γ∗jcj , φ
∗
jcj

) using (7) to maximize L2.

3) Maximize L2 with respect to {αc}, β, and η. β and η are optimized by setting the first

derivative to zero,

ηc ∝
M∑
j=1

q(cj = c|γ∗jc, φ∗jc) (8)

βkw ∝
M∑
j=1

L∑
cj=1

q(cj|γ∗jcj , φ
∗
jcj

)

[
N∑
i=1

φ∗jcjikx
w
ji

]
(9)

where xwji = 1 if xji = w, otherwise it is 0. The {αc} are optimized using a Newton-

Raphson algorithm. The first and second derivatives are:

∂L2

∂αck
=

M∑
j=1

q(cj = c|γjc, φjc)[Ψ(
K∑
k=1

αck)−Ψ(αck) + Ψ(γjck)−Ψ(
k∑
j=1

γjck)] (10)

∂2L2

∂αck1αck2
=

M∑
j=1

q(cj = c|γjc, φjc)[Ψ′(
K∑
k=1

αck)− δ(k1, k2)Ψ
′(αck1)] (11)

where Ψ is the first derivative of log Gamma function.

L2 monotonously increases after each iteration.
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Fig. 4. (a) HDP model proposed in [2]; (b) our HDP mixture model.

B. HDP Mixture Model

HDP is a nonparametric hierarchical Bayesian model and automatically decides the number

of topics. The HDP model proposed in [2] is shown in Figure 4 (a). A global random measure

G0 is distributed as a Dirichlet Process with concentration parameter λ and base probability

measure H (H is a Dirichlet prior in our case):

G0|γ,H ∼ DP (γ,H).

G0 can be expressed using a stick-breaking representation,

G0 =
∞∑
k=1

π0kδφk , (12)

where {φk} are parameters of multinomial distributions and δφk(·) is the Delta function with

support point at φk. {φk} and {π0k} are called locations and masses. {φk} models topics of

words. {π0k} are mixtures over topics. They are sampled from a stick-breaking construction:

φk ∼ H , π0k = π′0k
∏k−1

l=1 (1− π′0l), π′0k ∼ Beta(1, λ).

G0 is a prior distribution over the whole corpus. For each document j, a random measure Gd
j

is drawn from a Dirichlet process with concentration parameter α and base probability measure

G0: Gd
j |α,G0 ∼ DP (α,G0). Each Gd

j has support at the same locations {φk}∞k=1 as G0, i.e. all

January 31, 2008 DRAFT



SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

the documents share the same set of topics, and can be written as Gd
j =

∑∞
k=1 πjkδφk . G

d
j is a

prior distribution of all the words in document j. For each word i in document j, a topic θji is

drawn from Gd
j (θji is sampled as one of the φk’s). Word xji is drawn from discrete distribution

Discrete(θji). In [2], Gibbs sampling schemes were used to do inference under an HDP model.

In our HDP mixture model, as shown in Figure 4 (b), clusters of documents are modeled

and each cluster c has a random probability measure Gc. Gc is drawn from Dirichlet process

DP (ρ,G0). For each document j, a cluster label cj is first drawn from discrete distribution

p(cj|η). Document j chooses Gcj as the base probability measure and draws its own Gd
j from

Dirichlet process Gd
j ∼ DP (α,Gcj). We also use Gibbs sampling for inference. In our HDP

mixture model, there are two kinds of hidden variables to be sampled: (1) variables z = {zij}

assigning words to topics, base distributions G0 and {Gc}; and (2) cluster label cj . The key

issue to be solved in this paper is how to sample cj . Given cj is fixed, the first kind of variables

can be sampled using the same scheme described in [2]. We will not repeat the details in this

paper. We focus on the step of sampling cj , which is the new part of our model compared with

HDP in [2].

At some sampling iteration, suppose that there have been K topics, {φk}Kk=1, generated and

assigned to the words in the corpus (K is variable during the sampling procedure). G0, Gc, and

Gd
j can be expressed as,

G0 =
K∑
k=1

π0kδφk + π0uG0u,

Gc =
K∑
k=1

πckδφk + πcuGcu,

Gd
j =

K∑
k=1

ωjkδφk + ωjuG
d
ju,

where G0u, Gcu, and Gd
ju are distributed as Dirichlet process DP (γ,H). Note that the prior over

the corpus (G0), a cluster of document (Gc) and a document Gd
j share the same set of topics

{φk}. However, they have different mixtures over topics.

Using the sampling schemes in [2], topic mixtures π0 = {π01, . . . , π0K , π0u}, πc = {πc1, . . . , πcK , πcu}

are sampled, while {φk}, G0u, Gcu, Gd
ju, and ωdj = {ωj1, . . . , ωjK , ωju} can be integrated

out without sampling. In order to sample the cluster label cj of document j, the posterior
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p(cj = c|(mj1, . . . ,mjK), π0, {πc}) has to be computed where mjk is the number of words

assigned to topic k in document j and is computable from z:

p(cj = c|(mj1, . . . ,mjK), π0, {πc})

∝p(mj1, . . . ,mjK |πc)p(cj = c) = ηc

∫
p(mj1, . . . ,mjK |ωdj )p(ωdj |πc)dωdj .

p(mj1, . . . ,mjK |ωdj ) is a multinomial distribution. Since Gd
j is drawn from DP (α,Gc), p(ωdj |πc)

is a Dirichlet distribution Dir(ωdj |α · πc). Thus we have

p(cj = c|(mj1, . . . ,mjK), π0, {πc})

∝ηc
∫

Γ(απcu + α
∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)
ωαπcu−1
ju

K∏
k=1

ω
απck+mjk−1

jk dωdj

∝Γ(απcu + α
∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)

Γ(απcu)
∏K

k=1 Γ(απck +mjk)

Γ(απcu +
∑K

k=1(απck +mjk))

=ηc
Γ(α)

Γ(α +Nj)

∏K
k=1 Γ(α · πck +mjk)∏K

k=1 Γ(α · πck)
∝ ηc

∏K
k=1 Γ(α · πck +mjk)∏K

k=1 Γ(α · πck)
. (13)

where Γ is the Gamma function.

So the Gibbs sampling procedure repeats the following two steps alternatively at every itera-

tion:

1) given {cj}, sample z, π0, and {πc} using the schemes in [2];

2) given z, π0, and {πc}, sample cluster labels {cj} using posterior Eq 13.

In this section, we assume that the concentration parameters γ, ρ, and α are fixed. In actual

implementation, we give them a vague gamma prior Gamma(1, 1) and sample them using

the scheme proposed in [2]. Thus these concentration parameters are sampled from a broad

distribution instead of being fixed at a particular point.

C. Dual-HDP

In this section, we propose a Dual-HDP model which automatically decides both the number

of word topics and the number of document clusters. In addition to the hierarchical Dirichlet

processes which model the word topics, there is another layer of hierarchical Dirichlet processes

modeling the clusters of documents. Hence we call this a Dual-HDP model. The graphical model

of Dual-HDP is shown in Figure 5. In HDP mixture model, each document j has a prior Gcj
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Fig. 5. The graphical model of Dual-HDP. Q =
∑∞
c=1 εcδGc and G0 =

∑∞
k=1 π0kδφk are two infinite mixtures modeling

clusters of documents and words respectively. Q is generated from DDP (µ,Ψ). Ψ = DP (ρ,G0) is a Dirichlet process.

drawn from a finite mixture {Gc}Lc=1. In the Dual-HDP model, Gcj is drawn from an infinite

mixture,

Q =
∞∑
c=1

εcδGc (14)

Notice that Gc itself is a random distribution with infinite parameters. When a Dirichlet process

was first developed by Ferguson [34], the location parameters (such as φk in Eq. 12) could

only be scalars or vectors. MacEachern [35] made an important generalization and proposed

the Dependent Dirichlet Processes (DDP). DDP replaces the locations in the stick-breaking rep-

resentation with stochastic processes and introduces dependence in a collection of distributions.

The parameters {(πck, φck)}∞k=1 of Gc can be treated as a stochastic process with index k. Q

can be treated as a set of dependent distributions, Q = {Qk =
∑∞

c=1 εcδ(πck,φck)}∞k=1. So we can

generate Q through DDP.

As shown in Figure 5 (a), Q is sampled from DDP (µ,Ψ). µ is the concentration parameter,

and εc = ε′c
∏c−1

l=1 (1 − ε′l), ε′c ∼ Beta(1, µ). As shown in Figure 5 (b), Ψ = DP (ρ,G0) is a

Dirichlet process, and Gc ∼ DP (ρ,G0). Similar to the HDP mixture model in Figure 4 (b),

G0 ∼ DP (λ,H) is the prior over the whole corpus and generates topics shared by all of the

words. {Gc}∞c=1 all have the same topics in G0, i.e. φck = φk. However they have different
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mixtures {πck}∞k=1 over these topics.

Each document j samples a probability measure Gcj from Q as its prior. Different documents

may choose the same prior Gc, thus they form one cluster. So in Dual-HDP, the two infinite

mixtures Q and G0 model the clusters of documents and words respectively. The following gen-

erative procedure is the same as HDP mixture model. Document j generates its own probability

measure Gd
j from Gd

j ∼ DP (α,Gcj). Word i in document j samples topic φk from Gd
j and

samples its word value from Discrete(φk).

Gibbs sampling was also used for inference and learning on Dual-HDP. The Gibbs sampling

procedure can be divided into two steps:

1) given the cluster assignment {cj} of documents is fixed, sample the word topic assignment

z, masses π0 and πc on topics using the schemes in [2];

2) given z, masses π0 and πc, sample the cluster assignment {cj} of documents. cj can be

assigned to one of the existing clusters or to a new cluster. We use the Chinese restaurant

franchise for sampling. See details in the Appendix.

D. Discussion on the words-documents co-clustering framework

We propose three words-documents co-clustering models. Readers may ask why we need a

co-clustering framework? Can we first cluster words into topics and then cluster documents based

on their distributions over topics, or solve the two problems separately? In visual surveillance

applications, the issue is about simultaneously modeling activities and interactions. In the lan-

guage processing literature, there has been considerable work dealing with word clustering [36],

[1], [2] and document clustering [37], [38], [39] separately. Dhillon [40] showed the duality of

words and documents clustering: “word clustering induces document clustering while document

clustering induces words clustering”. Information on the category of documents helps to solve

the ambiguity of word meaning and vice versus. Thus a co-clustering framework can solve the

two closely related problems in a better way. Dhillon [40] co-clustered words and documents by

partitioning a bipartite spectral graph with words and documents as vertices. However, one cluster

of documents only corresponded to one cluster of words. [36], [1] showed that one document

may contain several topics. In a visual surveillance data set, one video clip may contain several

atomic activities. Our co-clustering algorithms based on hierarchical Bayesian models can better

solve these problems.
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E. Example of synthetic data

We use an example of synthetic data to demonstrate the strength of our hierarchical Bayesian

models (see Figure 6). The toy data is similar as that used in [41]. The word vocabulary is a

set of 5 × 5 cells. There are 10 topics with distributions over horizontal bars and vertical bars

(Figure 6 (a)), i.e., words tend to co-occur along the same row or column, but not arbitrarily.

The document is represented by a image with 25 pixels in a 5 × 5 grid. Each pixel is a word

and the intensity of a pixel is the frequency of the word. If we generate documents by randomly

choosing several topics from the ten, adding noise to the bar distributions, and sample words

from these bars, there are only two levels of structures (topics and words) in the data and the

HDP model in [2] can perfectly discover the 10 topics. However, in our experiments in Figure 6,

we add one more level, clusters of documents, to the data. Documents are from two clusters: a

vertical-bars cluster and a horizontal-bars cluster. If a document is from the vertical-bars cluster,

it randomly combines several vertical bar topics and sample words from them, otherwise, it

randomly combines horizontal bar topics. As seen in Figure 6 (c), HDP in [2] has much worse

performance on this data. There are two kinds of correlation among words: if words are on

the same bar, they often co-exist in the same documents; if words are all on horizontal bars or

vertical bars, they are also likely to be in the same documents. It is improper to use a two-level

HDP to model data with a three-level structure. 15 topics are discovered and many of the topics

include more than one bar. Using our HDP mixture model and Dual-HDP model to co-cluster

words and documents, the 10 topics are discovered nearly perfectly as shown in Figure 6(d).

In the meanwhile, the documents are grouped into two clusters as shown in Figure 6 (e) and

(f). The topic mixtures π1 and π2 of these two clusters are shown in Figure 6 (g). π1 only has

large weights on horizontal bar topics while π2 only has large weights on vertical bar topics.

Thus our approach recovers common topics (i.e. words that co-occur) and common documents

(i.e. topics that co-occur). For Dual-HDP, we tried different numbers of document clusters as

initialization, and found it always converges to two clusters.

IV. VISUAL SURVEILLANCE APPLICATIONS AND EXPERIMENTAL RESULTS

After computing the low-level visual features as described in Section II, we divide our video

sequence into 10 second long clips, each treated as a document, and feed these documents to

the hierarchical Bayesian models described in Section III. In this section, we explain how to
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Vertical bars

Simulated documents

(a) (b)

(e)

(f)

(c)

(d) (g)

Fig. 6. Experiment on synthetic data. (a) There are ten topics with distributions along horizontal bars and vertical bars.

A synthetic document can be generated in one of the two ways. It randomly randomly combines several vertical bar topics

and sample words from them or randomly combines several horizontal bar topics. (b) The simulated documents. (c) Topic

distributions learnt by the HDP model in [2]. (d) Topics distributions learnt by the Dual-HDP model. Documents are grouped

into two clusters shown in (e) and (f). (g) Topic mixtures of two clusters π1 and π2.

use the results from hierarchical Bayesian models for activity analysis. We will mainly show

results from Dual-HDP, since it automatically decides the number of word topics and the number

of document clusters, while LDA mixture model and HDP mixture model need to know those

in advance. However, if the number of word topics and the number of document clusters are

properly set in LDA mixture model and HDP mixture model, they provide very similar results.

Most of the experimental results are from a traffic scene. Some results from a train station scene

is shown at the end of this section.

A. Discover Atomic Activities

In visual surveillance, people often ask “what are the typical activities and interactions in this

scene?” The parameters estimated by our hierarchical Bayesian models provide a good answer

to this question.
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b

Fig. 7. Motion distributions of some topics discovered by our HDP models. The motion is quantized into four directions

represented by four colors: red (→), magenta (↑), cyan (←), and green (↓). The topics are sorted according to how many words

in the corpus are assigned to them (from large to small). For convenience, we label roads and crosswalks as a, b, . . . in the first

image.
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Fig. 8. Histogram of moving pixels assigned to 29 topics in Figure 7.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14)

Fig. 9. Motion distributions of topics discovered by our LDA model when the topic number is fixed as 14.

As we explained in Section I, an atomic activity usually causes temporally continuous motion

and does not stop in the middle. So the motions caused by the same kind of atomic activity often

co-occur in the same video clip. Since the moving pixels are treated as words in our hierarchical

Bayesian models, the topics of words are actually a summary of typical atomic activities in the

scene. Each topic has a multinomial distribution over words (i.e., visual motions), specified by

β in LDA mixture model and {φk} in our HDP models. (φk can be easily estimated given the

words assigned to topic k after sampling).
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LDA topic 4

2D‐HDP topics

Fig. 10. When the number of word topics is set as 14 in LDA, HDP topics 17, 21, 23, 24, 25, 26, and 27 related to pedestrian

walking are merged into one LDA topic 14.

Our HDP models automatically discovered 29 atomic activities in the traffic scene. In Figure 7,

we show the motion distributions of these topics. The topics are sorted by size (the number of

words assigned to the topic) from large to small. The numbers of moving pixels assigned to

topics are shown in Figure 8. Topic 2 explains vehicles making a right turn. Topics 5, 14, and

20 explain vehicles making left turns. Topics 6 and 9 explain vehicles crossing road d, but along

different lanes. Topics 1 and 4 explain “vehicles pass road d from left to right”. This activity is

broken into two topics because when vehicles from g make a right turn (see topic 2) or vehicles

from road e make a left turn (see topic 14), they also share the motion in 4. From topic 10 and

19, we find vehicles stopping behind the stop lines during red lights. Topics 13, 17, 21 explain

that pedestrians walk on crosswalks. When people pass the crosswalk a, they often stop at the

divider between roads e and f waiting for vehicles to pass by. So this activity breaks into two

topics 17 and 21. When the number of topics is set as 29, LDA model provides similar result

as HDP. In Figure 9, we show the results from LDA when choosing 14 instead of 29 as the

number of topics. Several topics discovered by HDP merge into one topic in LDA. For example,

as shown in Figure 10, HDP topics 17, 21, 23, 24, 25, 26, and 27 related to pedestrian walking

in Figure 7 merge into LDA topic 4 in Figure 9. Topics 8, 16, 19 in Figure 7 merge into topic

10 in Figure 9.
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Fig. 11. The short video clips are grouped into five clusters. In the first row, we plot the mixtures {πc} over 29 topics as

prior of each cluster represented by blue bars. For comparison, the red curve in each plot is the average topic mixture over

the whole corpus. The x-axis is the index of atomic activities. The y-axis is the mixture over atomic activities. In the second

row, we show a video clip as an example for each type of interaction and mark the motions of the five largest topics in that

video clip. Notice that colors distinguish different topics in the same video (the same color may correspond to different topics

in different video clips) instead of representing motion directions as in Figure 7.

B. Discover Interactions

Multi-agent interactions can be well explained as combinations of atomic activities, or equiv-

alently, topics, under our framework. In our hierarchical Bayesian models, the video clips are

automatically clustered into different interactions. The topics mixtures ({αc} in LDA mixture

model and {πc} in HDP) as priors of document clusters provide a good summary of interactions.

Figure 11 plots the topic mixtures πc of five clusters under our HDP models. Cluster 1 explains

traffic moving in a vertical direction. Vehicles from e and g move vertically, crossing road d and

crosswalk a. 3, 6, 7, 9 and 11 are major topics in this interaction, while the prior over other

topics related to horizontal traffic(1, 4, 5, 8, 16, 20), and pedestrians walking on crosswalk a

and b (13, 17, 21, 23), is very low. Cluster 2 explains “vehicles from road g make a right turn to

road a while there is not much other traffic”. At this time, vertical traffic is forbidden because

of the red light while there are no vehicles traveling horizontally on road d, so these vehicles

from g can make a right turn. Cluster 3 is “pedestrians walk on the crosswalks while there is

not much traffic”. Several topics (21, 13, 17) related to pedestrian walking are much higher that

their average distributions on during the whole video sequence. Topics 10 and 15 are also high

because they explain that vehicles on road e stop behind the stop line. Cluster 4 is “vehicles on

road d make a left turn to road f”. Topics 5 11 and 12 related to this activity are high. Topics

1 and 4 are also high since horizontal traffic from left to right is allowed at this time. However
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Fig. 12. Results of video segmentation. (a) The snapshot of our video result; (b) the confusion matrix; (c) the segmentation

result of one and half hours of video; (d) zoom in of the segmentation result of the last 20 minutes of video. In (c) and (d), the

x-axis is the index of video clips in temporal order, and the y-axis is the label of the five interactions shown in Figure 11.

topics 8, 16 and 20 are very low, because traffic from right to left conflicts with this left turn

activity. Cluster 5 is horizontal traffic. During this interaction, topics 13, 17 and 21 are also

relatively high, since pedestrians are allowed to walk on a. In the second row of Figure 11, we

show an example video clip for each type of interaction. In each video clip, we choose the five

largest topics and mark motions belonging to different topics by different colors.

C. Video Segmentation

Given a long video sequence, we can segment it based on different types of interactions.

Our models provide a natural way to complete this task in an unsupervised manner since

video clips are automatically separated into clusters (interactions) in our model. To evaluate

the clustering performance, we create a ground truth by manually labeling the 540 video clips

into five typical interactions in this scene as described in Section IV-B. The confusion matrix

between our clustering result and the ground truth is shown in Figure 12 (b). The average

accuracy of video segmentation is 85.74%. Figure 12 shows the labels of video clips in the
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(1) (2) (3)

(4) (5)

Fig. 13. Activity detection. Five video clips are chosen as examples of the five interactions shown in Figure 11. We show

one key frame of each video clip. The motions are clustered into different activities marked by different colors. However since

there are so many atomic activities, we cannot use a uniform color scheme to represent all of them. In this Figure, the same

color in different video clips may indicate different activities. Clip 1 has atomic activities 1 (green), 3 (cyan), 6 (blue) (see these

atomic activities in Figure 7). Clip 2 has atomic activities 2 (cyan), 13 (blue). Clip 3 has atomic activities 15 (cyan), 7 (blue),

21 (red). Clip 4 has atomic activities 1 (red), 5 (blue), 7(green), 12 (cyan), 15 (yellow). Clip 5 has atomic activities 8 (red), 16

(cyan), 17 (magenta), 20 (green).

entire one and half hours of video and in the last 20 minutes. Note the periodicity of the labels

assigned. We can observe that each traffic cycle lasts around 85 seconds.

D. Activity Detection

We also want to localize different types of atomic activities happening in the video. Since in

our hierarchical Bayesian models, each moving pixel is labeled as one of the atomic activities,

activity detection becomes straightforward. In Figure 13, we choose five ten seconds long video

clips as examples of the five different interactions, and show the activity detection results on

them. As an extension of activity detection, we can detect vehicles and pedestrians based on

motions. It is observed that the vehicle motions and pedestrian motions are well separated among

atomic activities. However, the user first needs to label each of the discovered atomic activities as

being related to vehicles or pedestrians. Then we can classify the moving pixels into vehicles and
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Fig. 14. Vehicle and pedestrian detection. Vehicle motions are marked by red color and pedestrian motions are marked by

green color.

pedestrians based on their atomic activity labels. Figure 14 shows some detection results. This

approach cannot detect static vehicles and pedestrians. It is complementary to appearance based

vehicle and pedestrian detectors, since these two approaches are using very different features

(appearance vs. motion) for detection.

E. Abnormality Detection

In visual surveillance, detecting abnormal video clips and localizing abnormal activities in

the video clip are of great interest. Under the Bayesian models, abnormality detection has a

nice probabilistic explanation by the marginal likelihood of every video clip or motion rather

than by comparing similarities between samples. Computing the likelihoods of documents and

words under LDA mixture has been described in Section III-A (see Eq 5). Computing the

likelihood under HDP mixture model and Dual-HDP model is not straightforward. We need to

compute the likelihood of document j given other documents, p(xj|x−j), where x−j represents

the whole corpus excluding document j. For example, in the HDP mixture model, since we

have already drawn M samples {z−j(m), {π(m)
c }, π(m)

0 }Mm=1 from p(z−j, {πc}, π0|x) which is very

close to p(z−j, {πc}, π0|x−j), we approximate p(xj|x−j) as

January 31, 2008 DRAFT



SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 26

1st 4th 2nd

3rd 5th

Fig. 15. Results of abnormality detection. We show the top five video clips with the highest abnormality (lowest likelihood).

In each video clip, we highlight the regions with motions of high abnormality.

p(xj|x−j) =
1

M

∑
m

∑
cj

∫
ωj

∑
zj

∑
i

p(xji|zji, z−j(m), x−j)p(zj|ωj)p(ωj|π(m)
cj

)ηcjdωj (15)

p(ωj|π(m)
cj ) is a Dirichlet distribution. If (u1, . . . , uT ) is the Dirichlet prior on φk,

p(xji|zji, z−j(m), x−j) = (uxji + nxji)/(
T∑
t=1

(ut + nt))

is a multinomial distribution, where nt is the number of words in x−j with value t assigned

to topic zji(see [2]). The computation of
∫
ωj

∑
zj p(xji|zji, z

−j(m), x−j)p(zj|ωj)p(ωj|π(m)
cj ) is in-

tractable, but can be approximated with a variational inference algorithm as in [1]. The likelihood

computation in Dual-HDP model is very similar to that in the HDP mixture model. The only

difference is to replace ηcj with ε(m)
cj in Eq 15.

Figure 15 shows the top five detected abnormal video clips. The red color highlights the

regions with abnormal motions in the video clips. There are two abnormal activities in the first

video. A vehicle is making a right-turn from road d to road f. This is uncommon in this scene

because of the layout of the city. Actually there is no topic explaining this kind of activity in

our data (topics are summaries of typical activities). A person is simultaneously approaching
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Fig. 16. Query result of jay-walking. (a) We pick two atomic activities (topic 6 and 13) involved in the interaction jay-working.

(b) A query distribution is drawn with large weights on topic 6 and 13 and zeros weights on other topics. (c) An example of

jay-walk retrieval. (d) shows the top 40 retrieval results. If the video clip is correct, it is labeled as 1 otherwise 0.

road f, causing abnormal motion. In the successive video clip, we find that the person is actually

crossing road f outside the crosswalk region. This video clip ranked fourth in abnormality. In

the second and third videos, bicycles are crossing the road abnormally. The fifth video is another

example of a pedestrian crossing the road outside the crosswalk.

F. High-Level Semantic Query

In our framework, it is convenient to use atomic activities as tools to query for interactions

of interest. For example, suppose a user wants to detect jay-walking. This is not automatically

discovered by the system as a typical interaction. Thus, the user simply picks topics involved

in the interaction, e.g. topic 6 and 13, i.e. “pedestrians walk on crosswalk a from right to left

(topic 13) while vehicles are approaching in vertical direction (topic 6)”, and specifies the query

distribution q (q(6) = q(13) = 0.5 and other mixtures are zeros). The topic distributions {pj}

of video clips in the data set match with the query distribution using relative entropy between

q and pj ,

D(q||pj) =
K∑
k=1

q(k)log
q(k)

pj(k)
(16)

Figure 16 (d) shows the result of querying examples of “pedestrians walk on crosswalk a from

right to left while vehicles are approaching in vertical direction”. All the video clips are sorted
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by matching similarity. A true instance will be labeled 1, otherwise it is labeled as 0. There are

18 jay-walking instances in this data set, and they are all found among the top 37 examples out

of the 540 clips in the whole video sequence. The top 12 retrieval results are all correct.

G. Comparison with Other Methods

Another option to model interactions is to first use the original LDA in Figure 3 (a) or HDP

in Figure 4 (b) as a feature reduction step. A distribution pj over topics or a posterior Dirichlet

parameter (γj in Eq 2) is associated with each document. Then one can cluster documents based

on {pj} or {γj} as feature vectors. [1] used this strategy for classification. K-means on {pj}

only has 55.6% accuracy of video segmentation on this data set (KL divergence is the distance

measure), while the accuracy of our Dual-HDP model is 85.74%. It is hard to define a proper

distance for Dirichlet parameters. We cannot get meaningful clusters using {γj}.

We also evaluate the algorithm proposed in [3], which used global motion to describe

each frame, on this data set. [3] also adopted word-document analysis and used spectral graph

partitioning. However, it did not model local atomic activities and the interactions or activities

were directly modeled as a distribution over global motion instead of atomic activities. Although

their method worked well on simple data sets in [3], where usually there was only one kind of

activity in each video clip, it failed on our complicated scene with many activities co-occurring.

We did not find meaningful interactions from the discovered clusters using their approach on

our data. The formation of clusters is dominated by the amount of traffic flow instead of the

types of traffic. The detected abnormal examples are videos with relatively small amounts of

motion and do not really include interesting activities.

H. Results on the Train Station Scene

We also test our models on a train station scene. Figure 17 shows the 22 discovered atomic

activities from a one hour video sequence. These atomic activities explain people going up or

coming down the escalators, or passing by in different ways. Activity detection results are shown

in Figure 18. However, we do not see interesting interactions and abnormal activities in this

scene. Those results are not shown here.

January 31, 2008 DRAFT



SUBMISSION TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 29

(1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13) (14)

(15) (16) (17) (18) (19)

(20) (21) (22)

Fig. 17. Motion distributions of discovered atomic activities on a train station scene. The motion is quantized into four directions

represented by four colors: red (→), magenta (↑), cyan (←), and green (↓).
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(1) (2) (3)

Fig. 18. Activity detection in the train station scene. The motions are clustered into different atomic activities marked by

different colors. We choose three video clips as examples. Again, because there are not enough colors to represent 22 atomic

activities, we only mark several major activities by colors in each video clips. The same color may represent different activities

in different video clips. Video clip 1 has atomic activities 2 (red), 3 (cyan), 4 (yellow), 5 (bule), 6 (orange), and 10 (green). Clip

2 has atomic activities 1 (red), 6 (blue), 13 (blue), 14 (cyan), 15 (green), 18 (yellow). Clip 3 has atomic activities 1 (green), 2

(red), 3 (cyan), 6 (orange), 7 (yellow), 13 (blue), and 14 (magenta).

I. Discussion

The space complexities of the three proposed models are all O(KW ) +O(KL) +O(KM) +

O(N), where K is the number of topics, W is the size of the codebook, L is the number of

document clusters, M is the number of documents and N is the total number of words. Using

EM and VB, the time complexity of the learning and inference of the LDA mixture model is

O(ML) +O(NK) +O(LK2). Running on a computer with 3GHz CPU, it takes less than one

hour to process an 1.5 hours video sequence. The Gibbs sampling inference of HDP mixture

model and Dual-HDP model is much slower. The time complexity of each Gibbs sampling

iteration is O(NK) +O(ML). It is difficult to provide theoretical analysis on the convergence

of Gibbs sampling. It takes around 12 hours to process an 1.5 hours video sequence. In recent

years, variational inference was proposed for HDP [42] and it is faster than Gibbs sampling. A

possible extension of this work is to explore variational inference algorithms under HDP mixture

model and Dual-HDP model. Currently our algorihm is running in a batch mode. However,

once the model has been learnt from a training video sequence and fixed, it can be used to do

motion/video segmentation and abnormality detection on new video stream in an online mode.

V. LIMITATIONS AND POSSIBLE EXTENSIONS OF THIS WORK

In this framework, we adopt the positions and moving directions of moving pixels as low-level

visual features since they are more reliable in a crowded scene. While we have demonstrated the
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effectiveness of this model in a variety of visual surveillance tasks, including more complicated

features is expected to further boost the model’s discrimination power. For example, if a pedes-

trian is walking along the path of vehicles, just based on positions and moving detections his

motions cannot be distinguished from those of vehicles and this activity will not be detected as

an abnormality. If a car drives extremely fast, it will not be detected as abnormal either. Other

features, such as appearance and speed, are useful in these scenarios.

The information on the co-occurrence of moving pixels is critical for our methods to separate

atomic activities. One moving pixel tends to be labeled as the same atomic activity as other

moving pixels happening around the same time. This information is encoded into the design of

video clips as documents. We divide the long video sequence into short video clips. This “hard”

division may cause some problems. The moving pixels happening in two successive frames

might be divided into two different documents. By intuition, one moving pixel should receive

more influence from those moving pixels closer in time. However, in our models, moving pixels

that fall into the same video clip are treated in the same way, no matter how close they are. In

[43], we proposed a model allowing random assignment of words to documents according to

some prior which encodes temporal information. If two moving pixels are temporally closer in

space, they have a higher probability to be assigned to the same documents.

We are not utilizing any tracking information in this work. However, in some cases when

tracking is doable or objects can be partially tracked (i.e. whenever there is ambiguity caused

by occlusion or clutter, stop tracking and initialize a new track later), tracks provide useful

information on atomic activities. Motions on the same track are likely to be caused by the same

atomic activity. Thus a possible extension of this work is to incorporate both co-occurrence and

tracking information.

In this work, we do not model activities and interactions with complicated temporal logic.

However the atomic activities and interactions learnt by our framework can be used as units to

model more complicated activities and interactions.

VI. CONCLUSION

We have proposed an unsupervised framework adopting hierarchical Bayesian models to

model activities and interactions in crowded and complicated scenes. Three hierarchical Bayesian

models, LDA mixture model, HDP mixture model, and Dual-HDP model are proposed. Without
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tracking and human labeling, our system is able to summarize typical activities and interactions

in the scene, segment the video sequences, detect typical and abnormal activities and support

high-level semantic queries on activities and interactions. These surveillance tasks are formulated

in an integral probabilistic way.

APPENDIX

In the appendix, we will explain how to do Gibbs sampling in the Dual-HDP model as

described in Section III-C. The sampling procedure is implemented in two steps. In the first step,

given the cluster assignment {cj} of documents is fixed, we sample the word topic assignment z,

mixtures π0 and πc on topics. It follows the Chinese Restaurant Process (CRP) Gibbs sampling

scheme as described in [2], but adding more hierarchical levels. In CPR, restaurants are

documents, customers are words, and dishes are topics. All the restaurants share a common

menu. The process can be briefly described as following (see more details in [2]).

• When a customer i comes to restaurant j, he sits at one of the existing tables t, and eats

the dishes served on table t, or takes a new table tnew.

• If a new table tnew is added to restaurant j, it orders a dish from the menu.

Since we are modeling clusters of documents, we introduce “big restaurants”, which are

clusters of documents. The label of document cluster cj associates restaurant j to big restaurant

cj . The CRP is modified as following.

• If a new table tnew needs to be added in restaurant j, we go to the big restaurant cj and

choose one of the existing big tables r in cj . tnew is associated with r, and serves the same

dish as r.

• Alternatively, the new table tnew may take a new big table rnew in the big restaurant cj . If

that happens, rnew orders a dish from the menu. This dish will be served on both rnew and

tnew.

Following this modified CRP , given {cj}, k, π0 and {πc} can be sampled. It is a straightforward

extension of the sampling scheme in [2] to more hierarchical levels.

In order to sample {cj} and generate the clusters of documents, given z, π0, and {πc}, we

add an extra process.

• When a new restaurant j is built, it needs to be associated with one of the existing big
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restaurants or a new big restaurant needs to be built and associated with j. It is assumed

that we already know how many tables in restaurant j and dishes served at every table.

Let mt
jk be the number of tables in restaurant j serving dish z and mt

j· be the number of

tables in restaurant j. To sample cj , we need to compute the posterior,

p(cj|{mt
jk}, c−j, {πc}, π0) ∝ p({mt

jk}|cj, c−j, {πc}, π0)p(cj|c−j, {πc}, π0) (17)

where c−j is the cluster labels of documents excluding document j. cj could be one of the

existing clusters generated at the current stage, i.e. cj ∈ cold. In this case,

p(mt
jk|cj, c−j, {πc}, π0) = p(mt

jk|πcj) =

(
mtj·

mt
j1 · · ·mt

jK

)∏K
k=1 π

mtjk
cjk

(18)

where K is the number of word topics allocated at the current stage. And,

p(cj|{πc}, c−j, π0) =
ncj

M − 1 + µ
(19)

where ncj is the number of documents assigned to cluster cj .

cj could also be a new cluster, i.e. cj = cnew. In this case,

p({mt
jk}|cj = cnew, c−j, {πc}, π0) =

∫
p({mt

jk}|πnew)p(πnew|π0)dππnew

=

(
mtj·

mt
j1 · · ·mt

jK

)∫ K∏
k=1

π
mtjk
new,k

Γ(π0u +
∑K

k=1 π0k)

π0u

∏K
k=1 π0k

ππ0,u−1
new,u

K∏
k=1

π
π0k−1

new,kdπnew

=

(
mtj·

mt
j1 · · ·mt

jK

)
Γ(α)∏K

k=1 Γ(α · π0k)
·
∏K

k=1 Γ(α · π0k +mt
jk)

Γ(α +mt
j·)

(20)

And,

p(cj = cnew|{πc}, c−j, π0) =
µ

M − 1 + µ
(21)

So we have,

p(cj = c|{mt
jk}, c−j, {πl}, π0)

∝ uc
u· + µ

K∏
k=1

π
mtjk
ck , c ∈ cold

µ

u· + µ

Γ(α)∏K
k=1 Γ(α · π0k)

·
∏K

k=1 Γ(α · π0k +mt
jk)

Γ(α +mt
j·)

, c = cnew (22)
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