
Continuous Execution:

Improving user feedback in the development cycle

By

Kevin Su

Submitted to the Department of Electrical Engineering and Computer Science in partial

fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 25, 2007

Copyright 2007 Kevin Su. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper

and electronic copies of this thesis document in whole and in part in any medium now

known or hereafter created.

Author__

Department of Electrical Engineering and Computer Science

May 25, 2007

Certified by__

Rob Miller

Associate Professor

Thesis Supervisor

Accepted by ___

Arthur C. Smith

Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

 2

 3

Abstract

Programming environments are increasing the amount of feedback given to users

during the development cycle. This work continues with this trend by exploring

continuous execution, a programming environment where the result of executing part of a

userôs code is outputted as the user writes it. This extra feedback provided to users lets

users gain a better understanding of a programôs internals. A prototype implementation is

done for Chickenfoot, a JavaScript-based web automation tool. The prototype takes

advantage of the web browsing environment of Chickenfoot and uses the browser history

to reduce the amount of user code that actually needs to be executed. User testing was

done to evaluate the usefulness of continuous execution.

 4

Acknowledgements

 I would like to thank Rob Miller for being both my academic advisor as well as

my thesis supervisor. His strong guidance has no doubt shaped my entire career at MIT,

pushing me towards graduation as well as a bright future. I am extremely thankful to

have met Rob and even more grateful to have him as an advisor.

 I would like to thank Greg Little, Darris Hupp, Max Goldman, Victoria Chou, and

other members of the user interface design group at MIT for their support and advice

throughout this process.

 5

Contents

1 Introduction ... 7

2 Related Work ... 12

2.1 Barriers in Programming .. 12

2.2 Breaking down the understanding and information barriers 13

2.2.1 Debuggers .. 13

2.2.2 Reversible Debuggers... 13

2.2.3 Testing ... 14

2.3 Improving Feedback at Development Time .. 14

2.3.1 Text editors .. 14

2.3.2 Continuous Testing .. 15

2.4 Seeing Program Output at Development Time.. 16

3 User Interface .. 17

3.1 When to execute code .. 17

3.2 Executing code .. 18

3.2.1 Multi-line statements .. 20

4 Implementation .. 28

4.1 Detecting line changes ... 29

4.2 Extracting code .. 30

4.3 Parsing the code ... 31

4.4 Filtering code ... 34

4.5 Running code ... 35

5 Evaluation .. 40

6 Conclusion .. 46

6.1 Future Work... 46

7 References .. 48

 6

List of Figures

1.1 The start state of a script. .. 8

1.2 The line ñgo(óhttp://sicp.csail.mit.edu/Spring-2007ô);ò is executed. 9

1.3 The script is executed to the end. It inserts the text ñINSERT LOG IN FORM

HEREò into the page. .. 10

1.4 A script is reverted back to an old state. .. 10

1.5 A script is re-executed with an edit made .. 11

3.1 A simple script and its partial execution. ... 19

3.2 A simple script with a page load and its partial execution 20

3.3 A for loop illustrating the problem of taking only the code up to the cursor 20

3.4 A script is reverted back to an old state. .. 21

3.5 A script is re-executed with an edit made .. 22

3.6 A script that replaces all the links on the page with the word ñlink.ò. 24

3.7 A simple function example ... 25

4.1 This figure shows the workflow that happens when code is executed 28

4.2 A simple script and its HTML representation. ... 30

4.3 The HTML of Figure 3.3 in tree form ... 31

4.4 The parse tree of ñvar x = 3;\nif(x==3) {\noutput(4);\n}ò. 32

4.5 A short script and its Interval tree ... 33

5.1 The script used for beginning user evaluation ... 40

5.2 Users were shown this window and asked to figure out the scriptôs behavior. 42

5.3 The desired output of user task A .. 43

5.4 The desired output of user task B. ... 43

 7

1 Introduction

There are a variety of development environments, all with differing features and

capabilities. Many development environments adhere to two popular programming

models: the batch model and the interpretive model.

In the batch model, a user writes code, compiles it to obtain an executable, and

then runs the executable. An example development environment is one that contains

Notepad, a C compiler, and a command prompt. The user writes some C code in

Notepad, compiles it from the command line, and then obtains an executable. When the

executable is run, if it does not behave as expected, the user edits the code, compiles it

again to obtain a new executable, and runs it. This process repeats until the user is

satisfied. An inherent flaw with this programming model is the long feedback loop,

where it may take a significant amount of time for a programmer to check the behavior of

the code that was written.

In the interpretive model, a user can evaluate a line of code as it is written. An

example environment would be using Python from the shell in its interactive mode. The

user is left with a transcript of what he/she typed, but the transcript itself is not a

program.

Development environments have improved upon the feedback given in the batch

and interpretive model. They combine the advantages of the batch programming model

and the interpretive programming model, allowing a user to see what effect a line of code

has on a program as it is written, and still end up with some executable script. Other

development environments provide tools to give more information than just the output to

users and some even provide templates for users to write code.

For example, Eclipse, a Java development environment, uses a compiler and a

parser during the writing of code, and gives users continuous feedback about syntactic

errors and type errors. Eclipse provides a debugger which allows users to incrementally

move through a program, seeing the state of the program after each line is executed. And

it also provides unit testing capabilities, to improve the userôs ability to thoroughly test

their code. These tools and many more have improved user feedback and provided

valuable assistance during the development cycle.

 8

This work continues the trend of improving user feedback during the development

cycle. It does this by creating a continuous execution environment, which executes the

userôs code and outputs the results of that code as it is being written. Specifically, this

work creates a continuously executing environment for Chickenfoot.

Chickenfoot is a Mozilla Firefox browser plug-in that allows users to alter their

web experiences without having to view or manipulate the underlying HTML source. It

does this by providing a development environment that contains all the functionality of

JavaScript with additional wrapper functions to facilitate web-page navigation and

manipulation. By making code continuously execute in this context, users can

immediately see the results of how scripts affect their web experiences.

In Figure 1.1, we see a step-by step example of Chickenfoot enhanced with

continuous execution being used to develop a short Chickenfoot script and its effect on

the HTML (output) window.

Figure 1.1 The start state of a script.

 9

Figure 1.2 The line ñgo(óhttp://sicp.csail.mit.edu/Spring-2007ô);ò is executed when the

óEnterô button is hit.

 The goal of continuous execution is to help the user acquire information about

code as it is written. To do this, continuous execution outputs the result of executing all

the code up to but not including the cursor line as the user edits. Users can see

intermediate steps of their program, to see if it is behaving as expected.

 Figures 1.1, 1.2, 1.3, 1.4, and 1.5 show the evolution of the HTML window as a

script is developed. In Figure 1.3, we see a script executed to completion. In Figure 1.4,

the HTML window has reverted back to the stage where only

ñgo(ósicp.csail.mit.edu/Spring- 2007ô)ò has been executed, to reflect that

only the code up to the cursor line was run. And finally, in Figure 1.5, the code is again

completely executed, with the results of the edit showing in the HTML window. We can

see that by continuously executing the code, users are presented with the ability to see the

state of the script after a particular line is executed.

 10

Figure 1.3 The script is executed to the end. It inserts the text ñINSERT LOG IN

FORM HEREò into the page.

Figure 1.4 Line 2 of the script is edited. Notice that the script has returned to the same

state as it was in Figure 1.2.

 11

Figure 1.5 The edit is made and the script is executed with that edit in place.

 This extra feedback has a few benefits. It provides:

¶ Help with syntax errors: Users can see the execution of a line of code

immediately as they navigate the script, with error messages appearing in the

Chickenfoot console if there are syntax errors. A user can see an error happen

as soon as a particular line is edited and navigated away from, allowing them

to infer what the error was and what line caused it, correct it, and learn from

it.

¶ Help with behavioral errors: Similarly to syntax errors, users are shown the

result of their code and are able to compare it to the desired effect.

¶ Help with comprehending code: Seeing what a particular line of code does

to a program allows the user to gain a better understanding of what that line

contributes to the program.

The rest of this thesis discusses details of the design and implementation of a

continuous execution environment set in the Chickenfoot framework. Chapter 2

discusses related work. Chapter 3 will discuss implementation details. Chapter 4 talks

about a preliminary evaluation of continuous execution in Chickenfoot, and Chapter 5

details what still needs to be done and where to go from here.

 12

2 Related Work

 Much work has considered how to make the development cycle easier for users.

First, we try to understand the barriers that exist in developing code, and how we can

overcome those barriers. After understanding those barriers, we will examine a number

of tools and concepts that try to overcome those barriers and give users more feedback

and assistance as they develop code.

2.1 Barriers in Programming

Ko and Myers [5] identified six different kinds of barriers associated with

programming. Design barriers deal with cognitive difficulties of a programming

problem. Selection barriers are caused by properties of an environmentôs facilities for

finding what programming interfaces are available and which can be used to achieve a

particular behavior. Coordination barriers are a programming systemôs limits on how

interfaces in its language can be combined to achieve complex behaviors. Use barriers

are properties of a programming interface that obscure how to use it. Understanding

barriers are properties that obscure what a program does when it runs. Finally,

information barriers make it difficult to acquire information about a programôs internals.

Continuous execution attempts to breakdown the understanding barrier. An

environment with continuous execution allows users to see the results of a program as it

is written, helping to clarify a programôs behavior when it is run.

Another barrier that continuous execution tackles is the information barrier. With

continuous execution, users can see the program state as itôs executed up to a particular

line, and then navigate downward to see what that line does. This lends insight into what

that particular line is doing, and thus allows the user to acquire information about a

programôs internals.

 13

2.2 Breaking down the understanding and information barriers

 Many existing tools help break the understanding and information barriers. These

tools give users the extra capabilities beyond just execution to figure out what their code

is doing.

2.2.1 Debuggers

Debuggers are one common option available to users that attack the information

barrier. After writing some amount of code, users can use a debugger to help them step

through their code in an attempt to understand it. To use the debugger, a user first sets a

series of breakpoints and enters a debugging mode. In the debug mode, the user can run

the code up to selected breakpoints, at which point the user can start stepping

incrementally through the code. These steps can either be as small as one line of code, or

as large as a function, depending on the userôs needs. At each point in the debug mode, a

list of variables and their values is available to the user. Using this variable list, the user

can acquire information about the programôs current state, and making sure that the

behavior of the program is as it should be.

2.2.2 Reversible Debuggers

An improvement on debuggers is the concept of reversible debuggers. According

to Delisle, Menicosy, and Schwartz [3], debugging accounts for about half of a

programmerôs total time. One problem with current debuggers is the inability to move

backwards through code. According to Koju, Takada, and Doi [7], software does not fail

immediately after the cause of a particular program failure is executed. That is, the line

where an exception is thrown, or where the program stops working as expected, is not

usually the line that contains the error.

Reversible debuggers remedy the problem by also offering the ability to step

backward, allowing execution to the time of failure and then backtracking to where it

originated.

 14

2.2.3 Testing

 Users can generate tests for their code to gain feedback about it. For example,

Java has JUnit. JUnit provides a framework for users to test cases for modules and their

methods, using assert statements to determine if a given module or method is behaving as

expected by running it on a number of examples. These examples are generated

manually by the user, who has to think of common cases as well as corner cases.

Alternatively, a user can write scripts to automatically generate test cases.

 All of these options provide users help with breaking down the information and

understanding barrier. However, they are not used at the same time code is written. In

order to develop code, a user has two phases: a writing phase where code is written and a

testing phase where the user can use these tools. Continuous execution merges these two

phases. It mimics the capabilities of a reversible debugger, where a user can step

backwards or forwards from some point in a script, while constantly seeing the program

output.

2.3 Improving Feedback at Development Time

 Debuggers, reversible debuggers, and unit testers allow users to gather valuable

feedback from their code, but must do this independently from writing code. There are

currently numerous tools that actually provide users with feedback about their code

during the writing process.

2.3.1 Text editors

Structured text editors [11] gave users code snippets and templates to assist in

writing code, containing features like a content assist list, which contained functions

defined by the syntax of the language in which the user was coding, and could be used to

auto-complete blocks of code. Users could also define their own code snippets for

regularly used bits of code. It was believed that code snippets and templates would cut

down on development time, as users could select templates rather than write long blocks

of code. This would prevent them from making mistakes on templated code. They also

provided syntax highlighting and unlimited undo/redo.

 15

 Structured text editors eventually lost out to free-form text editors which simply

allowed users to directly manipulate what they were writing. Early models of freeform

text editors provided users with some minimal feedback at development time. Some

provided auto-indenting and syntax coloring using simple regular expressions, to give

users some minimal feedback about the correctness of what they are writing.

Newer free-form text editors have increased the feedback given to users. For

example, Eclipse, an integrated development environment which includes a free-form

text editor, parses code and compiles it to give users feedback about syntactic errors as

well as type errors. The parser is run constantly while the compiler is run every time a

file is saved. Eclipse is just one example of a number of integrated development

environments that give users more and more feedback at development time.

2.3.2 Continuous Testing

A step further in providing users with feedback as code is written is continuous

testing [5]. Continuous testing uses excess cycles on a developerôs workstation to

continuously run tests in the background to provide feedback to users about failures as

they edit code. The point of it is to reduce the effort required to keep code well-tested,

and thus well understood, and to prevent errors from being uncaught for long periods of

time, helping to catch bugs. An experimental evaluation of continuous testing during

development showed a significant effect on success of completing a programming task,

while having little to no effect on the amount of time worked.

An application of continuous testing was Example-Centric Programming [3].

Example-Centric Programming presented a prototype of an IDE that tried to turn the

REPL (Read-Eval-Print Loop) into a single unified tool.

The read-eval-print loop (REPL) is a simple programming environment. It

consists of 3 main functions: read, eval, and print. The read function accepts an

expression from the user, and parses it into some data structure in memory. The eval

function takes that data structure and evaluates it. The print function takes the result

from eval, and prints it out to the user.

Example-centric programming merges those three functions. The idea behind

example-centric programming is to have a user create some simple test cases (maybe

 16

even regression tests) for a particular program they are writing. Then while they are

writing code, the examples are tested, and the user can see the evolution of their

examples and how it approaches the solution during its development. This behavior

helps users identify a programôs behavior and help break down the understanding and

information barriers.

This idea of letting users see the results of their code on test cases is taken in

another direction with continuous execution. Instead of just doing test cases, continuous

execution in Chickenfoot shows the output of part of a script as it is written, letting the

user know the internal behavior of the script immediately. This feedback during code

development helps users overcome the understanding barrier and the information barrier.

2.4 Seeing Program Output at Development Time

 Finally, there are programs where users can see the results of their actions almost

immediately. For example, one of the most commonly used is Microsoft Excel

spreadsheets. Spreadsheets allow users to enter lines of code into cells (often simple

branching logic), and show the output of that code in the cell immediately as it is entered.

The output of the program is the spreadsheet itself and is constantly updated as the user

edits it.

 There are also a number of graphical user interface (GUI) languages that have

continuously executing development environments. One example is XML Markup

Language (XUL), which has a development environment called Extension Developer,

written for Mozilla Firefox [12]. Extension Developer comes with a XUL editor, which

has two windows: one for editing code and one for displaying the output of the code. As

a user edits code, its result is displayed in the output. This clearly helps greatly with

catching errors, as any incorrectly formed statement causes the output window to display

an error message.

 This work combines the advantages of the discussed tools to further improve user

feedback. It has the capabilities of a reversible debugger to step through code and

showing its output, and it does this as the user writes code. This work gives users a tool

that integrates writing code and testing in an elegant and integrated fashion.

 17

3 User Interface

Continuous execution outputs the results of executing a userôs code as it is

written. It is a read-eval-print loop where the user can hit return to obtain some feedback

about the code and still end up with some finished program. It is also a debugger where

breakpoints can be set and inspected. The difference for continuous execution is that

setting breakpoints and inspecting them is automatic based on where the user puts the

cursor. Users can inspect the code at any point in the program by simply position the

cursor.

This extra feedback and the functionality to obtain it should not interfere with

user workflow. As such, enhancing Chickenfoot with a continuous execution

environment adds no extra user interface elements to the editor. That way, if a user

chooses not to use continuous execution at all, then the userôs development process

remains unhindered. There is still a risk of distraction caused by the continuous

execution environment, and this is addressed in the evaluation section.

3.1 When to execute code

 Continuous execution should be designed so that as a user writes code, the effect

of each edited line on the output is immediately apparent. This can be achieved by

executing the userôs code constantly. This amount of time between executions should be

small enough so the output appears to be continuously updating. In this way, the output

window would consistently reflect the userôs code, and the user would know exactly what

their code is doing. However, this approach is not feasible. Continuous execution needs

to run the userôs code, which in the case of Chickenfoot can be a series of network

transactions that may be expensive to run repeatedly given the limits of server and

network latency.

A more realistic approach is to execute the userôs code on every key stroke and

mouse press that occurs in the Chickenfoot editorôs buffers. This is more reasonable

because we are listening for discrete key and mouse presses to execute as opposed to

trying to simulate the continuity of time. Users can see how each character they write

 18

affects their overall script. However, even this reduced number of executions can

become too processor intensive, with more complicated scripts.

 Continuous execution needed a way to further reduce the number of executions of

the program and still mimic constant output. The solution this work uses is to execute the

userôs code each time the user changes lines in the Chickenfoot editor. This approach

scales back from being able to see individual character changes, to being able to see how

individual lines of code affect the output. This approach still faces a similar problem of

server and network latency limitations given complicated scripts, but scales a little better

than the previous suggestions. However, it is still capable of providing users with

constant feedback about the output of their code.

3.2 Executing code

 There are a few decisions to be made when deciding what code to run. One

option is to run all the code in the buffer. If the entire buffer is evaluated, users can see

the output of the program as a whole, but lose the ability to see the effect of individual

lines. A second choice is to evaluate a single line; specifically the line the cursor is on.

A persistent environment can be maintained to remember the evaluation of lines. If just

the current line is evaluated, users could see what any particular line did by navigating

through the script, but the functionality of multiple lines of code integrated together

becomes obscure.

 The approach taken by this work is a compromise between these two choices that

closely resembles the breakpoint model of debuggers. The cursor position is

automatically set as a breakpoint, and code is run up to that breakpoint. For example, in

Figure 3.1, the output window displays the results of lines 1-7, but not 8, 9, or 10.

Because we are executing on line-change events, a user can see the partial execution of

the script, and figure out if the program is behaving correctly at intermediate steps by

navigating through the lines. A typical use case can be to navigate between 2 lines,

comparing the changes made to the output and determining the behavior of the lines.

 19

Figure 3.1 A simple script and its partial execution

 The behavior is different when the userôs script contains page loads. As shown in

Figure 3.2, the line ñgo(ógoogle.comô)ò causes a page load. The cursor is on the

line ñoutput(8) ò. Only the code between these two lines is executed. This behavior

is a side effect of the way code is executed. To save on expensive page loads, this

implementation of continuous execution uses the browser history to jump to different

points in the script. This is detailed in the implementation section. Skipping parts of the

script causes the effect seen in Figure 3.2, where only some of the JavaScript is executed.

 20

Figure 3.2 A simple script with a page load and its partial execution.

3.2.1 Multi -line statements

The behavior we want is for all the code up to but not including the cursor line to

be executed. If every statement was a single line, this would work just fine. However,

there are statements that span multiple lines, such as control-flow statements. When the

cursor is positioned in the middle of a multi-line statement, a couple problems occur.

Figure 3.3 A for loop illustrating the problem of taking only the code up to the cursor.

 21

 One problem is that syntax errors are presented to the user, even for correctly

formed statements. As seen in Figure 3.3, the code up to but not including the cursor is:

for (word = new find(óGoogleô); word.hasMatch; word =

word.next) {. When this code is executed, a missing ó}ô syntax error is displayed in

the output console, despite the fact that what is written is all syntactically correct. This

problem is easily fixed by adding closing brackets to the executed code.

A more serious problem occurs with control-flow statements, where a single line

of code can potentially be executed multiple times like in a for loop, or not executed at

all like in an else - if statement. It is not obvious what to execute when the cursor is

positioned inside one of these statements. This work establishes a number of heuristics to

deal with control-flow statements.

For multi-line conditional statements, if the cursor is located within an if

statementôs body, the code up to the cursor line is chosen for execution with closing

brackets added to the end to make it syntactically correct. From Figure 3.5, the extracted

code would be:

1 if (x == 1) {

2 output(óoneô);

3 }

4 else if (x==2) {

5 output(ótwoô);ò

 The cursor lies within the else - if multi-line statement, which has a depth of 1,

and therefore one closing bracket is added.

Figure 3.4 A multi-line branching example.

 22

An alternative approach for conditional statements is to execute only the code that

is enclosed by the conditional statement as the cursor. In Figure 3.4, this would mean

that regardless of the value of x, we execute output(ótwoô). Although this behavior

benefits users by letting them see what each branch of their else - if constructs did, it

also ignores variable values which obscures the true program state.

 There are some JavaScript branching statements that are not supported in the

prototype system, like switch statements and try/catch blocks. However, because

these statements are so similar in structure and behavior to if - else constructs, it is

likely that the same heuristics will be used.

For multi-line loop statements such as for and while , the heuristic this work

uses is the same as that of an if statement. All the code up to the cursor line is

extracted, and closing brackets are added. An example of the behavior can be seen in

Figure 3.5.

Figure 3.5a The code up to line 2 is executed, with the for loop currently doing nothing.

 23

Figure 3.5b All the code before the cursor is executed, i.e. all but one line of the for

loop.

Figure 3.5c The cursor finally reaches the end of the for loop, and all of its code is

executed.

Looking at Figure 3.5, we see that the lines of code up to the cursor line are

executed. For Figure 3.5a, the code before the for loop and a for loop with no body is

executed. For 3.5b, the line up to the óreplace ô command is looped over and for 3.5c,

 24

the script finally fully executes. As the user navigates through a loop, he/she can see how

each line changes the loop, and thus changes the overall program.

This approach of executing the iterations of loops in parallel is a bad idea if each

iteration of the loop depends on the state of the iterations before it. As shown in Figure

3.6, we see such an example. This loop terminates if find(ñlinkò) doesnôt return a

match. However, the second line is responsible for replacing all possible matches on the

page with the word ñlinkò and if it is not executed, then find(ñlinkò) always returns

a match, resulting in an infinite loop.

Figure 3.6a A script that replaces all the links on the page with the word ñlink.ò

Figure 3.6b The same script that doesnôt work because of the way lines are chosen to be

executed.

 25

A fix is to prevent loops from executing infinitely by injecting the following code

into all loops:

1 if (n > MAX_LOOP_ITERATIONS) {

2 break;

3 }

4 n++;

The variable n is initialized to 0 before the loop begins and

MAX_LOOP_ITERATIONS is some number of our choosing. This prevents loops like

these from looping infinitely. It should be large enough to allow the user to see the effect

of the for loop, but small enough to not spend too much time in a wasted loop.

An alternative approach to executing all the code up to the cursor line is to set the

cursor line as the breakpoint. The user decides to see the first n iterations of a loop. The

code inside the loop is completely executed n times. On the n+1
st
 iteration, the code is

only executed up to the breakpoint. This lets the user potentially see every step of the

loop by varying the cursor position and the number of iterations. However, this approach

requires adding an extra user interface elements to allow users to select the number of

iterations. One of the goals of this work is to enhance user feedback without interfering

with the userôs workflow, and thus this approach was abandoned.

 For functions, if the cursor lies inside a function body, then all the code up to the

cursor line is appended with all the code after the end of the function body and is

executed.

Figure 3.7 A simple function example.

 26

The code that gets executed in Figure 3.7:

1 function test() {

2 output(1);

3 output(2);

4 }

5 output(óBegin testô);

6 test();

The script is run to the end, ignoring any code inside the function that appears on

or after the cursor line. This is drastically different than the behavior for branching

statements and loops, which simply stopped at the cursor line. This is because functions

are themselves very different from other types of block statements. The body of a

function can be executed multiple times at different sections of the program, depending

on where it is called. Other block statements are positioned in one section of the code. In

Figure 3.7, lines 1 through 4 only define a function. If we remove line 6, the function is

never executed. Therefore, we have to treat functions differently from other multi-line

statements, as executing code up to the cursor line doesnôt make sense for functions.

An alternative approach to executing the script to its end when inside a function

body is to use the cursor line as a breakpoint. Only the code up to the breakpoint is

executed and the program stops there. The code that is actually outputted from Figure

3.7 is then:

1 output(óBegin testô);

2 output(1);

3 output(2);

 This is because the code before the function call is executed, and the code inside

the function is executed up to the cursor. The execution would terminate here, meaning

later calls to test () would not be executed.

 The following script presents a problem for the first approach.

1 function test() {

2 var x = 3;

3 return x;

4 }

5 output(test());

6 output(test());

For this example, if the cursor was on line 3, the first approach would

meaninglessly output nothing, because the return statement was never reached. The

 27

second approach would stop at line 2, which is consistent with the behavior had the code

been written in-line instead of called from a function.

However, the first approach does have its advantages over the second one.

1 function test(num) {

2 output(2*num);

3 output(4*num);

4 }

5 test(17);

6 test(23);

7 test(46);

 For this example, if the cursor was on line 3, the second approach would stop

after only the first call to test, outputting only 34. The second approach would allow the

user to see the execution of the function on multiple inputs rather than just the first.

 The first approach was selected because of its ability to let a user debug all the

function calls rather than just the first one. And though its behavior is different, it still

meets the goal of providing feedback to users. Users moving the cursor inside a function

body can see how changes made inside of functions affect the program.

 28

4 Implementation

In order to create the effect of continuously executing and outputting code, the

continuous execution environment for Chickenfoot goes through a number of steps. The

first steps decide when to execute code and figure out what code to execute. That code is

then executed and its result is displayed. This workflow is graphically illustrated in

Figure 4.1.

Figure 4.1 shows the four modules that are each responsible for a step in

executing the userôs code: Extraction, Parser, Filter, and Evaluation. The extraction

module is responsible for starting the process. It listens for the appropriate events in the

Figure 4.1 This figure shows the workflow that happens when code is executed.

 29

Chickenfoot editorôs current buffer, extracts all of the bufferôs code, and then passes it to

the parser. The parser takes the extracted code, parses it to figure out relevant

information, and forwards the code and the parsed information to the filter module. The

filter module eliminates lines of code according to the parsed information. The filtered

code is passed to the evaluation module, which evaluates the code and displays the result

through the available output channels, which in Chickenfoot are the HTML window and

the Chickenfoot output console.

4.1 Detecting line changes

Line changes are easily detectable. The method getSelection() provided

by XUL which returns an NSISelection object. The NSISelection object

represents the selected text in the editor and has the following properties:

¶ anchorNode ï the node that the selection begins in

¶ anchorOffset ï the offset from the beginning of the node that the

selection starts at.

The cursor is just selected text, where the size of the selected text is 0. Using

anchorNode , a method called getCur sorLine () gets the current cursor line by

depth first searching through the HTML tree representing the buffer code, counting the

number of
 nodes and stopping when the anchorNode was reached. After each

key press, if getCursorLine () is different than the last cursor line, a line-change

event has occurred.

 A problem with executing on every single line change is that if a user wants to

change lines very quickly, then the continuous execution environment will still try to

execute many times in a short period.

The solution to this was to further reduce the number of executions is to not run

on every single line-change event. Instead, we only execute after a line-change event if

no other line-change events occurred within the last 250 milliseconds.

 30

<html>

 <head>

 <! -- // Style code -- >

 </head>

 <body>

 <pre>

 var x = 3;

if (x == 3) {

 output(4);

 }

 </pre>

 </body>

</html>

Figure 4.2 A simple script and its HTML representation.

4.2 Extracting code

The Chickenfoot editor is an HTML editor so its display is represented by HTML.

As shown in Figure 4.2, the HTML for the Chickenfoot editor is responsible for laying

out the buffer and keeping track of new lines and white space. This work takes

advantage of the HTML tree structure in order to iterate over the nodes and extract the

code.

Figure 4.3 is the HTML that we are working with as a tree. Performing a depth

first search on the tree results in passing over the buffer lines, and thus the text, in the

correct order (from top to bottom and left to right). So to extract the code from the

buffer, we use a wrapped version of the createTreeWalker() method provided by

the DOM to perform a depth first search. In our depth first search, for every text node we

encounter we append its nodeValue to a temporary string variable. For every element

node, we check to see if it is a
 element, and append an appropriate ó\nô to our

string.

 31

Figure 4.3 The HTML of Figure 3.3 in tree form.

The end result is a string for this particular example is the following string:

ñvar x = 3;\ nif(x==3) { \ noutput(4); \ n}ò

 This string is then passed on to the parsing step.

4.3 Parsing the code

On a high level, the parsing module takes the code from the extraction module,

parses it with Rhino, and returns a tree of information later used in filtering the code.

Rhino[13] is an open-source implementation of JavaScript written in Java. Rhino

contains a JavaScript parser which is used for this work. An instance of ErrorLogge r ,

an object that keeps track of errors in the parsed JavaScript, is needed to instantiate

Rhinoôs parser. When Rhino parses code, this ErrorLogger is populated with any

problems Rhino had while parsing the code. Thus, figuring out the errors is a matter of

accessing the list of errors from the ErrorLogger .

This work uses the Rhino parser to find the beginnings and endings of statements

that span multiple lines, such as loops and conditionals, the significance of which was

discussed in the user interface chapter and illustrated in Figure 3.3.

 32

Figure 4.4 The parse tree of ñvar x = 3;\ nif(x==3) { \ noutput(4); \ n}ò

When the extracted code is passed to the parser, it returns a tree of Nodes . Each

Node has a type, describing it as a function node, a branch node, a variable node, etc.

Each Node also contains pointers to its children, which are Nodes themselves. For

example, if we take our extracted string example ñvar x = 3;\ nif(x==3)

{ \ noutput(4); \ n}ò and have Rhino parse it, we get the tree seen in Figure 4.4.

 This parse tree returned by Rhino is used to determine the start and end lines of a

multi-line statement. Because multi-line statements can be nested within each other, it is

natural to represent them as another tree. An Interval class was created to represent

multi-line statements. Each Interval class has the following data members:

¶ startLine ï the start line

¶ endLine ï the end line

¶ parent ï the enclosing multi-line statement

¶ children ï the multi-line statements inside of this one

¶ type ï the type of node, e.g. loop

 33

¶ depth ï how deep the Interval is in the tree

Using the parse tree of nodes returned by Rhino, we create a tree of I ntervals . A

depth-first search is performed on the parse tree. At each step, we keep track of the

current depth as well as a stack of Int ervals we are currently inside of (the stack

structure handles nesting of multi-line statements). For each Node, determine the line it

starts on and the line it ends on using the getLineNo () method of Node. Whenever we

encounter a Node that spans multiple lines, construct an I nterval to represent that

Node and make it a child of the top of the I nterval stack, i.e. the I interval that

we are currently inside of. The current Interval is then pushed onto the stack,

signifying that we are inside that Interval .

1 for(var i = 0; i< 100; i++) {

2 i f(i%2==0){

3 if(i%4==0) {

4 System.out.println(ñMultiple of 4ò);

5 }

6 else {

7 System.out.println(ñEvenò);

8 }

9}

10 else {

11 System.out.println(ñOddò);

12 }

13 }

Figure 4.5 A short script and its Interval tree. The numbers in the nodes are

ñstart : end ò.

 34

When we find a Node of depth less than the node on top of the stack, we know that

we have exited the Interval and the stack is popped. We continue like this until the

depth first search is completed. The end result is a tree structure representing our nested

Intervals within the code.

4.4 Filtering code

 With the information provided by the parsing module, the code can be filtered

according to the heuristics described in the user interface section. This means that we

only execute code up to the cursor line. For if statements and loops we automatically fix

syntax problems with curly braces, and for functions this means running the entire script,

with only the part of the function up to the cursor line run. For example:

1 if (true) {

2 output(1);

3 if (true) {

4 output(2);

5 output(3);

6 }

7 output(4);

8 }

If the cursor was on line 5, the code that would be executed is:

1 if (true) {

2 outp ut(1);

3 if (true) {

4 output(2);

5 }

6 }

 These heuristics were easy to implement for branching statements and loop

statements and any nesting of the two. The algorithm was:

1. Find the current cursor line.

2. Find the deepest nested Interval that the cursor lies within.

3. Get all the code up to the cursor line and add curly braces based on the depth

of the Interval to fix syntax problems.

However, functions presented a minor issue. The parse tree that Rhino returns

unfortunately did not parse anything inside of a function unless it was explicitly called

somewhere in the executed code. When it did parse, the line numbers were relative to

 35

where the function was called, and not relative to where the function was defined. This

made it impossible figure out multi-line statements that were nested inside of a function.

The solution to this was to treat the function body like a miniature buffer and

extract the code from within the function body, pass it to Rhino and create a tree of the

Intervals inside the function. This tree of Intervals can then be used to

determine what code inside the function should be run based on our defined heuristics.

This filtered code, instead of going to an output window is passed upwards as the code to

be run for the function body.

4.5 Running code

 Now we need to execute the filtered code. The trivial solution is to run all of the

filtered code. This is what current continuous execution environments like Firefox

Extension Developer do for XUL. However, the reason why this isnôt viable for

continuous execution in Chickenfoot is because while Extension Developer executes

XUL code, Chickenfoot scripts are essentially JavaScript code, which can be

significantly more complicated and take much longer to execute due to the potential

network transactions performed by the script. For example:

1 go(ógoogle.comô)

2 click(óadvancedô)

3 output(óhiô);

 This code blocks until google.com is loaded and then the advanced search page is

loaded. Depending on the network connection speed, this can take a significant amount

of time. Page loads are the most expensive operation in the scripts, but all of the pages

are recorded in the browser history. This work exploits the browser history by using it to

jump to some intermediate point of the script that caused a page load, and then executes

only the portion of the code not covered by the jump.

To access the browser history, this work accesses the web navigation object

provided by the Firefox development environment. The web navigation object provides

simple functions like goToIndex(int i) which browses to the ith link from the

beginning the browser history (so the 0
th
 link is the page that has been in the history the

longest) and get(int i) which gets the link at index i .

 36

 This work creates a mapping between the script to be run and the browser history,

where each line that causes a page load is given a number n such that get (n) returns

the link that corresponds to that page load. This mapping is updated as the userôs code is

executed.

 To create the initial mapping, the beginning of the script is marked as a

checkpoint and it is mapped to the initial browser state. This is so that the script can

revert to its start state when the user moves the cursor to the first. The code to be

executed is then run one line at a time. As this code is run, we use a

SHistoryListener XUL object accessible through the Firefox chrome window to

listen for changes made to the history. This history listener is capable of detecting when

new pages are added to the history, or when the forward and backward buttons are

pressed. Each line that adds a new page to the history is marked as a checkpoint. We do

this until the script has been fully executed. Then we iterate through the lines marked as

checkpoints in order excluding the initial checkpoint added, numbering them from 1 to n,

where n is the number of new pages added to the browser history. We can verify what

point in history each checkpoint corresponds to by simply using get(i) . By our

construction, there are an equal number of checkpoints as there are pages added to the

history. In this case, the code is run completely without taking advantage of the browser

history at all.

 When the mapping is not empty, we have an opportunity to shortcut some code.

We first determine the latest point in the mapping that is valid, or any point that is still

consistent with the script. Specifically, any time an edit is made in the script editor since

the last mapping was updated, its line number is recorded in a variable called

earliest_edit_index . Any checkpoints that occur after the

earliest_edit_index are invalidated and removed from the mapping. After

jumping to the latest point in the mapping, we proceed as in the empty case; by

executing the code that still needs to be executed line by line, listening for new pages

being added to the browser history, and marking checkpoints.

 There are a couple of problems with this approach. The first problem is if

checkpoints occur inside of a loop. One line would correspond to multiple lines in

 37

browser history. The current prototype implementation does not handle checkpoints

inside of a loop.

The second problem is keeping the mapping consistent with the cursor position.

If the user decides to manually navigate through the browser history, then the output

HTML window will no longer reflect the correct position in the script.

One possible solution for this approach is to listen for forward or backward events

(possible with SHistoryListener) and move the cursor in the editor for the user.

This option is still being explored.

The used solution to fixing this inconsistency is to delete the mapping and

recreate it, thus making the mapping consistent with the script again. This occurs after n

executions of the userôs code. Currently, this is implemented by setting the

earliest_edit_index to be 0, essentially saying that every point in the mapping is

invalid and needs to be recreated.

 However, this approach creates a different problem with maintaining a correct

JavaScript evaluation context. Letôs examine the following example:

1 go(ógoogle.comô);

2 var googleList = ñò;

3 for (m = find(ñlinkò); m.hasMatch; m=m.next) {

4 googleList += ñò+m.element;

5 }

6 go(óweb.mit.edu/ksu1wd/www/blank.htmlô);

7 insert(after(óGoogleô), googleList);

8

 Assuming the mapping is not empty, when the user navigates to line 8, the code

up to line 6 is shortcutted by loading from the browser history, and then only line 7 is

executed. However, googleList at line 7 is not defined and the script wonôt work

properly. All the statements are correctly formed and variables appropriately defined, so

why does this problem happen?

 The problem lies in the code that we are shortcutting. If we had run the code

normally, the variable would be created and put into the JavaScript evaluation context.

However, we instead tried to shortcut some of the code by using the browser history. The

browser history only contains the pages that the user has been through and doesnôt

contain any extra state not saved on those pages. In this case, the variable googleList was

 38

part of the JavaScript state, and thus by simply loading a page from browser history, its

value was not loaded correctly.

 One solution is for each checkpoint to also store the correct JavaScript evaluation

context for that point in the script. Then each time we shortcut some code, we load the

appropriate page from browser history, as well as the appropriate evaluation context,

correctly loading any JavaScript variables defined at that point in the script.

 However, maintaining a copy of a context for each individual checkpoint was

problematic. We can easily get fresh JavaScript evaluation contexts by exposing the

iFrame behind the Chickenfoot editor and grabbing the JavaScript evaluation context

from it. However, keeping these contexts consistent with their checkpoint is difficult.

For example, if we just shortcutted to some checkpoint and loaded the appropriate

evaluation context, we need to evaluate the rest of the script with respect to that context,

but the context itself should remain unchanged. That is, we donôt want to mutate our

evaluation context to be inconsistent with its checkpoint, so we can reuse it in the future

if we return to this checkpoint. However, evaluating any code with respect to a particular

evaluation context risks potentially changing that context as well.

 One suggested solution was to load a context, deep copy it, and then evaluate

code with respect to the copy. However, deep copying in JavaScript is also difficult, as

there are cyclic properties (properties that link to each other) contained within each

evaluation context.

The implemented solution this work uses is a persistent evaluation context, where

all the code that has been executed is remembered. If we create a variable and assign it a

value, it always has that value until we specifically reassign it. This was implemented by

creating a variable in each buffer of the Chickenfoot editor that stores the current

evaluation context. All code in a particular buffer is evaluated with respect to the global

context variable of the buffer. Thus any variables made in a script for a particular buffer

are always defined within that bufferôs context, though the variables may not necessarily

contain the correct value.

 A second problem caused by shortcutting code is related to the JavaScript state in

forms. The browser remembers changes made to a form and upon loading the page,

those changes are also loaded. For example, if we ran this script:

 39

1 go(óimages.google.comô);

2 click(óadvancedô);

3 enter(óall words, óhiô);

4 pick(ógifô);

Line 2 is a checkpoint, as it causes the advanced image search page to be added to

the history. When we navigate down to line 4, the word óhiô is be entered into the form,

and óGIFô is selected in one of the dropdown menus. When we navigate back up to line

2, the state is returned to when the advanced image search page was first browsed to, i.e.

a fresh advanced search page. However, what shows up is the advanced image search

page with óhiô entered and óGIFô selected. This is a problem because the effect of lines

that change forms becomes invisible. For example, because óhiô is already entered,

navigating from line 3 to line 4 would have no visible effect on the output.

A proposed solution was to create undo commands for each Chickenfoot

command. Whenever a line is navigated upwards from, we execute its undo command to

reverse its effect.

Having the ability to undo commands would also expand the ways we could

shortcut code. Instead of shortcutting to some checkpoint within the current script and

executing the code after the checkpoint, we could shortcut to a check point that occurs

after the code we want to run and step backwards via undo commands to the cursor line.

Using a combination of the two different ways of shortcutting code could further reduce

the amount of code that gets executed. However, undo commands are still being

researched and not currently implemented.

 40

5 Evaluation

 The continuous execution environment for Chickenfoot underwent a few

preliminary usability tests, to see if the users understood that their script was

continuously being executed and its result was constantly being outputted. It was also of

interest to see if users could take advantage of the extra information provided to them.

 The first user test was aimed towards beginning programmers. These users were

given a script of simple Chickenfoot commands and asked to identify the behavior of

each of these commands. Users were told that they could run the script either by clicking

the Chickenfoot run button, or by moving the cursor through the script using the up and

down arrows. The script was:

1 go('images.google.com');

2 click('advanced');

3 enter('all words', 'hi');

4 pick('gif');

5 pick('small');

6 click('google search');

7 for (m = find('www'); m.hasMatch; m=m.next) {

8 replace(m, 'WWW result');

9 }

Figure 5.1(a) Users were shown this window when the cursor was at line 3.

 41

Figure 5.1(b) Users were shown this window when the cursor was at line 6.

Figure 5.1(a) Users were shown this window when the cursor was at line 10.

 Figure 5.1 shows examples of what users saw during the evaluation as they

navigated upwards and downwards through the script. Three users were tested in this

way, all of which had no programming experience. In all cases, the users were able to

identify the correct behavior for lines 1, 2, 6 and 8. However, at least one user was

unable to identify the behavior of lines 3, 4, 5, 7, or 9. Every user used the up and down

arrows and moved the cursor through the script. After each test, users were asked what

helped them identify the lines that they did. One user claimed that it was obvious from

the line what should happen. ñIt makes sense that go(óimages.google.comô); would bring

you to images.google.comò or ñI saw pick(ógifô) and I saw a box with the word óGIFô in

it and put it togetherò. The other two users had similar guesses for line behavior, but

 42

added that their guesses were confirmed upon seeing the page change as they moved the

cursor passed the line.

 The lines that some users failed to identify did not change the page. Examples of

lines that did not change the page are 7 and 4. Line 7 didnôt change the page because it

was simply a for loop. Line 4 is a problem with browser side effects. The browser itself

stores the state of a form and any changes made to it. In this case, the change of selecting

the GIF option in a dropdown menu was saved, causing the line ñpick(ógifô)ò to have no

effect. This suggests that users found the changing of the output windows useful in

confirming the behavior of a line and advocates that browser side effects created by

commands like ñpick(ógifô)ò need to be addressed.

 The second user test was conducted using experienced programmers, each having

at least 3 years in the computer science program at MIT, and each having at least 6

months of JavaScript programming experience. Users in this test were given two tasks.

Task A: In this task, users were placed in front of a computer with the figure in

5.2 presented to them. They were also given a picture of the web page in Figure 5.3.

Users were first asked to modify the given script to convert the web page in Figure 5.2 to

the web page in Figure 5.3.

Figure 5.2 Users were shown this window and asked to figure out the scriptôs behavior.

 43

Figure 5.3 The desired output of task A.

Task B: Users were asked to write code that gets all the links the Google home page and

inserts those links in an unordered list after the word óGoogleô on the page

web.mit.edu/ksu1wd/www/blank.html, as shown in Figure 5.4. Users were expected to

remember the code from task A in order to accomplish task B.

Figure 5.4 The desired output of task B.

