Continuous Execution:

Improving user feedback in the development cycle

By

Kevin Su

Submitted to the Department Bfectrical Engineering and Computer Scieicpartial
fulfillment of the requirements for the degree of

Master of Engineering in Computeci&nce and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 25, 2007

Copyright 2007 Kevin Su. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thediscument in whole and in part in any medium now
known or hereafter created.

Author
Department of Electrical Engineering and Computer Science
May 25, 2007
Certified by
Rob Miller
AssociateProfessor

Thesis Supervisor

Accepted by

Arthur C. Smith
Professor of Electrical Engineering
Chairman, Department Committee on @Grate Theses

Abstract

Programming environments are increasing the amount of feedback given to users
duringthe development cycleThis workcontinues with this trendy exploring
continuous execution, a programming environment wtiereesult of execting part of a
us er 0 soutputtet @she user writes it This extra feedback provided to users lets
users gain a better undeApmwdogpednplangentatidis a pr ogr
donefor Chickenfoot, a JavaScriiased web automationdb The prototype takes
advantage of the web browsing environment of Chickerdadtuseshe browser history
to reduce the amount agercode that actually needs to be executeder testing was

done to evaluate the usefulness of continuous execution.

Acknowledgements

| would like to thank Rob Miller for being both my academic advisor as well as
my thesissupervisor. His strong guidance has no doubt shaped my entire career at MIT,
pushing me towards graduation as well as a bright future. | aeneedly thankful to
have met Rob and even more grateful to have him as an advisor.

I would like to thank Greg Little, Darris Huppjax Goldman, Victoria Chou, and
other members of the user interface design group at MIT for their support and advice
throughout this process.

Contents

R [110 T 3 ox o R 7
pZ = = =0 BNV RPN 12
2.1 Barriers in Programming...........cccuuueeeeeeeiemmriiaeeeeesii e eeeesinnan e eeenes 12
2.2 Breaking down the understanding and information barriers................... 13
2.2. 1 DEDUGOEIS ..t 13
2.2.2 Reversible Debuggers..........cooo oo 13
2.2.3 TESHING ettt 14

2.3 Improving Feedback at Develomt TIme...........ccoovvviiiiieiiiiiieiiieeeeeees 14
2.3. 1 TeXt @AIEOIS...coeeiiiie et 14
2.3.2 CONLINUOUS TESHING eeiieiiiiieeeeeeeiiee et eeaeaans 15

24 Seeing Program Output at Development TIMe............coooeviiviiiiiiineeeeens 16

3 USEI INLEITACE ...t reanees 17
3.1 WhEN 10 EXECULE COUR. iiiiiiiiiie et 17
3.2 EXECULING COUR.....uuiiiiiiiiii ettt ettt e e e e eeeaes 18
3.2.1 Multi-line StateMENLS.........viiiiiiii e 20

4 IMPIEMENTATION ...t 28
4.1 Detecting liN@ ChaNQES.......oooiiiiiiiie et 29
N =5 (1 = 1o 1] o o0 Lo = 30
4.3 ParsinNg the COUR........uiiiiiii e e 31
O 1111 1o T oo o =P 34
T ([o1 o o o o 35

5 EVAIUALION ..o 40
G 0] o Tod 11 153 o] o N PP 46
6.1 FULUIE WOTK ..oeuiiii it 46

T REMEIENCES. ... e 48

List of Figures

1.1 The Start State Of @ SCIIPL. cieieeeiii et 8
12The line Ago(o6htt p:2/0/0s7i6bgp .0c S.a&i..le.xmicu.teedlu/ Sp
13The script is executed to the end. 't ins
HEREO i Nt 0. b e a0 e 10
1.4 A script is reverted back to an old state............ooeviieviiiiieeee 10
1.5 A script is reexecuted with an edit made.............coooiiiiiiien e, 11
3.1 A simple scriptand its partial @XeCUtioN.............c.uoirrieiiiiieirie e 19
3.2 A simple script with a page load and its partial execution......................uuuu.... 20

3.3 A for loop illustrating the problem of taking only the code up to the cursor....20
3.4 A script is reverted back to an old state............ccooeeveviiiiieeeii i 21
3.5 A script is reexecuted with an edit made...........ccooveeviiiiieeeeiie e 22

3.6 Ascriptthatreplacesdlhe | i nks on the p.age..wi24h the w

3.7 A simple function @XampPIE.........coouuiiiiiii e 25
4.1 This figure shows the workflow that happens when code is executed........... 28
4.2 A simple script and its HTML representation.............cccoeevvviiieeeviiieeeennneeeennn. 30
4.3 The HTML of Figure 3.3 Intree form........cooovvviiiiiiiii e, 31
44The par se t nndE==3) f\inoulput@kn }.x0...5....3. 5 cceeirrerrnns 32
4.5 A short script and its Interval tree...........cooviiiiiiiii e, 33
5.1 The script used for beginning user evaluation.................cccoeeeeeviiieeeien e, 40

5.2 Users were shown this window and asked torfigu out t he .s.crd2pt és bel
5.3 The desired output of USer task A........ccooeiiiiiiiiieeee e 43
5.4 The desired output of user task B..........cooooviiiiiiiiie e 43

1 Introduction

There are a variety afevelopment environmentsl| with differing features and
capabilities Many development environments adhereso popular programming
models the batch model and the interpretive model.

In the batch model, aserwrites code, compiles to obtain arexecutable, and
then runs thexecutable An example development environment is one that contains
Notepada C compilerand a command prompihe user writesome C code in
Notepad, compileit from the command line, and then obtains an executableen the
executable is runf it does not behave as expected,ube edits the code, compiles it
again to obtain a new executable, and runs it. This process repeats wdribe
satisfied. An inherentflaw with this programmingmodel is the long fetback loop,
where it naytake a significant amount of time for a programmer to check the behavior of
the codethat was written

In the interpretive model, @ser can evaluate a line of code as it is writtéxn
exampleenvironmentwould be using Pythofiom the shell ints interactive mode. e
useris left with a transcript of what he/she typédithe transcript itself is not a
program.

Development environments have improved upon the feedback given in the batch
and interpretive model. Theypmbire the advantages tife batch programming model
and the interpretive programming modalowing auserto see what effect line of code
has onaprogram adt is written, and still end up with sonexecutable scriptOther
development environmengsovide tools togive more information than just the output to
users and some even provide templates for users to write code.

For exampleEclipse, a Java development environmesgsa compiler and a
parserduring the writing of codeand give uses continuais feedback about syntactic
errorsand type errorsEclipse provides debuggervhich allows users to incrementally
move througla programseeing the state of the prograffter each line is executednd
it also provides unit testing capabilities,tggm ove t he user 6s abil
their code. Thesetoolsand manymorehaveimproved user feedba@ndprovided

valuable assistance during the development cycle.

t

y

This workcontinueghe trend of improving user feedback during the development
cycle. It doesthis bycreating a continuous execution environment, weiécuteshe
u s ecodeand outpusthe resultof that codeas it is being written Specifically, this
work createsa continuously executing environment for Chickenfoot.

Chickenbot is a Mozilla Firefox browser pluig that allows userso altertheir
web experiencgwithout having to view or manipulate the underlying HTML sourlte.
does thidoy providing a development environment thantains all the functionality of
JavaScripwith additional wrapper functions to facilitate wphge navigation and
manipulation. By making code continuously execute in this contasers can
immediately see the results of how scripts affect their web experiences

In Figure 1.1, we sea stepby step example o€hickenfoot enhanced with

continuous execution being used to develop a ioidkenfoot script and its effect on
the HTML (outpuj window.

) MIT - Mozilla Firefox |
File Edit View History Bookmarks Tools Help
2 5 2
b gj“ J: ||| http:/fweb.mit.eduf v P |G]'
’ Getting Started 13y Latest Headlines

Chickenfoot Script Editor 8 monday, may 7, 2007

D-2o@&@ P -OF IlI"
= = massachusetts institute of technology
Untitled % II

i spotiight: progress 4

research
lahs, centers and progra

admissions+financ

Figure 1.1 The start state of a script.

3 6.001 - Structure and Interpretation of Computer, Programs - Spring 2007 - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help
\l'.: - - @ ﬁ} L http:/fsicp.csail.mit . edufSpring-2007] Ml '

P Getting Started lay Latest Headlines

Chickenfoot Script Editar 8
D-e@@p &
Untitled (5]
|gu('ht.t,p:,f,-’sicp.csail.mlt,.edu/Spring—ZDDT'J;
Spring 2007
Welcome to 6.001!
This page s your entry to the course material. It includes current announcements of th
course, pointers to other sources of information such as the online textbook, the cours
calendar, the programming projects, and the entry point to the online tutor systerm
Figure1l2 The | ine Ago(o6htt p:2/0/0sri6bgp .0oc 9 a&asi le.xmictu.t edu
OEnterd button is hit

The goal ofcontinuous executiois to help the user acquire information about
codeas it iswritten To do this,continuous executioautputs theesult of executingll
the code up toud not including the cursor linesthe user edits. &ers can see
intermediate steps of their program, to see if it is behaving as expected.

Figures 1.1, 1.2, 1,3.4, and 1.5 show the evolution of the HTML window as a
script is developed. In Figure 1.3, we see a script executadhipletion InFigure 1.4,
the HTML window has reverted back to the stage where only
figo(O6sicp.csail . mit-2680 uxd plpeesexecyted, to reflect that
only the code up to the cursor line was. And finally, inFigure 1.5, the code is again
completely executed, with the results of the edit showing in the HTML window. We can
see that by continuously executing the cagersare presentedith the ability to se¢he

stateof the script after a particular ling executed.

3 6.001 - Structure and Interpretation of Computer Programs - Spring 2007 - Mozilla Firefox

File Edit View History Eookmarks Tools Help

<;: - - @ ﬁ L1 http:}fsicp.csail. mit.eduSpring-2007] v B '
’ Getting Started 5y Latest Headlnes

Chickenfoot Script Editar 8

Lintitled 8

go{'hoop: f/sicp.csail mic. edu/Spring-2007 ') ;
form = "INSERT LOG IN FORM HERE":
insert {after ("Welcome to &.001"), form);

Spring 2007

Welcome to 6.001! ¥SERT LOG I FORM HERE

This page s your entry to the course material. It includes current announcements of th
Course, pointers to other sources of information such as the online textbook, the cour:
calendar, the programming projects, and the entry point to the online tutor system.

Figure13 The script i s executed to the end
FORM HEREO gento the pa

a ind Interpretation of Computer Programs - Spring 2007 - Mozilla Firefox
File Edt Yiew History Bookmarks Toaols Help

@ - - @ ﬁ L] httpiffsicp.csail.mit edufSpring-2007] Ml '

P Getting Started |3y Latest Headlines

Chickenfoot Script Editar 8
D-vEd@r o0&
Lntitied (15

goi'hotp: //sicp.csail. mit.edu/Spring-2007"');
form = find{"Log in form").heml|
insert {after("Welcome ta &.001"), form);

Spring 2007

Welcome to 6.001!

This page is your entry to the course material. Itincludes current announcements of th
course, pointers to other sources of information such as the online textbook, the cours
calendar, the programming projects, and the entry point to the online tutor system

Figure 1.4 Line 2 of the script is edited. Notice that the script has returned to the same
state as it was in Figure 1.2.

1C

%2 6.001 - Structure and Interpretation of Computer, Programs - Spring 2007 - Mozilla Firefox

File Edit Y¥iew History EBookmarks Tools Help

<;: - - @ I_T_T L http:ffsicp.csail.mit.eduSpring-2007] ~| B '

’ Getting Started |5y Latest Headlines

Chickenfoot Script Editar 8
Lintitied 8 AR

A; N Lol

goitheep: f/sicp. csail mit. edus/Spring-2007'); N A i T

form chifzd"c'{jaglm f°§m“;-lo’§‘l“f; coras 6.001 - Structure and Interpretation of Computer Programs
insertiafter("Welcome to 6. , form);

|

Spring 2007

Welcome to 6.001!
Tser MName:

Password:

Ifvou do not vet have a tuter account. vlease resister here first.

Figure 1.5 The edit ismade and the script is executed with that edit in place.

This extra feedback has a few benefits. It provides:

1 Help with syntax errors: Userscansee the execution of a line of code
immediately as they navigatiee script with error messages appearinghe
Chickenfoot console if there are syntax errofsuser can see an error happen
as soon as a particular line is edited and navigated away ditowing them
to infer what the error was and what line causedatrect it, and learn from
it.

1 Help with behavioral errors: Similarly to syntax errors, useaseshown the
result of their code anareable to compare tb thedesired effect.

1 Help with comprehending code: Seeing what a particular line of code does

to a program allows the uskr gan abetter understanding of what that line

contributes to the program.

The rest of this thesis discusses details of the design and implementation of a
continuous execution environment set in the Chitd@nframework. Chapter 2
discusssrelated work. @apter 3 will discusgnplementation details. Chapter 4 talks
about a preliminargvaluation of continuous execution in Chickenfoot, @hdpter 5

detailswhat still needs to be done and whergo from here.

11

2 Related Work

Muchwork has consideredow to makehe development cycle easier for users.
First, we try to understand tHmarriersthatexist indevelopingcode, and how we can
overcome those barriergfter understanding those barriers, we will examine a number
of toolsand conceptthattry to overcome those barriers and give users more feedback
and assistance as they develop code.

2.1 Barriers in Programming

Ko and Myerd5] identified six different kinds of barriers associatedtwi

programming.Designbarriers deal with cognitive diffulties of a programming

problem. Selectiorbarriers areaused by r opert i es of an environmen

finding what programming interfaces are available and which can be used to achieve a

particular behavior.Coordinationbarriers areaprogrami ng systemés | i mit s

interfaces in its language can be combined to achieve complex behaysmisarriers

are properties of a programming interface that obscure how to ugederstanding

barriers are properties that obse what a program do&gen itruns. Finally,

informationbar ri ers make it difficult to acquire i
Continuous executioatemptsto breakdown thenderstandingbarrier. An

environmemhwith continuous executioallows users to see theselts of a programas it

iswrittenhel ping to clarify a programbs behavior
Another barriethat continuous executidackles is theinformationbarrier. With

continuous execution, users can see the programestate i t 6 sup te aparticular e d

line, and then navigate downward to see what that line dbleis lendsnsight into what

that particular line is doing, and thus allthe user to acquire information about a

programdbs internals.

12

2.2 Breaking down the understandiagd inbrmationbarrieis

Many existingtools helpbreak the understandiramd informatiorbarriess. These
tools give users the extra capabilities beyond just execution to figure out what their code
is doing.

2.2.1 Debuggers

Debuggers are oreommon option available userghatattack the information
barrier. After writing some amount of codesers can use a debugger to help tesp
through their code in an attempt to understand @ use the debugger, a user first sets a
series of breakpoinandentersa déugging mode. In the debug mode, thger can run
thecode up to selected breakpoiraswhich point the user catartstegping
incrementallythrough the codeThese steps can either be as small as one line of code, or
as large as a function, dependmgn t h e u sAeeadh poinhiretieedlebug mode, a
list of variables and their values is available to the.usising this variable list, the user
can acquire information about the programods

behavior of the ppgram is as it should be.

2.2.2 Reversible Debuggers

An improvement on debuggers is the concept of raversiebuggersAccording
to Delisle, Menicosy, and Schwartz [3kliligging accounts for about half of a
programmer 6s t ot al cutrantaebuggers @ the inapilityddovee m wi t h
backwards through codé\ccording toKoju, Takada, and Ddi7], software does not fail
immediately after the cause of a particular program failure is execiiteat is, the line
where an exception is thrown, or whélne program stops working as expecgisdot
usually the line that contains the error.

Reversible debuggersmedy the problem by alsdfering the ability to step
backward, allowingxecutonto the time of failure and then backtracking to where it

originated.

13

2.2.3 Testing

Users can generate tests for their code to gain feedback abBat #xample,
Java has JUnit. JUrpirovides a framework for users &st cases famodules and their
methodsusingasserstatementso determinef a givenmoduleor methods behaving as
expectedy running it on a number of examples. These examples are generated
manually by the user, who has to think of common casesell azorner cases
Alternatively, a user can write scripts to automatically generatedasssc

All of these options provide usenglp with breaking down the information and
understanding baet. However, theyare not used at the same time code is writtan
order to develop code, a user has two phases: a writing phase where cotlerisawdi a
testing phase where the user cae these tools. Continuous executizgrgeshese two
phases It mimicsthe capabilities of a reversible debugger, where a user can step
backwards or forwards frosomepoint ina script, while constantly sew the program

output

2.3 ImprovingFeedbaclat Development Time

Debuggers, reversible debuggers, and unit testers allow uggathtr valuable
feedback from their code, but must do this independently from writing code. There are
currently numerousols that actually provide users with feedback about their code

during the writing process.

2.3.1 Text editors

Structured éxt editord11] gave users cadsnippets antemplates to assist in
writing code, containing features likecontent assist list, which mimined functions
defined by the syntax of the language in which the user was coding, and could be used to
autocompleteblocks of code. Users could alsdide their own code snippets for
regularly used bits of coddt was believed thatode snippetsral templates would cut
down on development time, as users could select templates rather than wriile ddsg
of code. This would prevent them from making mistakes on templated cbley also

provided syntax highlightingndunlimited undo/redo.

14

Structured text editors eventually lost ouffitee-form text editorsvhich simply
allowed users to directly manipulate what they were writiggrly models of freeform
text editorgprovided usersvith some minimafeedback at development time. Some
provided autoindenting and syntax coloring using simpégular expressionso give
users some minimal feedback about the correctness of what they are writing.

Newer freeform text editordraveincreasd the feedback giveto users. For
example, Eclipseanintegrated development environment which includes aftrea
text editor parses code and compiles itgive usersfeedback abowtyntactic errors as
well as type errors. The parser is run constantly while the compiler is run every time a
file is saved.Eclipse is just one example of a numbembégrated development

environmentghat give users more and more feedback at development time.

2.3.2 Continuous Testing

A step further in providing users with feedbackcade is writtefis continuous
testingp]. Cont i nuous testing uses excess cycles o
continuously run tests in the background to provide feedback to users about failures as
they edit code. The point of it is to reduce the effort required to keep codeesieli
and thus well understoo@dnd to prevent errors from being uncaught for long periods of
time, helping to catch bugsAn experimental evaluation of continuous testing during
development showed a significant effect on success of completing a programming task,
while having little to no effect on the amount of time worked.

An application of continuous testing was Exam@lentric Programming [3].
ExampleCentric Programming presented a prototype of an IDE that tried to turn the
REPL (ReaeEvalPrint Loop) into asingle unified tool.

The readevalprint loop (REPL) is a simple programming environmelht
consists of 3 main functions: read, eval, and print. réadfunction accepts an
expression from the user, and parses it into some data structure in mérnegyal
function takes that data structure and evaluates it. pfihefunction takes the result
from eval, and prints it out to the user.

Examplecentric programmingnerges those three functionshe idea behind

examplecentric programming is to haweuser create some simple test cases (maybe

1t

even regression tests) for a particular program they are writing. Then while they are
writing code, the examplesetested, and the user can see the evolution of their
examples and how approachksthe soluton during its developmentThis behavior
hel ps users i dent andl help breap downghe anteyssandmganc v i o r
information barriers.
This idea of letting users see the results of their code on testictaem in
another direction witlcontinuous executioninstead of just doing test casesntinuous
execution inChickenfootshowsthe output opart of ascript ast is written, letting the
user know the internal behavior of the script immediat@lyis feedback during code

developmenhelpsusers overcomthe understanding barrier and theoimhation barrier.

2.4 Seeing Program Output at Development Time

Finally, there are programs where users can see the results of their actions almost
immediately. For example, one of the most conmigaused is Microsoft Excel
spreadsheetsSpreadsheets allow users to enter lines of code intqcfés simple
branching logic)and show the output of that code in the cell immediately as it is entered.
The output of the program is the spreadshsetfiand is constantly updated as the user
edits it

There are also a number of graphical user interface (GUI) languages that have
continuously executing development environments. One example is XML Markup
Language (XUL), which has a development enuvinent called Extension Developer,
written for Mozilla Firefox[12]. Extension Developer comes with a XUL editor, which
has two windows: one for editing code and one for displaying the output of the code. As
a user edits code, its result is displayechaautput. This clearlgelps greatlywith
catching errorsasany incorrectly formed statemecduseshe output windowto display
an error message.

This work combines the advantages of the discussed tools to further improve user
feedback. It has theapabilities of a reversible debugger to step through code and
showing its output, and it does this as the user writes code. Thigyivedusersa tool

that integrates writing code and testing in an elegant and integrated fashion.

1€

3 User Interface

Continuous execution outputs the results
written. Itis areadevaltprint loop where the user can hit return to obtain some feedback
about the code and still end up with some finished program.aléoa debuggewhere
breakpoints can be set and inspected. The difference for continuous execution is that
setting breakpoints and inspecting them is autoni@sed on where the user puts the
cursor Users can inspect the code at any point in the prograsmiply position the
cursor

This extrafeedback anthe functionality to obtain it should not interfere with
user workflow. As such, enhancing Chickenfoot with a continuous execution
environmentddsno extra user interface elemetdghe editor That way, if a usr
chooses not to use continuous execution at all,tthene devedopndest process
remains unhinderedThere is still a risk of distraction caused by the continuous

execution environment, and this is addressed in the evaluation section.

3.1 When to exeute code

Continuous executioahould be designed sbat as a user writes code, gféect
of each edited linenthe output is immediatelgpparent This can be achieved by
executing thas s e r 6 cnsi@ndhd Ehis amount of timbéetween executiorshould be
small enough so the output appears to be continuously updating. In this way, the output
window would consistently reflect the usero6s
their code is doingHowever this approach is not feasibl€ontinuous execution needs
to run t he uisthecase of Cluckeafpcanena seribs of network
transactionshat maybe expensiveao runrepeatedhgiventhe limits of server and
network latency
A more realistiapproachs to execute tha s eaodean every key stroke and
mouse press that occurs in the Chickenfoot e
because we are listening for discrete key and mouse presses to execute as opposed to

trying to simulate the continuity of time. Users caa Bew each character they write

17

affects their overall script. However, even this reduced number of executions can
become too processor intensive, with more complicated scripts.

Continuous execution needed a way to further reduce the nwindezcutionof
the programand still mimic castant output. The solutidhis workuses $ o executehe
u s er 0eachdirmedh® user chargmesin the Chickenfoot editorThis approach
scales back from being able to see individual character changes, t@bleing see how
individual lines of code affect the output. This approach still faces a similar problem of
server and network latendiynitations given complicated scripts, but scales a little better
than the previous suggestions. However, it is stilatde of providing users with
constant feedback about the output of their code.

3.2 Executing code

Thereare a fewdecisions to be made when deciding what code to run. One
optionis to run all the code in the buffetf the entire buffer is evaluatedserscan see
the output of thggrogram as a wholdut lose the ability teee the effect dhdividual
lines. A second choicés to evaluate a single line; specifically the line the cuison.

A persistent environmemfanbe maintained to remembite evaluation of lineslf just
the current lings evaluateduses could see whatny particular line i by navigating
through the script, but the functionality of multiple lines of code integrated together
become obscure.

The approach taken byishworkis a comprornse between these two choices that
closely resembles the breakpoint model of debuggers. The cursor position is
automatically set as a breakpoint, and code is run up to that breakpoint. For example, in
Figure 3.1the output window dlays the results of lines2, but not 8, 9, or 10.

Because we are executing on frtieange events, a user can see the partial execution of
the script, and figure out if the program is behaving correctly at intermediate steps by
navigating through therles. A typical use casarmbe to navigate between 2 lines,

comparing the changesade to th@utputanddeterminng the behavior of the lines.

18

Chickenfoot Script Edikar 3¢

D-v@d@P-0F
Untitled 5"

oukbput (1) ;
outbput (2] ;
outbpat (3 ;
outpuat (4] ;
oukbput (5 ;
output (&) ;
outpat (7
butput(S);
oukbput (9 ;
outpuat (10) ;

oukput | patterns || Actions || Triggers

Output: %%‘

R I« VR R NV I S

Figure 3.1 A simple script and its partial execution

The behavior is dif fontaiespdge loatise As showrein user 6 s
Figure 3.2t he dd (nég dio g | edcausemapage load. The cursor ishen
| i rowput@B) ©. Only the coddetween these two lines is executétis behavior
is a side effect of the way code is execut@d save o expensive page loads, this
implementation of continuous execution uses the browser history to jump to different
points in the script. This detailed inthe implementation section. Skipping parts of the

script causes the effect seen in Figure 3.2 ravbaly some of the JavaScript is executed.

19

%) Google - Mozilla Firefox

Eile Edit Yiew History Bookmarks Tools Help

<": o B @ ﬁ hitp: fJwww. google. comf ~| B G- <%,
AP Getting Started [Latest Headines
Chickenfant Script Editor || Web Images Video News Maps Gmail more v iGoogle | Sign in

D-2E@@p-0&

Untitled 8 ; .
suspun (1) ; 3 O U e
sutput{z)

oukput (3] 7
ouspur (4] ;

ogle.com' | ;

out i) I
foutput (31 £ Google Search J[I'm Fesling Lucky |
outpue (9) 7

output (10] ;

Advertising Programs - Business Solutions - About Google

2007 Google

Qutput | Patterns | Actions | Triggers
Output: h

3
7

Figure 3.2 A simple script with a page load and its partial execution.

3.2.1 Multi -line statements

The behavior we want is for all the code up to but not including the cursor line to
be executedlf every staement was a single line, this would work just firdowever,
there are statements that span multiple lines, such as etiowvatatements. When the

cursor is positioned in the middle of a mulitie statement, a couple problems occur.

Chickenfont Script Editar Q
D-2@d@EP-0&
Intitled %]

for {word = new find{'Google'); word.hasMatch; word = word.next) |
| replace (word, "Yahoo")
}

Figure 3.3 A for loop illustrating the problem of taking only the code up to the cursor.

2C

One problem ishatsyntax errorsrepresented to the user, even for correctly

formed statementsAs seen irFigure 33, the code up tbut not including the cursor is:

for (word = new find(6Googled); word. hasMatc

word.next) {. When this code}di syeax adspldgeddnor a i mi s

the output consolelespite the fact that what is written is all syntactically corrébis
problem is easily figd by adding closing brackets to the executed code.

A more serious problem occurs with contflolw statements, where a single line
of code can potentially be executed multiple times likefora loop, or not executed at
all like in anelse -if statement It is not obvious what to execute when thesoris
positioned inside one of these statements. This work estaldishesber oheuristicsto
deal with controflow statements.

For multi-line conditionalstatements, if the cursa located withiran if
st at elodyrhe éode up to the cursor line is chosen for execution with closing
brackets added to the etwimake it syntactically correcEromFigure 35, the extracted

code would be:
if (x == 1) {
output(6oned) ;

}
else if (x==2) {
out put (6tdavod)

g b WNPF

The cursor lies within thelse -if multi-line statement, which has a depth of 1,

and therefore one closing brackeadded.

Chickenfont Script Editar LQ
O-2v&@&F-OF

Intitled %]
if {x == 1) {

output | 'one ') ;

}

elze if (x==EZ) {
output { 'two');

H

elze {
output | 'three') ;

}

Figure 34 A multi-line branching example.

21

C

-

An alternativeapproacHor conditionalstatementss to executeonly the code that
is enclosed by the conditional statemastthe cursor. IRigure 34, this would mean
that regardless of the value of x, we exeaute t p ut (O .t Aldtlmdgh this behavior
benefis users by letting them see what each branch of &h& - if constructs did, it
also ignorewvariable values whichbscureghe true program state.

There are soméavaScript branchingtatements that aret supported in the
prototype systerike switch statementsral try/catch blocks. However, becaws
these statements are so similar in structure and behavior else constructs,tiis
likely that the same heuristics will be used.

For multtline loop statementsuch agor andwhile , theheuristicthis work
usesis the same as that of dn statemet. All the code up to the cursor line is
extracted, andlosing brackets are addedn example of the betvior can be seen in
Figure 35.

¥ My Links - Mozilla Firefox

File Edt View History Bookmarks Tools Help
e P =
_ - - \J_’J Ij_: |I| hittp: fivweb, mit, eduflsulvwd v links html | [

B cetting Started Sy Latest Headlines

Chickenfoot Script Editar 8
Home
OD-2&@8&pk -0 oo My Links
Uridted a Courses Academic
go ['web.mit. edusksulwd/wne/ links . htul ') ; Music
forim = find{'http https link'); m hasMatch; n=n.next) | B Chinese Help hitp:dfwnew. zhongwen, corm
[hitp. i, ZNONGWEN. COM
| war link = m.element; Games Java http:Mava. sun. com/2sed1.4 2idocsiapil
war text = link. previocusSibling: . Dictionary http: Armerriamwebster. com
replaceitext, '<a href='+link+ »'+text. nodeValuet' ' Links
) remove {link); Pictures Entertainment

Movies Anime http:#animesuki. sandwich. net
One Piece hitp:¥adongpark. com
Maruto http:ifnarutofan. com

Bored? hitp:/faddictinggames.com

Friends

Mark Bongso hitp: i geocities. comimentostheonel
Sport http:fweb.ics. purdue. edu/~channiba

Brian Wu http:fweb. mit, edudbrianwudanes

Eric Lieberman http:4fweb. mit. edufericliwwat

Figure 35a The code up to line 2 is executed, with the for loop currently doing nothing.

22

¥ My Links - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
e % (I i
_ - - -\.t_ Ll hittp: fivweb, mit, eduflsulvwd v links html | [

B cetting Started Sy Latest Headlines

Chickenfoot Script Editar 8
ND-2 @&k -0 & My Links
Untited 8

Academic

go{'web.mit. edu/ksulwd /e links. htul '} ;

forim = find{'http https link'); m hasMatch; n=n.next) | B Chinese Help hitp: e, zhongwen, corm
war link = m.element; Games Java http:Sava. sun. com/2sed1.4 2idocslapil

war text = link. prewiousSibling; R Dictionary hitp Amermamwebster. com
replaceitest, '<a href='+link+'s'ttext.nodeValuet' </ar’ Links

link); i
} remove {link) res Entertainment

Movies

Anirne hitp dfanimesuki. sandwich.net
One Piece http:farlongpark com

Maruto http:fnarutofan. com
Bored? hitp:#addictinggames.com

Friends

Iark Bongso hitpifaees. geocities. comdmentostheone!
Sport http-ffweb ics purdue edui~channiba

Brian Wu http:fhweb. mit. e dudbriamfanam

Eric: Ligherman http:dweb. mit. edufericliwat

Figure 3.5b All the code before the cursor is executed, i.e. all but one line of the for
loop.

¥ My Links - Mozilla Firefox
File Edit Miew History Bookmarks Tools Help

@ - - i\ltj"J L’é—j III http:ffweb. mit.edufksulvd v links bkl x| B

B Getting Started Sy Latest Headlines

Chickenfoot Script Editor 8
Home
O-2v &8 &bk -0& My Links
Untitled)
G Academic
go{'web.mit. edu/ksulwd/ v/ links. htnl ') ;
forim = find{'http https link'); m_hasMatch; m=m.next) { _ Chinese Help
var link = m.element; Games Java
var text = link. previousSibling; T Dictionarny
replace(text, '<a hrefs'+link+'>'+oexc nodeValued' /@ Links

link); i
remove {link) Entertainment

Anirme
One Piece
Maruto
Bored?

Friends

Wark Bongso
Sport

Brian ¥yu

Eric Lieberman

Figure 35c The cursor finally reaches the end of the for loop, and all of its code is
executed.

Looking atFigure 35, we see thathe lines of code up to theisor line are

executed. FoFigure 35a,the code before ther loop and dor loop with no body is

executed For35b, t he | iraplace udp ctoommahned 6i s | o50,p e d

23

over

the script finally fully executes. As the user navigates thr@ulglop, he/she can see how

each line changes the loop, and thus changes the overall program.

This approach of executing the iterations of loops in paralleb&dadea if each

iteration ofthe loop depends on the stafehe iterations before it. Ashownin Figure

3.6, we see such an example. This loop terminatesifn d (fi | idnokeds)n 6 t

return

match. However, the second line is responsible for replacing all possible matches on the

page wi

t h

t he

wor d

a match, resulting in an infinite loop.

Al i nfkion da(nfidk @@hfaysireturai s

EEX

) Goosle - Mozilla Firefox

Eile Edit Yiew History Bookmarks Tools Help

[=[»] [E]

&0

@ - . @ ﬁ |G ratpfpunms.googie.com
AP Getting Started [Latest Headines
Chickenfaot Script Editor E3 || Web link link link link link link link | link
O-vEd@pr -0& ,
Uniitled | (5] . .
w = find{"link");
}
| \ |
Google Search][I'm Feeling Lucky] link

link - link - link

©2007 Google
Figure36a A script that replaces all the I

BEE

) Goosle - Mozilla Firefox

Eile Edit Yiew History Bookmarks Tools Help

@ - B @ ﬁ_l‘ |G ratpfpunms.googie.com [~[&) G %)
AP Getting Started [Latest Headines
Chickenfaot Script Editor E3 || web Images Video Mews haps Gmail maore ¥ iGoagle | Sign in
D-vE@Ek-OF ,
Untitled | (5] .
w = find{"link"};
e
‘ |Ad vvvvv d Seach
Google Search][I'm Feeling Lucky] Language Taols
Advertising Programs - Business Selutions - About Google
e2007 Goagls
. . A
Figure36b The same script that doesndét work

executed.

24

not e

nks o1

becal

A fix isto prevent loops from executing infinitely lnyjecting the following code

into all loops:

1 if (n > MAX_LOOP_ITERATIONS) {
2 break;

3 }

4 n++;

The variable n is initialized to O before the loop begins and
MAX_LOOP_ITERATIONS some number ofur choosing.This prevents loops like
these from looping infinitelyt should be large enough to allow the user to see the effect
of the for loop, but small enough to not spend too much time in a wasted loop.
An alternativeapproach to executing ali¢ code up to the cursor lireto set the
cursor line as the breakpoint. The user decides to see the first n iterations of a loop. The
code inside the loop is completely executed n times. On th&iteration, the code is
only executed up to the laepoint. This lets the user potentially see every step of the
loop by varying the cursor position and the number of iteratiblevever, thisapproach
requiresaddingan extra usenterface element® allow users to select the number of
iterations. @e of the goals of this worik to enhance user feedback without interfering
with the userdés workflow, and thus this appr
For functionsjf the cursor lies inside a functidody, then all the code up to the

cursor line is appended wWitll the code after the end of the functimdyand is

executed.

Chickenfoot Script Editor %]
D-v @@ -0

Untitled %]

furiction testi() {
output (1) ;
output (2) 7

| output (3) ;7

}

output { 'Begin tesc');
test ()

Figure 3.7 A simple function example.

25

The code that gets executed igle 37:

function test() {
output(1);
output(2);

out put (6Begin testoo);
test();

OUh WNPF

The scriptis runto the endignoring any code inside the function that appears on
or after the cursor lineThis is drastically different than the behavior for branching
statements and loopahich simply stopped at the cursor lin€his is because functions
arethemselves very different from other typelock satements. The body of a
function @n be executed multiple times at differeattoons of the prograntepending
on where it is calledOther block statements are positioned in one section of the tode
Figure 37, lines 1 through 4 only define a function. If we remove line 6, the funiion
neverexecuted.Therefore, we haeto treatfunctions differently from other mulline
statementsas executing code umakdsensforfuactiomsur sor | i ne

An alternative approach to executing the script to itsveéimeh inside a function
bodyis touse the cursor line as a breaknt. Only the code up to the breakpoint is
executed and the program stops thélree code thais actually ouputtedfrom Figure
3.7 is then:

1 out put (6Begin testoo),;
2 output(1);
3 output(2);

This is because the code before the function call is executed, and the code inside
the function is executed up to the cursor. The execution would terminate here, meaning
later calls tdest () would not be executed.

The following script presents a problem for the first approach.

function test() {
var x = 3;
return x;

output(test());
output(test());

O, WNPE

For this example, if the cursor was on line 3, the pgiroach would

meaninglessly output nothing, because the return statement was never reached. The

26

second approach would stop at line 2, which is consistent with the behavior had the code
been written idine instead of called from a function.

However, tle first approach does have its advantages over the second one.

1 function test(num) {

2 output(2*num);
3 output(4*num);
4 }

5 test(17);

6 test(23);

7 test(46);

For this example, if the cursor was on line 3, the second approach would stop
after onlythe first call to test, outputting only 34. The second approach would allow the
user to see the execution of the function on multiple inputs rather than just the first.

The first approach was selected becausts@hility to let a user debug all the
function calls rather than just the first onend though its behavior is different still
meets the goal of providing feedback to usddsers moving the cursor inside a function

bodycan see how changes made inside of functions affect the program.

27

4 Implementation

In order to create the effect of continuously executing and outputting code, the
continuous execution environment for Chickenfoot goes through a number of Steps
first stepsdecidewhen to execute codmdfigure outwhatcode toexecute That codas
then exeuted and its resui displayed Thisworkflow is graphically illustrated in
Figure4.1.
Figure 4.1 shows the four modules that are each responsible for a step in
executing the wuser 0s crmé&wluation.EDhe exteaatiani on, Par s

module is responsible for starting the process. It listens for the appropriate events in the

Output Windows ———p (o X e ——

Chickenfoot editor

|

Orickent ook Scripe Editor [*]
D-eQ@ > -0

Urtdied]

Wait for
Line Change Update output

Extraction p———3 Parser f——— Filter }————»] Evaluation

Figure 4.1 This figure showshe workflow that happens when code is executed

28

Chickenfoot editoréakl cofrehée bufferfdsescgdvdact

the parser. The parsikes the extracted code, parses it to figure out relevant
information,andforwards the code and the parsed informatathe filtermodule. The

filter module eliminates lines of de acording to the parsed informatioff he filtered

code is passed to the evaluation module, which evaluates the code and displays the result
through the available output channeidich in Chickenfoot are thdTML window and

the Chickenfoot output conde.

4.1 Detecting line changes

Line changeare easily detectable. The mettgedSelection() provided
by XUL which returns amNSISelection object. TheNSISelection object

represents the selected text in the editor and has the following properties:

1 anchorNode 1 the node that the selection begins in

1 anchorOffset i the offset from the beginning of the node that the
selection starts at.

The cursor is just selected text, where the size of the selected text is 0. Using
anchorNode , a method calledgetCur sorLine () gets the current cursor line by
depth first searching throughe HTML treerepresenting the buffer codeounting the
number of
 nodeand stopping when trenchorNode was reachedAfter each
key press, ifjetCursorLine () is different tharthe last cursor line, a lirehange
event has occurred.

A problem with executing on every single line change isiffaatiser wants to
change lines very quickly, thehe continuous execution environnbevill still try to
executenany times in a shoperiod.

The solution to this was tioirther reduce the number of executia$o not run
on every single linehangeevent. Instead, we only execute after a-thange event if

no other linechange events occurred within the last 250 milliseconds.

28

<html>

Chickenfoot Script Editar 5] <head>
<l -- /] Style code - >

o = </head>

D-e@d Pk & Shead:
Unkitled 5% <pre>

var x = 3;

wvar x = 3; if (x ==3) {

if fw == 31 output(4);

output (4] ;
H </pre>
</body>
</html>

Figure 4.2 A simple script and its HTML representation.

4.2 Extractingcode

The Chickenfoot editor is an HTML editor so its display is represented by HTML.
As shown inFigure4.2, theHTML for the Chickenfoot editois responsible for laying
out the buffer and keeping track of new lines and white space. This work takes
advantage of the HTML tree structure in order to iterate over the nodes and extract the
code.

Figure4.3is the HTML that we are working withas a tree Performing adepth
first search on the trgesults in passing over the buffer lines, and thus theitettie
correct order (from top to bottom and left to right). So to extract the code from the
buffer, we use a wrapped version of theateTreeWalker() method provided by
the DOM to perform a depth first search. In our depth first search, for evenotixive

encounter wappendts nodeValue to atemporary string variablg-or every element

node, we checkto see ifitishr> el ement , and apwéndoawmwuapprop

string.

3C

7

Figure 4.3 The HTML ofFigure 3.3 in tree form.

The end resulis a string for this particular example is the following string:
Avar x \#.if(x333){ \ noutput(4); \n} O

This string is then passed on to the parsing step.

4.3 Parsing the code

On a high level, the parsing module takes the code from the extraction module,
parses it with Rhinoand returns a tree of information later used in filtering the.code
Rhino[13] is an opetsource implementation of JavaScript written in Java. Rhino
contains a JavaScript parser which is used for this work. An instageoofogge r,
an object that keeps track of errors in the parsed JavaScript, is needed to instantiate
Rhinobs parser. Wh ErnorLogder nispogulatedsvéhsanyc o d e, t hi
problems Rhino had while parsing the code. Thus, figuring out the errors is aghatter
accessing the list of errors from tBerorLogger
This work uses the Rhino parserfited the beginnings and endings of statements
that span multiple lines, such as loops and conditionals, the significance of which was

discussed in the user interéachapter and illustrated in Figure3.

31

Figure 4.4 The parsetreedgf v ar x \#if(x353) { \ noutput(4); \n} o

When the extracted code is passed to the parser, it retireenédNodes. Each
Node has a type, describing it as a function node aadin node, a variable node, etc.
EachNode also contains pointers to its children, which Eigles themselves. For
example, if we take our extracted string exaniiple a r x \1if(x353)
{\ noutput(4); \n } dand have Rhino parse it, we get the tree seeiginé-4.4.
This parse treeeturned by Rhinds used to determine the start and end lines of a
multi-line statementBecausenulti-line statementsan benested within each othat,is
natural to represent them asother tree. Aimterval class wasreated to represent
multi-line statements Eachinterval class hathe following data members:
i startLinei the start line
1 endLinei the end line
1 parenti the enclosing mukiine statement
1 childreni the multtline statements inside of this one
1

typei the type of node, e.g. loop

32

91 depthi how deep thénterval is in the tree

Using theparsetreeof nodeseturned by Rhino, wereateatree ofl ntervals . A
depthfirst searchs performed on thearsetree. At each stepye keep track ofthe
current deptlas well as a stack &fit ervals we arecurrently inside of (the stack
structure handienesting of multiline statements)For eachNode, determinethe line it
starts on and the line it ends on usingdgbd.ineNo () method ofNode. Whenever we
encounterla Node thatspars multiple lines constructanl nterval to represent that
Node and m&e it a child of the top of thenterval stack i.e. thel interval that
we are currently inside ofThe currentnterval is then pushed onto the stack

signifying that ve are inside thdnterval

1 for(vari=0; i< 100; i++) {

2 i f(1%2==0)

3 if(i%4==0) {

4 System.out.println(AaMultiple of 40);
5

6 else {

7 System.out.println(AEveno);
8 }

9}

10 else {

11 System.out.println(fAOddo) ;

12 }

13 }

Figure 4.5 A short script and ittnterval ~ tree. The numbers in the nodes are
fistart : end 0.

33

Whenwe find aNode of depth less than the node on top of the stack, we know that
we have exited thimterval and the stack is popped. We continke lhis until the
depth first search is completed@he end resuls a tree structure representing ourteds

Intervals within the code.

4.4 Filtering code

With the information provided by the parsing module, the code can be filtered
according to the heutiss described in the user interface section. This means that we
only execute code up to the cursor line. For if statements and loops we automatically fix
syntax problems with curly braces, and for functions this means running the entire script,

with only the part of the function up to the cursor line rupror example:

1 if (true) {

2 output();

3 if (true) {

4 output(2);
5 output(3);
6 }

7 output(4);

8

If the cursor was on line 5, the code that would be executed is:

1 if (true) {

2 outp ut(1);

3 if (true) {

4 output(2);
5 }
6

These heuristics were easy to implement for branching statements and loop
statements and any nesting of the two. The algorithm was

1. Find the current cursor line.
2. Find thedeepest nestddterval that the cusor lies within.
3. Get all the code up to the cursor line and add curly braces based on the depth
of thelnterval to fix syntax problems.
However, functionpresented a minor issu&@he parse tree that Rhino returns
unfortunately @ not parse anything irde of a function uless it was explicitly called

somewhere in the executed cod®hen it did parse, the line numbers were relative to

34

where the function was called, and not relative to where the function was defined. This

made it impossible figure outulti-line statementthat were nested inside of a function.
The solution to this was toeat the functiolodylike a miniature buffeand

extract the code from within the functitmody, pass it to Rhino and create a tree of the

Intervals inside the funtion. This tree ontervals can then be used

determine what code inside the function should be run based on our defined heuristics.

This filtered code, instead of going to an output winde®passed upwardss the code to

be run for the function bod

4.5 Running code

Now we need to execute the filtered codéne trivial solution is to rumll of the
filtered code This is what current continuous execution environments like Firefox
Extension Developer dior XUL. Howeverthe reason why this i$ntiable for
continuous execution in Chickenfoistbecause while Extension Developer executes
XUL code,Chickenfoot scripts are essentially JavaScript cadiech can be
significantly more complicated and take much longer to exatugdo the potential

network transactions performed by the scripbr example:

1 go(6googl e. comb)
2 click(6advancedd)
3 out put (6hi d8) ;

This codeblocksuntil google.conis loaded and thetheadvanced search page
loaded. Depending on the network connection speed;ahimke a significant amount
of time. Page loads are the most expensive operation in the scripts, but all of the pages
are recorded in the browser history. This work exploits the browser history by using it to
jump to some intermediate point of the sttlmt caused a page load, and then executes
only the portion of the code not covered by the jump.

To access the browser history, this work accesses the web navigation object
provided by the Firefox development environmehhe web navigation object prinles
simple functions likeggoTolndex(int i) which browsego the ith linkfrom the
beginningthe browserhistory(so the & link is the page that has been in the history the

longest)andget(int i) which gets the link at index.

38

This workcreates a apping between the script to be run and the browser history,
where each line that causes a page load is given a nunsbehthatget (n) returns
the |Iink that corresponds to that page | oad.
executed.

To create the initial mappindghe beginning of the script is marked as a
checkpoint and it is mapped to the initial browser state. This is so that the script can
revert to its start state when the user moves the cursor to the first. The code to be
executedd thenrunone line at a timeAs this code is run, erusea
SHistoryListener XUL object accessible through the Firefox chrome window
listen for changes made to the history. This history listener is capable of detduting
new pagesreadded to thdistory, orwhen theforward and backwarduttonsare
pressed Each line thatdds a new page to the histisynarked as a checkpoiritVe do
this until the script has been fully executéthen we terate through the lines marked as
checkpoints in ordeexcluding the initial checkpoint addesumbering them frort to n,
where n is the number obw pages added to the browser histaffe canverify what
pointin history each checkpoint corresponds to by simply uget§) . By our
constructionthere a an egal number of checkpoints #were argpagesadded tdhe
history. In this case, the code is ranmpletely withoutaking advantage of the browser
history at all.

When the mapping is not empty, we have an opportunity to shortcut some code.
We first determine the latest point in the mapping tkatalid, or any point that is still
consistent with the scriptSpecifically, any time an edit is made in the script editor since
the last mapping wasgpdatedits line number is recorded invariabke called
earliest_edit_index . Any checkpoints that occur after the
earliest_edit_index are invalidated and removed from the mappiAdter
jumping to the latdgpoint in the mappingye proceed as in the empty cassy,
executing the code that still neetb be executelihe by line, Istening fornew pages
being added to the browser histoapd marking checkpoints.

There are a couple of problems with this approach. The first problem is if

checkpoints occur inside of a loop. One line would correspmnalltiple lines in

36

browser history. The current prototype implementation does not handle checkpoints
inside of a loop.

The second problem is keeping the mapping consistent with the cursor position.
If the user decides to manually navigate throughttowser history, then the output
HTML window will no longer reflect the correct position in the script.

One possible solution for this approach is to listen for forward or backward events
(possible withSHistoryListener) and move the cursor in the edtitfor the user.
This option is still being explored.

Theusedsolutionto fixing thisinconsistency is tdelete the mapping and
recreate it, thus making the mapping consistent with the script agais.occurs after n
executi ons o fCurtefitlg thig is implednented loy detting the
earliest_edit_index to be Q essentially saying that every pointthe mapping is
invalid andneeds to be recreated.

However, his approaclereatesa different problem with maintaining a correct

JavaScripeval uati on context. Letds examine the
1 go(6googl e. comb) ;

2 var googlelList = fA0;

3 for (m = find(dAlinko); m.hasMatch; m=m.next) {
4 googleList += A0+m. el ement ;

5 }

6 go(o6web. mit.edu/ ksulwd/ www/ bl ank. ht ml &) ;

7 insert(after(6Googl ed), googlelList);

8

Assuming the mapping is not empty, when the user navigates to line 8, the code
up to line 6is shortcutted by loadinffom thebrowser history, and then only lines/
executed. HowevegoogleList atline 7isnotdefinedand he scri pt wonodt w
properly. All the statements are correctly formed and variables appropriately defined, so
why does this problem happen?
The problem lies in the code that we are shortcuttihgie had run the code
normally, the variable would bereated and put into tRivaScripevaluationcontext.
However, we instead tried to shortcut some of the codesimgthe browser history. The
browser history only contains the pages that

contain any extra stat@nsaved on those pages. In this case, the variable googleList was

37

part of the JavaScript state, and thus by simply loading a page from browser history, its
value was not loaded correctly.

Onesolutionis for each checkpoint to also store the cordeshScriptevaluation
context for that point in the script. Then each time we shortcut some code, we load the
appropriate page from browser history, as well as the appropriate evaluation context,
correctly loading any JavaScript variables defined at that pothe script.

However, maintaining a copy of a context for each individual checkpoint was
problematic. V& can easily get fresh JavaScript evaluation contexts by exposing the
iIFramebehind the Chickenfoot editandgrabbingthe JavaScript evaluatiocontext
from it. However, keeping these contexts consistent with their checkpadifficult.

For example, if we just shortcutted to socheckpointand loaded the appropriate

evaluation contextye need to evaluate the rest of the sawiph respetto that context,

but the context itself shouldmain unchangedT hat i s, we dondt want t
evaluation contexto be inconsistent with its checkpqisb we can reuse it in the future

if we return to this checkpointHowever evaluating any @de with respect to a particular

evaluation context riskgotentially changinghat context as well.

One suggested solution was to load a context, deep copy it, and then evaluate
code with respect to the copy. However, deep copying in JavaScHigt idificult, as
there are cyclic properties (properties that link to each other) contained within each
evaluation context.

The implemented solution this work uses is a persistent evaluation context, where
all the code that has been executed is remesdbelf we create a variable and assign it a
value, it always hathat value until we specifically reassign it. This was implemented by
creating a variable in each buffer of the Chickenfoot editor that stores the current
evaluation context. All code ingarticular buffer is evaluated with respect to the global
context variable of the buffer. Thus any variables made in a script for a particular buffer
arealways definedvi t hin t hat bufferds context, though
contain the coect value.

A second problemaused by shortcutting coderedated to the JavaScript state
forms. The browser remembers changes made to a form and upon loading the page,

those changes are also loaded. For example, if we ran this script:

38

1 go(thages. googl e. combd)

2 click(badvancedd)

3 enter(d6all words 6hi 0)
4 pick(o6gifd);

Line 2 is a checkpoint, as it causes the advanced image search page to be added to
the history. When we n avisbgenteredinfodhe@formt o | i ne
and dsGdeédd in one of the dropdown menus. When we navigate back up to line
2, the statés returned to when the advanced image search page was first browised to
a fresh advanced search pagtowever,what shows up is the advanced imagarce
page with Ohi 6 e n tTeisisesagproldem decauseithe éffecsodlinesct e d .

t hat change forms becomes invisible. For ex
navigating from line 3 to line 4 would have no visible effect on the output.

A proposed solutiowas to create undo commands for each Chickenfoot
command. Whenever a line is navigated upwards from, we execute its undo command to
reverse its effect

Having the ability to undo commands would also expand the ways we could
shortcu code. Instead of shortcutting to some checkpoint within the current script and
executing the code after the checkpoint, we could shortcut to a check point that occurs
after the code we want to run and step backwards via conionandgo the cursor line.

Using a combination of the twdifferentways of shortcutting code could further reduce
the amount of code that gets executed. However, undo commarsdi#l &esng

researched anabt currently implemented

3¢

5 Evaluation

The continuous execution érmment for Chickenfoot underwent a few
preliminary wability tests, to see if the users understood that their script was
continuously being executed and its result was constantly being outputted. It was also of
interest to see if users could take adagetof the extra information provided to them.

The first user test was aimed towards beginning programmers. These users were
given ascript ofsimple Chickenfoot commandsd asked to identify the behavior of
each of thee commandsUsers were told #t they could run the scrigitherby clicking
the Chickenfoot run buttgror bymoving the cursothrough the script using the up and

down arrows. The script was:

go('images.google.com’);

click('advanced";

enter(‘all words', 'hi');

pick('gif);

pick('small);

click('google search";

for (m = find('www'"); m.hasMatch; m=m.next) {
replace(m, "'WWW result’);

}

O©CO~NOOUTAWNPE

5] Google Advanced Image Search - Mozilla Firefox:

Eile Edit Yiew History Bookmarks Tools Help

@ - B \(_ﬂ :_“ hitp:fimages. google..com{advanced_image_search7hi=en ~[B [ICl-

AP Getting Started [Latest Headines

Chickenfaot Script Editor (=]

O-s&@E@B-0& GO L)g[e Advanced Image Search About Google
Untitled (5]

go (' images. google com');
1i

P

feneer(raly i . related to all of the words hi Google Search
pick{‘git' Find results

pick{'small'}; related to the exact phrase

click('google search'):

for (m = find{'vvw'); m. hasMacch; mem.next) { telated to any of the words

replacelm, 'WOU resalt'i;

\ not related to the words

Size Return irmages that are any size | v
Filetypes Retum only image files formatted as GIFfileg v
Coloration Return only images in any colors v
Domain Retum images from the site or domain

SafeSearch O Nofittering @ Use moderate filtering O Use strict filtering

007 Goagle

Figure 5.1(a) Users were shown this window when the cursor was at line 3.

4C

%) Google Advanced Image Search - Mozilla Firefox

Eile Edit Yiew History Bookmarks Tools Help

AP Getting Started [Latest Headines

Chickenfaot Script Editor (=]
D-vE@P-0&
Untitled (5]

a ogle search');
or (m = find{'www'); m hasMacch; nem nexs) {
replacetm, 'WWU result'};

ﬁ http: f{images.google.com/advanced_image_searc

h7hi=en x|k G-
GO Ug[e Advanced Image Search About Goagle
Find results related to all of the words hi
related to the exact phrase
related to any of the words
not related to the words
Size Return irmages that are small v
Filetypes Retum only image files formatted as GIFfileg v
Coloration Return only images in any colors v
Domain Retum images from the site or domain
SafeSearch O Nofittering @ Use moderate filtering O Use strict filtering

007 Goagle

Figure 5.1(b) Users were shown this window whéretcursor was at line 6.

% hi filetype:gif - Google Image Search - Mozilla Firefox
Fie Edit Wiew History Bookmarks Tools Help

AP Getting Started [Latest Headines

Chickenfaot Script Editor 8
D-vE@@pP-0&
Untitled 8

Wieh Images ‘ideo MNews Maps Gmail more v

GO L)g[e i fletype-gi

Moderate SafeSearch is on

ﬁ G httpeffimages. google.comjimages?as_q=hitl=engoutput=imagestsvnun—103btnG=Google-+Searchfias_epa—tas_oq=8as_sq=Ringse=iconas_fie |+ | | [Cl+

Signin

Advanced Image Search
Freferences

Search Images][Search the Weh]

Images Showing | Smallimages v

Results 1 - 20 of about 287,000 for hi filetype:gif. (0.02 seconds)

Showing only small irmages (show all image sizes

=

i

STof He=
"STOP" tile

48 x 48 - 3k - gif

retrospec.sgn.net

50 % 50 - 1k - gif
WA result

- hiiir skot hiirm skot ...
80 x 80 - 8k - gif

hi its me alec
80 x50 - 17k - gif

Margrét [saksen (margreti@hi.is)

Hi-Tek Computing - Spec Logo

Cyi i-Note
50 % 50 - 1k - gif 50 % 50 - 1k - gif
WA result WA result

KC
The Little Lion Cub - Hebrew

50 % 50 - 3k - gif Hi-Reg

Figure 5.1(a) Users were shown this window when the cursor was at line 10.

Figure5.1shows examples of what users saw during the evaluation as they

navigated upwards and downwards through the scfiptee users were tesl in this

way, all of which had no programming experiente all casesthe users were able to

identify the correct behavior for lines 1, 2, 6 and 8. However, at least one user was

unable to identify the behavior of lines 3, 4, 5, 7, oE9ery usemused the up and down

arrows and moved the cursor through the sciddter each test, users were asked what

helped them identify the lines that they did. One user claimed that it was obvious from

the | ine what

you to

it and

shoul d

i mageg. dgido glaav. pomk (6gi f 6)

41

happgpes.

and

p u.tTheiother two wserd hhdesimidar guesses for line behavior, but

godpgtemakmd) sews

added that their guesses were confirmed upomgéke page changes they moved the
cursor passed the line
The lines that some users failed to identify did not change the jEagenples of
|l ines that did not change the page are 7 and
was simply a for lop. Line4 is a problem with browser side effects. The browser itself
stores the state of a form and any changes made to it. In this case, the change of selecting
the GIF option in a dropdown menu was saved,
effect. This suggests that users found the changing of the output windows useful in
confirmingthe behavior of a linand advocates that browser side effects created by
commands | i ke Apick(06gifdéd)o need to be addre
The second user test was conductgidgiexperienced programmers, each having
at least 3 years in the computer science program at MiITeasldhaving at least 6
months of JavaScript programming experiendsers in this test were given two tasks.
Task A: In this task users wer@lacedin front of a computer with the figure in
5.2 presented to them. They were also gieepicture of the web page iigkre5.3.
Users were first asked to modify the given script to convert the web p&grine5.2to

the web page inigure5.3.

2 My Links - Mozilla Firefox

EEX

File Edit ‘“iew History Bookmarks Tools Help
- e =
$a - b -\p’J e III http:/ fweb . mit.edufksu Lwd hwwlinks, heml M Q'

’ Getting Starked |3y Latest Headlines

Chickenfoot Script Editor (%]

O-vQ@&EP- -0 My Links
Untitled (%] Courses Pt

o 'web. mit. edusksulwd/mm/links htul'); Music

for {m = find{'http link'}; m.hasMatch; m=n_next} { INSERT HYPERLINK HEREhttp: Mfwsnea. zhongpwen. com

var link = m.element; Games INSERT HYPERLINK HEREhttp:/Mfjava. sun.comd2sed 4. 2fdocsfapil

var text = link.previous¥ibling; . INSERT HYPERLINK HEREhttp:/freriarmwebster. com
replace(text, 'INSERT HYPERLINE HERE'): Links

Pictures Entertainment

Movies INSERT HYPERLINK HEREhttp:/fanimesuki. sandwich. net

INSERT HYPERLINIK HEREhitp:/farlongpark. com
INSERT HYPERLINK HEREhttp:/fnarutofan. com
INSERT HYPERLINK HEREhttp:/faddictinggames.com

Friends

INSERT HYPERLINK HEREhttp: M. geocities. cormfmentostheane)
INSERT HYPERLINK HEREhttp:Mfweb.ics. purdue. eduf~channiba
INSERT HYPERLINK HEREhttp: Mfweb. mit. edulbrianwufwi

INSERT HYPERLINK HEREhttp: Fweb. mit. eduleticliwment

Figure52 User s were shown this window and asked

42

Bio My Links

Courses Academic

Music

Chinese Help
Games Java

Links Dictionary

Pictures Entertainment

Movies

Anirne
One Piece
Maruto
Bored?

Friends

Mark Bongso
Sport

;

Birian Wu
Eric Lieberman

Figure 5.3 The desired output of task A.
Task B: Userswere asked to write code that gets all the litlesGoogle home paged
insersthose linksinanunordeed | i st after the word 0Googl e

web. mit.edu/ksudid/wwwi/blank.html, as shown inigure5.4. Users were expected to

remember the code from task A in order to accomplish task B.

Figure 5.4 The desired output of task B.

43

