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Abstract

In real-world software development, engineering teams generally engage in code review
to ensure the authorship of high-quality code. However, in undergraduate university
settings, where many students are preparing for a career in software development,
code that is written for classes generally does not go through similar code review
processes. There are many aspects of the academic setting which does not allow
existing commercial code review processes to be used. This work presents a software
solution to code reviewing in academic settings, so that students can get constructive
comments about the code they turn in for assignments. The software was used in two
semesters of the Software Engineering course at MIT, and experimental results show
that students can generate high-quality feedback for code written by their classmates.
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Chapter 1

Introduction

Code review is a process where computer code is inspected by other programmers,

with the intention of finding bugs and improving code readability. Code review is

necessary in industry to ensure maintainable code, but has not had widespread adop-

tion in an educational setting. In a large computer science class, there is generally not

enough course staff to meticulously review every student’s programming submission.

The traditional way in which this problem is solved is to write a suite of automated

tests, so that students can be graded in an efficient manner. However, this method

does not expose poor design, stylistic problems, or subtle bugs; it only ensures that

a student’s code is generally correct.

Prior work done by Mason Tang [15] produced a software system called Caesar.

Caesar is a software suite designed to solve the problem of code review in the class-

room. The innovation in Caesar is that the code review problem is distributed to

both the students and staff of the course. A part of the grade for any problem set is

that students have to both give reviews for other peoples’ code, as well as address the

reviews on their own code. This crowdsourced solution solves the problem of giving

students constructive feedback, without having to increase the size of the course staff.

The work by Tang produced the foundation of Caesar, in that the basic pipeline of

getting student code into a database was written, and a basic web application that

exposed student code to other students was built.

This work is a refinement on top of the existing Caesar project. The ultimate goal
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of a system like Caesar is to maximize the amount of constructive feedback that any

student gets on their problem set submissions. It is an unexplored problem as to how

to best divide student code to optimize it for code reviewing purposes, as well as how

to distribute those code chunks to potential reviewers. The primary contribution of

this work is the development of algorithms and evaluations to try to optimize how

student and staff time is spent, while producing the most relevant feedback for all

submitted student code.

In addition, the project had never actually been used in a real classroom setting

before; this work partially describes the process of launching Caesar in two semesters

of a software engineering class at MIT. The algorithms for dividing student code

were developed on top of real student submissions in these two semesters, and data

produced by students using the system is the foundation of the evaluations presented

in this work.

1.1 Mechanics of Assigning Code to Review

A critical component of the system is deciding how much and what code should be

given to each reviewer to review. In industry, code typically lives in a repository, and

each code modification is called a commit. Before a commit can occur, a code review

happens on that commit[10].

However, this is not the paradigm that is generally used in classroom settings.

Even though a source control system is provided to students, students generally don’t

have the discipline to use it in an effective manner. In addition, student commits

shouldn’t necessarily be graded anyways, since they are merely using it as a way

to store history, and not as a method of submitting working code at each revision.

Students turn in one final submission, which is a monolithic set of interdependent

files. A single assignment may be thousands of lines of code, some of which are staff

provided.

If the project is too large, it is infeasible to assign that project to just one reviewer;

it would be too much work for one person to do. However, instead of assigning a
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reviewer to an entire submission, we can partition each submission, and group similar

segments of code for each reviewer. Each code segment that Caesar treats as a discrete

unit will be referred to as a chunk. A reviewer may be assigned several chunks during

the reviewing process, and each chunk could be assigned to several reviewers. A chunk

that has been assigned to a reviewer will be referred to as a task. It is the aim of this

project to figure out what is the best way to create, and then distribute chunks.

1.2 Experiment Setup

Caesar was launched for the Fall 2011 semester of Elements of Software Construction

(6.005) class at MIT, and was used through Spring 2012. The class was taught entirely

in Java. During that time, the system was used for a total of 13 problem sets. Five

of the problem sets that were used in Fall 2011 were also used in Spring 2012. As the

algorithms governing chunk size and routing changed, experiments can be constructed

that observe what effect algorithm changes had on the number of comments that were

entered into the system.

Because the project is trying to maximize the number of constructive comments

that are left to students, part of the evaluation process involves observing whether or

not students truly left constructive comments, or if they were not useful. Although

there is no objective way classify comments, a random set of comments was chosen

to be classified, and observations are made based on how many provided useful input

to the code author.

1.2.1 Chunk Size

Two different methods for creating chunks were created, and both were used to break

up real student code. The first idea that was implemented was that a chunk should

be a single Java method. This way, the average size of a chunk is small, but there

would be more chunks assigned to each reviewer. The second idea is that chunks

should be entire Java classes. Each reviewer would get fewer chunks to review, but

each would be more substantial.
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This work evaluated the merits of each chunking algorithm by comparing the

type of comments that were entered in the system in Fall 2011. Since the goal of the

project is to maximize the number of constructive comments, we evaluate the success

of the system by comparing the total number of constructive comments entered in the

system under these two settings. The results of this experiment showed that more

constructive comments were entered when chunks were set to be classes.

1.2.2 Chunk Filtering

In most cases, there are not enough reviewers for the amount of code that is generated,

without giving each reviewer an unfeasible amount of code to review each week. In

addition, a lot of code that students submit is either provided by the staff as part of

the assignment, or other boilerplate code that is not necessarily important to review.

Another challenge of the system is picking out which chunks need the most attention

from reviewers.

A component of Caesar is an algorithm to rank chunks for review that prioritizes

the most needy code for review, while not prioritizing uninteresting code. Ideally, if

all the code was reviewed, the chunks that would have received the most comments

would be the ones that the system originally prioritized for reviewing. There are a

myriad number of signals that can be used from student code which could serve as

an indicator of whether or not that code needs to be reviewed. One signal that was

found to be useful is branching depth, the amount of conditional statements used in

a snippet of code.

To evaluate changes to the chunk routing algorithm, a natural experiment was

conducted when the same problem sets were used between Fall and Spring of the

same course. Chunk size was kept constant, and a comparison was made between the

number of comments made between the two semesters. The results of the experiment

showed that prioritizing chunks based on the number of student lines and branching

depth was more effective than prioritizing strictly based on number of student lines.
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1.2.3 Task Routing Interface

Another problem this work tries to address is how to give the staff more control

over what code will be reviewed. Each problem set is inherently different, and both

the chunk size and chunk filtering algorithms should be adaptive to the needs of the

course staff for any given assignment.

To solve this problem, an interface was constructed for visualizing the code in

the system, and for fine tuning the reviewing process for that particular problem set.

Figures 1-1 and 1-2 show the components of this interface. The interface helps staff

understand how many chunks of code will be reviewed. It also lets staff pick which

chunks to select for review, and how they should be prioritized. This adds flexibility

to the system, and lets staff guide the reviewing process for each problem set.

1.3 Outline

The remainder of this work explores the algorithms that were developed for Caesar,

as well as evaluations of those algorithms using real data. Chapter 2 describes the in-

dividual components of Caesar, and how a workflow generally operates in the context

of a course problem set. Chapter 3 explores the related work in code review, as well

as ways that Caesar could be used to tackle other previously mentioned problems.

Chapter 4 describes the algorithm and evaluation for choosing chunk size. Chapter 5

talks about the algorithms and evaluations for filtering and ranking chunks. Chapter

6 shows the interface built for staff that lets them control and tune the chunking

and filtering algorithms. Finally, chapter 7 contains future work that can be done on

Caesar, as well a summary of the findings of this work.
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Figure 1-1: Routing interface helping staff calculate how much code will be reviewed.
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Figure 1-2: Routing interface allowing staff to drag and drop chunks in order of priority.
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Chapter 2

Code Review in 6.005

2.1 The Interface

Caesar is an application developed at MIT that solves the problem of code review

in the classroom. The project was started by Mason Tang in Spring 2011 [15], but

not used by students until Fall 2011. He designed the interface for displaying code,

leaving comments on source code, and displaying a dashboard for announcements and

tasks.

The dashboard is the first page users see when they log onto Caesar. Their

dashboard contains a list of tasks they are asked to complete and a list of tasks that

they have already completed. Figure 2-1 shows an example of the dashboard the user

sees. Each line shows information about the code, such as how many reviewers are

assigned to it, and the total number of comments that have already been left.

The interface for leaving comments is lightweight and easy to use. To leave a

comment, users click and drag over several lines of source code. When they release

the button, a text field next to their highlighted region appears. Figure 2-2 shows

this in action. Users may also reply to existing comments by clicking on the “reply”

button when they are hovering over the comment, as in Figure 2-3. The comment

bubbles next to the source code are clickable, and highlight the comment and source

code that the comment bubble represents.

In addition, there is summary page for each user that displays a list of comments
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Figure 2-1: Interface for seeing assigned and completed tasks.

Figure 2-2: Interface for leaving a comment.

Figure 2-3: Interface for replying to a comment.
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the user has made for each problem set, as shown in Figure 2-4. Each user may see

each other user’s summary page. This view may be used by the staff to evaluate how

well the students are performing code reviews, and by other students to get a better

idea of the type of comments their peers and staff are leaving.

Figure 2-4: Summary page displaying list of comments left by a user.

To encourage feedback from users, Caesar had a link to a survey that asked the

users what they liked, didn’t like, and any encountered problems while using Caesar.

This feedback is referred to later in this work as anecdotal evidence of user preferences

after algorithm changes.

2.2 Workflow

Alongside Caesar, there is preprocessor that reads in student code and starter code,

then uploads partitioned code into a database. The system takes in starter code

in order to mark which parts of the code are written by students, and which were

provided by staff. To start out, the system processes and partitions student code into

chunks. Chunk size will be discussed in more detail in Chapter 4.

The preprocessor is also responsible for catching basic stylistic mistakes. It does

so by performing static analysis on the code in the form of Checkstyle[2]. Static

analysis catches stylistic problems in student code such as inconsistent indenting and

poor javadoc usage. This analysis is uploaded to the database and used by the web

application. The preprocessor and the web application interact as shown in Figure

2-7.
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Figure 2-5: Feedback Survey used by Caesar.

After the preprocessor is finished, the staff may need to change how many tasks to

assign to a reviewer, and choose which tasks to prioritize for review. Chunk filtering

will be discussed in more depth in Chapter 5 and changing the settings to the routing

will be discussed in Chapter 6. Figure 2-6 shows the series of events that occur before

reviewing can open.

2.3 6.005

Caesar was built for code review in the classroom, and is being used in the Elements

of Software Construction (6.005) class at MIT. Each semester, there are typically

four to eight individual problem sets, where each problem set consists of hundreds

of lines of code. Some of the problem sets are templated, where overall design and

method signatures were done by the staff. Other problems sets were more free-form,

and gave students design freedom. The starter code may contain implementations of

algorithms, or ask students to to come up with their own algorithms. All the code
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Figure 2-6: Path from assignment to code review.

is written in Java and each of the of the problem sets have automated tests that are

run to verify the correctness of the code.

Fall 2011 and Spring 2011 were structured differently, but all the problem sets

using in Spring were also used in the Fall. Table 2.1 shows a list of problem sets used

in each semester. Fall 2011 had a total of eight problem sets, and each problem set

had to be completed in a week. After the due date, the problem set would be code
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Figure 2-7: Interaction between preprocessor and web application.

reviewed using Caesar and graded using automated tests. Once students received

their grades back, they had an opportunity to submit a new version of their problem

set, but only if they addressed the code review comments in their new submission.

Spring 2012 had a total of five problem sets, but each problem set had a beta and a

final. The beta would be code reviewed and graded using the automated tests. For

the final version, students were responsible for fixing their mistakes such that the

automated tests would pass, as well as addressing code review comments.

Problem Set Title Fall 2011 Spring 2012

intro Introduction PS0 PS0
pipoetry Pi Poetry PS1 PS1
piano Midi Piano PS2
calculator Calculator Parser PS3
sudoku Building a Sudoku Solver with SAT PS4 PS2
factors Finding Prime Factors with Networking PS5
minesweeper Multiplayer Minesweeper PS6 PS3
jotto Jotto Client GUI PS7 PS4

Table 2.1: Problem sets used for 6.005 in Fall 2011 and Spring 2012.

2.4 Participants of Code Review

The participants of code review in the classroom are not necessarily experts. In our

system, there are three types of reviewers: students, staff, and alums. Students are the

most familiar with the problem set but do not necessarily know good coding practices.

Staff are both familiar with the problem set and can judge the quality of the code.

Alums have taken the class at some point and in most cases have industry experience.
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Our system attempts to get a diverse set of reviewers for each student’s submission.

The hope is that students will know where to look for challenging portions of the

problem set and alums will have enough general knowledge to find design flaws.

Students and alums perform the bulk of the reviewing. However, since alums

have limited time to devote to code review, they are only assigned 3 tasks, while

students are assigned 10 method-sized chunks or 5 class-sized chunks. After students

and alums have finished leaving their feedback, staff are assigned 20 method-sized

chunks or 10 class-sized chunks that have already been reviewed by students and

alums. Their responsibility is to upvote or downvote reviewer comments, and add

their own comments if anything was missed.

In order to encourage reviewers to read the code they are assigned to review, the

system requires reviewers to perform at least one action on their assigned chunk. The

action could either be to upvote or downvote an existing comment or to leave a new

comment. In the case that the reviewer could not find fault with the code, they were

asked to write “#lgtm”, meaning “looks good to me”.
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Chapter 3

Related Work

3.1 Code Review Systems

Existing industry code review tool are generally designed to interface with version

control systems, support inviting teammates to participate in code review, and par-

ticipate in discussion. Such systems include Rietveld [6], Gerrit [3], Github[4], and

Review Board[9]. The workflow of these systems is for the developer to initiate a

code review. Typically these systems ask the developer to select the code to be re-

viewed from the set of changes they made, and pick the reviewers they want. The

tools expect users to be familiar with how code reviews work, and how to utilize them

effectively. Also, these systems generally take advantage of version control techniques

and display versioning comments during the code review period.

In an academic setting the life of the project is much shorter and versioning

information may be nonexistent or unhelpful so our system is trying to tackle a

different problem than the current review systems out there. When designing our

systems we can still try to base the reviewing interface on theirs but our techniques

for selecting which code to review and who should perform the code review is vastly

different.
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3.2 Defect Rates

According to a case study on lightweight code review process at Cisco, “the single best

piece of advice we can give is to review between 100 and 300 lines of code at a time

and spend 30-60 minutes to review it” [11]. The study also mentions the importance

of filtering out both trivial code and thousand-line blocks of code from the reviewing

process. Part of their evaluation method looked at the defect density for code, but

they did not have any conclusive expectations for what that number should be.

Defect rate is a widely discussed topic. We can define a defect as a variation of

the specification which may lead to failure in execution. There are several existing

models for predicting defects. A study by Fenton suggests that the expected number

of defects increases with the number of code segments but there are also opposing

metrics that suggest that larger modules have lower defect densities [13]. Marek

Vokac did a study on the the relationship between defects and design patterns [17].

The conclusion of the study is that Observer and Singleton patterns lead to a lot of

complexity and higher defect rates while the Factory and Template Method patterns

resulted in lower complexity and required less attention [16]. There is little consensus

on what the defect rate is for a given program or even how to predict it.

Ideally if we could figure out areas of code that are likely to have defects, those

are the areas that Caesar would prioritize for review. However, since the studies seem

divided on how to find defect rates, it is unclear how feasible this will be.

3.3 Variations in Code Review

There is existing work done in examining the characteristics of people and how ef-

fecitive they are at software engineering tasks. Work by Devito Da Cunha and Great-

head [12] shows that personality type is correlated with how effective students are at

a code review task. They conduct their study by taking a sample of undergraduate

software engineering students, giving them personality tests, and then asking them

to conduct a code review task. They show that, in their sample, certain personality
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types are more effective at finding bugs in code than others.

Such a problem cannot readily be studied in commercial settings, since it is often

not the case that a large number of people look at the same piece of code. However,

the setting that Caesar presents is perfect for analyzing this, and similar questions.

Because potentially dozens of reviewers are looking at the same piece of code, and

we can look at all of the code reviews given by a particular student through the

semester, it seems like this data set would be ideal for analyzing variations in code

review ability. Caesar, then, would be very relevant for studying this, and similar

problems.
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Chapter 4

Selecting Chunk Size

One of the variables that changed over the Fall semester was chunk size, where chunk

refers to the smallest amount of code reviewed at a particular instance. The amount

of code presented to a reviewer may impact how much feedback they leave. Too

little code may obscure the point of the code and too much code may overwhelm the

reviewer. Since we want to maximize the amount of useful feedback given to students,

finding if there was a chunk sized that worked best is important.

In the original design, the system presented users with a single method, and asked

them to perform at least one action. We define an action as leaving a comment or

voting on an existing comment. Caesar had control over which parts of the code will

get attention and feedback. The system was configured to pick out a set of chunks

that contained some common elements but differed in their implementation; the hope

was that these chunks would contain the important design decisions. As long as the

system is intelligent about picking out which areas to review, then it is picking out

the substantive areas for review. An alternative is to give reviewers a complete class

to review while maintaining the same requirement from users: to perform at least

one action. Our results showed that more useful comments were generated when

users were presented with full classes rather than methods. Our metric for evaluating

success was looking at the types of comments left by reviewers and how the total

number of comments differed between the two styles of chunks.
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4.1 Motivation

During the Fall 2011 and Spring 2012 iterations of 6.005, the system had two main

techniques for picking out chunks. The first method involved partitioning student

code into methods, which meant that the size of our chunk was a single method.

An indirect consequence of this is that class level declarations and field variables

would never be reviewed. With this system, each reviewer would be assigned similar

methods from multiple students to review. On average, the size of the chunk was 22

lines.

The other technique was to partition student code into classes, and thus each

chunk would correspond to a Java class. This has the advantage that class level

declarations and field variables would be visible to reviewers. The average size of the

chunk grew to 110 lines but that included more blank lines, getters and setters and

import statements. The number of substantive lines was closer to 70. In order to

keep the work load similar, we scaled the number of assigned tasks to 10 for method

sized chunks and 5 for class sized chunks.

When presented a method, the reviewer may have little context as to how the

method fits into the rest of the code. The Caesar interface does provide a “see all

code” button which shows all the code the user submitted for that problem set, but

it would also navigate the reviewer away from the reviewing page. See Figure 2-2.

Ideally, the user should have enough information provided on the reviewing page to

give useful feedback to the student. We want to be able to direct the reviewer to

the section of code they should focus on and not rely or force the reviewer to read

through the entire student’s project.

This problem of lacking context comes up more often in problem sets where the

students are given wide design latitude, as each student may come up with dramati-

cally different ways to partition work between their methods. An example of such an

open-ended problem set is a problem set, calculator, given in the Spring semester.

In calculator, the object of the problem set was to create a calculator that ac-

cepted the expression such as 6in/12pt[8]. Students were asked to write a Lexer that
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tokenizes the expression and a Parser that interprets and evaluate the expression. Be-

yond those requirements, students had a lot of freedom in design and implementation.

Some of the main design decisions included how to handle invalid expressions, how

to recurse into subexpressions, and how to evaluate units. Listing 4.1 is an example

of typical code the reviewer is asked to comment on.

Listing 4.1: Parser.findCentralOperatorIndex

1 /∗∗Method which re turns an index o f the c en t r a l opera tor .

2 ∗ I t f i n d s i t by s k i pp in g over a l l paren these s o b j e c t s and

3 ∗ f i n d s the f i r s t opera tor o b j e c t .

4 ∗ I f t h e r e i sn ’ t a c en t r a l opera tor ( i t i s o f the form (a+b )

5 ∗ or (a+b ) pt ) then i t r e tu rns −1.

6 ∗

7 ∗ @param l l i s the l i n k e d l i s t r e p r e s en t a t i on o f the

8 ∗ t o k en i z ed expre s s i on ; must be not empty l i s t .

9 ∗ @return an i n t e g e r which i s the index o f the c en t r a l opera tor

10 ∗/

11 public int f indCentra lOperator Index ( LinkedList<Token> l l ) {

12 for ( int i = 0 ; i < l l . s i z e ( ) ; i++ ) {

13 i f ( l l . get ( i ) . t ex t == ” ( ” ) {

14 i = f indCloseParens Index ( i , l l ) ;

15 }

16

17 i f ( l l . get ( i ) . t ex t == ”+” | | l l . get ( i ) . t ex t == ”−” | |

18 l l . get ( i ) . t ex t == ”∗” | | l l . get ( i ) . t ex t == ”/” ) {

19 return i ;

20 }

21 }

22

23 return −1;

24 }

In 4.1, the method’s Javadoc gives a basic overview what the method is trying

to do, but there are few comments in the rest of the method. In either the Lexer or

the Parser, it is important to check if the parentheses match, because by the time
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execution gets to findCentralOperatorIndex, an unspoken precondition is that the

expression has matching parentheses. In order to get a better sense for what this

method is doing, it would be necessary to see the details of findCloseParensIndex

and also to see how findCentralOperatorIndex fits within the rest of the Parser.

Seeing only this method, the reviewer would not have enough information to know if

the student is making justified assumptions in this code. However, despite possibly

missing these design decisions, the reviewer would still be able to comment on stylistic

choices made in this method. For example, a regular expression matching would be

a better solution for finding the operator and picking a variable name “ll” obscures

the purpose of the linked list. The reviewer may be content making these comments

without diving in deeper into the student’s code. The takeaway is that the reviewer is

limited to making local comments and may miss the interaction between two “correct”

chunks.

Presenting the reviewer with more code can allow them to get more insight into the

problem set, but it can also split the reviewer’s attention between many components

of the problem set, and in some cases, overwhelm the reviewer. One of the criteria

for increasing the chunk size was actually asking reviewers if “[they] felt they had

had enough information to do a good job [reviewing]”[1]. Looking at the Feedback

Survey responses during this problem set one reviewer wrote:

“I felt like I had a good amount of information, but sometimes people

write helper methods whose specifications I don’t know. It would be nice

if we could reveal those specifications during review.”

Another reviewer wrote:

“When reviewing MultiUnitCalculator.evaluate, I found myself digging

into the student’s Parser code to see what the Parser was supposed to

return. Generally, I found that the initially-presented code lacked enough

context, so I went looking through the complete code for more.”.

This feedback showed some discontent with the current chunk size. This information

seems to suggest that there some styles of problem sets that could benefit from larger
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chunk sizes.

Apart from formal feedback, there were several comments on Caesar where the

user complained of not to have enough information to leave useful feedback. Consider

for example,

“I don’t know the exact logic of your program but I would imagine that

you catch and handle all the exceptions and show an error or something

in MultiUnitCalculator so throws shouldn’t be necessary.”

There is certainly room for improvement. In order to see if longer chunks were

what the reviewers wanted, halfway through Fall 2011, the chunk size was changed

from a single method to a single class.

4.2 Results

In order to see the effect of changing the chunk size, we can look at the type of

comments generated for each of the problem sets. We will exclude both iterations of

the problem set intro from this analysis, because the problem set was much shorter,

and contained no interaction between different methods. For the other problem sets, a

random set of 125 comments were annotated, and were tagged as either constructive,

unconstructive, or other.

We can try to eliminate some of the subjective bias by narrowing down the char-

acteristics of each of the types of comments. We will consider a constructive comment

as one that:

1. asks the submitter to add documentation

2. change a variable name

3. suggest an alternative implementation or design

4. points out that submitter’s code will not work in a specific case

An unconstructive comment is one that says the code looks good. Anything that

does not fit into this criteria will be tagged as other. When tagging comments, in an
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attempt to eliminate bias, we will not reveal which problem set the comment came

from. Although this analysis is still subjective, it is likely to give us more insight

than if we tried to programmatically tag comments.

4.2.1 Examples

Some examples of constructive comments are:

“Could name it better, also probably wasn’t necessary to make it an in-

stance variable.”

“this could have been put inside “for (int j = digits.length...)” to make

things more efficient.”

Some examples of unconstructive comments are:

“Creating this state enum was a good idea!”

“nice concise code”

“you can have this constructor call this(10) to reduce duplicate code”

Some examples of “other” comments include:

“Is there something wrong with tab characters?”

“No code to review.”

4.2.2 Data

Figure 4-1 shows the relative number of each type of comments that appear in each

problem set in Fall and Spring. The number of comments examined was 125 per

problem set. Based on the percentage of constructive comments, we can extrapolate

the total number of constructive comments for each problem set. In Table 4.1, we

show the average number of constructive comments per student. To further visualize

the average number of comments, see Figure 4-2.
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Figure 4-1: Stacked bar plot of types of comment.

Comment Type

Semester Problem Set Chunk Type Unconstructive Constructive Other
Average

Constructive
Per Student

Fall pipoetry method 56 68 1 5.2
piano method 82 42 1 2.8
calculator method 81 39 5 2.6
sudoku class 38 87 0 7.0
factors class 35 86 4 4.6
minesweeper class 31 94 0 4.7
jotto class 25 97 3 4.3

Spring pipoetry class 23 99 3 6.8
sudoku class 22 97 6 9.0
minesweeper class 31 92 2 9.0
jotto class 25 100 0 8.2

Table 4.1: Statistics on comment type for each problem set.

The percentage of unconstructive comments is higher when chunk size is set to

methods. Reviewers are asked to make comments on a variety of methods, some of

which are only a few lines, and do not contain any complicated components. Class-

sized chunks show a dramatic increase of constructive comments.

However, this diagram does not tell the complete story. When chunks were meth-
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Figure 4-2: Bar plot of average number of comments per student.

ods, the number of assigned tasks was set to 10 but this number dropped to 5 when

chunks were changed to classes. Since students were asked make at least one com-

ment on a chunk, being assigned more chunks could result in more comments being

produced overall. In order to objectively see if the total number of useful comments

in the system increased, we can look at the total number of constructive comments.

In Figure 4-2, we can see that Fall problem set pipoetry does not fit the rest of

the trend. However, if we consider the nature of the problem set, this may not be

surprising. Problem set pipoetry asked students to find English words in the digits

of Pi. The procedure for finding words was separated into 4 methods that were each

in their own class[7]. The specification for each method was provided by the staff,

therefore any design decisions were isolated to the method itself. If the chunk size

was set to class size, the user would have largely seen the same amount of code with

some exception of students that used helper methods. The rest of the data suggests

users leave more useful comments when they are presented with larger chunk sizes.

One explanation for this data is that when the user is presented with more code, he
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or she can choose which parts of the code require attention and leave comments on

those parts. The methods that look fine simply do not receive any feedback.

In Figure 4-2 we can see a positive trend between class-sized chunks and number of

constructive comments. Our data, combined with reviewer feedback that this change

was desired, justifies permanently switching to class sized chunks.

4.2.3 Potential Shortcomings

Our analysis does not take into account that students may have learned better code

reviewing techniques and were naturally more inclined to stay away from unconstruc-

tive comments later in the semester. As students become more familiar with Java,

they are likely to offer up their own perspective on how to solve the problem. This

could serve to explain why halfway through the semester the number of unconstructive

comments dramatically dropped. The other flaw in this analysis is that, in the later

problem sets, students had more room to make design decisions, which is something

reviewers could discuss in their code review.

Having a control group would have helped eliminate some of these biases. Ideally

the experiment should have been set up with students being assigned class and method

sized chunks during the same problem sets. This would allow us to compare how

comment substance varied at that particular student’s coding experience level.
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Chapter 5

Chunk Filtering

Caesar implements a task routing mechanism to automatically and dynamically al-

locate chunks to reviewers. When assigning chunks, the system considers reviewer

and chunk characteristics. Chunk characteristics have varied throughout the life of

the system. Examples of chunk characteristics that the system cares about include

number of student written lines, maximum branching depth, and whether the chunk

only contains unit tests.

One of the challenges of the system is that the number of reviewers is not known

ahead of time. Although we can roughly predict the number of staff and students that

will be participating in code review, the number of alums participating may fluctuate

significantly. For example, the number of alums has varied from 0 to 30. As a result,

we use a greedy algorithm to assign chunks by always picking out the most optimal

chunks to review. Chunks are assigned on a first come first serve basis.

Another constraint on the system is that any chunk characteristics that routing

uses to order chunks must be computed ahead of time. Since the system only assigns

tasks after the reviewer logs into the system, the reviewer will not want to be waiting

for more than a second to receive their tasks. The other limitation is that after the

students turn in a problem set, reviewing must open within two hours of that time;

ideally even less. Assignments are given with strict deadlines and students need to

get timely feedback before their next problem set.
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5.1 Partitioning

In order to get code into the web application, we use a preprocessor to parse students’

submissions. After the problem set is handed in, the preprocessor crawls the latest

copy of the problem set from the Subversion repository, and partitions each student’s

submission into chunks. The actual partitioning task is handled by the Eclipse Java

Development Tools Core Component. The Eclipse tools component parses student

codes into of classes, methods, for loops and so on, thereby creating abstract syntax

trees which we then traversed with a visitor that creates chunk objects. The visitor

learns different characteristics about the chunks, including whether they’re test files,

max number of branching factors, and other relevant information. Following the

partition, the system runs Checkstyle[2] over all the chunks to automatically generate

comments whenever Java style rules are violated. Checkstyle comments then get

uploaded to the web application. Figure 2-7 shows the path from the assignment to

the reviewing process.

5.2 Preprocessing

The implementation varied of the preprocessor from partitioning student code into

methods and constructors to classes. When chunk size was set to methods, the sys-

tem would remove chunks that were string-identical throughout 80% of the students’

submissions. This ensured that staff-provided code would not be reviewed. In this

design, the system did not need to be explicitly given the starter code; it could sim-

ply infer it. The problem with this design is that if a student made even a minor

modification to staff code, that entire chunk would get reviewed, and the reviewer

would not have any visual indicator that the majority of that code was staff written.

In practice, there were also times when staff would issue an errata to the problem set,

and half the students would have new version of the code while others would have the

old code; both versions would get reviewed even though neither version was original.

Changing the chunk sizes to classes required a different approach to picking out
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staff code. There were many cases where some parts of the classes were defined by

staff but some methods were asked to be implemented by the students. Looking at

redundant chunks would not help in those cases. Due to the new chunking method,

the system has to be supplementally fed the starter code for each problem set. The

system now also crawls over starter code and partitions it into classes. Whenever the

class name exists in the starter code and the student implementation, the preprocessor

checks to see if any lines in the student implementation also appeared in starter code.

This information is then uploaded to the web application in order for the reviewing

interface to display which lines of code were modified by the student.

5.3 Changes to Display

When chunk size is a class and some lines are staff provided, we want to make sure

student lines of code stand out. As a result, we chose to depict student written lines

on a gray background and staff written lines on a white background. See Figure 5-1

for a demonstration of this in action.

The system does not prevent the reviewer from leaving comments on the staff

provided sections, but it does try to highlight sections of code that the student wrote.

Other code review systems highlight versioning changes in the same manner, for

example this method is consistent with the native code review system on Github[4].

5.4 Routing Details

The original task routing algorithm tried to assign similar chunks of code to reviewers.

The preprocessor would cluster similar code and assign each reviewer chunks to review

from the same cluster. It did so by implemented a version of the robust winnowing

algorithm for document fingerprinting developed by Schleimer et al. [14] for the

purposes of measuring code similarity. A fingerprint for a chunk is an MD5 hash of

an n-gram that occurs in the chunk contents[15]. The robust winnowing algorithm

searches the set of potential fingerprints for a chunk and selects a small subset of
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Figure 5-1: Code section containing student and staff lines.

those fingerprints in a consistent way. For our implementation, we use n-grams of

size 10 and a window of size 20 for winnowing. In order to cluster the chunks we

measure the distance between every two chunks. We define distance as the number

of unique fingerprints to each chunk.

In practice, this typically resulted in a reviewer being assigned multiple student

implementations for the same method specification. When the chunks were methods,

and the average size of each chunk was about 22 lines, the clustering algorithm ran

in about an hour for 3500 chunks amongst 180 students. When the chunks changed

to be class-sized and 140 lines, the algorithm took over four hours to complete. The

bottleneck was in taking n-grams of size 10 for every chunk. The clustering algorithm

also performed poorly in terms of output when given large amounts of staff code or

when fingerprints were being generated for irrelevant parts of the student code. In

those cases the clusters did not help reviewers. For these reasons we chose to do away

with clustering.

Clustering code and assigning chunks from clusters was what chunk routing relied
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on. Since we no longer have clusters, Caesar needs to prioritize chunks based on

some other chunk characteristics. One of the ideas was simply to prioritize chunks

that contained the most lines of student code. The logic behind this heuristic was

that more lines would mean more room for error. The concern with this approach

was that any classes that are completely defined by the student would get the most

attention. This was the task routing algorithm for problem sets 4-7 (sudoku, factors,

minesweeper, and jotto) in Fall 2011.

In order to evaluate our task routing algorithm for problem sets 4-7, we will look

at the total number of student comments and students words entered in the system,

see Table 5.1. In Chapter 4 we looked at the percentage of constructive comments

entered for different size chunks. However, for problem sets 4-7, the percentage of

constructive comments was relatively consistent, so we look at the comments as a

whole.

Problem Set Average comments
per student

Average words per
student

sudoku 10.6 156
factors 6.95 93
minesweeper 6.70 90
jotto 5.95 75

Table 5.1: Results of varying chunk sizes and new routing algorithm.

Figure 5-2 shows the results of the routing. The number of words entered follows

the same pattern as the number of comments and both statistics suggest that routing

performed much better for Problem Set 4. There are several theories that could

explain this phenomenon.

1. Problem Set 4 was highly templated and the classes with the most student lines

happened to be the most relevant.

2. Students devoted less time to reviewing as the semester progressed. See Figure

5-4.

3. Students made fewer mistakes in later problem sets leading to less for the re-

viewers to do. See Figure 5-3.

47



Figure 5-2: Bar plot showing average number of words and average number of comments
left by students.

Figure 5-3: Bar plot of average problem set grades.

Figure 5-4 shows the total review time for problem sets. Review time is calculated

by finding the average time between a student opening a task and performing their

last action on that task. Outliers are removed from calculation. The average time per

task is then multiplied by the average number of tasks performed by a student. From

Figure 5-4, we can see that the total review time for a problem set did somewhat dip

for the last three problem set. However, because this is only a correlation, we do not
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Semester Problem set Average comments
per student

Average words per
student

Fall sudoku 10.6 156
minesweeper 6.70 90
jotto 5.95 75

Spring sudoku 12.2 185
minesweeper 12.4 210
jotto 10.3 116

Table 5.2: Results of varying chunk sizes and new routing algorithm.

Figure 5-4: Bar plot of review time.

know why students were spending less time reviewing. It could be because the chunks

they were given did not require much reviewing, or it could be they were simply less

willing to devote their time to code review.

Figure 5-3 shows the average grade in each problem set. If we consider that making

mistakes in the problem set allows reviewers to make comments, it would suggest that

there was still plenty to comment on in later problem sets. Regardless of what the

real reason was, we can still try to improve our chunk selection algorithm to try to

increase student participation in review.
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5.5 Routing Based on Branching Depth

Between Fall and Spring, we experimented with changing the routing settings. In Fall

we prioritized chunks strictly on student lines. In Spring we only took chunks that

had the minimum number 30 student written lines and prioritizing chunks to review

based on max branching depth, where branching depth is the maximum number of

loops and conditionals used in a program. The study by Fenton showed that, in some

cases, more complex code, where complex is defined roughly as branching depth,

leads to a higher defect rate. This was refuted as an effective metric in all project

types[13], but it had the potential to be effective in our case. We ran this experiment

on problem sets sudoku, factors, minesweeper, and jotto. In both semesters, once

chunks were class-sized, test files were not reviewed.

Figure 5-5: Fall versus spring average number of words per student.

On average, in Spring we see the number of comments increased by about 20%

and number of words by 40%. Figures 5-5 and 5-6 show a side-by-side view of words

and comments for each of the problem sets that were in Fall 2011 and Spring 2012.
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Figure 5-6: Fall versus spring average number of comments per student.

5.6 Shortcomings

Routing can not take all the credit for this increase. In Spring 2012 students had only

half as many problem sets and each problem set had a beta and a final submission.

The beta submission was the one code reviewed and students were asked to implement

reviewer suggested changes in their final submission. Students had to heed the advice

from code review comments and this could have incentivized reviewers to do a better

job.

In addition, after receiving feedback that some reviewers wanted to perform more

code reviewing then what was assigned to them, we built in a “Get More Tasks”

feature. This button is only visible to reviewers that do not have any outstanding

tasks and it is only available while the code reviewing is going on for the problem

set. Due to our on demand task assigning algorithm, this change did not require any

significant design changes. Only about 2% of the reviewer population use this feature.

A small increase in comments and words may have come from this bonus feature but

it’s negligible.
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Chapter 6

Routing Interface

Originally, all the settings for task routing were hard coded into the routing algorithm,

and only a Caesar developer would be able to make changes to them. To make the

system more versatile, we want to easily tune the routing settings for different problem

sets. To accomplish this we built a task routing interface. The task routing interface

allows a staff member more control over how many reviewers should be assigned to a

chunk, what classes get reviewed, how they are prioritized, and the minimum number

of lines for a chunk to be considered for review.

Starting with Fall problem set pipoetry, not all of the student code could be

reviewed. Some 6.005 staff members showed discontent that much of the routing was

a black box to them, and they were not satisfied releasing so much control over the

problem set to the system. A problem set may have special circumstances or the staff

may decide that tests should be reviewed. The reviewing interface needed to explain

reviewing as well as allow the staff to easily select which chunks to review.

6.1 Components of the Interface

The first hidden component of review is figuring out the reviewing capacity. The

number of chunks that will be reviewed is dependent on how many students and

alums are participating in code review, and how many reviewers should be assigned

to each chunk. Our reviewing interface, as seen in Figure 6-1, makes it easy to predict
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how many chunks can be reviewed. In order to help the user predict these numbers,

the system uses past problem sets to give baseline values. These numbers are in purple

in Figure 6-1. Changing any number in the text fields will automatically update the

relevant values, and in particular, update the number of classes to be reviewed.

Figure 6-1: Reviewing interface showing how many chunks can be reviewed.

The next important setting to consider is the minimum student lines to have in a

chunk for it to get reviewed. Having one or two student lines is likely not enough for

a reviewer to comment on, but in some cases perhaps 10 or 20 student lines is enough.

This number may be dependent on the problem set, and needs to be controlled by

the staff. In order to help the staff judge that minimum, our routing interface shows

a graph of student lines. The x-axis shows the number of lines and the y-axis shows

the number of student chunks that wrote that many lines. Figure 6-2 shows a typical

graph that the staff may see. Making changes to the text field will move the vertical

line seen on the graph.

The other important setting has to do with which chunks should be reviewed

and how they are prioritized. In highly templated problem sets, the staff may know

which classes contain important design decisions and need to be reviewed. In other

cases, student defined classes may be more important to review. Since it would be
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Figure 6-2: Reviewing interface showing distribution of student lines.

overwhelming to list all the names of student defined classes, they are simply grouped

together under the term of “StudentDefinedClasses”. The user can check or uncheck

if those classes should be reviewed and the staff simply drags them order the classes

by priority. The number next to the chunk names is how many instances of those

chunks will be reviewed based on minimum number of student lines defined in the

interface. The number of each chunk dynamically changes with relation to that input.

The bottom also displays the number of chunks scheduled for review. Although the

system will not prevent the staff from scheduling significantly more or significantly

fewer tasks than the reviewing capacity, the numbers do provide more information

for the staff.

6.2 Responses to Interface

This interface received positive feedback from a 6.005 Spring 2012 TA during a user

test. His main priorities were being able to select which chunks would be picked for

review, and being able to set the priority order for the chunks. He said the interface
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Figure 6-3: Reviewing interface for prioritizing chunks.

easily allowed him to do that. This interface allows the system to function without a

developer, and does not require constant digging into the code to make configuration

changes.
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Chapter 7

Conclusion

7.1 Future Work

The foundation of Caesar is already providing a robust platform for students to receive

feedback on their work, but there is a huge space for improvements on top of the basic

platform.

Hashtags similar to those found on Twitter and other social platforms are currently

being implemented for user comments. This allows students in the class to dynam-

ically tag comments, so comments that are similar to each other can be grouped

together and easily browsed. For example, a student can tag a comment with a tag

like #deadlock, which could suggest to the code author that there is a potential dead-

lock situation in a segment of code. The author can click on that hashtag to see all

of the other comments tagged as deadlock for the current assignment. This lets the

student jump to other student code which has the same problem, which could be a

useful resource for debugging.

Part of the motivation of Caesar is that, because 6.005 has such high attendance

at MIT, it is infeasible for the limited course staff to look at every student submission.

For the same reason, all of the problem sets were mostly graded with automated unit

tests, whenever possible. For each problem set, the course staff writes a testing suite

that tests student code, and a large component of the student grade is based on

whether or not each unit test passes or fails. Currently, this component of the class
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operates independently of Caesar, but lots of value can be gained if the two systems

were integrated. Unit test dashboards are commonplace in industry [5], and being

able to see the pass or fail status of unit tests alongside code review would provide

benefits for students. Given that a test fails, it could be a signal for reviewers as to

where to find faults in the code. This would encourage more constructive feedback

for students.

Because Caesar offers students the ability to reply to existing comments, there

are often interesting discussion threads that could provide other students insights

into the nuances of a particular piece of code. The ability to highlight such threads

to other students could be integrated into the system. In addition to showing the

student what code they have left to review, the system can also point them to lively

discussions on the dashboard page. This would give students access to real code,

along with relevant commentary, which could serve as valuable examples for how to

write constructive comments.

In industry, it is common for people to be able to mark each comment on their

code as resolved or unresolved. This lets reviewers easily scan what parts of the

code are still being improved, versus issues that have already been resolved. This

functionality is not built into Caesar yet. The newest system of beta versus final

submissions would benefit greatly from such a system; presently, course staff has to

manually scan the student code to verify that all the comments have been addressed.

If students could manually assert themselves that a comment has been addressed,

and a diff could be generated by Caesar to show that code has changed, this manual

process can be automated.

It is common for students to make identical mistakes in a problem set. For ex-

ample, students may use paradigms that are no longer in the Java mainstream, like

Iterators. The same comment could be applied to multiple students with the same

problem and there should be an easy way within the system for reviewers to do that.
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7.2 Summary

This work presents Caesar, a system for distributed code review in a classroom con-

text. Existing code review systems are designed for commercial use, and are not

generally applicable for the classroom setting. Caesar is designed to process code

that is a hybrid of student contributions and staff-provided boilerplate, and presents

that code to reviewers in a usable web interface. The system is designed to optimize

the amount of useful feedback that is generated for students in the class. The pri-

mary contributions of this work are the algorithms for partitioning student code, and

routing tasks to reviewers.

Partitioning student code is a challenging task, as there is a delicate tradeoff to

be made in figuring out what, and how much code to send to each reviewer. Too

little code sent to each reviewer has the risk of not providing enough context to

generate helpful comments. Too much code sent to each reviewer risks reviewers

being overwhelmed and unfocused. This work presents experimental results that

examines the amount of productive comments left with each partitioning method,

and sheds light on the amount of context necessary to properly evaluate Java code.

The conclusion that is supported by the evidence here is that presenting class-sized

chunks to reviewers is much more effective at soliciting useful feedback, as opposed

to method-sized chunks.

Routing tasks to reviewers is the other key contribution made by this work. This

is a hard problem, because each problem set necessarily gives different amounts of

flexibility to students completing the assignment, and may require different heuristics

on how to properly allocate work to reviewers. In addition, the set of reviewers

changes between each problem set, and the system has to predict how much to assign

each reviewer in order to give each student adequate feedback. Experimental results

show that routing based on branching factors as well as having a minimum number of

lines for reviewing a chunk performs better than strictly using the number of student

lines.

The experimental results given by this work shows that by using Caesar, students
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in a undergraduate-level software engineering class are able to give and receive con-

structive feedback on the code they submit for assignments. By effectively chunking

and routing student code, we can increase the amount of useful feedback that is left for

students. This is an encouraging result for preparing students for real-world software

development environments.
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