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Abstract

Code review in the classroom setting presents novel challenges compared to code
review in the software engineering industry. In particular, students are not as expe-
rienced as professional software engineers. 6.031: Elements of Software Construction
is an undergraduate computer science class at MIT that serves as an introduction to
software engineering. In this class, Caesar, an online code review tool, is used for
peer review of student code. Our work uses crowdworking research and principles to
make Caesar even more suitable for the classroom setting. First, we provide more
structure to writing code review comments. Next, we provide an interface for staff to
evaluate the quality of student comments. Finally, we introduce practice tasks, which
act as an initial training period at the beginning of every code review session. In
this way, we give students more knowledge and structure to write high quality code
review comments, and we provide an interface to evaluate that quality. We believe
that our work allows students to have a richer learning experience through Caesar.

Thesis Supervisor: Robert C. Miller
Title: Distinguished Professor of Computer Science
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Chapter 1

Introduction

Code review is used widely in industry as part of the software development process,

and it provides a way for coworkers to give each other feedback on code, as well as gain

knowledge about the kinds of projects team members are working on. Code review

also has potential in being used in a classroom setting. In particular, 6.031: Elements

of Software Construction, an undergraduate computer science course at MIT, utilizes

Caesar, an online code review tool created for the class. Caesar allows students to

review other students’ problem set code, along with staff feedback and moderation.

When thinking about code review in the classroom, there are differences between

industry and the classroom setting that must be considered. First, 6.031 is an intro-

duction to software engineering, and students will not have had prior experience with

code review. Because of this, we want to be able to teach them what high quality code

review looks like. Second, there is a large number of inexperienced students along

with a small number of experienced staff members. Code review in the classroom

needs to account for and leverage this as best as possible. Finally, the goal of 6.031 is

to teach students how to be great software engineers—this is much more of a learning

experience than industry. These differences are what Caesar hopes to account for in

being designed for the classroom.

Caesar takes a unique crowdsourcing approach to code review, using the students

in the class as the crowd [1]. In particular, this crowdsourced code review in the

classroom is similar to novice crowdworkers assigned to a task where they have limited
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experience with the subject matter. Students taking 6.031 do have programming

experience, but few have experience with good software engineering principles, and

no prior MIT class incorporates code review into its curriculum.

The previous Caesar system, before the work done in this thesis, is an effective

way for students in 6.031 to participate in code review for each others problem set

code. However, since comments are simply left in a comment box with no restrictions

on content, the feedback that students provide only come from the knowledge they

have accumulated by attending class and doing readings on the class website. 6.031

holds one class at the beginning of the semester that focuses on what to look for

during code review and how to do it well. While this class is informative, students

start participating in code review shortly after, less than two weeks into the semester.

We hope to help students learn how to code review better, as well as provide feedback

about how they are doing during the process. To do this, we take ideas from crowd-

sourcing about how to improve the quality of crowd work, particularly for novice

crowdworkers.

This thesis contributes three additions to Caesar. First, we add more scaffolding

and structure to the interface for writing new comments. Second, we implement an

initial training period, or practice task, for each code review session, allowing students

to gain more knowledge and training before they review their peers’ code. Finally,

we add an interface for staff members to be able to grade and provide feedback on

student code review comments more easily. To evaluate the effects of these additions,

we compare data from code review comments between problem sets within the same

semester and across different semesters.

The remainder of this thesis explains the interface and implementation of this

work. Chapter 2 summarizes related work in peer feedback and crowdsourcing. Chap-

ter 3 introduces the new interfaces. Chapter 4 explains the implementation of practice

tasks. Chapters 5 and 6 present evaluation on work done for this thesis, and a discus-

sion of that evaluation. Chapter 7 presents future work for the system, and Chapter

8 is a conclusion.
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Chapter 2

Related Work

2.1 Caesar and 6.031

Caesar is an online code review tool created for use within 6.031: Elements of Software

Construction, a software engineering class at MIT. Caesar allows for the distributed

review of student code by their peers, staff moderation of the review process, and an

overall, more social way for students to give feedback to each other.

Caesar was first created to process student code into small pieces, distribute these

tasks to reviewers, and provide a web interface for students to code review their peers’

work [7]. Further work refined and developed algorithms to optimize how student and

staff time is spent [8]. In addition, new tools were added—a comment searching tool

that allowed reviewers to reuse their previous comments, as well as a code search tool

for instructors to search for specific patterns in student code [4].

Caesar uses a crowdsourcing approach towards code review. Crowdsourcing in

typically the process of having tasks accomplished by enlisting the services of a large

group of people. The work done in crowdsourcing is typically more repetitive and

usually does not require deep expertise in a particular field. In the Caesar context,

this large group of people are students enrolled in the class, and the task is for students

to provide useful feedback to their peers on problem set code.

The standard review process done in Caesar for 6.031 is repeated five times

throughout 6.031, for each of the five problem sets, named ps0 through ps4. Each

15



problem set spans two weeks, with an alpha deadline at the end of the first week and

the beta deadline at the end of the two weeks. Students participate in code review

right after the alpha deadline. Students have several files from the problem set to

review, and each file has several students that will review it. After the code review

period has passed, the comments are released to the author of the code. The current

interface supports writing of a comment that is attached to one line of code, or a range

of consecutive lines of code. For each comment, other students who are assigned to

review the same file can upvote, downvote, or reply. The author of the file can also

comment on the comments they’ve received. In the beta milestone, the staff looks

to see that the authors of the code have responded to their code reviews, either by

making a change to address that review in their code, or by leaving a comment in the

code or in Caesar explaining why a change was not made.

2.2 Feedback and Crowdsourcing

Peer assessment is a collaborative learning technique in which students evaluate each

other’s work, and this is the use case for Caesar in 6.031. To effectively scale such

peer assessment, crowdsourcing lessons can be applied. In particular, well-crafted

training exercises can be very effective in enabling novice crowdworkers to perform

high quality work [5]. In fact, novice crowd workers with an expert rubric can produce

feedback nearly as helpful as feedback from experts [9]. This result was obtained from

a study on crowdworker review of design projects, where the study found that rubrics

caused improved writing style in terms of directness, motivation, and clarity. While

6.031 is not a design class, we think that a good rubric will also improve the writing

style of code review comments in Caesar, resulting in improved comment quality.

Another study on design critiques through crowdsourcing used a system called

Critiki, which also explores using rubrics and scaffolding [2]. In a study using Critiki,

researchers found that review tasks that were scaffolded resulted in higher quantity

of quality critiques, that were longer overall. We hope to add more scaffolding and

rubrics to increase quality of code reviews in Caesar.
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2.3 Crowdsourcing Quality

While crowdsourcing feedback is a very scalable solution, one problem that comes

with it is maintaining crowdsourcing quality. In particular, this is a concern for

novice crowdworkers—in our case, the relatively inexperienced students in 6.031.

Many techniques exist to improve crowd work quality, including verifying worker

outputs with other workers, having experts review a subset of work, and using ma-

jority consensus [1]. One other way is the ground truth method, which compares

answers from crowdworkers to a gold standard, which are usually known answers to

tasks that were inserted into the work [1]. Both CrowdFlower and Mechanical Turk

use this method. In particular, CrowdFlower combines the use of an initial training

period before work, along with gold standard questions sprinkled throughout work

after the training period [6]. Mechanical Turk researchers refer to gold standard ques-

tions as explicitly verifiable questions, and their experiments showed the importance

of having these types of questions in three ways: (1) opening work with these ques-

tions to verify worker answers and require workers to process content, (2) signaling

to workers their work will be scrutinized, and (3) reducing invalid responses [3].
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Chapter 3

Code Review Interface and Process

The changes to the Caesar code review process can be broken down into three

components—a more structured way to write comments, an interface for staff to

grade student comments, and an implementation of practice tasks before normal

code review tasks. This chapter describes these three components.

3.1 Structured Comments

In order to add more structure to code review comments in Caesar, we decided to

appeal to the three foundation principles of 6.031: Safe From Bugs (SFB), Easy to

Understand (ETU), and Ready For Change (RFC). The new comment user interface

includes three dropdown menus, one for each principle. Students can choose to tag

their comment with one of the three principles, along with a + to signify that the code

author did a good job writing code that follows this principle, or a - for the opposite.

Each comment written is required to include at least one +/- sfb/etu/rfc tag.

Figure 3-1: Caesar’s new comment UI

19



After a student writes a comment, chooses at least one tag, and presses save, the

system inserts the tag(s) used in a new line at the end of the comment, with multiple

tags separated by one space. As a result, the tags used for each comment are saved

directly into the text associated with that comment.

Figure 3-2: A written comment with three tags

While the user interface for comment replies does not require the usage of tags,

we have seen some student incorporate this notation at the end of their comment

regardless.

3.2 Grading Student Code Review

Another new component added to Caesar is the ability for lab assistants to grade the

quality of student code review comments. The goal of this functionality is two-fold.

First, we want to have a more systematic way of determining if a student put an

adequate amount of effort into participating in code review for a particular problem

set. Second, we want to use the data from LA grading of comments to see how the

quality of student comments changes within the same semester and across the fall

2019 and spring 2020 semester.

The new lab assistant grading interface includes new +, 3, and − buttons at

the bottom of each comment. During each code review, lab assistants are assigned

to a set number of files, and they grade each student written comment by clicking

+, 3, or −. + indicates the student did an excellent job providing a correct and

high quality comment, 3 means that the comment was sufficient, and − means the

comment was low effort or gave incorrect advice.

20



Figure 3-3: A student comment from the LA view

The introduction of the LA grading interface also simplifies the process of grading

student participation in code review. If a student has made an adequate number

of check or plus graded comments, then we can automatically give them credit for

participating in code review. As a result, less manual grading of participation needs

to be done.

3.3 Practice Tasks

The most extensive addition to Caesar and 6.031 code review is the addition of

practice tasks. Practice tasks occur at the beginning of a code review session, giving

the student training exercises before they reviewed code from their peers. The code

used in practice tasks is written by staff members and includes bugs or other problems

related to 6.031 concepts. Each practice task has a set of expected answers, which

are issues with the code that we expect students to identify with comments. Each

expected answer consists of two major components—a range of line numbers at which

to look for a student comment, and a list of keywords used to determine if the content

of a student’s comment identified the known issue.

3.3.1 Starting Code Review

After code review has opened, students start their code review tasks in their Caesar

dashboard. On the first visit to the dashboard after the code review begins, students

see a green "Start Reviewing" button.
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Figure 3-4: "Start Reviewing" button in Caesar

In the Fall 2019 semester and before, clicking the "Start Reviewing" button would

display a list of tasks assigned to the student. Unopened task names are in bold.

Figure 3-5: Old Caesar interface - list of tasks

However, following prior research discussed in section 2.3, one of the goals of

practice tasks is to provide an initial training period for students. As a result, students

would have to do the practice task first, prior to their regular code review tasks on

other students’ code. In order to ensure this happens, in the Spring 2020 semester,

the "Start Reviewing" button opens the first task directly, which is the practice task.

When going back to their dashboards, students no longer see a list of tasks—instead,

they see a green "Continue Reviewing" button. Clicking that button re-opens the

current unfinished code review task. The student can also see how many remaining

code review tasks they have to do to the right of the button.

Figure 3-6: "Continue Reviewing" button in Caesar

3.3.2 Practice Task Workflow Overview

The workflow of a practice task consists of three steps.
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First, when students open a practice task, they are greeted with special instruc-

tions that explain what a practice task is and what steps to follow. In this stage, the

student cannot click the "Next" button yet. They proceed to look over the provided

practice task code and make comments to point out problems with the code as they

see fit.

Figure 3-7: Practice task: instructions and initial interface

After students make at least one comment on the practice task file, they can click

"Next", which is now enabled.
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Figure 3-8: Practice task: student makes a comment

Clicking "Next" results in automated replies and new comments on the file. These

automated comments are generated based on where the student left comments and if

those comments contained certain keywords. Each of the expected answers will result

in at least one feedback comment. Possible outcomes for these feedback comments

are:

1. The student did not make a comment in the expected line range, so the system

gives feedback in a new comment that explains what the problem was and what

the expected keywords were.

2. The student made a comment in the expected line range, but they did not use

any of the expected keywords. The system will reply to such comments and

explain what the problem was and what the expected keywords were.

3. The student made a comment in the expected line range and used at least one
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of the expected keywords. The feedback comment explains what the problem

with the code was, and it also confirms which expected keywords the student

used.

In the figure below, we can see an example of a practice task comment in the

expected line range, using two expected keywords (outcome 3 above).

Figure 3-9: Practice task: automated feedback

Finally, students look over the feedback comments and upvote, downvote, or reply

to at least one. In this way, we can collect information about whether students agreed

or disagreed with the feedback comment.
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Chapter 4

Practice Task Implementation

The implementation of practice tasks in Caesar uses the Django framework, with

a Python backend and javascript with JQuery, HTML, CSS in the frontend. This

section explains the different components of the practice task implementation in more

detail.

4.1 Backend Models

A Django model is the source of information about some aspect of stored data, con-

taining fields and other information about that data. Before we implemented practice

tasks, Caesar already had several Django models used for code review.

The following are existing models within Caesar:

∙ Subject: A subject or class. For this thesis, the Subject is 6.031.

∙ Semester: A semester for a subject. For this thesis, the relevant semesters

are ‘Fall 2019’ and ‘Spring 2020’.

∙ Assignment: Each semester contains several assignments. In this case, we

have ps0 through ps4, for a total of five assignments per semester.

∙ Milestone: Each assignment has three milestones of two types: SubmitMilestone

and ReviewMilestone. In 6.031, each problem set assignment is split into
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an alpha and beta submission, for a total of two submit milestones. The code

review process is tied to one review milestone per assignment.

∙ Submission: Each milestone has many submissions attached to it, one per

student.

∙ File: Each submission contains files. The File model contains the content

of the file, as well as data about the file, such as file path and which submission

it is from.

∙ Chunk: Each file can be split into multiple chunks. However, currently in 6.031,

there is one Chunk for each File.

∙ Task: Finally, a Task is a single task that a student receives on their dashboard

for a code review period. Each Task contains fields for the Submission,

Chunk, and Milestone for its contents. Each task also has one Reviewer.

There can be many tasks associated with the same Chunk, and each reviewer

has many tasks.

As mentioned above, the code review process is tied to instances of the

ReviewMilestone model. As a result, the practice task implementation builds off

of review milestones. To integrate practice tasks into the backend, we have created

three new models: PracticeProblem, ExpectedAnswer, and PracticeTask.

These three models were implemented and deployed for the Spring 2020 semester.

4.1.1 PracticeProblem

A practice problem contains the information needed for one practice task file. As a

result, it has the following fields:

∙ name: The name of the practice problem, as a String. This is used internally

only for identification purposes and not shown to students.

∙ file: The file used for this practice problem. This field is a foreign key to an

instance of the File model.
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∙ milestone: The review milestone for this practice problem. For example, if

this was a practice task intended for ps3, the milestone field would point to

the ReviewMilestone for ps3.

Every ReviewMilestone for the five assignments in the Spring 2020 semester

contained at least one PracticeProblem.

4.1.2 ExpectedAnswer

An expected answer represents an issue in a practice task file that the student is ex-

pected to leave a comment about. There is at least one ExpectedAnswer associated

with each PracticeProblem. Here are the fields:

∙ keywords: Comma separated keywords that students are expected to use in

their comment.

∙ comment: A comment that identifies and explains the problem the student

is expected to comment on. This comment goes into every feedback comment

generated for this expected answer. More detail on the content of the generated

feedback comments will be discussion in section 4.3.

∙ lines: A comma separated, no whitespace, list of line numbers and/or line

number ranges where a student comment is expected. A line number range is

in the format a-b, where a is the starting line number and b is the ending line

number of the range. An example of a value that this lines field could be is

"4,10-12,8", meaning that a comment is expected that starts on lines 4, 8,

10, 11, or 12.

∙ practice_problem: The PracticeProblem instance that this expected

answer is associated with.

4.1.3 PracticeTask

Finally, the third model introduced for this thesis is PracticeTask. PracticeTask

is actually a model that inherits from the Task model. As a result, it contains all
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the fields that a task does, but has some additional ones:

∙ practice_status: The current status of the practice task. This field can

have a value of one of the four statuses:

1. New: No comments have been written by the student.

2. Commented: The student has left at least one comment on the practice

task, but they have not pressed "Next" to receive feedback.

3. Feedback: The student has received automated feedback comments for

their practice task comments.

4. Done: The student has responded to the feedback by upvoting, downvot-

ing, or replying to at least one automated feedback comment.

∙ practice_problem: The practice problem for this practice task.

4.2 Practice Task Set Up

In order to set up a practice task, a script is used to create practice problems. The

scripts takes in Java files that contain the content for practice tasks, in addition to

some metadata. This metadata includes names used for the created practice problems,

the paths to the files, and the id of the review milestone these practice problems are

for. Each input file results in one created practice problem instance.

The input files to this script are normal Java files along with some metadata

within. First, there is a JSON style comment at the top of the file that lists the

number of expected answers for this file and their corresponding name identifiers,

keywords, and feedback comment. Second, the file has to identify where the expected

comments students make should be located. As explained in section 4.1.2, each

expected answer is associated with some lines or line ranges. The input files to this

setup script identify those lines by including the appropriate name identifier in a

comment at the beginning of corresponding lines.

Below is an example of a portion of the one input file used for ps0 practice tasks

in the Spring 2020 semester:
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Listing 4.1: ps0 practice task input file for Spring 2020

1 /*[

2 {

3 "name": "DRY",

4 "keywords": ["-sfb", "-rfc", "DRY", "repeat", "loop"],

5 "comment": "This piece of code is not DRY - instead of repeating the same lines four

times, consider using a for loop."

6 },

7 {

8 "name": "magicNumber",

9 "keywords": ["-etu", "-sfb", "magic"],

10 "comment": "This method uses the magic number, 360, twice. One solution could be to

treat it similarly to ‘rightAngle‘, or make it a final, local variable."

11 },

12 {

13 "name": "final",

14 "keywords": ["-sfb", "final"],

15 "comment": "The variable ‘sideLength‘ could be final since it is never reassigned."

16 },

17 {

18 "name": "varName",

19 "keywords": ["-etu", "variable name"],

20 "comment": "The variable ‘a‘ should have a more descriptive name, such as ‘

angleRadiansHalved‘."

21 }

22 ]*/

23 /* Copyright (c) 2007-2020 MIT 6.005/6.031 course staff, all rights reserved.

24 * Redistribution of original or derived work requires permission of course staff.

25 */

26 package turtle;

27

28 import java.util.List;

29 import java.util.ArrayList;

30 import java.util.Set;

31 import java.util.HashSet;

32

33 public class TurtleSoup {

34

35 private static final double rightAngle = 90.0;

36

37

38 /**

39 * Draw a square.
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40 *

41 * @param turtle the turtle context

42 * @param sideLength length of each side, must be >= 0

43 */

44 /*DRY*/public static void drawSquare(Turtle turtle, int sideLength) {

45 /*DRY*/turtle.forward(sideLength);

46 /*DRY*/turtle.turn(rightAngle);

47 /*DRY*/turtle.forward(sideLength);

48 /*DRY*/turtle.turn(rightAngle);

49 /*DRY*/turtle.forward(sideLength);

50 /*DRY*/turtle.turn(rightAngle);

51 /*DRY*/turtle.forward(sideLength);

52 /*DRY*/turtle.turn(rightAngle);

53 }

54

55 /**

56 * Determine the length of a chord of a circle.

57 * (There is a simple formula; derive it or look it up.)

58 *

59 * @param radius radius of a circle, must be > 0

60 * @param angle in degrees, where 0 <= angle < 180

61 * @return the length of the chord subtended by the given ‘angle‘

62 * in a circle of the given ‘radius‘

63 */

64 public static double chordLength(double radius, double angle) {

65 /*varName*/final double a = Math.toRadians(angle) / 2.0;

66 /*varName*/return 2 * radius * Math.sin(a);

67 }

68

69 /**

70 * Approximate a circle by drawing a many-sided regular polygon,

71 * using only right-hand turns, and restoring the turtle’s

72 * original heading and position after the drawing is complete.

73 *

74 * @param turtle the turtle context

75 * @param radius radius of the circle circumscribed around the polygon, must be > 0

76 * @param numSides number of sides of the polygon to draw, must be >= 10

77 */

78 public static void drawApproximateCircle(Turtle turtle, double radius, int numSides) {

79 /*magicNumber*/final double exteriorAngle = 360 / numSides;

80 /*final*/int sideLength = (int) Math.round(chordLength(radius, exteriorAngle));

81 for (int i = 0; i < numSides; i++) {

82 turtle.forward(sideLength);
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83 turtle.turn(exteriorAngle);

84 }

85 }

In the file above, lines 1 through 22 (colored red) contain the JSON metadata

about this practice task. There is a list of four objects, and each object contains

the information need for one expected answer. In this file, there are four expected

answers, and there are named DRY, magicNumber, final, and varName. The first

expected answer has five keywords, and has a comment that explains that the code

repeats the same lines, which is not DRY (Don’t Repeat Yourself).

Next, the lines that are relevant for each expected answer begin with an in-line

comment containing the name. For example, lines 44 to 52 start with /*DRY*/, and

those are the lines where students are expected to make a comment about repetitive

code. The same formatting can be seen for the other three expected answers.

After the script processes input files, it creates one practice problem instance for

each file. Each practice problem instance may have multiple expected answers. In

the case of running the script with the file in listing 4.1 above, the system will create

one practice problem with four expected answers.

Finally, to finish the process, the JSON metadata and in-line name comments are

deleted, and the remaining parts of the file get put into a new File instance. This is

the file that the file field of the created PracticeProblem will point to (section

4.1.1).

4.2.1 Practice Task Assignment

After the implementation of the necessary backend models needed for practice tasks

and writing a script for creating practice problems and expected answers, the existing

Caesar task assignment process needed to be modified to assign practice tasks.

Each ReviewMilestone has a student_count field, which is an integer rep-

resenting how many code review tasks a student would receive for that code review

milestone. To assign practice tasks, a new field practice_count was added—the

number of practice tasks each student would receive. The total number of tasks is
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still student_count, so this means that (student_count−practice_count)

is the number of regular tasks received that contain code from students’ peers. The

creation, assignment, and distribution of those regular tasks are existing parts of

Caesar.

Now that Caesar knows the correct number of regular and practice tasks to assign,

it has to choose which practice tasks. For review milestones that only have one

practice problem, all practice tasks created and assigned use content from that same

practice task file. If there are multiple files and practice problems, then Caesar

randomly chooses practice_count number of them to assign, or chooses all of

them if there are fewer than practice_count practice problems.

4.3 Practice Task Flow and Automated Feedback

As mentioned in section 4.1.3, each practice task has multiple states associated with

it—New, Commented, Feedback, Done. These states change as a student goes

through the intended practice task flow. Section 3.3.2 gave an overview of this work-

flow, and this section will provide more information into the implementation and

details of this flow.

1. When the practice task is first opened, it is in the New state. The student

has made no comments yet. Even if they exit the task and click "Continue

Reviewing", the task will continue to be in this state. In this state, the "Next"

button is grayed out and disabled. The purpose here is to ensure students make

at least one comment on the practice task.

2. Once the student makes a comment, the practice task will transition to the

Commented state. In this state, the "Next" button is no longer disabled, and

students can choose to make more comments or to click the button and proceed

to the next stage of the practice task flow.

3. After the "Next" button is clicked, the practice task enters the Feedback state.

The instructions at the top of the task change, and the background color of that
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area changes to purple. Most importantly, this is the state where automated

feedback comments are generated. They appear as replies or new comments on

the practice task, and they also have a purple background color.

To generate these feedback comments, when the student clicks "Next" from

the Commented state, Caesar searches through all of their comments on that

practice task file. Then, for each expected answer for that practice task, the

system looks for student comments in that expected answer’s line range(s).

For comments in that range, the system looks for the expected answer’s key-

words in the comment text. If the comment includes at least one keyword, then

the feedback comment generated is a reply to the student comment and gives

positive feedback on the choice of keywords. If no expected keywords are found,

the system generates a feedback comment as a reply, with text that tells the

student what the appropriate keywords are.

If there is not a student comment in the expected line ranges for an expected

answer, the system generates a feedback comment that is inserted as a new

comment to the file at the expected location. This comment informs the student

that there was an expected comment here and explains what the issue with the

code is.

All three types of feedback comments will include text about what the problem

with the code was. This text is the same as the "comment" value in the JSON

metadata in the practice task file in section 4.2. It is also the same text stored

in the comment field of ExpectedAnswer objects (section 4.1.2). The three

types of feedback comments are shown in the figures 4-1, 4-2, and 4-3 below.
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Figure 4-1: Automated feedback: at least one expected keyword

Figure 4-2: Automated feedback: no expected keywords

Figure 4-3: Automated feedback: missing comment

4. Finally, after the student reads over the feedback comments, they can follow the

instructions to upvote, downvote, or reply to at least one feedback comment.

This gives the student an opportunity to disagree or agree with the feedback

they were given.
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4.4 Fall 2019 Semester

Practice tasks were partially introduced for ps2 in the Fall 2019 semester. For this

problem set, students were assigned one practice task. However, implementation

of automated feedback comments was not complete. As a result, comments about

the problems with the code in the practice task were created and added to all of

the practice task files after the code review period. However, we do not know how

many students reopened their code review task and saw these comments. For ps3

and ps4 in the fall, automated feedback was implemented. After making comments

on a practice task, students were able to click "Next" and receive purple colored

feedback comments. The sections below explore the main differences between the fall

implementation of practice tasks and the current Spring 2020 one.

4.4.1 Assigning Practice Tasks

In the Fall 2019 semester, Caesar assigned practice tasks by always assigning one out

of the possible practice task files. In the fall, the practice_count field of review

milestones did not exist yet, and we defaulted to one practice task per problem set

code review. This one task was also picked randomly from all the available practice

task files.

4.4.2 Generating Automated Comments

As explained in section 4.3, the practice task workflow includes a Feedback state,

where students can see automatically generated feedback on comments they have

made on practice tasks. These feedback comments are generated based on whether

the student comment contains any of the expected keywords.

However, in the Fall 2019 semester, the backend models described in section 4.1

did not exist yet, and the keywords used were only +/- sfb/etu/rfc tags. Since we

did not have the models to store information about practice problems and expected

answers, this information was recorded as comments on the original practice task files.

The practice task files in Fall 2019 were uploaded to Caesar as a submission by a
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user with username practice. Then, we logged in as the practice user and wrote

comments on each of the files. Each comment represented one expected answer. The

comment text, excluding the tags used, is the text explaining what the problem with

the code is. This is the same as the comment field of ExpectedAnswer objects

that were used in Spring 2020. The tags used in these comments were the expected

tags. The range of lines that the comment was left on are the expected starting lines

for student comments.

When a student made a comment on the practice task, the automated feedback for

that student comment was generated based on the comments by the practice user

on that original file. Below, we can see an example of one practice user comment

on a practice task file for ps3 in Fall 2019.

Figure 4-4: Practice task file from Fall 2019

The one comment in figure 4-4 means that there is an expected student comment

starting between lines 17 and 21. This comment has expected keywords/tags of -sfb

and -etu. The correct content of this comment should have pointed out missing

types in the datatype definition. Therefore, if a student that received this practice
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task made a comment starting somewhere on lines 17-21 and used at least one of the

two expected tags, they would have received a positive feedback comment. If they

did not use any of the expected tags, the feedback comment would inform them of

the appropriate tags. Finally, if they did not leave a comment in that range at all,

the system would inform the student that there was an expected comment in that

range. These three outcomes are the same as Spring 2020.
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Chapter 5

Evaluation

This section discusses the process of deploying the new comment interface, LA grading

interface, and practice tasks in 6.031 over the Fall 2019 and Spring 2020 semesters.

Then, we explore the two areas in which we evaluate the result of our work.

5.1 Spring 2020 Semester

When looking at the data from the previous two semesters, we first have to consider

the special circumstances for the Spring 2020 semester.

In December 2019, SARS-CoV-2, the virus causing the disease Covid-19, emerged

in the city of Wuhan, China. By February 2020, it was clear that this virus was

spreading in the United States. By March 2020, the situation escalated, and on

March 10, 2020, MIT announced that undergraduates would be required to move out

of campus dorms and MIT-affiliated housing by March 17, and that classes would be

completely online starting March 30, after spring break. Out of the 4530 undergrad-

uates enrolled at MIT, 3345 students live on campus dorms and about 1000 students

live in MIT-affiliated housing. As a result, 95% of undergraduates were affected. A

little above 400 students remained on campus as the result of petitions, and even they

likely had to move to consolidated dorms.

This news was clearly very disruptive to the community. Since 6.031 is an under-

graduate course, almost all of our students were affected. Code review for ps2, ps3,
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and ps4 were done after spring break, when the course was fully online. Covid-19

and having campus life cut short affected our students in a significant way, and this

should be taken into account when looking at data from the Spring 2020 semester.

5.2 Deployment in 6.031

The deployment of the changes in this thesis started with introducing +/-

sfb/etu/rfc tags and the new LA grading interface at the beginning of the Fall

2019 semester. Also in the Fall 2019 semester, as explained in section 4.4, practice

tasks were implemented partially in ps2, and then automated feedback was imple-

mented for ps3 and ps4. For the Spring 2020 semester, practice tasks were imple-

mented with the current system for all problem sets.

After examining practice task data from ps3 and ps4 in the fall, we realized a

few major flaws in the system. First, the feedback system needs to be able to check

for keywords beyond +/- sfb/etu/rfc tags. While those tags are a good way to

give a high level idea of what the comment is about, they do not distinguish beyond

the three principles of 6.031. Second, the feedback system needs to be able to check

for expected comments in disjoint line ranges. For example, we found many cases

of students commenting on an issue in the practice task code in a location we did

not anticipate, but that still made sense. We want to check for such a comment

in two locations of the file that are not adjacent. Finally, there needs to be state

management for a practice task file. Students should be able to leave a practice task

any time and return to it as if they had never left. In the Fall 2019 semester, if

students made a comment on a practice task file and left without clicking "Next" to

receive feedback, they never received feedback comments, since Caesar would mark

that task as done. There was no way to distinguish between practice tasks and regular

tasks in the backend.

The changes explained in section 4.1 solve the above problems. Section 5.4 goes

into more detail about the types of analysis we performed to come to the conclusions

from above.
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5.3 Code Review Participation

As explained in 2.2, one of the goals of adding tags to comments is to create a more

scaffolded comment structure, hopefully increasing the quality and quantity of code

review comments in Caesar. In addition, we hoped that practice tasks would serve as

an initial training period, resulting in giving students more code reviewing experience.

More experience would hopefully result in higher quality code review comments by

students in 6.031.

In order to evaluate the effect of structured comments and practice tasks on com-

ment quality and quantity, we look at data on student comment length and quantity,

LA grading of student comments, and comment data from the previous semester

before Fall 2019.

5.3.1 Quantity of Comments

We first look at the quantity of comments made in the Spring 2019, Fall 2019, and

Spring 2020 semesters. Below are three tables displaying the number of students,

number of regular tasks each student got, total number of comments, total number of

characters, average characters per comment, and average comments per student per

task for all five problem sets, over the past three semesters. These numbers do not

include comments made on practice task files, since we want to evaluate the effect of

practice tasks on regular code review tasks.

tasks students comments chars chars/comment comments/student/task

ps0 3 241 3587 332869 92.80 4.96

ps1 6 228 4103 403242 98.28 3.00

ps2 6 222 3952 344737 87.23 2.97

ps3 6 218 3337 294383 88.22 2.55

ps4 6 204 2858 248011 86.78 2.33

Table 5.1: Comment quantity: Spring 2019 semester
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tasks students comments chars chars/comment comments/student/task

ps0 3 163 2270 204525 90.10 4.87

ps1 10 163 3335 306591 91.93 2.17

ps2 5 153 2494 226066 90.64 2.99

ps3 5 144 2276 204500 89.85 2.89

ps4 5 140 2252 181071 80.40 2.78

Table 5.2: Comment quantity: Fall 2019 semester

tasks students comments chars chars/comment comments/student/task

ps0 2 223 3377 273495 80.99 6.14

ps1 9 219 5020 424578 84.58 2.55

ps2 5 209 3487 288285 82.67 3.33

ps3 5 190 2703 226609 83.84 2.85

ps4 5 185 2810 222939 79.34 2.97

Table 5.3: Comment quantity: Spring 2020 semester

Since +/- sfb/etu/rfc tags were introduced in Fall 2019, for the character

counts in Fall 2019 and Spring 2020, we removed the number of characters that were

part of those tags in order to make the numbers comparable to Spring 2019. Below

are graphs of chars/comment and comments/student/task for the three semesters.

Figure 5-1: Characters per comment - sp19, fa19, sp20
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Figure 5-2: Comments per student per task - sp19, fa19, sp20

To evaluate the effect of the introduction of tags and practice tasks, we can look

at the number of comments students write per code review task. We can also look

at the length of those comments. From our experience looking at past student com-

ments, longer comments seem to contain better and more useful content. In addition,

shorter comments tend to be vague critiques such as "this code is confusing" or short

compliments such as "nice code!".

Figure 5-1 shows the average characters per comment for the five problem sets for

the past three semesters. We see here that the Fall 2019 semester seems to have higher

characters per comment compared to the Spring 2020 semester, except for ps4. In

addition, the Spring 2019 data has the highest average characters per comment for all

problem sets except for ps2 and ps3—but the values for those two problem sets are all

within 5 characters, and it is not clear how significant that difference is. One anomaly

to note is that the number of regular (non-practice) tasks students were assigned for

problem set 1 in Spring 2019 was only 6 tasks, whereas that number jumped to 10

and 9 tasks, for Fall 2019 and Spring 2020 respectively. One hypothesis could be that

students saw that they had a lot of tasks in Fall 2019 and Spring 2020, and therefore

chose to write shorter comments on average, wanting to finish code reviewing faster.

From this graph, however, it does not seem like the usage of practice tasks in ps0 and

ps1 for Spring 2020 increased character counts for student comments.

Figure 5-2 shows the average number of comments per student per task for all
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five problem sets over the past three semesters. First, we notice that the value for

ps0 in Spring 2020 is higher than the other two semesters—the average number of

comments per task each student made was over 1 higher than Fall 2019 and Spring

2019. This seems to suggest that having a practice task for ps0 in Spring 2020 resulted

in that higher value. The practice task for ps0 in Spring 2020 consisted of one file

with four expected answers, so every student received the same practice task. The

expected answers for ps0 focused on basic coding practice principles, which can be

found in one of the 6.031 readings: http://web.mit.edu/6.031/www/sp20/

classes/04-code-review/. The intention is for students to see examples of

common issues regarding general principles of good coding. Then, they would be

able to comment on similar issues on their peers’ code. The data here supports that

ps0 in Spring 2020 was successful in doing this. Students are also mostly new to

Java and good coding principles when they work on ps0, and that might result in

more issues with student code that other students comment on during code review.

In addition, the focus of the ps0 practice task is very defined—the issues presented in

expected answers are reinforced heavily in class. As a result, we think that students

have a clearer idea on what issues to look for in their peer’s code, after being in class

and doing the practice task.

For the rest of the problem sets, the values from Spring 2020 tend to be higher

than those of Fall 2019, except for a little lower for ps3. However, these differences

are very small. Looking at the Spring 2019 data, we do see that the data points

for ps3 and ps4 are lower than the other two semesters. This supports that practice

tasks for ps3 and ps4 in the later two semesters increased the number of comments;

however, these numbers may be too similar to come to that conclusion.

Figure 5-2 also shows that Spring 2019 has the highest number of comments per

student per task for ps1. As mentioned before, students had the fewest ps1 code

review tasks in Spring 2019 compared to the other two semesters. This supports our

earlier hypothesis—students saw that they had a lot of tasks Fall 2019 and Spring

2020, and therefore chose to write fewer comments on average, wanting to finish code

reviewing faster.
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Finally, going back to the concerns raised in section 5.1, it does not seem like

Spring 2020 is an outlier in this set of data. We do see in table 5.3 that the amount

of participation for ps2, ps3, and ps4 dropped, with only 185 students out of the

231 enrolled participating in code review for ps4. Tables 5.2 and 5.1 show that the

number of students participating dropped as the semester went on in Spring 2019 and

Fall 2019, but the drop was steeper for Spring 2020. It is hard to tell exactly how

Covid-19 affected the semester, but other than the drop in student participation, we

did not see a significant decrease in comment quantity compared to past semesters.

5.3.2 Quality of Comments

In addition to seeing how the quantity of comments and characters changes over the

past three semesters, we also investigate how the quality of comments changes. As

explained in section 3.2, the Fall 2019 semester introduced a new interface for LAs

to grade the quality of student code review comments. This functionality was not

available in the Spring 2019 semester, so this section will only compare the past two

semesters.

Due to a limited number of lab assistants on the 6.031 staff, not all student

comments were able to be graded. Below are tables that show what percentage of

student comments that were graded received +, 3, and − grades. Similar to the

previous section, this data is based on student comments on normal code review

tasks, not practice tasks.

+ 3 −

ps0 23% 73% 4%

ps1 24% 73% 3%

ps2 26% 67% 8%

ps3 21% 73% 6%

ps4 19% 78% 3%

Table 5.4: LA comment grading: Fall 2019 semester
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+ 3 −

ps0 26% 69% 5%

ps1 22% 73% 5%

ps2 24% 71% 5%

ps3 26% 69% 4%

ps4 22% 74% 4%

Table 5.5: LA comment grading: Spring 2020 semester

In order to compare between semesters, we create three graphs to compare the

percentages of each type of grade.

Figure 5-3: Plus graded comments

Figure 5-4: Check graded comments
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Figure 5-5: Minus graded comments

Since ps0, ps1, and ps2 of Spring 2020 included practice tasks with automated

feedback, and Fall 2019’s did not, we first take a look at those problem sets. While

ps0 for Spring 2020 had more plus graded comments than Fall 2019, the opposite was

true for ps1. For check graded comments, the Spring 2020 had a lower percentage. For

minus graded comments, the Spring 2020 semester had a slightly higher percentage.

In fact, looking at all the data points in figure 5-5, we note that they’re within 2

percentage points of each other, except for Fall 2019’s ps2 value, at 8%. It is unclear

why this value is an outlier compared to the others. As explained in section 5.3.1,

ps0 code review had clearly defined issues that students could focus on. This could

explain a higher percentage of plus graded comments for ps0 in Spring 2020—students

identified potential bugs and coding principle issues well. This also adds to evidence

that the ps0 practice task was effective in teaching students what to look for during

ps0 code review.

Looking at ps3 and ps4, we see that Spring 2020 had a higher percentage of

plus comments compared to the fall. Similarly, the fall has fewer check comments

compared to the spring. Both of these problem sets had the automated practice task

feedback, but this suggests that the changes to the practice task system from fall

to the spring helped students write higher quality comments for regular code review

tasks.

Finally, regarding section 5.1 and comment quality, it also does not seem like

the Spring 2020 was an outlier. In figure 5-3, the Spring 2020 semesters had more
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problems sets with a higher percentage of plus graded comments compared to Fall

2019. For check graded comments, figure 5-4 also does not show that either semester

had clearly lower percentages than the other. Last, the Spring 2020 comments did

not see an increase in the percentage of minus graded comments as the semester

progressed, as shown in figure 5-5.

5.4 Practice Task Accuracy

In addition to seeing how practice tasks and tags might have effected the quantity

and quality of student code review comments, we want to analyze the accuracy of the

feedback given in practice tasks. In order to do this, we divide feedback comments

given in the following cases:

∙ true positive: The student did comment in the correct line range with at

least one expected keyword, the feedback system gave positive feedback, and

the content of the comment was correct.

∙ false positive: The student did comment in the correct line range at least one

expected keyword, the feedback system gave positive feedback, but the content

of the comment was incorrect.

∙ true negative: The student did not comment in the correct line range, may

have used some expected keywords, the feedback system gave negative feedback,

and the content of the comment was incorrect.

∙ false negative: The student commented in the correct line range with no

expected keywords, or they commented outside of the correct line range, the

feedback system gave negative feedback, but the content of the comment was

correct.

We hope that the feedback system maximizes true positives and negatives, while

minimizing false positives and negatives. In particular, we believe false negatives
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are the worst errors to occur—the student actually made a correct comment and

identified the problem with the code, but they received negative feedback.

To perform analysis on the accuracy of feedback given in practice tasks, we looked

at all student comments on all practice tasks with automated feedback in the Fall

2019 and Spring 2020 semester. This means ps3 and ps4 for the fall and all problem

sets for the spring. To be able to detect true and false positives and negatives, we

went through all practice task comments and marked (1) which expected answer topic

they were related to (if any) and (2) whether the comment content was correct. After

annotating the data with topics and comment correctness, we counted the number of

true positives and false positives and negatives.

5.4.1 Fall 2019

In the Fall 2019 semester, we only had automated feedback for ps3 and ps4. In

addition, the expected keywords for practice task comments were only +/-

sfb/etu/rfc tags.
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Figure 5-6: ps3 practice task accuracy - fa19

Figure 5-6 above is split into 10 columns. The eight columns on the right that

have ps3 in the top cell each represent the data for one expected answer. As we can

see, ps3 had eight expected answers, split over 5 files (the second row of the table).

The figure is also split into 5 horizontal sections, separated by a grayed out row.

1. The first section lists out the metadata about the practice task and expected

answers. This includes the problem set number, the practice task file name, the

line range for the expected answer, the topic/name of the expected answer, and

the expected tags.

2. The second section lists out how many students had comments with the right

content and wrong content, regardless of location of the comment or the tags it

used.

3. The third section shows the number of students with a comment that was a true

positive. This is broken down into three cases—students that used the exact
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expected tags, students that used extra tags, and students that missed at least

one expected tag (but still used at least one expected tag). Since comments

had to be in the expected range to be given feedback, all of the numbers in this

section come from students who made comments in the expected line range for

that expected answer.

4. The fourth section lists out data on the false negatives. There are two cases

here: (1) students with a comment that did not use any of the expected tags

but was in the right line range, and (2) students with a comment that used at

least one expected tag but was not in the expected line range. Since these are

false negatives, comments in either case did have the right content.

5. Finally, the fifth and final section gives data on false positives. In this case,

these numbers are students with a comment that had one of the expected tags

and was in the right line range, but the comment did not have the right content.

The percentages in the table take the number of students in each category and

divides it by the appropriate number in horizontal section number two. For example,

for the first expected answer in ps3 with topic datatype_def, exactly 2 students

made comments with the right content, with the exact expected tags, and in the right

range. This means that 2
17

= 11.76% of students who got the right content fall into

this category.

The last horizontal section (false positives) is the only place where the denominator

of the percentages is the # students with the wrong content. For the expected answer

in the last column with topic ri, there were 2 students with comments that had the

wrong content, but who received positive feedback because they used at least one of

the right tags and were within the right range. Since there were a total of 4 students

with wrong content for that expected answer, 2
4
= 50% of students who had wrong

content were marked as false positives by the feedback system.

Since the goal is to minimize false positives and false negatives, we can take a look

at the data in those two sections. For Fall 2019 ps3, we notice two high percentages

of 14.29% for false negatives. These are students that did not use one of the expected
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tags. This suggests that the expected tags for those expected answers might not be

comprehensive enough. While the numbers for false positives are generally low, the

positive percentages are all above 50%, and this also suggests that the tags are not

doing a good enough job at identifying the right content.

Figure 5-7: ps4 practice task accuracy - fa19

For ps4, while the numbers for false positives are better, there are more issues

with false negatives. We can see some pretty high percentages for the monitor and

rep expected answers, with 53.33% and 72.73% of students with the right content

receiving negative feedback. In contrast to ps3, we have more cases of students making

comments with the right content outside of the expected line ranges. This suggests

that there is a need for a more robust expected lines verification.

5.4.2 Spring 2020

As discussed in section 5.2, based on analysis of practice task feedback accuracy from

ps3 and ps4 of Fall 2019, we made changes to the system for the Spring 2020 semester.
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In particular, the expected line ranges for comments can be many disjoint ranges. In

addition, keywords can be any string, beyond just +/- sfb/etu/rfc tags.

Below is the data on practice task feedback accuracy for all five problem sets

of Spring 2020. The format is the same as the Fall 2019 data, except we look at

keywords now. This means that there are only two cases for true positives—students

with comments that use all of the expected keywords, or students that use some of

them.

Figure 5-8: ps0 practice task accuracy - sp20

The accuracy for the one ps0 practice task was pretty successful. The DRY ex-

pected answer had an unusually high number of students with comments with the

right content but on the wrong line. In this case, students had their comment starting

on the method signature, instead of inside the function body where the problem with

the code was. Even though this applied to 16 students, the percentage is 8.16% since

the number of students who had comments with the right content was very high—196

total students.
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Figure 5-9: ps1 practice task accuracy - sp20

The three ps1 practice task files also had pretty high accuracy. There are a few

false negatives with high percentages for the two expected answers in the task3/RepListIntervalSet.java

file (last two columns), but the numbers themselves are low. In addition, this prob-

lem set introduces the idea of testing and partitions, which is what task3 focuses

on. This is a topic that students historically struggle with, especially when they first

learn about it.

Figure 5-10: ps2 practice task accuracy - sp20
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Accuracy for ps2 practice task feedback was not as great for the first two files,

with two expected answers per file (first four columns). Like task3 of ps1 practice

files, these two files are also using testing files, with the topics focused on testing

partitions. The first two files contain the same two expected answers, and we wanted

to see if the presence of actual JUnit test methods in a test file made a difference. In

this case, the task1 file includes JUnit tests while the task2 file does not. We can

see that fewer students wrote comments with the right content for task1 compared

to task2. In fact, for task1, each student made an average of 0.6 comments in the

expected line ranges of the two expected answers. On the other hand, for task2,

each student made an average of 0.77 comments. In conclusion, it seems like the less

"distractor" code there is in the practice task file, the more likely students are to

make comments of the right content in the right range.

Examining the false negative comments one by one show that there are more

obvious keywords that we did not realize would be better for task1 and task2.

Figure 5-11: ps3 practice task accuracy - sp20
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Figure 5-12: ps4 practice task accuracy - sp20

Problem set 3 and 4 were both pretty successful in minimizing false negatives.

ps4 had a higher percentage of 14.29% for one of the false negative cases in the last

column. Looking at the expected line ranges for that expected answer, we see that

it is really complex. This might be a case where the actual lines on the practice task

file should be rearranged for less complexity.

5.5 Additional Practice Task Experiments

5.5.1 Effectiveness of Keywords

One of the changes we made from Fall 2019 to Spring 2020 was using any string as

a keyword, instead of just +/- sfb/etu/rfc tags. We wanted to analyze practice

task comments to see how useful keywords that were not tags ended up being. To

do this, we examined the keywords used in all comments that were given positive

feedback—this includes true positives and false positives. The figures below show

the results of this analysis. The top row of each figure is the name/topic of the
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expected answer, the same topic in the figures of section 5.4. Each expected answer

has a "keyword" and "count" column. The count value corresponds to the number

of comments that used the keyword value to its left. Each figure below displays this

information for true positives and false positives.

Figure 5-13: ps0 keyword usage - sp20

For ps0, we notice that the keywords that are not tags are pretty effective for

each expected answer. In fact, for every expected answer except for the last one

(varName), the most used keyword is not a tag.

Figure 5-14: ps1 keyword usage - sp20

For ps1, the keywords that are not tags are not as successful. While the canonical

expected answer had "determin" as a pretty effective keyword, the rest of the expected

answers’ true positive comments relied heavily on tags. On the flip side, false positive

comments are mostly a result of using tags as well.
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Figure 5-15: ps2 keyword usage - sp20

For ps2, incomplete and invalidRI have successful use of keywords that were

not tags. For false positives, the comments mostly used tags, simlar to ps1, with the

exception of "boundary" keyword.

Figure 5-16: ps3 keyword usage - sp20

ps3 practice tasks are an example of more successful use of keywords beyond tags,

especially the datatype_def expected answer. In addition, false positives are zero

for all expected answers except the first. In that case, the keywords students used for

false positive comments are mostly non-tags.

Figure 5-17: ps4 keyword usage - sp20

The first and third expected answer for ps4 show good use of keywords that are

not tags, while the second expected answer’s true positive comments use mostly the
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-sfb tag. For false positives, the first expected answer has half of its false positive

comments use keywords that are not tags ("monitor" and "synchroniz").

In order to investigate false positive comments even deeper, we looked at the

specific comments that are false positives and use a keyword that is not a tag. In

these cases, the student commented on the right topic, but the content of the comment

was the opposite of what we expected. For example, for the ps3 datatype_def

expected answer, the comments that use "type" and "datatype def" keywords write

that the datatype definition in the practice task file was good. However, the datatype

definition is actually flawed, and the right comment to make is to explain that it is

wrong and give a reason why.

5.5.2 Spring 2020 Problem Set 3 Experiment

The last experiment we ran for the practice task system aims to see if the topics

of expected answers would affect the content of comments made in the regular code

review tasks that came after the practice task. Problem set 3 has two practice task

files, both named Expression.java. These files are the same, except the first one

has a flawed datatype definition.

The way that problem set 3 is designed, every student has to have an

Expression.java file in their own problem set code, and all of these files accom-

plish the same task of defining an interface that is required for this assignment.

We looked at all comments made on Expression.java files for regular code

review tasks—these are comments made by students on other students’ files. For

students who had the task1 practice file with an expected answer about a bad

datatype definition, we hope to see that they made similar comments about datatype

definitions on other students’ code. The way that we try to measure this effect is to

look at the average number of comments and characters used by students on future

Expression.java files.

For students who received task1 (with a bad datatype definition), they made

an average of 2.2 comments and wrote an average of 184.6 characters on future

Expression.java files.
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For students who received task2 (with a good datatype definition), they made

an average of 2.4 comments and wrote an average of 229.8 characters on future

Expression.java files.

Students with the practice task file with a good example of a datatype definition

actually wrote more comments and more characters on future Expression.java

files. This suggests that a good example may stick with students more than a bad

example with an expected answer. The numbers may also be too close to come to

a conclusion. Another hypothesis is that students do not really have bad datatype

definitions for other students to comment on.

To explore this more, we looked through all the student comments on other stu-

dent’s Expression.java files. We found two comments that are related to the

isuue in the datatype_def expected answer of task1. The first comment was

by a student who received task1 as a practice task. The comment said "good job"

to the code author for writing the datatype definition correctly, specifically giving

praise for avoiding the datatype definition issue from the practice task. The second

comment was by a student who received task2. Even though task2 has a great

datatype definition, this comment pointed out the exact datatype definition issue

from the task1 practice task. From these findings, we see that a good and bad

example can influence students to write comments on the same topic in regular code

reviews.

To build off of this, we performed the same analysis for the two other expected

answer topics. These expected answers are the same for both tasks, with names

of flipSpec and sizeSpec. Looking at student comments on other students’

Expression.java files, we found 9 comments about the same problem from the

flipSpec expected answer, and 6 comments about the same problem from the

sizeSpec expected answer. This is strong evidence that seeing a problem from

a practice task file can result in students commenting on that same problem if it

appears in regular code review tasks.
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Chapter 6

Discussion

6.1 sfb/etu/rfc Tags

In the evaluation, we looked at comment quantity in order to see how the addition of

tags influenced code review in the Fall 2019 semester and onward.

Looking at data on the number of characters per comment and the number of

comments per student per task, there is not strong evidence that having tags in

the Fall 2019 and Spring 2020 semester resulted in higher values for those semesters

compared to the Spring 2019 semester.

However, we believe there needs to be more evaluation done to determine the

effects of tags in Caesar. Future evaluation might include A/B testing, where half of

student have a code review interface that uses tags for comments, and the other half

does not. Then, it might be easier to compare how quantity and quality of comments

made by those two groups differ.

6.2 Practice Task Feedback Accuracy

A bulk of evaluation done for this thesis includes evaluating the accuracy of automated

feedback comments made by the practice task system. In particular, we want to

minimize false negatives and false positives, to make sure students receive positive

feedback for comments of the right content.
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Overall, the changes made between the Fall 2019 and Spring 2020 result in lower

false negatives in the Spring 2020 practice tasks. Specifically, we decreased the number

of false positives due to comments not being in the expected line range—this is the

result of allowing multiple, disjoint expected line ranges.

From the analysis of keywords in section 5.5.1, we see that there were expected

answers for which the usage of keywords beyond tags was very useful. However, there

are also many expected answers for which this was not the case. More work should

be done on this part of the system to develop a more accurate and robust feedback

system. Developing a more accurate way to provide feedback based on keywords used

would also decrease the rate of false positives, which did not see a significant decrease

in Spring 2020. Since false positives result from a student writing a comment using

at least one expected keyword, in the right range, but with the wrong content, future

work should focus on how to prevent that case.

6.3 Effect of Practice Tasks on Regular Code Review

Tasks

We looked at comment quality and did some other practice task experiments to see

what sort of effect practice tasks had on comments made on regular code review tasks.

When looking at data about comment quality (LA grading of student comments),

we did not notice that either Fall 2019 or Spring 2020 had better comments consis-

tently. As mentioned in section 5.1, the Spring 2020 semester had special circum-

stances that we believe skew the data collected. In addition, since LA grading of

comments was newly introduced this past school year, we are not sure how consistent

each LA may be with other LAs. As a result, we think that more evaluation on com-

ment quality should be done to see how practice tasks might affect quality. Similar to

comment quantity, A/B testing could be useful here. In addition, comparing grades

given by the same LA across different problem sets or A/B testing groups could

provide more insight without the noise from grading inconsistency across different
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LAs.

Finally, in section 5.5.2, we performed more detailed analysis on comments from

ps3 code review in the Spring 2020 semester. In this analysis, we saw that the expected

answer topics in practice tasks do influence the kinds of comments students make on

regular code review tasks after they have completed the practice task. This analysis

also shows that there is value in having expected answers for practice tasks be code

issues that students actually make in their own code. This is something that we

already think about in the creation of practice problems and their expected answers,

and our analysis reinforces that idea.
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Chapter 7

Future Work

7.1 Keywords Accuracy

To further reduce false positives and false negatives, the current usage of keywords in

giving automated feedback can be improved. Currently, receiving positive feedback

requires a comment to be in the right location and use at least one expected keyword.

Depending on the choice of keywords, false positives may happen easily if the keyword

is not specific enough for the expected answer. In particular, we noticed that this

happens more often for keywords that are +/- sfb/etu/rfc tags. However, we

believe that having these tags are useful, since they draw focus to the three principles

of 6.031. In addition, being able to mark a comment with a + or - is useful.

In order to improve how keywords are used, future work could "tie" certain

keywords together. For example, if the set of keywords for an expected answer is

["-etu", "type", "datatype def"], then perhaps the system would only

give positive feedback if "etu" is used with one of "type" or "datatype def". This

way, false positives that result from a student writing a comment that only uses "etu"

would be avoided. This change could increase the chance of false negatives, since it

would be harder to get positive feedback, so testing would definitely be required.

This type of idea can also be applied to some expected answers and not others. For

example, expected answers that have very obvious non-tag keywords could benefit

from this change.
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Another future change could be adding a post code review processing script that

helps with the selection of keywords. After code review concludes, this script would

analyze all the comments made for practice tasks and suggest new keywords that

could be used.

7.2 Keyword Robustness

The current system utilizes keywords by looking for a direct match in the text of

practice task comments. Future work could expand this beyond direct matches, such

as using a regex matcher instead, allowing functionality like keywords representing

suffixes or prefixes.
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Chapter 8

Conclusion

This thesis presents three changes to the Caesar system—+/- sfb/etu/rfc tags,

a LA grading interface for student comments, and practice tasks. These changes are

designed to help Caesar be a more useful code review system in the classroom, by

making it easier for novice student code reviewers to provide high quality code review

comments.

The introduction of tags to writing new comments create more structure for stu-

dents to follow when writing comments. Since our evaluation did not show a strong

effect from this change, future analysis is needed. At minimum, we believe that

adding structure to push students to think about the three core principles of 6.031

when writing comments is a positive goal.

The LA grading interface allows the staff to collect more information on the qual-

ity of comments written by students. It also simplifies how 6.031 grades student

participation in code review. Since this is a new interface for LAs, we hope to keep

it for future semesters. We also hope that future data from LA grading will allow us

to evaluate the practice task system and the tags in comments even more.

Finally, the introduction of practice tasks provides an initial training period for

student code reviewers. We improved the system over the past school year to pro-

vide more accurate feedback, and we have seen that practice tasks result in students

learning from their content and looking out for similar problems in other students’

problem set code. There is more work to be done in improving feedback accuracy,
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but the main contribution of this thesis is providing a working practice task system

that aims to improve student code review quality.

The results shown in this thesis support that crowdsourcing techniques applied

to code review in the classroom can be effective. We hope to continue applying and

refining such techniques for 6.031, ultimately preparing students to be better code

reviewers and collaborative software engineers.
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