
Cloudtop: A Platform for Cloud Workspaces

ABSTRACT
Due to the web’s federated nature, users depend on the desk-
top to transfer data between sites. However, the desktop is
centered around files, making it suboptimal for use with the
web. We believe that in web-centric environments, users need
new workspaces that enable a consistent interface for web
data. As a step towards that goal, this paper proposes Cloud-
top, a platform for building novel workspaces and expand-
ing traditional drag-and-drop semantics for use in the cloud.
Cloudtop introduces Webits, a data-type that promotes a uni-
form and extensible representation of web resources. Cloud-
top uses plugins to extract semantic data from normal web
pages to create Webits. Users drag and drop Webits between
Cloudtop and the web to transfer data between sites. We be-
lieve that Cloudtop helps foster experimentation with work-
spaces that promote a more unified experience across a di-
verse web.

Author Keywords
Desktop, cloud, drag and drop, workspace, semantic web

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical user interfaces.

General Terms
Design

INTRODUCTION
As the use of traditional desktop applications continues to
diminish in favor of web applications, the browser stands
a good chance of someday replacing the desktop metaphor
and becoming the de facto interface to the cloud. Projects
like Google’s Chrome OS [1], with its absence of a desk-
top, suggest such a future. However, a pure web environ-
ment has several drawbacks. While the web excels at offer-
ing tightly-tuned user interfaces for specific tasks, it does so
at the expense of interface consistency across sites. Web ser-
vice providers each promote their own unique models and
interfaces for document management and sharing, requiring
users to learn the intricacies for each service that they use.
Furthermore, in a browser-only environment, there is no cen-
tral workspace area to hold frequently accessed information,
nor a common interface for transferring data between sites.
Hence, user data tends to remain in silos.

In submission to CHI 2012.

Figure 1. Cloudtop allows users to drag and drop Webits.

To address these problems, the successful desktop platform
may offer some inspiration. For instance, the platform pro-
motes interface consistency via common library code (e.g.,
file chooser dialogs typically look the same), while the central
file system and clipboard ease data transfer between applica-
tions. The visible desktop area provides a common surface
for quick access to in-use resources [14] regardless of type,
as well as a place to store downloads from the web [20].

However, a naı̈ve porting of desktop concepts for use in a
browser-only world would miss opportunities for improve-
ment. With workflows that span the traditional desktop and
the cloud, users must switch between UI models (e.g., generic
file systems and the web pages) and manage ancillary iden-
tifiers (e.g., temporary file names). Worse, the file system
only knows about files and folders—but little about the web.
Hence, storing web resources on the desktop typically incurs
information loss: for instance, the desktop cannot tell the user
on which pages downloaded resources were seen or any asso-
ciated metadata (e.g., tag clouds, copyright, descriptions, etc)
for downloaded files in general.

Our hypothesis is that in a web-centric environment, users
need a new kind of workspace area, designed for the cloud,
that 1) enables a simple, direct, and consistent interface for
data transfer across the web, and 2) fosters new interactions
not yet possible with the current web or desktop. For ex-
ample, we imagine that such a workspace would allow a
user shopping for a tablet device to drag products of interest
directly from manufacturers’ sites to their workspace as he
shops, and then drag those products to an online spreadsheet
to organize and compare various dimensions (e.g., screen res-
olution, price, storage size, etc). The user might also drag
items to price comparison services which fetch and aggregate
prices from vendors. The workspace may also capture repre-
sentations of people, allowing a conference program commit-
tee chair to drag a paper submission into a group of peers on
the workspace, and then drag that bundle into a management
system to assign that paper to review to those people. The
chair might also drag a group containing all program commit-

1

tee members to a web service that generates a list of names,
profile photos, and affiliations for inclusion in the conference
web site.

As a step towards that future, this paper proposes Cloudtop, a
platform for building novel workspaces and expanding tra-
ditional drag-and-drop semantics for use in the cloud. In
our prototype of Cloudtop, the platform provides a pluggable
workspace area attached to the bottom of the browser window
as shown in Figure 1. Users transfer resources to and from the
web by directly dragging and dropping them between web
pages and the workspace.

This paper’s primary contributions are:

• a software platform for experimenting with workspaces
that provide users with a central, consistent interface bridg-
ing data between web sites. Cloudtop is designed to sup-
port workspaces whose contents originate from and ulti-
mately return to the web. Such workspaces 1) provide
users with a local surface to collect web resources, and 2)
empower users to seamlessly transfer resources across the
web by direct-manipulation, without relying on web apps
to build ad-hoc pathways between each other.

• an extensible, first-class data type, called a Webit, that pro-
vides a uniform representation of web resources. In Cloud-
top, users interact directly with Webits, which are analo-
gous to files on the traditional desktop, but unlike files, they
1) are pointers to resources on the web (but may cache data
payloads), and 2) contain an extensible set of associated
metadata for the resources they represent. While Webits
can represent “primitive” resources on the web like photos
or HTML pages, they are designed to proxy resources with
rich metadata. For example, Webits can bundle metadata
associated with people (e.g., name, email, address, photo),
goods for sale (e.g., price, description, ratings), electronic
documents (e.g., URI, authors, title), and so on. Webits,
as opposed to simpler schemes like a single URL (e.g., in
a browser bookmark, or in .webloc and .url files), enhance
visibility of the bundled metadata and facilitate the capture
of rich semantic objects rather than web pages.

Challenges and Claims
In the vision sketched above, one challenge is data interop-
erability between sites. Common data interpretation is the
goal of the semantic web effort. By leveraging established
ontologies and the Resource Description Framework (RDF)
[12] for metadata representation, Cloudtop can focus on the
user-facing aspects involved in exposing and transferring data
between sites. Therefore, Cloudtop must provide a mech-
anism by which websites can produce and consume Webits
(and their associated metadata) without causing undue devel-
opment burden. Cloudtop uses the emerging HTML5 Drag
and Drop standard [7] to make it simple to author web sites
that incorporate Webits.

A second challenge arises due to the limited discoverability
and visibility associated with traditional drag and drop: con-
ventional interfaces do not indicate what elements are drag-
gable and provide limited indication of what will happen

when elements are dropped. In Cloudtop, those problems are
amplified because 1) users now need to also distinguish con-
ventional draggable elements (e.g., text snippets, images, or
application-specific widgets) from Webits on pages, and 2)
users also need to predict what will happen when dropping
Webits into web pages, especially pages that do not natively
understand Webits. For example, users might drag Webits
from the Cloudtop workspace to conventional drop targets
that do not interpret Webits, e.g., simple text input boxes, file
upload zones, or white-space areas on web pages.

To improve discoverability of Webits on any given page,
Cloudtop visually highlights the draggable Webits on com-
mand. To improve the predictability of drop behaviors, Cloud-
top provides users with previews of the data that will be trans-
ferred while hovering over a drop target. This paper also pro-
poses a set of guidelines that consistently map Webits to the
associated data that is pasted (or transferred) when dropped
onto traditional drop targets, allowing users to further predict
how drops will work.

A third challenge is bootstrapping: without sites that produce
Webits, or a way to inject Webits into the system, Cloudtop
offers limited utility. Cloudtop addresses this by 1) automat-
ically generating Webits for primitive resources (e.g., HTML
snippets, links, images) when they are dragged into Cloud-
top, and 2) providing a flexible plugin system, where plugin
modules may create specialized Webits by modifying web
pages loaded in the user’s browser. For example, an ama-
zon.com plugin, once installed in the user’s Cloudtop, cre-
ates Webits containing metadata for products shown on ama-
zon.com, ready for the user to drag into Cloudtop. In ad-
dition to creating Webits, plugin modules can also augment
conventional drop targets on existing pages to recognize and
consume Webits in specialized ways. Cloudtop’s plugin sys-
tem is versatile enough to successfully augment a variety of
existing sites, as we will demonstrate.

Finally, another challenge is providing interface flexibility
for Cloudtop workspaces without compromising consistency.
Rather than enforce a particular workspace metaphor (e.g.,
hierarchical folders, tag-based collections, etc), Cloudtop in-
stead remains agnostic and offers a pluggable workspace sys-
tem to experiment with different metaphors. Cloudtop pro-
vides routines to create and manage common Webit features,
and thus can enforce a measure of interface consistency, much
like how a traditional GUI toolkits manage common dia-
log boxes across all applications. This paper presents one
workspace we built, based on a scrapbook metaphor, called
Sheets. The Sheets workspace explores an interface, at a
simple extreme, that mitigates clutter via disposable note-
book pages that hold transient Webits. With Sheets, users
drag resources from the web into the current notebook sheet
and arrange the resulting icons spatially, much like in the
traditional desktop. When the current sheet becomes clut-
tered with icons, users simply “turn the page” to start a blank
sheet (Figure 1, lower right corner). The workspace keeps
all pages ordered by time, much like a physical notebook.
The interface is inspired by projects in time-based desktop
management (e.g., [22, 25]). We developed Sheets to evalu-

2

Figure 2. In Cloudtop, users drag and
drop web items to create Webits.

Figure 3. Users drag Webits from Cloud-
top to transfer data back to the web.

Figure 4. Cloudtop integrates with existing
drop functionality in web apps.

ate the feasibility of Cloudtop’s pluggable workspace system.
Future work will focus on evaluating different cloud-aware
workspace paradigms.

Outline
The next section overviews related work, followed by a sec-
tion describing scenarios now possible with Cloudtop. We
conducted an early, informal user study to obtain a sense of
Cloudtop’s potential usefulness; that study, described after,
informs the current design of Cloudtop. Next, we highlight
the platform’s design and then discuss our experience devel-
oping on the platform. We then conclude with future work.

RELATED WORK
Several areas of previous work inspire Cloudtop.

Web Clipping
Many web clipping and note taking packages, such as Ever-
note [4], Microsoft OneNote [8], Zotero [13], list.it [27], and
Clipmarks [2], aim to help users organize various snippets of
text, images, and references found on the web (or elsewhere).
The emphasis of these packages is to provide a digital home
for scraps of information [15] as well as tools for their long-
term organization and retrieval.

Cloudtop differs from these projects by focusing on the use of
drag and drop as the primary mechanism to transfer resources
across web sites. In other words, Cloudtop is designed to en-
able users to both drag resources into its workspace and also
back to the web. Second, Webits are pointers with structured
metadata: while Webits may represent primitive resources
like text snippets and images, they can also proxy resources
with richer associated semantics.

Desktop Studies
Sheets, the workspace UI implemented for Cloudtop, is also
inspired by many studies on the traditional desktop. A sam-
pling of these studies include Malone’s in 1983 [23], Barreau

and Nardi’s in 1995 [14], Ravasio et al. in 2004 [24], and
Katifori et al. in 2008 [20].

A few common themes emerge from these reports. Barreau
and Nardi first observed that users place three types of in-
formation on the desktop: ephemeral, working, and archival.
The studies tend to agree that the desktop is commonly used
for temporary storage, such as a staging area for downloads
or uploads, and as a device for reminding users of impending
tasks. They also agree that archiving resources (e.g., to tidy
the desktop) is difficult because doing so involves classifying
each resource, a cognitively difficult task. As such, users tend
to put off archiving, leading to desktop clutter. All studies
agree that users naturally arrange desktop icons in meaning-
ful, spatial arrangements, such as clustering similarly themed
resources together, to aid efficient retrieval. These studies in-
form the design of Sheets, which borrows the spatial elements
of the desktop, and alleviates clutter management with its dis-
posable notebook page metaphor.

Web Scraping
Many systems scrape web data towards various goals. For ex-
ample, Greasemonkey [6] enables users to install JavaScript
scripts to alter specific web pages. Chickenfoot [16] en-
ables end users to customize, modify, or automate existing
web sites via an informal language based on keyword pat-
tern matching, thus catering to users with less programming
expertise. Cloudtop is similar to Greasemonkey in that it
assumes plugin writers are generally expert programmers.
However, Cloudtop differs from these systems through its ad-
ditional support for plugins that 1) modify drag and drop be-
havior on existing pages and 2) scrape asynchronously loaded
data.

Piggy Bank [19] scrapes pages open in the user’s browser
and generates structured data. However, Piggy Bank’s aim is
to enable users to subsequently browse and query that data
within the browser via a Piggy Bank-generated web page.
Cloudtop focuses less on allowing users to inspect structured

3

data and more on the interactions for transferring structured
data from site to site. Since Piggy Bank is also implemented
as a browser extension, we imagine that it would be fruitful
to leverage Piggy Bank as a plugin within Cloudtop.

Web Authorization Protocols
Cross-site authorization protocols, such as OAuth 2.0 [10],
provide mechanisms to enable users to share data between
sites. Such protocols rely on site operators to set up path-
ways between each other before users can transfer data; as
such, inter-vendor pathways are likely to be limited in num-
ber and driven by business incentives. From the user’s per-
spective, the use of these protocols suffer drawbacks in visi-
bility. For example, when users are prompted to share their
data with some external service, they must typically agree to
share whole classes of the data (e.g., all their contacts, pho-
tos, emails) rather than specific items. Once they agree, there
is usually little visibility to alert the user when data is trans-
ferred, as it occurs out-of-band, directly between the vendors’
systems. In contrast, Cloudtop enables a vendor-neutral ap-
proach in which users have fine grained control of the data
they wish to share through direct manipulation.

MOTIVATING SCENARIOS
This section portrays several scenarios in which users employ
Cloudtop to gather information from the web for reuse with
other web applications. The first scenario demonstrates the
use of Cloudtop as a visual clipboard to transfer conventional
resources (e.g., images and files) across the web. The second
scenario depicts examples of plugins that create rich, drag-
gable objects as Webits on existing web pages. Finally, the
third scenario illustrates an example of a web site that na-
tively consumes and generates Webits.

Scenario 1: Creating a Party Invitation
In this scenario, Bob creates a party invitation in a web-based
word processor using various images found on the web. Af-
ter crafting the flyer, he exports it to a PDF and emails it to
friends. Using Cloudtop:

• Bob searches the web for art and drags images from a
variety of sources, such as Google Image Search, Flickr,
or Facebook, to Cloudtop (Figure 2). He also drags text
snippets from relevant sites (e.g., a restaurant address) into
Cloudtop as well. He optionally names the Webits after
dragging them into Cloudtop to add notes.

• Once satisfied with his collection of art and text gathered
within Cloudtop, Bob opens Google Docs to create the in-
vitation and drags Webits to the document (Figure 3).

• Content with the flyer, Bob exports the invitation to PDF,
which the browser downloads from Google Docs. Cloud-
top intercepts the download and places a corresponding
Webit within the Cloudtop pane.

• Finally, Bob opens a webmail client and drags the PDF
from Cloudtop to the attachment input box to attach the
flyer (Figure 4).

In workflows like the above scenario, Cloudtop facilitates col-
lecting information without requiring the user to switch focus
away from the browser or the current website. With a tradi-
tional desktop, icons of downloaded images may not be where
users expect, or they may be mixed in with other existing but
irrelevant icons. For non-file-based snippets (e.g., text clip-
pings or URIs), users must interrupt their information gather-
ing process to copy and paste data from the source to some
placeholder, e.g., the target document or a scratch file.

Scenario 2: Organizing a Reading Group
Sarah, a reading group organizer, selects a paper from the
ACM Digital Library (DL) and e-mails a discussant to lead
discussion on that paper. To obtain contact details, Sarah
opens the discussant’s Facebook profile page. Pages on Face-
book may contain many draggable elements; she presses the
Cloudtop “Exposé” button, as shown in Figure 7 to visually
highlight the elements that have associated Webits. After
finding the appropriate colleague, she drags in the picture of
the discussant to Cloudtop, which creates a Webit contain-
ing various metadata about that person, e.g., his name, email
address, homepage, and so on.

Next, Sarah opens the ACM DL page for the paper up for dis-
cussion to gather its bibliographic information, abstract, PDF,
and so on. Since she has a Cloudtop ACM plugin installed,
rather than drag various text snippets and the PDF, Sarah can
drag just the image thumbnail, which creates a Webit con-
taining all the metadata for that paper, including a cache of
the PDF file. Figure 5 shows the resulting Webit and some of
the metadata captured by the ACM plugin.

Sarah opens GMail to send the paper details to the discussant
and other participants. GMail displays conventional text in-
put boxes for specifying recipients, the message subject, and
message body, all of which are drop targets for Webits.

Webits contain many metadata elements, only one of which is
pasted by default. For example, dropping the ACM DL Webit
into the rich text input box in the composition window pastes
bibliographic information with appropriate hyperlinks.

Plugins may alter the default behavior associated with drop-
ping Webits. For example, in this scenario, the GMail plu-
gin for Cloudtop overrides the behavior when Sarah drops the
Webit representing the discussant into the To, Cc, or Bcc field
in GMail to paste the email address of the discussant rather

Figure 5. Cloudtop Webits capture metdata that the user may drag back
to the web (overriding whatever may be the default for that Webit).

4

Figure 6. The GMail plugin overrides the tooltip of Webits representing
people.

than the default text of his name. To help users predict such
behavioral changes, the plugin overrides the default tooltip
text shown to the user, as Figure 6 illustrates.

The user may also override the default drop behavior. For ex-
ample, Sarah may want to paste the abstract for the paper in
the message body. Cloudtop workspaces can enumerate asso-
ciated metadata for a given Webit, e.g., via a panel (Figure 5);
the user can browse and drag specific items from the panel to
paste them. Here, Sarah drags the abstract entry in the panel
to GMail’s message body to paste the paper’s abstract.

Scenario 3: Shopping Cart
Jim is shopping for camera equipment to start a new photog-
raphy business with a business partner. As Jim shops var-
ious vendors, e.g., amazon.com and newegg.com, he drags
Webits of products, produced either natively or with the help
of Cloudtop plugins, from these vendors into his Cloudtop
workspace. To share his selections with his partner, Jim uses
a shared shopping cart service, which is independent of any
vendor. The shopping cart natively understands Webits; when
he drags Webits to the page, it displays and can sort relevant
parameters for each product as shown in Figure 8.

When done browsing, Jim sends a link of his cart to his part-
ner for review. Because the cart can natively inspect and ma-
nipulate its copy of the Webits, it can display the metadata
associated with each, e.g. the product descriptions, directly
on the page (Figure 9). The shopping cart can also serve (or
regenerate) its Webits, so Jim’s partner can drag the listed
Webits from the cart to his own Cloudtop.

PRELIMINARY STUDY
We designed Cloudtop using an iterative process. First, we
built a simple prototype called Vapor that only allows users to
drag and drop primitive items. We then ran a pilot user study
using Vapor to gain feedback on what kinds of interactions
users expect when dragging and dropping web resources. Us-
ing what we learned in the pilot user study, we designed the
Cloudtop platform to cover the various interactions users de-
sire. This section describes the Vapor prototype and observa-
tions from the study.

Vapor Prototype and User Study
Vapor is drag-and-drop zone attached to the bottom of the
browser. Users may drag in images, links, or text snippets
from the web, access file downloads, and drag resources back
to web sites. Vapor creates primitive Webits that only capture
the item (e.g., the text, html, or file associated with an item)

and two pieces of provenance metadata: the URL of item it-
self and the URL of the page the item came from. Vapor is not
extensible and can only handle normal web items like images,
links, text snippets, or downloaded files.

We conducted an informal pilot study, consisting of seven
volunteers within a university computer science laboratory,
to get a general sense of how users may use Vapor in typical
workflows. After demonstrating features of Vapor in a brief
tutorial, we asked each subject to carry out the “party flyer”
scenario and an early version of the “reading group” scenario
using Vapor and observed their usage. Vapor’s primitive Web-
its do not capture metadata, so compared to the Cloudtop
reading group scenario in the previous section, the Vapor sce-
nario required users to manually drag metadata like the paper
title, PDF, and abstract into Vapor.

Overall Feedback
Every subject successfully completed the tasks without ma-
terial intervention or help. In their feedback, participants be-
lieved that Vapor would work well for their daily workflows,
especially tasks that involved gathering resources first, fol-
lowed by an aggregation or synthesis process.

We observed that users expect drag and drop operations to be
“instant”. Without adequate feedback (e.g., the status of the
file upload process when users dragged an image into Google
Docs), some users were confused when nothing appeared to
happen immediately. This observation hinted that general vis-
ibility was an important requirement to address.

While few subjects employed the provenance information
captured in Webits, some thought that it might be useful for
tasks related to blogging or note-taking. Subjects could imag-
ine using Vapor to collect interesting clips from the web, be-
fore pasting them and associated attribution information into
other personal organization, blogging, or note-taking tools.

Copy and Paste
In the reading group scenario, many users started by using
the system clipboard to copy and paste titles and abstracts.
Ultimately, subjects who initially used the clipboard realized
that they could use Vapor to gather all the information first
and proceeded to do so, noting that Vapor alleviated the need
to repeatedly context-switch between browser tabs as neces-
sitated by a clipboard-based workflow.

The initial behavior of our subjects suggests that using the
operating system’s clipboard (e.g., the Ctrl-C keyboard short-
cut) remains an ingrained approach for transferring textual
information between places. However, we observed during
pre-task interviews that subjects do not have a clear model
of what kinds of data, beyond text, the clipboard can hold,
especially when data crossed the browser-desktop boundary.
Subjects noted that they especially liked the visual and visi-
ble nature of Vapor, and compared it to a more powerful cross
between a desktop and clipboard.

Nearly all subjects who initially employed Ctrl-C thought it
would be a good idea for Vapor to intercept copy commands
and automatically create an associated Webit. One subject

5

Figure 7. The Cloudtop “Exposé” button
allows users to discover which page ele-
ments have extra Cloudtop information at-
tached to them.

Figure 8. The “Webit Cart” understands
Webits natively, allowing the page to ex-
tract information from Webits, as well as
change Cloudtop tooltips (inset).

Figure 9. Since the web page understands
Webits natively, it can display information
embedded in the Webits and let users drag
them back to Cloudtop.

disagreed with the usefulness of doing so, citing that the clip-
board should remain a “light-weight” mechanism and be kept
separate from Webits.

Vapor UI
All subjects approved of the fact that Vapor was part of
the browser chrome, instead of being in the area behind the
browser (like the traditional desktop), with some citing quicker
access and constant visibility. Subjects resized the visible
area of Vapor to make it larger or smaller. Some suggested
that they might keep a separate browser window open, dedi-
cated to displaying Vapor full-screen, while others preferred
Vapor to be more “integrated” with and customized to the
current, active tab.

Vapor Storage
With Vapor, subjects seemed pleased to be able to live com-
pletely in the web (save for certain desktop applications that
they still rely upon). However, some asked where Webits are
stored and seemed concerned that they might fill their local
hard disks with unneeded temporary data. All cited that an
ideal solution would be to have some form of universally ac-
cessible cloud storage to back the contents of Vapor.

DESIGN RATIONALE
Cloudtop is composed of three components: the core plat-
form, content plugins, and the workspace (Figure 10). The
core provides common library code, notably for data storage,
and coordinates data flow between plugins and the workspace.
Plugins (e.g., for ACM DL, Facebook, Amazon.com) capture
metadata from resources imported into Cloudtop, and may
modify and scrape web pages open in the browser to facil-
itate interactions with Webits. Any number of plugins may
be in use at any given time. Workspaces (e.g., Sheets) im-
plement the user-facing interface and are pluggable. Only
one workspace may be active at a time. The core is the only

fixed, non-customizable component of Cloudtop but is rela-
tively small; thus, workspaces and plugins may evolve inde-
pendently.

The Cloudtop core reacts to two main types of events: browser
page load events and user import events. When a page loads,
the browser sends Cloudtop a page load event which causes
the core platform to call the onPageLoad(document) function of
each relevant plugin. The plugin’s onPageLoad implementa-
tion modifies the page to facilitate drag and drop and infor-
mation scraping. onPageLoad may optionally return a context
object which is used to enable scraping of asynchronously
loaded content.

Users import data into Cloudtop by dragging it in from the
web, copying it to the clipboard, or downloading it. When
users import resources into Cloudtop, the browser sends an
event to Cloudtop, which forwards the event to the workspace,
allowing the workspace to either handle or filter the event. If
the workspace accepts the import, it asks the core to create
a Webit from the event. In response, the core allocates stor-
age for the new Webit object, assigns the Webit an identifier,
and calls the appropriate import function on all relevant plu-
gins. For example, for dropped resources, the core calls the
onDrop(objectId, event, context) function on each plugin, passing
in the Webit’s identifier, the drop event, and any context the
plugin returned in its onPageLoad function.

Imports via the clipboard or the browser’s download manager
work analogously by catching the appropriate browser events
and calling onClipboardCopy or onDownload, respectively, on
relevant plugins. Workspaces ultimately decide how to rep-
resent Webits imported via clipboard copy or download, if
at all. Sheets, our prototype workspace, places such Web-
its on the visible workspace, much like how the browser
places downloaded files on the traditional desktop. Alterna-
tive workspaces could provide options to enable or disable

6

Workspace

Core

Cloudtop Web

Plugins
onDrop
onClipboardCopy
onDownload

HTML5 DnD
 DataTransfer

Figure 10. Cloudtop components and dataflow between the platform and
the web.

that behavior or employ a separate area to display Webits im-
ported by clipboard or download.

Each plugin import function returns a WorkspacePackage, a
data structure containing information for the workspace to
display and handle common interactions with the Webit. The
core collects and returns the list of WorkspacePackages to the
workspace, which is responsible for preparing Webits for dis-
play and attaching the HTML5 Drag and Drop API data struc-
tures necessary for them to be dropped into various targets on
the web.

The remainder of this section elaborates Cloudtop’s use of the
HTML5 Drag and Drop API, the core platform, the plugins
architecture, and the WorkspacePackage.

HTML5 Drag and Drop
The primary way in which Cloudtop interacts with web pages
is through the HTML5 Drag and Drop API [7]. The API spec-
ifies a set of events that allow JavaScript to track the progress
of a drag (using dragstart, dragenter, and dragleave events) as
well as register callbacks for handling drops (drop events).

All drag and drop events carry a DataTransfer structure that
contains a list of MIME-typed representations for that item.
For example, the DataTransfer for a snippet of text holds a text/
html representation containing an HTML string as well as a
text/plain one containing the string without markup.

Web pages may add their own custom MIME types to the
DataTransfer. During the lifetime of a single drag and drop
gesture, all associated drag and drop events share the same
DataTransfer object, allowing handlers fired on drag events to
populate the DataTransfer with data that is consumed by drop
handlers. In the context of Cloudtop, when a page loads,
a plugin’s onPageLoad function adds drag event handlers to
draggable elements. These handlers augment the DataTransfer
object with new MIME types; those MIME types are then
interpreted by the plugin’s onDrop handler when a Webit is
dropped into Cloudtop.

The browser implements a default set of actions when drop-
ping generic resources on standard drop targets, like text
boxes (which reads the text/plain DataTransfer data item), rich
text editing areas (text/html if available, otherwise text/plain),
and file input dialog boxes (browser-specific MIME types).
As such, to allow users to drag Webits to conventional drop
targets, Webits must have (1) an encoding using the standard

MIME types [9] and/or (2) custom drop handlers that can ac-
cept and parse Webits directly. In Cloudtop, plugins must
provide standard MIME type representations for the Webits
it creates, and may optionally augment conventional drop tar-
gets with specialized handlers.

For drop targets that do not have specialized handlers that
natively understand Webits, Cloudtop enforces a consistent
mapping to promote predictability between what data is pasted
when dropping Webits onto conventional drop targets. While
other mappings are possible, the mapping with which we have
experimented is as follows:

• Dropping a Webit onto an input box that supports rich
text pastes a rich text summary of the Webit. For exam-
ple, dropping a Webit representing a product for sale into
Google Docs pastes a summary combining the product ti-
tle, cost, ratings, and description. Dropping a Webit rep-
resenting a person pastes the person’s name, hyperlinked
email, and profile image.

• Dropping a Webit onto a simple text input box pastes a
short textual summary. For instance, dropping a Webit rep-
resenting a product or person pastes the name of the prod-
uct or person, respectively.

• Dropping a Webit onto white space opens a primary URI
associated with the Webit in the browser. For example,
dropping a product Webit into the browser opens the prod-
uct page, while dropping a person Webit opens his home-
page.

Core Platform
The core platform offers library routines, manages the data-
flow between plugins and workspaces, and handles the persis-
tence of Webits. In Cloudtop, Webits may be atomic or col-
lections of other Webits. Collection Webits are simply Webits
that hold references to other Webits, collection or atomic, and
Webits may belong to multiple collections. Support for col-
lections in Cloudtop enables different resource organization
models in workspaces, from traditional, single-parent hierar-
chy (e.g., file system folders) to tag-based groups. The core
storage schema manages this bookkeeping and provides rou-
tines for altering Webit membership. The storage schema is
deliberately confined, as each plugin and workspace is ex-
pected to manage its own storage schemas for plugin- or
workspace-specific data, e.g., to persist the specific metadata
of a Webit or the coordinates of its current position on the
workspace.

Plugins
Plugins fulfill two roles: 1) to augment pages when those
pages are loaded (e.g., to implement specialized behavior for
Webits dropped onto targets) and 2) to generate metadata for
Webits, typically by scraping. Plugins declare regular expres-
sions on URIs to indicate the web pages that they are able to
handle.

Augmenting elements on pages requires that plugins obtain
a handle to those elements it wishes to augment, and thus
must wait for those elements to load. Augmenting static web

7

pages, in which all elements are loaded before the DOM load
event fires, is straightforward: plugins operate on the page in
their onPageLoad function and use the XPath or DOM API to
obtain handles to the appropriate elements. However, many
sites load content asynchronously or in response to user ac-
tion. As an extreme example, when loading certain GMail or
Facebook pages, the browser may execute JavaScript that pro-
grammatically builds the document asynchronously. In such
cases, the browser fires the load event once the bare DOM
loads, prompting the onPageLoad functions to execute, even
though the user-facing page has not fully loaded yet.

Cloudtop provides hooks to handle changes to document ti-
tle or location URI (through the onTitleChange and onLocation-
Change plugin functions), as web pages that lazily construct
whole documents typically change the document title and add
fragment identifiers to the current location URI once page
construction completes. One caveat is that plugins need to
gracefully handle spurious title changes. When this technique
fails, e.g. due to pages that do not modify the document title
or URI, plugins can handle asynchronous resource loading by
simply polling.

Plugins can scrape data on web pages lazily, i.e., at any time
between when pages load and when users drop resources into
Cloudtop. This is challenging to do without platform sup-
port because the HTML5 drop event does not provide enough
information to plugins, e.g., the document to scrape or the
DOM element the user dropped. To work around this limita-
tion, Cloudtop provides an “element locker” that allows plu-
gins to retrieve the DOM object of the specific element that
the user dragged. The locker is a map between local identi-
fiers and cached DOM element objects. To use the locker, a
plugin returns a context object from its onPageLoad function.
In response, when users drag an element on a page, Cloudtop
assigns that element an identifier and puts that identifier and
context object in the locker. When the drop completes, Cloud-
top finds the identifier associated with the dropped element,
dereferences the identifier in the locker, and inserts the asso-
ciated DOM element into the plugin’s context object, which it
then passes to the plugin’s onDrop function. The plugin can
access the entire DOM via the document object referenced in
the element object. As an optimization, Cloudtop only acti-
vates the element locker if plugins request it since (1) tracking
elements slows down the browser and (2) the element locker
complicates the browser’s garbage collection system by keep-
ing copies of elements around longer than would normally be
necessary.

Interfacing Plugins and Workspaces
Workspaces rely on the plugins to provide enough informa-
tion, encoded in the WorkspacePackage data structure, to dis-
play and prepare Webits for dragging back to the web. Each
WorkspacePackage for a given Webit contains: 1) a set of
MIME type default renderings for that Webit, including rich
and plain text, that Cloudtop maps to various conventional
drop targets; 2) a URI or HTML snippet to display when users
“open” the Webit (e.g., by double clicking on it); 3) metadata
for the Webit encoded as RDF triples; and, 4) a set of UI hints

(e.g., icon image, textual labels, etc). As an example, con-
sider the WorkspacePackage for an amazon.com product Web-
it. Its default renderings include a detailed, rich description
and a short abbreviated one, respectively mapped to rich and
plain text input boxes when the Webit is dropped. The URI
to display when users open the Webit is the product page on
amazon.com. The RDF metadata encodes various attributes
about that product (e.g., product title, price, ratings, and so
on). Finally, the set of UI hints includes a URI to a thumbnail
of the product, an array of text snippets describing the prod-
uct (ordered from most important to least), and a “favicon”,
which the workspace may use as a “badge” on Webits.

Each plugin that successfully contributes to a Webit’s meta-
data must produce a WorkspacePackage. The RDF metadata
associated with each WorkspacePackage can be combined be-
cause RDF assertions accommodate namespaces, and some
workspaces may be able to leverage multiple sets of UI hints.
However, some elements in the WorkspacePackage are mutu-
ally exclusive, such as the MIME types for default rendering.

The core platform merges the RDF metadata across all Work-
spacePackages, ranks the WorkspacePackages, and passes them
with the merged metadata to the workspace. The workspace
which may elect to use only the highest ranking Workspace-
Package or implement a policy appropriate to its UI needs.
Our current ranking approach requires each plugin to pro-
vide a regular expression that matches URIs of pages that
it purports to handle. Plugins with expressions that do not
match a given page URI are not invoked to handle that page,
so they produce no WorkspacePackages. WorkspacePackages
are ranked by how well their associated plugins match the
URI of the page containing the resource dropped into Cloud-
top. For example, a plugin that matches all sites (.*) is less
specific and thus ranks lower than a plugin that matches all
of amazon.com (amazon.com/.*), which ranks lower than a
plugin that only handles amazon.com product pages (ama-
zon.com/gp/product/.*).

While there are no doubt more sophisticated schemes, we be-
lieve that this approach is reasonably effective when users in-
stall two different classes of plugins: those that only run on
specific sites and are non-overlapping, and those that run on
every site (e.g., to capture common attributes). While Cloud-
top could have enforced a two-class scheme to eliminate the
need for ranking, we believe this would be too restrictive.

Webits
Workspaces are entrusted with attaching the necessary Data-
Transfer structure to Webits so users may drag and drop those
Webits onto drop targets. Workspaces attach the combined
RDF metadata, encoded in RDF/JSON [11], along with ele-
ments of the WorkspacePackages, into a Cloudtop MIME type
in the DataTransfer. Sites, either natively or with the help
of plugins that augment them, can detect when Webits are
dropped via the existence of the Cloudtop MIME type and
parse the data. Sites can also natively create Webits for con-
sumption by adding a Cloudtop MIME type, with the associ-
ated payload, to a draggable element’s DataTransfer. By encod-
ing URIs in the metadata, Webits enable a dataflow in which

8

sites that consume Webits may contact, out-of-band, the sites
that originally created those Webits.

We considered simpler schemes for representing Webits, such
as a single URI. For objects with rich metadata and semantics,
this might work if those objects publish machine-readable de-
scriptions (e.g., as RDF) online. However, many resources do
not currently have such descriptions, so representing them as
a single URI to web pages (e.g., that describe those resources
for human readers) suffers several drawbacks. First, some
web pages may describe multiple semantic objects and there
may not be obvious ways to disambiguate and identify a spe-
cific one. Second, using URIs shifts the scraping burden onto
the target sites that receive them. Sites would have to poten-
tially know how to scrape every other site, inviting further
inconsistency in how data is collected and interpreted.

EXPERIENCES WITH CLOUDTOP
We implemented Cloudtop as a cross-platform browser exten-
sion for Mozilla Firefox 6.0. As a browser extension, Cloud-
top can thus 1) appear as a central component available in all
browser tabs and windows and 2) intercept user interactions
with web page elements. We evaluate Cloudtop’s flexibility
by reporting on our experience developing plugins to create
Webits on various sites and the Sheets workspace. Table 1
lists the plugins we wrote.

For storage, the current prototype uses Firefox’s SQLite-
based database to store Webit metadata and the user’s local
Firefox profile directory to store binary files. While using the
local Profile directory means that Webits are only available
on one computer, we hope to lift this restriction by storing
Webits in cloud storage (e.g., Dropbox [3]).

Provenance Plugin
One way we evaluated Cloudtop’s flexibility is by how much
functionality is implementable as plugins rather than as built-
in code to the core platform. One feature of Vapor, the initial
prototype, is that it automatically captures and provides UI
elements to access provenance of resources (e.g., the URI of
the resource and the URI of the page containing that resource)
dragged into the workspace. A plugin-based implementation
of provenance capture, as opposed to being a fixed compo-
nent in Cloudtop’s core, enables the feature to evolve inde-
pendently. Our plugin captures provenance by inspecting the
dropped DOM element and the associated document object.

Tooltips Plugin
Another example of implementing “core” functionality in
plugins is the tooltips feature that displays previews of pasted
data. The tooltip plugin implements this feature by modi-
fying web pages to add user-visible DOM nodes that func-
tion as tooltips. When the plugin is called to handle a new
loaded web page, it augments various standard drop targets
(e.g., HTML input boxes, text-areas, file upload zones) to dis-
play the appropriate tooltips when the user hovers over each
respective target.

The tooltips plugin also demonstrates communication be-
tween plugins, as other plugins (and webpages) must be able

Plugin LoC Comments

facebook.js 448 Scrape. Asynchronous. Out of band fetch
of email address.

amazon.js 414 Scrape.
acmdl.js 402 Scrape. Asynchronous. Out of band fetch

to cache associated PDFs and EndNote.
newegg.js 366 Scrape.
provenance.js 356 Scrape.
reddit.js 344 Scrape. Save permalink of entries and out of

band fetch of linked pictures.
tooltip.js 185 Augment (general tooltip implementation).
gmail.js 137 Augment (to specially handle Webits

dropped in To/Cc/Bcc fields). Asynchronous.
gdocs.js 30 Augment (to override tooltips). Asynchronous.

Table 1. A sampling of plugins and associated lines of code. Entries
labeled Asynchronous indicate sites that load resources asynchronously.

to override the default preview text. For example, when drag-
ging Webits representing people over GMail’s input boxes
for specifying message recipients, the Cloudtop GMail plu-
gin overrides the tooltip preview text to display the associated
email addresses.

Out of band: Facebook, Reddit, & ACM Plugins
For additional flexibility, plugins may also obtain data out-
of-band when it is not available on the current page. Cloud-
top provides routines to make network requests in the back-
ground, as well as higher-level routines that load other web-
pages (in an invisible iframe) and return the associated DOM
nodes. This enables plugins to follow links on the loaded
page, invoke API calls on web services, or even load other
pages for scraping.

For example, when users drop a person’s thumbnail from
Facebook into Cloudtop, the Facebook plugin must attempt to
obtain that person’s email address, even if it is not displayed
on the current page. The Facebook plugin inspects the URI
of any page associated with the person, extracts the person’s
Facebook numeric ID, and scrapes contact information from
the associated profile page that it fetches out-of-band. An-
other example is the Reddit plugin, which targets the social
news site; the plugin detects news items that are pictures and
automatically fetches the high resolution images. The ACM
Digital Library provides another example in which scraping
bibliographic data is made trivial given a paper’s BibTEX or
EndNote file, but those formats are not initially visible on the
loaded page. The plugin uses the paper’s ID to construct a
URI for the EndNote file and load it for parsing.

Asynchrony: GMail and Facebook Plugins
Several sites load resources asynchronously, e.g., GMail and
Facebook. The plugins for those sites both use the onTi-
tleChange hook to detect when the page contents change dy-
namically. onTitleChange prompts these plugins to begin in-
specting pages to, e.g., find form elements and override their
tooltips. As shown in Table 1, implementation effort is in-
dependent of asynchrony but instead is commensurate with
the complexity of scraping, suggesting that the Cloudtop plat-
form eases challenges associated with asynchronous resource
loading.

9

Data Interoperability: GMail and Facebook Plugins
In the scenario described earlier, when the user drags a Web-
it representing a person from Facebook to a recipient field in
GMail, the browser pastes the person’s email address rather
than the person’s name (the default behavior). This is be-
cause the GMail plugin inspects Webits dropped into various
fields and overrides what is pasted. Thus, the GMail plugin
must be able to infer whether certain Webits represent peo-
ple. To promote data interoperability, Facebook and GMail
respectively produce and interpret metadata adhering to the
Friend-of-a-Friend [5] specification, which defines a standard
vocabulary for describing people. In addition, the Facebook
plugin adds an additional MIME type, application/rdf+xml, to
the DataTransfer of Webits it produces. Thus, sites designed to
accept RDF will be able to natively interpret the associated
metadata in those Webits.

Sheets: Workspace Plugin for Webits
User-facing workspaces are pluggable in Cloudtop, and we
designed a simple example workspace, called Sheets. Sheets
is a workspace plugin UI with a chronological notebook (or
scrapbook) metaphor, sans collections or hierarchy. Sheets
is straightforward to implement as a UI for Cloudtop, as
workspaces have complete control over the display canvas.

CONCLUSION AND FUTURE WORK
This paper introduces the Cloudtop platform and focuses on
its use to enable drag and drop as the primary interaction for
transferring rich resources between sites. Cloudtop features
pluggable workspaces and plugins for creating and interpret-
ing Webits on web pages. We imagine several avenues for
future work with plugins, workspaces, and the core platform.

One potential workflow involves sharing Webits, e.g., via
email or instant message. A Cloudtop plugin could attach a
file containing serialized Webits to a message in a web-based
mail client, and on the recipient end, the plugin could detect
such attachments and create the necessary Webits.

We believe that Cloudtop is an apt platform to explore other
workspace models, such as ones with organizational support
for housing important Webits. For example, with Cloudtop,
we imagine it possible to adapt conventional interfaces, like
the traditional desktop area, file system model, or even com-
mand line interface, for use with resources in the cloud. How-
ever, we suspect that the cloud demands alternative work-
space models, such as ones that promote sharing (e.g., [17,
26, 28]) or capture user context to aid resource finding (e.g.,
[18, 21]).

While Webits can be viewed roughly as files for the web, they
are fundamentally different in that files contain actual pay-
load, whereas Webits are essentially pointers with caching.
Webits do not update their caches, and thus serve as one-
time snapshots for the resources they represent. This may
be immaterial for certain workspaces that are designed to
house resources en-route between web sites. However, for
workspaces that provide a long-term place for data, we expect
that Cloudtop will need the facility to update Webit pointers.

We did not implement the ability for users to change the meta-
data values associated with Webits, but we imagine that it
would be straightforward to do so. Cloudtop would route the
change request to the appropriate plugins, which would up-
date internal state. However, the platform would need to man-
age user-prompted metadata changes alongside automatic up-
dates.

To conclude, we developed Cloudtop to help foster experi-
mentation with cloud-aware workspaces and interactions that
promote a consistent and visible experience across the web.
We view Cloudtop as a step towards future web environments
that not only offer greater interface uniformity throughout,
but do so while remaining open, diverse, and specialized.

REFERENCES
1. Chromium OS. http://www.chromium.org/chromium-os.
2. Clipmarks :: Add-ons for firefox.

https://addons.mozilla.org/en-US/firefox/addon/clipmarks/.
3. Dropbox. https://www.dropbox.com/.
4. Evernote. http://www.evernote.com/.
5. The friend of a friend project. http://www.foaf-project.org/.
6. Greasemonkey. https://addons.mozilla.org/addon/greasemonkey/.
7. HTML5 drag and drop. http://www.w3.org/TR/html5/dnd.html.
8. Microsoft OneNote 2010. http://office.microsoft.com/en-us/onenote/.
9. Mozilla development network: Recommended drag types.

https://developer.mozilla.org/en/dragdrop/recommended drag types.
10. OAuth 2.0. http://oauth.net/2/.
11. RDF JSON.

http://docs.api.talis.com/platform-api/output-types/rdf-json.
12. RDF/XML syntax specification (Revised).

http://www.w3.org/TR/rdf-syntax-grammar/.
13. Zotero. http://www.zotero.org/.
14. Barreau, D., and Nardi, B. A. Finding and reminding: file organization

from the desktop. ACM SIGCHI Bulletin (July 1995).
15. Bernstein, M., et al. Information scraps: How and why information

eludes our personal information management tools. ACM TOIS (2008).
16. Bolin, M., et al. Automation and customization of rendered web pages.

In ACM UIST (2005).
17. Fass, A., Forlizzi, J., and Pausch, R. MessyDesk and MessyBoard. In

ACM DIS (2002).
18. Freeman, E., and Gelernter, D. Lifestreams: a storage model for

personal data. ACM SIGMOD Record (1996).
19. Huynh, D., Mazzocchi, S., and Karger, D. Piggy bank: Experience the

semantic web inside your web browser. Web Semantics: Science,
Services and Agents on the World Wide Web (Mar. 2007).

20. Katifori, A., et al. Evaluating the significance of the desktop area in
everyday computer use. ACHI (2008).

21. Kleek, M. V., et al. Gui — phooey!: the case for text input. In ACM
UIST (2007).

22. Lepouras, G., et al. Time2Hide: spatial searches and clutter alleviation
for the desktop. In ACM AVI (2008).

23. Malone, T. W. How do people organize their desks?: Implications for
the design of office information systems. ACM TOIS (1983).

24. Ravasio, P., Schär, S. G., and Krueger, H. In pursuit of desktop
evolution: User problems and practices with modern desktop systems.
ACM TOCHI (June 2004).

25. Rekimoto, J. Time-machine computing: a time-centric approach for the
information environment. In ACM UIST (1999).

26. Sun, Y., and Greenberg, S. Places for lightweight group meetings. In
ACM GROUP (2010).

27. Van Kleek, M. G., et al. Note to self: examining personal information
keeping in a lightweight note-taking tool. In ACM CHI (2009).

28. Voida, S., et al. Share and share alike: exploring the user interface
affordances of file sharing. In ACM CHI (2006).

10

	INTRODUCTION
	Challenges and Claims
	Outline

	RELATED WORK
	Web Clipping
	Desktop Studies
	Web Scraping
	Web Authorization Protocols

	MOTIVATING SCENARIOS
	Scenario 1: Creating a Party Invitation
	Scenario 2: Organizing a Reading Group
	Scenario 3: Shopping Cart

	PRELIMINARY STUDY
	Vapor Prototype and User Study
	Overall Feedback
	Copy and Paste
	Vapor UI
	Vapor Storage

	Design Rationale
	HTML5 Drag and Drop
	Core Platform
	Plugins
	Interfacing Plugins and Workspaces
	Webits

	EXPERIENCES WITH CLOUDTOP
	Provenance Plugin
	Tooltips Plugin
	Out of band: Facebook, Reddit, & ACM Plugins
	Asynchrony: GMail and Facebook Plugins
	Data Interoperability: GMail and Facebook Plugins
	Sheets: Workspace Plugin for Webits

	CONCLUSION AND FUTURE WORK
	REFERENCES

