
Caesar: A Social Code Review Tool
for Programming Education

by

Mason Tang

S.B., Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

September 2011

Copyright 2011 Mason Tang. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis document in

whole and in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 22, 2011

Certified by .
Robert C. Miller

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

2

Caesar: A Social Code Review Tool for Programming Education

by

Mason Tang

Submitted to the
Department of Electrical Engineering and Computer Science

August 22, 2011

In partial fulfillment of the requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Caesar is a distributed, social code review tool designed for the specific constraints and
goals of a programming course. Caesar is capable of scaling to a large and diverse reviewer
population, provides automated tools for increasing reviewer efficiency, and implements
a social web interface for reviewing that encourages discussion and participation. Our
system is implemented in three loosely-coupled components: a language-specific code pre-
processor that partitions code into small pieces, filters out uninteresting ones, runs static
analysis, and detects clusters of similar code; an incremental task router that dynamically
assigns reviewers to tasks; and a language-agnostic web interface for reviewing code. Our
evaluation using actual student code and a user study indicate that Caesar provides a sig-
nificant improvement over existing code review workflows and interfaces. We also believe
that this work contributes a modular framework for code reviewing systems that can be
easily extended and improved.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor of Computer Science and Engineering

3

4

Acknowledgements

I would like to thank my advisor, Rob Miller, whose guidance has been instrumental in

keeping me on track and on task throughout the entire course of this thesis. He has been

patient, responsive, and consistently receptive to even the most outlandish ideas to come

out of our numerous brainstorming sessions. Most valuably to me, he has taught me a

great deal about research, software interfaces, software engineering, and myself.

While Prof. Miller who gave me the guidance and direction for my thesis, I would

not have made it very far without the constant and unwavering support of my family.

My parents and my brother have always been a warm and loving home to me, whether

that means a home-cooked meal, a friendly phone call, or even a short e-mail to see how

my week has been. I am truly very lucky to have them, and I constantly look to their

examples in an effort to become a better person.

Equally supportive throughout this project has been my girlfriend, Elena Kon, who,

despite living across the country and three timezones away, has consistently managed to

be one of my greatest sources of comfort and strength. She has been endlessly patient

with me even at my moments of greatest stress, and has believed in me and my abilities

even when I had managed to thoroughly convince myself otherwise.

I would also like to thank my roommates and best friends, Greg and Katrina, for

giving me advice, calming me down when I needed it, and putting up with some extra

dirty dishes when deadlines were looming. They have been, in almost every respect, a

second family to me.

This thesis would not have made it very far either without the inspiration, encourage-

ment, and example of the rest of the UID group. It has been my pleasure and honor to

find such a group of exceptionally talented researchers to call my colleagues and friends.

A special thanks as well to Elena Tatarchenko for joining the project and helping me with

the implementation.

5

6

Contents

1 Introduction 11

2 Related Work 17

2.1 Code Review in Industry . 17

2.2 Code Review in Education . 18

2.3 Crowdsourced Workflows . 20

2.4 Static Code Analysis . 21

3 Code Preprocessing 23

3.1 Partitioning . 23

3.1.1 Design . 23

3.1.2 Implementation . 25

3.2 Chunk Filtering . 26

3.2.1 Design . 26

3.2.2 Implementation . 26

3.3 Automated Commenting . 26

3.3.1 Design . 26

3.3.2 Implementation . 27

3.4 Clustering . 28

3.4.1 Design . 28

3.4.2 Implementation . 29

4 Task Routing 31

4.1 Design Goals . 31

4.2 Implementation . 32

7

5 Reviewing Interface 37

5.1 Design Goals . 38

5.2 Features . 39

5.2.1 Streamlined Commenting Interface 40

5.2.2 Discussion Support . 42

5.2.3 Code Display . 43

5.2.4 Activity Streams . 44

5.2.5 Dashboard . 45

6 Evaluation 47

6.1 Code Preprocessor . 48

6.1.1 Partitioning . 48

6.1.2 Chunk Filtering . 49

6.1.3 Automated Commenting . 50

6.1.4 Clustering . 51

6.2 Task Routing . 53

6.3 Reviewing Interface . 55

7 Conclusion 57

7.1 Future Work . 58

7.1.1 Additional Forms of Review Content 58

7.1.2 Improved Chunk Filtering . 59

7.1.3 Improved Chunk Clustering . 60

7.1.4 Data-Driven Task Routing . 60

7.1.5 Similar Comment Clustering . 61

7.1.6 Community Building . 61

8

List of Figures

5-1 Caesar’s reviewing interface . 37

5-2 Review Board comment discussion interface 41

5-3 Rietveld reviewing interface . 41

5-4 Comment markers on a chunk . 42

5-5 Comment display and discussion interface 42

5-6 New comment form for writing a comment 43

5-7 Interface for browsing submission code 44

5-8 User contribution activity stream . 45

5-9 Dashboard interface with submissions and task assignments 46

6-1 Checkstyle comment density distributions 51

6-2 Chunk cluster size distributions . 52

List of Tables

3.1 Checkstyle violations for example code in Listing 3.1 28

6.1 Assignment statistics . 48

6.2 Pre-filtering chunk size distribution . 49

6.3 Post-filtering chunk size distribution . 49

6.4 Chunks removed per submission by preprocessor filters 50

6.5 Generated Checkstyle comment counts 50

9

6.6 Task assignment student co-reviewer interactions 54

6.7 Task assignment metrics by submission 54

Listings

3.1 Example Checkstyle input . 28

4.1 Simplified code for task routing . 33

10

Chapter 1

Introduction

Software code review is the seemingly simple practice of human examination of source

code to improve software quality. This can range from informal “over the shoulder”

code reviews to mandatory company-wide review policies supported by specialized code

review tools. Regardless of its implementation, code review provides not only the direct

effect of catching potential programmer errors, but also the indirect, and often more

valuable, effect of spreading developer knowledge and expertise among those involved.

Code review as an existing practice in the software engineering industry and open source

community generally assumes: that the unit of code being reviewed is a set of changes

against an existing codebase (incremental code review), that reviewer assignment is an ad

hoc decision made by the submitter, and that the reviewers involved are also themselves

developers familiar with the relevant code.

Meanwhile, code review as it exists in industry has found little traction in program-

ming education. While other software engineering best practices from industry like the

use of static analysis tools, version control systems, unit testing, pair programming, and

rapid iterations have all experienced at least some adoption in the classroom, peer review

of student source code has remained relatively unexplored. Much of this can be attributed

to some of the additional constraints encountered in a classroom setting that challenge

or violate the assumptions inherited from the standard code review model, such as: the

possibility of plagiarism, the relative inexperience of students, and the task (or burden)

11

of evaluating student performance. These constraints preclude the possibility of using an

existing tool from industry for classroom code review, and indicate the need for a more

specialized approach.

While existing review systems are built for small teams of experienced developers

whose primary goal is to improve code quality, our problem is fundamentally different.

A classroom code review tool needs to be built for a large group of students of vary-

ing levels together with a small group of experienced teaching staff. Furthermore, while

code quality is important, the primary goal in a classroom is to teach the students how

to be better software engineers. By designing a few key features into the system with

the characteristics of our reviewer population in mind, we can accelerate and improve

both the quality of the code review and the quality of the student learning that result.

This thesis presents Caesar, a distributed, social code review system developed for pro-

gramming education. Caesar allows for distributed review of student code submissions

without requiring version control, is designed to take advantage of a large and diverse re-

viewer population, and provides teaching staff with the ability to monitor and moderate

the review process.

For the purposes of our system, we consider each one of our users as belonging to one

of three main roles:

Students

Students within our system are the authors of the code being reviewed, and also

ultimately the recipients of all of the feedback generated in the code review process.

They also function as reviewers themselves. Because the code review is happening

within a classroom, the presence of students in our system also adds the dual con-

straints of maximizing opportunities for learning and minimizing the opportunities

for abuse (plagiarism, laziness, etc.).

Staff

The teaching staff for the class are nominally responsible for their share of code

review, but their primary function is to monitor the review process and provide in-

struction to students who need it. They are also expected to synthesize the feedback

12

written and received by students as a part of the grading and evaluation process

within the class.

Other

The rest of the users in the system are people recruited or invited to help review

code. They can be alumni looking for a way to contribute back to MIT, alumni

in industry looking for a way to connect to and recruit talented students, current

students who took 6.005 in the past, or potentially even hired tutors.

Caesar is implemented in three decoupled components: a language-aware preprocess-

ing tool for partitioning student submissions, generating automated feedback, and clus-

tering similar code, a task routing component that automatically assigns chunks to re-

viewers, and a language-agnostic web application that users interact with. While we have

only implemented a Java preprocessor in this iteration, Caesar’s architecture allows for

support for other languages with minimal effort.

To describe our system, we will use the following vocabulary:

Assignment

A single classroom assignment, such as a problem set or a project. There will typi-

cally be a handful of these per course per semester.

Submission

A student’s solution for an assignment. This is what each student turns in for a

given assignment. There will typically be one submission for each student for each

assignment. A student solution consists of one or more files of source code.

Chunk

A small piece of code partitioned from a submission. This is the smallest unit of

review in our system. In our current implementation, a chunk is typically a single

method.

Task

A single unit of work, which in our system is equivalent to assigning one chunk to

one reviewer.

13

After a programming assignment is due, the Caesar preprocessor automatically par-

titions student submissions into small chunks. Dividing student submissions into smaller

pieces is crucial in giving the system the flexibility to distribute the reviewing load across

a large population and to maximize reviewer efficiency by trying to assign the optimal

chunks to each reviewer. We have also implemented a filtering system to try to remove

chunks that are determined to be either trivial (stubs or empty functions) or redundant

(staff-provided template code).

The preprocessor, after partitioning and filtering the code into a set of chunks, is also

responsible for annotating them with feedback generated by static analysis tools. By in-

corporating feedback from static analysis inline in the review process, we can expose,

for human review, problems that might be ignored, and we can increase reviewer effi-

ciency by automatically generating comments for easily-identified problems that other-

wise would require a reviewer to manually write a comment. The current implementation

only supports the Checkstyle Java code style checker, but adding support for other tools

is planned. The feedback generated from this step is displayed using largely the same

interface as comments written by human reviewers.

The preprocessor then uploads the chunks into the web application, where they are

stored and then dynamically routed to users for review. This step automates the reviewer

assignment process and allows the system to scale and adapt to large, diverse reviewer

populations. For our purposes the process of assigning users to review tasks, or task rout-

ing, is designed to maximize student-to-staff interaction and interaction between users of

different abilities and roles, while simultaneously maintaining an even workload through-

out reviewers of the same role and ensuring fairness in the amount of attention received

by each student submission. Our task routing implementation accomplishes this based

on several heuristics, and operates dynamically as users enter the system, since our user

population is at least partially undetermined when an assignment is submitted for review.

The interface that our users use to review code has been designed to be as efficient and

effective as possible in a classroom setting. At a basic level, the core reviewing interaction

as implemented in our application is designed to be streamlined and usable, and on its

own is a usability improvement on existing code review systems. In addition, recognizing

14

that peer review is an inherently social task, we have built a number of features into the

web interface that enable and incentivize interaction between users: threaded comments,

a voting system, activity streams, and a reputation system. These features encourage users

to participate and allow students to learn not only directly from the feedback they are

given, but from interactions with their peers and with staff.

We evaluated our system using four assignments drawn from previous iterations of

6.813 User Interface Design and Implementation and 6.005 Elements of Software Con-

struction. Results from the code preprocessor and the task routing component indicated

that our system can effectively partition and distribute reviewing tasks for assignments

with a high proportion of common template code, which allows the filtering and clus-

tering code to produce better data to drive the task routing. Our system struggled with

larger project assignments that allowed students more freedom in structuring their code,

a problem that we leave to future work to address. A user study of our reviewing interface

yielded mostly positive feedback on its usability, but indicated that adding more context

to the code being reviewed could increase review quality.

In building Caesar, our main contributions are developing:

• A code review system specifically for classroom use

• A distributed, crowd-sourced code reviewing workflow

• A streamlined, social web interface for reviewing code

The remainder of this thesis covers the design and implementation of Caesar. Chap-

ter 2 summarizes related work in the field. Chapters 3, 4, and 5 cover, respectively: our

code preprocessor, our task routing system for mapping chunks to reviewers, and our end-

user reviewing interface. Chapter 6 describes the evaluation of the preprocessor, the user

interface, and the entire end-to-end system. Chapter 7 is the conclusion, and describes

future work.

15

16

Chapter 2

Related Work

2.1 Code Review in Industry

Peer code review, where source code is manually read and inspected by other developers,

is one of many processes developed originally in the software engineering industry to re-

duce the number of defects introduced into software. Originally a formal process with

in-person meetings and complex procedures [10], many organizations now have imple-

mented more lightweight processes that forgo face-to-face interactions, without signifi-

cant reduction in defect reduction effectiveness [5]. Many development teams also use

tools developed specifically to support peer code review, which can range from propri-

etary tools like Google’s Mondrian [22] or Atlassian Crucible [8], to open-source efforts

like Rietveld [25], Gerrit [12], and Review Board [24].

A common theme echoed by those who have studied the benefits of code review is

the idea that peer review of code yields benefits beyond the direct effect of detecting

and removing defects. By having a developer examine another developer’s code, peer

review can help spread domain expertise and improve code maintainability by forcing

more developers to become familiar with code. The conversation surrounding the review

process can help create a valuable shared understanding [34], something Fagan alluded

to as product knowledge [10], among those involved.

Within industry, Chu-Carroll [3] acknowledges that code review benefits the develop-

17

ment process by spreading knowledge, but goes on to argue that the “biggest advantage

of code review is purely social.” He states that, in an environment where code review is

mandatory, the expectation that any code written will be examined by another pair of

eyes is a powerful motivator to write better and more understandable code.

2.2 Code Review in Education

Despite being widely regarded in industry as a useful development process, peer code

review has not gained significant adoption in the classroom [11, 20, 31, 33]. While a

variety of high-quality solutions, like those mentioned earlier, exist in industry, there is

a mismatch between the fundamental design choices of a traditional code review system

and the constraints and requirements of a pedagogical code review system. Most existing

tools in industry assume that the basic unit of review is a commit or patch made against a

shared codebase, and none of them provide substantial support for automatically assign-

ing reviewers. They generally support a workflow where: a developer submits a commit

for review, the developer chooses one or two reviewers to review the code, the reviewers

review the code, and after zero or more iterations, the code is submitted into the repos-

itory. These design assumptions limit the adoption of existing code review tools in the

programming classroom due to the possibility of plagiarism, the necessity for fairness,

and the difficulty of scaling reviewer assignment to a large class of students.

Motivated by these problems and the potential benefit of introducing code review in

an educational context, there have been several notable projects and studies aimed at

understanding and developing an effective code review system for classroom use. Several

studies of peer review in programming classes and other fields of education have indicated

that peer review can:

• Be closely correlated with expert graders in student evaluation [11, 19, 23]

• Help develop reviewing skills for the workplace [30]

• Improve the quality and understanding of student code over time [15, 23]

There have been similar tools developed specifically to support pedagogical code review,

18

but we believe that the system described in this thesis improves on existing systems in the

several key areas.

First, our reviewing interface represents a significant usability improvement over exist-

ing pedagogical code review systems. Some systems, like the work of Reily et al. described

in [23] and RRAS by Trivedi et al. described in [31], are limited to structured feedback

from students based on rubrics or forms designed by teaching staff. This approach, while

it has its advantages, places additional overhead on the staff and removes the opportunity

of preparing students to review code in industry where the preferred form of feedback is

annotations on source code. Other systems that do support code annotations, like OS-

BLE by Hundhausen et al. [16], omit features like multi-line comments and in general are

relatively difficult to use by modern web design standards.

Second, the combination of code partitioning and task routing in our system allows

Caesar to scale much more effectively to a large number of reviewers of varying abilities

than existing systems. In systems lacking an automated mechanism for assigning review-

ers to student submissions [16, 31, 32], performing the same task manually can place a

serious burden on the teaching staff, especially if non-student reviewers are allowed to

participate. Existing systems that do include automated reviewer assignment [11, 23] do

not implement any automated code partitioning strategy, which forces reviewers to exam-

ine an entire student submission. This can lead to wasted reviewer time, especially with

larger assignments. We argue in this thesis that assigning reviewers to chunks instead of

submissions gives us the flexibility to better optimize review efficiency and quality.

Third, our system is a social code review system, with features like discussion support,

reputation, and activity streams, that is designed to encourage the inherently social nature

of peer review. Other social systems have been successfully built for programmers, such as

Stack Overflow [21], that leverage the idea of community and reputation. Existing code

review systems, both in industry and in the classroom, only indirectly capitalize on the

benefits of incentivizing participation and building community.

Finally, to our knowledge, there is no existing system that integrates automated com-

menting into the review process, and also no existing system that uses syntactic similarity

of student code to guide the review process.

19

2.3 Crowdsourced Workflows

Crowdsourcing, a term first coined by Jeff Howe [14], describes the act of distributing

a large set of small tasks to a large group of people. Caesar, as a system that allows for

a crowd of students, teaching staff, and others to collectively review a body of student

code, is a form of crowdsourced code review. To our knowledge, this is the first system

that explicitly applies crowdsourcing techniques to peer code review.

Outside of software development, crowdsourced reviewwas implemented in Bernstein

et al.’s project, Soylent [1], a Microsoft Word plugin built on Amazon’s Mechanical Turk

API and TurKit [18]. Soylent enables end-users to quickly harness a crowd of human

workers to proofread paragraphs and correct for mistakes. To improve result quality,

Soylent implements a crowdsourced workflow pattern that its authors call find-fix-verify,

a technique that structures the type and allocation of the assigned tasks to account for

factors like lazy or unreliable workers. This idea of fundamentally structuring a large

crowdsourced task to increase or ensure result quality in the face of a large crowd of

imperfect workers is one that this thesis draws heavily on.

In large open-source development projects, a form of implicit ad hoc crowdsourcing

emerges, where incoming reviews are broadcast to hundreds of potential reviewers, typi-

cally via e-mail. While this sounds chaotic, a study of existing projects has indicated that

communities like this develop effective procedures for managing their code reviews. [26]

In this approach, the unit of review is a patch or commit and the task routing strategy

is entirely manual (either the contributor selects a reviewer for the code, or the reviewer

picks up the review task from a broadcast). Ideally, a classroom tool would be more

structured, as required by the necessity for student evaluation and an even workload dis-

tribution.

Cosley et al. [6] describe a system called SuggestBot designed to route Wikipedia users

to articles in need to attention using a workflow pattern called intelligent task routing.

They demonstrate that by intelligently matching users to the tasks that they are most likely

to complete, they can increase the overall amount of useful work that users voluntarily

contribute. Intelligent task routing has also been applied to peer review in the classroom

20

before [7], but without a defined notion of what reviewer-author pairings are desirable.

Our system applies the idea of task routing to code review, made possible through code

partitioning, and strives to assign reviewers to student code to maximize goals like student

learning and an even workload distribution.

2.4 Static Code Analysis

While largely outside of the main scope of this thesis, code analysis tools and techniques

play an important role in Caesar’s architecture. We rely on Checkstyle [2] to generate au-

tomated code style comments, and have implemented a version of the robust winnowing

algorithm for document fingerprinting developed by Schleimer et al. [29] for the purposes

of measuring code similarity.

21

22

Chapter 3

Code Preprocessing

When code is first submitted into Caesar, it passes through the preprocessor before being

uploaded into the task router and ultimately the reviewing interface. The preprocessor is

responsible for partitioning the code into small chunks, filtering out trivial or redundant

chunks, running static analysis to generate automated comments, and detecting clusters

of similar chunks. This component is implemented separately from the reviewing inter-

face because several of its tasks, such as partitioning and clustering, are computationally

intensive and more easily implemented as batch processes, and also to decouple language-

specific code from the language-agnostic web application.

3.1 Partitioning

3.1.1 Design

The partitioner is the first stage of the preprocessor, and is responsible for turning poten-

tially large student submissions into more manageably sized chunks. Manipulating these

small pieces of code instead of entire student submissions at once gives us the flexibility

to scale the code review process from the traditional model of including only a few re-

viewers at once to an entire class of over 100 students. It is important, however, to ensure

that these gains in scalability and flexibility do not come at the cost of review quality; the

chunks themselves must still be semantically meaningful to reviewers so that they have

23

enough information to write useful feedback.

Because it is generally unfeasible for a single developer to review an entire project

(or other functional unit) at a time regardless of setting, the idea of partitioning code

into smaller units is an important component in any code review process. In a traditional

model with a small team of professional developers working with version control, the

unit of review is a single commit, or a set of file deltas. This type of temporal partitioning

relies on the developers themselves organizing their code changes into reasonably sized

deltas to the existing codebase. The commit is usually then reviewed by one or two other

developers before being integrated.

Developing a code review model for programming education makes this type of code

review impractical at best for two reasons: students, especially in an introductory class,

are inexperienced with version control usage, and inviting other students to review code

changes before an assignment is due makes plagiarism a real possibility. Instead, we are

limited to partitioning the code after an assignment’s deadline has passed, with student

submissions being the input unit. We disregard any historical information contained in

the version history of the submitted files, since we assume that, without good version

control habits, it is difficult to meaningfully characterize the commits that students create.

Therefore, we focus on content partitioning, where we split the code into semantically

meaningful chunks based on the contents of the files only.

The design of the content partitioning in our system is critical in shaping the reviewing

experience and the quality of the resulting feedback. An ideal partitioning, in a reviewing

context, should be:

Understandable

Reviewers, when presented with a chunk, should be able to easily understand what

it is without specialized background knowledge.

Complete

The information in the chunk should be sufficient to thoroughly evaluate the entire

contents of the chunk.

24

Compact

The chunk should be as small as possible, to save reviewer time and increase the

flexibility of the task routing. This means that we prefer many small chunks to fewer

large chunks.

For this version of the code partitioning module for Java, we chose a relatively simple

and well-understood method for determining what comprises a semantically meaningful

chunk of code: individual methods from each class. This means that for a given Java class,

our partitioning code will usually split it into one chunk for each of the constructors, and

one chunk for each of the remaining methods.

This simplistic partitioning strategy is easily understood by reviewers, but suffers in

terms of completeness and compactness. In many cases, a method calls other non-trivial

and non-obvious pieces of code whichmake it difficult to review in isolation. The problem

of summarizing that information along with other forms of surrounding context without

sacrificing understandability and compactness is an open problem, and there are many po-

tential solutions that could be implemented (see subsection 7.1.1). Partitioning by method

also makes high-level design issues difficult or impossible to diagnose without reviewing

many related chunks, an issue of compactness and completeness that could be remedied

withmore sophisticated code summarization techniques. Alternative partitioning schemes

could present reviewers with information like class hierarchy trees, dependency graphs,

or class files with method bodies removed (just fields and method prototypes).

3.1.2 Implementation

The actual partitioning task is handled by first crawling the input directory for all Java

files, and then parsing all input Java code with the parser provided with the Eclipse Java

Development Tools Core Component, extracted from an existing Eclipse installation. The

resulting abstract syntax trees are then traversed with a visitor that constructs chunk

objects when it encounters a constructor or method.

25

3.2 Chunk Filtering

3.2.1 Design

Ideally, with enough time, we would be able to review every chunk produced from the

partitioning step. Realistically, we are highly constrained by the number of available re-

viewers and the amount of time they are willing to devote, and student submissions can

often contain a large amount of code that is identical across submissions due to common

staff template code being distributed with assignments.

3.2.2 Implementation

Our system implements a modular and extensible filtering mechanism that allows for

chunks to be removed from consideration after the partitioning step. There are currently

two types of filters in use: a chunk size filter, and a duplicate chunk filter. The chunk size

filter discards chunks whose sizes fall below a certain threshold (5 lines, including whites-

pace and comments) to avoid wasting reviewer time on trivial pieces of code like getters,

setters, and empty functions. Next, the duplicate chunk filter removes chunks that appear

as exact duplicates (ignoring whitespace and letter case) more than some constant number

of times (5) throughout the entire set of submissions, based on comparing the MD5 hash

of the contents of the chunk with whitespace removed and ignoring letter case. We assume

that these type of duplicate chunks are staff-provided template code, third-party libraries

used by students, or (unfortunately) plagiarized solutions, and therefore do not need to be

reviewed. This allows Caesar to automatically infer and remove common template code

from student submissions without requiring staff to manually input the original template.

3.3 Automated Commenting

3.3.1 Design

After the code partitioning step, the filtered set of chunks is then analyzed to generate au-

tomated comments. One of the approaches our system takes in trying to minimize wasted

26

reviewer time and maximize overall efficiency is to include automatically generated com-

ments from static analysis tools in the review process so that human reviewers can save

the effort of typing them (and perhaps just upvote or downvote them instead).

While static analysis tools are often deployed as build tools or IDE plugins in the

development process, it can be difficult to standardize the development environment for

a larger programming class (over 100 students) compared to a small team of a handful of

developers without substantial effort from the staff. More serious is the reality that many

developers, even if they choose to use static analysis tools, simply ignore their output if

there are too many false positives or if they are pressed for time. Shifting these comments

into the review process, as we have done with our automated commenting workflow,

allows us to utilize a crowd of human reviewers to filter false positives and reframes the

detected issues in a learning context.

3.3.2 Implementation

For the Java language alone, there several widely used and deployed analysis tools de-

signed to reduce programmer error and improve code quality. In our current implemen-

tation, we have only included comments generated by the Checkstyle tool, which enforces

coding standards and style guides. Our Checkstyle configuration is identical to the default

set of rules based on the Sun code conventions [4] shipped with version 3.4 of the tool,

except with all whitespace-related rules disabled. Listing 3.1 and Table 3.1 together show

a small piece of example code and the corresponding Checkstyle violations. We hope to

include other tools in the future as time allows, such as FindBugs, unit test results, code

coverage analysis, and others. In a traditional code review tool, reviewers often waste

their time making mechanical and superficial comments about code style issues like in-

correct whitespace usage, bracing style, and identifier naming conventions. With Caesar,

many of these issues are identified and presented to the reviewer automatically, avoiding

tedious commenting and allowing them to simply express dissent or consent through our

voting mechanism.

27

1 pub l i c s t a t i c i n t mod_impl (i n t x , i n t y)
2 {
3 i n t r e s u l t = x%y ;
4 i f (r e s u l t < 0)
5 r e s u l t += y ;
6 r e tu rn r e s u l t ;
7 }

Listing 3.1: Example Checkstyle input

Line Comment

1 Parameter x should be final
1 Parameter y should be final
1 Name ‘mod_impl’ must match pattern ‘ˆ[a-z][a-zA-Z0-9]*$’
1 Missing a Javadoc comment
2 ‘{’ should be on the previous line
5 ‘if’ construct must use ‘{}’s

Table 3.1: Checkstyle violations for example code in Listing 3.1

3.4 Clustering

3.4.1 Design

In an effort to increase reviewer efficiency, Caesar has the capability to identify clusters

of similar code within an assignment. This information is later fed into the task routing

code and used to try to assign similar chunks of code to the same reviewer. In practice,

this typically results in a reviewer being assigned multiple student implementations for

the same method specification. This design decision is motivated by the observation from

existing grading practices that graders are often much more efficient when grading many

solutions to the same problem, which minimizes mental context switching, leading to

the common practice of splitting a grading task by problem rather than submission. Our

clustering feature aims to achieve the same efficiency boost in a distributed chunk context.

28

3.4.2 Implementation

Before clustering the chunks, we generate a set of fingerprints for each with our imple-

mentation of robust winnowing [29]. A fingerprint for a chunk is an MD5 hash of an

n-gram that occurs in the chunk contents. The robust winnowing algorithm searches the

set of potential fingerprints for a chunk and selects a small subset of those fingerprints

in a consistent way to preserve recall. For our implementation, we use n-grams of size

10 and a window of size 20 for winnowing. We then cluster the chunks using a freely

available implementation [13] of the hierarchical agglomerative clustering algorithm.

In order to cluster the chunks using an existing clustering algorithm, however, we

must first define a distance metric between any two chunks. Our implementation uses

a combination of the Jaccard distance, Jδ(c1, c2) = 1 – |F(c1)∩F(c2)|
|F(c1)∪F(c2)|

, computed over the

fingerprints of each chunk, F(c), and a constant penalty, knp, if the method names of

the chunks differ. The Jaccard distance in our distance metric is a measure of how many

fingerprints are unique to either chunk, where 0 indicates that both chunks have the

same fingerprints, and a score of 1 indicates that neither chunk has any fingerprints in

common. The name penalty exists because we assume that two methods that share both a

class name and method name must be at least somewhat similar, despite how much their

bodies might differ.

Finally, our implementation uses the minimum pairwise distance between chunks as

its distance measure between chunk clusters, an approach known as single linkage in the

machine learning literature. Intuitively, this means that a chunk need only resemble one

chunk in a cluster to be included in that cluster. We use single linkage in order to make

our clustering strategy as forgiving as possible.

29

30

Chapter 4

Task Routing

4.1 Design Goals

Splitting student submissions into small chunks gives us the opportunity to produce fine-

grained reviewer assignments that can potentially yield increased reviewer efficiency and

higher quality reviews overall. Our system implements a task routing mechanism for au-

tomatically and dynamically allocating chunks to reviewers that considers both reviewer

characteristics (role, reputation) and chunk characteristics (similarity clusters). For our

purposes, we will refer to a single assignment of a reviewer to a chunk as one task.

The design of our task routing strategy is guided by three major goals for the resulting

assignments:

Efficiency

The resulting task assignment should attempt to maximize the overall efficiency of

the review process. This includes considerations like assigning similar chunks to the

same reviewer.

Quality

We also seek to maximize the overall quality of the resulting feedback and discus-

sion. Some of the heuristics we consider in the pursuit of quality include reviewer

interaction diversity and staff distribution.

31

Fairness

We recognize the necessity to ensure fairness wherever possible in the process. This

involves evenly distributing workload across students, evenly distributing reviewers

(especially staff) across student submissions, ensuring that students have the same

discussion and feedback opportunities presented to them, and preventing abuse and

plagiarism.

The system is also constrained by several implementation requirements. Because Caesar is

designed with a large crowd of reviewers where the size and composition of the reviewer

population, especially considering alumni reviewers, is not known in advance, our task

routing algorithm must be able to assign tasks dynamically and iteratively as reviewers

enter the system. This prevents us from using approaches that might try to globally op-

timize the task assignment solution across all reviewers and chunks. Instead, our system

uses an incremental greedy algorithm that assumes nothing about the reviewer population

initially.

Because our reviewers enter the system through the web interface and we would like

to avoid noticeable delays, our task routing implementation must present them with their

task assignments in under 1 second, ideally even faster. This, along with the large number

of chunks, limits us to computationally simple heuristic approaches that can be executed

quickly, instead of more exhaustive search or optimization strategies. It also requires that

we perform the majority of our work in memory, instead of relying on database queries.

4.2 Implementation

The task routing process is enabled after an assignment has been uploaded to the web

interface. Because our algorithm is incremental, we assign tasks to users only after they

visit the interface for the first time since the assignment was uploaded. Teaching staff are

an exception to this, and are assigned tasks after all other users have entered the system

in order to best distribute staff attention to students in light of all of the existing task

assignments.

Based on our goals and implementation constraints, the Caesar task routing algorithm

32

uses a series of computed heuristics that it attempts to optimize one by one. In practice,

to produce a chunk assignment, this means that the list of potential chunk assignments is

progressively sorted by each computed value and then the top-ranking chunk is assigned.

Several of the scores used are dependent on existing assignments, so the values are recom-

puted and the list is resorted if more task assignments are required. A simplified version

of the code for the assignment routine is shown in Listing 4.1. The sorting key used for

def a s s i gn_nex t_ t a sk (user , chunks) :
sor t_key = make_chunk_sort_key (user)
chunk_to_ass ign = min (chunks , key= sor t_key)
r e tu rn chunk_to_ass ign

Listing 4.1: Simplified code for task routing

the chunk ordering step is the most important part of the behavior of the task routing

code. For each chunk, we generate a tuple of values as the sort key, with each value rep-

resenting a heuristic in descending priority. For all users with the exception of teaching

staff, these are, for a chunk:

1. Code cluster score

2. Number of reviewers already assigned to the chunk

3. Number of reviewers already assigned to the chunk’s submission

4. Total user affinity over the submission

5. Total user affinity over the chunk

First, the code cluster score is a value that prioritizes chunks that belong to the same

similarity cluster (computed by the preprocessing step) as another chunk that the user

has already been assigned. This forces the system to try to assign code from the same

cluster to the user. To avoid situations where reviewers have to review a large amount

of similar code and therefore lose interest in the review process, we limit the assignment

to at most 3 chunks for each cluster for each user. In addition, we also prioritize chunks

from larger clusters, with the reasoning that those large clusters of similar code are the

common required portions of the assignment, and therefore most important to review.

We prioritize code similarity before all other metrics with the reasoning that reviewer

33

time and attention are extremely limited, and decreasing the amount of time required

to review a chunk by capitalizing on parallel structure allows our system to effectively

review more code.

Second, we look for chunks that have the most currently assigned reviewers, ignor-

ing chunks that already meet or exceed the configured maximum number of reviewers

allowed per chunk (in our deployment this is set to 2). This behavior effectively causes

reviewers to be grouped together on chunks, encouraging discussion and maximizing the

amount of user interaction.

Third, we then look for chunks belonging to submissions with the fewest distinct

reviewers, which forces the task assignment to evenly distribute reviewers across student

submissions.

Fourth, we compute the sum of a value called the user affinity between the assignee

and each of the users already assigned to the chunk. The user affinity is a pairwise measure

between two users of, broadly speaking, how valuable their interaction could potentially

be, and is defined as a sum of three components: distance affinity, reputation affinity,

and role affinity. Distance affinity is negative for users that have already been assigned to

the same chunk together, and zero otherwise. This is designed to increase the number of

distinct reviewers that the user has an opportunity to co-review chunks with. The second

term, reputation affinity, is simply the absolute value of the difference in reputation scores

of the two users, which acts to increase the diversity of users assigned to each chunk. The

third term, role affinity, is defined to be moderately positive when one of the users is staff

and the other is a student, strongly negative when both are staff, weakly positive when

the roles differ but are not either of the previous two cases, or 0 if the roles are the same.

This term is designed to maximize the amount of students who are assigned to the same

chunk as a member of the teaching staff, and as another means to increase the diversity

of reviewers on each chunk.

Fifth and finally, we compute the sum of the user affinity values between the assignee

and the set of distinct reviewers assigned to any chunk belonging to the submission asso-

ciated with the candidate chunk. Whereas previously we looked at the total affinity for

just the candidate chunk itself, and attempted to maximize the diversity of interaction for

34

the assignee, this step attempts to maximize the diversity of the users for the submitter.

This step is crucial in ensuring that each student’s submission gets a fair amount of staff

attention, high reputation users, and simply total unique reviewers.

Because the distribution of staff throughout the system and their interactions with

other users is more important than the actual reviewing experience of the staff themselves,

when assigning tasks to them we ignore the first three steps outlined above and sort

chunks only using the total user affinity of each chunk and then the total user affinity of

its associated submission.

35

36

Chapter 5

Reviewing Interface

All end-user interactions within the Caesar system happen in the web interface, which is

a Python web application built with the Django Framework, with substantial amounts of

HTML, CSS, and Javascript code as well. The web application handles the fundamental

tasks of allowing reviewers to review code, allowing students to access their feedback,

and allowing staff to monitor and evaluate the process.

Figure 5-1: Caesar’s reviewing interface

37

5.1 Design Goals

The design of the reviewing application focuses on maximizing the amount of quality

content in the system. We consider a piece of content to be of high quality if it satisfies

the following four requirements:

Timely

Content should be submitted to the system as soon as possible, so that the review

process can be efficient and quickly return feedback to the student. Timely com-

ments and responses also help encourage real discussions between users.

Relevant

Feedback left for a region of code should be relevant and on topic. Replies to com-

ments should be relevant to the parent comment.

Correct

The efficacy of our system would be vastly diminished if users could not trust the

accuracy of the information being presented.

Informative

In order to reduce the amount of information clutter, we prefer comments that not

only identify problems, but provide solutions to them and help students learn from

their mistakes. This also means that we favor substantial comments with interest-

ing information (e.g. “I would use LinkedList here instead of ArrayList based on

your implementation strategy”) instead of superficially correct comments (e.g. “You

misspelled a word in this comment.”).

The interface design tries to maximize these metrics with three main complementary de-

sign strategies:

Reduce overhead

When possible, contributing to the system should be as easy as possible. The inter-

face should also attempt to minimize the amount of extraneous information and

interface elements presented to the user.

38

Reward participation

Users should have a visible and definite incentive beyond goodwill to contribute

good content.

Present relevant information

The interface should, as much as possible, attempt to identify and present relevant

and high quality content to the user. This helps the user learn from that content,

and feeds back into the system in the form of more informed contributions.

Because Caesar is designed for users belonging to one of three user roles (student,

staff, other), we consider the possible primary use cases for all of these roles:

Reviewing code (students, staff, other)

The primary function of the tool is to enable users to leave feedback in the form of

comments and votes on pieces of student code. All user roles share this use case.

Reading submission feedback (students, staff)

The students need an efficient way to read the feedback given to them on their

own submissions. As a part of the grading process, the staff also need a way to see

feedback given to students on a submission level.

Reading user contributions (staff)

In addition to the feedback given to a student, another part of the grading process

is the feedback generated by a student. Staff need to be able to view all of the

contributions generated by a user in a summarized view. Other users are only be

able to see this information for themselves.

5.2 Features

While the web interface is only one component of the entire system, it contains a number

of unique features designed to facilitate the code review process. None of these are novel

on their own, and in fact can be found on many other web applications, but few of

39

them have been integrated into a code review system before, and none of them have been

integrated into an existing classroom code review tool.

5.2.1 Streamlined Commenting Interface

The most important interaction that our interface is designed to support is leaving com-

ments on pieces of code. Because of this, we have designed a commenting interface that

is as streamlined and usable as possible. While the student and staff members of our user

population can be somewhat easily motivated, by grades or other means, to participate

and comment on code, the other members, who are essentially volunteers, are more dif-

ficult to encourage. Making the commenting workflow simple and painless is crucial in

maximizing their participation.

Display

Unlike existing systems which typically only allow comments to be attached to a single

line of code and display comments either separately (see Figure 5-2) or embedded in

the flow of the source code (see Figure 5-3), our reviewing interface displays comments

to the left of the source code in a style similar to document annotations as in Google

Documents or Microsoft Word, as shown in Figure 5-1. In some cases, the vertical space

occupied by the comments can be larger than the vertical space occupied by the code

itself. This is especially true when comments generated by automated tools are included.

This quickly causes comments to be visually separated from the regions of code they

are annotating. The interface ameliorates this problem in two ways. First, the comments

themselves are displayed with a small snippet of code context that can help the user

contextualize the feedback without referring back to the chunk itself (Figure 5-5). Second,

clicking a comment will cause the comment to scroll to align with its relevant lines of

code. The interface also places comment markers alongside the source code indicating

the presence of one or more comments (Figure 5-4). Clicking these markers will also

scroll the relevant comments into view.

40

Figure 5-2: Review Board comment discussion interface

Figure 5-3: Rietveld review summary interface

41

Figure 5-4: Comment markers on a chunk

Figure 5-5: Comment display and discussion interface

Comment Entry

To leave a comment, users click and drag a region of code. When they release the mouse

button, a comment form is displayed adjacent to the region and inserted into the list of

comments on the left where the newly created comment would appear (Figure 5-6). The

text field is given keyboard focus to minimize unnecessary user input.

5.2.2 Discussion Support

Beyond the basic use case of leaving a comment on a region of code, the web interface

also supports several features designed to encourage communication between reviewers,

in addition to communication between the reviewers and the submitter. First, users can

42

Figure 5-6: New comment form for writing a comment

reply to any existing comment, allowing for discussions and debates about contentious

issues, question and answer, and other forms of interactions. Comment threads are limited

to one level deep only, in order to preserve the limited horizontal space in the interface

and to simplify the user experience.

Second, users can also either upvote or downvote existing comments in the system.

This mechanism gives users a way to indicate both consensus and quality content. In the

simple case where users find existing comments that they agree with, votes give a simple

method to record that agreement, instead of forcing them to self-censor in an effort to

reduce duplicated content. In other cases, votes can give other users an indication that

a piece of feedback is particularly insightful or helpful. Finally, when coupled with a

reputation system, a voting system acts as an incentive to encourage users to contribute

relevant high quality content, and provides a way for users to quickly identify it as well.

5.2.3 Code Display

When viewing the source code for a chunk, reviewers are presentedwith a syntax-highlighted

version of the code along with line numbers relative to the chunk’s context in its origi-

nal file. We also provide a read-only view for reviewers to examine the entire submission

that a chunk was originally partitioned from. To avoid cluttering the interface, this view

is hidden behind a link on the chunk reviewing interface. The submission code is orga-

nized by file with a collapsible file explorer to easily jump between files and with chunk

43

boundaries clearly highlighted.

Figure 5-7: Interface for browsing submission code

5.2.4 Activity Streams

In order to facilitate ongoing interactions within the system (discussions on chunks, votes

on comments) and to expose users to new and relevant content, Caesar can automatically

find relevant content and present it to the user in reverse chronological order, a user in-

terface pattern known as an activity stream. While other systems can sometimes have

complex and opaque heuristics for determining the relevancy of stream content (Face-

book, etc), Caesar provides an easily understandable set of rules for determining what

content is relevant to the user. The dashboard activity stream as implemented displays,

for the logged in user, the following actions:

• Activity (comments, replies, votes) on chunks authored by the user

• Activity (replies, votes) on comments authored by the user

• Activity (comments, replies, votes) on chunks assigned to the user for review

In addition to presenting relevant activity happening throughout the community to a user,

we also use the activity stream interface pattern to display all of the activity generated

44

by a single user. Every user can see a stream of all of their own contributions, including

comments, replies, and votes, in reverse chronological order (Figure 5-8). Staff also have

the ability to view user activity streams for other users in the system, for the purposes of

moderating activity and also assessing the participation of students in the class.

Figure 5-8: User contribution activity stream

5.2.5 Dashboard

When users first log in to the system, they are presented with a dashboard interface de-

signed to surface and summarize the most relevant information in the system to them

automatically. The dashboard displays submissions (for students) and task assignments.

Throughout the reviewing process, we can safely expect students to be interested in the

feedback they are receiving on their submissions, so the dashboard provides shortcuts to

those. Since all users are responsible for at least some review tasks, the dashboard promi-

nently displays them as an “inbox.” New or “unread” tasks that the user has not looked

at yes are displayed as bold lines, using the familiar metaphor of an e-mail inbox that our

users will almost certainly be familiar with.

45

Figure 5-9: Dashboard interface with submissions and task assignments

46

Chapter 6

Evaluation

To evaluate Caesar using data that most accurately represents its intended use, we used 4

different assignments with student submissions taken from previous iterations of 6.813

User Interface Design and Implementation and 6.005 Elements of Software Construction:

WordFinder

A 6.813 problem set where students were asked to implement a simple dictionary

application. They were given some code to start with.

RatPoly

A 6.005 problem set where students were asked to fill in parts of the implementation

of a class for representing a rational polynomial.

Multipart

A small 6.005 project where students, in groups of three, were asked to implement

a multipart downloader. They were given some code to start with.

Antibattleship

A large 6.005 project where students, in groups of three, were asked to implement a

networked, graphical, multiplayer game called Antibattleship. They were not given

any code to start with.

Table 6.1 shows some of the statistics relating to each of the four assignments. We note

that we include comments and whitespace when counting lines of code.Most importantly,

47

Per Submission

Assignment Students Submissions Files Lines

WordFinder 70 70 3.0 889.9
RatPoly 114 114 14.2 3640.8
Multipart 120 40 14.3 1286.9
Antibattleship 99 33 75.7 9356.9

Table 6.1: Assignment statistics

we see that student submissions for Antibattleship were much larger than submissions for

the other assignments, even when compared with the other group project, Multipart. In

addition, we see that WordFinder submissions tended to be much smaller. Finally, we see

that RatPoly had about three times as much code per submission as Multipart with the

same number of files per submission, despite being an individual assignment.

6.1 Code Preprocessor

6.1.1 Partitioning

Before implementing Caesar, we ran two small preliminary studies to determine the effi-

cacy of reviewing small pieces of code without their surrounding context, using Google

Documents as our reviewing interface. The studies comprised 7 participants and were

based on the WordFinder and RatPoly assignments. The results from those two studies

indicated that while a certain class of problems require a complete functional unit of code

to detect (design issues, etc.), our reviewers were still able to write a significant amount

of useful and meaningful feedback on the small chunks of code they were given.

In Table 6.2, we show the number and size of chunks generated from each of the four

assignments when processed with our partitioner but without chunk filtering. We see a

large variation in chunk size on all assignments, and the only significant pattern that

emerges is that WordFinder has, on average, larger chunks than the other assignments.

This can be explained by the fact that WordFinder was an exercise in writing a Swing

application in Java, which tends to produce longer methods. The other three assignments

48

Chunk Count Chunk Size (lines)

Assignment Total Per Submission Per Student min max mean stdev

WordFinder 2095 29.92 29.92 1 270 22.79 34.05
RatPoly 26330 230.96 230.96 2 443 13.28 30.39
Multipart 2393 59.82 19.94 1 194 15.77 16.85
Antibattleship 17653 534.94 178.31 1 723 13.47 27.88

Table 6.2: Pre-filtering chunk size distribution

Chunk Count Chunk Size (lines)

Assignment Total Per Submission Per Student min max mean stdev

WordFinder 801 11.44 11.44 6 270 27.46 34.03
RatPoly 2379 20.87 20.87 6 91 18.54 11.22
Multipart 1352 33.80 11.27 6 194 17.34 17.41
Antibattleship 9415 285.30 95.10 6 723 21.85 35.35

Table 6.3: Post-filtering chunk size distribution

either included small Swing components or none at all. We also explain the high number

of lines per submission for RatPoly with the fact that we include comments when counting

lines of code, and the template code distributed with RatPoly contained a large amount

of method documentation. We use the number of chunks per student as a measure of

the predicted review workload, since the students themselves will function as the primary

reviewers in our system.

6.1.2 Chunk Filtering

After partitioning, we ran our filtering code on the chunks generated from our four sam-

ple assignments. The results for RatPoly are the most interesting, since the high number

of submissions and large amount of staff-provided code generated an originally very large

number of chunks. Our filters, especially the duplicate filter, however, managed to reduce

the original set of 230.96 chunks per student to a much more manageable set of 20.87

chunks per student, less than 10% of the original input. The Antibattleship assignment

here, by contrast, represents a worst-case input for our filters. The size filter managed

to remove a moderate number of chunks, but the duplicate filter was essentially useless

49

(removing less than 2% of the original chunks) since the assignment has no common

template code. The resulting set of 285.30 chunks per submission, or 95.10 chunks per

student (3 students per submission), is still admittedly too large to be reasonably reviewed,

since we expect users in our system to review on the order of 10 chunks per assignment.

Even if we consider that Antibattleship was a longer assignment, taking three weeks for

implementation, the number of chunks generated per student does not compare favor-

ably with the other assignments evaluated. We defer to future efforts to develop more

sophisticated filtering approaches (see subsection 7.1.2).

Assignment Original Trivial Duplicate Final Reduction

WordFinder 29.92 –6.67 –11.81 11.44 61.76%
RatPoly 230.96 –87.82 –122.28 20.87 90.96%
Multipart 59.82 –12.38 –13.65 33.80 43.50%
Antibattleship 534.94 –241.00 –8.64 285.30 46.67%

Table 6.4: Chunks removed per submission by preprocessor filters

6.1.3 Automated Commenting

In Table 6.5, we show the number of comments generated by Checkstyle for each of the

four assignments we evaluated the system against. Figure 6-1 shows the density of the

generated Checkstyle comments as the number of comments per line of code for each

chunk. We see that the distributions of comments for all four assignments are all roughly

centered on the mean comment density for the entire assignment. The overall comment

density is relatively high, ranging from 0.19–0.28 over our four assignments, even with

all whitespace-related rules disabled. We argue, however, that our voting feature in the

Assignment Chunks Comments Comments / Line

WordFinder 801 4057 0.1921
RatPoly 2379 7981 0.1913
Multipart 1352 6358 0.2879
Antibattleship 9415 43610 0.2222

Table 6.5: Generated Checkstyle comment counts

50

reviewing interface along with the ability to collapse comments at least partially alleviates

this problem. In addition, in an actual deployment, the Checkstyle rules used by the system

could be enforced outside of Caesar, reducing the number of violations that are submitted.

0 1 2 3
0

100

200

Comment Density

#
C
hu

nk
s

(a) 6.831 Problem Set: WordFinder

0 1 2 3
0

200

400

600

Comment Density
#
C
hu

nk
s

(b) 6.005 Problem Set: RatPoly

0 1 2 3
0

100

200

300

Comment Density

#
C
hu

nk
s

(c) 6.005 Project: Multipart

0 1 2 3
0

500

1,000

1,500

2,000

Comment Density

#
C
hu

nk
s

(d) 6.005 Project: Antibattleship

Figure 6-1: Checkstyle comment density distributions

6.1.4 Clustering

We evaluated our clustering implementation on the same four assignments. Our cluster

distance threshold was set to 0.95 and our name penalty was knp = 0.7. These parameters

were tuned so that chunks that share a name need very few fingerprints in common to be

51

considered similar, while chunks that do not share a name need to share a large proportion

of their fingerprints.

0 20 40 60
0

20

40

60

Cluster Size

#
C
lu
st
er
s

(a) WordFinder (70 submissions)

0 50 100 150 200
0

5

10

Cluster Size

#
C
lu
st
er
s

(b) RatPoly (114 submissions)

0 10 20 30 40 50
0

20

40

60

80

Cluster Size

#
C
lu
st
er
s

(c) Multipart (40 submissions)

0 10 20 30 40 50
0

200

400

600

800

Cluster Size

#
C
lu
st
er
s

(d) Antibattleship (33 submissions)

Figure 6-2: Size distribution of clusters of 2 or more chunks

Figure 6-2 shows the cluster size distributions for the four assignments. Notably, we

see a few large clusters in WordFinder and Multipart where students have modified staff-

provided template code, with the rest of the chunks falling into either small clusters or

no cluster at all. Since both assignments were structured to have a small staff-provided

interface template and a large proportion of student-structured implementation, these dis-

tributions are reasonable. The RatPoly assignment, because it is almost entirely composed

of staff-written templates that students simply fill in, generated relatively more large clus-

ters. The sizes of most of these large clusters corresponds favorably with the number of

52

submissions (114). The three outliers with more than 150 chunks can be explained by the

clustering algorithm collapsing clusters of very similar methods, like RatPoly.add(..)

and RatPoly.sub(..). Finally, Antibattleship does not yield any large clusters. Presum-

ably this is due to the fact that the assignment was only loosely specified, and no common

structure was enforced on the students. A more sophisticated clustering technique could

have potentially produced better results (see subsection 7.1.3), since our fingerprint-based

approach is susceptible to variations in variable names, statement order, etc.

6.2 Task Routing

We evaluated our task routing system using a combination of real chunk data from the 4

assignments used throughout our evaluation and simulated users modeled after statistical

characteristics of a hypothetical class. For each assignment, we assumed that the number

of students was exactly determined by the number of submissions, and then assumed one

teaching staff member for every 20 students, and one alumnus for every 2 students. Next,

in order to accurately model user reputation, we assigned each user a reputation value

sampled from a Pareto distribution (long tail) with α = 1.2, which we chose to emulate

the reputation characteristics of sites like Stack Overflow. We also gave staff members

constant 20 point reputation boost. Students were assigned 8 chunks each, staff were

assigned 28 chunks each, and other users were assigned 5 chunks each. We assumed that

user arrival time into the system is random, except that teaching staff enter the system

after all other users. The task router was configured with a goal of 2 reviewers per chunk.

When assigning users chunks from a cluster, we set a maximum of 3 chunks per cluster to

assign to a single user, preventing the system from assigning one user all chunks exclusively

from a single cluster and risking losing reviewer interest.

The results of our simulated task routing are summarized in Table 6.6 and Table 6.7.

For our purposes, we will say that when two users are both assigned to review the same

chunk, they are co-reviewers. Table 6.6 shows how many users from each role, on aver-

age, are co-reviewers with each student. These numbers are important for measuring the

diversity of reviewing experience for students, and also for ensuring that all students have

53

a fair amount of co-reviewer interaction with staff. We see that students in general have

a reasonable amount of staff interaction as reviewers. In fact, in WordFinder there were

58 out of 70 students who had at least one staff co-reviewer. For RatPoly, there were 100

out of 114, for Multipart there were 94 out of 120, and for Antibattleship there were

81 out of 99. These numbers are especially impressive considering that our task routing

algorithm prioritizes staff allocation by submission, not by co-reviewer interaction.

Student Staff Other

Assignment mean stdev mean stdev mean stdev

WordFinder 2.77 0.56 1.83 1.08 0.61 0.76
RatPoly 2.75 0.54 2.42 1.46 0.64 0.71
Multipart 2.53 0.71 2.79 2.06 0.62 0.67
Antibattleship 2.84 0.85 1.78 1.29 0.66 0.77

Table 6.6: Task assignment student co-reviewer interactions

Table 6.7 summarizes the performance of our task routing algorithm by submission

using two metrics: number of distinct reviewers per submission, and the percentage of

chunks with at least one reviewer per submission. It is notable as well that for all assign-

ments, there were no submissions that did not have at least one staff reviewer assigned.

The high standard deviations for chunk coverage for WordFinder, Multipart, and An-

tibattleship can be explained by the fact that our approach tries to ensure that an even

number of chunks per submission are reviewed. These three assignments do not impose

a structure on student submissions, and therefore see a larger variation in the number of

chunks per submission. It follows that chunk coverage would exhibit a correspondingly

high variation.

Distinct Reviewers Chunk Coverage (%)

Assignment min max mean stdev min max mean stdev

WordFinder 5 48 10.97 6.87 14.29 100.00 62.51 25.24
RatPoly 5 16 13.32 1.92 9.46 50.00 26.61 5.24
Multipart 16 40 35.24 3.65 20.22 100.00 53.37 19.78
Antibattleship 2 118 16.88 20.44 0.61 11.88 4.33 3.34

Table 6.7: Task assignment metrics by submission

54

6.3 Reviewing Interface

To evaluate the usability of our reviewing interface, as well as the experience of reviewing

small chunks of code without their surrounding context, we ran a user study with 18

users and submissions drawn from the WordFinder assignment. Participants were asked

to review 3 chunks (methods) each by voting on or replying to existing comments, or

writing new comments. After, they were asked to complete a short survey about their

experience with the interface. Each participant wrote an average of 2.61 comments, of

which 21.28%were replies to other comments, and contributed an average of 3.50 votes.

Response to the interface was generally positive, with several users praising the inter-

face and no users expressing any serious problems with it. 7 out of 18 of the participants,

however, indicated that they felt like they were not presented enough information or

context to effectively review the code they were assigned. While some of this can be at-

tributed to a lack of enough background information for the reviewers, it also identifies

one of the areas where Caesar could be most improved (see subsection 7.1.1). We have

partially addressed the lack of context surrounding a chunk by allowing users to view

the code for the entire original submission (subsection 5.2.3). Two of the participants

expressed that they liked the voting feature as a lightweight mechanism for expressing

either agreement or disagreement. Finally, user sentiment on the automated Checkstyle

comments being presented along with the reviewing interface was mixed. A few users

disagreed with some of the rules that Checkstyle was enforcing, an issue that would be

resolved in a classroom setting with an agreed upon coding style. Others wrote that they

appreciated having a tool for automatically finding obvious or mechanical issues instead

of forcing users to do the same manually, validating our original design goal for including

automated comments.

55

56

Chapter 7

Conclusion

Caesar is a distributed, social code review system developed for programming education

that allows students to receive faster and better feedback on their work in addition to

experience reviewing code, reduces the grading load on teaching staff, and enables alumni

to interact with students in a meaningful and mutually beneficial way. While previous

work has attempted to build a useful code review tool for the classroom, none of them

have adequately translated the code experience of code review as it exists in industry

while simultaneously designing for the unique constraints of a large programming class

of students.

The classroom presents a number of design constraints not found in professional prac-

tice. The possiblity of plagiarism and students’ lack of experience with version control

precludes the option of reviewing individual commits, which motivates our decision to

implement a content partitioning scheme for submissions. Dividing code into chunks cou-

pled with filtering and task routing also gives us the ability to scale past standard program-

ming team sizes of a handful of expert developers up to a classroom of over 100 students

of varying level and ability. In addition, reviewing student submissions for an assignment

could potentially mean reviewing many redundant but different implementations of the

same specification, a pattern which we exploit using code similarity clustering. It is also

important, in the classroom, to evenly allocate teaching resources between students, and

ensure as much as possible that students all receive the same learning opportunities, a

57

goal we address with our task routing strategy.

The results from evaluating our code preprocessing pipeline and task routing algo-

rithm on four real assignments from previous iterations of 6.005 and 6.813 both validated

our system design against assignments like RatPoly with a large amount of common tem-

plate code, and highlighted its inability to cope with large and unstructured projects like

Antibattleship. While part of this is simply due to the relatively large amount of code

produced in a large project assignment, it is our belief that future efforts could imple-

ment code summarization techniques and more sophisticated filtering to at least partially

address the issue. Finally, A user study of our reviewing interface yielded mostly posi-

tive feedback on its usability, but indicated that reviewers wanted access to more context

about the code they were reviewing.

Caesar makes the following contributions:

• A code review system specifically for classroom use

• A distributed, crowd-sourced code reviewing workflow

• A streamlined, social web interface for reviewing code

Beyond these, though, Caesar provides an extensible, modular framework that decom-

poses the process of code review into a powerful pipelined architecture composed of a

partitioner, chunk filter, static analysis, similar code clusterer, task router, and reviewing

interface. Our current implementation provides simple but adequate implementations of

all of these pieces of the system, but it is our belief that Caesar only lays the foundation

for future work to improve on its individual components.

7.1 Future Work

7.1.1 Additional Forms of Review Content

Our preprocessing system implements a very simple notion of what constitutes a chunk

of code. In the future, we would like to pursue more advanced techniques for providing

reviewers with the best possible content to review.

58

Most intriguing, perhaps, is the idea of summarizing code instead of simply partition-

ing it. If designed correctly, a code summarization strategy could allow for reviewers to

make comments about high-level aspects of student submissions without having to read

through all of the code themselves. One can imagine a scheme where reviewers exam-

ine only the names of the classes written by a student and where they are located in the

package tree, or perhaps they are given only a class dependency diagram generated from

student projects.

Another unexplored area is the possibility of including information generated dynam-

ically from submitted code, instead of information obtained through static analysis. It is

very likely that examining execution traces from a program could reveal certain types of

defects more easily than examining the code itself in a static context. We could also con-

sider including results from unit tests, code coverage analysis, or performance profiling

information.

7.1.2 Improved Chunk Filtering

In addition to generate different forms of reviewable content, there are also several promis-

ing areas of improvement for filtering out less relevant content before uploading to the

review interface. While we currently filter out commonly repeated (most likely staff-

provided) chunks and trivial chunks, the resulting set of chunks is still quite large for

even modest assignments. Moving beyond these simple approaches, we would like to

investigate using other heuristics for determining what content to review, such as:

Churn

Currently our system ignores submission commit histories. We could potentially

mine the commit history to find the areas of code that experienced the largest num-

ber of changes. Our reasoning is that areas that experience more development ac-

tivity are likely to be error-prone, complex, or important, and therefore good can-

didates for review.

Complexity

We would also like to investigate the possibility of identifying complex areas of

59

code as candidates for review. This would most likely have to be implemented as

a language-specific heuristic approach, using traits such as identifier length, condi-

tional branching depth, number of dependencies.

Coverage

Looking at the execution of submitted code, we could also examine regions of dead

code, or conversely hot regions that are executed more often than average.

7.1.3 Improved Chunk Clustering

Many of the ideas for more content-aware chunk filtering can also be applied to improv-

ing our similar chunk clustering algorithm. While using document fingerprints allows

for some degree of tolerance in detecting similar chunks, its language-agnostic nature

prevents it from detecting syntactically or semantically equivalent code that differs in

content such as variable names or other identifiers. Implementing a more sophisticated

approach like the one described in [9, 17], or one of the techiques described in one of the

many surveys of code clustering or clone detection techniques [27, 28] could yield better

results.

7.1.4 Data-Driven Task Routing

Our task routing implementation currently looks at existing reviewing assignments and

similarity clusters in a simple ranking scheme. A better approach would be to design a

more data-driven routing algorithm that can adaptively incorporate feedback from the

reviewing process to generate better routing assignments. It could do this by constructing

user models for reviewers based on their actions in the system, adding more knowledge

about the contents of chunks beyond just similarity clusters, and moving to more ad-

vanced approaches drawing on techniques like collaborative filtering.

60

7.1.5 Similar Comment Clustering

As a system for gathering user annotations on student code, Caesar presents an oppor-

tunity to analyze the comments written by reviewers and use them to generate aggregate

information about the reviewed code. By identifying comments that indicate the same

problem, we could potentially generate implicit clusters of code segments that share the

same bug. It would be tremendously useful as a tool for instructors to be able to retrieve

all instances of representation exposure defects found in student code, or perhaps a list-

ing of all types of infinite loops written by students. By adding some form of structure to

the commenting system, we could potentially use code review as a defect labeling system

without adding unnecessary burden on our users.

7.1.6 Community Building

Caesar’s web interface has a few features that together constitute basic support for a

community-driven code review site. While it is outside the scope of this thesis to explore

the ramifications and possibilities of building a community in a code reviewing context,

it is our belief that there are major gains to be made in the effectiveness of code review

by investigating ideas like achievement badges, allowing users to follow or friend other

users, integrating a messaging system, and improving our activity stream implementation.

61

62

Bibliography

[1] M. S. Bernstein, G. Little, R. C.Miller, B. Hartmann,M. S. Ackerman, D. R. Karger,
D. Crowell, and K. Panovich, “Soylent: a word processor with a crowd inside,”
Proceedings of the 23nd annual ACM symposium on User interface software and
technology, UIST ’10, 313–322, 2010, ACM ID: 1866078. doi: 10.1145/186602
9.1866078.

[2] Checkstyle. [Online]. Available: http://checkstyle.sourceforge.net/.

[3] M. Chu-Carroll. (Jul. 2011). Things everyone should do: code review, [Online].
Available: http://scientopia.org/blogs/goodmath/2011/07/06/things-ever
yone-should-do-code-review/.

[4] (Apr. 1999). Code conventions for the Java programming language, [Online]. Avail-
able: http://www.oracle.com/technetwork/java/codeconv-138413.html.

[5] J. Cohen, “Code review at Cisco systems,” in Best Kept Secrets of Peer Code Re-
view, Smartbearsoftware.com, 2006, pp. 63–87. [Online]. Available: http://sma
rtbear.com/resources/cc/book/code-review-cisco-case-study.pdf.

[6] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl, “SuggestBot: using intelligent
task routing to help people find work in Wikipedia,” Proceedings of the 12th in-
ternational conference on Intelligent user interfaces, IUI ’07, 32–41, 2007, ACM
ID: 1216309. doi: 10.1145/1216295.1216309.

[7] R. M. Crespo, A. Pardo, J. P. S. Pérez, and C. D. Kloos, “An algorithm for peer
review matching using student profiles based on fuzzy classification and genetic
algorithms,” Proceedings of the 18th international conference on Innovations in
Applied Artificial Intelligence, IEA/AIE’2005, 685–694, 2005, ACM ID: 1117011.
doi: 10.1007/11504894_95.

[8] Crucible. [Online]. Available: http://www.atlassian.com/software/crucible/.

[9] W. S Evans, C. W Fraser, and F. Ma, “Clone detection via structural abstraction,”
Software Quality Journal, vol. 17, no. 4, 309–330, 2009.

[10] M. E. Fagan, “Advances in software inspections,” IEEE Transactions on Software
Engineering, vol. 12, 744–751, Jul. 1986, ACM ID: 9778, issn: 0098-5589. [On-
line]. Available: http://portal.acm.org/citation.cfm?id=9775.9778.

[11] E. F. Gehringer, “Electronic peer review and peer grading in computer science
courses,” ACM SIGCSE Bulletin, SIGCSE ’01, 139–143, 2001, ACM ID: 364564.
doi: 10.1145/364447.364564.

63

http://dx.doi.org/10.1145/1866029.1866078
http://dx.doi.org/10.1145/1866029.1866078
http://checkstyle.sourceforge.net/
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://smartbear.com/resources/cc/book/code-review-cisco-case-study.pdf
http://smartbear.com/resources/cc/book/code-review-cisco-case-study.pdf
http://dx.doi.org/10.1145/1216295.1216309
http://dx.doi.org/10.1007/11504894_95
http://www.atlassian.com/software/crucible/
http://portal.acm.org/citation.cfm?id=9775.9778
http://dx.doi.org/10.1145/364447.364564

[12] Gerrit. [Online]. Available: http://code.google.com/p/gerrit/.

[13] Hac: hierarchical agglomerative clustering library. [Online]. Available: https://g
ithub.com/sape/hac.

[14] J. Howe, “The rise of crowdsourcing,” Wired, no. 14.06, Jun. 2006. [Online].
Available: http://www.wired.com/wired/archive/14.06/crowds.html.

[15] C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan, “Integrating peda-
gogical code reviews into a CS 1 course: an empirical study,” ACM SIGCSE Bul-
letin, vol. 41, 291–295, Mar. 2009, ACM ID: 1508972, issn: 0097-8418. doi:
10.1145/1539024.1508972.

[16] C. Hundhausen, A. Agrawal, and K. Ryan, “The design of an online environment
to support pedagogical code reviews,” Proceedings of the 41st ACM technical sym-
posium on Computer science education, SIGCSE ’10, 182–186, 2010, ACM ID:
1734324. doi: 10.1145/1734263.1734324.

[17] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based
code clone detection system for large scale source code,” IEEE Transactions on
Software Engineering, 654–670, 2002. doi: 10.1109/TSE.2002.1019480.

[18] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit: tools for iter-
ative tasks on Mechanical Turk,” Proceedings of the ACM SIGKDD Workshop
on Human Computation, HCOMP ’09, 29–30, 2009, ACM ID: 1600159. doi:
10.1145/1600150.1600159.

[19] E. Z. Liu, S. S. Lin, and S. M. Yuan, “Alternatives to instructor assessment: a case
study of comparing self and peer assessment with instructor assessment under a net-
worked innovative assessment procedures,” International Journal of Instructional
Media, vol. 29, no. 4, 395–404, 2002.

[20] N. F Liu and D. R. Carless, “Peer feedback: the learning element of peer assess-
ment,” 2006.

[21] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design
lessons from the fastest Q&A site in the west,” Proceedings of the 2011 annual
conference on Human factors in computing systems, CHI ’11, 2857–2866, 2011,
ACM ID: 1979366. doi: 10.1145/1978942.1979366.

[22] Mondrian. [Online]. Available: http://www.youtube.com/watch?v=sMql3Di
4Kgc.

[23] K. Reily, P. L. Finnerty, and L. Terveen, “Two peers are better than one: aggregating
peer reviews for computing assignments is surprisingly accurate,” Proceedings of
the ACM 2009 international conference on Supporting group work, GROUP ’09,
115–124, 2009, ACM ID: 1531692. doi: 10.1145/1531674.1531692.

[24] Review Board. [Online]. Available: http://www.reviewboard.org/.

[25] Rietveld. [Online]. Available: http://code.google.com/appengine/articles/r
ietveld.html.

64

http://code.google.com/p/gerrit/
https://github.com/sape/hac
https://github.com/sape/hac
http://www.wired.com/wired/archive/14.06/crowds.html
http://dx.doi.org/10.1145/1539024.1508972
http://dx.doi.org/10.1145/1734263.1734324
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1145/1600150.1600159
http://dx.doi.org/10.1145/1978942.1979366
http://www.youtube.com/watch?v=sMql3Di4Kgc
http://www.youtube.com/watch?v=sMql3Di4Kgc
http://dx.doi.org/10.1145/1531674.1531692
http://www.reviewboard.org/
http://code.google.com/appengine/articles/rietveld.html
http://code.google.com/appengine/articles/rietveld.html

[26] P. C. Rigby and M. Storey, “Understanding broadcast based peer review on open
source software projects,” Proceeding of the 33rd international conference on Soft-
ware engineering, ICSE ’11, 541–550, 2011, ACM ID: 1985867. doi: 10.1145/1
985793.1985867.

[27] C. K Roy and J. R Cordy, “A survey on software clone detection research,”Queen’s
School of Computing TR, vol. 541, p. 115, 2007.

[28] C. K Roy, J. R Cordy, and R. Koschke, “Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach,” Science of Computer Pro-
gramming, vol. 74, no. 7, 470–495, 2009.

[29] S. Schleimer, D. S.Wilkerson, and A. Aiken, “Winnowing: local algorithms for doc-
ument fingerprinting,” Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’03, 76–85, 2003, ACM ID: 872770.
doi: 10.1145/872757.872770.

[30] D. Sluijsmans, F. Dochy, and G. Moerkerke, “Creating a learning environment by
using self-, peer-and co-assessment,” Learning Environments Research, vol. 1, no.
3, 293–319, 1998.

[31] A. Trivedi, D. C. Kar, and H. Patterson-McNeill, “Automatic assignment manage-
ment and peer evaluation,” Journal of Computing Sciences in Colleges, vol. 18,
30–37, Apr. 2003, ACM ID: 767605, issn: 1937-4771. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=767598.767605.

[32] D. A. Trytten, “A design for team peer code review,”ACMSIGCSEBulletin, SIGCSE
’05, 455–459, 2005, ACM ID: 1047492. doi: 10.1145/1047344.1047492.

[33] S. Turner and M. A. P. nones, “Exploring peer review in the computer science
classroom,” CoRR, vol. abs/0907.3456, Jul. 2009. [Online]. Available: http://a
rxiv.org/abs/0907.3456v1.

[34] K. Wiegers, Peer Reviews in Software: A Practical Guide, 1st ed. Addison-Wesley
Professional, Nov. 2001, isbn: 0201734850.

65

http://dx.doi.org/10.1145/1985793.1985867
http://dx.doi.org/10.1145/1985793.1985867
http://dx.doi.org/10.1145/872757.872770
http://portal.acm.org/citation.cfm?id=767598.767605
http://portal.acm.org/citation.cfm?id=767598.767605
http://dx.doi.org/10.1145/1047344.1047492
http://arxiv.org/abs/0907.3456v1
http://arxiv.org/abs/0907.3456v1

	Introduction
	Related Work
	Code Review in Industry
	Code Review in Education
	Crowdsourced Workflows
	Static Code Analysis

	Code Preprocessing
	Partitioning
	Design
	Implementation

	Chunk Filtering
	Design
	Implementation

	Automated Commenting
	Design
	Implementation

	Clustering
	Design
	Implementation

	Task Routing
	Design Goals
	Implementation

	Reviewing Interface
	Design Goals
	Features
	Streamlined Commenting Interface
	Discussion Support
	Code Display
	Activity Streams
	Dashboard

	Evaluation
	Code Preprocessor
	Partitioning
	Chunk Filtering
	Automated Commenting
	Clustering

	Task Routing
	Reviewing Interface

	Conclusion
	Future Work
	Additional Forms of Review Content
	Improved Chunk Filtering
	Improved Chunk Clustering
	Data-Driven Task Routing
	Similar Comment Clustering
	Community Building

