
On a Connection Between

Distributed Algorithms and

Sublinear-Time Algorithms

Krzysztof Onak
MIT

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 1/42

In this talk. . .

Problems

Optimization problems on graphs

Examples: vertex cover, maximum matching,
dominating set, . . .

Maximum (or average) degree bounded by d = O(1)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 2/42

In this talk. . .

Problems

Optimization problems on graphs

Examples: vertex cover, maximum matching,
dominating set, . . .

Maximum (or average) degree bounded by d = O(1)

Local Distributed Algorithms

compute a solution in a constant number of
communication rounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 2/42

In this talk. . .

Problems

Optimization problems on graphs

Examples: vertex cover, maximum matching,
dominating set, . . .

Maximum (or average) degree bounded by d = O(1)

Local Distributed Algorithms

compute a solution in a constant number of
communication rounds

Constant-Time Approximation Algorithms

Approximate the optimal solution size by only looking
at a small fraction of the graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 2/42

Sample Problem: Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 3/42

Local Distributed Algorithms

local ≡ constant number of communication rounds
(can be a function of d)

Vertex Cover: finally every vertex knows if it is in the cover

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 4/42

Constant-Time Algorithms

constant time ≡ function of d and approximation quality parameter

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Constant-Time Algorithms

constant time ≡ function of d and approximation quality parameter

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Constant-Time Algorithms

constant time ≡ function of d and approximation quality parameter

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

We’ll see:
constant-time (2, ǫn)-approximation algorithms
for vertex cover size

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Query Model

Graph G:

9

2 3

4

78

6

5
1

Query access to adjacency list of each node

What is the 3rd neighbor of node 6?

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 6/42

Sampling from a Distributed

Algorithm’s Solution

[Parnas, Ron 2007]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 7/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

t

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

2. Simulate A on the neighborhood of each v of radius t

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

2. Simulate A on the neighborhood of each v of radius t

3. Return the fraction of vertices that are in A’s cover (+ǫn/2)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

2. Simulate A on the neighborhood of each v of radius t

3. Return the fraction of vertices that are in A’s cover (+ǫn/2)

Output: (α, ǫn)-approximation with constant probability

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 9/42

Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 9/42

Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover:

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 9/42

Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover:

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 9/42

Slightly Better Algorithms

[Marko, Ron 2007]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 10/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Can show: 1 − δ fraction of vertices decided in O(log(d/δ)) rounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Can show: 1 − δ fraction of vertices decided in O(log(d/δ)) rounds

Ramifications for vertex cover:
distributed: (2 + δ)-approximation in O(log(d/δ)) rounds

sublinear: (2, ǫn)-approximation with dO(log(d/ǫ)) queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Local Greedy Computation

[Nguyen, O. 2008]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 13/42

Oracle for Maximal Independent Set

Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I independent of queries

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 14/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?
?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

?

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

??

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42

Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42

Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42

Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤
∑

∞

k=0 dk/(k + 1)!

≤ ed/d

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42

Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤
∑

∞

k=0 dk/(k + 1)!

≤ ed/d

Expected query complexity = O(d) · ed/d = O(ed)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42

Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 17/42

Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 17/42

Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 17/42

(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 18/42

(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Marko, Ron (2007):

dO(log(d/ǫ)) queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 18/42

(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Marko, Ron (2007):

dO(log(d/ǫ)) queries

Nguyen, O. (2008):

2O(d)/ǫ2 queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 18/42

(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Marko, Ron (2007):

dO(log(d/ǫ)) queries

Nguyen, O. (2008):

2O(d)/ǫ2 queries

Yoshida, Yamamoto, Ito (2009):

O(d3/ǫ2) queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 18/42

(1, ǫn)-Approximation

for Maximum Matching

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 19/42

Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 20/42

Review of Properties

Augmenting Path: a path that improves matching

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Review of Properties

Augmenting Path: a path that improves matching

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Review of Properties

Augmenting Path: a path that improves matching

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k + 1 ⇒ |M | ≥ k

k+1 |M
∗|

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k + 1 ⇒ |M | ≥ k

k+1 |M
∗|

To get (1 + ǫ)-approximation, set k = ⌈1/ǫ⌉

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 21/42

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 22/42

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Algorithm:
M := empty matching
for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i − 1
apply all paths to M

return M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 22/42

Transformation
Standard Algorithm:

Constant−Time Algorithm:

augmenting
Eliminate

paths

of length 1

augmenting
Eliminate

paths

of length 3

augmenting
Eliminate

paths

of length 5

augmenting
Eliminate

paths

of length 7

⇒ M1 ⇒ ⇒ M2 ⇒ ⇒ M3 ⇒∅ ⇒ ⇒ M4

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Oracle Oi:

provides query access to Mi

simulates applying to Mi−1 a maximal set of disjoint
augmenting paths of length 2i − 1

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 23/42

Transformation

Sample graph considered by O2:

Oi’s graph has degree dO(i)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 24/42

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 25/42

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1 − δ

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 25/42

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1 − δ

Query complexity: 2dO(1/ǫ)

queries for (1, ǫn)-approximation

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 25/42

Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1 − δ

Query complexity: 2dO(1/ǫ)

queries for (1, ǫn)-approximation

Yoshida, Yamamoto, Ito (2009)

Query complexity: dO(1/ǫ2)

uniform on higher level ⇒ close to uniform on lower

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 25/42

Distributed Algorithms

Can simulate the oracle locally for every vertex

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 26/42

Distributed Algorithms

Can simulate the oracle locally for every vertex

(1 − ǫ)-approximate maximum matching computable in

dO(1/ǫ) rounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 26/42

Lower Bounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 27/42

Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 28/42

Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

dominating set if α = o(log d) [Alon]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 28/42

Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

dominating set if α = o(log d) [Alon]

maximum independent set if α = o
(

d
log d

)

[Alon]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 28/42

Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

dominating set if α = o(log d) [Alon]

maximum independent set if α = o
(

d
log d

)

[Alon]

Ramifications:

no corresponding local distributed algorithm

need Ω(log n) rounds

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 28/42

Local Graph Partitions
[Hassidim, Kelner, Nguyen, O. 2009]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 29/42

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 30/42

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 30/42

Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth

Polynomial
Growth

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 31/42

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 32/42

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 32/42

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

Using a Partition

AlgorithmPartitioning

Oracle

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

New Tool: Partitioning Oracles

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 34/42

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 34/42

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 34/42

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 34/42

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 34/42

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 35/42

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 35/42

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 35/42

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Also :

For polynomial growth [Jung, Shah]:

Query complexity: poly(d/ǫ)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 35/42

Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)

3. Approximating distance to hereditary properties
in hyperfinite graphs

Earlier only known to be testable
[Czumaj, Shapira, Sohler 2009]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 36/42

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 37/42

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 37/42

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Czygrinow, Hańćkowiak, Wawrzyniak (2008)
+ Parnas, Ron (2007): for minor-free graphs

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 37/42

Simplest Oracle

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 38/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 39/42

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 40/42

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened to close vertices
with lower numbers

if v still in graph, try to construct a component

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 40/42

Open Problems

Tight bounds for vertex cover and maximum matching

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 41/42

Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 41/42

Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Good approximation algorithms for other popular
classes of graphs

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 41/42

Thank you!

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 42/42

	In this talkldots
	In this talkldots
	In this talkldots

	Sample Problem: Vertex Cover
	{
ed Local} Distributed Algorithms
	{
ed Constant-Time} Algorithms
	{
ed Constant-Time} Algorithms
	{
ed Constant-Time} Algorithms

	Query Model
	Approximation Algorithm
	Approximation Algorithm
	Approximation Algorithm
	Approximation Algorithm
	Approximation Algorithm
	Approximation Algorithm

	Complexity of the Algorithm
	Complexity of the Algorithm
	Complexity of the Algorithm
	Complexity of the Algorithm

	Vertex Cover
	Vertex Cover
	Vertex Cover

	Algorithm of Marko & Ron
	Algorithm of Marko & Ron
	Algorithm of Marko & Ron
	Algorithm of Marko & Ron
	Algorithm of Marko & Ron
	Algorithm of Marko & Ron

	Oracle for Maximal Independent Set
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation
	Local Greedy Computation

	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity
	Bounding Expected Query Complexity

	Recent Improvement
	Recent Improvement
	Recent Improvement

	psscalebox {.9 1}{$(2,eps n)$-Approximation for Vertex Cover}
	psscalebox {.9 1}{$(2,eps n)$-Approximation
for Vertex Cover}
	psscalebox {.9 1}{$(2,eps n)$-Approximation
for Vertex Cover}
	psscalebox {.9 1}{$(2,eps n)$-Approximation
for Vertex Cover}

	Maximum Matching
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties
	Review of Properties

	Standard Algorithm
	Standard Algorithm

	Transformation
	Transformation
	Query Complexity
	Query Complexity
	Query Complexity
	Query Complexity

	Distributed Algorithms
	Distributed Algorithms

	Relevant Lower Bounds
	Relevant Lower Bounds
	Relevant Lower Bounds
	Relevant Lower Bounds

	Hyperfinite Graphs
	Hyperfinite Graphs

	Taxonomy
	Using a Partition
	Using a Partition

	Using a Partition
	Using a Partition
	Using a Partition

	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle

	Our Oracles
	Our Oracles
	Our Oracles
	Our Oracles

	Three Applications
	Application 1: Approximation
	Application 1: Approximation
	Application 1: Approximation

	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure

	Local simulation
	Local simulation

	Open Problems
	Open Problems
	Open Problems

