On a Connection Between Distributed Algorithms and Sublinear-Time Algorithms

Krzysztof Onak MIT

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 1/42

In this talk...

Problems

- Optimization problems on graphs
- Examples: vertex cover, maximum matching, dominating set, ...
- Maximum (or average) degree bounded by d = O(1)

In this talk...

Problems

- Optimization problems on graphs
- Examples: vertex cover, maximum matching, dominating set, ...
- Maximum (or average) degree bounded by d = O(1)
- Local Distributed Algorithms
 - compute a solution in a constant number of communication rounds

In this talk...

Problems

- Optimization problems on graphs
- Examples: vertex cover, maximum matching, dominating set, ...
- Maximum (or average) degree bounded by d = O(1)
- Local Distributed Algorithms
 - compute a solution in a constant number of communication rounds
- Constant-Time Approximation Algorithms
 - Approximate the optimal solution size by only looking at a small fraction of the graph

Sample Problem: Vertex Cover

Graph G = (V, E)

Goal: find smallest set S of nodes such that each edge has endpoint in S

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 3/42

Local Distributed Algorithms

local \equiv constant number of communication rounds (can be a function of d)

Vertex Cover: finally every vertex knows if it is in the cover

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 4/42

Constant-Time Algorithms

constant time \equiv function of *d* and approximation quality parameter

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Constant-Time Algorithms

constant time \equiv function of *d* and approximation quality parameter

Approximation notion: *Y* is an (α, β) -approximation to *X* if $X \le Y \le \alpha \cdot X + \beta$

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Constant-Time Algorithms

constant time \equiv function of *d* and approximation quality parameter

Approximation notion:

Y is an (α, β) -approximation to *X* if $X \leq Y \leq \alpha \cdot X + \beta$

We'll see:

constant-time $(2, \epsilon n)$ -approximation algorithms for vertex cover size

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 5/42

Query Model

Query access to adjacency list of each node What is the 3rd neighbor of node 6?

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 6/42

Sampling from a Distributed Algorithm's Solution [Parnas, Ron 2007]

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 7/42

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = approximation factor$
- \bullet t =number of rounds

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- \square α = approximation factor
- \bullet t = number of rounds

Constant-time algorithm:

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = approximation factor$
- t =number of rounds

Constant-time algorithm:

1. Sample $O(1/\epsilon^2)$ vertices v

Local distributed approximation algorithm A for vertex cover:

- $\alpha = approximation factor$
- \bullet t = number of rounds

Constant-time algorithm:

- **1.** Sample $O(1/\epsilon^2)$ vertices v
- 2. Simulate \mathcal{A} on the neighborhood of each v of radius t

Local distributed approximation algorithm A for vertex cover:

- $\alpha = approximation factor$
- \bullet t = number of rounds

Constant-time algorithm:

- **1.** Sample $O(1/\epsilon^2)$ vertices v
- 2. Simulate \mathcal{A} on the neighborhood of each v of radius t
- 3. Return the fraction of vertices that are in A's cover ($+\epsilon n/2$)

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = approximation factor$
- \bullet t = number of rounds

Constant-time algorithm:

- **1.** Sample $O(1/\epsilon^2)$ vertices v
- 2. Simulate \mathcal{A} on the neighborhood of each v of radius t
- 3. Return the fraction of vertices that are in A's cover ($+\epsilon n/2$)

Output: $(\alpha, \epsilon n)$ -approximation with constant probability

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 8/42

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 9/42

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover:

• $\forall c > 2$, $(c, \epsilon n)$ -approximation with $d^{O(\log(d))}/\epsilon^2$ queries

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover:

- $\forall c > 2$, $(c, \epsilon n)$ -approximation with $d^{O(\log(d))}/\epsilon^2$ queries
- $(2, \epsilon n)$ -approximation with $d^{O(\log(d)/\epsilon^3)}$ queries

Slightly Better Algorithms [Marko, Ron 2007]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 10/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- \checkmark Greedily find a maximal matching M
- \checkmark Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- Greedily find a maximal matching *M*
- \checkmark Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- \checkmark Greedily find a maximal matching M
- Output the set of nodes matched in M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 11/42

Algorithm of Marko & Ron

via Luby (1986)

- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Algorithm of Marko & Ron

via Luby (1986)

- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Algorithm of Marko & Ron

via Luby (1986)

- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Algorithm of Marko & Ron via Luby (1986)

- ▶ select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Algorithm of Marko & Ron via Luby (1986)

Repeat:

- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Can show: $1 - \delta$ fraction of vertices decided in $O(\log(d/\delta))$ rounds

Algorithm of Marko & Ron via Luby (1986)

Repeat:

- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Can show: $1 - \delta$ fraction of vertices decided in $O(\log(d/\delta))$ rounds

Ramifications for vertex cover:

distributed: $(2 + \delta)$ -approximation in $O(\log(d/\delta))$ rounds

sublinear: $(2, \epsilon n)$ -approximation with $d^{O(\log(d/\epsilon))}$ queries

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 12/42

Local Greedy Computation [Nguyen, O. 2008]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 13/42

Oracle for Maximal Independent Set

Construct oracle \mathcal{O} :

- \mathcal{O} has query access to G = (V, E)
- O provides query access to maximal independent set $\mathcal{I} \subseteq V$
- $\ \, {\cal I} \ \, independent \ \, of \ \, queries \ \ \,$

Goal: Minimize the query processing time

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 14/42

Local Greedy Computation Nguyen, O. (2008)

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

Local Greedy Computation Nguyen, O. (2008)

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42

Local Greedy Computation Nguyen, O. (2008)

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 15/42
- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \ \iff \ \, \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \quad \Longleftrightarrow \quad \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \ \iff \ \, \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \quad \Longleftrightarrow \quad \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \ \iff \ \, \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \quad \Longleftrightarrow \quad \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \quad \Longleftrightarrow \quad \mathsf{none of them in } \mathcal{I}$

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

To check if $v \in \mathcal{I}$

- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $\ \, \bullet \quad v \in \mathcal{I} \quad \Longleftrightarrow \quad \mathsf{none of them in } \mathcal{I}$

• $\Pr[\text{a given path of length } k \text{ is explored}] \le 1/(k+1)!$

- $\Pr[a \text{ given path of length } k \text{ is explored}] \le 1/(k+1)!$
- number of neighbors at distance $k \leq d^k$

- $\Pr[\text{a given path of length } k \text{ is explored}] \le 1/(k+1)!$
- number of neighbors at distance $k \leq d^k$
- E[number of vertices explored at distance k] $\leq d^k/(k+1)$!

- $\Pr[a \text{ given path of length } k \text{ is explored}] \le 1/(k+1)!$
- number of neighbors at distance $k \leq d^k$
- E[number of vertices explored at distance k] $\leq d^k/(k+1)$!
- E[number of explored vertices $] \le \sum_{k=0}^{\infty} d^k / (k+1)!$ $\le e^d / d$

- $\Pr[\text{a given path of length } k \text{ is explored}] \le 1/(k+1)!$
- number of neighbors at distance $k \leq d^k$
- E[number of vertices explored at distance k] $\leq d^k/(k+1)$!
- E[number of explored vertices $] \le \sum_{k=0}^{\infty} d^k / (k+1)!$ $\le e^d / d$
- Expected query complexity = $O(d) \cdot e^d/d = O(e^d)$

Recent Improvement

Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)

Recent Improvement

Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)

They show:

 $E_{\text{permutations, start vertex}} [\text{#recursive calls}] \le 1 + \frac{m}{n}$

Recent Improvement

Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)

They show:

 $E_{\text{permutations, start vertex}} [\text{#recursive calls}] \le 1 + \frac{m}{n}$

Which gives:

expected query complexity for random vertex = $O(d^2)$

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

 $d^{O(\log(d)/\epsilon^3)}$ queries

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

 $d^{O(\log(d)/\epsilon^3)}$ queries

Marko, Ron (2007):

 $d^{O(\log(d/\epsilon))}$ queries

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

 $d^{O(\log(d)/\epsilon^3)}$ queries

Marko, Ron (2007):

 $d^{O(\log(d/\epsilon))}$ queries

Nguyen, O. (2008):

 $2^{O(d)}/\epsilon^2$ queries

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

 $d^{O(\log(d)/\epsilon^3)}$ queries

Marko, Ron (2007):

 $d^{O(\log(d/\epsilon))}$ queries

Nguyen, O. (2008):

 $2^{O(d)}/\epsilon^2$ queries

Yoshida, Yamamoto, Ito (2009):

 $O(d^3/\epsilon^2)$ queries

 $(1, \epsilon n)$ -Approximation for Maximum Matching

Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality

Augmenting Path: a path that improves matching

 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Augmenting Path: a path that improves matching

 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:

No augmenting paths of length $< 2k+1 \Rightarrow |M| \ge \frac{k}{k+1}|M^*|$

Augmenting Path: a path that improves matching

 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:

No augmenting paths of length $< 2k+1 \Rightarrow |M| \ge \frac{k}{k+1}|M^*|$

To get $(1 + \epsilon)$ -approximation, set $k = \lceil 1/\epsilon \rceil$

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

- M =matching with no augmenting paths of length < t
- P =maximal set of vertex-disjoint augmenting paths of length t for M
- M' = M with all paths in *P* applied
- Claim: M' has only augmenting paths of length > t

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

- M = matching with no augmenting paths of length < t
- P =maximal set of vertex-disjoint augmenting paths of length t for M
- M' = M with all paths in *P* applied

Claim: M' has only augmenting paths of length > t

Algorithm:

M := empty matching

for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i-1 apply all paths to M return M

Transformation

Standard Algorithm:

Oracle \mathcal{O}_i :

- \checkmark provides query access to M_i
- simulates applying to M_{i-1} a maximal set of disjoint augmenting paths of length 2i 1

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 23/42

Transformation

Sample graph considered by \mathcal{O}_2 :

 \mathcal{O}_i 's graph has degree $d^{O(i)}$

Query Complexity

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query
Query Complexity

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1 - \delta$

Query Complexity

Can't apply the previous approach!

every query may disclose some information about the random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1-\delta$

Query complexity: $2^{d^{O(1/\epsilon)}}$ queries for $(1, \epsilon n)$ -approximation

Query Complexity

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1-\delta$

Query complexity: $2^{d^{O(1/\epsilon)}}$ queries for $(1, \epsilon n)$ -approximation

Yoshida, Yamamoto, Ito (2009)

- Query complexity: $d^{O(1/\epsilon^2)}$
- uniform on higher level \Rightarrow close to uniform on lower

Distributed Algorithms

Can simulate the oracle locally for every vertex

Distributed Algorithms

- Can simulate the oracle locally for every vertex
- $(1-\epsilon)$ -approximate maximum matching computable in $d^{O(1/\epsilon)}$ rounds

Lower Bounds

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 27/42

No constant-time $(\alpha, \epsilon n)$ -approximation algorithm for:

• vertex cover if α constant less than 2 [Trevisan]

No constant-time $(\alpha, \epsilon n)$ -approximation algorithm for:

- vertex cover if α constant less than 2 [Trevisan]
- **•** dominating set if $\alpha = o(\log d)$ [Alon]

No constant-time $(\alpha, \epsilon n)$ -approximation algorithm for:

- vertex cover if α constant less than 2 [Trevisan]
- dominating set if $\alpha = o(\log d)$ [Alon]
- maximum independent set if $\alpha = o\left(\frac{d}{\log d}\right)$ [Alon]

No constant-time $(\alpha, \epsilon n)$ -approximation algorithm for:

- vertex cover if α constant less than 2 [Trevisan]
- dominating set if $\alpha = o(\log d)$ [Alon]
- maximum independent set if $\alpha = o\left(\frac{d}{\log d}\right)$ [Alon]

Ramifications:

- no corresponding local distributed algorithm
- need $\Omega(\log n)$ rounds

Local Graph Partitions [Hassidim, Kelner, Nguyen, O. 2009]

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 29/42

Hyperfinite Graphs

• (ϵ, δ)-hyperfinite graphs: can remove $\epsilon |V|$ edges and get components of size at most δ

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 30/42

Hyperfinite Graphs

- (ϵ, δ)-hyperfinite graphs: can remove $\epsilon |V|$ edges and get components of size at most δ
- hyperfinite family of graphs: there is ρ such that all graphs are $(\epsilon, \rho(\epsilon))$ -hyperfinite for all $\epsilon > 0$

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 30/42

Taxonomy

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 31/42

If someone gave us a $(\epsilon/2, \delta)$ -partition:

Sample $O(1/\epsilon^2)$ vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

If someone gave us a $(\epsilon/2, \delta)$ -partition:

Sample $O(1/\epsilon^2)$ vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

This gives $\pm \epsilon$ approximation to VC(G)/n in constant time:

- Cut edges change VC(G) by at most $\epsilon n/2$
- Can compute vertex cover separately for each component

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 32/42

If someone gave us a $(\epsilon/2, \delta)$ -partition:

Bad news:

We don't have a partition

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

If someone gave us a $(\epsilon/2, \delta)$ -partition:

Bad news:

We don't have a partition

Good news:

We can compute it ourselves without looking at the entire graph

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

Bad news:

We don't have a partition

Good news:

We can compute it ourselves without looking at the entire graph

New Tool: Partitioning Oracles

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 33/42

- $\mathcal{C} = fixed hyperfinite class$
- oracle has query access to G = (V, E)(G need not be in C)

- $\mathcal{C} = fixed hyperfinite class$
 - oracle has query access to G = (V, E)(G need not be in C)
 - oracle provides query access to partition P of V; for each v, oracle returns $P(v) \subseteq V$ s.t. $v \in P(v)$

- $\mathcal{C} = fixed hyperfinite class$
 - oracle has query access to G = (V, E)(G need not be in C)
 - oracle provides query access to partition P of V; for each v, oracle returns $P(v) \subseteq V$ s.t. $v \in P(v)$
 - Properties of P:
 - each |P(v)| = O(1)

- $\mathcal{C} = fixed hyperfinite class$
 - oracle has query access to G = (V, E)(G need not be in C)
 - oracle provides query access to partition P of V; for each v, oracle returns $P(v) \subseteq V$ s.t. $v \in P(v)$
 - Properties of P:
 - each |P(v)| = O(1)
 - If $G \in \mathcal{C}$, number of cut edges $\leq \epsilon n$ w.p. $\frac{99}{100}$

- $\mathcal{C} = fixed hyperfinite class$
 - oracle has query access to G = (V, E)(G need not be in C)
 - oracle provides query access to partition P of V; for each v, oracle returns $P(v) \subseteq V$ s.t. $v \in P(v)$
 - Properties of P:
 - each |P(v)| = O(1)
 - If $G \in \mathcal{C}$, number of cut edges $\leq \epsilon n$ w.p. $\frac{99}{100}$
 - partition $P(\cdot)$ is not a function of queries, it is a function of graph structure and random bits

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/54000))}}$
 - Via local simulation of a greedy partitioning procedure (uses [Nguyen, O. 2008])

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$
 - Via techniques from distributed algorithms
 [Czygrinow, Hańćkowiak, Wawrzyniak 2008]

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$
- For $\rho(\epsilon) \le \operatorname{poly}(1/\epsilon)$:
 - Query complexity: $2^{\text{poly}(d/\epsilon)}$
 - Via methods from distributed algorithms and partitioning methods of Andersen and Peres (2009)

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$
- For $\rho(\epsilon) \leq \text{poly}(1/\epsilon)$:
 - Query complexity: $2^{\text{poly}(d/\epsilon)}$

Also :

- For polynomial growth [Jung, Shah]:
 - Query complexity: $poly(d/\epsilon)$

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 35/42

Three Applications

- 1. Approximation of graph parameters in hyperfinite graphs
- 2. Testing minor-closed properties
 - Simpler proof of the result of Benjamini, Schramm, and Shapira (2008)
- 3. Approximating distance to hereditary properties in hyperfinite graphs
 - Earlier only known to be testable
 [Czumaj, Shapira, Sohler 2009]

Application 1: Approximation

- For hyperfinite graphs, can get $\pm \epsilon n$ approximation to:
 - minimum vertex cover size (that is also the independence number)
 - minimum dominating set size
 - in time independent of the graph size

Application 1: Approximation

- For hyperfinite graphs, can get $\pm \epsilon n$ approximation to:
 - minimum vertex cover size (that is also the independence number)
 - minimum dominating set size

in time independent of the graph size

- Earlier/independent proofs of the same results
 - Elek 2009: for graphs with subexponential growth

Application 1: Approximation

- For hyperfinite graphs, can get $\pm \epsilon n$ approximation to:
 - minimum vertex cover size (that is also the independence number)
 - minimum dominating set size

in time independent of the graph size

- Earlier/independent proofs of the same results
 - Elek 2009: for graphs with subexponential growth
 - Czygrinow, Hańćkowiak, Wawrzyniak (2008)
 + Parnas, Ron (2007): for minor-free graphs

Simplest Oracle

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 38/42

Iterative Procedure

Global procedure:

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 39/42

Iterative Procedure

Global procedure:

Krzysztof Onak – *Distributed Algorithms and Sublinear-Time Algorithms* – p. 39/42
Global procedure:

Global procedure:

Global procedure:

Global procedure:

Global procedure:

Global procedure: \cap

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a random permutation

Local simulation

Use technique of Nguyen and O. (2008):

- Random numbers assigned to vertices generate a random permutation
- To find a component of v:
 - recursively check what happened to close vertices with lower numbers
 - if v still in graph, try to construct a component

Open Problems

Tight bounds for vertex cover and maximum matching

Open Problems

Tight bounds for vertex cover and maximum matching

- Is there a $poly(1/\epsilon)$ -time/query partitioning oracle for minor-free graphs?
 - This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)

Open Problems

Tight bounds for vertex cover and maximum matching

- Is there a $poly(1/\epsilon)$ -time/query partitioning oracle for minor-free graphs?
 - This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)
- Good approximation algorithms for other popular classes of graphs

Thank you!