On a Connection Between Distributed Algorithms and Sublinear-Time Algorithms

Krzysztof Onak
MIT
In this talk...

Problems

- Optimization problems on graphs
- **Examples:** vertex cover, maximum matching, dominating set, ...
- Maximum (or average) degree bounded by $d = O(1)$
In this talk...

- **Problems**
 - Optimization problems on graphs
 - **Examples:** vertex cover, maximum matching, dominating set, ...
 - Maximum (or average) degree bounded by \(d = O(1) \)

- **Local Distributed Algorithms**
 - compute a solution in a constant number of communication rounds
In this talk...

- **Problems**
 - Optimization problems on graphs
 - **Examples:** vertex cover, maximum matching, dominating set, ...
 - Maximum (or average) degree bounded by \(d = O(1) \)

- **Local Distributed Algorithms**
 - Compute a **solution** in a constant number of communication rounds

- **Constant-Time Approximation Algorithms**
 - Approximate the optimal **solution size** by only looking at a small fraction of the graph
Sample Problem: Vertex Cover

Graph $G = (V, E)$

Goal: find smallest set S of nodes such that each edge has endpoint in S
Local Distributed Algorithms

\[\text{local} \equiv \text{constant number of communication rounds} \]
(can be a function of \(d\))

Vertex Cover: finally every vertex knows if it is in the cover
Constant-Time Algorithms

constant time \equiv \text{function of } d \text{ and approximation quality parameter}
Constant-Time Algorithms

constant time \equiv function of d and approximation quality parameter

Approximation notion:
Y is an (α, β)-approximation to X if $X \leq Y \leq \alpha \cdot X + \beta$
Constant-Time Algorithms

constant time \equiv function of d and approximation quality parameter

Approximation notion:
Y is an (α, β)-approximation to X if $X \leq Y \leq \alpha \cdot X + \beta$

We’ll see:
constant-time $(2, \epsilon n)$-approximation algorithms for vertex cover size
Query Model

Graph G:

Query access to adjacency list of each node

What is the 3rd neighbor of node 6?
Sampling from a Distributed Algorithm’s Solution

[Parnas, Ron 2007]
Approximation Algorithm

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = \text{approximation factor}$
- $t = \text{number of rounds}$
Approximation Algorithm

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = \text{approximation factor}$
- $t = \text{number of rounds}$

Constant-time algorithm:
Approximation Algorithm

Local distributed approximation algorithm A for vertex cover:

- $\alpha = \text{approximation factor}$
- $t = \text{number of rounds}$

Constant-time algorithm:

1. Sample $O\left(\frac{1}{\epsilon^2}\right)$ vertices v
Approximation Algorithm

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = \text{approximation factor}$
- $t = \text{number of rounds}$

Constant-time algorithm:
1. Sample $O(1/\epsilon^2)$ vertices v
2. Simulate \mathcal{A} on the neighborhood of each v of radius t
Approximation Algorithm

Local distributed approximation algorithm \(\mathcal{A} \) for vertex cover:

- \(\alpha = \) approximation factor
- \(t = \) number of rounds

Constant-time algorithm:

1. Sample \(O\left(\frac{1}{\epsilon^2}\right) \) vertices \(v \)
2. Simulate \(\mathcal{A} \) on the neighborhood of each \(v \) of radius \(t \)
3. Return the fraction of vertices that are in \(\mathcal{A} \)'s cover (\(+\epsilon n/2 \))
Approximation Algorithm

Local distributed approximation algorithm \mathcal{A} for vertex cover:

- $\alpha = \text{approximation factor}$
- $t = \text{number of rounds}$

Constant-time algorithm:

1. Sample $O(1/\epsilon^2)$ vertices v
2. Simulate \mathcal{A} on the neighborhood of each v of radius t
3. Return the fraction of vertices that are in \mathcal{A}’s cover ($+\epsilon n/2$)

Output: $(\alpha, \epsilon n)$-approximation with constant probability
Complexity of the Algorithm

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$
Complexity of the Algorithm

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover
Complexity of the Algorithm

Query complexity: $O\left(\frac{1}{\epsilon^2}\right) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover:

∀$c > 2$, $(c, \epsilon n)$-approximation with $d^{O(\log(d))}/\epsilon^2$ queries
Complexity of the Algorithm

Query complexity: $O(1/\epsilon^2) \cdot d^{O(t)}$

Parnas and Ron applied algorithms of Kuhn, Moscibroda, Wattenhofer (2006) to vertex cover:

- $\forall c > 2$, $(c, \epsilon n)$-approximation with $d^{O(\log(d))/\epsilon^2}$ queries
- $(2, \epsilon n)$-approximation with $d^{O(\log(d)/\epsilon^3)}$ queries
Slightly Better Algorithms

[Marko, Ron 2007]
Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M
Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:
- Greedily find a maximal matching M
- Output the set of nodes matched in M
Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
- select each node \(v \) with probability \(\Theta(1/d(v)) \)
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
- select each node \(v \) with probability \(\Theta(1/d(v)) \)
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
1. select each node \(v \) with probability \(\Theta(1/d(v)) \)
2. deselect a node if a neighbor selected
3. add selected nodes to independent set
4. remove selected nodes and their neighbors from graph

Can show: \(1 - \delta \) fraction of vertices decided in \(O(\log(d/\delta)) \) rounds
Algorithm of Marko & Ron
via Luby (1986)

Repeat:
- select each node v with probability $\Theta(1/d(v))$
- deselect a node if a neighbor selected
- add selected nodes to independent set
- remove selected nodes and their neighbors from graph

Can show: $1 - \delta$ fraction of vertices decided in $O(\log(d/\delta))$ rounds

Ramifications for vertex cover:
- distributed: $(2 + \delta)$-approximation in $O(\log(d/\delta))$ rounds
- sublinear: $(2, \epsilon n)$-approximation with $d^{O(\log(d/\epsilon))}$ queries
Local Greedy Computation

[Nguyen, O. 2008]
Oracle for Maximal Independent Set

Construct oracle \mathcal{O}:

- \mathcal{O} has query access to $G = (V, E)$
- \mathcal{O} provides query access to maximal independent set $\mathcal{I} \subseteq V$
- \mathcal{I} independent of queries

Goal: Minimize the query processing time
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv \text{random numbers } r(v) \text{ assigned to each vertex}
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order ≡ random numbers $r(v)$ assigned to each vertex

To check if $v \in \mathcal{I}$
- recursively check if neighbors w s.t. $r(w) < r(v)$ are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv \text{random numbers } r(v) \text{ assigned to each vertex}

To check if \(v \in \mathcal{I} \)

- recursively check if neighbors \(w \) s.t. \(r(w) < r(v) \) are in \(\mathcal{I} \)
- \(v \in \mathcal{I} \iff \text{none of them in } \mathcal{I} \)
Local Greedy Computation

Main idea:
- Select maximal independent set greedily
- Consider vertices in random order

Random order ≡ random numbers \(r(v) \) assigned to each vertex

To check if \(v \in \mathcal{I} \)
- Recursively check if neighbors \(w \) s.t. \(r(w) < r(v) \) are in \(\mathcal{I} \)
- \(v \in \mathcal{I} \) ⇔ none of them in \(\mathcal{I} \)
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order ≡ random numbers \(r(v) \) assigned to each vertex

To check if \(v \in I \)
- recursively check if neighbors \(w \) s.t. \(r(w) < r(v) \) are in \(I \)
- \(v \in I \iff \) none of them in \(I \)
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers $r(v)$ assigned to each vertex

To check if $v \in I$
- recursively check if neighbors w s.t. $r(w) < r(v)$ are in I
- $v \in I \iff$ none of them in I
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order ≡ random numbers $r(v)$ assigned to each vertex

To check if $v \in \mathcal{I}$

- recursively check if neighbors w s.t. $r(w) < r(v)$ are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order \equiv \text{random numbers } r(v) \text{ assigned to each vertex}

To check if \(v \in \mathcal{I} \)
- recursively check if neighbors \(w \) s.t. \(r(w) < r(v) \) are in \(\mathcal{I} \)
- \(v \in \mathcal{I} \iff \text{none of them in } \mathcal{I} \)
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers $r(v)$ assigned to each vertex

To check if $v \in I$
- recursively check if neighbors w s.t. $r(w) < r(v)$ are in I
- $v \in I \iff$ none of them in I
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \(\equiv\) random numbers \(r(v)\) assigned to each vertex

To check if \(v \in \mathcal{I}\)

- recursively check if neighbors \(w\) s.t. \(r(w) < r(v)\) are in \(\mathcal{I}\)
- \(v \in \mathcal{I}\) \(\iff\) none of them in \(\mathcal{I}\)
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \(\equiv\) random numbers \(r(v)\) assigned to each vertex

To check if \(v \in I\)

- recursively check if neighbors \(w\) s.t. \(r(w) < r(v)\) are in \(I\)
- \(v \in I \iff\) none of them in \(I\)
Local Greedy Computation

Main idea:
- select maximal independent set greedily
- consider vertices in random order

Random order ≡ random numbers $r(v)$ assigned to each vertex

To check if $v \in \mathcal{I}$
- recursively check if neighbors w s.t. $r(w) < r(v)$ are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers \(r(v) \) assigned to each vertex

To check if \(v \in \mathcal{I} \)

- recursively check if neighbors \(w \) s.t. \(r(w) < r(v) \) are in \(\mathcal{I} \)
- \(v \in \mathcal{I} \iff \) none of them in \(\mathcal{I} \)
Local Greedy Computation

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers $r(v)$ assigned to each vertex

To check if $v \in \mathcal{I}$

- recursively check if neighbors w s.t. $r(w) < r(v)$ are in \mathcal{I}

- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}
Pr[a given path of length k is explored] $\leq 1/(k + 1)!$
Bounding Expected Query Complexity

Pr[a given path of length k is explored] $\leq \frac{1}{(k + 1)!}$

number of neighbors at distance k $\leq d^k$
Bounding Expected Query Complexity

- $\Pr[\text{a given path of length } k \text{ is explored}] \leq \frac{1}{(k+1)!}$

- number of neighbors at distance $k \leq d^k$

- $E[\text{number of vertices explored at distance } k] \leq \frac{d^k}{(k+1)!}$
Bounding Expected Query Complexity

- \(\Pr[\text{a given path of length } k \text{ is explored}] \leq 1/(k + 1)! \)

- number of neighbors at distance \(k \) \(\leq d^k \)

- \(E[\text{number of vertices explored at distance } k] \leq d^k/(k + 1)! \)

- \(E[\text{number of explored vertices}] \leq \sum_{k=0}^{\infty} d^k/(k + 1)! \)
 \(\leq e^d/d \)
Bounding Expected Query Complexity

- $\Pr[\text{a given path of length } k \text{ is explored}] \leq 1/(k + 1)!$

- number of neighbors at distance $k \leq d^k$

- $E[\text{number of vertices explored at distance } k] \leq d^k/(k + 1)!$

- $E[\text{number of explored vertices}] \leq \sum_{k=0}^{\infty} d^k/(k + 1)!$
 \[
 \leq e^d/d
 \]

- Expected query complexity $= O(d) \cdot e^d/d = O(e^d)$
Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of $r(w)$
- Once you find $w \in \mathcal{I}$, $v \not\in \mathcal{I}$
 (i.e., don’t check other neighbors)
Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of $r(w)$
- Once you find $w \in I$, $v \notin I$
 (i.e., don’t check other neighbors)

They show:

$$E_{\text{permutations, start vertex}}[\#\text{recursive calls}] \leq 1 + \frac{m}{n}$$
Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:
- Consider neighbors w of v in ascending order of $r(w)$
- Once you find $w \in \mathcal{I}$, $v \not\in \mathcal{I}$
 (i.e., don’t check other neighbors)

They show:
$$\mathbb{E}_{\text{permutations}, \text{start vertex}}[\#\text{recursive calls}] \leq 1 + \frac{m}{n}$$

Which gives:
expected query complexity for random vertex $= O(d^2)$
(2, \epsilon n)-Approximation for Vertex Cover

\(d^{O(\log(d)/\epsilon^3)} \) queries
\((2, \varepsilon n)\)-Approximation for Vertex Cover

\[d^{O(\log(d)/\varepsilon^3)} \] queries

Marko, Ron (2007):

\[d^{O(\log(d/\varepsilon))} \] queries
(2, εn)-Approximation for Vertex Cover

$$d^O(\log(d)/\varepsilon^3)$$ queries

Marko, Ron (2007):

$$d^O(\log(d/\varepsilon))$$ queries

$$2^O(d)/\varepsilon^2$$ queries
$(2, \varepsilon n)$-Approximation for Vertex Cover

$$d^{O(\log(d)/\varepsilon^3)} \text{ queries}$$

Marko, Ron (2007):

$$d^{O(\log(d/\varepsilon))} \text{ queries}$$

$$2^{O(d)} / \varepsilon^2 \text{ queries}$$

Yoshida, Yamamoto, Ito (2009):

$$O(d^3 / \varepsilon^2) \text{ queries}$$
$(1, \epsilon n)$-Approximation for Maximum Matching
Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality
Review of Properties

Augmenting Path: a path that improves matching
Review of Properties

Augmenting Path: a path that improves matching
Review of Properties

Augmenting Path: a path that improves matching
Review of Properties

Augmenting Path: a path that improves matching

$M = \text{matching}, \ M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M
Augmenting Path: a path that improves matching

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:
No augmenting paths of length $< 2k + 1 \Rightarrow |M| \geq \frac{k}{k+1}|M^*|$
Augmenting Path: a path that improves matching

$M = \text{matching}, \ M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:
No augmenting paths of length $< 2k + 1 \Rightarrow |M| \geq \frac{k}{k+1} |M^*|$

To get $(1 + \epsilon)$-approximation, set $k = \lceil 1/\epsilon \rceil$
Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

\[M = \text{matching with no augmenting paths of length } < t \]
\[P = \text{maximal set of vertex-disjoint augmenting paths of length } t \text{ for } M \]
\[M' = M \text{ with all paths in } P \text{ applied} \]

Claim: \(M' \) has only augmenting paths of length \(> t \)
Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

\(M \) = matching with no augmenting paths of length \(< t \)

\(P \) = maximal set of vertex-disjoint augmenting paths

of length \(t \) for \(M \)

\(M' = M \) with all paths in \(P \) applied

Claim: \(M' \) has only augmenting paths of length \(\geq t \)

Algorithm:

\(M := \) empty matching

for \(i = 1 \) to \(k \):

find maximal set of disjoint augmenting paths of length \(2i - 1 \)

apply all paths to \(M \)

return \(M \)
Transformation

Standard Algorithm:

\[\emptyset \Rightarrow M_1 \Rightarrow M_2 \Rightarrow M_3 \Rightarrow M_4 \]

Constant–Time Algorithm:

Oracle \(O_1 \): no augmenting paths of length \(\leq 1 \)

Oracle \(O_2 \): no augmenting paths of length \(\leq 3 \)

Oracle \(O_3 \): no augmenting paths of length \(\leq 5 \)

Oracle \(O_4 \): no augmenting paths of length \(\leq 7 \)

\(\exists \) sampling \rightarrow approximation

Oracle \(O_i \):

- provides query access to \(M_i \)
- simulates applying to \(M_{i-1} \) a maximal set of disjoint augmenting paths of length \(2i - 1 \)
Transformation

Sample graph considered by O_2:

O_i’s graph has degree $d^{O(i)}$
Query Complexity

Can’t apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query
Query Complexity

Can’t apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for \(q \) queries, needs to visit at most \(q^2 \cdot 2^{O(d^4)} / \delta \) vertices with probability \(1 - \delta \)
Query Complexity

Can’t apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)} / \delta$ vertices with probability $1 - \delta$

Query complexity: $2^{d^{O(1/\epsilon)}}$ queries for $(1, \epsilon n)$-approximation
Query Complexity

Can’t apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)} / \delta$ vertices with probability $1 - \delta$

Query complexity: $2^{d^O(1/\epsilon)}$ queries for $(1, \epsilon n)$-approximation

Yoshida, Yamamoto, Ito (2009)

- Query complexity: $d^{O(1/\epsilon^2)}$
- uniform on higher level \Rightarrow close to uniform on lower
Distributed Algorithms

- Can simulate the oracle locally for every vertex
Distributed Algorithms

- Can simulate the oracle locally for every vertex

- \((1 - \epsilon)\)-approximate maximum matching computable in \(d^{O(1/\epsilon)}\) rounds
Lower Bounds
Relevant Lower Bounds

No constant-time $(\alpha, \epsilon n)$-approximation algorithm for:
- vertex cover if α constant less than 2 [Trevisan]
Relevant Lower Bounds

No constant-time \((\alpha, \epsilon n)\)-approximation algorithm for:

- vertex cover if \(\alpha\) constant less than 2 [Trevisan]
- dominating set if \(\alpha = o(\log d)\) [Alon]
Relevant Lower Bounds

No constant-time \((\alpha, \epsilon n)\)-approximation algorithm for:

- vertex cover if \(\alpha\) constant less than 2 [Trevisan]
- dominating set if \(\alpha = o(\log d)\) [Alon]
- maximum independent set if \(\alpha = o(\frac{d}{\log d})\) [Alon]
Relevant Lower Bounds

No constant-time \((\alpha, \epsilon n)\)-approximation algorithm for:
- vertex cover if \(\alpha\) constant less than 2 [Trevisan]
- dominating set if \(\alpha = o(\log d)\) [Alon]
- maximum independent set if \(\alpha = o\left(\frac{d}{\log d}\right)\) [Alon]

Ramifications:
- no corresponding local distributed algorithm
- need \(\Omega(\log n)\) rounds
Local Graph Partitions

[Hassidim, Kelner, Nguyen, O. 2009]
Hyperfinite Graphs

(All graphs of degree $O(1)$)

(ϵ, δ)-partition

(ϵ, δ)-hyperfinite graphs: can remove $\epsilon|V|$ edges and get components of size at most δ
Hyperfinite Graphs

(All graphs of degree $O(1)$)

(ϵ, δ)-hyperfinite graphs: can remove $\epsilon |V|$ edges and get components of size at most δ

hyperfinite family of graphs: there is ρ such that all graphs are $(\epsilon, \rho(\epsilon))$-hyperfinite for all $\epsilon > 0$
Using a Partition

If someone gave us a \((\epsilon/2, \delta)\)-partition:

- Sample \(O(1/\epsilon^2)\) vertices
- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers
Using a Partition

If someone gave us a \((\epsilon/2, \delta)\)-partition:

- Sample \(O(1/\epsilon^2)\) vertices
- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

This gives \(\pm \epsilon\) approximation to \(VC(G)/n\) in constant time:

- Cut edges change \(VC(G)\) by at most \(\epsilon n/2\)
- Can compute vertex cover separately for each component
Using a Partition

If someone gave us a \((\epsilon/2, \delta)\)-partition:

Bad news:

We don’t have a partition
Using a Partition

If someone gave us a \((\epsilon/2, \delta)\)-partition:

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves without looking at the entire graph
Using a Partition

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves without looking at the entire graph

New Tool: Partitioning Oracles
\[C = \text{fixed hyperfinite class} \]

- oracle has query access to \(G = (V, E) \)
 \((G \text{ need not be in } C) \)
Partitioning Oracle

\(\mathcal{C} = \text{fixed hyperfinite class} \)

- oracle has query access to \(G = (V, E) \)
 \((G \text{ need not be in } \mathcal{C}) \)

- oracle provides query access to partition \(P \) of \(V \); for each \(v \), oracle returns \(P(v) \subseteq V \) s.t. \(v \in P(v) \)
Partitioning Oracle

\[\mathcal{C} = \text{fixed hyperfinite class} \]

- oracle has query access to \(G = (V, E) \)
 \((G \text{ need not be in } \mathcal{C}) \)

- oracle provides query access to partition \(P \) of \(V \);
 for each \(v \), oracle returns \(P(v) \subseteq V \) s.t. \(v \in P(v) \)

- Properties of \(P \):
 - each \(|P(v)| = O(1) \)
Partitioning Oracle

\[C = \text{fixed hyperfinite class} \]

- oracle has query access to \(G = (V, E) \)
 \((G \text{ need not be in } C) \)

- oracle provides query access to partition \(P \) of \(V \);
 for each \(v \), oracle returns \(P(v) \subseteq V \) s.t. \(v \in P(v) \)

Properties of \(P \):

- each \(|P(v)| = O(1) \)
- If \(G \in C \), number of cut edges \(\leq \epsilon n \) w.p. \(\frac{99}{100} \)
Partitioning Oracle

\[\mathcal{C} = \text{fixed hyperfinite class} \]

- oracle has query access to \(G = (V, E) \)
 \((G \text{ need not be in } \mathcal{C})\)

- oracle provides query access to partition \(P \) of \(V \);
 for each \(v \), oracle returns \(P(v) \subseteq V \) s.t. \(v \in P(v) \)

Properties of \(P \):
- each \(|P(v)| = O(1) \)
- If \(G \in \mathcal{C} \), number of cut edges \(\leq \epsilon n \) w.p. \(\frac{99}{100} \)
- partition \(P(\cdot) \) is not a function of queries,
 it is a function of graph structure and random bits.
Our Oracles

- Generic oracle for any hyperfinite class of graphs
- Query complexity: $2d^{O(\rho(\epsilon^3/54000))}$
- Via local simulation of a greedy partitioning procedure (uses [Nguyen, O. 2008])
Our Oracles

- **Generic oracle for any hyperfinite class of graphs**
 - Query complexity: $2^{d^{O\left(\frac{\rho(\epsilon^3)}{54000}\right)}}$

- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$
 - Via techniques from distributed algorithms
 - [Czygrinow, Hańckowiak, Wawrzyniak 2008]
Our Oracles

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/54000))}}$

- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$

- For $\rho(\epsilon) \leq \text{poly}(1/\epsilon)$:
 - Query complexity: $2^{\text{poly}(d/\epsilon)}$
 - Via methods from distributed algorithms and partitioning methods of Andersen and Peres (2009)
Our Oracles

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: \(2^{d\Omega(\rho(\epsilon^3/54000))}\)

- For minor-free graphs:
 - Query complexity: \(d^{\text{poly}(1/\epsilon)}\)

- For \(\rho(\epsilon) \leq \text{poly}(1/\epsilon)\):
 - Query complexity: \(2^{\text{poly}(d/\epsilon)}\)

Also:

- For polynomial growth [Jung, Shah]:
 - Query complexity: \(\text{poly}(d/\epsilon)\)
Three Applications

1. Approximation of graph parameters in hyperfinite graphs

2. Testing minor-closed properties
 - Simpler proof of the result of Benjamini, Schramm, and Shapira (2008)

3. Approximating distance to hereditary properties in hyperfinite graphs
 - Earlier only known to be testable
 [Czumaj, Shapira, Sohler 2009]
Application 1: Approximation

For hyperfinite graphs, can get $\pm \epsilon n$ approximation to:
- minimum vertex cover size
 (that is also the independence number)
- minimum dominating set size
in time independent of the graph size
Application 1: Approximation

For hyperfinite graphs, can get $\pm \varepsilon n$ approximation to:
- minimum vertex cover size (that is also the independence number)
- minimum dominating set size
in time independent of the graph size

Earlier/independent proofs of the same results
- Elek 2009: for graphs with subexponential growth
Application 1: Approximation

For hyperfinite graphs, can get $\pm \epsilon n$ approximation to:
- minimum vertex cover size
 (that is also the independence number)
- minimum dominating set size
in time independent of the graph size

Earlier/independent proofs of the same results
- Elek 2009: for graphs with subexponential growth
- Czygrinow, Hańćkowiak, Wawrzyniak (2008)
 + Parnas, Ron (2007): for minor-free graphs
Simplest Oracle
Iterative Procedure

Global procedure:
Local simulation

Use technique of **Nguyen** and **O. (2008)**:

- Random numbers assigned to vertices generate a random permutation
Local simulation

Use technique of Nguyen and O. (2008):

- Random numbers assigned to vertices generate a random permutation
- To find a component of v:
 - recursively check what happened to close vertices with lower numbers
 - if v still in graph, try to construct a component
Open Problems

- Tight bounds for vertex cover and maximum matching
Open Problems

- Tight bounds for vertex cover and maximum matching

- Is there a $\text{poly}(1/\epsilon)$-time/query partitioning oracle for minor-free graphs?

 This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)
Open Problems

- Tight bounds for vertex cover and maximum matching

- Is there a $\text{poly}(1/\epsilon)$-time/query partitioning oracle for minor-free graphs?
 - This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)

- Good approximation algorithms for other popular classes of graphs
Thank you!