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In this talk. . .

Problems

Optimization problems on graphs

Examples: vertex cover, maximum matching,
dominating set, . . .

Maximum (or average) degree bounded by d = O(1)
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In this talk. . .

Problems

Optimization problems on graphs

Examples: vertex cover, maximum matching,
dominating set, . . .

Maximum (or average) degree bounded by d = O(1)

Local Distributed Algorithms

compute a solution in a constant number of
communication rounds

Constant-Time Approximation Algorithms

Approximate the optimal solution size by only looking
at a small fraction of the graph
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Sample Problem: Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S
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Local Distributed Algorithms

local ≡ constant number of communication rounds
(can be a function of d)

Vertex Cover: finally every vertex knows if it is in the cover
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Constant-Time Algorithms

constant time ≡ function of d and approximation quality parameter
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Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β
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Constant-Time Algorithms

constant time ≡ function of d and approximation quality parameter

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

We’ll see:
constant-time (2, ǫn)-approximation algorithms
for vertex cover size
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Query Model

Graph G:

9

2 3

4

78

6

5
1

Query access to adjacency list of each node

What is the 3rd neighbor of node 6?
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Sampling from a Distributed

Algorithm’s Solution

[Parnas, Ron 2007]
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Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds
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Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v
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Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

t

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

2. Simulate A on the neighborhood of each v of radius t
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Approximation Algorithm
Local distributed approximation algorithm A for vertex cover:

α = approximation factor

t = number of rounds

Constant-time algorithm:

1. Sample O(1/ǫ2) vertices v

2. Simulate A on the neighborhood of each v of radius t

3. Return the fraction of vertices that are in A’s cover (+ǫn/2)

Output: (α, ǫn)-approximation with constant probability
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Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t
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Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover
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Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover:

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries
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Complexity of the Algorithm

Query complexity: O(1/ǫ2) · dO(t)

t

Parnas and Ron applied algorithms of Kuhn, Moscibroda,
Wattenhofer (2006) to vertex cover:

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries
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Slightly Better Algorithms

[Marko, Ron 2007]
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Vertex Cover

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M
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Vertex Cover

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M
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Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph
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Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Can show: 1 − δ fraction of vertices decided in O(log(d/δ)) rounds
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Algorithm of Marko & Ron
via Luby (1986)

Repeat:
select each node v with probability Θ(1/d(v))
deselect a node if a neighbor selected
add selected nodes to independent set
remove selected nodes and their neighbors from graph

Can show: 1 − δ fraction of vertices decided in O(log(d/δ)) rounds

Ramifications for vertex cover:
distributed: (2 + δ)-approximation in O(log(d/δ)) rounds

sublinear: (2, ǫn)-approximation with dO(log(d/ǫ)) queries
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Local Greedy Computation

[Nguyen, O. 2008]
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Oracle for Maximal Independent Set

Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I independent of queries

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time
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Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex
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Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I
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Local Greedy Computation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex
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?

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I
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Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!
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Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 16/42



Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤
∑

∞

k=0 dk/(k + 1)!

≤ ed/d
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Bounding Expected Query Complexity

Pr[a given path of length k is explored] ≤ 1/(k + 1)!

number of neighbors at distance k ≤ dk

E[number of vertices explored at distance k] ≤ dk/(k + 1)!

E[number of explored vertices] ≤
∑

∞

k=0 dk/(k + 1)!

≤ ed/d

Expected query complexity = O(d) · ed/d = O(ed)
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Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)
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Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n
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Recent Improvement
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)
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(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries
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Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Marko, Ron (2007):

dO(log(d/ǫ)) queries

Nguyen, O. (2008):

2O(d)/ǫ2 queries
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(2, ǫn)-Approximation for Vertex Cover

Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006):

dO(log(d)/ǫ3) queries

Marko, Ron (2007):

dO(log(d/ǫ)) queries

Nguyen, O. (2008):

2O(d)/ǫ2 queries

Yoshida, Yamamoto, Ito (2009):

O(d3/ǫ2) queries
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(1, ǫn)-Approximation

for Maximum Matching
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Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 20/42



Review of Properties

Augmenting Path: a path that improves matching
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Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M
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Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k + 1 ⇒ |M | ≥ k

k+1 |M
∗|
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Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k + 1 ⇒ |M | ≥ k

k+1 |M
∗|

To get (1 + ǫ)-approximation, set k = ⌈1/ǫ⌉
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Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t
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Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Algorithm:
M := empty matching
for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i − 1
apply all paths to M

return M

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 22/42



Transformation
Standard Algorithm:

Constant−Time Algorithm:

augmenting
Eliminate

paths

of length 1

augmenting
Eliminate

paths

of length 3

augmenting
Eliminate

paths

of length 5

augmenting
Eliminate

paths

of length 7

⇒ M1 ⇒ ⇒ M2 ⇒ ⇒ M3 ⇒∅ ⇒ ⇒ M4

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Oracle Oi:

provides query access to Mi

simulates applying to Mi−1 a maximal set of disjoint
augmenting paths of length 2i − 1
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Transformation

Sample graph considered by O2:

Oi’s graph has degree dO(i)
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Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query
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Locality Lemma:
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with probability 1 − δ
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Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1 − δ

Query complexity: 2dO(1/ǫ)

queries for (1, ǫn)-approximation
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Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1 − δ

Query complexity: 2dO(1/ǫ)

queries for (1, ǫn)-approximation

Yoshida, Yamamoto, Ito (2009)

Query complexity: dO(1/ǫ2)

uniform on higher level ⇒ close to uniform on lower
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Distributed Algorithms

Can simulate the oracle locally for every vertex
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Distributed Algorithms

Can simulate the oracle locally for every vertex

(1 − ǫ)-approximate maximum matching computable in

dO(1/ǫ) rounds
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Lower Bounds
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Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]
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Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

dominating set if α = o(log d) [Alon]

maximum independent set if α = o
(

d
log d

)

[Alon]
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Relevant Lower Bounds

No constant-time (α, ǫn)-approximation algorithm for:

vertex cover if α constant less than 2 [Trevisan]

dominating set if α = o(log d) [Alon]

maximum independent set if α = o
(

d
log d

)

[Alon]

Ramifications:

no corresponding local distributed algorithm

need Ω(log n) rounds
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Local Graph Partitions
[Hassidim, Kelner, Nguyen, O. 2009]
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Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ
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Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0
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Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth

Polynomial
Growth
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph
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Using a Partition

AlgorithmPartitioning

Oracle

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

New Tool: Partitioning Oracles
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Also :

For polynomial growth [Jung, Shah]:

Query complexity: poly(d/ǫ)
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Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)

3. Approximating distance to hereditary properties
in hyperfinite graphs

Earlier only known to be testable
[Czumaj, Shapira, Sohler 2009]
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Czygrinow, Hańćkowiak, Wawrzyniak (2008)
+ Parnas, Ron (2007): for minor-free graphs
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Simplest Oracle
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Iterative Procedure

Global procedure:
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Iterative Procedure

Global procedure:
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Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

Krzysztof Onak – Distributed Algorithms and Sublinear-Time Algorithms – p. 40/42



Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened to close vertices
with lower numbers

if v still in graph, try to construct a component
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Open Problems

Tight bounds for vertex cover and maximum matching
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Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)
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Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Good approximation algorithms for other popular
classes of graphs
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Thank you!
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