
SINGLEHOP
COORDINATION

&COLLABORATION
PRIMITIVES FOR WSANS

Murat Demirbas
SUNY Buffalo

www.cse.buffalo.edu/ubicomp
1

http://www.cse.buffalo.edu/ubicomp
http://www.cse.buffalo.edu/ubicomp

My current projects
Singlehop collaboration and coordination framework
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable
software for WSANs (NSF CSR 2009)

Efficient and resilient querying and tracking services
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter
(Google Research Award, 2010)

2

My current projects
Singlehop collaboration and coordination framework
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable
software for WSANs (NSF CSR 2009)

Efficient and resilient querying and tracking services
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter
(Google Research Award, 2010)

3

Outline

Transact: Singlehop coordination framework for WSANs

Pollcast: Singlehop collaborative feedback collection

Causataxis: Coordinated locomotion of mobile WSNs

4

Outline

Transact: Singlehop coordination framework for WSANs

Pollcast: Singlehop collaborative feedback collection

Causataxis: Coordinated locomotion of mobile WSNs

5

Wireless sensor-actor networks
(WSANs)

Process control systems

vibration control of assembly lines

valve control

Multi-robot cooperative control

robotic highway safety/construction markers

search & rescue operations

Resource/task allocation

tracking of targets via distributed smart cameras

6

WSANs programming challenges

Consistency & coordination are important

in contrast to WSNs, where eventual consistency & loose synchrony is
sufficient for most applications and services

Effective management of concurrent execution is needed

for consistency reasons concurrency needs to be tamed to prevent
unintentional nondeterministic executions

on the other hand, for real-time guarantees concurrency needs to be
boosted to achieve timeliness

7

Transact: A transactional
framework for WSANs

Transact eliminates unintentional nondeterministic executions
while retaining the concurrency of executions

Conflict serializability: any property proven for the single threaded
coarse-grain executions of the system is a property of the concurrent
fine-grain executions of the system

Transact enables ease of programming for WSANs

Transact introduces a novel “consistent write-all” paradigm that
enables a node to update the state of its neighbors in a consistent
and simultaneous manner

8

Transact programs

bool leader_election(){

X=read(“*.leader”);

if (X={}) then return write-all(“*.leader=”+ID);

return FAILURE;}

bool resource_allocation(){

X=read(“*.allocation”);

Y=select a subset of non-allocated members in X;

return write-all(“Y.allocation=”+ID);}

9

Challenges & Opportunities

In contrast to database systems, in distributed WSANs there is
no central database repository or arbiter

the control and sensor variables, on which the transactions operate,
are maintained distributedly over several nodes

Broadcast communication opens novel ways for optimizing the
implementation of read and write operations

A broadcast is received by the recipients atomically
This enables us to order transactions, and synchronize nodes to build
a structured transaction operation

Broadcast allows snooping
This enables us to detect conflicts in a decentralized manner

10

Overview of Transact

Optimistic concurrency control (OCC) idea

Read & write-tentatively, Validate, Commit

In Transact, a transaction is structured as (read, write-all)

Read operation reads variables from some nodes in singlehop, and
write-all operation writes to variables of a set of nodes in singlehop

Read operations are always compatible with each other: since reads
do not change the state, it is allowable to swap the order of reads

11

Overview of Transact…

A write-all operation may fail to complete when a conflict with
another transaction is reported

Since the write-all operation is placed at the end of the transaction,
if write-all fails no state is changed (no side effects !). An aborted
transaction can be retried later

If there are no conflicts reported, write-all succeeds by
updating the state of the nodes in a consistent and
observably-simultaneous manner

12

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

13

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

t1.read(l.x)

13

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

t1.read(l.x)

t2.write-all(l.x)

13

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

t1.read(l.x)

t2.write-all(l.x)

read-write incompat.

13

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

t1.read(l.x)

t2.write-all(l.x)

t1.write-all(l.x)

read-write incompat.

13

Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2

a write-write or read-write incompatibility introduces a causality from
t2 to t1

j

k

t1.read(l.x)

t2.write-all(l.x)

t1.write-all(l.x)

read-write incompat. write-write incompat.

13

Timeline of a transaction

14

Timeline of a transaction

read-request(…)
read-reply

read-reply

14

Timeline of a transaction

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

14

Timeline of a transaction

Time-out based
commit

Time-out based
commit

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

14

Timeline of a transaction

Time-out based
commit

Time-out based
commit

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

conflict_msg
abort

ack
ack

14

15

Concurrent

R RR RR W

R RR RR RR W

R RR RR RR W

T1

T2

T3

16

Serializable results

T1

T2

T3

Analytical results on
resource/task allocation problem

analysis for two initiators
17

Implementation results

11 Tmotes, upto 4 initiators and 7 resources

Settling time graph when stress-testing the application

18

Implementation results...

Consistency results

19

Simulation results

10-by-10 network, Prowler simulation

20

Weaknesses of 1st implementation

Persistent message losses violates safety

Initiator may not get all nodes to abort before time-triggered commit

We cannot achieve progress due to impossibility of coordinated attack,
when some messages start getting through we achieve progress

Initiator failure after write-all message violates safety

This reduces to the above problematic scenario for message loss

We cannot achieve progress under fully-asynchronous model due to
FLP; with timeout assumptions it is possible to complete transaction

21

Fault-tolerant implementation

We use 2-phase commit to combat faults

Initiator aborts if

some read-replies are missing; no need to notify participants

some write-all acks are missing; notify participants by abort-msg until
ack is received from all

Commit is also explicit

Initiator repeats commits until ack is received from all

22

Timeline of 1st implementation

Time-out based
commit

Time-out based
commit

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

conflict_msg
abort

ack
ack

23

Timeline of 2nd implementation

Time-out triggered
decision

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

conflict_msg

24

finalize
decision

ack
ack

finalize
decision

ack

Guaranteed conflict detection

Conflict detection was best effort in the 1st implementation; what
if 2+ transactions did not intersect at common node that could
detect the cycle?

Use a single moderator that is aware of all existing transactions;
this moderator is included as dummy participant in all transactions

Moderator death does not violate safety, a new moderator needs
to be chosen via consensus for progress

Or we can have masking fault-tolerance by using Paxos for implementing
the moderator via replicated state machines

25

Extensions: A lightweight
alternative to Transact

RAWS: Read-All, Write-Self

Initiator can read from all neighbors during read, but can only
write to itself

Much faster but less expressive

Consensus among n nodes requires at least n transactions in
RAWS, whereas one Transact transaction is enough for this

26

Extensions:
Building multihop programs

Transact can be used for efficient realizations of high-level
programming abstractions, Linda & virtual node(VN)

In Linda, coordination among nodes is achieved through in, out
operations using which tuples can be added to or retrieved
from a tuplespace shared among nodes

Transact can maintain the reliability and consistency of the shared
tuplespace to the face of concurrent execution

VN provides stability & robustness in spite of mobility of nodes

Transact can implement VN abstraction under realistic WSN settings

27

Transact recap

Transact is a transactional programming framework for WSANs

provides ease of programming and reasoning in WSANs without
curbing the concurrency of execution

facilitates achieving consistency and coordination via the consistent
write-all primitive

Future work

Verification support: Transact already provides conflict serializability,
the burden on the verifier is significantly reduced

Transact patterns: programmers can adapt commonly occurring
patterns for faster development

28

Outline

Transact: Singlehop coordination framework for WSANs

Pollcast: Singlehop collaborative feedback collection

Causataxis: Coordinated locomotion of mobile WSNs

29

30

Lightweight singlehop collaboration

The idea is to use receiver-side collision detection (RCD) for
lightweight singlehop collaborative feedback

Pollcast: Does P hold for the neighborhood?

Initiator performs binary probing instead of full-fledged reads

Nodes where P holds answer simultaneously

Initiator uses RCD to detect whether there are answers

31

Applications

In-network processing

Data aggregation / Filtering

False positive elimination

Local decision making

Barrier synchronization

Resource allocation

32

Challenges for achieving RCD

Not directly supported by hardware (CC2420)

Shadowing

RSSI-based RCD requires extra processing, unreliable

CRC based collision detection only works when preamble and
packet frames are received

33

RCD implementations

Clear Channel Assessment (CCA): Achieved by tricking the radio
to execute CCA, and then not sending the message

Demirbas, Soysal, Hussein (Infocom 2008)

Backcast: Achieved by exploiting the non-destructive collisions
of simultaneous & identical Hardware-ACKs (HACKs) at the
receiver-side

Dutta, Musaloiu-E, Stoica, Terzis (HotNets 2008)

Pollcast Implementation

Poller:

Queries a predicate P in a set of voters using PollP message with
CSMA

Then switches to RCD; Collision means P is true in at least one voter

Voter:

If predicate P is true, immediately sends a VoteP message

VoteP message is sent without CSMA

34

35

RCD Experiments

Singlehop environment

All motes in 10m radius with clear line of sight

200 trials for each data point

36

Extension: approximate counting

Initiator uses pollcasts to approximate # of nodes P holds

Each node has a 0.5 probability of voting at each round &
they only vote once in their lifetime

Expected number of voters is halved in each round

Expected number of such rounds for n nodes is logn

More precise randomized algorithms are possible for
approximate counting (a la synopsis diffusion Sensys’04)

Extension: Threshold querying

Initiator uses pollcasts to determine whether the # of nodes P
holds is above a threshold t (tcast operation)

At each round, initiator groups nodes to 2t bins & polls each bin
Two possible cases at each round:

if t bins respond (1+ count detected by RCD) then threshold is reached

else initiator discards these t silent bins, and moves on to next round to
regroup and query the nodes in the remaining bins (stops if this # < t)

tcast completes in 2t*log(n/2t) time/work

37

tcast simulations

38

Pollcast recap

We can’t avoid collisions, we can as well use it

Pollcast: O(1) time query on a group of motes

Extensions

approximate counting

checking predicate P for at least-t motes

39

Outline

Transact: Singlehop coordination framework for WSANs

Pollcast: Singlehop collaborative feedback collection

Causataxis: Coordinated locomotion of mobile WSNs

40

Causataxis

Coordinated locomotion via grow and rot

Grow: MSN expands toward the area of more interest

Rot: Regions with low interest lose nodes

Scalable control of the MSN via a backbone-tree
infrastructure, maintained over clusterhead nodes

Clusterheads ossify, cluster-member nodes are fluid

41

Backbone tree formation

Clusterheads form a backbone network over the MSN and
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions
towards growing regions

42

Backbone tree formation

Clusterheads form a backbone network over the MSN and
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions
towards growing regions

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range
42

Backbone tree formation

Clusterheads form a backbone network over the MSN and
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions
towards growing regions

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range
42

Backbone tree formation

Clusterheads form a backbone network over the MSN and
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions
towards growing regions

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range
42

Backbone tree formation

Clusterheads form a backbone network over the MSN and
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions
towards growing regions

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range

!

Outer member nodes

Inner member nodes

clusterhead

Cluster domain

Sensing range

42

My current projects
Singlehop collaboration and coordination framework
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable
software for WSANs (NSF CSR 2009)

Efficient and resilient querying and tracking services
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter
(Google Research Award, 2010)

43

Refining shared memory model

Shared memory and I/O automaton models are where
distributed algorithms are written & verified traditionally

We provide an automatic refinement from shared memory to
WSNs (write-all with collisions model)

Our goals are to preserve fault-tolerance/self-stabilization
properties and to provide comparable performance to
applications designed by hand

We exploit Transact framework and model-revision to achieve
these goals

CO-PI: SANDEEP KULKARNI, MICHIGAN STATE U.
44

My current projects
Singlehop collaboration and coordination framework
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable
software for WSANs (NSF CSR 2009)

Efficient and resilient querying and tracking services
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter
(Google Research Award, 2010)

45

Improve performance
and dependability of
intrusion detection,
querying & tracking of
targets in static and
mobile WSNs

Geometric approaches
lead to lightweight
scalable querying &
tracking

Self stabilization offers
uniform mechanism to
handle unanticipated
faults for querying &
tracking

Geometric approaches & stabilization enable scalable services in WSNs

For static WSNs, investigate holistic
solutions by integrating the effect of
the pursuer to the problem

For passively mobile WSNs, investigate
efficient solutions that learn mobility
patterns of nodes

For actively mobile WSNs, investigate
more controllable and predictive
alternatives to swarms

For each case, investigate self
stabilization & fault-local recovery
against unanticipated faults

Scalability challenge:
centralized services do not
scale for large multihop
WSNs

Reliability challenge: message
loss rate of 30-50% makes it
hard to build consistent,
reliable services in WSNs

Goal: Achieve novel,
lightweight, scalable,
and reliable querying
& tracking for static,
passively/actively
mobile WSNs

Q
U

A
N

T
IT

A
T

IV
E

 I
M

PA
C

T
E

N
D

-O
F-

P
H

A
S

E
 G

O
A

L

S
TA

T
U

S
 Q

U
O

N
E

W
 I

N
S

IG
H

T
S

Efficient & Reliable Querying and Tracking

46

My current projects
Singlehop collaboration and coordination framework
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable
software for WSANs (NSF CSR 2009)

Efficient and resilient querying and tracking services
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter
(Google Research Award, 2010)

47

The missing piece

Despite availability of sensors and smartphones, state-of-the-art
falls short of the ubiquitous computing vision

The missing piece is the infrastructure to task/utilize these
devices for collaboration!

We propose that Twitter can provide an open publish-subscribe
infrastructure for sensors and smartphones, and enable
crowdsourced sensing & collaboration

48

System architecture

RAINRADAR & NOISE MAPPING APPLICATIONS
49

