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My current projects
Singlehop collaboration and coordination framework 
for wireless sensor actor networks (NSF Career 2008)

Tool-support for producing high-assurance reliable 
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Efficient and resilient querying and tracking services 
for WSNs (Office of Naval Research, 2009)

Crowdsourced sensing and collaboration using Twitter 
(Google Research Award, 2010)
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Outline 

Transact: Singlehop coordination framework for WSANs
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Causataxis: Coordinated locomotion of mobile WSNs
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Wireless sensor-actor networks 
(WSANs)

Process control systems

vibration control of assembly lines

valve control

Multi-robot cooperative control

robotic highway safety/construction markers

search & rescue operations

Resource/task allocation

tracking of targets via distributed smart cameras
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WSANs programming challenges

Consistency & coordination are important

in contrast to WSNs, where eventual consistency & loose synchrony is 
sufficient for most applications and services

Effective management of concurrent execution is needed

for consistency reasons concurrency needs to be tamed to prevent 
unintentional nondeterministic executions

on the other hand, for real-time guarantees concurrency needs to be 
boosted to achieve timeliness
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Transact: A transactional 
framework for WSANs

Transact eliminates unintentional nondeterministic executions 
while retaining the concurrency of executions

Conflict serializability: any property proven for the single threaded 
coarse-grain executions of the system is a property of the concurrent 
fine-grain executions of the system

Transact enables ease of programming for WSANs

Transact introduces a novel “consistent write-all” paradigm that 
enables a node to update the state of its neighbors in a consistent 
and simultaneous manner 
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Transact programs

bool leader_election(){

X=read(“*.leader”);

if (X={}) then return write-all(“*.leader=”+ID);

return FAILURE;}

bool resource_allocation(){

X=read(“*.allocation”);

Y=select a subset of non-allocated members in X; 

return write-all(“Y.allocation=”+ID);}
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Challenges & Opportunities 

In contrast to database systems, in distributed WSANs there is 
no central database repository or arbiter

the control and sensor variables, on which the transactions operate, 
are maintained distributedly over several nodes

Broadcast communication opens novel ways for optimizing the 
implementation of read and write operations 

A broadcast is received by the recipients atomically                    
This enables us to order transactions, and synchronize nodes to build 
a structured transaction operation

Broadcast allows snooping                                                   
This enables us to detect conflicts in a decentralized manner
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Overview of Transact

Optimistic concurrency control (OCC) idea

Read & write-tentatively, Validate, Commit

In Transact, a transaction is structured as (read, write-all)

Read operation reads variables from some nodes in singlehop, and 
write-all operation writes to variables of a set of nodes in singlehop

Read operations are always compatible with each other: since reads 
do not change the state, it is allowable to swap the order of reads 
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Overview of Transact…

A write-all operation may fail to complete when a conflict with 
another transaction is reported

Since the write-all operation is placed at the end of the transaction, 
if write-all fails no state is changed (no side effects !). An aborted 
transaction can be retried later

If there are no conflicts reported, write-all succeeds by 
updating the state of the nodes in a consistent and 
observably-simultaneous manner 
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Conflicting transactions

Any two transactions t1 and t2 are conflicting iff

a read-write incompatibility introduces a causality from t1 to t2 

a write-write or read-write incompatibility introduces a causality from 
t2 to t1

j

k
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Timeline of a transaction
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Serializable results
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Analytical results on 
resource/task allocation problem

analysis for two initiators
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Implementation results

11 Tmotes, upto 4 initiators and 7 resources

Settling time graph when stress-testing the application
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Implementation results...

Consistency results
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Simulation results

10-by-10 network, Prowler simulation
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Weaknesses of 1st implementation

Persistent message losses violates safety

Initiator may not get all nodes to abort before time-triggered commit

We cannot achieve progress due to impossibility of coordinated attack, 
when some messages start getting through we achieve progress

Initiator failure after write-all message violates safety

This reduces to the above problematic scenario for message loss 

We cannot achieve progress under fully-asynchronous model due to 
FLP; with timeout assumptions it is possible to complete transaction
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Fault-tolerant implementation

We use 2-phase commit to combat faults

Initiator aborts if

some read-replies are missing; no need to notify participants

some write-all acks are missing; notify participants by abort-msg until 
ack is received from all

Commit is also explicit

Initiator repeats commits until ack is received from all

22



Timeline of 1st implementation
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Timeline of 2nd implementation

Time-out triggered
decision

read-request(…)
read-reply

read-reply

write-all(…)
ack

ack

conflict_msg
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Guaranteed conflict detection

Conflict detection was best effort in the 1st implementation; what 
if 2+ transactions did not intersect at common node that could 
detect the cycle?

Use a single moderator that is aware of all existing transactions; 
this moderator is included as dummy participant in all transactions

Moderator death does not violate safety, a new moderator needs 
to be chosen via consensus for progress

Or we can have masking fault-tolerance by using Paxos for implementing 
the moderator via replicated state machines
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Extensions: A lightweight 
alternative to Transact

RAWS: Read-All, Write-Self

Initiator can read from all neighbors during read, but can only 
write to itself

Much faster but less expressive

Consensus among n nodes requires at least n transactions in 
RAWS, whereas one Transact transaction is enough for this
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Extensions: 
Building multihop programs

Transact can be used for efficient realizations of high-level 
programming abstractions, Linda & virtual node(VN)

In Linda, coordination among nodes is achieved through in, out 
operations using which tuples can be added to or retrieved 
from a tuplespace shared among nodes

Transact can maintain the reliability and consistency of the shared 
tuplespace to the face of concurrent execution

VN provides stability & robustness in spite of mobility of nodes

Transact can implement VN abstraction under realistic WSN settings
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Transact recap

Transact is a transactional programming framework for WSANs

provides ease of programming and reasoning in WSANs without 
curbing the concurrency of execution

facilitates achieving consistency and coordination via the consistent 
write-all primitive

Future work

Verification support: Transact already provides conflict serializability, 
the burden on the verifier is significantly reduced

Transact patterns: programmers can adapt commonly occurring 
patterns for faster development
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Lightweight singlehop collaboration

The idea is to use receiver-side collision detection (RCD) for 
lightweight singlehop collaborative feedback

Pollcast: Does P hold for the neighborhood?

Initiator performs binary probing instead of full-fledged reads

Nodes where P holds answer simultaneously

Initiator uses RCD to detect whether there are answers
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Applications

In-network processing

Data aggregation / Filtering

False positive elimination

Local decision making

Barrier synchronization

Resource allocation
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Challenges for achieving RCD

Not directly supported by hardware (CC2420)

Shadowing

RSSI-based RCD requires extra processing, unreliable

CRC based collision detection only works when preamble and 
packet frames are received
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RCD implementations

Clear Channel Assessment (CCA): Achieved by tricking the radio 
to execute CCA, and then not sending the message 

Demirbas, Soysal, Hussein (Infocom 2008)

Backcast: Achieved by exploiting the non-destructive collisions 
of simultaneous & identical Hardware-ACKs (HACKs) at the 
receiver-side

Dutta, Musaloiu-E, Stoica, Terzis (HotNets 2008)



Pollcast Implementation

Poller:

Queries a predicate P in a set of voters using PollP message with 
CSMA

Then switches to RCD; Collision means P is true in at least one voter

Voter:

If predicate P is true, immediately sends a VoteP message

VoteP message is sent without CSMA
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RCD Experiments

Singlehop environment

All motes in 10m radius with clear line of sight

200 trials for each data point
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Extension: approximate counting

Initiator uses pollcasts to approximate # of nodes P holds

Each node has a 0.5 probability of voting at each round & 
they only vote once in their lifetime

Expected number of voters is halved in each round

Expected number of such rounds for n nodes is logn

More precise randomized algorithms are possible for 
approximate counting (a la synopsis diffusion Sensys’04)



Extension: Threshold querying

Initiator uses pollcasts to determine whether the # of nodes P 
holds is above a threshold t (tcast operation)

At each round, initiator groups nodes to 2t bins & polls each bin 
Two possible cases at each round:

if t bins respond (1+ count detected by RCD) then threshold is reached

else initiator discards these t silent bins, and moves on to next round to 
regroup and query the nodes in the remaining bins (stops if this # < t) 

tcast completes in 2t*log(n/2t) time/work
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tcast simulations
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Pollcast recap

We can’t avoid collisions, we can as well use it

Pollcast: O(1) time query on a group of motes

Extensions

approximate counting

checking predicate P for at least-t motes 
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Causataxis

Coordinated locomotion via grow and rot

Grow: MSN expands toward the area of more interest

Rot: Regions with low interest lose nodes 

Scalable control of the MSN via a backbone-tree 
infrastructure,  maintained over clusterhead nodes

Clusterheads ossify, cluster-member nodes are fluid
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Backbone tree formation

Clusterheads form a backbone network over the MSN and 
coordinate the relocation of mobile nodes

Pipelined recruitment of mobile nodes from rotting regions 
towards growing regions
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Refining shared memory model

Shared memory and I/O automaton models are where 
distributed algorithms are written & verified traditionally

We provide an automatic refinement from shared memory to 
WSNs (write-all with collisions model)

Our goals are to preserve fault-tolerance/self-stabilization 
properties and to provide comparable performance to 
applications designed by hand

We exploit Transact framework and model-revision to achieve 
these goals

CO-PI: SANDEEP KULKARNI, MICHIGAN STATE U.
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Improve performance 
and dependability of 
intrusion detection, 
querying & tracking of 
targets in static and 
mobile WSNs

Geometric approaches 
lead to  lightweight 
scalable querying & 
tracking

Self stabilization offers 
uniform mechanism to 
handle unanticipated 
faults for querying & 
tracking

Geometric approaches & stabilization enable scalable services in WSNs

For static WSNs, investigate holistic 
solutions by integrating the effect of 
the pursuer to the problem

For passively mobile WSNs, investigate 
efficient solutions that learn mobility 
patterns of nodes

For actively mobile WSNs, investigate 
more controllable and predictive 
alternatives to swarms

For each case, investigate self 
stabilization & fault-local recovery 
against unanticipated faults

Scalability challenge: 
centralized services do not 
scale for large multihop 
WSNs

Reliability challenge: message 
loss rate of 30-50% makes it 
hard to build consistent, 
reliable services in WSNs

Goal: Achieve novel, 
lightweight, scalable, 
and reliable querying 
& tracking for static, 
passively/actively 
mobile WSNs
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The missing piece

Despite availability of sensors and smartphones, state-of-the-art 
falls short of the ubiquitous computing vision

The missing piece is the infrastructure to task/utilize these 
devices for collaboration!

We propose that Twitter can provide an open publish-subscribe 
infrastructure for sensors and smartphones, and enable 
crowdsourced sensing & collaboration
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System architecture

RAINRADAR & NOISE MAPPING APPLICATIONS
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