DISTRIBUTED SUBGRADIENT METHODS FOR MULTI-AGENT OPTIMIZATION

Asu Ozdaglar

February 2009

Department of Electrical Engineering & Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, USA
Motivation

• Increasing interest in **distributed control and coordination** of networks consisting of multiple autonomous agents

• Motivated by many emerging networking applications, such as ad hoc wireless communication networks and sensor networks, characterized by:
 – Lack of centralized control and access to information
 – Time-varying connectivity

• Control and optimization algorithms for such networks should be:
 – Completely distributed relying on local information
 – Robust against changes in the network topology
Multi-Agent Optimization Problem

Goal: Develop a general computational model for cooperatively optimizing a global system objective through local interactions and computations in a multi-agent system

- Global objective is a combination of individual agent performance measures

Examples:

- *Consensus problems:* Alignment of estimates maintained by different agents
 - Control of moving vehicles (UAVs), computing averages of initial values

- *Parameter estimation in distributed sensor networks:*
 - Regression-based estimates using local sensor measurements

- *Congestion control in data networks with heterogeneous users*
Related Literature

• **Parallel and Distributed Optimization Algorithms:**
 – General computational model for distributed asynchronous optimization
 * Tsitsiklis 84, Bertsekas and Tsitsiklis 95

• **Consensus and Cooperative Control:**
 – Analysis of group behavior (flocking) in dynamical-biological systems
 * Vicsek 95, Reynolds 87, Toner and Tu 98
 – Mathematical models of consensus and averaging
 * Jadbabaie *et al.* 03, Olfati-Saber Murray 04, Boyd *et al.* 05

• **Game Theory/Mechanism Design for Distributed Cooperative Control:**
 – Assign each agent a local utility function such that:
 * The equilibrium of the resulting game is the same as (or close to) the global optimum
 * Derive learning algorithms that reach equilibrium
 – **Marden, Arslan, Shamma 07** used this approach for the consensus problem to deal with constraints
This Talk

- Development of a distributed subgradient method for multi-agent optimization [Nedic, Ozdaglar 08]
 - Convergence analysis and performance bounds for time-varying topologies under general connectivity assumptions
- Effects of local constraints [Nedic, Ozdaglar, Parrilo 08]
- Effects of networked-system constraints: quantization, delay, asynchronism
Model

- We consider a network of m agents with node set $V = \{1, \ldots, m\}$
 - Agents want to cooperatively solve
 \[
 \min_{x \in \mathbb{R}^n} \sum_{i=1}^{m} f_i(x)
 \]
 - Function $f_i(x) : \mathbb{R}^n \to \mathbb{R}$ is a convex objective function known only by node i
 - Agents update and send their information at discrete times $t_0, t_1, t_2 \ldots$
 - We use $x^i(k) \in \mathbb{R}^n$ to denote the estimate of agent i at time t_k

Agent Update Rule:

- Agent i locally minimizes f_i according to:
 \[
 x^i(k + 1) = \sum_{j=1}^{m} a^i_j(k)x^j(k) - \alpha^i(k)d^i(k)
 \]
 $a^i_j(k)$ are weights, $\alpha^i(k)$ is stepsize, $d^i(k)$ is subgradient of f_i at $x^i(k)$
- $a^i(k) = (a^i_1(k), \ldots, a^i_m(k))$ represents i’s time-varying neighbors at slot k
- The model includes consensus as a special case ($f_i(x) = 0$ for all i)
Linear Dynamics and Transition Matrices

- We let $A(s)$ denote the matrix whose i^{th} column is the vector $a^i(s)$ and introduce the transition matrices

$$\Phi(k, s) = A(s) A(s + 1) \cdots A(k - 1) A(k) \quad \text{for all } k \geq s$$

- We use these matrices to relate $x^i(k + 1)$ to $x^j(s)$ at time $s \leq k$:

$$x^i(k + 1) = \sum_{j=1}^{m} [\Phi(k, s)]^i_j x^j(s) - \sum_{r=s}^{k-1} \left(\sum_{j=1}^{m} [\Phi(k, r + 1)]^i_j \alpha^j(r) d^j(r) \right) - \alpha^i(k) d^i(k).$$

- We analyze convergence properties of the distributed method by establishing:
 - Convergence of transition matrices $\Phi(k, s)$ (consensus part)
 - Convergence of an approximate subgradient method (effect of optimization)
Assumptions

Assumption (Weights) At all times k, we have

(a) The weights $a_{ij}^i(k)$ are nonnegative for all agents i, j.

(b) There exists a scalar $\eta \in (0, 1)$ such that for all agents i,

$$a_i^i(k) \geq \eta \quad \text{and} \quad a_j^i(k) \geq \eta$$

for agents j communicating with agent i at time k.

(c) The agent weight vectors $a_i^i(k) = [a_1^i(k), \ldots, a_m^i(k)]^T$ are stochastic, i.e.,

$$\sum_{j=1}^m a_j^i(k) = 1$$

for all i and k.

Example: Equal neighbor weights

$$a_{ij}^i(k) = \frac{1}{n_i(k) + 1}$$

where $n_i(k)$ is the number of agents communicating with i at time k.
Information Exchange

• Agent i influences any other agent infinitely often - connectivity

• Agent j send his information to neighboring agent i within a bounded time interval - bounded intercommunication interval

At slot k, information exchange may be represented by a directed graph (V, E_k) with

$$E_k = \{(j, i) \mid a^i_j(k) > 0\}$$

Assumption (Connectivity) The graph (V, E_∞) is connected, where

$$E_\infty = \{(j, i) \mid (j, i) \in E_k \text{ for infinitely many indices } k\}.$$

Assumption (Bounded Intercommunication Interval) There is some $B \geq 1$ s.t.

$$(j, i) \in E_k \cup E_{k+1} \cup \cdots \cup E_{k+B-1} \quad \text{for all } (j, i) \in E_\infty \text{ and } k \geq 0.$$
Properties of Transition Matrices

Lemma: Let Weights and Information Exchange assumptions hold. We then have

\[[\Phi(s + (m - 1)B - 1, s)]_i^j \geq \eta^{(m-1)B} \quad \text{for all } s, i, \text{ and } j, \]

where \(\eta \) is the lower bound on weights and \(B \) is the intercommunication interval bound.

- We introduce the matrices \(D_k(s) \) as follows: for a fixed \(s \geq 0 \),

\[D_k(s) = \Phi'(s + kB_0 - 1, s + (k - 1)B_0) \quad \text{for } k = 1, 2, \ldots, \]

where \(B_0 = (m - 1)B \).

- By the previous lemma, all entries of \(D_k(s) \) are positive.
Convergence of Transition Matrices

Lemma: Let Weights and Information Exchange assumptions hold. For each \(s \geq 0 \), we have:

(a) The limit \(\bar{D}(s) = \lim_{k \to \infty} D_k(s) \cdots D_1(s) \) exists.

(b) The limit \(\bar{D}(s) \) has identical rows and the rows are stochastic.

(c) For every \(j \), the entries \([D_k(s) \cdots D_1(s)]_i^j, i = 1, \ldots, m\), converge to the same limit \(\phi_j(s) \) as \(k \to \infty \) with a geometric rate:

\[
\left| [D_k(s) \cdots D_1(s)]_i^j - \phi_j(s) \right| \leq 2 \left(1 + \eta^{-B_0} \right) \left(1 - \eta^{B_0} \right)^k
\]

where \(\eta \) is the lower bound on weights, \(B \) is the intercommunication interval bound, and \(B_0 = (m - 1)B \).
Proof Outline

- We show that the sequence \(\{ (D_k \cdots D_1)x \} \) converges for every \(x \in \mathbb{R}^m \).
- Consider the sequence \(\{x_k\} \) with \(x_k = D_k \cdots D_1x \) and write \(x_k \) as
 \[
 x_k = z_k + c_k e,
 \]
 where \(c_k = \min_{1 \leq i \leq m} [x_k]_i \).
- Using the property that each entry of the matrix \(D_k \) is positive, we show
 \[
 \|z_k\|_\infty \leq \left(1 - \eta B_0 \right)^k \|z_0\|_\infty \quad \text{for all } k.
 \]
 Hence \(z_k \to 0 \) with a geometric rate.
- We then show that the sequence \(\{c_k\} \) converges to some \(\bar{c} \in \mathbb{R} \) and use the contraction constant to establish the rate estimate.
- The final relation follows by picking \(x = e_j \), the \(j^{th} \) unit vector.
Convergence of Transition Matrices

Proposition: Let Weights and Information Exchange assumptions hold. For each $s \geq 0$, we have:

(a) The limit $\Phi(s) = \lim_{k \to \infty} \Phi(k, s)$ exists.

(b) The limit matrix $\Phi(s)$ has identical columns and the columns are stochastic, i.e.,

$$\Phi(s) = \phi(s)e'',$$

where $\phi(s) \in \mathbb{R}^m$ is a stochastic vector.

(c) For every i, $[\Phi(k, s)]^j_i$, $j = 1, \ldots, m$, converge to the same limit $\phi_i(s)$ as $k \to \infty$ with a geometric rate, i.e., for all i, j and all $k \geq s$,

$$\left| [\Phi(k, s)]^j_i - \phi_i(s) \right| \leq 2 \frac{1 + \eta^{-B_0}}{1 - \eta^{B_0}} \left(1 - \eta^{B_0} \right)^{\frac{k-s}{B_0}}$$

where η is the lower bound on weights, B is the intercommunication interval bound, and $B_0 = (m - 1)B$.

- The rate estimate in part (c) recently improved in [Nedić, Olshevsky, Ozdaglar, Tsitsiklis 08]

MIT Laboratory for Information and Decision Systems
Convergence Analysis

• Recall the evolution of the estimates (with $\alpha^i(s) = \alpha$):

$$x^i(k + 1) = \sum_{j=1}^{m} [\Phi(k, s)]_j^i x^j(s) - \alpha \sum_{r=s}^{k-1} \left(\sum_{j=1}^{m} [\Phi(k, r + 1)]_j^i d^j(r) \right) - \alpha d^i(k).$$

• Proof method: Consider a “stopped process”, where after time \bar{k}, agents stop computing subgradients but keep exchanging their estimates: $d^i(k) = 0$ for all $k \geq \bar{k}$ and all i.

• It can be seen that the stopped process takes the form

$$\bar{x}^i(k + 1) = \sum_{j=1}^{m} [\Phi(k, 0)]_j^i x^j(0) - \alpha \sum_{r=1}^{\bar{k}} \left(\sum_{j=1}^{m} [\Phi(k, r)]_j^i d^j(r - 1) \right)$$

• Using $\lim_{k \to \infty} [\Phi(k, s)]_j^i = \phi_j(s)$ for all i, we see that the limit vector $\lim_{k \to \infty} \bar{x}^i(k)$ exists, independent of i, but depends on \bar{k}:

$$\lim_{k \to \infty} \bar{x}^i(k) = y(\bar{k})$$
Behavior of “Stopped Process”

- Stopped process is described by:

\[y(k + 1) = y(k) - \alpha \sum_{j=1}^{m} \phi_j(k)d_j(k) \]

 - Subgradients \(d_j(k) \) of \(f_j \) are computed at \(x_j(k) \) instead of \(y(k) \)

- This would correspond to an approximate subgradient method for minimizing \(\sum_j f_j(x) \) provided that the values \(\phi_j(k) \) are the same for all \(j \)

- **Assumption (Doubly Stochastic Weights)** The matrices \(A(k) \) are doubly stochastic, i.e., \(\sum_{i=1}^{m} a_{ij}(k) = 1 \) for all \(j \) and \(k \).

 - Can be ensured when the agents exchange their information simultaneously and coordinate the selection of the weights \(a_{ij}(k) \)

- In this case the stopped process reduces to

\[y(k + 1) = y(k) - \frac{\alpha}{m} \sum_{j=1}^{m} d_j(k) \]
Main Convergence Result

Proposition: Let

- Weights, Doubly Stochastic Weights, and Information Exchange assumptions hold
- The subgradients of f_i be uniformly bounded by a constant L, and
 \[\max_{1 \leq j \leq m} \|x^j(0)\| \leq \alpha L. \]

Then, for the averages $\hat{x}^i(k)$ of estimates $x^i(0), \ldots, x^i(k - 1)$ we have

\[
f(\hat{x}^i(k)) \leq f^* + \frac{m \cdot \text{dist}^2(y(0), X^*)}{2\alpha k} + \alpha L^2 \left(\frac{C}{2} + 2mC_1 \right)
\]

where f^* is the optimal value of $f = \sum_i f_i$, X^* is the optimal set,

\[
y(0) = \frac{1}{m} \sum_i x^i(0), \quad C = 1 + 8mC_1
\]

\[
C_1 = 1 + \frac{m}{1 - (1 - \eta^{B_0})} \frac{1 + \eta^{-B_0}}{1 - \eta^{B_0}}, \quad B_0 = (m - 1)B
\]

- Estimates are per iteration
- Captures tradeoff between accuracy and computational complexity
Proof Outline

• We analyze the stopped process:

\[y(k + 1) = y(k) - \frac{\alpha}{m} \sum_{j=1}^{m} d^j(k) \]

• Establish approximate convergence relation for the running averages

\[\hat{y}(k) = \frac{1}{k} \sum_{h=0}^{k-1} y(h) \]

• Using the convergence rate estimate for the transition matrices \(\Phi(k, s) \), we show that \(\hat{y}(k) \) are close to the agents’ averages \(\hat{x}^i(k) = \frac{1}{k} \sum_{h=0}^{k-1} x^i(h) \)

\[\| \hat{y}(k) - \hat{x}^i(k) \| \leq 2\alpha L C_1 \quad \text{for all } i \text{ and } k \]

• Infer the result for the running averages \(\hat{x}(k) \)
Constrained Consensus Problem

- Estimates of agent \(i \) restricted to lie in a closed convex constraint set \(X_i \)
- We assume that the intersection set \(X = \bigcap_{i=1}^{m} X_i \) is nonempty
- Examples where constraints important:
 - Motion planning and alignment problems, where each agent’s position is limited to a certain region or range
 - Distributed constrained multi-agent optimization
- This talk: Pure consensus problem in the presence of constraints
Projected Consensus Algorithm

- For the constrained consensus problem, we develop a consensus algorithm based on projections.

- We use $x^i(k) \in X_i$ to denote the estimate of agent i at time t_k

- Given a closed convex set $X \subset \mathbb{R}^n$, and a vector $y \in \mathbb{R}^n$, we define:

$$\text{dist}(y, X) = \min_{x \in X} \|y - x\|, \quad P_X(y) = \arg\min_{x \in X} \|y - x\|$$

Agent Update Rule:

- Agent i updates his estimates subject to his constraint set:

$$x^i(k + 1) = P_{X_i} \left[\sum_{j=1}^{m} a^i_j(k) x^j(k) \right]$$

where $a^i(k) = (a^i_1(k), \ldots, a^i_m(k))'$ is the weight vector
Connection to Alternating Projections

- Update rule similar to classical alternating projection method

Alternating/Cyclic Projection Methods:
Given closed convex sets $X_1, X_2 \subset \mathbb{R}^n$, find point in $X = X_1 \cap X_2$:

$$x(k+1) = P_{X_1}(x(k))$$
$$x(k+2) = P_{X_2}(x(k+1))$$

Convergence analysis:
X_i affine [Von Neumann; Aronszajn 50],
X_i convex [Gubin, Polyak, Raik 67]

Constrained Consensus Algorithm:
Given closed convex sets $X_1, X_2 \subset \mathbb{R}^3$

$$w^1(k) = \sum_j a^1_j(k)x^j(k)$$
$$w^2(k) = \sum_j a^2_j(k)x^j(k)$$
$$x^1(k+1) = P_{X_1}(w^1(k))$$
$$x^2(k+1) = P_{X_2}(w^2(k))$$
Convergence Analysis

- Analysis of the impact of constraints
- Recall the update rule

\[x^i(k+1) = \sum_{j=1}^{m} a^i_j(k) x^j(k) + e^i(k), \]

where the projection error \(e^i(k) \) is given by

\[e^i(k) = P_{X_i} \left[\sum_{j=1}^{m} a^i_j(k) x^j(k) \right] - \sum_{j=1}^{m} a^i_j(k) x^j(k) = x^i(k+1) - w^i(k). \]

Proposition: Assume that the intersection \(X = \cap_{i=1}^{m} X_i \) is nonempty. Let Doubly Stochastic Weights assumption hold. Then:

\[\lim_{k \to \infty} e^i(k) = 0 \quad \text{for all } i. \]

- **Implication:** The analysis translates into unconstrained case
- The proof relies on two lemmas
Convergence of Projection Error

Lemma: Let $w \in \mathbb{R}^n$ and $X \subset \mathbb{R}^n$ closed and convex. For all $x \in X$,

$$\|w - P_X(w)\|^2 \leq \|w - x\|^2 - \|P_X(w) - x\|^2.$$

Lemma: Let Doubly Stochastic Weights assumption hold. Then:

- $\|x_i^{(k+1)} - x\| \leq \|w_i^{(k)} - x\| \ \forall \ x \in X_i$ (nonexpansiveness of projection)
- $\sum_{i=1}^m \|w_i^{(k)} - x\|^2 \leq \sum_{i=1}^m \|x_i^{(k)} - x\|^2 \ \forall \ x$ (by doubly stochasticity)
 - Of independent interest in convergence analysis of doubly stochastic matrices

Implication:

$$\lim_{k \to \infty} \sum_{i=1}^m \|w_i^{(k)} - \bar{x}\|^2 - \|x_i^{(k+1)} - \bar{x}\|^2 = 0, \text{ for all } \bar{x} \in X$$
Convergence of the Estimates

- Recall that the transition matrices are defined as follows:
 \[\Phi(k, s) = A(s)A(s+1) \cdots A(k-1)A(k) \quad \text{for all } s \text{ and } k \text{ with } k \geq s, \]

- Using the transition matrices and the decomposition of the estimate evolution,
 \[x^i(k+1) = \sum_{j=1}^{m} [\Phi(k, s)]_j^i x^j(s) + \sum_{r=s+1}^{k} \left(\sum_{j=1}^{m} [\Phi(k, r)]_j^i e^j(r-1) \right) + e^i(k). \]

- Use a two-time scale analysis, where we define a similar “stopped process”
 \[y(k) = \frac{1}{m} \sum_{j=1}^{m} x^j(s) + \frac{1}{m} \sum_{r=s+1}^{k} \left(\sum_{j=1}^{m} e^j(r-1) \right). \]

- It can be seen that the agent estimates reach a consensus:
 \[\lim_{k \to \infty} \|x^i(k) - y(k)\| = 0 \quad \text{for all } i. \]

Proposition: (Convergence) Let Weights, Doubly Stochastic Weights, and Information Exchange assumptions hold. We have for some \(\tilde{x} \in X, \)
\[\lim_{k \to \infty} \|x^i(k) - \tilde{x}\| = 0 \quad \text{for all } i. \]
Rate Analysis

Assumption (Interior Point): There exists a vector \bar{x} such that

$$\bar{x} \in \text{int}(X) = \text{int}\left(\cap_{i=1}^{m} X_i \right),$$

i.e., there exists some scalar $\delta > 0$ such that $\{z \mid \|z - \bar{x}\| \leq \delta \} \subset X$.

Proposition: Let Interior Point Assumption hold. Let the weight vectors $a^i(k)$ be given by $a^i(k) = (1/m, \ldots, 1/m)'$ for all i and k. Then,

$$\sum_{i=1}^{m} \|x^i(k) - \tilde{x}\|^2 \leq \left(1 - \frac{1}{4R^2}\right)^k \sum_{i=1}^{m} \|x^i(0) - \tilde{x}\|^2 \quad \text{for all } k \geq 0,$$

where $\tilde{x} \in X$ is the limit of the sequence $\{x^i(k)\}$, and $R = \frac{1}{\delta} \sum_{i=1}^{m} \|x^i(0) - \bar{x}\|$, i.e., the convergence rate is linear.

- Linear convergence rate extends to time-varying weights with $X_i = X$
- Convergence rate for time-varying weights and different local constraints open
Summary

• We presented a distributed subgradient method for multi-agent optimization
• The method can operate over networks with time-varying connectivity
• We proposed a constrained consensus policy for the case when agents have local constraints on their estimates
• This policy has connections to the classical alternating projection method
• We analyzed the convergence and rate of convergence of the algorithms
Putting Things Together: Constrained Distributed Optimization

• Each agent has a convex closed local constraint set X_i [Nedić, Ozdaglar, Parrilo 08]

• Agent i updates his estimate by

$$v^i(k) = \sum_{j=1}^{m} a^i_j(k)x^j(k)$$

$$x^i(k + 1) = P_{X_i} \left[v^i(k) - \alpha(k) d^i(k) \right],$$

$\alpha(k) > 0$ is a diminishing stepsize sequence and $d^i(k)$ is a subgradient of $f_i(x)$ at $x = v^i(k)$.

Results:

• Agent estimates generated by this algorithm converge to the same optimal solution for the cases when the weights are constant and equal, and when the weights are time-varying but $X_i = X$ for all i.

• Convergence analysis in the general case open!
Optimization over Random Networks

- Existing work focuses on deterministic models of network connectivity (i.e., worst-case assumptions about intercommunication intervals)
- Time-varying connectivity modeled probabilistically [Lobel, Ozdaglar 08]
- Each component l of agent estimates evolve according to

$$x_l(k+1) = A(k)x_l(k) - \alpha(k)d_l(k)$$

- We assume that the matrix $A(k)$ is a random matrix drawn independently over time from a probability space of stochastic matrices.
- This allows edges at any time k to be correlated.

Results:

- We establish properties of random transition matrices by constructing positive probability events in which information propagates from every node to every other node in the network
- We provide convergence analysis of a stochastic subgradient method under different stepsize rules
Limits on Communication

Quantization Effects:

- Agents have access to quantized estimates due to storage and communication bandwidth constraints [Nedić, Olshevsky, Ozdaglar, Tsitsiklis 07]
- Agent i updates his estimate by

$$x^i(k + 1) = \sum_{j=1}^{m} a^i_j(k) x^j_Q(k) - \alpha d^i(k)$$

$$x^i_Q(k + 1) = \lfloor x^i(k + 1) \rfloor$$

$\lfloor \cdot \rfloor$ represents rounding down to the nearest integer multiple of $1/Q$

Delay Effects:

- Agents have access to outdated estimates due to communication delays [Bliman, Nedić, Ozdaglar 08]
- In the presence of delays, agent i updates his estimate by

$$x^i(k + 1) = \sum_{j=1}^{m} a^i_j(k) x^j(k - t^i_{j}(k)) - \alpha d^i(k)$$

$t^i_{j}(k)$ is the delay in passing information from j to i
Applications to Social Networks

- Growing interest in dynamics in a social network of communicating agents
- A specific example is learning and information aggregation over networks
- Consensus policies can be used to develop and analyze myopic/quasi-myopic learning models \cite{GolubJackson07, AcemogluOzdaglarParandehGheibi08}

- In the context of social networks, these rules may be too myopic:
 - **Alternative approach:** Bayesian learning over social networks \cite{AcemogluDahlehLobelOzdaglar08}
References

