Algorithms and Lower Bounds for Distributed Coloring Problems

Fabian Kuhn

Parts are joint work with Nicla Bernasconi, Dan Hefetz, Angelika Steger
Distributed Coloring

• Given: Network = Graph G

![Graph Image]

• Problem: Compute coloring of G by a distributed algorithm

• Goal: Minimize number of colors

• Applications:
 - Frequencies (FDMA), time slots (TDMA) in wireless network MAC prot.
 - Other distributed coordination tasks
We use **synchronous message passing** model.

Network = **graph** (nodes: devices, edges: direct comm. links).

Time is divided into **rounds**:

*Each node sends *message to each of its neighbors*

time complexity = **number of rounds**
Symmetry Breaking

• Main challenge: How to break symmetries?

• Two ways to break symmetries:
 1. Randomization
 2. Deterministic Symmetry Breaking
 → Nodes have unique IDs or some other a priory labeling

• This talk: Mostly about deterministic symmetry breaking
Previous Work: Deterministic Algorithms

- 3-coloring of the ring in $O(\log^* n)$ rounds [Cole, Vishkin 86]
- Lower Bound: $\Omega(\log^* n)$ rounds needed for $O(1)$-coloring a ring [Linial 92]

- General Graphs:
 - $(\Delta+1)$-coloring in time $O(\Delta^2 + \log^* n)$ [Goldberg, Plotkin, Shannon 88]
 - $O(\Delta^2)$-coloring in time $O(\log^* n)$ [Linial 92]
 - $(\Delta+1)$-coloring in time $O(\Delta \cdot \log n)$ [Awerbuch et al. 89]
 \[\Rightarrow\] Combining the last two: $(\Delta+1)$ colors in $O(\Delta \cdot \log \Delta + \log^* n)$ rounds
 - Using network decompositions: $(\Delta+1)$ colors in time $2^{O(\sqrt{\log n})}$
 [Awerbuch, Goldberg, Luby, Plotkin 89], [Panconesi, Srinivasan 95]

- Algorithms efficient if degree small
- Else: Huge gap between upper and lower bounds
Previous Work: Randomized Algorithms

• Randomized $O(\Delta)$-coloring in expected $O(\sqrt{\log n})$ rounds [Kothapalli, Scheideler, Onus, Schindelhauer 06]

• Randomized $(\Delta+1)$-coloring in expected $O(\log n)$ rounds:
 – MIS in exp. $O(\log n)$ rounds [Alon, Babai, Itai 86], [Luby 86]
 – Reduction from $(\Delta+1)$-coloring to MIS [Linial 92]

• Large gap between deterministic and randomized algorithms:

 • $O(\Delta)$ colors, deterministic: $\min \left\{ 2^{O(\sqrt{\log n})}, O(\Delta \log \Delta + \log^* n) \right\}$

 • $O(\Delta)$ colors, randomized: $O(\sqrt{\log n})$
One-Round Coloring Algorithms

- Easiest non-trivial case, most local algorithms
- Algorithm starts with unique IDs or initial coloring
- Each node collects IDs or initial colors of its neighbors
- Based on this information, a new color is determined

Many existing coloring alg.: iterative applications of one-round alg.
- Results in algorithms with short messages
One-Round Coloring Algorithms

- Assign new color to every possible one-hop view

- Different colors for views of (possibly) neighboring nodes
Formally...

- Given graph with max degree Δ, initial m-coloring

- One-hop view of node u: (x_u, S_u)

 $x_u \in [m]$: color of u, $S_u \subseteq [m]$: colors of u’s neighbors ($|S_u| \leq \Delta$, $x_u \notin S_u$)

- Views $(x_u, S_u), (x_v, S_v)$ can be views of neighbors if $x_u \in S_v$ and $x_v \in S_u$

- q-coloring algorithm: function f: $(x, S) \rightarrow \text{color} \in [q]$

 $f(x_u, S_u) \neq f(x_v, S_v)$ if $x_u \in S_v$ and $x_v \in S_u$

- q-coloring algorithm: q-coloring of neighborhood graph

 Nodes: all possible pairs (x, S), Edge if $x_u \in S_v$ and $x_v \in S_u$
One-Round Coloring: Related Work

• Given, graph of max degree Δ, initial m-coloring

• Upper bound: $O(\Delta^2 \cdot \log m)$ [Linial 92]

• Lower bound: $\Omega(\log\log m)$ [Linial 92] (holds on ring)
Coloring Algorithm

• Algorithm Idea:
 – For each new color, determine a total order (permutation) on old colors
 – Node takes new color if its old color appears before colors of neighbors in corresponding order

• Example: 6 old colors (○ ● ○ ● ● ○), 4 new colors (● ● ● ●)
Coloring Algorithm

• Algorithm Idea:
 – For each new color, determine a total order (permutation) on old colors
 – Node takes new color if its old color appears before colors of neighbors in corresponding order

• Example: 6 old colors (● ○ ● ○ ● ○ ○), 4 new colors (● ● ● ● ● ●)
One-Round Coloring: Upper Bound

- **Theorem:** \((\Delta+1)^2 \cdot \ln m\) different orders suffice

- **Proof Sketch:** (simple probabilistic method proof)
 - Choose random orders
 - Any one-hop view (center color + \(\Delta\) adjacent colors) covered with probability \(1/(\Delta+1)\)
 - Prob. that a given view is not covered by \((\Delta+1)^2 \cdot \ln m\) orders:
 \[
 \left(1 - \frac{1}{\Delta+1}\right)^{(\Delta+1)^2 \ln m} < \frac{1}{m^{\Delta+1}}
 \]
 - Number of one-hop views (center col, \(\Delta\) adj. cols) is at most \(m^{\Delta+1}\)
 - Probability that there is a view that is not covered is < 1
 - **Probability** that all views are covered > 0
 - There is a set of \((\Delta+1)^2 \cdot \ln m\) orders which cover all views
Multicoloring

• Assign **sets of colors** such that neighboring sets are **disjoint**
 minimize total number of colors, maximize size of sets

• Taking $c \cdot \Delta^2 \cdot \ln m$ colors for sufficiently large constant c:
 Every possible one-hop view gets a color w.h.p.

• In fact, every node can choose many colors

• For $c = O(1/\delta^2)$, a node with degree d gets $(1-\delta)/d$-fraction of
 all colors (by a simple Chernoff argument)

• Might be useful for TDMA slot assignments
 (extremely local algorithm, better usage of channel by
 assigning multiple slots to each node)
Algebraic Constructions

• Uses a probabilistic argument \(\rightarrow\) no explicit algorithm
• There are algebraic constructions that are almost as good:
 – \(p_1, \ldots, p_k\): first \(k\) prime numbers
 – Node with ID \(x\) can take colors \((i, x \mod p_i)\) for \(i = 1, \ldots, k\)
 – Choose a color that no neighbor can take
 – Chinese remainder theorem:
 upper bound on number of \(i\) such that for \(x \neq y: x \equiv y \pmod{p_i}\)
 (if \(\prod_i p_i \geq m^\Delta\), every node finds a color)
 – Choosing \(k = O(\Delta \cdot \log m / \log(\Delta \cdot \log m))\) suffices
 – Prime number theorem: there are sufficiently many small primes:
 \(p_k = O(\Delta \cdot \log m)\) \(\Rightarrow\) \#colors = \(k \cdot p_k = O(\Delta^2 \cdot \log^2 m / \log \Delta)\)

• Using similar algorithm based on polynomials over finite fields: \(O(\Delta^2 \cdot \log^2 m / \log^2 \Delta)\) colors
• Iterating \(O(\log^* m)\) times \(\rightarrow\) \(O(\Delta^2)\)-coloring
Multicoloring II

• Explicit algorithms can be extended to also get bounds for multicoloring (parameter $\delta \in (0, 1)$):
 – Total number of colors: $O(\Delta^2 \cdot \log^2 m / \log^2 \Delta)$
 node of degree d gets $O(\delta / (d^{1+\delta} + \log \Delta N))$-fraction of colors
 – Total number of colors: $O(\Delta^{O(\log^* m)} \cdot \log m / \log \Delta)$
 node of degree d gets $O(\delta/d^{1+\delta})$-fraction of colors
 – Trade-off possible between the two extremes possible

• Open problem:
 Find better explicit algorithms for graph multicoloring

• Randomized: With $O(\Delta \cdot \log(n)/\delta^2)$ colors, possible to assign $(1-\delta)/d$-fraction to each node of deg. d w.h.p. ($n = \#$ of nodes)
Defective Coloring

• Generalization of the classical coloring problem

• The defect d of a coloring of the vertices of a graph is the maximum degree of a graph induced by one of the color classes. (classic coloring: $d=0$)

• Problem: Given d, minimize number of colors

• Using similar techniques as for standard coloring: deterministic d-defective $O((\Delta/d)^2)$-coloring in time $O(\log^*m)$

• Tricky part: iterative application
Deterministic \((\Delta+1)\)-Coloring Algorithm

- If number of colors \(m \geq \Delta+2\)
 We can reduce by a factor of \((\Delta+1)/(\Delta+2)\) in one round
 [Kuhn,Wattenhofer 06]

- Algorithm (assume \(O(\Delta^2)\)-coloring is given):
 - Compute \((\Delta/2)\)-defective \(c\)-coloring
 \(O(1)\) colors in \(O(\log^* \Delta)\) rounds
 - Recursively compute \((\Delta/2 + 1)\)-coloring for each color class
 (can be done in parallel)
 - Combination of the two colorings gives \(c \cdot (\Delta/2 + 1) = O(\Delta)\)-coloring
 - Reduce to \(\Delta+1\) colors in \(O(\Delta)\) rounds

- Recursion for time: \(T(\Delta) \leq T(\Delta/2) + O(\Delta), T(2) = O(1)\)
(Δ+1)-Coloring Algorithm: Analysis

- Recursion for time: \(T(\Delta) \leq T(\Delta/2) + \alpha \cdot \Delta, \ T(2) \leq 4\alpha \) (for some constant \(\alpha \))

- Theorem: \(T(\Delta) \leq 2\alpha \cdot \Delta \)
 - True for \(\Delta = 2 \)
 - \(\Delta > 2: \ T(\Delta) \leq 2\alpha \cdot \Delta/2 + \alpha \cdot \Delta = 2\alpha \cdot \Delta \)

- Obtaining \(O(\Delta^2) \)-coloring to begin: \(O(\log^* m) \) time

- Total time for (Δ+1)-coloring: \(O(\Delta + \log^* m) \)

- Same idea gives \(\lambda \cdot (\Delta+1) \)-coloring in \(O(\Delta/\lambda + \log^* m) \) rounds for every \(\lambda \geq 1 \) (e.g. \(\Delta^{3/2} \)-coloring in \(O(\Delta^{1/2} + \log^* m) \) time)
Weak Colorings

- One of the first papers on local algorithms by Naor and Stockmeyer considered the following weak coloring problem: Assign colors to nodes such that every node has at least one neighbor with a different color.

- Generalization: Assign colors to nodes such that every node has at least k neighbors with different color.

- $O(k^2)$ colors in $O(\log^* m)$ rounds.

- $k+1$ colors in $O(k + \log^* m)$ time (same technique as for $(\Delta + 1)$-coloring, trade-off also possible).
Lower Bound for One-Round Algorithms

• $\Omega(\Delta^2/\log^2 \Delta)$-lower bound on number of colors for deterministic algorithms in [Kuhn, Wattenhofer 06]

• New: Improved $\Omega(\Delta^2)$-lower bound, much simpler proof

• Observation (IDs can be replaced by initial colors):
 – Nodes u, v with IDs x, y, set of neighbor IDs: S_x, S_y
 – If $y \in S_x$ and $x \in S_y$, u and v must choose different colors (otherwise, there is a graph on which the algorithm does not work)
 – The color sets of nodes with ID x and a neighbor with ID y are disjoint from the color sets of nodes with ID y and a neighbor with ID x
Edge Orientations

• A new color can be seen as an orientation on the edges of K_m

• A node with ID x, neighbor IDs S_x can choose a new color α if in corresponding orientations all edges (x,y) for $y \in S_x$ are oriented as $x \rightarrow y$

• Find orientations on the edges of K_m such that $\forall x, S (x \notin S, |S| \leq \Delta)$, \exists an orientation such that $x \rightarrow y$ for all $y \in S$

• Lower bound for coloring: Show that a certain number of orientations does not suffice!

• Remark: Edge orientation problem for general graphs G: Condition must hold for all x, S as before where all $y \in S$ are neighbors of x
Sources

• $X \subseteq [m]$ ($[m] = \{1, \ldots, m\}$)
• $x \in X$ is source w.r.t. X for a given orientation if $x \rightarrow y$, $\forall y \neq x$, $y \in X$
• For every orientation and every $X \subseteq [m]$: at most one source

• Theorem: If $m \geq \Delta^2/4 + \Delta/2$, $\Delta^2/4$ orientations do not suffice
• Proof (Δ even):
 – There are at most $\Delta^2/4$ sources w.r.t. $[m]$ and some orientation \Rightarrow there are at least $\Delta/2$ non-sources
 – Let X be set of $\Delta/2$ of non-sources
 – Show: there is one-hop view (x, S) with $|S| = \Delta - 1$ that gets no color ($x \in X$, $S = X \setminus \{x\} \cup \{\Delta/2$ other IDs$\}$)
Lower Bound Proof

• Need to find \((x, S)\) such that for all orientations, there is \(y \in S\) with \(y \rightarrow x\)

• Per orientation, at most one source w.r.t. \(X\) → on average, IDs in \(X\) source for \((\Delta^2/4)/(\Delta/2) = \Delta/2\) orientations w.r.t. \(X\) → \(\exists x \in X\) that is source for at most \(\Delta/2\) orientations

• \(\exists y \in S = X \setminus \{x\}\) with \(y \rightarrow x\) for all but these \(\Delta/2\) orientations
• Because \(x\) is non-source, for every orientation, there is \(y \in [m]\) for which \(y \rightarrow x\)
• Hence, we can add \(\Delta/2\) additional IDs to the set \(S\) to “cover” all orientations
Summary: One-Round Lower Bounds

• Hence, for \(m \geq \Delta^2/4 + \Delta/2 \), \(\Omega(\Delta^2) \) colors are best possible for deterministic one-round algorithms

• Combined with Linial’s ring lower bound: \(\Omega(\Delta^2 + \log \log m) \)

• Randomized algorithms:

• For \(\Delta = \Omega(\log n) \), \(\Omega(\Delta \cdot \log n / \log \log n) \) colors needed

• Proof based on more complicated counting argument and Yao’s principle
The Color Reduction Problem

• We want an algorithm that works for any graph G with max. degree Δ and initial m-coloring (assume Δ and m are known)

• Goal: Reduce the number of colors as quickly as possible (time complexity of algorithm should be function of m and Δ)

• Note: There is no bound on the size of the graph

• Because size of graph is not bounded: randomization does not help!
- Problem has nice recursive structure that can be exploited
- Proof Sketch:
 - $\mathcal{N}_r(m, \Delta)$: neighborhood graph for r rounds,
 $\chi(\mathcal{N}_r(m, \Delta)) =$ number of colors needed by r-round algorithm
 - $\eta_{r, \Delta}(G)$: number of edge orientations needed for graph G
 - We have seen: $\chi(\mathcal{N}_1(m, \Delta)) = \eta_{r, \Delta}(K_m)$ (note that $K_m = \mathcal{N}_0(m, \Delta)$)
 - It can be shown: $\chi(\mathcal{N}_r(m, \Delta)) = \eta_{r, \Delta}(\mathcal{N}_{r-1}(m, \Delta))$
 - Recursive structure allows to show the following lemma:
 If after removing s independent sets from $\mathcal{N}_r(m, \Delta)$, a t-clique remains,
 removing s independent sets from $\mathcal{N}_{r+1}(m, \Delta)$ leaves a t'-clique
 (for some specific value of t and t')
 - Proof of lemma uses same basic technique as lower bound on $\eta_{r, \Delta}(K_m)$
- Result: $\chi(\mathcal{N}_r(m, \Delta)) = \Omega(\Delta^2/r)$
- Hence, our algorithm is essentially tight
Distributed Coloring: Open Problems

• Lower bound for deterministic distributed coloring algorithms (or is there really a polylog algorithm?)

• Lower bound for randomized algorithms ($\Omega(\log^* n)$ best current lower bound)

• Explicit multicoloring, other coloring variants

• Dynamic case? (maybe more realistic communication models in general)