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Abstract. We investigate the importance of quorum sensing in the suc-
cess of house-hunting of emigrating Temnothorax ant colonies. Specifi-
cally, we show that the absence of the quorum sensing mechanism leads to
failure of consensus during emigrations. We tackle this problem through
the lens of distributed computing by viewing it as a natural distributed
consensus algorithm. We develop an agent-based model of the house-
hunting process, and use mathematical tools such as conditional proba-
bility, concentration bounds and Markov mixing time to rigorously prove
the negative impact of not employing the quorum sensing mechanism on
emigration outcomes. Our main result is a high probability bound for
failure of consensus without quorum sensing in a two-new-nest environ-
ment, which we further extend to the general multiple-new-nest environ-
ments. We also show preliminary evidence that appropriate quorum sizes
indeed help with consensus during emigrations. Our work provides the-
oretical foundations to analyze why Temnothorax ants evolved to utilize
the quorum rule in their house-hunting process.

Keywords: Bio-inspired Algorithms · Distributed Consensus · Stochas-
tic Dynamical Systems.

1 Introduction

Social insect colonies are motivated to move the locations of their nesting site
as a functional response to various selected forces, such as colony growth, com-
petition, foraging efficiency, microclimate, nest deterioration, nest quality, para-
sitism, predation, and seasonality [18]. Through constant adaptation to a chang-
ing environment, many social insect species such as ants, termites, and bees
have evolved robust algorithms to accomplish the task of collective nest relo-
cation [32]. In this paper, we study one such algorithm observed in colonies of
Temnothorax ants.
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Temnothorax ant colonies have many biological constraints: individuals with
limited memory and computational power, limited communication, and no cen-
tral control. Despite that, colonies as a whole can reach various global goals
such as nest-site selections and foraging [10]. Their remarkable collective intel-
ligence is not only an interesting problem for biologists, but also inspiring for
the computer science community. In particular, from the distributed computing
perspective, the collective house-hunting behavior is closely related to the fun-
damental problem of consensus. Building a theoretical understanding of the key
mechanisms in the house-hunting process can thus shed light on the designs of
novel distributed consensus algorithms.

Fig. 1. From [14] (Figure 2). (a)
Recruitment via tandem running
in the ant of genus Temnothorax.
The worker at the front is lead-
ing a tandem run, and the follower
behind is about to signal its pres-
ence by tapping with its antennae
on the gaster of the leader. (b)
Recruitment by transport in Tem-
nothorax ants. One worker is sim-
ply carrying another quickly to the
new nestsite. (Both photographs
by S. C. Pratt.)

Colonies consist of active ants who move
the remaining passive workers, the queen, and
brood items (immature ants) [25,4]. All work-
ers are female ants. At the beginning of an
emigration event, individual active ants inde-
pendently search for new nest sites. If an ant
finds one, she evaluates the site’s quality ac-
cording to various metrics [12,7]. Quality eval-
uation is relative to the old home nest [3]. If
she is not satisfied with the site, she keeps
searching. Otherwise if she is satisfied with
the site, she returns to the home nest after
some time interval that is inversely related to
the new nest site quality; during this interval
she might continue searching for other new po-
tential nest sites [15,22]. If she returns to the
old nest, she recruits another active ant to the
site by leading a slow tandem run from the old
nest to the new site [19,26]. This is done by
the leader ant directing the follower ant along
a pheromone trail (Fig. 1(a)). Upon arriving
at the nest, the follower ant also evaluates the
nest’s quality independently of the leader ant.
Both ants then continue monitoring the qual-
ity of the nest and repeat the process of qual-
ity estimation, wait interval/continued search, and further recruitment [29].

An ant continues leading tandem runs until she perceives that the new nest’s
population has exceeded a threshold, or quorum [23]. At this point, she ceases
tandem runs and instead starts transporting other ants by picking one up and
carrying her from the old home nest to the new nest (Fig. 1(b)). These transports
are much faster than tandem runs, and they are largely directed at the passive
workers and brood items, hence they serve to quickly move the entire colony
to the new nest [22,25]. The transporter rarely drops out of transporting other
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ants, and hence is considered fully committed to the new nest as the colony’s
home [29].

Both tandem runs and transports are forms of recruitment to accelerate
the emigration process, but the marginal benefits of transports in ensuring
consensus remain relatively poorly understood. Previous studies have regarded
the quorum sensing mechanism as a way to tune the speed-accuracy trade-
off [9,17,16,20,24,31], where a smaller quorum prompts ants to commit sooner
(higher speed) to a nest that has accumulated enough population, although that
nest could be inferior to another nest that is discovered later in the process
(lower accuracy). However, these studies generally equate accuracy with con-
sensus or cohesion [5,6], when all or most ants commit to the same nest. The
difference between accuracy and consensus is that the former evaluates the in-
dividuals’ ability to choose the best option in the environment, but the latter is
concerned only with their ability to agree with each other. The ability to stay
in a single group is not only an interesting algorithmic question, but also highly
beneficial for the survival of these ant colonies [9,14,6,30]. However, consensus
during emigrations has been comparatively understudied. Such studies require
examinations of both consensus cases and split cases, and the latter is difficult
to induce experimentally. Therefore, in this paper, we conduct one of the first
theoretical studies of the role of quorum sensing in emigration consensus.

At the outset, quorum sensing significantly benefits consensus because once
enough ants make their choice, that choice is “locked in” and has a higher chance
of becoming the final choice. This helps to ensure consensus when there are many
choices and the search effort is dispersed. However, a closer look reveals that the
quorum size must be carefully chosen. If the quorum size is too large, it would
be very unlikely to be reached by any nest; if it is too small, multiple nests will
likely reach quorum (a split), incurring significant additional costs in time and
risk of exposure of the emigration [1,2,23]. These trade-offs pose the question of
whether quorums help with consensus at all. In this paper, we aim to answer
this question partially by investigating the probability of emigration consensus
without the quorum sensing mechanism.

We start by modeling individual active ants as coupled random processes
without considering the quorum sensing mechanism. Unlike in most classical
distributed algorithms, the ants in our model do not receive initial input prefer-
ences, but must determine these preferences through exploration. Another dif-
ference is that our consensus requirement exempts a small portion of ants from
committing to the same nest. Intuitively, we expect that the distribution of ant
states converges to a limiting distribution in the long run. However, due to the
probabilistic modeling, there is a non-zero probability that an emigration de-
viates greatly from this expectation, and this probability depends also on how
many ants can be exempted by the requirement. Therefore, detailed calculations
are needed to quantify the probability of deviations that satisfy the consensus re-
quirement. Using probability tools such as conditional probability, concentration
bounds and Markov mixing time, we then show that without quorum sensing,
the probability of consensus is small and decays to zero exponentially fast as the
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colony size grows. In addition, we show preliminary evidence that appropriate
quorum sizes indeed help with consensus during emigrations.

The rest of the paper is organized as follows. In Section 2, we present our
model of individual ants, of the entire colony, and of an execution, for two-nest
environments. In Section 3, we formally state the definition of consensus, and the
metrics to measure a model’s performance in terms of consensus. In Section 4, we
show that with a high probability, emigrations cannot eventually reach consensus
without quorum sensing. In Section 5, we extend our results to general k−nest
environments where k > 2. Then, in Section 6, we consider the addition of the
quorum sensing mechanism to the emigration process in two-nest environments,
and show simulation results on the quorum sizes that are sufficient for consensus.

2 Model

2.1 Timing Model and the Environment

Fig. 2. State transition diagram
for ant ai during round t + 1 be-
fore/without quorum attainment.
αi
1(t + 1) and αi

2(t + 1) are com-
posite functions each including the
probabilities of an ant taking dif-
ferent paths (independent discov-
ery or tandem running) to transi-
tion out of n0 into n1 and n2, re-
spectively.

We divide time into discrete rounds. Individ-
ual active ants are modeled as identical proba-
bilistic finite state machines and their dynam-
ics are coupled through recruitment actions,
as described later in Section 2.2. Let N de-
note the total number of active ants in the
colony. Note that passive ants, the queen, and
brood items can only be transported and have
no states. For ease of exposition, in the se-
quel, by an “ant” we mean an “active ant”.
Each ant starts a round with its own state.
During each round, ants can perform various
state transitions and have new states, before
all entering the next round at the same time.
Throughout the paper, the state of an ant at
round t refers to her state at the end of round
t.

The environment contains the original
home nest n0 and two new nests n1 and n2. The new nests n1 and n2 have quali-
ties q1 and q2 respectively, relative to the home nest quality. For the convenience
of our analysis, we let 0 < q2 < q1 ≤ 1, where a higher value corresponds to a bet-
ter nest. Each nest is also associated with a population that changes from round
to round. We use x0(t)N , x1(t)N and x2(t)N , where x0(t) + x1(t) + x2(t) = 1,
to denote (active) ant populations in nest n0, n1 and n2 respectively at the end
of round t. Initially, individual ants have no information on q1 and q2.

2.2 Model of Individual Ants without Quorums

In this subsection, we describe the dynamics of an ant without quorums (a.k.a.
without performing state transitions based on seeing a quorum), compactly il-
lustrated in Fig. 2 and Eq. (1) - (6). Though these dynamics are not Markovian
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as the state transition of an ant is influenced by other ants during recruitments
(tandem runs), we prove (in Section 4) that after a finite time, the state transi-
tions of an ant become independent of the others’ states.
Individual state. The set of possible states of an ant is denoted as S ,
{n0, n1, n2}. Each state ni refers to the ant being at nest ni, and thus in the
sequel we use “in state ni” and “in nest ni” interchangeably. Denote the state
of ant ai at the end of round t as si(t) with si(0) = n0 for all ai, i.e., initially
all ants locate at the home nest n0.
Transitions out of the home nest. In a round, an ant ai in n0 can be
recruited by following a tandem run to either n1 or n2. If ai is not recruited,
she discovers nest n1 or n2 for the first time through independent discovery with
probability α ∈ (0, 1/2] for either nest and a total discovery probability of 2α.
Note that the biological meaning of the parameter α is that it encodes the home
nest quality - the higher the home nest quality, the less likely ai is to search for
a new nest during any round t and the smaller α is. Recruitment takes priority
over her performing a probabilistic state transition to either n1 or n2 through
independent discovery.

Formally, at the end of round t, if ant ai is in n0, let TRi1(t+ 1), TRi2(t+ 1)
be the event that ant ai is recruited to n1 and n2 respectively during round t+1.
Let τ i1(t+ 1), τ i2(t+ 1) represent their respective conditional probabilities during
round t+ 1, i.e.,

P
{
TRim(t+ 1) | si(t) = n0

}
= τ im(t+ 1), for m ∈ {1, 2}.

Note that for any ant ai, the two events are mutually exclusive, and τ i1(t+ 1) +
τ i2(t+ 1) ≤ 1. The exact expressions for τ i1(t+ 1) and τ i2(t+ 1) are very complex
and affect the time that ant ai transitions out of n0, which is an important
milestone time for the proofs in this paper. Fortunately, we manage to circumvent
calculating the exact expressions of τ i1(t+1) and τ i2(t+1) by deriving a bound on
this time using a coupling argument (Proposition 2). We found that this bound
was sufficient for proving our main theorem.

With this notation, conditioning on an ant ai being at state n0 at time t, the
probability of her transitioning to n1 in the nest round, denoted by αi1(t) can be
expressed as

P {si(t+ 1) = n1 | si(t) = n0} , αi1(t+ 1)

= P
{
TRi1(t+ 1) | si(t) = n0

}
+ P

{
si(t+ 1) = n1 | (si(t) = n0 ∧ ¬(TRi1(t+ 1) ∨ TRi2(t+ 1)))

}
· P
{
¬(TRi1(t+ 1) ∨ TRi2(t+ 1)) | si(t) = n0

}
= τ i1(t+ 1) + α(1− τ i1(t+ 1)− τ i2(t+ 1)), (1)

where α can be formally expressed as

α = P
{
si(t+ 1) = n1 | (si(t) = n0 ∧ ¬(TRi1(t+ 1) ∨ TRi2(t+ 1)))

}
. It is easy to see that αi1(t+ 1) sums up the probability of her getting recruited
to n1 and the probability of independent discovery of n1 in the case that she
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does not get recruited to either n1 or n2. Similarly, we define αi2(t + 1) as the
probability of her transitioning to n2 during round t+ 1, i.e.,

P {si(t+ 1) = n2 | si(t) = n0}
, αi2(t+ 1) = τ i2(t+ 1) + α(1− τ i1(t+ 1)− τ i2(t+ 1)). (2)

Correspondingly,

P {si(t+ 1) = n0 | si(t) = n0} = 1− αi1(t+ 1)− αi2(t+ 1). (3)

Transitions between new nests.
When si(t) = nm for m ∈ {1, 2}, at the beginning of round t + 1, with

probability (1− um), ant ai chooses to search her environment and discover the
new nest she is not currently at, i.e.,

P {si(t+ 1) = n3−m | si(t) = nm} = 1− um, ∀ m ∈ {1, 2}; (4)

with probability um, ant ai tries to recruit another ant from state n0 through a
tandem run and comes back to nm, i.e.,

P {si(t+ 1) = nm | si(t) = nm} = um, ∀ m ∈ {1, 2}. (5)

If there is no more ant left in n0 to recruit, the leader ant ai simply returns to nest
nm without recruiting another ant. The recruiting probability um is determined
by the quality of new nest nm as

um ,
1

1 + exp (−λqm)
, ∀ m ∈ {1, 2}, (6)

where the parameter λ > 0 represents the noise level of individual decision
making to evaluate the quality of a nest nm for m ∈ {1, 2}. A larger λ means
a less noisy decision rule, and thus a higher probability of recruitment to the
superior site nm. Also note that u1, u2 ∈ [0.5, 1] and u1 > u2.

Our choice of the sigmoid function is rooted in empirical evidence. The de-
cision making mechanism for individual ant recruitment has been shown by
a number of experimental and modeling studies to be both quality-dependent
[15,24,25,21] and threshold-based (individuals compare the perceived nest qual-
ity to a fixed threshold) [28,27]. The sigmoid function we chose here is thus a
common choice that incorporates both dependencies into the modeling of noisy
individual decision making. Intuitively, when nm has a quality higher than that
of n0’s, nm is the better choice and it is beneficial for ants to recruit to it. When a
nest nm is strongly superior to n0, i.e., the quality difference surpasses a thresh-
old, the probability of an individual ant recruiting to nm should thus be very
high (close to 1 in our model). The sigmoid function is a “smooth” representa-
tion of this threshold-based rule. On the other hand, when the quality difference
is small, the probability of recruitment has stronger dependencies on the quality
difference. This case is modeled by a near-linear segment in the sigmoid function.

Remark 1 (Non-markovian dynamics of an individual ant). The state si(t) of
any individual ant ai during round t has dependencies on 1) her own state in
the previous round si(t− 1), and 2) the recruitment actions of other ants.
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2.3 Dynamics of the Entire Colony

We now describe what happens in an arbitrary execution, or emigration. Through-
out the paper, we use “an execution” and “an emigration” interchangeably, re-
ferring to an emigration event.

Let s(t) = {s1(t), · · · , sN (t)} for t = 0, 1, · · · denote the random process of
the entire colony state, represented by a vector of dimension N that stacks the
states of individual ants in the colony. Although si(t) for any i is not Markovian,
it is easy to see that s(t) is a Markov chain, since for any tandem leader in round
t, the choice of a follower only depends on s(t−1) and not on any history prior to
round t−1. An emigration starts from round 1, with si = n0 for all i = 1, · · · , N .
During each round, each ant not in n0 performs one state transition in random
order, followed by each ant in n0 performing one state transition in random
order. At the beginning of a round t, each ant has her own state si(t − 1) and
the colony has state s(t − 1). If at the beginning of round t she is in nest n1
or n2, respectively, the population at that nest at the beginning of round t is
also available to ai. During a round t, each individual ant performs one state
transition according to the individual models in Section 2.2, which results in a
transition of the colony state as well during this round. At the end of round t,
each ant has a new state si(t) and the colony has state s(t). All ants then enter
the next round t+ 1 with their new states.

3 The Consensus Problem

Here we define what it means for an emigration to reach consensus. We say that
an emigration has reached ∆-consensus (where ∆ ∈ [0, 12 ]) if there exists t̃ such

that for all t ≥ t̃ and a nest m ∈ {1, 2}, the proportion of the population at nest
nm at time t is greater than or equal to 1−∆, i.e., xm(t) ≥ (1−∆).

The metric to evaluate a model’s performance is the consensus probability C,
which is the probability that an emigration reaches consensus as defined above.

Remark 2. Note that ∆ represents the proportion of ants that can be exempted
from the consensus requirement. We can see that the smaller ∆ is (lowest value
is 0), the larger (1 − ∆)N is, and hence the more ants are required for an
emigration to reach consensus. In other words, the smaller ∆ is, the more “strict”
the consensus metric is and the more challenging it is for an emigration to reach
consensus.

4 Failure of Consensus in Two-Nest Environments

In this section, we explore colony emigration behavior only with individual tran-
sition rules and tandem runs defined above (i.e., without quorum sensing). Equiv-
alently, we consider the case where the quorum size is N , so that the quorum
sensing mechanism never has any effect. We show an upper bound on the consen-
sus probability C for a given ∆ and colony size N . This upper bound decreases
to 0 exponentially fast as N →∞.
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Next we introduce two quantities, denoted by H and π∗, that will be used
in the statement of our main result. It is easy to see from Eq. (4) and (5) that
if an ant ai jumps out of the home nest n0 at some time, then from that time
onward, the state transition of ai becomes Markovian and is governed by the
following transition matrix

H =

[
u1 1− u1

1− u2 u2

]
. (7)

The transition in H is also illustrated in Fig. 4. It can also be seen (which we
will formally show later) that the state of each ant has an identical limiting
distribution, denoted by π∗ , 1

2−u1−u2
[1− u2, 1− u1] ∈ R2, with support on

{n1, n2} only.

Theorem 1. For any ∆ ∈ [0, 1 − π∗(n1)], let ε0 = 1−π∗(n1)−∆
2 > 0. Then it

holds that

P

{
N∑
i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0)N = (1−∆)N

}
≤ 2 exp

(
−ε

2
0N

2

)
,

for any t >
(

1
ln(1−2α) + 1

ln(1−R(H))

)
ln ε0

2 , where R(H) = 2 − u1 − u2 is Do-

brushin’s coefficient of ergodicity ([11, Chapter 6.2] and Appendix A) of H.

Remark 3. Theorem 1 is stated for n1. A similar result holds for n2. Theorem

1 says that for any t greater than
(

1
ln β + 1

ln(1−R(H))

)
ln ε0

2 , the probability of

x1(t) reaching (1−∆) is upper bounded by 2 exp
(
− ε

2
0N
2

)
. Thus, the total con-

sensus probability C for the given ∆ is upper bounded by 4 exp
(
− ε

2
0N
2

)
, which

decreases to 0 exponentially fast as N increases. It is worth noting that real
ant colonies often need ∆ to be very small or even zero for survival. From the
theorem expression, we can see that the smaller ∆ is, i.e., the more stringent the
consensus, the lower is the upper bound of the consensus probability. Therefore,
Theorem 1 implies that extra mechanisms, such as the quorum rule are necessary
to help the emigration reach consensus.

Later in Section 5, we also show that the proofs in this section and related
results can easily extend to environments with multiple nests.

4.1 Analysis of Main Result

Despite the fact that the dynamics of the entire ant colony is a Markov chain,
analyzing this Markov chain is highly non-trivial because the state is quite in-
volved and the state space is huge – it contains all the possible partitions of
ants into three groups, with each group representing one nest as the state of an
individual ant. In this proof section we analytically show that despite the fact
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that the emigration behaviors of individual ants are interactive, the dynamics
of any individual ant are independent of other ants shortly after she leaves the
original home nests either through discovery or through recruitment. Moreover,
we show that this independence manifests itself in a non-trivial way after a few
rounds – suggesting that a large portion of ants quickly rely only on individual
intelligence. Then we show that this independence is harmful to realizing social
cohesion.

Fig. 3. Flowchart of the proofs.

Several intermediate results are
derived in proving Theorem 1. The
connections of the supporting lemmas
and corollaries with respect to Theo-
rem 1 are shown in Fig. 3.

Definition 1. For each i ∈ [N ], de-
fine random variable T 1

i , inf{t :
si(t) 6= n0} as the first round at the
beginning of which ant ai has transi-
tioned out of the n0 state in any arbi-
trary execution of the emigration.

Remark 4. It can be shown that T 1
i is finite with probability 1 (Appendix A,

Prop. 4). It follows immediately from Definition 1 that P
{
si(t) = n0 | t ≥ T 1

i

}
=

0 for any ant ai.

It turns out that ant ai’s state transitions become independent of other ants
after T 1

i , the time that ai leaves n0, formally stated in the following proposition.

Proposition 1. For every i, j ∈ [N ], i 6= j and every t > T 1
i , the state transi-

tions of ant ai are independent from aj, i.e.,

P
{
si(t+ 1) = s′1 | (si(t) = s1) ∧ (sj(t) = s2) ∧ (t > T 1

i )
}

= P
{
si(t+ 1) = s′1 | (si(t) = s1) ∧ (t > T 1

i )
}
,

where s1, s2, s
′
1 ∈ S and s′1 6= n0.

The next proposition is devoted to showing that after a few rounds, many ants
have left the home nest n0. Consider N random indicator variables 1

{
T 1
i > t

}
for

any t, each variable taking values in the {0, 1}. Using stochastic dominance and
Hoeffding’s inequality [13] (also Appendix A), we show a high probability upper
bound on the number of ants still in n0 at round t. Here stochastic dominance is
used to tackle the challenges caused by the dependency among the N indicator
random variables.

Proposition 2. Let β , 1 − 2α. For t ≥ 1 and any number d ∈ [0, 1], it holds
that

P

{
N∑
i=1

1
{
T 1
i > t

}
< N

(
βt + d

)}
> 1− exp

(
−2Nd2

)
,
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i.e., with a probability of at least (1− exp
(
−2Nd2

)
), the number of ants staying

at home nest beyond time t is at most N (βt + d).

Corollary 1. For any given ε ∈ (0, 1), for any t ≥ logβ( ε2 ), it holds that

P

{
N∑
i=1

1
{
T 1
i > t

}
< εN

}
> 1− exp

(
−Nε2/2

)
.

In other words, with a probability of at least (1 − exp
(
−Nε2/2

)
), at most εN

ants remain in the home nest n0 after round logβ( ε2 ).

Next, we show that every ant ai has an identical limiting distribution. To-
wards this, we first show that every ant ai that has transitioned out of n0 has
the same limiting distribution. Furthermore, we show that all ants eventually
transition out of n0 and thus all ants share the same limiting distribution. The
proof of Lemma 1 uses the quantity Q(t), defined as

Q(t) , {ai : si(t) 6= n0} (8)

which is a random variable representing the set of ants that have transitioned out
of n0 by the end of round t, in an arbitrary emigration. Q(t) is thus a function
of an execution. It is easy to see that w.r.t. this emigration, Q(t− 1) ⊆ Q(t) for
any t ≥ 1.

Fig. 4. State transition dia-
gram for individual ants after
they leave n0, before/without
quorum attainment.

Lemma 1. For each ai, its limiting distribution,
denoted by πi, is well-defined, and can be expressed
as

πi ,
1

2− u1 − u2
[1− u2, 1− u1] . (9)

For ease of exposition, we define π∗ = πi. From
Lemma 1 it can be seen that the probability ratio
π∗(n1)
π∗(n2)

= exp (λ(q1 − q2)) is very sensitive to the

nest quality gap (q1 − q2) and λ.
It turns out that for t large enough, any ant

that has transitioned out of n0 has state distributions “close” to the stationary
distribution π∗, formally stated next.

Lemma 2. For any ant ai, let πi,t denote the probability distribution of her
state over the possible states depicted in Fig.4 at time t ≥ T 1

i . Then for any
number of rounds ` > 0, it holds that

‖πi,T 1
i +`
− π∗‖1 ≤ 2 (1−R(H))

`
.

Using Lemma 2, the following corollary immediately follows:
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Corollary 2. Fix any δ ∈ (0, 1). For any ant ai and t > T 1
i + `, where ` ,

log(1−R(H))
δ
2 , it holds that

‖πi,t − π∗‖1 ≤ δ.

Combined with Corollary 1, we are now ready to prove Theorem 1.

Proof of Theorem 1

We first give the intuition and a proof sketch to show an upper bound on the
probability of the population at n1 being higher than a certain number C0, for
t large enough.

We break down the problem into two cases. In the first case, by a certain
milestone-round k1, the number of ants that have transitioned out of n0 is low.
In the second case, that number is high. Now, by applying concentration bounds,
we show that the first case has a low probability. We thus subsequently focus
on analyzing the second case which has a high probability. From Corollary 2
we know that after a certain number k2 of rounds, most of the ants that have
left n0 will have distributions that are very close to the limiting distribution π∗.
Thus, at any round t ≥ k1 + k2, with high probability, the proportion of ants
in n1 is also close to π∗(n1) among ants that have left n0 (at most N ants). In
other words, after k1 + k2 rounds the probability of n1’s population being much
higher than π∗(n1)N should be quite low. Summing up the bounds for the first
and second cases gives us an overall upper bound on this probability, proving
the theorem.

For ease of exposition, let Bi(t) = 1{si(t) = n1} for each i ∈ [N ] and t ≥ 0.
Let C0 be an arbitrary positive number, C0 ∈ [0, N ]. Let C1 = (1− ε0)N . Recall
that β = 1− 2α.

P

{
N∑
i=1

1{si(t) = n1} ≥ C0

}
= P

{
N∑
i=1

Bi(t) ≥ C0

}

= P

{
N∑
i=1

Bi(t) ≥ C0 |
∣∣∣Q(logβ

ε0
2

)
∣∣∣ < C1

}
P
{∣∣∣Q(logβ

ε0
2

)
∣∣∣ < C1

}
+ P

{
N∑
i=1

Bi(t) ≥ C0 |
∣∣∣Q(logβ

ε0
2

)
∣∣∣ ≥ C1

}
P
{∣∣∣Q(logβ

ε0
2

)
∣∣∣ ≥ C1

}
≤ P

{∣∣∣Q(logβ
ε0
2

)
∣∣∣ < C1

}
+ P

{
N∑
i=1

Bi(t) ≥ C0 |
∣∣∣Q(logβ

ε0
2

)
∣∣∣ ≥ C1

}
. (10)

We bound the two terms in the RHS of Eq.(10) separately.
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Bounding the 1st term: For any t ≥ logβ
ε0
2 , we have

P {|Q(t)| < C1} = P {|Q(t)| < (1− ε0)N}

= P

{
N∑
i=1

1{si(t) 6= n0} < (1− ε0)N

}

= P

{
N∑
i=1

1
{
T 1
i ≤ t

}
< (1− ε0)N

}

= P

{
N∑
i=1

1
{
T 1
i > t

}
> ε0N

}

≤ exp

(
−ε

2
0N

2

)
,

where the last inequality follows from Corollary 1.

Bounding the 2nd term: Note that

N∑
i=1

Bi(t) =
∑

ai∈Q(t)

Bi(t) +
∑

ai /∈Q(t)

Bi(t).

It is easy to see that ∑
ai /∈Q(t)

Bi(t) = 0. (11)

In addition, we have

P

 ∑
ai∈Q(t)

Bi(t)−
∑

ai∈Q(t)

E [Bi(t)] ≥ ε0 |Q(t)| | |Q(t)| ≥ (1− ε0)N


= P

 ∑
ai∈Q(t)

Bi(t)−
∑

ai∈Q(t)

πi,t(n1) ≥ ε0 |Q(t)| | |Q(t)| ≥ (1− ε0)N


≤ exp

(
−2 |Q(t)| ε20

)
≤ exp

(
−2(1− ε0)ε20N

)
.

Conditioning on
∣∣Q(logβ

ε0
2 ))
∣∣ ≥ (1− ε0)N , from Corollary 2, we know that for

each ai ∈ Q(logβ
ε0
2 ), for any t > logβ

ε0
2 + `, where ` = log(1−R(H))

ε0
2 , it holds

that πi,t(n1) ≤ π∗(n1) + ε0. Hence we get∑
ai∈Q(t)

πi,t(n1) + ε0 |Q(t)| ≤ (π∗(n1) + ε0) |Q(t)|+ ε0 |Q(t)|

≤ (π∗(n1) + 2ε0)N.
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Thus,

P

 ∑
ai∈Q(t)

Bi(t) ≥ (π∗(n1) + 2ε0)N


≤ P

 ∑
ai∈Q(t)

Bi(t)−
∑

ai∈Q(t)

E [Bi(t)] ≥ ε0 |Q(t)| | |Q(t)| ≥ (1− ε0)N


≤ exp

(
−2(1− ε0)ε20N

)
. (12)

Combining Eq. (11) and (12), we conclude that

P

{
N∑
i=1

Bi(t) ≥ (π∗(n1) + 2ε0)N | |Q(t)| ≥ (1− ε0)N

}
≤ exp

(
−2(1− ε0)ε20N

)
.

Combining the probability bounds on the first and second terms of Thm.1,
we have

P

{
N∑
i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0)N

}

≤ exp
(
−2(1− ε0)ε20N

)
+ exp

(
−ε

2
0N

2

)
≤ 2 exp

(
−ε

2
0N

2

)
as ε0 ∈ (0, 1/2),

proving Theorem 1.

5 Extension: Failure of Consensus in More-Nest
Environments

Both the results on asymptotic independence and its negative impact presented
in Section 4 can be extended to the general k-new-nest environments where
k > 2. On a high level, the necessary additions to the individual transition
model (Fig. 2) are: 1) a new state for each new nest, each similar to the n1 and
n2, 2) all new nests can exchange ants with each other, and 3) all new nests can
receive ants from n0 through recruitment or discovery. The model for timing,
environment, and execution of the whole colony remain the same as the two-
nest case, where n1 has the highest quality. After adjusting quantities H and
π∗, one can derive results similar to Theorem 1: without quorum sensing, the
probability of consensus can be arbitrarily low. We detail these changes below
in this section.

Fig. 5 shows the transition diagram for an individual ant before/without her
seeing a quorum at any nest, and Eq. (13)-(16) define transition probabilities
among the four states. Similar to the two-nest case, P

{
TRil(t+ 1)

}
= τ il (t+ 1)
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Fig. 5. State transition diagram for ant ai during round t+ 1 in a k-nest environment
before/without quorum attainment. Probabilities αi

l(t + 1), l ∈ [1, k] are composite
functions each including the probabilities of an ant taking different paths (independent
discovery or tandem running) to transition out of n0 into nl. Compared to Fig. 2, this
figure shows the addition of one more new nest n3; any more new nests can be added
in the same way.

for each l ∈ [1, k] is defined as the probability of the event that ant ai transitions
from n0 to nl during round t + 1 by following a tandem run. Fig. 5 displays
only the addition of a third new nest, n3, and any more new nest can be added
in the same way. The addition of n3 requires that during round t, an ant at n0
transitions to n3 with probability α3(t); an ant at n3 stays in n3 with probability
u3; and an ant at a new nest l transitions to any other new nest m 6= l with
transition probability 1−ul

k−1 .

P {si(t+ 1) = nl | si(t) = n0} = αil(t) for l ∈ [1, k] (13)

P {si(t+ 1) = n0 | si(t) = n0} = 1−
k∑
l=1

αil(t) (14)

P {si(t+ 1) = nl | si(t) = nl} = ul for l ∈ [1, k] (15)

P {si(t+ 1) = nm | si(t) = nl} =
1− ul
k − 1

for l,m ∈ [1, k] and m 6= l (16)
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where

αil(t) , P
{
TRil(t)

}
+ P

{
si(t+ 1) = nl | (si(t) = n0 ∧ ¬(TRi1(t) ∨ TRi2(t) ∨ . . . ∨ TRik(t)))

}
· P
{
¬(TRi1(t) ∨ TRi2(t) ∨ . . . ∨ TRik(t)) | si(t) = n0

}
= τ il (t) + α(1−

k∑
l=1

τ il (t)), for l ∈ [1, k],

ul ,
1

1 + exp (−λql)
for l ∈ [1, k].

The two quantities used in the main theorem for a k-nest environment, H
and π∗, are also different, as shown below.

– H, a k × k transition matrix of an arbitrary ant ai’s state si after she
transitions out of n0, as specified in Eq. (17).

– π∗ ∈ Rk, a vector representing the limiting distribution of an arbitrary ant
ai (Eq. (18)). The l-th element is the limiting distribution of state nl, for
l ∈ [1, k].

H =


u1

1−u1

k−1
1−u1

k−1
1−u1

k−1 . . . 1−u1

k−1
1−u2

k−1 u2
1−u2

k−1
1−u2

k−1 . . . 1−u2

k−1
1−u3

k−1
1−u3

k−1 u3
1−u3

k−1 . . . 1−u3

k−1
. . . . . . . . . . . . . . . . . .

1−uk

k−1
1−uk

k−1
1−uk

k−1
1−uk

k−1
1−uk

k−1 uk

 . (17)

Solving the equation system πi = πiH, we also obtain that

π∗(l) =

∏k
∀m∈[1,k],m 6=l(1− um)∑k

w=1

(∏k
∀m∈[1,k],m 6=w(1− um)

) , for l ∈ [1, k]. (18)

Main Theorem for k-Nests

Theorem 2. For any ∆ ∈ [0, 1 − π∗(n1)], let ε0 = 1−π∗(n1)−∆
2 > 0. Then it

holds that

P

{
N∑
i=1

1{si(t) = n1} ≥ (π∗(n1) + 2ε0)N = (1−∆)N

}
≤ 2 exp

(
−ε

2
0N

2

)
,

for any t >
(

1
ln(1−kα) + 1

ln(1−R(H))

)
ln ε0

2 , where R(H) is Dobrushin’s coefficient

of ergodicity ([11, Chapter 6.2] and Appendix A) of H.

Remark 5. Theorem 2 is stated for n1. A similar result holds for nl for l > 1.
Like in the two-nest case, Theorem 2 again implies that extra mechanisms, such
as the quorum rule are necessary to help the emigration reach consensus.
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6 Consensus With Quorum Sensing in Two-Nest
Environments

Fig. 6. State transition diagram
for individual ants committed to
n1 and n2, on the left and right,
respectively.

An important work in progress is analyzing
the probability of consensus when the quorum
rule is in effect. In this section, we show as a
work in progress the addition of the quorum
sensing mechanism to our model, and our cur-
rent results on the quorum sizes that are suf-
ficient for consensus of average emigrations in
two-nest environments.

Note that the dynamics shown in Fig. 2 are also accurate here before an ant
ai sees a quorum for the first time at either nest. Thus, she starts her transitions
according to Fig. 2 before seeing any quorum. The evaluation of whether nm
has reached quorum happens whenever ai is in nm at the beginning of a round
t. Before she performs any transitions during round t, she compares the nest
population to a quorum size, if ai has not yet seen a quorum at nm (or at
any other nest). Once she detects that the population is at least as high as
the quorum size, she becomes “committed” to nm. After that, she no longer
monitors the nest’s population. We model an ant’s commitment by disallowing
her to transition out of nm. This means she has to perform a transport action
and stay in the nm state at any round after nm’s quorum attainment. As a
result, once a nest reaches the quorum, it never drops out of the quorum and
every ant that transitions to that nest gets “stuck” in that nest. We thus model
a “committed” ant with a separate Markov chain that essentially only has one
possible state, as shown in Fig. 6 and Eq. (19)-(22). For a committed ant ai, let
nm be the nest that she is committed to where m ∈ {1, 2}. Then the other new
nest she is not committed to is n3−m.

Fig. 7. State transition diagram for ant ai during round t+ 1 with the quorum sensing
mechanism. She first starts transitioning according to the left part of the figure, iden-
tical to Fig. 2. Then once she sees a quorum at either n1 and n2 (but not both), she
commits to that nest and can only stay in that nest, as shown on the right part of the
figure, identical to Fig. 6.



The Necessity of Quorum Sensing in Consensus 17

P {si(t+ 1) = nm | si(t) = nm} = 1 (19)

P {si(t+ 1) = n3−m | si(t) = nm} = 0 (20)

P {si(t+ 1) = nm | si(t) = n3−m} = 0 (21)

P {si(t+ 1) = n3−m | si(t) = n3−m} = 0. (22)

Individual Model With Quorums We show the full model in Fig. 7. The addition
of transporting as a possible recruitment method thus has two impacts in the
full model:

– An ant ai in n0 can get recruited by being transported to either n1 or n2, in
addition to following a tandem run.

– an ant ai in either state n1 or n2 choosing to stay in the same state tries
to recruit another ant from state n0 through a tandem run if the quorum is
not reached (Fig. 2, Eq. (5)), or through a transport otherwise (Fig. 6, Eq.
(19)). Whether the recruitment is successful or not still has no effect on ai’s
own state transitions during this round. Otherwise, if she does not recruit,
she searches her environment and discovers the new nest she is not currently
at (Eq. (4)).

It still holds that during any given round t, if an ant ai at n0 does not get
recruited, her transitions are Markovian and independent (Fig. 2, Fig. 6). The
whole colony dynamics are the same as shown in Section 2.3 and the whole
colony state retains its Markovian properties.

(a) (b)

Fig. 8. 3D plots demonstrating quorum sizes that are sufficient for consensus, when
α ≤ 1

3
. Views from two angles.
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Current Work: In our work in progress, through theoretical analysis and sim-
ulation work, we are striving to derive quorum sizes that are sufficient for con-
sensus. Our preliminary results in Fig. 8 show such quorum sizes for two-nest
environments. In these emigrations, we enforce that ∆ = 0 to model the most
challenging requirement of consensus. In Fig. 8, for the full ranges of u1 and
u2 in the frequent case that α < 1

3 , we visualize the quorum sizes (QS) in the
range [0.25, 0.5] that are expected to lead to consensus. The desirable values
of the quorum size show general consistency with experimental findings of the
observed quorum size employed by Temnothorax ant colonies [8,22]. However,
we are still working on deriving the mathematical expressions for quorum sizes
that are sufficient for consensus, as well as on extending these results to k-nest
environments (k > 2). We plan to show all related details of this effort in a
follow-up manuscript.

7 Discussion and Future Work

In this paper, we used analytical tools to show that without quorum sensing, the
collective nest site selection process by Temnothorax ants has a limited proba-
bility to reach consensus. And this probability can be arbitrarily low for a colony
size arbitrarily large. Conversely, we obtain a high probability bound for failure
of consensus. Without quorum sensing, the only form of recruitment, tandem
runs, does speed up the emigration process, but our results show that emigra-
tions would still have a high probability of splitting among multiple new sites,
imposing significant risks to the colony’s survival. We first analyze a model of
a two-new-nest environment, and then extend our results to environments with
more nests. Our results provide insights into the importance of extra mecha-
nisms, such as the quorum sensing mechanism, for emigrations to reach consen-
sus in an unpredictable environment with multiple nests.

In this paper we also provided a preview of an important work in progress
investigating how different quorum sizes influence emigration outcomes if quo-
rum sensing is involved, in two-nest environments. Further extensions in this
direction are to apply similar analytical methods to the general environment
with the addition of quorum sensing to gain insights on how the number of nests
and their qualities might influence the desirable values for the quorum size, with
the goal to avoid splits, or to ensure consensus, or with an objective involving a
specific degree or probability of consensus.

Additionally, another future work direction is to make our model more bio-
plausible. Specifically, our model does not consider the very small probability
that committed ants “drop out” of the nest they are committed to, and go back
to searching. Adding this into the model could make it biologically more realistic.

Finally, one more way to strengthen our theoretical results is by adding a
time bound metric to our consensus problem. Our current consensus metric, the
consensus probability C, only requires that at least (1−∆)N ants keep staying
at either n1 or n2 after a finite number of rounds. By adding a time bound metric
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as well, we would be able to better characterize the consensus probability (even
if lower than a given C) of an emigration by a certain time t.
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A Proofs for Section 4

Theorem 3. (Hoeffding’s inequality, Theorem 2 in [13]) If X1, X2, ..., XN are
independent random variables with ai ≤ Xi ≤ bi for i = 1, ..., n, then for D ≥ 0,

P

{
1

N

N∑
i=1

(Xi − E [Xi]) ≥ D

}
≤ exp

(
−2N2D2∑N
i=1(bi − ai)2

)
.

Definition 2. (Dobrushin’s coefficient of ergocity, Page 181 in [11]) Dobrushin’s
coefficient of ergocity R(H) of a transition probability matrix H is

R(H) = min
i,k

∑
j

hij ∧ hkj ,

where a ∧ b = min (a, b).

Proposition 3. For any round t ≥ 1 and ant ai, it holds that

P
{
T 1
i > t

}
< (1− 2α)t = βt,

where β = 1− 2α.

Proof. Let F t represent the event that ai is in state n0 and does not transition
out of n0 during round t. That this could happen only if ai has not jumped out
of n0 during any round previous to t as well. In turn, this requires that every
coin toss that ai has done

Further, F t is influenced by the set of events {F l} for all l ≤ t − 1 only
through F t−1. Thus we have the following:

P
{
F t | F t−1 ∧ F t−2 ∧ ... ∧ F 0

}
= P

{
F t | F t−1

}
P
{
F t−1 | F t−2

}
P
{
F t−2 | F t−3

}
...P

{
F 2 | F 1

}
P
{
F 1
}

For any given round t ≥ 2, conditioned on F t−1 is true, the probability of
any ant ai still not transitioning out of n0 during round t is 1− 2α(1− τ1(t)−
τ2(t))− τ1(t)− τ2(t) < 1− 2α. Furthermore, P

{
F 1
}

= 1− 2α since there are no
ants leading tandem runs yet and τ1(1) = τ2(1) = 0.

Therefore,

P
{
T 1
i > t

}
= P

{
F t | F t−1 ∧ F t−2 ∧ ... ∧ F 0

}
= P

{
F t | F t−1

}
P
{
F t−1 | F t−2

}
P
{
F t−2 | F t−3

}
...P

{
F 2 | F 1

}
P
{
F 1
}

= P
{
F 1
} t∏
l=2

P
{
F l | F l−1

}
=

t∏
l=2

P
{
F l | F l−1

}
(1− 2α)

< (1− 2α)t−1(1− 2α)

= (1− 2α)t.



22 J. Zhao et al.

Proposition 4. Let T 1
i be defined as in Definition 1. With probability 1, ant ai

transitions out of the state n0 in finite time, i.e.

P
{
T 1
i <∞

}
= 1.

Proof. By definition, we know that
{
T 1
i <∞

}
= ∪∞t=1

{
T 1
i ≤ t

}
. Thus, it holds

that {
T 1
i =∞

}
=
{
T 1
i <∞

}c
=
(
∪∞t=1

{
T 1
i ≤ t

})c
= ∩∞t=1

{
T 1
i > t

}
.

It is easy to see that
{
T 1
i > 1

}
⊃
{
T 1
i > 2

}
⊃ · · · ⊃

{
T 1
i > t

}
⊃
{
T 1
i > t+ 1

}
⊃

· · · . By continuity of probability [11, Lemma 1.1], we know that

lim
t→∞

P
{
T 1
i > t

}
= P

{
∩∞t=1

{
T 1
i > t

}}
.

In addition, from Proposition 3, we have

P
{
T 1
i > t

}
≤ (1− 2α)t.

Therefore, we have that{
T 1
i =∞

}
= P

{
∩∞t=1

{
T 1
i > t

}}
= lim

t
P
{
T 1
i > t

}
≤ lim

t
(1− 2α)t = 0,

proving the proposition.

Proof (Proof of Proposition 2). Notably the N indicator random variables are
not independent. Hence, we prove this proposition via coupling. For each ant ai,
we introduce an auxiliary random variable T̂ 1

i whose value is determined by a
sequence of independent coin tosses one for each round. Each state transition
of ant ai during a round t is coupled with a coin toss as follows. The coin toss
happens at the end of a round t. For any of the cases below, if the coin toss
shows “HEAD”, set T̂ 1

i = t.

– If ant ai is not in n0 at the beginning of t and T̂ 1
i > t− 1, then toss a biased

coin whose “HEAD” probability is 2α.
– If ant ai is in n0 at the beginning of round t and gets recruited during round
t, then toss a biased coin whose “HEAD” probability is 2α.

– Otherwise, a.k.a. if ant ai is in n0 at the beginning of round t and does not
get recruited during round t, the conditional probability of ant ai leaving n0
through independent discovery is 2α during round t. If ant ai spontaneously
leaves n0, toss a biased coin whose “HEAD” probability is 1; otherwise, toss
a biased coin whose “HEAD” probability is 0.

Since initially all ants stay at home nest n0, under the above construction, it
holds that T̂ 1

i ≥ T 1
i . Therefore, if T 1

i > t, then T̂ 1
j > t.

Summing up the cases listed above, for each ai and each round t, if ai has
not transitioned out of n0 by the end of round t− 1, the probability of her coin
toss showing a head is thus 2α, i.e. ,

P
{
T̂ 1
i = t | T̂ 1

i ≥ t
}

=

{
1, with probability 2α,

0, otherwise.
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Moreover, let Ei,t , 1

{
T̂ 1
i = t | T̂ 1

i ≥ t
}

. From the above construction, we know

that for fixed ai, {Ei,t}∞t=0 are independent. Also, {Ei,t}∞t=0 are i.i.d. across all
ants.

We further define N independent random indicator variables 1
{
T̂ 1
i > t

}
for

any t:

T̂ 1
i > t = T̂ 1

i > t | T̂ 1
i ≥ t− 1

= ¬(T̂ 1
i = t− 1 | T̂ 1

i ≥ t− 1)

= ¬Ei,t−1.

Hence, for any t, the variables 1

{
T̂ 1
i > t

}
for each ai are independent, each

taking values in {0, 1} and taking value 1 with probability 1− 2α.

Since 1
{
T 1
i > t

}
= 1 implies 1

{
T̂ 1
i > t

}
= 1, it holds that

N∑
i=1

1
{
T 1
i > t

}
≤

N∑
i=1

1

{
T̂ 1
i > t

}
.

Combined with Hoeffding’s inequality [13] (also Appendix A), we are ready
to prove the proposition statement.

P

{
N∑
i=1

1
{
T 1
i > t

}
< N

(
(1− 2α)t + d

)
= N

(
βt + d

)}

≥ P

{
N∑
i=1

1

{
T̂ 1
i > t

}
< N

(
βt + d

)}
> 1− exp

(
−2Nd2

)
Corollary 3. With probability 1, all ants jump out of n0 in finite time, i.e.,

P
{

max
i∈[N ]

T 1
i <∞

}
= 1.

Proof.

P
{{

max
i∈[N ]

T 1
i <∞

}c}
= P

{
∃ i ∈ [N ] such that T 1

i =∞
}

=

N∑
i=1

P
{
T 1
i =∞

}
= N × 0 = 0.

Corollary 4 follows immediately from Corollary 3 and Proposition 1.

Corollary 4. For any t ≥ maxi∈[N ] T
1
i +1, the state transition si(t)→ si(t+1)

is independent of other ants. Moreover, for all t ≥ maxi∈[N ] T
1
i ,

P {∃i ∈ [N ] such that si(t) = n0} = 0.
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Proof (Proof of Corollary 1). For any given ε ∈ (0, 1), we can set d = ε
2 and

apply Proposition 2 and thus prove the statement.

Proof (Proof of Proposition 1). For ant ai, at the beginning of round T 1
i +1, her

state is either n1 or n2. As can be seen from the state transition probabilities
for each ant, once ant ai jumps out of n0, i.e. at any time t > T 1

i , she can never
return to n0 according to Eq.(6)-(9).

Therefore, after T 1
i , ai’s state transition is independent of other ants, that is,

the transition probabilities in Eq.(6)-(9) are not affected by the states of other
ants.

Proof (Proof of Lemma 1). From Proposition 1 and Eq. 8, we know that for
any t ≥ 1, the state transitions of the ants in Q(t− 1) are independent of other
ants. Hence, for any ant ai ∈ Q(t), her state transitions are governed by the
transition matrix H which is defined in (7). From Proposition 4, we know that
limt→∞Q(t) = {1, · · · , N} with probability 1. Thus, the stationary distribution
of the colony state s is well-defined and is unique. Denote this distribution by
π. Note that π is a joint distribution of the states s1, · · · , sN of all ants with πi
as the marginal distribution of π on the state of ant ai. By symmetry, it holds
that πi = πj for any i 6= j. Solving the equation system πi = πiH, we get

πi =
1

2− u1 − u2
[1− u2, 1− u1] .

Proof (Proof of Lemma 2). First note that at the beginning of round T 1
i , the

probability distribution of ai’s state is such that the probability of state si(T
1
i )

(either nest n1 or n2) is 1 and of the new nest state she is not at is 0. By
Proposition 1 we know that after T 1

i , the dynamics of si is Markovian. Hence
we know that πi,T 1

i +`
= πi,T 1

i
H`.

It follows from [11, Proposition 6.5] that ‖πi,T 1
i
H` − π∗‖1 ≤ 2 (1−R(H))

`
,

proving the lemma.
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