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Abstract

The decentralized cognition of animal groups is both a challenging biological prob-
lem and a potential basis for bio-inspired engineering design. The understanding of
these systems and their application can benefit from modeling and analysis of the
underlying algorithms. In Chapter 2, we define a modeling framework that can be
used to formally represent all components of such algorithms. As an example appli-
cation of the framework, we adapt to it the much-studied house-hunting algorithm
used by emigrating colonies of Temnothorax ants to reach consensus on a new nest.
We provide a Python simulator that encodes accurate individual behavior rules and
produces simulated behaviors consistent with empirical observations, on both the in-
dividual and group levels. We use the simulator to make predictions about several
aspects of collective emigration behavior, some with empirical support and some are
new predictions. Critically, our results highlight the value of individual sensitivity to
site population in ensuring consensus, and suggest its empirical measurement.

Though the above model captures a wide range of observed phenomenon and make
new predictions, our work and previous work have mostly focused on experimental or
modeling work, and lack rigorous mathematical justification. Building a theoretical
understanding of the key mechanisms in the house-hunting process is necessary for the
designs of novel distributed consensus algorithms. In order to do so, in this chapter we
further simplified the model introduced in Chapter 2 and investigated the marginal
benefits of the quorum sensing mechanism. We show theoretical confirmation of the
hypothesized evolutionary advantage of quorum sensing in helping consensus. In
addition, the desirable values of the quorum size from our theoretical results have
been observed empirically.

It is our hope that the scientific insights and the modeling and mathematical tools
can inspire further research from both the biology and computer science community.

Thesis Supervisor: Nancy Lynch
Title: Professor
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Chapter 1

Thesis Overview

Animal groups are capable of remarkable displays of highly coordinated behavior.

Fish schools collectively choose foraging sites [69], locusts self-organize into orderly

swarms [70], oceanic fish assemble in vast migratory shoals [34], and social insects

perform a host of collective actions including group foraging, construction of complex

nests, and adaptive allocation of tasks across the labor force [4, 7, 8, 41, 43, 62].

Although well-informed leaders may play a role, group organization is typically very

decentralized [7, 17, 62]. Coordination emerges from interactions among large num-

bers of animals acting on limited local information with appropriate decision rules.

However, how these group actions result from individual behavior remains a major

research challenge. Understanding the connection between individual behavior and

group outcomes is too much for unaided intuition, hence mathematical models and

agent-based simulations have become useful tools for understanding. In this thesis,

we develop general modeling and analytical tools to understand a notable example of

decentralized decision-making: nest site selection by ants of the genus Temnothorax.

Models, in combination with experimental studies, have already revealed much

about these ants, making them a leading model system for collective decision-making

[51]. A Temnothorax ant colony is composed of adult workers and brood items

(immature ants), each group making up 40% to 60% of colony members. Adults

are roughly equally divided between active workers, who organize and execute em-

igrations, and passive workers, who, like brood items, are typically transported to
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the new nest by active workers and do not themselves recruit nestmates [53, 15, 67].

Colonies live in pre-formed cavities such as rock crevices or hollow nuts; if their home

is damaged, they are adept at finding candidate new homes, evaluating each site’s

quality, and moving the entire colony to the best one. Their decision emerges from

the separate efforts of many scouts, each independently recruiting nestmates to the

site it has found. Because recruitment is quality-dependent, better sites accumulate

ants more rapidly [35]. These differences are amplified by a quorum rule under which

scouts accelerate recruitment with transporting instead of tandem running to a site,

once its adult population crosses a threshold; the winner of the race to attain a quo-

rum becomes the colony’s choice [46]. An agent-based model has shown that this

algorithm helps the colony reach consensus on the best site [53]. Other models have

shown how a colony can make a good choice even when no individual directly com-

pares sites [38, 56], and how individual behavioral strategies optimize speed/accuracy

tradeoffs at the colony level [25, 37, 36, 44, 52, 65].

Although successful, models of this process have been limited to the simple chal-

lenge of choosing between two distinct and equidistant nests in a controlled laboratory

environment. Real colonies face more complex scenarios, such as selecting among sev-

eral sites of varying quality, avoiding splits when candidate nest sites are identical,

and resolving colony splits when they occur [10, 60]. It also remains unclear how the

colony maintains high performance with noisy and heterogeneous individuals, and

how individuals modify their behavior to account for changes in context or colony

state. In addition, a large body of experimental work has uncovered new collec-

tive colony behavior that has yet to be explained. These include the more complex

scenarios mentioned above, as well as effects on decision-making of colony size and

emigration distance, colony reconnaissance of potential new homes, and the emer-

gence of group-level rationality despite individual-level irrationality [21, 59, 64]. To

better capture the complexities of nest-site selection, in Chapter 2 we develop a new,

flexible, general model for the analysis and exploration of these questions.

Additionally, previous work has mostly focused on experimental studies and mod-

eling work, and lacks rigorous mathematical justification of the models that have been

14



developed based on empirical findings. Although data shown from both experiments

and simulations reveal much about the various mechanisms involved in the house

hunting process, rigorous mathematical theorems about the process is essential to

advancing our understanding the benefits of each of the key mechanism at work in

this process. These understandings might in turn generalize to other biological pro-

cesses, or help us design artificial systems such as robot swarms. In Chapter 3, we use

analytical methods to investigate the marginal benefits of one of the key mechanisms

in this process: quorum sensing.

Thus, in this thesis we add to the growing body of literature that shed light on the

house-hunting process of Temnothorax ants by addressing both of the aspects above.
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Chapter 2

The Power of Social Information: A

Computational Modeling Approach

2.1 Introduction

In this chapter, we first define a modeling framework that can be used to formally

represent all components of discrete-time agent-based algorithms where each agent

is a state machine that transitions at most once in a round, and transitions involve

the state change of either a single agent or two agents. As an example application

of the framework, we adapt to it the much-studied house-hunting algorithm used by

emigrating colonies of Temnothorax ants to reach consensus on a new nest. Using this

house-hunting model, we investigate a range of emergent properties. Some of these

properties have empirical support and some are important predictions that suggest

further experimental or theoretical studies.

We first demonstrate the value of the model by reproducing results of earlier mod-

els showing how the ants’ algorithm can account for decision-making and speed/accuracy

tradeoffs in simple one- and two-choice experiments [52, 53]. We then extend the

model to account for more recent empirical observations, including robust decision-

making among larger numbers of options and rational colony decisions about decision

speed [60, 61]. After that, we test out a proposed novel but critical role for social

information, in which ants directly incorporate nestmate presence into their assess-
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ment of nest site quality. We use the model to test the effect of such information on a

colony’s ability to decide between two identical nests, a context that poses a particular

challenge to consensus formation. Finally, we make predictions about the relation-

ship between quorum size and the speed/accuracy tradeoff, and about the ability of

a colony to re-unify after dispersal of its members among multiple competing sites.

Our results indicate a more complex relationship between individual behavior and the

speed/accuracy trade-off than seems to have been previously appreciated. The model

proved relatively weak at resolving colony divisions among multiple sites, suggesting

either limits to the ants’ ability to reach consensus, or an aspect of their behavior not

captured in our model. It is our hope that these insights and predictions can inspire

further research from both the biology and computer science community.

Our model touches on several aspects of the emergence of collective intelligence

in the house hunting process, but many more are yet to be explored. Therefore,

an additional goal is to provide a versatile, easy-to-use and maintainable modeling

tool that can be used to quantitatively test hypotheses beyond those included in this

chapter. We achieve this goal with our Python simulator. Last but not least, from

a theoretical perspective, our model can serve as a starting point for simpler models

that allow rigorous proofs on convergence speed and accuracy.

Chapter Organization The rest of the chapter is organized as follows: Section 2.2

defines a general framework that we believe will be useful not only for this algorithm

but for other agent-based distributed algorithms as well. Section 2.3 applies this

framework, with designs and interpretations specific to the house hunting context.

Section 2.4 describes our Python implementation of the house hunting simulator, in-

structions on running simulations, and their scoring goals and metrics. Section 2.5

validates our model by comparing its results with those obtained by empirical studies

on individual behaviors and the collective properties of the colony. These validations

give us confidence in the accuracy of our model as we proceed into further confirma-

tions of newly observed colony behaviors with limited experimental results, as listed

in Section 2.6. And Section 2.7 showcases simulation results that establish the power
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of the new social information rule in the colonies’ ability to reach consensus. Lastly,

Section 2.8 includes preliminary and exploratory predictions that suggest additional

interesting ways to use our simulator.

2.2 Modeling Framework

In this section, we introduce a general modeling “language" that has the potential to

be useful for a wide range of applications. In Section 2.3 we instantiate this language

in the context of the house hunting process in ant colonies.

2.2.1 Agent-based Model

Formally, the components below define the entities in the system and their static

capabilities. More explanatory text follows after the list.

• agent-ids, a set of ids for agents. Each agent-id uniquely identifies an agent.

We also define agent-ids′ to be agent-ids ∪{⊥} where ⊥ is a placeholder for

“no agent". In general, we add ′ to a set name to denote the original set with

the addition of a default element {⊥}.

• external-states, a set of external states an agent might be in. Each element in

the set is an external-state. In addition, all-externals is the set of all mappings

from agent-ids to external-states. Each element of the set is an all-external.

• internal-states, a set of internal states an agent might be in. Each element in

the set is an internal-state.

• env-states, a set of states that the agents’ environment might take on. Each

element in the set is a env-state.

• action-types, a set of the types of actions agents might perform. Each element

in the set is an action-type.
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• env-choices, a set of values an agent can access in the environment. Each

element in the set is an env-choice.

• actions, a set of quadruples of the form (action-type, agent-id, agent-id ′, env-

choice) ∈ action-types × agent-ids × agent-ids′× env-choices. Each ele-

ment in the set is an action.

• select-action(agent-id, state, env-state, all-external): A state is a pair of

(external-state, internal-state) ∈ external-states × internal-states. Each

(agent-id, state, env-state, all-external) quadruple is mapped to a probability

distribution over the sample space of actions, for which the second component

is equal to the input argument agent-id and the third component is not equal

to it. The function then outputs this probability distribution.

• transition(agent-id, state, all-external, action): A state is a pair of (external-

state, internal-state) ∈ external-states × internal-states. Each (agent-id,

state, all-external, action) quadruple determines a state as the resulting state

of the agent identified by the input argument agent-id. The function outputs

the resulting state.

Each agent has a unique agent-id ∈ agent-ids, and is modeled by a state machine.

Agents can transition from one state to another. A state is a pair: an external-state

∈ external-states that is visible to other agents, and an internal-state ∈ internal-

states that is invisible to other agents.

We define all-externals to be the set of all mappings from agent-ids to external-

states. Each element of the set is an all-external and represents a particular mapping

from agent-ids to external-states where each agent-id is mapped to an external-

state.

The set env-states represents the set of states that the agents’ environment might

take on. In this chapter, we will assume that the environment is fixed. That is, the

env-state does not change during the execution of the system. The reason we use

a set here is to enable us to model the same set of agents operating in different

environments.
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Agents can also access values in the environment, and each value is called an

env-choice. The set env-choices is the set of all possible values for env-choice.

An agent can transition from one state to another by taking an action ∈ actions.

Each action consists of an action-type ∈ action-types, the id of the initiating agent

agent-id ∈ agent-ids, the id of the (optional) received agent agent-id ′ ∈ agent-ids′,

and env-choice ∈ env-choices.

The function select-action(agent-id, state, env-state, all-external) is intended to

select an action for the agent with the given agent-id, who is the initiating agent in

the action. The function outputs a probability distribution over the sample space

actions. However the sample space limits its elements to have the second compo-

nent equal to the input argument agent-id, and the third component not equal to it.

Thus, any sampled action will have agent-id being the initiating agent’s id, and the

(optional) receiving agent necessarily has a different id.

The function transition(agent-id, state, all-external, action) represents a transi-

tion to be performed by the agent identified by the input argument agent-id. Given

the input arguments, the function deterministically outputs the resulting state of the

transition.

2.2.2 Timing and Execution Model

In this section, we introduce the dynamic aspects of our model, including the discrete

and synchronous timing model, and how different components in the system interact

with each other at different points during the execution of the algorithm.

Our system configuration contains 1) an environment state, called env-state, and

2) each agent’s state, which is a pair (external-state, internal-state), independent

of env-state. Agents receive inputs from and react to the environment during the

execution of the system. In this chapter, we will assume that the environment is

fixed. That is, the env-state does not change during the execution of the system.

Incorporating some theoretical ideas from [26, 54], we divide the total time into

𝑟𝑜𝑢𝑛𝑑𝑠. Each round is a discrete time-step, and times are the points between rounds.

At any time 𝑡, there is a corresponding system configuration 𝑡. The initial time is
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time 0, and the first round is round 1, taking the system from configuration 0 at time

0 to configuration 1 at time 1. In general, round 𝑡 starts with system configuration

(𝑡 − 1). During round 𝑡, agents can perform various transition’s, which take the

system from configuration (𝑡− 1) at time (𝑡− 1) to configuration 𝑡 at time 𝑡.

We now describe the execution of an arbitrary round 𝑡. At any point in the

execution of round 𝑡, each agent 𝑥 is mapped to a state, 𝑠𝑡𝑎𝑡𝑒_𝑥, which is visible to

agent 𝑥 itself. However, to other agents, only agent 𝑥’s external-state, 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑥 is

visible. We denote all-external ∈ all-externals to be the mapping from every agent-

id ∈ agent-ids to the corresponding external-state ∈ external-states in round 𝑡.

These mappings can be updated during the execution.

Accounting for the randomness of the order of execution for all the agents, a

randomly chosen permutation of agent-ids is generated at the beginning of round 𝑡,

serving as the order of execution for the agents in the round. We also instantiate a

set 𝑇𝑟𝑎𝑛𝑠 = ∅ at the beginning of the round. An agent is prevented from changing

its state further in the round once it adds its agent-id to 𝑇𝑟𝑎𝑛𝑠, which can happen

during its turn (even if there is no resulting state change) or when it performs a

transition during another agent’s turn. As a result, each agent can change its state

at most once in the round. After all agents are in the set Trans, round 𝑡 is over, and

all agents enter round 𝑡 + 1 synchronously.

The rest of this section describes all possible operations during one agent 𝑥’s turn

in round 𝑡. When an agent with agent-id 𝑥 (a.k.a. agent 𝑥) gets its turn to execute,

it first checks whether 𝑥 ∈ 𝑇𝑟𝑎𝑛𝑠. If so, agent 𝑥 does nothing and ends its turn here.

Otherwise, agent 𝑥 has not yet transitioned in round 𝑡. Let 𝑠𝑡𝑎𝑡𝑒_𝑥 denote the

state of agent 𝑥. Agent 𝑥 calls the function select-action(x, state_x, env-state, all-

external). The function outputs a probability distribution over the sample space of a

subspace of actions, for which the second component is 𝑥, and the third component

is not 𝑥. Agent 𝑥 randomly selects an action, 𝑎𝑐𝑡 = (𝑎, 𝑥, 𝑥′, 𝑒), according to this

probability distribution.

Agent 𝑥 then calls transition(x, state_x, all-external, act), to determine the

resulting state, 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒_𝑥, for agent 𝑥. As the initiating agent, 𝑥 also gets added

22



to 𝑇𝑟𝑎𝑛𝑠. Next, in the case where 𝑥′ ̸= ⊥, agent 𝑥′ also calls transition(x′, 𝑠𝑡𝑎𝑡𝑒_𝑥′,

all-external, act) where 𝑠𝑡𝑎𝑡𝑒_𝑥′ is the current state of agent 𝑥′, maps itself to the

function output, and updates its entry in all-external. Note that 𝑥′ is added to 𝑇𝑟𝑎𝑛𝑠

if the function output is different than 𝑠𝑡𝑎𝑡𝑒_𝑥′ in any way. This is the end of agent

𝑥’s transition call. Agent 𝑥 then maps itself to the resulting state 𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒_𝑥,

and updates its entry in all-external. Agent 𝑥 finally ends its turn here.

2.2.3 Discussion

Although our model keeps track of the external-state of all the agents in all-external,

when performing a transition, an agent can only access 𝑙𝑜𝑐𝑎𝑙 information in it. Lo-

cality here is flexible to the context, i.e. local to the location of the agent initiating

an action.

Agent-based models are especially powerful for simulating and analyzing collec-

tive behaviors given their natural compatibility with object-oriented programming

methodologies and their flexibility for allowing individual differences in realized state

transition probabilities among the agents [6, 66, 39, 53].

2.3 House Hunting Model

This section uses the framework defined in Section 2.2 to describe the house-hunting

process.

2.3.1 Informal Description

Now we give an informal description of how ants perform an emigration, consistent

with but more intuitive than the formal model definition in Section 2.3.2 later.

There are four distinct phases for an active worker in the house-hunting process. In

the first, the Exploration phase, the ant randomly starts to explore her surroundings

for a suitable new nest. If she finds a candidate site, she enters the Assessment

phase, where she individually assesses the site’s quality according to various metrics
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[29, 22, 47]. If she judges the site to be satisfactory, the ant accepts it and enters the

Canvassing phase, in which she returns to the old nest to recruit other ants to the

site by leading forward tandem runs (FTR). In a FTR, the recruiter slowly leads

a single follower (another active worker) from the old nest to the new [40, 55, 68].

Upon arriving at the nest, the follower ant goes directly into the Assessment phase

and evaluates the nest’s quality independently of the leader ant. If she finds the nest

satisfactory, she will transition to the Canvassing phase and start leading FTRs to

the nest. A canvasser continues leading FTRs until she perceives that the new nest’s

population has exceeded a threshold, or quorum [48]. At this point, she enters the

Transport phase, in which she fully commits to the new nest as the colony’s home.

She ceases FTRs and instead switches to picking up and carrying nestmates from the

old to the new nest. These transports are faster than FTRs, and they are largely

directed at the passive workers and brood items, hence they serve to quickly move

the entire colony to the new nest [46, 53]. Previous models and experiments indicate

that the quorum rule helps the colony to reach consensus rather than splitting among

multiple sites [46, 19, 23]. Splitting becomes a danger if ants at different sites, each

ignorant of their nestmate’s discoveries, launch FTRs to their respective sites. The

quorum rule makes it likely that whichever site first hits the threshold will quickly

end up with all or most of the colony, due to the speediness of transport.

Although experimental evidence is equivocal, we assume that the quorum size is

correlated with the number of adult workers in the colony [13, 19]. We also assume

that passive workers can contribute to quorum attainment. Once the quorum is met,

the switch to Transport phase is irreversible: an ant continues transporting nestmates

to her new home nest even if the nest population later drops below the quorum size

[48]. However, transporters do sometimes interrupt transport to search for and assess

alternative nest sites. If the search yields a new site that is better than the ant’s

current nest, then she exits the Transport phase and enters the Assessment phase

with the new site as her candidate nest.

An ant in the Canvassing or Transport phase does not recruit indefinitely. Once

the site from which she is recruiting is empty, she returns to her home nest and tran-
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sitions back to the Exploration phase. However, this happens only upon meeting a

“termination" condition consisting of ten occurrences of either of the following events:

1) the worker tries to lead a FTR where the solicited follower is also trying to lead

her own FTR, and 2) the worker tries to carry another worker who is also in the

Transport phase. This condition is based on frequent observation of these events at

recently emptied nests. We hypothesize that an ant’s requirement of several such

events is a means of ensuring thorough exploration of the old nest so that no nest-

mates are left behind. We do not have a precise measure of how many such events

are required, but chose the number 10 as an upper-bound estimate.

The emigration is completed when all ants in the colony are relocated to the new

nest, except possibly for a few active scouts [46].

2.3.2 Formal Model

Model components

In this section, we show how each component in our modeling framework (Section

2.2.1) is defined in the house hunting algorithm context.

Figure 2-1: Native data structures that define different entities in the distributed
system.
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Fig. 2-1 shows our native data structures as used by various components in

the system: Nest objects, an array which constitutes an env-state; Ant objects,

each corresponding to an agent; State = (ExternalState, InternalState) objects, each

corresponding to a state = (external-state, internal-state), and Action objects, each

corresponding to an action. Each of the data structures contains a set of variables,

as seen in Fig. 2-1. Note that we consider all variables belonging to either the

class ExternalState or the class InternalState to belong to the class State as well.

Throughout the rest of the chapter, we use the notation 𝑜𝑏𝑗𝑒𝑐𝑡.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 to denote

the value of a 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 belonging to a class 𝑜𝑏𝑗𝑒𝑐𝑡. Using these data structures as

building blocks, we now show all possible values for the components in the framework

presented in Section 2.2.1. Note that for consistency with our implementation in

Section 2.4, we use −1 or an empty string “” to represent any invalid default integer

or string values represented by ⊥ in Section 2.2.

• agent-ids, the set containing all integers in the range [0, num_ants), where

num_ants is the total number of ants in the colony. In addition, agent-ids′ =

agent-ids ∪ -1. Each Ant is initialized with its corresponding ant_id, which

corresponds to a agent-id.

• external-states, the set containing all possible values for an ExternalState class

object, each corresponding to an external-state. We designed these variables

to be in the external-state because these contain information that influences

other ants’ activities. Therefore, it is biologically plausible that individuals

have access to this information about one another.

In any ExternalState class object, 𝑝ℎ𝑎𝑠𝑒 has one of four possibilities - Explo-

ration (searching for new nests), Assessment (assessing new nests), Canvassing

(leading other active workers on FTRs to her accepted candidate nest), and

Transport (committing to the new nest and rapidly carrying other ants to it).

Note we abbreviate the four phases to names “E", “A", “C" and “T", respec-

tively. The initialization of an Ant ’s 𝑝ℎ𝑎𝑠𝑒 and 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 can be found in

Section 2.3.2. For each 𝑝ℎ𝑎𝑠𝑒, the variable 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 take values from a

26



different set, as follows:

The variable 𝑟𝑜𝑙𝑒 can be one of (0,1,2) representing (active ant, passive ant,

brood), and each Ant is initialized with the appropriate value. The variable

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 can be any integer in the range [0, num_nests) where num_nests is

the total number of nests in the environment, with 0 representing the original

home nest. In addition, recall that all-externals is the set of all possible

mappings from agent-ids to external-states. Each element of the set is an

all-external.

• internal-states, the set containing all possible values for an InternalState class

object, each corresponding to an internal-state. The set of fields we designed

for the InternalState class represent information that should only be accessed

and modified by an ant’s internal memory. Each of ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡 (initial value =

0), 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 (initial value = -1), and 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 (initial value

= -1) can take any integer in the range [0, num_nests), where num_nests is

the total number of nests. Lastly, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 (initial value = 0) takes

any value in the range [0, 10].

• env-states, a set of arrays, each being an array of the Nest class objects.

Each array corresponds to an env-state. For an env-state, the Nest at index 0

represents the original home nest and has 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 0. All other Nest ’s

have 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 in range [0, 4]. The maximum quality 4 here is arbitrary.

Recall that the array does not change throughout the execution of the system,

and the array is read from a configuration file introduced in Section 2.4.1.

• action-types, the set of the types of actions includes: “search", “no_action",

“find", “follow_find", “get_lost", “reject", “no_reject", “accept", “recruit", “quo-

rum_met", “quorum_not_met", “stop_trans", “delay", “terminate", “lead",
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“carry". Action-type is initialized to “no_action”. Each item in the set above is

an action-type.

• env-choices, the set of integers in [0, num_nests) ∪ -1 where num_nests is the

number of nests in the environment. Each element in the set is an env-choice

and is an integer representing an index into env-state. An env-choice has initial

value -1.

• actions, the same set as defined in Section 2.2.1. Note that not all actions

require a receiving agent, and not all actions require an env-choice. In case that

they are not needed, they take the invalid default value -1.

• select-action(agent-id, state, env-state, all-external): the same function as

defined in Section 2.2.1. Refer to Section 2.3.2 for details.

• transition(agent-id, state, all-external, action): the same function as defined

in Section 2.2.1. Refer to Section 2.3.2 for details.

The select-action function

The function select-action(x, state_x, env-state, all-external) outputs a probability

distribution over the sample space of actions, for which the second component is

equal to the input argument agent-id and the third component is not equal to it.

Let any action in the sample space be denoted by (𝑎, 𝑥, 𝑥′, 𝑒𝑐), where the second

component is fixed. We now list out the probability distribution on other components

for each possible value of the 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 variable in 𝑠𝑡𝑎𝑡𝑒_𝑥, as it is the only variable

in 𝑠𝑡𝑎𝑡𝑒_𝑥 that affects the output probability distribution. The boldface words are

parameters that we can tune and whose values are read from a configuration file,

introduced in Section 2.4.1.

• For 𝑠𝑒𝑎𝑟𝑐ℎ, the probabilities of choosing 𝑎 to be “find" and “no_action" are

search_find and 1-search_find respectively, and all other action-type’s have

0 probability. Both variables 𝑥′ and 𝑒𝑐 take the invalid default value -1 with

probability 1.
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• For 𝑓𝑜𝑙𝑙𝑜𝑤, the probabilities of choosing 𝑎 to be “follow_find" and “get_lost"

are follow_find and 1-follow_find respectively, and all other action-type’s

have 0 probability. Both variables 𝑥′ and 𝑒𝑐 take the invalid default value -1

with probability 1.

• For 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑙𝑒𝑎𝑑, the probabilities of choosing 𝑎 to be“delay" and “no_action"

are transport and 1-transport respectively, and all other action-type’s have

0 probability. Both variables 𝑥′ and 𝑒𝑐 take the invalid default value -1 with

probability 1.

• For 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑖𝑛𝑔, let the set ̃︀𝑋 be the set containing id’s of all agents

with external-state having 𝑟𝑜𝑙𝑒 ∈ {0, 1} and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑎𝑡𝑒_𝑥.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. If

the set size | ̃︀𝑋| ≥ quorum_threshold, the probabilities of choosing 𝑎 to be

“quorum_met" and “quorum_not_met" are 1 and 0 respectively, and are 0 and

1 otherwise, and all other action-type’s have 0 probability. Both variables 𝑥′

and 𝑒𝑐 take the invalid default value -1 with probability 1.

• For 𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, let ̃︀𝑋 be the set containing id’s of the agents that are not

𝑥, and whose external-state has 𝑟𝑜𝑙𝑒 = 0 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑎𝑡𝑒_𝑥.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. The

function selects an action ̃︁𝑎𝑐𝑡 = (̃︀𝑎, 𝑥, 𝑥′, 𝑒𝑐) according to the following proba-

bility distribution. In case 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 < 10, ̃︀𝑎 is chosen among “lead"

and “get_lost" with probabilities lead_forward and 1-lead_forward respec-

tively, and all other action-type’s have probability 0. In case 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 ≥

10, ̃︀𝑎 is “terminate" with probability 1. The variable 𝑒𝑐 is equal to {𝑠𝑡𝑎𝑡𝑒_𝑥.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡}

with probability 1. The distribution of 𝑥′ depends on ̃︀𝑎, as follows:

– For “lead", if ̃︀𝑋 ̸= ∅, the variable 𝑥′ is uniformly selected from ̃︀𝑋, and

all other values in agent-id ′ have 0 probability; otherwise, 𝑥′ = −1 with

probability 1.

– For “get_lost", 𝑥′ = −1 with probability 1.

– For “terminate", 𝑥′ = −1 with probability 1.
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• For 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, let ̃︀𝑋 be the set containing id’s of all agents that are not 𝑥,

and whose external-state has 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑎𝑡𝑒_𝑥.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. In addition, let ̃︁𝑋 ′

be the subset of ̃︀𝑋 containing agents that have 𝑟𝑜𝑙𝑒 ∈ {1, 2}. The function

first selects an action ̃︁𝑎𝑐𝑡 = (̃︀𝑎, 𝑥, 𝑥′, 𝑒𝑐) according to the following probability

distribution. In case 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 < 10, ̃︀𝑎 is chosen among “carry" and

“stop_trans" with probabilities transport and 1-transport respectively, and

all other action-types have probability 0. In case 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 ≥ 10, ̃︀𝑎 is

“terminate" with probability 1. The variable 𝑒𝑐 is equal to {𝑠𝑡𝑎𝑡𝑒_𝑥.ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡}

with probability 1. The distribution of 𝑥′ depends on ̃︀𝑎, as follows:

– For “carry", if ̃︁𝑋 ′ ̸= ∅, 𝑥′ is uniformly sampled from ̃︁𝑋 ′, and all other

values in agent-id ′ have 0 probability. Otherwise if ̃︁𝑋 ′ = ∅ ∩ ̃︀𝑋 ̸= ∅,

𝑥′ is uniformly sampled from ̃︀𝑋, and all other values in agent-id ′ have 0

probability. Otherwise, 𝑥′ = −1 with probability 1.

– For “stop_trans", 𝑥′ = −1 with probability 1.

– For “terminate", 𝑥′ = −1 with probability 1.

• For 𝑎𝑡_𝑛𝑒𝑠𝑡, the probability of choosing 𝑎 to be “search" is 1 − 𝑝(𝑥), where

𝑥 is the quality of the nest option under assessment (Figure. 2.1) and 𝑝(𝑥)

defined in Equation 2.2. There are always two possible actions for a state

with 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 = 𝑎𝑡_𝑛𝑒𝑠𝑡, and the one that is not “search" naturally has

probability 𝑝(𝑥). All other action-type’s have 0 probability. Both variables

𝑥′ and 𝑒𝑐 take the invalid default value -1 with probability 1. To determine

𝑝(𝑥), an ant is required to assess the quality of a nest in the environment. The

assessment of the quality of a nest includes both its physical qualities [2, 57]

and the nest population [49, 13]. Therefore, we use a simple linear combination

of these two values to denote the final nest quality with a new parameter called

pop_coeff as the coefficient of the population effect. In other words, the final

nest quality of a nest with 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑞 and population 𝑝𝑜𝑝 (obtained
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from all-external) is

𝑞

4
+ pop_coeff × 𝑝𝑜𝑝

𝑛𝑢𝑚_𝑎𝑛𝑡𝑠
, (2.1)

where 4 is the maximum value of nest qualities, and 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 is the total

colony size. We further define the following sigmoidal function (Fig. 2-2)

𝑝(𝑥) =
1

1 + 𝑒−𝜆×𝑥
(2.2)

where 𝜆 is a parameter that controls how “steep" the sigmoidal function is,

and 𝑥 is the above defined nest quality. Higher 𝜆 values correspond to lower

individual noise level, and bring 𝑝(𝑥) closer to a step function.

Figure 2-2: Sigmoidal function with 𝜆 = 4, 8, 16.

• For 𝑎𝑟𝑟𝑖𝑣𝑒, the probabilities of choosing 𝑎 to be “reject" and “no_reject" are 1−

𝑝(𝑥) and 𝑝(𝑥) respectively, where 𝑥 is the difference in quality of the candidate

nest compared to the home nest (Equation 2.3) and 𝑝(𝑥) defined in Equation

2.2. All other action-type’s have 0 probability. The variable 𝑥′ take the invalid

default value -1 with probability 1. The variable 𝑒𝑐 take the invalid default value

-1 with probability 1. To determine 𝑝(𝑥), an ant 𝑥 is required to compare the

quality of its 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 (with physical_quality 𝑞1 and population 𝑝𝑜𝑝1)

and its ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡 (with physical_quality 𝑞0 and population 𝑝𝑜𝑝0). We still

use the sigmoidal function in Equation 2.2, with the change that the input 𝑥 to
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the function now is

𝑞1 − 𝑞0
4

+ pop_coeff × 𝑝𝑜𝑝1 − 𝑝𝑜𝑝0
𝑛𝑢𝑚_𝑎𝑛𝑡𝑠

(2.3)

where 4 is the maximum value of nest qualities, and 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 is the total

colony size.

The transition function

Passive Workers and Brood Items Active worker scouts are defined as those

who engage in the emigration process by independently discovering the new nests

(entering without carrying or being carried) or by carrying brood items or other

adult ants to the new nest or both. Passive workers remain in the old nest until they

are carried to the new nest. Brood items are similar to passive workers but do not

contribute to quorum attainment [46, 15].

We use 𝑠𝑛𝑝 to denote a state with a certain 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 = 𝑠𝑛 and 𝑝ℎ𝑎𝑠𝑒 =

𝑝. Passive workers and brood items together form the passive majority population

in the colony. Their behavior pattern is thus very simple — they only have one

𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒𝑝ℎ𝑎𝑠𝑒, 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸, available to them. They can only allow one action with

action-type “carry" and themselves as the receiving agent. The action results in the

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 variable in their state set to the last component of the action, env-choice, and

no other variables in their state’s can change throughout the execution. Therefore,

the rest of the section focus on the state transitions of active workers only, including

any initiating and receiving ants involved.

Initiation and Termination of Emigration All ants start in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸. Their

𝑟𝑜𝑙𝑒 variable values are assigned the corresponding numbers, and ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

are both initiated with 0, the original home nest. The variables 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 and

𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 are set to -1 as the default invalid value. And 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡

starts with 0.

We do not designate a separate “termination state" that disables an ant from
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exploring further, but at the termination of the emigration process, we expect most

active workers to be in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸. This is enforced softly through the population

effect introduced in Section 2.3.2 - if an agent in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸 is in a nest with both a

high physical quality and a high nest population it is highly likely that she is happy

staying put in this nest and stabilizes in the state 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸. As a result, the more

agents stabilizes in the same nest, the more likely that they will stay stable and that

new agents will stabilize as well. In the house hunting algorithm, the conditions

that trigger this “termination" behavior contains two cases, as mentioned in Section

2.3.1. The details of this special “termination" case handling is discussed in the next

paragraph.

Special and General Cases In the house-hunting algorithm, there are some

special cases that the transition function handles before outputting the resulting

state. To facilitate, we define a set allowed-in(external-state) to be a mapping from

external-states to subsets of action-types. Consider an external-state 𝑠, and the

allowed subset is then allowed-in(𝑠), representing the set of actions the agent in the

external-state 𝑠 is allowed to receive. The four variables 𝑠 contains (as shown in the

ExternalState class) each affects allowed-in(𝑠) in the following way. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 has no

influence. If 𝑟𝑜𝑙𝑒 is 1 (passive) or 2 (brood), allowed-in(𝑠) = “carry". Otherwise,

𝑟𝑜𝑙𝑒 = 0. Let 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒𝑝ℎ𝑎𝑠𝑒 denote the 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 and 𝑝ℎ𝑎𝑠𝑒 variables in 𝑠. For

𝑎𝑡_𝑛𝑒𝑠𝑡𝐸, 𝑎𝑡_𝑛𝑒𝑠𝑡𝐴, and 𝑎𝑡_𝑛𝑒𝑠𝑡𝑇 , allowed-in(𝑠) = “lead", “carry". For 𝑠𝑒𝑎𝑟𝑐ℎ𝐸,

𝑠𝑒𝑎𝑟𝑐ℎ𝐴, 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 , 𝑠𝑒𝑎𝑟𝑐ℎ𝑇 , and 𝑎𝑡_𝑛𝑒𝑠𝑡𝐶 , allowed-in(𝑠) = “carry". For all other

cases, allowed-in(𝑠) = ∅.

We now list out how the function transition(agent-id, state, all-external, action)

handles each of the special cases, and also the general case. Let the input argument

action be expanded to the quadruple (𝑎𝑐𝑡 = 𝑎, 𝑥, 𝑥′, 𝑒𝑐). Also recall that the set

𝑇𝑟𝑎𝑛𝑠 is a set containing the id’s of all the agents that have completed a state change

in the round (Section 2.2.2).

• The first special case is if the input argument agent-id = 𝑥′. This case only

happens when agent 𝑥′ ̸= −1 invokes (in agent 𝑥’s turn) a transition(x′, 𝑠𝑡𝑎𝑡𝑒,
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(a) Action-types an active ant can receive from another ant and the corresponding
𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 and 𝑝ℎ𝑎𝑠𝑒 transitions.

Figure 2-3: States and actions modeling the behavior of active ants responsible for
organizing colony emigrations. As described in Section 2.3.1, the four distinct phases
are in different boxes: Exploration, Assessment, Canvassing, and Transport.

all-external, act), where 𝑠𝑡𝑎𝑡𝑒 = (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙′, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙′) is the current state of

agent 𝑥′. If 𝑥′ ∈ 𝑇𝑟𝑎𝑛𝑠 or if 𝑎 ̸∈ allowed-in(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙′), the function simply

ends by returning the input argument 𝑠𝑡𝑎𝑡𝑒. Otherwise, the function adds 𝑥′

to 𝑇𝑟𝑎𝑛𝑠. It then finds the black text box corresponding to 𝑠𝑡𝑎𝑡𝑒.𝑝ℎ𝑎𝑠𝑒 and

𝑠𝑡𝑎𝑡𝑒.𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 in Fig. 2-3a, and the black text box that 𝑎 leads to contains

the 𝑝ℎ𝑎𝑠𝑒 and 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 of the resulting state. The rest of the variables in

𝑠𝑡𝑎𝑡𝑒 are modified as well, and the details are listed for each possible value of

the (𝑝ℎ𝑎𝑠𝑒, 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒) pair at the end of the section. The function then

outputs the resulting state.

• The second special case is if 𝑎𝑐𝑡 satisfies the termination condition mentioned

earlier in this Section. Specifically, the cases are when agent-id = 𝑥, and 𝑎𝑐𝑡
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(b) Action-type’s an active ant can initiate and the corresponding 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 and 𝑝ℎ𝑎𝑠𝑒
transitions.

Figure 2-3: (Cont.) States and actions modeling the behavior of active ants responsi-
ble for organizing colony emigrations. As described in Section 2.3.1, the four distinct
phases are in different boxes - Exploration, Assessment, Canvassing, and Transport.

is either 1) (𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑥, 𝑥′, 𝑠𝑡𝑎𝑡𝑒_𝑥.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡) and 𝑥′ ̸= −1 has an

external-state with 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 = 𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, or 2) (𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝑥, 𝑥′, 𝑠𝑡𝑎𝑡𝑒_𝑥.ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡)

and 𝑥′ ̸= −1 has an external-state with 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡. We call these

the “termination conditions". When 𝑎𝑐𝑡 satisfied either clauses, after adding 𝑥

to 𝑇𝑟𝑎𝑛𝑠, the function ends its execution by outputting a resulting state that

only differs from the input argument 𝑠𝑡𝑎𝑡𝑒 by adding 1 to the 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡

variable.

• The third special case is if agent-id = 𝑥 and 𝑎𝑐𝑡 does not satisfy the termination

conditions, but 𝑥′ ̸= −1 and either of the following is true: 1) 𝑥′ ∈ 𝑇𝑟𝑎𝑛𝑠, or

2) 𝑎 ̸∈ allowed-in(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙′). Note the second case here excludes cases that

satisfy our termination conditions stated in the last bullet point. In other words,
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Arrow Color Init/Recv Phase Change
blue Initiating No
red Initiating Yes

purple Receiving No
green Receiving Yes

Table 2.1: Color coding of arrows representing action-type’s in Fig. 2-3a and Fig.
2-3b.

the second special case has priority over this third special case. In this third

special case, the function adds 𝑥 to 𝑇𝑟𝑎𝑛𝑠, and ends its execution by outputting

the original input argument, 𝑠𝑡𝑎𝑡𝑒.

• Lastly, in the general case where none of the above special cases applies, the

function first adds 𝑥 to 𝑇𝑟𝑎𝑛𝑠. Then it finds the black text box corresponding

to 𝑠𝑡𝑎𝑡𝑒.𝑝ℎ𝑎𝑠𝑒 and 𝑠𝑡𝑎𝑡𝑒.𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 in Fig. 2-3b, and the black text box that

𝑎 leads to contains the 𝑝ℎ𝑎𝑠𝑒 and 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 of the resulting state. The rest

of the variables in 𝑠𝑡𝑎𝑡𝑒 are modified as well, and the details are listed for each

possible value of the (𝑝ℎ𝑎𝑠𝑒, 𝑠𝑡𝑎𝑡𝑒_𝑛𝑎𝑚𝑒) pair at the end of the section. The

function then outputs the resulting state.

In Fig. 2-3a and Fig. 2-3b, action-type’s are color-coded as shown in Table 2.1.

We walk through in Appendix A all possible transitions of an ant and the associated

changes in the internal and external states. An example is an ant in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸 has

four possible actions. First, she can perform “no_action" and remain in the current

nest. Second, she can perform “search" and go into the state 𝑠𝑒𝑎𝑟𝑐ℎ𝐸. Third, she

can receive a “lead" by another ant to follow a FTR to a destination nest, 𝑒𝑐 ∈ env-

choices, in which case she sets 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡,

and sets 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑒𝑐. Then she transitions to the state 𝑓𝑜𝑙𝑙𝑜𝑤𝐸. Finally,

she can receive a “carry" by another active worker ant to a destination nest 𝑒𝑐 ∈

env-choices, in which case her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 are changed to 𝑒𝑐, and

she stays in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.
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2.4 Model Simulation and Metrics

In this section we describe the configuration file that contains all the parameters

of the model in Section 2.3. We also quantitatively define the speed and accu-

racy measures for our simulation runs. A detailed description of the Python sim-

ulator implementation is in Appendix A.2, and our simulator code is open sourced at

https://github.com/snowbabyjia/Collective-Decision-Making-HH.

2.4.1 Configuration Parameters

There are three kinds of parameters: environment, algorithm, and settings.

Environment parameters are controlled by the environment and not considered

changable or tune-able. These include the number of ants in the colony, and the

number and physical qualities of the nests as potential new nest options.

Algorithm parameters are parameters that we can manipulate in order to change

the select-action function and hence the outcomes of our simulations. These include

the 𝜆 for the sigmoid function in Equation 2.2, the pop_coeff value, parameters

related to quorum sizes, the probability of finding a new nest in the environment, the

probabilities of following and leading a FTR without getting lost, and the probability

of continued transports instead of stopping transportation. Related explanations are

in Section 2.3.2 and 2.3.2.

Settings parameters control plotting features and also convergence criteria. These

include the option to generate a plot, the total number of runs for every environ-

ment/algorithm setting, the maximum number of rounds per simulation run, the

percentage of ants needed in a nest to declare convergence, and the number of

rounds the convergence needs to persist to declare persisted convergence which

marks the end of the simulation run. An example is in the supplemental materials.

Baseline Default Parameter Values Compared to the agent-based model in [53],

our model places less emphasis on assigning specific observed values to a large num-

ber of parameters, but rather on a simple and elegant model that is more agile in
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representing a wide range of possible behaviors. For that reason, some parameters

cannot be directly drawn from existing empirical data. We estimate these parameter

values in a trial-and-error fashion until simulation results match well with the empir-

ical results in [53]. These baseline values are used as a default from Section 2.5 to

2.8, unless otherwise specified.

The sources for determining the parameter values are listed in Table 2.2. In

particular, the values of lambda_sigmoid (range: 1 to 16) and pop_coeff (range:

0 to 1) are picked by trial-and-error to model individual sensitivity to nest qualities,

and the significance of colony information versus individual judgements. The quorum

size (quorum_thre × (num_active+num_passive) + quorum_offset) is observed

to have a median value between 4 and 18 ants for worker populations from 24 to 150,

with the quorum size having a significant positive correlation with the number of adult

ants [46, 24]. Therefore, with a colony of 200 members (including 100 adult workers),

we use a quorum_thre of 15% and set quorum_offset to 0, estimating a quorum

size of 15. The value of search_find (range: 0 to 1) is determined experimentally

by trial-and-error. This parameter can be influenced by many other factors such as

the spatial geometry of the nests and the experience level of the individual. These

nuances are not captured in our model in the interest of simplicity. But they can

significantly affect the simulation outcomes, and are an important future extension

of our work. The parameter follow_find denotes the success rate of a tandem run

without the follower getting lost and starting a new search. A successful tandem run

requires that both ants reach the target nest. Empirical observations suggest large

variation in tandem success, with observed success ranging from 30% to over 90%

[50, 27]. However, even lost followers enjoy a significantly increased chance of finding

the target nest on their own [50]. We thus chose a high FTR success rate of 0.9 to

capture both these direct and indirect effects of tandem following on nest discovery.

The parameter lead_forward (range: 0 to 1) is the probability that an ant performs

an FTR when in the lead_forward state. The alternative option, get_lost, is designed

to model the slower speed of an FTR, and is determined experimentally in a trial-

and-error fashion. The parameter transport is the probability that an ant keeps
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Parameter Value Source
lambda_sigmoid 8 trial-and-error, Sec. 2.7.1

pop_coeff 0.35 trial-and-error, Sec. 2.7.1
quorum_thre 0.15 [46, 24]
quorum_offset 0 [46]
search_find 0.005 trial-and-error
follow_find 0.9 [27, 50]

lead_forward 0.6 trial-and-error
transport 0.7 [53]

Table 2.2: Default parameter values and the sources that helped determine these
values.

transporting instead of stopping to resume search for additional sites. The stopping

probability is observed to be between 0.06 and 0.44, meaning our transport should

take values between 0.56 and 0.94. We chose 0.7 as our baseline value.

An average colony size of 200 with 50 active workers, 50 passive workers, and 100

brood items is within the range of real colony compositions [24]. One round approxi-

mately translates to 0.5-1 minutes, though this is a very rough estimate. A simulation

with 2000 rounds thus translates to 16-32 hours, and one with 4000 rounds translates

to 32-64 hours. The values for variables percent_conv and persist_rounds are

determined by trial-and-error and rough estimates from past empirical observations.

2.4.2 Speed and Accuracy Measures

We define the speed and accuracy metrics below for the whole emigration process until

either convergence or the end of simulation, including cases resulting in splitting.

Convergence Score as Speed The final goal of the house hunting algorithm is to

achieve fast convergence in any given environment and stabilize at that convergence.

To assess how well this was achieved, we calculate a convergence score as the

inverse of the round number when a persistent convergence started. If no persistent

convergence was reached before the end of the simulation, the convergence score is 0.

Each simulation run has a convergence score.
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Accuracy Another important metric is accuracy, which is defined for a group of

simulation runs. This metric tells us how good the colony is at selecting the best

choice in the environment. Thus, each of the nest options in the configuration has an

empirical probability of the colony converging to it, called the nest’s convergence

probability. Note that we also get a probability of splitting. To calculate the final

accuracy, we also normalize the nests’ physical qualities, such that the best nest has

quality 1 after normalization, and the worst nest, which is the home nest, has quality

0. The accuracy of the configuration is then

∑︁
𝑖∈𝑛𝑒𝑠𝑡𝑠

𝑝𝑖 × 𝑞𝑖

where 𝑝𝑖 is nest 𝑖’s convergence probability, and 𝑞𝑖 is its normalized physical quality.

If no convergence is reached (splitting), the physical quality corresponding to that

probability will be 0, thus not contributing to the summation above.

2.5 Model Validation

We begin by validating our model against the same empirical data that were success-

fully accounted for by two earlier models [53, 52]. First, we examine a simple scenario

where colonies have only one candidate nest in the environment. Then we consider a

decision between two nests that clearly differ in quality. Finally, we investigate how

colonies trade off speed and accuracy depending on the urgency of their move. For

all scenarios, we simulate the same data explored by the earlier models, and compare

our results, at both individual and colony level, to the empirical observations. All

simulations for the rest of the chapter default to the configuration file described in

Section 2.4.1, unless specified otherwise.

2.5.1 Single-Nest Emigrations

The first question we ask is: does our model accurately reproduce statistics on indi-

vidual recruitment acts in single-nest emigrations? Previous empirical work showed
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Colony Active Passive Brood Total
A4 70 28 228 326
A6 59 74 111 244
A8 62 95 106 263
A14 67 42 192 301
A16 53 88 61 202
A17 73 101 173 347

Table 2.3: Compositions of colonies used in two-nest emigrations for model validation
as shown in [53].

the distributions across ants of key behaviors contributing to the collective outcome

[53]. These include the number of recruitment acts per ant, the number of ants per-

forming each recruitment type, and the number of ants arriving at the new site by

different routes. We asked whether our model could replicate the empirical distribu-

tions. To answer the question, we simulated the single-nest experiments conducted

in [53], on the six colonies with compositions detailed in Table 2.3. We used default

parameter values, except we increased search_find to 0.05. This increase accounts

for the presence of only one new nest, hence all “find" actions after the first one are

re-discoveries of this nest, which we assume has a higher probability than finding a

previously unknown site [53]. In future work, this variable should be expanded to de-

pend on other factors, such as the number of nests in the environment or the spatial

geometry. We ran 500 simulations for each colony.

Results We compared the statistics of the model output to the same statistics

reported in [53] (Fig. 2-4). Fig. 2-4(a) shows the histograms of individual workers

grouped by the number of recruitment acts. More than half of the simulated workers

never recruited, consistent with the empirical finding of about 60% non-recruiting

active workers. The other bins show similar mean and variance to the empirical data.

Fig. 2-4(b) classifies ants by their recruitment behavior, and the breakdowns are

again consistent with the experimental observations. Fig. 2-4(c) categorizes workers

by their routes to discovery of the candidate nest, and is again consistent with the

findings in [53], at least when the experimental data are pooled over six emigrations
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by three colonies. However, the distributions across the three different routes vary

strongly across emigrations. Indeed, the results in [53] notably differ from those

in [45]. While our model does not account for this variation, we conclude that it

does adequately reproduce key distributions in recruitment behavior in single-nest

emigrations.

2.5.2 Two Unequal Nest: Splits

The second question we ask is: does our model account for the degree of splitting in

two-nest emigrations with unequal qualities? In these circumstances, colonies do not

always make a unanimous choice, but may temporarily split between the sites before

eventually coalescing on a single one. We focus on splitting because it is a primary

hindrance to consensus. We measure splitting as the percentage of brood items in the

better candidate nest at the time when the last ant has been moved from the home

nest.

We replicated the two-nest emigrations in [53], with six colonies whose member

compositions are listed in Table 2.3. We set nest_qualities = [0,1,2], representing a

destroyed old nest and two candidate nests of mediocre and good quality, respectively.

The rest of the configuration parameters were left at the default values.

We ran 500 simulations for each colony, and for each colony we recorded the

average percentage of brood items in the better nest at the time the home nest became

empty. To compare the simulations with empirical data, we measured for each colony

the proportion of simulations departing as far or farther from the colony average

as did the experimental value. Twice this proportion gave the p-value for a test of

the null hypothesis that the observed value was drawn from the same probability

distribution as the simulated values.

Results The results show no significant difference between experiment and simu-

lation for five of six colonies (Table 2.4). This outcome validates our model’s ability

to reproduce observed patterns of splitting in two-nest emigrations for a variety of

colony compositions.
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(a)

(b)

(c)

Figure 2-4: (a): Histogram of workers grouped by the number of recruitment acts
performed. (b): Histogram of workers who performed different types of recruitment
acts. (c): Histogram of workers grouped by the route by which workers arrived at the
new nest. Blue bars are results from [53]. Orange bars show our simulation results.
Bar values are averaged over 500 simulations. Error bars show standard deviations.
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Colony % Pred %Observed P
A4 59 ± 17 61 0.86
A6 61 ± 28 80 0.56
A8 63 ± 30 99 0.36
A14 59 ± 20 98 0.1
A16 61 ± 34 100 0.5
A17 60 ± 25 2 0.02

Table 2.4: Percentage of brood in the better nest for each of the six colonies, predicted
vs observed. The last column is the p-value, with P < 0.05 indicating a significant
difference between predicted and observed percentages.

2.5.3 Two Unequal Nests: Speed-Accuracy Trade-off

The third question we ask is: does our model reflect the way that colonies trade

off speed and accuracy when the urgency of the emigration changes? In “urgent"

situations, ants face a critical need for immediate new shelter and thus benefit from

moving out of the old nest location as fast as possible. In contrast, in less urgent

situations they can deliberate longer among alternatives to increase the likelihood of

moving directly to the best site [52, 14]. We simulated experiments that adjusted

urgency by offering colonies a choice between a mediocre and a good nest under two

circumstances: their old nest has just been destroyed (high urgency) or their old nest

is of acceptable quality but worse than either of the new candidates (low urgency).

Our simulations followed the same tactic by tuning the physical quality of the home

nest to adjust urgency. We ran 300 simulations each for eleven home nest qualities

in range [0,1], with candidate nest qualities of [1,2]. We used the default parameter

values, except lambda_sigmoid, which was set to 16 in order to increase the ants’

sensitivity to home nest quality differences, and pop_coeff, which was set to 0 in

order to better match the model assumptions in [52]. As in [52], we measured the

duration of emigration as the time in rounds at which the old site was completely

abandoned, and we measured the accuracy of decision-making as the proportion of

the colony’s members inside the good site at the time of old nest abandonment.
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Results The results show that time taken to complete an emigration decreased as

urgency increased (i.e., as old nest quality decreased) (Fig. 2-5b). This is consistent

with the empirical observation that higher urgency induces faster emigrations (Fig.

2-5a). Furthermore, the simulations show that higher urgency (lower old nest quality)

reduces the likelihood of the colony achieving consensus on the better site. This also

matches the empirical results, which show that higher urgency leads to lower accuracy

[52].

These results confirm that our model can account for the empirically observed

speed and accuracy trade-off up to old nest abandonment. However, it is worth noting

that real colonies in the low urgency situation were better able to reach consensus

than our simulated colonies. This might suggest the existence of other mechanisms at

work that this simulation failed to capture. One such mechanism could be sensitivity

to the presence of nestmates when assessing the quality of a nest. This could enhance

consensus by amplifying the differential treatment of competing nests, as the better

one’s population increases and makes it still more attractive. Our model can capture

this phenomenon by using a non-zero pop_coeff, a possibility explored further in the

next section.

2.6 Confirmation of New Experiments

In this section we consider more complex scenarios where the link between colony

patterns and individual behavior has not previously been modeled. For scenarios

that have been explored empirically, we determine how well our model can account for

observed results. Section 2.6.1 examines a colony’s ability to choose well when faced

with larger option arrays; and Section 2.6.2 focuses on how colonies make rational

decision time investments depending on nest quality differences.

2.6.1 Colonies Have High Cognitive Capacity

How well do colonies perform when selecting from many nests? A previous study [60]

showed that colonies are quite good at selecting a single good nest from a set of eight
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(a) (b)

Figure 2-5: (a): From [52]: Speed and accuracy of decision-making in high-urgency
and low-urgency emigrations. (Top) Time until the old nest is empty for each treat-
ment. The ends of each box mark the upper and lower percentiles, and the horizontal
line inside the box gives the median. The brackets show the data range, and circles
are outliers. (Bottom) Histograms of the degree to which colonies split between the
good and mediocre new nest sites, under high urgency (blue bars) and low urgency
(yellow bars). (b): Simulation results for high and low urgency emigrations. Top and
bottom panels correspond to those in (a). Simulations were run for more urgency
levels than in the experiments.

nests, four of which are good and four of which are mediocre. This is in contrast to

individual ants, who are as likely to choose a mediocre as a good nest when faced

with the same scenario. The colony advantage has been hypothesized to result from

sharing the burden of nest assessment: very few of the scouts ever visit more than

one or two nests, whereas a lone ant visits several, potentially overwhelming her

ability to process information about them successfully. We simulate this experiment

to determine whether we can reproduce both the colony’s ability and the observed

distribution of nest visits across scouts.

We designed a simulated experiment with multiple nests in the environment, half

of which are mediocre (physical_quality 1.0) and the rest of which are good (physi-

cal_quality 2.0). We considered three environments with 2, 8, and 14 nests, respec-

tively. For each environment, We ran 600 simulations with a fixed colony size 200,

containing 50 active and passive ants each, and 100 brood items.
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(a) (b)

Figure 2-6: The proportions of colonies that eventually moved into poor or good nests.
(a): Empirical results in 2-nest and 8-nest settings [60]. (b): Simulation results from
our model in 2-nest, 8-nest, and 14 nest settings.

Results First, we found that simulated colonies reached consensus on a good nest

with high probability, matching that seen in empirical data (Fig. 2-6). This was true

even when the number of nests was increased to 14.

Next, we verified that the high cognitive capacity of colonies is associated with

a low number of nests visited by each scout. The proportion of ants visiting only

one or two nest was similar in the simulations and experiments [60]: over 80% of

individual ants visited only one or two nests in the course of the emigration. Fig. 2-7

shows similar pattern is seen for the number of transports: that is, if we focus only

on the ants who contributed to the emigration by transporting nestmates, over 80%

visited only one or two nests. Thus, ants that access many nests have a minor role

in the transportation process, supporting the hypothesis that colonies’ high cognitive

capacity results from avoiding the overloading of individual ants.
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Figure 2-7: Proportions of transport efforts as a function of the number of candidate
sites visited by each ant. The blue bars show the percentage of transports done by
ants that visited a given number of nests [60], and the dark orange bars show the same
for simulated ants. Colonies choose among eight nests (four good and four mediocre)
in both simulations and experiments [60].

2.6.2 Colonies Make Rational Choices about Decision Speed

For choices between two nests, how does the difference between the nests affect

the speed of decision-making? Counter-intuitively, a previous study [61] found that

colonies move more quickly when site qualities are more similar. But this behavior

accords with decision theory predictions that decision-makers should take less time

if the consequences of their choice are small; that is, since the nests are similar in

quality, the opportunity cost of making a wrong decision is small, so it’s rational to

save time costs by taking on a higher risk of choosing the wrong nest.

We simulate this scenario to determine if we can reproduce the same pattern,

but we also explore a broader range of quality differences to better describe the

relation between quality difference and decision time. We designed an environment

with two candidate nests, one good and the other mediocre. The good nest has

physical_quality 2 in all simulations, but the physical_quality of the mediocre nest

varies across simulations from 0.2 to 1.7. We asked whether the quality of the mediocre

nest is correlated with the convergence score (a measure of decision speed). We ran

300 simulations for each environment with a colony of size 200, consisting of 50 active

workers, 50 passive workers, and 100 brood items. We repeated this set of simulations
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for five different values of lambda_sigmoid values: [8,10,12,14,16].

Results If our model reproduces the rational time investment choices of colonies

[61], then we expect the convergence score to increase as the mediocre nest quality

increases, thus becoming more similar to the good nest. Our results partially match

this prediction, with convergence score increasing as the mediocre nest quality goes

from 0.2 to about 1 (Fig. 2-8). However, at higher mediocre nest qualities, the

pattern reverses and convergence score declines. This basic pattern is seen for all

tested values of lambda_sigmoid.

We propose that the nest qualities studied in [61] came from the region below

the peak score that saw an increase of speed with decreasing quality difference. But

from our more granular simulations, we predict that as the quality difference gets

still smaller, the convergence score will start decreasing, meaning colonies will start

investing more time.

Why might this happen? Recent studies have explained the behavioral difference

between individuals and colonies via two different decision models: the tug-of-war

model describes individual behavior, while colony behavior is better accounted for by

the horse race model [31]. The tug-of-war correctly predicts the irrational behavior

of individual ants, in that their decision-making slows down for options that are more

similar. The horse race, in contrast, correctly predicts colonies’ rational accelera-

tion of decision making for similar options. We hypothesize that the applicability

of these models to the colony’s behavior changes as the quality difference changes.

More specifically in Fig. 2-8, before the peak score is reached, the colony may effec-

tively distribute its decision-making across many ants with limited information, the

situation envisioned in the horse-race model. After the peak score is reached, the

colony may come to depend more on individual comparisons between nest sites made

by a few well-informed ants, and thus to show the irrational slow-down predicted by

the tug-of-war model. It could also be the case that more transports are performed

between the two candidate nests as the likelihood of the mediocre nest achieving

quorum attainment increases.
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Figure 2-8: Average convergence score as a function of the physical_quality of the
mediocre nest. The physical_quality of the good nest is 2, and that of the home nest
is 0.

2.7 The Power of Social Information

In this section, we explore the influence of social information on migration speed,

accuracy, and cohesion. Section 2.7.1 explores correlations between pop_coeff and

the degree of randomness in individual decision-making; and Section 2.7.2 reveals how

pop_coeff decreases splitting by colonies facing two equal options.

2.7.1 Balancing Personal and Social Information

Individual ants are capable of directly comparing nests and choosing the better one,

but their discriminatory ability is less than that of whole colonies. This may be seen

as a kind of “wisdom of crowds," in which the estimations of many noisy individuals

are integrated into a more precise group perception. Ants do this via positive feedback

loops based on recruitment, which can amplify small differences in site quality [58].

They also use social information via the quorum rule, under which full commitment

to a site is conditioned on a minimum number of nestmates “voting" for it by spending

time there. The quorum rule inspired us to consider another way that ants might use

social information to improve decision-making: by taking population into account

when assessing a site’s quality. We do this via the parameter pop_coeff, which

controls the degree to which the presence of nestmates increases a site’s perceived
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value. We propose that this population sensitivity might be able to complement the

noisy perception of individual ants, modeled by the parameter 𝜆 in the Eq. 2.2.

We hypothesize that ants may adapt to different values of lambda_sigmoid by

changing the value of pop_coeff. In particular, we sought evidence for a correlation

between the values of lambda_sigmoid and pop_coeff needed to achieve the best

convergence score.

To investigate this question, we ran simulations for different combinations of

pop_coeff (ranging from 0.002 to 0.8) and lambda_sigmoid (ranging from 2 to

16). We ran simulations for an environment containing two identical new nests [0,1,1].

For each combination of pop_coeff and lambda_sigmoid, we ran 500 simulations

with a colony of size 200, consisting of 50 active workers, 50 passive workers, and 100

brood items.

Results The results show evidence for an inverse relation between pop_coeff and

lambda_sigmoid (Fig. 2-9). For each value of lambda_sigmoid in the range

[2,16], there is a value of pop_coeff that maximizes the convergence score, and

this value increases as lambda_sigmoid decreases. Thus, when an individual ant

makes noisy local decisions (modeled with lower values of lambda_sigmoid), she

can counteract this deficiency by relying more on the input of her peers through a

higher value of pop_coeff.

However, a high value also has risks. Here we interpret the advantages and dis-

advantages of increasing the value of pop_coeff :

Advantages

• Higher momentum in the system. This can promote the colony to accumulate

population at a certain nest more quickly, and thus achieve faster convergence.

• Better prevention of splits. Multiple candidate nests may reach the quorum,

especially when the nests have similar physical qualities. This can lead to the

colony splitting between more than one site. Social information via pop_coeff
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might help to break ties, by amplifying small random differences in the popu-

lations of competing sites.

Disadvantages

• Slower error correction. Since we are dealing with a randomized algorithm, there

is always a chance that the colony will collectively make a “bad" temporary

decision, even if individuals have low noise levels. The higher momentum will

then make the wrong decision more “sticky" by accumulating more ants at a

mediocre nest even if a better one is available. The colony would then have to

move later to the better nest, adding costs in time and risk. In this way, high

pop_coeff can cause slower convergence, and lead to “madness of the crowd".

Figure 2-9: Average convergence score (across 500 simulations) as a function of
pop_coeff. Different colored curves represent different lambda_sigmoid values
as described in the individual decision model (Fig. 2-2). This shows that the optimal
value of pop_coeff increases as lambda_sigmoid decreases.

These trade-offs suggest that there is an optimal value of pop_coeff for a given

lambda_sigmoid as seen in Fig. 2-9. This predicts that colonies may tune pop_coeff

according to the uncertainty of individual behavior in order to achieve the highest

convergence score for a given environment.
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2.7.2 Avoiding Splits Between Two Equal Nests

In this section we further explore how social information can help colonies to reach

consensus when faced with two identical nests. Many social insects have highly non-

linear recruitment mechanisms that lead to symmetry breaking when faced with two

identical resources. For example, ant species that recruit via trail pheromones will

choose one of two identical food sources rather than forming trails to both. This is be-

cause the attractiveness of a trail is a sigmoidal function of the amount of pheromone

it contains, which leads to rapid amplification of small random differences in the

strengths of competing trails [1, 42]. However, similar experiments on Temnothorax

ants found that they do not always break symmetry, instead exploiting both feeders

equally, a result that has been attributed to the linear relationship between tandem

running effort and recruitment success [63].

An open question is whether this lack of symmetry breaking also holds for nest

site selection. When presented with identical nests, do colonies choose only one or

split between them? If they can reach consensus, then how do they do so? One

possibility is that the quorum rule provides sufficient non-linearity to amplify small

random differences in site population, thus ensuring that the colony does not split.

Another possibility is that colonies have some other as of now unrecognized mecha-

nism of avoiding splits. A good candidate for such a mechanism is incorporation of

site population into each scout’s assessment of site quality, as discussed in Section

2.7.1. This would allow amplification of early random differences in population, by

increasing the likelihood of recruitment to the nest with more ants. We explore this

question by simulating emigrations in which a colony is presented with two identical

nest sites. We assess how well they reach consensus on a single one. We also vary

the degree of scout sensitivity to site population by considering different values of

pop_coeff.

We ran 200 simulations each for pop_coeff = [0, 0.1, 0.2, 0.3, 0.4], in an envi-

ronment with nest_qualities = [0,2,2]. We set lambda_sigmoid to 16 in order

to be more sensitive to temporal differences in nest populations. From an initial set
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Figure 2-10: Simulation results for colonies choosing between two identical nests. The
histograms show the distribution of the percentage of the colony occupying the left
nest, for three different values of pop_coeff.

of simulations, we observed that almost all simulations converged within the default

value of num_rounds. Therefore, in order to gain more insight into the effect of

pop_coeff on the degree of splitting before convergence, we set it to a smaller value

1000. The rest of the parameters take the default values.

Results The simulation results show strong symmetry breaking (Fig. 2-10). That

is, a large majority of simulations ended with 80% to 100% of the colony in one of the

two nests. When consensus was reached, it was roughly equally likely to be in nest

1 or nest 2, producing the distinctive U-shaped distribution seen in Fig. 2-10. This

pattern was true regardless of the value of pop_coeff, suggesting that the quorum

rule is enough to generate symmetry breaking in this case. However, as the value of

pop_coeff increases, the histograms also aggregate more towards the two end bins,

meaning there are fewer split cases. Thus we confirm the positive effect of pop_coeff

in reducing splits, either by prevention or by facilitating later re-unification. These

mechanisms can have significant effects in more challenging environments with more

candidate nests.
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2.8 New Predictions

We also use our model to develop new hypotheses and predictions for future experi-

mental study. Section 2.8.1 gives simulated evidence for a surprising speed-accuracy

trade-off for the entire emigration process, tuned by the quorum size; and Section

2.8.2 discusses colony re-unification after splits with an increasing level of difficulty.

2.8.1 Quorum Size and the Speed/Accuracy Trade-off

Temnothorax colonies can adjust their behavior to adaptively trade off the speed

and accuracy of decision-making [52, 14] (Section 2.5.3). One of the behavioral tools

implicated in this adjustment is the quorum rule. Colonies lower the quorum in more

urgent situations, increasing their reliance on individual judgement. This allows them

to make rapid decisions and quickly move the colony out of the old nest, at the cost

of an increased probability of splitting or choosing an inferior nest [20, 18].

When considering speed, previous studies focused on the time to move out of

the old nest, but the completion of an emigration often requires more than that. A

fast “first" decision does not always mean a fast emigration. In fact, a low quorum

and hence a fast “first" decision could lead to slower emigrations [18] since it could

cause more splitting, which the colony must subsequently resolve in a second phase

of movement. Here, we explore the effect of quorum size on the speed and accuracy

as we have defined them for the whole process (Section 2.4.2). Within the accuracy

measure, we pay special attention to the rate of splitting, which is the percentage of

emigrations that do not reach a persistent convergence within the given number of

rounds. A natural question arises: is there a speed-accuracy trade-off if we define

“speed" as (the inverse of) the time taken to the final completion of the emigration?

In other words, do the convergence score and accuracy have inverse correlations with

quorum_thre, and are these relationships affected by splitting rate?

We simulated an environment with candidate nests [0.5, 1, 1.5, 2] and a home

nest with quality 0 as usual. We used a colony of size 200, consisting of 50 active

workers, 50 passive workers, and 100 brood items. Quorum size is assumed to be
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proportional to the total number of adults in the colony, and is set to quorum_thre

× num_adults. We varied quorum_thre from 0.03 to 0.39, and set pop_coeff

to either 0 or 0.35. We set 𝑛𝑢𝑚_𝑟𝑜𝑢𝑛𝑑𝑠 to 2000 and ran 100 simulations for each

unique combination of quorum_thre and pop_coeff.

(a) (b)

(c) (d)

Figure 2-11: (a), (b): Convergence score and Accuracy as a function of quo-
rum_thre, with pop_coeff = 0 and 0.35 respectively. (c), (d): Probabilities of con-
verging to each nest (or splitting) as a function of quorum_thre, with pop_coeff
= 0 and 0.35 respectively.

Results The simulation results show that the convergence score generally has a

reverse-U shape that peaks at quorum_thre = 0.24-0.27 (Fig. 2-11a, Fig. 2-

11b). In addition, the accuracy measure has a similar shape, but peaks roughly at

quorum_thre = 0.1-0.15. The split rate, in contrast, has a U-shape, with a trough

around quorum_thre = 0.15 to 0.18 (Fig. 2-11c and 2-11d).

The above results indicate a surprising speed-accuracy trade-off in the segments

where the two lines form an “X" shape in Fig. 2-11(a) and (b): the increase of

quorum_thre is accompanied by a decrease in accuracy and an increase in speed.
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This is the opposite of our findings in Section 2.5.3 and in the related experimental

work [52, 14]. However, it is important to note that the current definitions of speed

and accuracy differ from those used in the prior work, which defined both quantities

only up to the point where the old nest is empty. The results on splitting rate could

give more insight into the conflicting results - if repairing splits is costly, lowering

the probability of splits by increasing the quorum would indeed significantly increase

the average convergence score. But another factor is that setting the quorum too

high to reach will also delay convergence. These results point to the need for better

understanding of how colonies reunite after splits, as well as the costs of reunification

relative to other components of the emigration.

2.8.2 Reunification after Splitting

(a) (b)

(c) (d)

Figure 2-12: Convergence scores and splitting for environments with different numbers
and qualities of nests. (a) Convergence score and accuracy as a function of the number
of nests with quality 1 in the environment. (b) Convergence score and accuracy as
a function of the number of nests with quality 2 in the environment. (c), (d) Same
environments as (a) and (b), respectively, but plotting convergence probabilities to
different nests (or splitting) on the y-axis.
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Finally, we touch on another aspect of the robustness of the house hunting al-

gorithm — reunification after splitting. Experimental studies on the speed-accuracy

trade-off showed that colonies often split in urgent emigrations, but they also noted

that split colonies were eventually able to reunite [20, 18]. Later studies [10, 9, 11]

showed that artificially divided colonies readily re-unite, using the same behavioral

tools as in emigrations, but relying more on the efforts of a small group of active

workers. These findings suggest that emigrations depend on a mixture of individual

and colony-level decision making. In this section, we explore how well our model

achieves convergence after an arbitrary division among multiple nests. What can we

learn about the mechanisms that achieve re-unification?

We ran simulations in which colonies were randomly divided among 2 to 9 nests.

At the start of a simulation, each ant’s 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 variable in her ExternalState was

sampled uniformly at random from all env-choices. We ran one set of simulations in

which one nest was of quality 2 and the rest were of quality 1, and another set in

which one nest was of quality 1 and the rest were of quality 2. We ran 300 simulations

for each environment with a colony of size 200, consisting of 50 active workers, 50

passive workers, and 100 brood items.

Results As the number of equal quality nests increases, the reunification task be-

comes increasingly difficult. Additional candidate nests have a negative effect on

the convergence score and accuracy of reunification even when they are significantly

worse than the best nest in the environment, possibly due to more distractions during

evaluations of all nests. But the marginal effect of each additional nest diminishes

(Fig. 2-12). As a result, the convergence score eventually stabilizes.

However, we see that adding nests of quality 2 (highest quality in the environ-

ment) makes reunification much harder since split rate increases quickly. Intuitively

speaking, having multiple nests that are the highest quality nest in the environment

can greatly intensify competition among them. But this hypothesis needs additional

quantitative analyses and empirical confirmation.

In these simulations we randomized the location at the start of our simulations,
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but not other variables in the internal and external states of individual ants. In reality,

when ants are distributed among multiple nests, they most likely have a variety of

values for these other variables. We further hypothesize that 1) randomizing the other

variables may help with reunification, and/or 2) colonies may have mechanisms to

prevent splitting to this extent during the emigration. However, further investigation

is needed to test these hypotheses.

2.9 Discussion and Future Work

In this chapter, we introduced an agent-based modeling framework that can be used

to formally represent a variety of distributed algorithms used by animal groups to

understand the emergence of collective intelligence. We used the framework to exam-

ine the collective nest site selection process in colonies of Temnothorax ants. To test

against existing experimental data and to make predictions, we built a convenient

Python simulator (Section 2.4 and Appendix A.2) that can easily be extended to add

extra features. Our model reveals several underlying mechanisms behind the flexible,

noise-tolerant and efficient collective house-hunting process in ant colonies. These

include the mixed applicability of the horse-race model and the tug-of-war model to

the house-hunting case; the colony’s emergent ability to tolerate noise and prevent

splits by balancing social information and personal information; and the impact of

splitting on the speed-accuracy trade-off of the emigration. Moreover, the general-

izable modeling framework that we present can be used to investigate many other

collective behaviors in biological systems.

The model successfully replicated published colony-level outcomes, suggesting that

it accurately accounts for underlying individual behavior. It replicated the statistics

on individual recruitment acts in single nest emigrations and on emigration accuracy

in two-nest emigrations as well as an earlier model [53], but did so with a more concise

set of individual decision rules. The new model was also able to replicate more realistic

and challenging emigration contexts that have not previously been modeled. Thus,

on top of matching previous studies of simple one- and two- choice environments, our
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model successfully and quantitatively predicts colony behavior in environments with

many more choices. Additionally, with varying degrees of experimental support, our

model suggests the quantitative relationships between multiple parameters and their

effects on the colony’s collective behavior. The most important highlight is a novel

role of social information in the speed, accuracy, and the rate of splitting during

emigrations. The model and the accompanying software are versatile and easy to

extend to additional investigations on unexplored scenarios such as emigrations in a

changing environment. However, modeled colonies proved relatively weak at resolving

splits in more challenging environments (i.e., with the colony split among several

similar high-quality sites). This may reflect real limitations of the ants’ algorithm,

but it seems more likely that the model underestimates their reunification abilities.

This topic has so far received little attention; further development of this model could

help to guide new experimental work.

In the rest of this section, we discuss several specific directions for future research.

While our model captures many aspects of individual behavior, it leaves out some

important features, including many that affect timing. These include 1) effects of the

spatial distribution of nests, which has already gathered some interests [3], 2) effects

of individual experience on recruitment probability and speed, and 3) actions that

may last a variable duration such as the evaluation of a new nest. Adding these to

the model would allow it to explore a broader range of colony abilities and to reveal

as yet unknown components of individual behavior and how they interact with known

aspects. For example, more realistic models of timing would undoubtedly affect the

discovery behavior currently captured by the single variable search_find.

On the simulation data analysis side, there are many directions for further re-

search. First, we note the link between the effects of different quorum sizes and the

horse-race and tug-of-war models that have been successfully used to describe group

and individual decision-making, respectively, in these ants [31]. Our model finds that

group decision-making may be better captured by the tug-of-war model when a colony

is choosing between two very similar options. If so, this suggests that colonies can

change their relative reliance on individual decision-making according to the decision
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context. This indicates the value of developing a more quantitative model that com-

bines the tug-of-war and the horse-race models, based on the same factors that affect

how a colony chooses the most beneficial quorum size.

Additionally, our model shows the potential utility of individual ants taking ac-

count of site population when assessing a site’s quality. Whether real ants use social

information in this way has not yet been experimentally tested. Our results suggest

that it may be important for preventing and repairing split decisions. However, the

amount of social information that individuals should rely on is an intricate balance, as

we described in Section 2.7.1. It would be highly valuable to quantify the relationship

between the frequency and degree of splitting to the quorum size and to pop_coeff.

A related research direction is to find other factors that allow colonies to robustly

reunify in split cases. However, the runtime of our program over hundreds of sim-

ulations can be substantial, making it difficult to investigate the system dynamics

and performance in all possible parameter settings. Overcoming this challenge may

require software optimization techniques such as code parallelization and possibly

further model simplifications.

On the theoretical analysis side, our model serves as a stepping stone for more

rigorous mathematical formulations and proofs of guaranteed bounds on any metrics

of interest. Starting with simpler environments, our model can be reduced to analyti-

cally derive the goals different mechanisms can and cannot achieve. These results can

then potentially provide insights on why certain collective behaviors have emerged

through evolution, as well as on engineering artificial distributed systems subject

to similar limitations to reach consensus. In fact, Chapter 3 is one such analytical

study. Compared to the model in this chapter, the model we analyze in Chapter 3

focuses only on the marginal benefits of the quorum sensing mechanism. Therefore,

in Chapter 3 we were able to further reduce the number of states and actions, while

only preserving those that are necessary to capture the population dynamics that can

trigger the quorum sensing mechanism.

Finally, we emphasize that our modeling framework can be flexibly adapted to

other distributed algorithms inspired by animal groups. One compelling example is
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that honeybee colonies use a very similar algorithm in their nest-selection process

[32], and can be easily modeled by our framework. Comparing it to our ant colony

model can reveal commonalities and differences in how different animal groups achieve

various goals and organize potentially conflicting priorities.
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Chapter 3

Quorum Sensing Helps Consensus:

An Analytical Study

3.1 Introduction

In Chapter 2, we saw that Temnothorax ant colonies have many biological constraints:

individuals with limited memory and computational power, limited communication,

and no central control. Despite so, colonies as a whole can reach various global goals

such as nest-site selections and foraging. Their remarkable collective intelligence is

not only an interesting problem for biologists, but also inspiring for the computer

science community. In particular, from the distributed computing perspective, the

collective house-hunting behavior is closely related to the fundamental problem of

consensus. Building a theoretical understanding of the key mechanisms in the house-

hunting process can thus shed light on the designs of novel distributed consensus

algorithms. In order to do so, in this chapter we simplify the model introduced in

Section 2.3 and investigate the marginal benefits of the quorum sensing mechanism.

The results and theoretical tools used in this chapter are especially meaningful be-

cause previous work is mostly experimental or modeling work, and lacks rigorous

mathematical justification that we task ourselves with in this chapter.

First we recall the emigration process. Colonies consist of active ants who move

the remaining passive workers, the queen, and brood items (immature ants) [53, 15].
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At the beginning of the emigration, each individual active ant independently searches

for new nest sites. If she finds one, she evaluates the site’s quality according to various

metrics [29, 22]. Quality evaluation is relative to the old home nest [12]. If she is

not satisfied with the site, she keeps searching. Otherwise, if she is satisfied with the

site, she returns to the home nest after some time interval that is inversely related to

the new nest site quality; during this interval she might continue searching for other

new potential nest sites [35, 46]. If she returns to the old nest, she recruits another

active ant to the site by leading a slow tandem runs from the old nest to the new site

[40, 55]. Upon arriving at the nest, the follower ant also evaluates the nest’s quality

independently of the leader ant. Both the leader and the follower then continues

monitoring the quality of the nest and repeats the process of quality estimation, wait

interval/continued search, and further recruitment [57].

A leader ant continues leading tandem runs until she perceives that the new nest’s

population has exceeded a threshold, or quorum [48]. At this point, she ceases tandem

runs and instead picks up and carries nest-mates from the old to the new nest. Once

she starts transporting, she is considered a “committed" ant to the new nest. These

transports are much faster than tandem runs, and they are largely directed at the

passive workers and brood items, hence they serve to quickly move the entire colony

to the new nest [46, 53]. The transporter rarely drops out of transporting other ants,

and hence is considered fully committed to the new nest as the colony’s home [57].

Both tandem runs and transports are forms of recruitment to accelerate the em-

igration process, but the marginal benefits of transports remain relatively poorly

understood. Previous studies have attributed the quorum sensing mechanism as a

way to tune the speed-accuracy trade-off [25, 37, 36, 44, 52, 65], generally equating

accuracy with consensus or cohesion [18, 20]. As a result, emigrations that end in

splits are much less investigated [52, 14], where the colony splits among multiple

sites that all reach quorum. Although reunification is possible, it generally requires

a second emigration process, incurring additional costs in time and risk of exposure

[9, 10, 48]. Therefore, the quorum size has to be carefully calibrated in order to avoid

the risk of splitting. However, apart from its role in tuning the speed-accuracy trade-
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off, whether the quorum sensing mechanism helps with reaching consensus remains

an open question. Therefore, in this chapter, we test the hypothesis that another

evolutionary advantage of the quorum sensing mechanism is that it helps emigrations

reach consensus, when the quorum size take on desirable values.

To test this hypothesis, we conducted a theoretical analysis of the marginal ben-

efits of the quorum sensing mechanism and the effects of different quorum sizes. The

emigrations that serve as the control group follow a model that does not have the

quorum sensing mechanism (Section 3.4), and those that serve as experimental group

follow a model that incorporates the quorum sensing mechanism with a quorum size

(Section 3.5). We compare the two sets of emigrations in terms of their ability to

reach consensus. Our results show that with high probability, emigrations without

quorums cannot reach consensus. In addition, average case emigrations that do use

quorums can reach consensus when the quorum size take specific values. However,

we note that average case emigrations do not represent all emigrations. Therefore,

to fully test the hypothesis, our model and analyses in Section 3.5 has to be extended

to a wider range of emigrations. Overall, our results confirm the hypothesis, and

suggest useful mathematical methodologies for future work and for analyzing other

agent-based algorithms.

Chapter Organization In Section 3.2, we present our simplified model of individ-

ual ants, of the entire colony, and of an execution. In Section 3.3, we formally state the

definition of consensus, and the metrics to measure a model’s performance in terms

of consensus. In Section 3.4, we consider the performance of individual models with-

out quorum sensing, i.e., the only form of recruitment is tandem running. We show

that with high probability, emigrations cannot eventually reach consensus without

quorum sensing. In Section 3.5, with the addition of the quorum sensing mechanism,

we focus on characterizing the effects of different quorum sizes in the average case

emigration. Specifically, we show a necessary condition and a sufficient condition for

consensus, both conditions being values of the quorum size. The desirable values

of the quorum size has also been observed in empirical studies. However, as noted
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before, these results for the average case require further developments to compare to

empirical results as well as to fully test our hypothesis on the evolutionary advantage

of the quorum sensing mechanism. Lastly, in Section 3.6 we note that our results

provide theoretical evidence of a hypothesized evolutionary advantage of using the

quorum rule to reach consensus by Temnothorax ant colonies in their house-hunting

process. The analysis technique can be applied to other social insects such as honey-

bees [5, 33]. Additionally, our results suggest the application of the quorum rule in

other artificially noisy, dynamic and distributed systems such as robot swarms.

3.2 Model

Under a discrete timing and execution model, we represent individual active ants

as coupled random processes. Due to the noisy nature of the distributed individual

decisions and the dynamical dependency introduced by tandem runs and transports,

the transitions of an ant are non-Markovian. To accommodate this challenge, we

consider the dynamics of the entire ant colony which turn out to be a Markov chain.

Analyzing this Markov chain is highly non-trivial because the state is quite involved

and the state space is huge; as can be seen later, the state space of this Markov chain

contains all the possible partitions of the active ants into three groups, with each

group representing one nest as the state of an individual ant.

3.2.1 Timing Model and the Environment

We divide time into discrete rounds. Individual active ants are modeled as identical

probabilistic finite state machines and their dynamics are coupled through recruitment

actions, as described later in Section 3.2.2. Let 𝑁 denote the total number of active

ants in the colony. Note that brood items can only be transported and have no states,

and are thus not considered individual agents. Each ant starts a round with its own

state. During each round, ants can perform various state transitions and have new

states, before all entering the next round at the same time. Throughout this chapter,

the state of an ant at round 𝑡 refers to her state at the end of round 𝑡.
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The environment contains the original home nest 𝑛0 and two new nests 𝑛1 and

𝑛2. The new nests 𝑛1 and 𝑛2 have qualities 𝑞1 and 𝑞2 respectively, relative to the

home nest quality. For convenience of our analysis, we let 0 < 𝑞2 < 𝑞1 ≤ 1, where

a higher value corresponds to a better nest. Each nest is also associated with a

population that changes from round to round. We use 𝑥0(𝑡)𝑁 , 𝑥1(𝑡)𝑁 and 𝑥2(𝑡)𝑁 ,

where 𝑥0(𝑡)+𝑥1(𝑡)+𝑥2(𝑡) = 1, to denote active ant populations in nest 𝑛0, 𝑛1 and 𝑛2

respectively at the beginning of round 𝑡. Initially, individual ants have no information

on 𝑞1 and 𝑞2.

3.2.2 Model of Individual Ants

Individual active ants are modeled as identical probabilistic finite state machines

that interact with each other. In Fig. 3-1 below, we describe the dynamics of an

individual active ant without quorums (a.k.a. without performing state transitions

based on seeing a quorum). Note that these dynamics are also accurate before she sees

a quorum for the first time at either nest. Though these dynamics are not Markovian

as the state transition of an ant is influenced by other ants during tandem runs and

transports, in Section 3.4 we prove that after a finite time, the state transitions of

different ants become independent. Then, in Fig. 3-2, we show the dynamics of an

individual active ant after she sees a quorum for the first time either at 𝑛1 or 𝑛2.

With a quorum size, an active ant starts her transitions according to Fig. 3-1 before

she sees a quorum at either nest for the first time, and afterwards she performs her

transitions according to Fig. 3-2.

Let 𝒮 = {𝑛0, 𝑛1, 𝑛2} denote the collection of possible states of an active ant. Each

state 𝑛𝑖 refers to the ant being at nest 𝑛𝑖, and thus throughout the chapter we use

“in state 𝑛𝑖" and “in nest 𝑛𝑖" interchangeably. Denote the state of ant 𝑎𝑖 at the end

of time 𝑡 as 𝑠𝑖(𝑡) with 𝑠𝑖(0) = 𝑛0 for all 𝑎𝑖, i.e., initially all ants locate at the home

nest 𝑛0.

An active ant in 𝑛0 can get recruited by either following a tandem run or getting

transported to either 𝑛1 or 𝑛2 (shown in Fig. 3-1 transitioning from 𝑛0 to 𝑛1 or 𝑛2,

Eq. (3)-(4)). Recruitment takes priority over her performing a probabilistic state
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transition to either 𝑛1 or 𝑛2 through independent discovery. In the model shown in

Fig. 3-1, for each ant 𝑎𝑖 and round 𝑡, if she is in 𝑛0, let 𝑇𝑅1(𝑡), 𝑇𝑅2(𝑡) be the event

that any ant 𝑎𝑖 gets recruited to 𝑛1 and 𝑛2 respectively during round 𝑡. Let 𝜏1(𝑡), 𝜏2(𝑡)

represent their respective probabilities during round 𝑡. Note that for any ant 𝑎𝑖, the

two events are mutually exclusive, and 𝜏1(𝑡) + 𝜏2(𝑡) ≤ 1.

Also included in the transitions from 𝑛0 to 𝑛1 or 𝑛2 in Fig. 3-1 (Eq. (3)-(4)) is

any ant 𝑎𝑖’s independent discovery of either new nest. Specifically, conditioned on

not getting recruited, an arbitrary ant 𝑎𝑖 at 𝑛0 discovers nest 𝑛1 or 𝑛2 for the first

time through independent discovery with probability 𝛼 for either nest and a total

discovery probability of 2𝛼. Note that the biological meaning of the parameter 𝛼 is

that it encodes the home nest quality - the higher the home nest quality, the less

likely 𝑎𝑖 is to search for a new nest during any round 𝑡 and the smaller 𝛼 is.

Thus, if an ant 𝑎𝑖 is at state 𝑛0 at time 𝑡, we denote the probability of her

transitioning to 𝑛1 in the nest round with 𝛼1(𝑡), which sums up the probability of

her getting recruited to 𝑛1 (𝜏1(𝑡)) and the probability of independent discovery of 𝑛1

in the case that she does not get recruited to either 𝑛1 or 𝑛2 (𝛼(1 − 𝜏1(𝑡) − 𝜏2(𝑡)), as

shown in Fig. 3-1 and Eq. (3). Similarly, we define 𝛼2(𝑡) as the probability of her

transitioning to 𝑛2 during round 𝑡 + 1 (Eq. (4)).

Each time an active ant 𝑎𝑖 in either state 𝑛1 or 𝑛2 chooses to stay in the same

state, she tries to recruit another active ant from state 𝑛0 through either tandem

run if the quorum is not reached ((Fig. 3-1, Eq. (6) and (8)), or through transports

otherwise (Fig. 3-2, Eq. (10)). Whether the recruitment is successful or not has

no effect on 𝑎𝑖’s own state transitions during this round. Otherwise, if she does not

recruit, she searches her environment and discovers the new nest she is not currently

at (Eq. (7) and (9)).

In addition, the parameter 𝜆 > 0 represents the noise level of individual decision

making to evaluate the quality of a nest 𝑛𝑘 for 𝑘 ∈ {1, 2}. Note that this evaluation

only happens every time that 𝑎𝑖 is in 𝑛𝑘 before she detects quorum attainment at 𝑛𝑘:

a larger 𝜆 means a higher probability (represented by 𝑢1, 𝑢2 to nests 𝑛1, 𝑛2 respectively

in Fig. 3-1) of an ant 𝑎𝑖 remaining at 𝑛1 or 𝑛2 and leading a tandem run. Once she
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detects that a quorum is reached at a nest 𝑛𝑘, however, she becomes “committed" to

𝑛𝑘. We model an ant’s commitment by disallowing her to transition out of 𝑛𝑘. This

means an active ant 𝑎𝑖 at 𝑛𝑘 has to perform a transport state and stay in the 𝑛𝑘 state

at any round after 𝑛𝑘’s quorum attainment, even if 𝑛𝑘’s population drops below the

quorum later on. As a result, once a nest reaches the quorum, it never drops out of

the quorum and every ant that transitions to that nest gets “stuck" in that nest. We

thus model a “committed" ant with a separate Markov chain that essentially only has

one possible state, as shown in Fig. 3-2.

Also worth noting is that during any given round 𝑡, if an ant 𝑎𝑖 at 𝑛0 does not get

recruited, her transitions are Markovian and independent (Fig. 3-1, Fig. 3-2).

Figure 3-1: State transition diagram for individual active ants, at any round 𝑡 be-
fore/without quorum attainment. 𝛼1(𝑡) and 𝛼2(𝑡) are composite functions each in-
cluding the probabilities of an active ant taking different paths (independent discovery,
tandem running, transports) to transition out of 𝑛0 into 𝑛1 and 𝑛2, respectively.

Individual Model Without Quorums We model the transition probabilities for

individual ants without quorums, a.k.a. without any state transitions based on seeing
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a quorum, as in Fig. 3-1 and in Eq. (1)-(9). Among these equations, only Eq. (1)-(5)

are potentially affected by events 𝑇𝑅1(𝑡) and 𝑇𝑅2(𝑡) for any 𝑡. We do not model

an ant transitioning from 𝑛1 to 𝑛2 or vice versa as a recruitment since recruited ants

usually come from 𝑛0 [40].

P {𝑇𝑅1(𝑡)} = 𝜏1(𝑡) (3.1)

P {𝑇𝑅2(𝑡)} = 𝜏2(𝑡) (3.2)

P {𝑠𝑖(𝑡 + 1) = 𝑛1 | 𝑠𝑖(𝑡) = 𝑛0} = 𝛼1(𝑡) (3.3)

P {𝑠𝑖(𝑡 + 1) = 𝑛2 | 𝑠𝑖(𝑡) = 𝑛0} = 𝛼2(𝑡) (3.4)

P {𝑠𝑖(𝑡 + 1) = 𝑛0 | 𝑠𝑖(𝑡) = 𝑛0} = 1 − 𝛼1(𝑡) − 𝛼2(𝑡) (3.5)

P {𝑠𝑖(𝑡 + 1) = 𝑛1 | 𝑠𝑖(𝑡) = 𝑛1} = 𝑢1 (3.6)

P {𝑠𝑖(𝑡 + 1) = 𝑛2 | 𝑠𝑖(𝑡) = 𝑛1} = 1 − 𝑢1 (3.7)

P {𝑠𝑖(𝑡 + 1) = 𝑛2 | 𝑠𝑖(𝑡) = 𝑛2} = 𝑢2 (3.8)

P {𝑠𝑖(𝑡 + 1) = 𝑛1 | 𝑠𝑖(𝑡) = 𝑛2} = 1 − 𝑢2, (3.9)

where

𝛼1(𝑡) , P {𝑇𝑅1(𝑡)} + P {𝑠𝑖(𝑡 + 1) = 𝑛1 | (𝑠𝑖(𝑡) = 𝑛0 ∧ ¬(𝑇𝑅1(𝑡) ∨ 𝑇𝑅2(𝑡)))}

× P {¬(𝑇𝑅1(𝑡) ∨ 𝑇𝑅2(𝑡)) | 𝑠𝑖(𝑡) = 𝑛0}

= 𝜏1(𝑡) + 𝛼(1 − 𝜏1(𝑡) − 𝜏2(𝑡)),

𝛼2(𝑡) , 𝜏2(𝑡) + 𝛼(1 − 𝜏1(𝑡) − 𝜏2(𝑡))),

𝑢1 ,
1

1 + exp (−𝜆𝑞1)
,

𝑢2 ,
1

1 + exp (−𝜆𝑞2)
.

Recall that 𝛼 ∈ (0, 1
2
] is the probability of independent discovery of 𝑛1 (or 𝑛2) in

the case that any ant 𝑎𝑖 does not get recruited to either 𝑛1 or 𝑛2 during any round 𝑡.
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Formally,

𝛼 , P {𝑠𝑖(𝑡 + 1) = 𝑛1 | (𝑠𝑖(𝑡) = 𝑛0 ∧ ¬(𝑇𝑅1(𝑡) ∨ 𝑇𝑅2(𝑡)))}

= P {𝑠𝑖(𝑡 + 1) = 𝑛2 | (𝑠𝑖(𝑡) = 𝑛0 ∧ ¬(𝑇𝑅1(𝑡) ∨ 𝑇𝑅2(𝑡)))} .

Also recall that 𝜏1(𝑡) ∈ [0, 1] and 𝜏2(𝑡) ∈ [0, 1] are constrained by 𝜏1(𝑡) + 𝜏2(𝑡) ≤ 1.

The exact expressions for 𝜏1(𝑡) and 𝜏2(𝑡) are not important for the proofs we have for

the rest of this chapter. Note that 𝑢1, 𝑢2 ∈ [0.5, 1] and 𝑢1 > 𝑢2.

Individual Model After Quorum Attainment As mentioned earlier, the state

transitions of a “committed" ant (i.e. after quorum attainment at a new nest) is

different and are shown by a separate Markov chain (Fig. 3-2). For any committed

ant 𝑎𝑖, let 𝑛𝑘 be the nest that she is committed to where 𝑘 ∈ {1, 2}. Then the other

new nest she is not committed to is 𝑛3−𝑘. The transition probability equations for

individual committed ants are thus as follows:

P {𝑠𝑖(𝑡 + 1) = 𝑛𝑘 | 𝑠𝑖(𝑡) = 𝑛𝑘} = 1 (3.10)

P {𝑠𝑖(𝑡 + 1) = 𝑛3−𝑘 | 𝑠𝑖(𝑡) = 𝑛𝑘} = 0 (3.11)

P {𝑠𝑖(𝑡 + 1) = 𝑛𝑘 | 𝑠𝑖(𝑡) = 𝑛3−𝑘} = 0 (3.12)

P {𝑠𝑖(𝑡 + 1) = 𝑛3−𝑘 | 𝑠𝑖(𝑡) = 𝑛3−𝑘} = 0. (3.13)

Figure 3-2: State transition diagram for individual active ants committed to 𝑛1 and
𝑛2, on the left and right, respectively.
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Individual Model With Quorums With a quorum size, an active ant 𝑎𝑖 starts

her transitions according to Fig. 3-1 before she sees a quorum at either nest for the

first time. After she sees the population at either nest reaching the quorum, she

commits to that nest and performs her transitions according to Fig. 3-2. We show

the full model in Fig. 3-3.

Figure 3-3: State transition diagram for individual active ants with the quorum sens-
ing mechanism. An active ant first starts transitioning according to the left part of
the figure, identical to Fig. 3-1. Then once she see a quorum at either 𝑛1 and 𝑛2 (but
not both), she commits to that nest and can only stay in that nest, as shown on the
right part of the figure, identical to Fig. 3-2.

3.2.3 Dynamics of Entire Colony

We now describe what happens in an arbitrary execution, or emigration. Throughout

this chapter, we use “an execution" and “an emigration" interchangeably.

Let 𝑠 = {𝑠1, · · · , 𝑠𝑁} be the Markov chain of entire colony state, represented by

a vector of dimension 𝑁 that stacks the states of individual ants in the colony.

An emigration starts from round 1, at the beginning of which all ants are in nest

𝑛0, and ants initially know the value of 𝑁 but not 𝑞1 or 𝑞2. During each round, each

ant performs one state transition in a random order.

At the beginning of a round 𝑡, each ant has her own state 𝑠𝑖(𝑡− 1) and the colony

has state 𝑠(𝑡−1). The value of 𝑞1 or 𝑞2 is available during this round to an ant 𝑎𝑖 only
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if at the beginning of round 𝑡 she is in nest 𝑛1 or 𝑛2, respectively. In this case, the

population at that nest at the beginning of round 𝑡 is also available to 𝑎𝑖. During a

round 𝑡, each individual ant performs one state transition according to the individual

models in Section 3.2.2, which results in a transition of the colony state as well during

this round. At the end of round 𝑡, each ant has a new state 𝑠𝑖(𝑡) and the colony has

state 𝑠(𝑡). All ants then enter the next round 𝑡 + 1 with their new states.

The colony state 𝑠(𝑡) is a Markov chain and its transitions are Markovian through-

out the execution. Recall that the colony state 𝑠(𝑡) is composed of individual states

[𝑠𝑖(𝑡)]
𝑁
𝑖=1 of all active ants 𝑎𝑖 at the end of round 𝑡. As shown in Fig. 3-1 and Fig.

3-2, the state 𝑠𝑖(𝑡) of any individual ant 𝑎𝑖 during round 𝑡 have dependencies on 1)

her own state in the previous round 𝑠𝑖(𝑡 − 1), and 2) the states of other ants at the

end of this round [𝑠𝑗(𝑡)] for any 𝑗 ̸= 𝑖, which in turn depends on the individual states

of all ants in the last round [𝑠𝑗(𝑡 − 1)]𝑁𝑗=1. Both of these dependencies are confined

to either the colony state at round 𝑡 or at round 𝑡− 1, and not on the individual or

colony states of any prior round. In other words, given the colony state at round 𝑡−1,

𝑠(𝑡− 1), the new colony state at round 𝑡, 𝑠(𝑡), does not depend on any history of the

colony state prior to 𝑠(𝑡 − 1), or in other words, the colony state 𝑠(𝑡) is a Markov

chain.

3.3 The Consensus Problem

Here we define what it means for an emigration to reach consensus. We assume there

is a consensus error margin ∆ ∈ [0, 1
2
] that can be arbitrarily small. We say that an

emigration has reached consensus if there exists some time 𝑡 and a nest 𝑘 ∈ {1, 2},

such that at any round from round 𝑡 onward, the proportion of population at that

nest 𝑛𝑘 is greater than or equal to 1 − ∆, i.e., 𝑥𝑘(𝑡) ≥ (1 − ∆).

The metric to evaluate a model’s performance is the consensus probability 𝐶,

which is the probability that an emigration reaches consensus as defined above.
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3.4 Consensus Without Quorum Sensing

In this section, we explore colony emigration behavior only with individual transition

rules and tandem runs defined above (Eq. (1)-(9)) without quorum sensing. Equiva-

lently, we consider the case where the quorum size is at least 𝑁 , so that the quorum

sensing mechanism never has any effect. We show an upper bound on the consensus

probability 𝐶 for a given ∆ and colony size 𝑁 . This upper bound, in turn, can be

arbitrarily small if 𝑁 is arbitrarily large. This motivates the desire for extra mecha-

nisms to reach consensus with higher probabilities, which we will discuss in Section

3.5.

In this section, we analytically show that despite the fact that the emigration

behaviors of individual active ants are interactive, the dynamics of any individual

active ant are asymptotically independent of other ants (i.e. the only dependence

is through quorum sensing), shortly after she leaves the original home nests either

through discovery or through recruitment. Moreover, we show that this “asymptotic-

ity” manifests itself in a non-trivially way after a few rounds – suggesting that a large

portion of the active ants quickly rely only on individual intelligence. We show that

this “asymptotic" independence is harmful to realizing social cohesion. Our results are

derived with probability tools such as conditional probability, concentration bounds

and Markov mixing time. Both the results on asymptotically independence and its

negative impact can be extended to the general multiple-new-nest environments.

3.4.1 Model and Notation

In this section we use the model shown in Fig. 3-1 and Eq. (1)-(9). Additionally,

after Proposition 6, we focus on only the part of the model defined by Eq. (6)-(9),

for any ant that has transitioned out of 𝑛0 at some point and afterwards can only be

in either 𝑛1 or 𝑛2. For the convenience of our analysis, we show this partial model

separately in Fig. 3-4.

We define the following constants:

• 𝐻, a 2×2 transition matrix of an arbitrary ant 𝑎𝑖’s state 𝑠𝑖 after she transitions
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out of 𝑛0, as specified in Eq. (6)-(9).

• 𝜋* = 1
2−𝑢1−𝑢2

[1 − 𝑢2, 1 − 𝑢1], a vector representing the limiting distribution of

an arbitrary ant 𝑎𝑖. The first element is the limiting distribution of state 𝑛1

and the second is that of state 𝑛2 (details in Eq. 3.16).

3.4.2 Main Theorem

Recall that ∆ is the consensus error margin, representing the proportion of ant that

can be exempted from the consensus requirement. We can see that the smaller ∆ is

(lowest value is 0), the larger (1 − ∆)𝑁 is, and hence the more ants it is required

for an emigration to reach consensus. In other words, the smaller ∆ is, the more

“strict" the consensus metric is and the more challenging it is for an emigration to

reach consensus.

Theorem 1. For any ∆ ∈ [0, 1− 𝜋*(𝑛1)], let 𝜖0 = 1−𝜋*(𝑛1)−Δ
2

> 0. Then it holds that

P

{︃
𝑁∑︁
𝑖=1

1{𝑠𝑖(𝑡) = 𝑛1} ≥ (𝜋*(𝑛1) + 2𝜖0)𝑁 = (1 − ∆)𝑁

}︃
≤ 2 exp

(︂
−𝜖20𝑁

2

)︂
,

for any 𝑡 >
(︁

1
ln(1−2𝛼)

+ 1
ln(1−𝑅(𝐻))

)︁
ln 𝜖0

2
, where 𝑅(𝐻) is the Dobrushin’s coefficient of

ergodicity [28, Chapter 6.2] of 𝐻.

Theorem 1 is stated for 𝑛1. Similar result holds for 𝑛2. Theorem 1 says that for

any 𝑡 greater than
(︁

1
ln𝛽

+ 1
ln(1−𝑅(𝐻))

)︁
ln 𝜖0

2
, the probability of 𝑥1(𝑡) reaching (1−∆) is

upper bounded by 2 exp
(︁
− 𝜖20𝑁

2

)︁
< 1. Thus, the total consensus probability is upper

bounded by 4 exp
(︁
− 𝜖20𝑁

2

)︁
< 1.

Real ant colonies often need ∆ to be very small or even zero for survival. From

the theorem expression, we can see that the smaller ∆ is, the lower is the upper

bound of the consensus probability. Furthermore, we can see that for 𝑁 arbitrarily

large, 𝐶 can be arbitrarily close to 0, for any given ∆. Therefore, this calls for extra

mechanisms to help the emigration reach consensus, such as the quorum rule.
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We also claim that the proofs in this section and related results can easily extend

to environments with more than 2 nests, where one can add a new state for each

new nest, each similar to the 𝑛1 and 𝑛2 in our model and all new nests can exchange

ants and receive ants from 𝑛0 through recruitment or discovery. After adjusting

the constants of the model, 𝐻 and 𝜋*, one can derive results similar to Theorem 1:

without quorum sensing, the probability of consensus can be arbitrarily low.

3.4.3 Proof of Theorem 1

Definition 2. For each 𝑖 ∈ [𝑁 ], define random variable 𝑇 1
𝑖 , inf{𝑡 : 𝑠𝑖(𝑡) ̸= 𝑛0} as

the first round at the beginning of which ant 𝑎𝑖 has transitioned out of the 𝑛0 state

in any arbitrary execution of the emigration.

Remark 3. It can be shown that 𝑇 1
𝑖 is finite with probability 1 (Appendix B.1). Also

from Definition 2, we have that for any ant 𝑎𝑖,

P
{︀
𝑠𝑖(𝑡) = 𝑛0 | 𝑡 > 𝑇 1

𝑖

}︀
= 0.

Consider 𝑁 random indicator variables 1{𝑇 1
𝑖 > 𝑡} for any 𝑡, each variable taking

values in the range {0, 1}. Using Hoeffding’s inequality [30] (also Appendix B.1), we

show an upper bound on the number of ants still in 𝑛0 at round 𝑡.

Proposition 4. For 𝑡 ≥ 1 and any number 𝑑 ∈ [0, 1], it holds that

P

{︃
𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 > 𝑡

}︀
< 𝑁

(︀
𝛽𝑡 + 𝑑

)︀}︃
> 1 − exp

(︀
−2𝑁𝑑2

)︀
, where 𝛽 , 1 − 2𝛼,

i.e., with probability at least (1 − exp (−2𝑁𝑑2)), the number of active ants staying at

home nest beyond time 𝑡 is at most 𝑁 (𝛽𝑡 + 𝑑).

Proof. Notably the 𝑁 indicator random variables are not independent. Hence, we

prove this proposition via coupling. For each ant 𝑎𝑖, we introduce an auxiliary random

variable ̂︀𝑇 1
𝑖 whose value is determined by a sequence of independent coin tosses one

for each round. Each state transition of ant 𝑎𝑖 during a round 𝑡 is coupled with a
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coin toss as follows. The coin toss happens at the end of a round 𝑡. For any of the

cases below, if the coin toss shows “HEAD", set ̂︀𝑇 1
𝑖 = 𝑡.

• If ant 𝑎𝑖 is not in 𝑛0 at the beginning of 𝑡 and ̂︀𝑇 1
𝑖 > 𝑡 − 1, then toss a biased

coin whose “HEAD” probability is 2𝛼.

• If ant 𝑎𝑖 is in 𝑛0 at the beginning of round 𝑡 and gets recruited during round 𝑡,

then toss a biased coin whose “HEAD” probability is 2𝛼.

• Otherwise, a.k.a. if ant 𝑎𝑖 is in 𝑛0 at the beginning of round 𝑡 and does not get

recruited during round 𝑡, the conditional probability of ant 𝑎𝑖 leaves 𝑛0 through

independent discovery is 2𝛼 during round 𝑡. If ant 𝑎𝑖 spontaneously leaves 𝑛0,

toss a biased coin whose “HEAD” probability is 1; otherwise, toss a biased coin

whose “HEAD" probability is 0.

Since initially all ants stay at home nest 𝑛0, under the above construction, it holds

that ̂︀𝑇 1
𝑖 ≥ 𝑇 1

𝑖 . Therefore, if 𝑇 1
𝑖 > 𝑡, then ̂︀𝑇 1

𝑗 > 𝑡.

Summing up the cases listed above, for each 𝑎𝑖 and each round 𝑡, if she has not

transitioned out of 𝑛0 by the end of round 𝑡 − 1, the probability of her coin toss

showing a head is thus 2𝛼, i.e. ,

P
{︁̂︀𝑇 1

𝑖 = 𝑡 | ̂︀𝑇 1
𝑖 ≥ 𝑡

}︁
=

⎧⎪⎨⎪⎩1, with probability 2𝛼,

0, otherwise.

Moreover, let 𝐸𝑖,𝑡 , 1

{︁̂︀𝑇 1
𝑖 = 𝑡 | ̂︀𝑇 1

𝑖 ≥ 𝑡
}︁

. From the above construction, we know for

fixed 𝑎𝑖, {𝐸𝑖,𝑡}∞𝑡=0 are independent. Also, {𝐸𝑖,𝑡}∞𝑡=0 are 𝑖.𝑖.𝑑. across all ants.

We further define 𝑁 independent random indicator variables 1
{︁̂︀𝑇 1

𝑖 > 𝑡
}︁

for any

𝑡:

̂︀𝑇 1
𝑖 > 𝑡 = ̂︀𝑇 1

𝑖 > 𝑡 | ̂︀𝑇 1
𝑖 ≥ 𝑡− 1, by definition

= ¬(̂︀𝑇 1
𝑖 = 𝑡− 1 | ̂︀𝑇 1

𝑖 ≥ 𝑡− 1)

= ¬𝐸𝑖,𝑡−1.
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Hence, for any 𝑡, the variables 1
{︁̂︀𝑇 1

𝑖 > 𝑡
}︁

for each 𝑎𝑖 are independent, each taking

values in the range {0, 1} and takes value 1 with probability 1 − 2𝛼.

Since 1{𝑇 1
𝑖 > 𝑡} = 1 implies 1

{︁̂︀𝑇 1
𝑖 > 𝑡

}︁
= 1, it holds that

𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 > 𝑡

}︀
≤

𝑁∑︁
𝑖=1

1

{︁̂︀𝑇 1
𝑖 > 𝑡

}︁
.

Combined with Hoeffding’s inequality [30] (also Appendix B.1), we are ready to

prove the Proposition statement.

P

{︃
𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 > 𝑡

}︀
< 𝑁

(︀
(1 − 2𝛼)𝑡 + 𝑑

)︀
= 𝑁

(︀
𝛽𝑡 + 𝑑

)︀}︃

≥ P

{︃
𝑁∑︁
𝑖=1

1

{︁̂︀𝑇 1
𝑖 > 𝑡

}︁
< 𝑁

(︀
𝛽𝑡 + 𝑑

)︀}︃
> 1 − exp

(︀
−2𝑁𝑑2

)︀

Corollary 5. For any given 𝜖 ∈ (0, 1), for any 𝑡 ≥ log𝛽( 𝜖
2
),

P

{︃
𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 > 𝑡

}︀
< 𝜖𝑁

}︃
> 1 − exp

(︀
−𝑁𝜖2/2

)︀
,

where 𝛽 = 1 − 2𝛼. In other words, with probability at least (1 − exp (−𝑁𝜖2/2)), at

most 𝜖𝑁 ants remain in the home nest 𝑛0 after round log𝛽( 𝜖
2
).

Proof. For any given 𝜖 ∈ (0, 1), we can set 𝑑 = 𝜖
2

and apply Proposition 4 and thus

proves the statement.

Next, we show that ant 𝑎𝑖’s state transitions become independent of other ants

after 𝑇 1
𝑖 , the time that 𝑎𝑖 leaves 𝑛0. Note that this is different than the two types of

independence proved in Proposition 4, in which we show the independence of 𝐸𝑖, 𝑡 for

any individual ant 𝑎𝑖 across time 𝑡 and also the independence of 𝐸𝑖, 𝑡 across all ants.
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These two types of independence target at dynamics of ants until they transition out

of 𝑛0. However our next Proposition shows independence across different ants after

they transition out of 𝑛0.

Proposition 6. For every 𝑖, 𝑗 ∈ [𝑁 ], 𝑖 ̸= 𝑗 and every 𝑡 > 𝑇 1
𝑖 , the state transitions of

ant 𝑎𝑖 are independent from those of 𝑠𝑗(𝑡), i.e.,

P
{︀
𝑠𝑖(𝑡 + 1) = 𝑠′1 | (𝑠𝑖(𝑡) = 𝑠1) ∧ (𝑠𝑗(𝑡) = 𝑠2) ∧ (𝑡 > 𝑇 1

𝑖 )
}︀

= P
{︀
𝑠𝑖(𝑡 + 1) = 𝑠′1 | (𝑠𝑖(𝑡) = 𝑠1) ∧ (𝑡 > 𝑇 1

𝑖 )
}︀
,

where 𝑠1, 𝑠2, 𝑠
′
1 ∈ 𝒮 and 𝑠′1 ̸= 𝑛0.

Proof of Proposition 6. For ant 𝑎𝑖, at the beginning of round 𝑇 1
𝑖 +1, her state is either

𝑛1 or 𝑛2. As can be seen from the state transition probabilities for each ant, once ant

𝑎𝑖 jumps out of 𝑛0, i.e. 𝑡 > 𝑇 1
𝑖 , she can never return to 𝑛0 according to Eq.(6)-(9).

Therefore, after 𝑇 1
𝑖 , 𝑎𝑖’s state transition is independent of other ants, that is, the

transition probabilities in Eq.(6)-(9) are not affected by the states of other ants.

Nest, we show that every ant 𝑎𝑖 that has transitioned out of 𝑛0 has the same

limiting distribution. Furthermore, we show that all ants eventually transition out of

𝑛0 and thus all active ants share the same limiting distribution.

Let

𝑄(𝑡) , {𝑎𝑖 : 𝑠𝑖(𝑡) ̸= 𝑛0} (3.14)

be a random variable representing the set of ants that have transitioned out of 𝑛0 by

the end of round 𝑡, in an arbitrary emigration. 𝑄(𝑡) is thus a function of an execution.

It is easy to see that w.r.t. this emigration, 𝑄(𝑡 − 1) ⊆ 𝑄(𝑡) for any 𝑡 ≥ 1. From

Proposition 6 we know that for any 𝑡 ≥ 1, the state transitions of the ants in 𝑄(𝑡−1)

are independent of other ants. For any ant 𝑎𝑖 ∈ 𝑄(𝑡), her state transitions are thus

modeled as in Fig. 3-4 and Eq. (6)-(9). Additionally, from Corollary 5, we know

that for a large enough 𝑡, with high probability, a large portion of the active ants will
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have been transitioned out of 𝑛0. In fact, it can be shown that within finite time,

all ants transition out of 𝑛0 and follow independent Markov transitions (Appendix

B.1). An immediate consequence of this is that the Markov chain representing the

entire colony is irreducible and aperiodic. Hence, the stationary distribution of the

colony state 𝑠 is well-defined and is unique. Denote this distribution by 𝜋. Note that

𝜋 is a joint distributions of the states 𝑠1, · · · , 𝑠𝑁 of all ants. Let 𝜋𝑖 be the marginal

distribution of 𝜋 on the state of ant 𝑎𝑖. We show below that 𝜋𝑖 = 𝜋𝑗 for any 𝑖 ̸= 𝑗,

and thus for ease of exposition we define 𝜋* = 𝜋𝑖 for every 𝑖.

Lemma 7. Let 𝜋* , 1
2−𝑢1−𝑢2

[1 − 𝑢2, 1 − 𝑢1]. For any 𝑖, 𝜋𝑖 = 𝜋*, where 𝜋𝑖 is the

marginal distribution of 𝜋 on the state of ant 𝑎𝑖.

Proof. From Definition 2 and Proposition 6 we know that 𝜋𝑖 is supported on {𝑛1, 𝑛2},

and that 𝜋𝑖 = 𝜋𝑗, where 𝐻 is the transition matrix of state 𝑠𝑖 specified in Eq.(6)-(9),

as shown below.

𝐻 =

⎡⎣ 𝑢1 1 − 𝑢1

1 − 𝑢2 𝑢2

⎤⎦ . (3.15)

Solving the equation system 𝜋𝑖 = 𝜋𝑖𝐻, we get

𝜋𝑖 =
1

2 − 𝑢1 − 𝑢2

[1 − 𝑢2, 1 − 𝑢1] . (3.16)

Eq.(3.16) show that 𝜋𝑖 does not depend on 𝑖, thus it is easy to see that 𝜋𝑖 = 𝜋𝑗 = 𝜋*

for any ants 𝑎𝑗 ̸= 𝑎𝑖.

From Eq.(3.16), we derive the probability ratio

𝜋*(𝑛1)

𝜋*(𝑛2)
= exp (𝜆(𝑞1 − 𝑞2)) ,

i.e., it is very sensitive to the nest quality gap (𝑞1 − 𝑞2) and 𝜆.

Recall that 𝑢1 > 𝑢2 and both take values in range [1
2
, 1]. The Dobrushin’s coeffi-

cient of ergodicity [28, Chapter 6.2] of 𝐻 is
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Figure 3-4: State transition diagram for individual active ants after they leave 𝑛0,
before/without quorum attainment.

𝑅(𝐻) = 2 − 𝑢1 − 𝑢2 (3.17)

Next, we show that for 𝑡 large enough, any ant that has transitioned out of 𝑛0 has

state distributions “close" to the stationary distribution 𝜋*.

Lemma 8. For any ant 𝑖, let 𝜋𝑖,𝑡 denote the probability distribution of 𝑎𝑖’s state over

the possible states depicted in Fig.3-4 at time 𝑡 ≥ 𝑇 1
𝑖 .

Then for any number of rounds ℓ > 0, it holds that

‖𝜋𝑖,𝑇 1
𝑖 +ℓ − 𝜋*‖1 ≤ 2 (1 −𝑅(𝐻))ℓ .

Proof. First note that at the beginning of round 𝑇 1
𝑖 , the probability distribution of

𝑎𝑖’s state is such that the probability of state 𝑠𝑖(𝑇
1
𝑖 ) (either nest 𝑛1 or 𝑛2) is 1 and

of the new nest state she is not at is 0. By Proposition 6 we know that after 𝑇 1
𝑖 , the

dynamics of 𝑠𝑖 is Markovian. Hence we know that 𝜋𝑖,𝑇 1
𝑖 +ℓ = 𝜋𝑖,𝑇 1

𝑖
𝐻ℓ.
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It follows from [28, Proposition 6.5] that ‖𝜋𝑖,𝑇 1
𝑖
𝐻ℓ−𝜋*‖1 ≤ 2 (1 −𝑅(𝐻))ℓ, proving

the lemma.

Using Lemma 8, the following corollary immediately follows:

Corollary 9. Fix any 𝛿 ∈ (0, 1). For any ant 𝑎𝑖 and 𝑡 > 𝑇 1
𝑖 + ℓ, where ℓ ,

log(1−𝑅(𝐻))
𝛿
2
, it holds that

‖𝜋𝑖,𝑡 − 𝜋*‖1 ≤ 𝛿.

Combined with Corollary 5, we are now ready to prove Theorem 1.

Proof of Theorem 1. We first give the intuition and a proof sketch to show an upper

bound on the probability of the active ant population at 𝑛1 being higher than a

certain number 𝐶0, for 𝑡 large enough. We break down the problem into two cases,

first if by a certain round 𝑘1 when we expect most ants to be out of 𝑛0, the actual

number of ants that have transitioned out of 𝑛0 is low; and second is if that number

is high. Intuitively speaking, 𝑘1 should be higher if ∆ is lower, i.e. the consensus

has a “stricter" population requirement. Now, the first case should have a pretty low

probability. The second case has a high probability. From Corollary 9 we know that

after a certain amount of rounds 𝑘2 these most of the ants that are out of 𝑛0 will

reach the limiting distribution 𝜋*. Thus, the number of ants in 𝑛1 should be close to

𝜋*(𝑛1). In other words, after 𝑘1 + 𝑘2 rounds the probability of 𝑛1’s population being

much higher than 𝜋*(𝑛1) should be quite low. Summing up the probabilities of the

first and second cases gives us an overall probability as an upper bound, proving the

theorem.

For ease of exposition, let 𝐵𝑖(𝑡) = 1{𝑠𝑖(𝑡) = 𝑛1} for each 𝑖 ∈ [𝑁 ] and 𝑡 ≥ 0. Let

𝐶0 be an arbitrary positive number, 𝐶0 ∈ [0, 𝑁 ]. Let 𝐶1 = (1 − 𝜖0)𝑁 . Recall that
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𝛽 = 1 − 2𝛼.

P

{︃
𝑁∑︁
𝑖=1

1{𝑠𝑖(𝑡) = 𝑛1} ≥ 𝐶0

}︃
= P

{︃
𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) ≥ 𝐶0

}︃

= P

{︃
𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) ≥ 𝐶0 |
⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
< 𝐶1

}︃
P
{︁⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
< 𝐶1

}︁
+ P

{︃
𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) ≥ 𝐶0 |
⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
≥ 𝐶1

}︃
P
{︁⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
≥ 𝐶1

}︁
≤ P

{︁⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
< 𝐶1

}︁
+ P

{︃
𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) ≥ 𝐶0 |
⃒⃒⃒
𝑄(log𝛽

𝜖0
2

)
⃒⃒⃒
≥ 𝐶1

}︃
. (3.18)

We bound the two terms in the RHS of Eq.(3.18) separately.

Bounding the 1st term: For any 𝑡 ≥ log𝛽
𝜖0
2
, we have

P {|𝑄(𝑡)| < 𝐶1} = P {|𝑄(𝑡)| < (1 − 𝜖0)𝑁}

= P

{︃
𝑁∑︁
𝑖=1

1{𝑠𝑖(𝑡) ̸= 𝑛0} < (1 − 𝜖0)𝑁

}︃

= P

{︃
𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 < 𝑡

}︀
< (1 − 𝜖0)𝑁

}︃

= P

{︃
𝑁∑︁
𝑖=1

1
{︀
𝑇 1
𝑖 > 𝑡

}︀
> 𝜖0𝑁

}︃

≤ exp

(︂
−𝜖20𝑁

2

)︂
,

where the last inequality follows from Corollary 5.

Bounding the 2nd term: Note that

𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) =
∑︁

𝑎𝑖∈𝑄(𝑡)

𝐵𝑖(𝑡) +
∑︁

𝑎𝑖 /∈𝑄(𝑡)

𝐵𝑖(𝑡).
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It is easy to see that

∑︁
𝑎𝑖 /∈𝑄(𝑡)

𝐵𝑖(𝑡) = 0. (3.19)

In addition, we have

P

⎧⎨⎩ ∑︁
𝑎𝑖∈𝑄(𝑡)

𝐵𝑖(𝑡) −
∑︁

𝑎𝑖∈𝑄(𝑡)

E [𝐵𝑖(𝑡)] ≥ 𝜖0 |𝑄(𝑡)| | |𝑄(𝑡)| ≥ (1 − 𝜖0)𝑁

⎫⎬⎭
= P

⎧⎨⎩ ∑︁
𝑎𝑖∈𝑄(𝑡)

𝐵𝑖(𝑡) −
∑︁

𝑎𝑖∈𝑄(𝑡)

𝜋𝑖,𝑡(𝑛1) ≥ 𝜖0 |𝑄(𝑡)| | |𝑄(𝑡)| ≥ (1 − 𝜖0)𝑁

⎫⎬⎭
≤ exp

(︀
−2 |𝑄(𝑡)| 𝜖20

)︀
≤ exp

(︀
−2(1 − 𝜖0)𝜖

2
0𝑁

)︀
.

Conditioning on
⃒⃒
𝑄(log𝛽

𝜖0
2

))
⃒⃒
≥ (1 − 𝜖0)𝑁 , from Corollary 9, we know that for each

𝑎𝑖 ∈ 𝑄(log𝛽
𝜖0
2

), for any 𝑡 > log𝛽
𝜖0
2

+ ℓ, where ℓ = log(1−𝑅(𝐻))
𝜖0
2
, it holds that

𝜋𝑖,𝑡(𝑛1) ≤ 𝜋*(𝑛1) + 𝜖0. Hence we get

∑︁
𝑎𝑖∈𝑄(𝑡)

𝜋𝑖,𝑡(𝑛1) + 𝜖0 |𝑄(𝑡)| ≤ (𝜋*(𝑛1) + 𝜖0) |𝑄(𝑡)| + 𝜖0 |𝑄(𝑡)|

≤ (𝜋*(𝑛1) + 2𝜖0)𝑁.

Thus,

P

⎧⎨⎩ ∑︁
𝑎𝑖∈𝑄(𝑡)

𝐵𝑖(𝑡) ≥ (𝜋*(𝑛1) + 2𝜖0)𝑁

⎫⎬⎭
≤ P

⎧⎨⎩ ∑︁
𝑎𝑖∈𝑄(𝑡)

𝐵𝑖(𝑡) −
∑︁

𝑎𝑖∈𝑄(𝑡)

E [𝐵𝑖(𝑡)] ≥ 𝜖0 |𝑄(𝑡)| | |𝑄(𝑡)| ≥ (1 − 𝜖0)𝑁

⎫⎬⎭
≤ exp

(︀
−2(1 − 𝜖0)𝜖

2
0𝑁

)︀
. (3.20)
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Combining Eq.(3.19) and (3.20), we conclude that

P

{︃
𝑁∑︁
𝑖=1

𝐵𝑖(𝑡) ≥ (𝜋*(𝑛1) + 2𝜖0)𝑁 | |𝑄(𝑡)| ≥ (1 − 𝜖0)𝑁

}︃
≤ exp

(︀
−2(1 − 𝜖0)𝜖

2
0𝑁

)︀
.

Combining the probability bounds on the first and second terms of Thm.(1), we

have

P

{︃
𝑁∑︁
𝑖=1

1{𝑠𝑖(𝑡) = 𝑛1} ≥ (𝜋*(𝑛1) + 2𝜖0)𝑁

}︃
≤ exp

(︀
−2(1 − 𝜖0)𝜖

2
0𝑁

)︀
+ exp

(︂
−𝜖20𝑁

2

)︂
≤ 2 exp

(︂
−𝜖20𝑁

2

)︂
as 𝜖0 ∈ (0, 1/2),

proving Theorem 1.

3.5 Consensus with Quorum Sensing

In this section, we analyze the addition of the quorum sensing mechanism to an

average case emigration, which is defined as any execution that follows the population

dynamics described in Eq.(21)-(26), i.e., the average case dynamics. The distribution

of the active ants population among the three nests changes deterministically over

time in the average case as defined in Section 3.5.1. We discuss how different quorum

sizes influence whether an average emigration reaches consensus. Let 𝑄𝑆×𝑁 denote

the quorum size: 𝑄𝑆 ∈ [0, 0.5].

Recall that the definition of consensus for an emigration allows an error margin

denoted by ∆ ≥ 0, representing the proportion of ants exempted from the consensus

requirement. For example, when ∆ = 0, i.e., no ant is exempted from the consensus

requirement, all ants have to be in one nest from some time 𝑡 onward for an emigration

to reach consensus. As discussed in Section 3.4, without quorum sensing, for any 𝑁 ,

a smaller ∆ means a smaller upper bound on the consensus probability 𝐶, and thus

a higher need of extra mechanisms to reach consensus. For simplicity, our analysis in

this section thus assumes that ∆ = 0.
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Our main results are four values that are important for consensus: 1) a neces-

sary condition for consensus - a value 𝑄𝑆− ≤ 0.5 such that for 𝑄𝑆 ≤ max {𝑄𝑆−, 𝛼},

an average case does not reach consensus, and 2) a sufficient condition for consen-

sus - a value 𝑄𝑆+ such that for 𝑄𝑆 ∈ [0, 0.5] ∧ 𝑄𝑆 > max {𝑄𝑆+, 𝛼}, an average

case emigration does reach consensus. However, both conditions have complicated

expressions and use constants whose numeric value we cannot directly evaluate. To

provide more interpretable results, we also derive: 3) a corollary as a necessary con-

dition - a value 𝑄𝑆 ′
− ≤ 0.5 whose expression only uses model parameters, such that

𝑄𝑆 > max
{︀
𝑄𝑆 ′

−, 𝛼
}︀

is a necessary condition for consensus, and 4) a strong con-

jecture suggested by simulation results as a sufficient condition - a value 𝑄𝑆 ′
+ whose

expression only uses model parameters, such that 𝑄𝑆 ∈ [0, 0.5]∧𝑄𝑆 > max
{︀
𝑄𝑆 ′

+, 𝛼
}︀

is a sufficient condition for consensus. These two bounds on 𝑄𝑆 aren’t as tight as

those in the first two results, but they have simpler forms.

Studying the average case dynamics is meaningful because similar results and/or

proof techniques may apply to population dynamics that are “close" to the average

case dynamics. Although we do not yet have a clear metric of “closeness" between

two population dynamics, we hope that our insights on the average case serves as

an important milestone towards quantifying the relationship between the quorum

size 𝑄𝑆 and the consensus probability 𝐶 under this model where individuals use the

quorum rule.

3.5.1 Model with Quorums

First, we revisit the individual model with quorums (Fig. 3-3) that we defined in

Section 3.2.2. Then, in order to make our model more bio-plausible, we describe an

execution model which is a modification of the execution model described in Section

3.2.3. This modification enforces that if a nest reaches quorum for the first time

at some point in the middle of a round, any ant that in that nest that has not

transitioned yet also sees the quorum, and transitions according to Fig. 3-2 instead

of Fig. 3-1. This is more bio-plausible because a real ant does not wait until the

an arbitrary end of round time to evaluate the nest population again, but instead
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her evaluation can happen at any time when she is in the nest through encounter

rates. We also define a special case using this modified execution model to define an

important concept, simultaneous split, which happens when two nests reach consensus

in the same round, as opposed to a “separate" split where nests reach consensus in

different rounds. Following that, we describe informally the definition of the average

case dynamics. Then, we introduce the recruitment dynamics followed by the full

population dynamics that formally define the average case dynamics.

Individual Model with Quorums

Each individual ant is modeled by Fig. 3-3, which uses both Fig. 3-1 and Fig. 3-2,

divided by her seeing a quorum at either new nest.

We determine that a nest 𝑛𝑘 has “reached quorum" or “hit quorum" at round 𝑡 if

by the end of round 𝑡, 𝑥𝑘(𝑡) ≥ 𝑄𝑆. Recall that we model the quorum rule at 𝑛𝑘 by

disallowing any active ant in state 𝑛𝑘 to transition out of 𝑛𝑘 (Eq. (10)-(13)) once 𝑛𝑘

hits quorum. Active ants in 𝑛𝑘 also stop leading tandem runs from 𝑛0 but still stay

in the state 𝑛𝑘, and start transporting passive and brood items [46]. That is, once a

nest 𝑛𝑘 hits the quorum, it never drops below the quorum. This also implies that a

split where the populations at both nests are at least 𝑄𝑆 is irreversible, and results

in the emigration failing to reach consensus.

Execution Model with Quorums

In order to make our execution model more bio-plausible, we apply a modification to

the execution model introduced in Section 3.2.3, specifically only the rounds in which

either 𝑛1 or 𝑛2 hits quorum for the first time. Recall that as described in Section

3.2.3, during a round, individual transitions happen in a random order, and each ant

performs exactly one transition. However, for the execution model with quorums,

for any round 𝑡 at which a nest hits quorum 𝑄𝑆 for the first time, we only allow a

proportion of the individual state transitions that would have happened according

to Section 3.2.3 to be successful. Specifically, let 𝑥′
𝑘(𝑡) ≥ 𝑄𝑆 (𝑘 ∈ {1, 2}) represent

the population at 𝑛𝑘 at the end of round 𝑡 in the execution model in Section 3.2.3,
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where 𝑛𝑘 hits quorum for the first time at round 𝑡. Let 𝑚 = 𝑄𝑆−𝑥𝑘(𝑡−1)
𝑥′
𝑘(𝑡)−𝑥𝑘(𝑡−1)

denote the

proportion of each individual transitions in Eq. (1)-(9) that are allowed to happen in

this round. For each of the state transition equations, exactly which ants are picked to

be in the successful proportion is random. We then halt the execution in the middle

of round 𝑡 exactly after this successful proportion of individual transitions to happen.

Any individual state transitions that would have happened in this round after the

halt do not happen. That is, some ants do not get to perform a transition during this

round.

If both nests hit quorum for the first time in the same round 𝑡, the 𝑛𝑘 used for

the successful proportion 𝑚 is the nest with the higher 𝑥′
𝑘(𝑡). In the modified model

where only a proportion of ants join either nests in round 𝑡, 𝑥𝑘(𝑡) would be exactly

𝑄𝑆, but it is still possible for the other nest to hit quorum during this round 𝑡. In

these cases we say that the emigration has resulted in a simultaneous split and

therefore failed to reach consensus.

An ant 𝑎𝑖’s state at the end of this round, 𝑠𝑖(𝑡), still depends only on 𝑠𝑖(𝑡 − 1)

and 𝑠𝑗(𝑡) for any 𝑗 ̸= 𝑖 which in turn depends on [𝑠𝑗(𝑡− 1)]𝑁𝑗=1, both still confined to

the colony state at either round 𝑡 or round 𝑡− 1, and not on the individual or colony

states of any prior round. Thus the Markov properties of the entire colony still hold.

The purpose of this execution model is to enforce that by end of round 𝑡, 𝑥𝑘(𝑡) is

exactly equal to 𝑄𝑆, where 𝑥𝑘 (𝑘 ∈ {1, 2}) is the nest that hits quorum for the first

time at 𝑡.

The Average Case Dynamics

Below we define the average case dynamics. We start with an intuitive overview

of the average case dynamics during any 𝑡 that is not the first round that a nest

hits quorum, followed by the dynamics during a 𝑡 that is. Then, more formally,

we quantify the recruitment dynamics at any round 𝑡. Finally, we quantify the full

dynamics during the execution at any round 𝑡. An average case emigration is thus

any execution that follows the population dynamics defined in Eq. (21)-(26).

Recall that for any execution, during each round 𝑡, the colony state 𝑠 has a
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new state due to the state transitions of individual ants during 𝑡, where individ-

ual transitions are carried out in a random order within the round. The popula-

tion partition among the three states shown in Fig. 3-1 at the end of round 𝑡 is

{𝑥0(𝑡)𝑁, 𝑥1(𝑡)𝑁, 𝑥2(𝑡)𝑁}. In the average case dynamics, during every round 𝑡, the

proportion of ants transitioning between the three different states are as specified in

Eq. (1)-(9) for an uncommitted ant, and Eq. (10)-(13) for committed ants. For exam-

ple, if by the end of round 𝑡, 𝑛1’s population 𝑥1(𝑡) has not reached the quorum, then

during round 𝑡+1 the number of ants transitioning from 𝑛1 to 𝑛2 is (1−𝑢1)𝑥1(𝑡) (Eq.

(7)), and the number of ants that perform tandem runs towards 𝑛1 is thus 𝑢1𝑥1(𝑡)

(Eq. (6)). If 𝑛1 already reached quorum at round 𝑡, then all ants in 𝑛1 transport

brood items to 𝑛1, without influencing the dynamics of active ants at 𝑛0. The same

applies to all other states and transitions.

Later we prove that in our construction, 𝑛1 reaches quorum first, at least as early

as 𝑛2 does (Proposition 14). Intuitively, this is because 𝑞1 > 𝑞2, and thus through

the tandem run positive feedback loops, on average, 𝑛1 accumulate population faster

than 𝑛2. Let 𝑡* be the round at the end of which 𝑛1 hits quorum for the first time.

Recall that 𝑥′
1(𝑡

*) ≥ 𝑄𝑆 represent the population at 𝑛𝑘 at the end of round 𝑡* using

the execution model without quorums (Section 3.2.3). Later we show in Prop. 15

that as long as 𝑄𝑆 > 𝛼, an average case emigration does not result in a simultaneous

split.

If a simultaneous split does not occur, then at round 𝑡*, only 𝑛1 hits quorum and 𝑛2

has not. As described earlier, in the average case dynamics, the proportion of ants that

perform transitions are only partial during round 𝑡*: a proportion 𝑚 = 𝑄𝑆−𝑥1(𝑡*−1)
𝑥′
1(𝑡

*)−𝑥1(𝑡*−1)

of the number of ants that would have performed the transition listed in Eq.(1)-(9),

while the rest of the ants do not perform any transitions during round 𝑡*. Then the

next round, 𝑡*+1, starts with this “snapshot" distribution of ants among all the nests.

Using the previous example, during round 𝑡*, the number of ants transitioning from

𝑛1 to 𝑛2 is (1−𝑢1)𝑥1(𝑡
*− 1)𝑚 (Eq. (7)), and the number of ants attempting tandem

runs and returning to 𝑛1 is thus 𝑢1𝑥1(𝑡
* − 1)𝑚 (Eq. (6)). The same applies to all

other states and transitions.
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Recruitment Dynamics The recruitment dynamics in the average case dynamics

are defined below. For transports, since they are targeted at passive ants and broods,

once an active ant becomes committed to a nest, she does not transport other active

ants from 𝑛0 anymore. For tandem runs, we consider all tandem runs during a round

𝑡 + 1 to be successful as long as there are at least as many active ants as (potential)

tandem run followers in 𝑛0 as tandem run recruiters from 𝑛1 and 𝑛2 combined, except

during round 𝑡*.

Let ̂︀𝑥1(𝑡 + 1), ̂︀𝑥2(𝑡 + 1) denote the number of tandem followers from 𝑛0 to 𝑛1 and

𝑛2, respectively, during round 𝑡 + 1. Then by the end of round 𝑡,

• If 𝑡 + 1 < 𝑡*: If neither nest has reached quorum,

– If 𝑥0(𝑡) ≥ 𝑢1𝑥1(𝑡) + 𝑢2𝑥2(𝑡), then all tandem runs are successful during

round 𝑡 + 1, i.e. ̂︀𝑥1(𝑡 + 1) = 𝑢1𝑥1(𝑡), ̂︀𝑥2(𝑡 + 1) = 𝑢2𝑥2(𝑡).

– Otherwise, ̂︀𝑥1(𝑡+1) = 𝑥0(𝑡)
𝑢1𝑥1(𝑡)

𝑢1𝑥1(𝑡)+𝑢2𝑥2(𝑡)
, and ̂︀𝑥2(𝑡+1) = 𝑥0(𝑡)

𝑢2𝑥2(𝑡)
𝑢1𝑥1(𝑡)+𝑢2𝑥2(𝑡)

.

Then starting from the beginning of round 𝑡+2, 𝑛0 is empty (has no active

ants).

• If 𝑡+1 = 𝑡*: let 𝑥′
1(𝑡

*) = 𝑢1𝑥1(𝑡)+̂︀𝑥1(𝑡)+𝛼(𝑥0(𝑡)−̂︀𝑥1(𝑡)−̂︀𝑥2(𝑡))+(1−𝑢2)𝑥2(𝑡),

representing 𝑛1’s population at the end of 𝑡* without the modification to the

execution model. Then ̂︀𝑥𝑘(𝑡 + 1) = ̂︀𝑥𝑘(𝑡 + 1) 𝑄𝑆−𝑥1(𝑡)
𝑥′
1(𝑡+1)−𝑥1(𝑡)

for 𝑘 ∈ {1, 2}.

• If 𝑡 + 1 > 𝑡* and 𝑛1 has reached quorum but 𝑛2 has not: then only ants in 𝑛1

would still be leading tandem runs from 𝑛0. ̂︀𝑥1(𝑡 + 1) = min {𝑥0(𝑡), 𝑢1𝑥1(𝑡)},

and ̂︀𝑥2(𝑡 + 1) = 0.

• If 𝑡 + 1 > 𝑡* and both 𝑛1 and 𝑛2 have reached quorum: then no more tandem

runs from 𝑛0 to either nests during round 𝑡 + 1 (or any round afterwards).̂︀𝑥1(𝑡 + 1) = ̂︀𝑥2(𝑡 + 1) = 0.

Full Dynamics Let 𝑌1 , 1{𝑥1(𝑡) < 𝑄𝑆}, and 𝑌2 , 1{𝑥2(𝑡) < 𝑄𝑆}, by the end of

an arbitrary round 𝑡 ̸= 𝑡* − 1. The following set of equations define the average case

dynamics during round 𝑡 + 1.
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𝑥0(𝑡 + 1) = (𝑥0(𝑡) − 𝑌1(𝑡)̂︀𝑥1(𝑡 + 1) − 𝑌2(𝑡)̂︀𝑥2(𝑡 + 1))(1 − 2𝛼) (3.21)

𝑥1(𝑡 + 1) = 𝑢1𝑥1(𝑡) + (1 − 𝑌1(𝑡))(1 − 𝑢1)𝑥1(𝑡) + 𝑌1(𝑡)̂︀𝑥1(𝑡 + 1)

+ 𝛼(𝑥0(𝑡) − 𝑌1(𝑡)̂︀𝑥1(𝑡 + 1) − 𝑌2(𝑡)̂︀𝑥2(𝑡 + 1)) + 𝑌2(𝑡)(1 − 𝑢2)𝑥2(𝑡) (3.22)

𝑥2(𝑡 + 1) = 𝑢2𝑥2(𝑡) + (1 − 𝑌2(𝑡))(1 − 𝑢2)𝑥2(𝑡) + 𝑌2(𝑡)̂︀𝑥2(𝑡 + 1)

+ 𝛼(𝑥0(𝑡) − 𝑌1(𝑡)̂︀𝑥1(𝑡 + 1) − 𝑌2(𝑡)̂︀𝑥2(𝑡 + 1)) + 𝑌1(𝑡)(1 − 𝑢1)𝑥1(𝑡) (3.23)

For 𝑡 = 𝑡* − 1, the dynamics during round 𝑡* are instead as follows. Recall

that 𝑥′
𝑘(𝑡*) denote the proportion of ants at nest 𝑘 ∈ {0, 1, 2} without the execution

model modification, i.e. according to Eq.(21)-(23) above for 𝑡 = 𝑡* − 1. Let that

proportion be denoted by 𝑚 = 𝑄𝑆−𝑥1(𝑡*−1)
𝑥′
1(𝑡

*)−𝑥1(𝑡*−1)
. Using Eq. (25)-(26) below, we show

that 𝑥′
2(𝑡

*) ≤ 𝑥′
1(𝑡

*) (Appendix B.2, Proposition 26). We thus define formally that a

simultaneous split event occurs when 𝑥2(𝑡
*) ≥ 𝑄𝑆. Note that in the average case,

for any 𝑡 ̸= 𝑡*, the population dynamics are exactly the same under the execution

model with and without modification in Section 3.5.1.

𝑥0(𝑡
*) = 𝑥0(𝑡

* − 1) + (𝑥′
0(𝑡

*) − 𝑥0(𝑡
* − 1))𝑚 (3.24)

𝑥1(𝑡
*) = 𝑥1(𝑡

* − 1) + (𝑥′
1(𝑡

*) − 𝑥1(𝑡
* − 1))𝑚 (3.25)

𝑥2(𝑡
*) = 𝑥2(𝑡

* − 1) + (𝑥′
2(𝑡

*) − 𝑥2(𝑡
* − 1))𝑚, (3.26)

where

𝑥′
0(𝑡

*) = (𝑥0(𝑡
* − 1) − ̂︀𝑥1(𝑡

* − 1) − ̂︀𝑥2(𝑡
* − 1))(1 − 2𝛼)

𝑥′
1(𝑡

*) = 𝑢1𝑥1(𝑡
* − 1) + ̂︀𝑥1(𝑡

* − 1) + 𝛼(𝑥0(𝑡
* − 1) − ̂︀𝑥1(𝑡

* − 1) − ̂︀𝑥2(𝑡
* − 1))

+ (1 − 𝑢2)𝑥2(𝑡
* − 1)

𝑥′
2(𝑡

*) = 𝑢2𝑥2(𝑡
* − 1) + ̂︀𝑥2(𝑡

* − 1) + 𝛼(𝑥0(𝑡
* − 1) − ̂︀𝑥1(𝑡

* − 1) − ̂︀𝑥2(𝑡
* − 1))

+ (1 − 𝑢1)𝑥1(𝑡
* − 1),

represent the populations at 𝑛0, 𝑛1, 𝑛2 if we did not apply our modification to the
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execution model.

3.5.2 Notations

Below we define two concepts used in our main results: a constant 𝑡*, and a function

𝛾 of the quorum size 𝑄𝑆 as well as model parameters 𝛼, 𝑢1, 𝑢2.

• 𝑡*, an integer representing the first round at the end of which 𝑥1(𝑡) reaches 𝑄𝑆

for the first time, i.e. 𝑥𝑡(𝑡
* − 1) < 𝑄𝑆 and 𝑥1(𝑡

*) = 𝑄𝑆.

• 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) ,
𝑥2(𝑡*)
𝑄𝑆

, where 𝛾 is a function of 𝑄𝑆, 𝛼, 𝑢1 and 𝑢2.

3.5.3 Main Results

We first explain our range of consideration for 𝑄𝑆, [0, 0.5]. When 𝑄𝑆 = 0.5, the

emigration will reach consensus in finite time after all ants have moved out of 𝑛0 (proof

in Appendix B.1) and all ants have to be in either 𝑛1 or 𝑛2. Thus one of the two nests

will have at least 0.5𝑁 ants, and hitting the quorum since 𝑄𝑆 ≤ 0.5. Moreover, a

simultaneous split is impossible when 𝑄𝑆 = 0.5 > 𝛼 (Appendix B.2, Proposition 15).

Hence, when 𝑄𝑆 = 0.5, only one nest will hit quorum and the emigration eventually

achieves consensus. It is possible for the colony to have a quorum larger than 0.5𝑁

and reach consensus; it is strictly worse than having 𝑄𝑆 = 0.5 from a biological

standpoint, since the larger the quorum size, the slower it is to reach it and hence

worse for the colony’s survival. Therefore we do not consider cases where 𝑄𝑆 > 0.5

for the purpose of the quorum attainment mechanism.

With the addition of quorum sensing with a specific quorum size 𝑄𝑆, once the

quorum is hit by a nest, that nest never drops out of quorum. With our construction

and choice of 𝑄𝑆 ≤ 0.5, as discussed in the previous paragraph, at least one nest

will hit quorum. Thus, the outcome of an emigration is either that one nest hits

quorum and eventually all active ants move there, or both nests hit quorum and the

emigration ends in a split. Therefore, we treat the first outcome where all ants are

in one nest as consensus, with a 0 error margin (hence smaller than or equal to any

given ∆ ∈ [0, 1 − 𝜋*(𝑛1)]).
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We are now ready to present our results on the effects of different values of 𝑄𝑆

within the range of consideration. Our first result (Theorem 10) shows a value 𝑄𝑆− ≤

0.5 such that for 𝑄𝑆 ≤ max {𝑄𝑆−, 𝛼}, an average case does not reach consensus, i.e.

𝑄𝑆 > max {𝑄𝑆−, 𝛼} is a necessary condition for consensus. The 𝛼 term in the

expression is because in order to reach consensus, it is required that a simultaneous

split does not occur, which we later prove is equivalent to 𝑄𝑆 > 𝛼 (Appendix B.2,

Proposition 15). However, the expression of 𝑄𝑆− is complicated and involves the 𝛾

function, whose numeric value is deterministic but we cannot derive directly. This

makes it difficult to interpret the expression of 𝑄𝑆− and subsequently to compare

max {𝑄𝑆−, 𝛼} to real quorum sizes observed empirically. To that end, in Corollary

11 we derive a smaller but more interpretable value, 𝑄𝑆 ′
− ≤ 0.5 that does not use the

𝛾 function in its expression, such that 𝑄𝑆 > max
{︀
𝑄𝑆 ′

−, 𝛼
}︀

is a necessary condition

for consensus. Furthermore, in Theorem 12 we show our third result: a value 𝑄𝑆+

such that for 𝑄𝑆 ∈ [0, 0.5] ∧ 𝑄𝑆 > max {𝑄𝑆+, 𝛼}, an average case emigration does

reach consensus, i.e. 𝑄𝑆 ∈ [0, 0.5] ∧ 𝑄𝑆 > max {𝑄𝑆+, 𝛼} is a sufficient condition

for consensus. Last but not least, similar to the necessary conditions, in Strong

Conjecture 13 we show an interpretable but larger value, 𝑄𝑆 ′
+, such that 𝑄𝑆 ∈

[0, 0.5] ∧ 𝑄𝑆 > max
{︀
𝑄𝑆 ′

+, 𝛼
}︀

is a sufficient condition for consensus. 𝑄𝑆 ′
+ does

not use the 𝛾 function in its expression. Also note that the conjecture is based on

simulation results, instead of analytical results.

It is worth noting that 𝛼, the independent discovery rate of new nests, is quite low

in the environments that Temnothorax real ant colonies usually live in, i.e. it is very

challenging for individual ants to find new nests independently. Therefore, if applied

to real environments, 𝑄𝑆−, 𝑄𝑆 ′
−, 𝑄𝑆+, 𝑄𝑆 ′

+ derived in our results below should likely

be much higher than 𝛼, but here we still present our formal results in the fullest form.

Theorem 10. For ∆ = 0, a necessary condition for consensus is 𝑄𝑆 > max {𝑄𝑆−, 𝛼},

where

𝑄𝑆− =
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1 + min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 + 𝑢2) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁ ,
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i.e. an average emigration could reach consensus only if 𝑄𝑆 is larger than max {𝑄𝑆−, 𝛼}.

Since the above expression of 𝑄𝑆− uses the 𝛾 function, we obtained a lower bound

on 𝛾 (Lemma 19) that resulted in the following Corollary. We interpret the following

results through a few examples. Let 𝛼 = 0.01 in the examples below.

• If 𝑢2 ≥ 2
3

and 𝑢1 in the range (2
3
, 1]: it is necessary that 𝑄𝑆 > 1

4
for an average

emigration to reach consensus. This case includes many environments that are

bio-plausible, and the value 1
4

as the quorum size has been observed empirically

in 2-nest environments [J: TODO add reference ].

• If 𝑢2 < 2
3
: for example, when 𝑢2 = 0.6, and 𝑢1 = 1 > 𝑢2, it is necessary that

𝑄𝑆 > 0.217 for an average emigration to reach consensus.

Corollary 11. For ∆ = 0, a necessary condition for consensus is 𝑄𝑆 > max
{︀
𝑄𝑆 ′

−, 𝛼
}︀
,

where

𝑄𝑆 ′
− ,

⎧⎪⎨⎪⎩
1
4

if 𝑢2 ≥ 2
3

4− 2
𝑢2

2+4𝑢2−( 1
𝑢1

+1)( 1
𝑢2

−1)
o.w. ,

i.e. an average emigration could reach consensus only if 𝑄𝑆 is larger than max
{︀
𝑄𝑆 ′

−, 𝛼
}︀
.

Next, we present the formal statements for our sufficient condition results.

Theorem 12. For ∆ = 0, a sufficient condition for consensus is 𝑄𝑆 ∈ [0, 0.5]∧𝑄𝑆 >

max {𝑄𝑆+, 𝛼}, where

𝑄𝑆+ =
max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1

2𝑢2
+ max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
+ 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁ ,
i.e. an average emigration reaches consensus if 𝑄𝑆 is in the range of consideration

and 𝑄𝑆 > max {𝑄𝑆+, 𝛼}.

Similar to Theorem 10, it is also hard to interpret Theorem 12 since it uses the 𝛾

function in its expression. To that end, we used simulation results on the full range of
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model parameters to show an upper bound 1−𝑢1

1−𝑢2
of the 𝛾 function. Then we obtained

the Strong Conjecture below. We interpret the results as follows:

• If 𝛼 ≤ 1
3
: the results are demonstrated in the simulation results shown in Fig.

3-5. For example, when 𝑢1 = 1, 𝑢2 = 0.5, it is sufficient for consensus that

𝑄𝑆 > 𝑄𝑆 ′
+ = 1

3
. Recall that 𝛼 is usually quite small in real environments,

much smaller than 1
3
. So the results shown in Fig. 3-5 applies to a wide range

of real environments.

• Otherwise: the sufficient condition for consensus is that 𝑄𝑆 > max
{︀
𝑄𝑆 ′

+, 𝛼
}︀
.

Strong Conjecture 13. For ∆ = 0, a sufficient condition for consensus is 𝑄𝑆 ∈

[0, 0.5] ∧𝑄𝑆 > max
{︀
𝑄𝑆 ′

+, 𝛼
}︀
, where

𝑄𝑆 ′
+ ,

⎧⎪⎨⎪⎩
4𝑢2−2

4𝑢2+2𝑢1−3
if 𝑢2 ≥ 2

3

1
1
𝑢2

+1− 1−𝑢1
1−𝑢2

o.w. ,

i.e. an average emigration reaches consensus if 𝑄𝑆 is in the range of consideration

and larger than max
{︀
𝑄𝑆 ′

+, 𝛼
}︀
.

(a) (b)

Figure 3-5: 3D plots demonstrating the sufficient condition in our Strong Conjecture
13, when 𝛼 ≤ 1

3
. Views from two angles.
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3.5.4 Proof of Main Results

Preliminary Results

First, we give some intuitions on how we defined 𝑡*, 𝛾 and why they are important

quantities.

Proposition 14. Let 𝑡2 denote the round that 𝑛2 hits quorum for the first time; let

𝑡2 = ∞ if 𝑛2 never hits quorum. In an average emigration, it holds that

𝑡2 ≥ 𝑡*,

i.e., 𝑛1 reaches quorum first, at least as early as 𝑛2 does, if 𝑛2 does at all.

Proof. Because we are looking at only an average case emigration and 𝑞1 > 𝑞2 and

hence 𝑢1 > 𝑢2, it can be shown that up until the first round that either nest hits

quorum, the population at 𝑛1 is always larger than or equal to that at 𝑛2, i.e. 𝑥2(𝑡)
𝑥1(𝑡)

< 1

for any 𝑡 ≤ 𝑡* − 1 (Appendix B.2). As a result, for any given 𝑡, if 𝑥1(𝑡) < 𝑄𝑆, then

𝑥2(𝑡) < 𝑥1(𝑡) < 𝑄𝑆. In other words, if 𝑛1 does not hit the quorum at round 𝑡, then

𝑛2 does not either. Therefore, 𝑛2 cannot hits quorum for the first time at round 𝑡2

without 𝑛1 already reaching quorum as well at a round 𝑡* ≤ 𝑡2. Therefore, since at

least one nest hits quorum throughout the emigration, 𝑛1 has to hit quorum at some

point 𝑡* and 𝑛2 may or may not hit quorum throughout the emigration.

Additionally, below we show that 𝑛2 also reaches quorum at 𝑡* if and only if

𝑄𝑆 ≤ 𝛼. Otherwise, if 𝑄𝑆 > 𝛼, 𝑛2 cannot reach the quorum at the end of round 𝑡*

(Proposition 15), but may reach it at a later round. That is, if and only if 𝑄𝑆 > 𝛼,

𝑥2(𝑡
*) < 𝑄𝑆 ⇒ 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) < 1.

Proposition 15. If and only if 𝑄𝑆 > 𝛼, 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) < 1, i.e. the occurrence of

the special case, simultaneous split, is equivalent to 𝑄𝑆 ≤ 𝛼.

Proof. During round 𝑡*, in an average emigration, the population changes at each

nest is as specified in Eq. (24)-(26). In order to prove the proposition, we need to

have 𝑥2(𝑡*)
𝑥1(𝑡*)

< 1.
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If 𝑄𝑆 ≤ 𝛼, both nests will have the same number of ants that is exactly 𝑄𝑆 in

round 1. Therefore, 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) = 1 and the emigration ends in a simultaneous

split.

If 𝑄𝑆 > 𝛼, 𝑡 = 1, 𝑥2(𝑡) = 𝑥1(𝑡) = 𝛼 < 𝑄𝑆, thus no quorum is hit in the

first round. From Proposition 26, we know it holds that 𝑥2(𝑡*−1)
𝑥1(𝑡*−1)

< 1. Denote the

population discount factor by 𝑚 = 𝑄𝑆−𝑥1(𝑡*−1)
𝑥′
1(𝑡

*)−𝑥1(𝑡*−1)
. Proposition 26 also shows that

𝑥′
2(𝑡

*) < 𝑥′
1(𝑡

*). Thus,

𝑥2(𝑡
*)

𝑥1(𝑡*)
=

𝑥2(𝑡
* − 1) + (𝑥′

2(𝑡
*) − 𝑥2(𝑡

* − 1))𝑚

𝑥1(𝑡* − 1) + (𝑥′
1(𝑡

*) − 𝑥1(𝑡* − 1))𝑚

≤ max

{︂
(1 −𝑚)𝑥2(𝑡

* − 1)

(1 −𝑚)𝑥1(𝑡* − 1)
,
𝑥′
2(𝑡

*)

𝑥′
1(𝑡

*)

}︂
, derived from Lemma 25

= max

{︂
𝑥2(𝑡

* − 1)

𝑥1(𝑡* − 1)
,
𝑥′
2(𝑡

*)

𝑥′
1(𝑡

*)

}︂
< 1.

This proves the proposition.

Next, we define another important milestone time which is the time that 𝑛0 be-

comes empty, in the case that 𝑥2(𝑡
*) < 𝑄𝑆, i.e. 𝑄𝑆 > 𝛼.

Definition 16. Let 𝑡′0 ≥ 𝑡* denote the round that 𝑛0 first becomes empty, after 𝑛1

reaches quorum, i.e. 𝑥0(𝑡
′
0 − 1) > 0 and 𝑥0(𝑡

′
0) = 0.

Proposition 17. In an average case emigration, it holds that 𝑡* ≤ 𝑡′0.

Proof. When 𝑛0 becomes empty, the entire active ant population would be distributed

between 𝑛1 and 𝑛2. We prove by contradiction that 𝑛1 would definitely have hit the

quorum by the time 𝑛0 becomes empty. Let 𝑡 be the first round that 𝑛0 becomes

empty. If by round 𝑡, 𝑛1 does not hit quorum, then neither nests hits quorum. Since
𝑥2(𝑡)
𝑥1(𝑡)

< 1, 𝑥1(𝑡) > 0.5. Further since 𝑄𝑆 < 0.5 < 𝑥1(𝑡), 𝑥1(𝑡) does reach 𝑄𝑆 before 𝑡.

Contradiction.

Therefore, in our model, 𝑛1 definitely hits quorum for the first time at a round 𝑡*

before 𝑛0 first becomes empty at time 𝑡′0 ≥ 𝑡*.
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From Propositions 14, 15 and 17, we know that the emigration reaches a consen-

sus if 𝑄𝑆 > 𝑥2(𝑡) for any 𝑡 ≥ 𝑡*, and a split otherwise. Furthermore, since 𝑥2(𝑡)

monotonically decreases for any 𝑡 > 𝑡′0 (Appendix B.2, Proposition 28), we need to

look only at the period [𝑡*, 𝑡′0] to determine whether a consensus is reached or not.

Thus we can characterize the effects of a given 𝑄𝑆 in the below two cases.

• If 𝑥2(𝑡) reaches 𝑄𝑆 in the period [𝑡*, 𝑡′0]: the emigration ends in a split.

• If 𝑥2(𝑡) never reaches 𝑄𝑆 in the period [𝑡*, 𝑡′0]: the emigration reaches consen-

sus, since after 𝑡′0, 𝑥2(𝑡) monotonically decreases by losing ants to 𝑛1 during

every round.

Proof of Necessary Conditions

Below we derive a value 𝑄𝑆− ≤ 0.5 such that for 𝑄𝑆 ≤ max {𝑄𝑆−, 𝛼}, an average

case does not reach consensus. Recall there are two criteria for consensus: 1) the lack

of simultaneous split, i.e. 𝑛2 does not reach quorum during 𝑡*, and 2) if a simultaneous

split does not occur, 𝑛2 does not reach quorum after 𝑡*. Since the first criterion is

equivalent to 𝑄𝑆 > 𝛼 (Proposition 15), in this proof we thus focus on understanding

what the second criterion requires of 𝑄𝑆.

We derive the maximum value 𝑏 that 𝑛2’s (proportional) population is guaranteed

to grow to in the period [𝑡*, 𝑡′0]. If 𝑄𝑆 is lower than or equal to 𝑏, 𝑛2’s population is

thus guaranteed to reach 𝑄𝑆 and the emigration ends in a split. In other words, it

is necessary for consensus that 𝑄𝑆 > 𝑏. Then, combined with the simultaneous split

case, the overall requirement on 𝑄𝑆 to avoid emigration splits is 𝑄𝑆 > max {𝑏, 𝛼}.

Intuitively, a lower 𝑄𝑆 is generally more likely to be hit by 𝑛2 after 𝑡*. Therefore,

the main question here is: what is the highest value that 𝑥2(𝑡) is guaranteed to reach

throughout the emigration? The necessary condition criterion is thus that 𝑄𝑆 is

larger than this value.

In the case that 𝑄𝑆 > 𝛼, it can be shown that 𝑥2(𝑡) monotonically increases for

any 𝑡 < 𝑡′0 and decreases for any 𝑡 ≥ 𝑡′0 (Appendix B.2). Note that 𝑥2(𝑡
′
0) could

be larger or smaller than 𝑥2(𝑡
′
0 − 1). However, in either case, it is necessary that
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𝑥2(𝑡
′
0 − 1) < 𝑄𝑆 in order to avoid splits. To that end, in Proposition 18 below we

compare the value of 𝑥2(𝑡
′
0 − 1) to 𝑄𝑆. If 𝑡* + 1 ≤ 𝑡′0 − 1 ⇒ 𝑡* ≤ 𝑡′0 − 2, i.e. there

are at least two rounds between the first round that 𝑛1 hits quorum and the round

that 𝑛0 first becomes empty, we investigate how 𝑥2(𝑡) grows for 𝑡 ∈ [𝑡* + 1, 𝑡′0 − 1].

Otherwise, 𝑥2(𝑡
′
0−1) ≤ 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆 < 𝑄𝑆 according to Proposition 15, so the

necessary condition criterion is already met.

Proposition 18. If a simultaneous split does not occur,

𝑥2(𝑡) − 𝑥2(𝑡
*)

𝑥0(𝑡*) − 𝑥0(𝑡)
∈
[︂
min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂]︂
,

for any 𝑡 ∈ [𝑡* + 1, 𝑡′0 − 1].

Proof. We prove this by induction where the induction variable is 𝑡. Each iteration

examines the value of 𝑥2(𝑡)−𝑥2(𝑡*)
𝑥0(𝑡*)−𝑥0(𝑡)

for 𝑡 ∈ [𝑡* + 1, 𝑡′0 − 1].

Base case: 𝑡 = 𝑡* + 1

𝑥2(𝑡
* + 1) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡* + 1)
=

(2𝑢2 − 1)𝑥2(𝑡
*) + 𝛼(𝑥0(𝑡

*) − 𝑢2𝑥2(𝑡
*))

𝑢2𝑥2(𝑡*) + 2𝛼(𝑥0(𝑡*) − 𝑢2𝑥2(𝑡*))

∈
[︂
min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
,max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂]︂
,

where the last step derives from Appendix B.2, Lemma 25.

Inductive Hypothesis: Assume 𝑥2(𝑡)−𝑥2(𝑡*)
𝑥0(𝑡*)−𝑥0(𝑡)

∈
[︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
,max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁]︁
for some 𝑡 ∈ [𝑡* + 1, 𝑡′0 − 2].

Induction Step: Show the theorem holds for round 𝑡 + 1

𝑥2(𝑡 + 1) − 𝑥2(𝑡
*)

𝑥0(𝑡*) − 𝑥0(𝑡 + 1)
=

2𝑢2𝑥2(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢2𝑥2(𝑡)) − 𝑥2(𝑡
*)

𝑥0(𝑡*) − 𝑥0(𝑡) + 𝑥0(𝑡) − 𝑥0(𝑡 + 1)

=
2𝑢2𝑥2(𝑡) − 𝑥2(𝑡

*) + 𝛼(𝑥0(𝑡) − 𝑢2𝑥2(𝑡))

𝑥0(𝑡*) − 𝑥0(𝑡) + 𝑢2𝑥2(𝑡) + 2𝛼(𝑥0(𝑡) − 𝑢2𝑥2(𝑡))

∈
[︂
min

{︂
𝑥2(𝑡) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡)
,
(2𝑢2 − 1)𝑥2(𝑡)

𝑢2𝑥2(𝑡)
,
1

2

}︂
,

max

{︂
𝑥2(𝑡) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡)
,
(2𝑢2 − 1)𝑥2(𝑡)

𝑢2𝑥2(𝑡)
,
1

2

}︂]︂
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Since 𝑥2(𝑡)−𝑥2(𝑡*)
𝑥0(𝑡*)−𝑥0(𝑡)

≥ min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
,

min

{︂
𝑥2(𝑡) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡)
,
(2𝑢2 − 1)𝑥2(𝑡)

𝑢2𝑥2(𝑡)
,
1

2

}︂
= min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
.

Similarly, since 𝑥2(𝑡)−𝑥2(𝑡*)
𝑥0(𝑡*)−𝑥0(𝑡)

≤ max
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
,

max

{︂
𝑥2(𝑡) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡)
,
(2𝑢2 − 1)𝑥2(𝑡)

𝑢2𝑥2(𝑡)
,
1

2

}︂
= max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
.

Thus, the above together proves that

𝑥2(𝑡 + 1) − 𝑥2(𝑡
*)

𝑥0(𝑡*) − 𝑥0(𝑡 + 1)
∈
[︂
min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂]︂
,

hence proving the proposition using induction.

Following Proposition 18, we derive a necessary bound for consensus (Theorem

10) as below.

Proof of Theorem 10. First we look at the case that a simultaneous split does not

occur, i.e. 𝑄𝑆 > 𝛼.

Recall that 𝑥2(𝑡
*) = 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆. Because at round 𝑡′0, 𝑛0 becomes empty,

we know that at the beginning of round 𝑡′0, the number of potentially tandem followers

must be at most equal to the number of leaders from 𝑛2, i.e. 𝑥0(𝑡
′
0−1) ≤ 𝑢2𝑥2(𝑡

′
0−1).

Applying Proposition 18, we obtain a lower bound for 𝑥2(𝑡
′
0 − 1) as below:

min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
≤ 𝑥2(𝑡

′
0 − 1) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡′0 − 1)
≤ 𝑥2(𝑡

′
0 − 1) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑢2𝑥2(𝑡′0 − 1)

100



Rearranging the terms, we obtain that

𝑥2(𝑡
′
0 − 1) ≥

min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
𝑥0(𝑡

*) + 𝑥2(𝑡
*)

1 + 𝑢2 min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
=

min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
(1 − (1 + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2))𝑄𝑆) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆

1 + 𝑢2 min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
Therefore, 𝑥2(𝑡

′
0−1) definitely reaches the above bound. Thus, if the above bound

is bigger than or equal to 𝑄𝑆, the emigration will definitely not reach consensus but

end in a split instead. In other words, a necessary condition for consensus is:

min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
(1 − (1 + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2))𝑄𝑆) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆

1 + 𝑢2 min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁ < 𝑄𝑆

⇒ 𝑄𝑆 > 𝑄𝑆− =
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1 + min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 + 𝑢2) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁
Further, we prove that the above bound is less than 0.5. Note that it always holds

that min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
≤ 1

2
. Then,

min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
1 + min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 + 𝑢2) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁ < 0.5

⇐⇒

𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) <
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 − 𝑢2) − 1

min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
− 1

= 1 +
𝑢2 min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1 − min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁ ⇐⇒

𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) < 1, since min

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
∈ [0,

1

2
).

The last statement is from Proposition 15 in Appendix B.2. We thus finished the

theorem proof.

Note that min
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
− 1 ≤ 1

2
− 1 = −1

2
< 0. Thus, the lower 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)
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is, the lower the value of 𝑄𝑆− is.

Lastly, combined with the no simultaneous split criterion where 𝑄𝑆 > 𝛼, the

overall requirement on 𝑄𝑆 to avoid emigration splits is 𝑄𝑆 > max {𝛼,𝑄𝑆−}. We

thus finished proving the theorem.

The above expression of 𝑄𝑆− is quite complex. It involves the value of the 𝛾

function, whose numeric value is deterministic but we cannot derive directly. In

order to obtain a cleaner and more interpretable expression, we show a lower bound

on 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2).

Lemma 19. If 𝑄𝑆 > 𝛼, 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) >
1−𝑢1

2𝑢1
.

Proof. Consider any 𝑡 < 𝑡*.

0 < 𝑥2(𝑡 + 1) < 𝑥1(𝑡 + 1)

⇒ 0 < 2𝑢2𝑥2(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢1)𝑥1(𝑡)

< 2𝑢1𝑥1(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢2)𝑥2(𝑡)

⇒ 0 < 2𝑢2𝑥2(𝑡) + (1 − 𝑢1)𝑥1(𝑡) < 2𝑢1𝑥1(𝑡) + (1 − 𝑢2)𝑥2(𝑡)

⇒ 2𝑢2𝑥2(𝑡) + (1 − 𝑢1)𝑥1(𝑡)

2𝑢1𝑥1(𝑡) + (1 − 𝑢2)𝑥2(𝑡)
< 1

Thus, for any 𝑡 < 𝑡*

𝑥2(𝑡 + 1)

𝑥1(𝑡 + 1)
=

2𝑢2𝑥2(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢1)𝑥1(𝑡)

2𝑢1𝑥1(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢2)𝑥2(𝑡)

> min

{︂
2𝑢2𝑥2(𝑡) + (1 − 𝑢1)𝑥1(𝑡)

2𝑢1𝑥1(𝑡) + (1 − 𝑢2)𝑥2(𝑡)
, 1

}︂
, from Appendix B.2

=
2𝑢2𝑥2(𝑡) + (1 − 𝑢1)𝑥1(𝑡)

2𝑢1𝑥1(𝑡) + (1 − 𝑢2)𝑥2(𝑡)

=
2𝑢2

𝑥2(𝑡)
𝑥1(𝑡)

+ (1 − 𝑢1)

2𝑢1 + (1 − 𝑢2)
𝑥2(𝑡)
𝑥1(𝑡)

.

Define 𝑓(𝑥) = 2𝑢2𝑥+(1−𝑢1)
2𝑢1+(1−𝑢2)𝑥

= 2𝑢2

1−𝑢2
+

1−𝑢1− 4𝑢1𝑢2
1−𝑢2

2𝑢1+(1−𝑢2)𝑥
, for 𝑥 ∈ (0, 1).

Since 1 − 𝑢2 > 0, and 1 − 𝑢1 − 4𝑢1𝑢2

1−𝑢2
< 1 − 0.5 − 4*0.5*0.5

1−0.5
= −1.5 < 0, we conclude

that 𝑓(𝑥) monotonically increases for 𝑥 ∈ (0, 1). Hence, since 𝑥2(𝑡)
𝑥1(𝑡)

∈ (0, 1) and
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𝑥1(𝑡
*) = 𝑄𝑆,

𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) =
𝑥2(𝑡

*)

𝑄𝑆
=

𝑥2(𝑡
*)

𝑥1(𝑡*)
>

2𝑢2 × 0 + (1 − 𝑢1)

2𝑢1 + (1 − 𝑢2) × 0
=

1 − 𝑢1

2𝑢1

With a lower bound on 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2), we can now apply it to Theorem 10 and

derive a cleaner expression 𝑄𝑆 ′
− analogous to 𝑄𝑆−. Below we show the technical

proof for Corollary 11.

Proof of Corollary 11. Again we first look at the case where a simultaneous split does

not occur.

When 𝑢1 > 𝑢2 ≥ 2
3
, min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
= 1

2
. Thus, plugging in the lower bound of

𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) = 1−𝑢1

2𝑢1
, we obtain that

𝑄𝑆− =
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1 + min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 + 𝑢2) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁
≥ 2

7 + 2𝑢2 − 1
2𝑢1

>
1

4
, since 𝑢2 < 𝑢1 < 1.

When 𝑢2 < 2
3
, min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
= 2𝑢2−1

𝑢2
. 2𝑢2−1

𝑢2
− 1 = 𝑢2−1

𝑢2
< 0. Similar to above,

plugging in the lower bound of 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) = 1−𝑢1

2𝑢1
, we obtain that

𝑄𝑆− =
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1 + min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
(1 + 𝑢2) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
min

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁
>

4 − 2
𝑢2

2 + 4𝑢2 − ( 1
𝑢1

+ 1)( 1
𝑢2

− 1)
.
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To combine the above two cases, we define that

𝑄𝑆 ′
− ,

⎧⎪⎨⎪⎩
1
4

if 𝑢2 ≥ 2
3

4− 2
𝑢2

2+4𝑢2−( 1
𝑢1

+1)( 1
𝑢2

−1)
o.w. .

Since 𝑄𝑆− > 𝑄𝑆 ′
−, it holds that if 𝑄𝑆 ≤ max

{︀
𝑄𝑆 ′

−, 𝛼
}︀
, then 𝑄𝑆 ≤ max {𝑄𝑆−, 𝛼}

and the emigration ends in a split according to Theorem 10. Therefore, the emigration

cannot reach consensus if 𝑄𝑆 ≤ max
{︀
𝑄𝑆 ′

−, 𝛼
}︀
. In other words, 𝑄𝑆 > max

{︀
𝑄𝑆 ′

−, 𝛼
}︀

is a necessary condition for consensus. We thus proved the corollary.

Sufficient Condition for Consensus

Below we derive a value 𝑄𝑆+ such that for 𝑄𝑆 ∈ [0, 0.5] ∧ 𝑄𝑆 > max {𝑄𝑆+, 𝛼}, an

average case does reach consensus. Recall there are two criteria for consensus: 1)

the lack of simultaneous split, i.e. 𝑛2 does not reach quorum during 𝑡*, and 2) if a

simultaneous split does not occur, 𝑛2 does not reach quorum after 𝑡*. Since the first

criterion is equivalent to 𝑄𝑆 > 𝛼 (Proposition 15), in this proof we thus focus on

understanding what the second criterion requires of 𝑄𝑆.

The main question here is: what is maximum value 𝑏 that 𝑥2(𝑡) could grow to

for 𝑡 ∈ [𝑡*, 𝑡′0]? Once we have this value 𝑏, one sufficient condition criterion is that

𝑄𝑆 > 𝑏. Then, combined with the simultaneous split case, the overall requirement

on 𝑄𝑆 to reach consensus is 𝑄𝑆 > max {𝑏, 𝛼}. Recall that this is different from the

necessary condition proof logic, where we obtained the maximum value that 𝑥2(𝑡) is

guaranteed to grow to in the period [𝑡*, 𝑡′0]. In the sufficient condition proof, 𝑥2(𝑡)

may or may not reach the expression of 𝑏 we will derive below - 𝑏 is an upper bound

of 𝑥2(𝑡).

Proof of Theorem 12. We first focus on the case where 𝑄𝑆 > 𝛼 and there is no

simultaneous split.
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Since 𝑥0(𝑡
′
0 − 1) ≤ 𝑢2𝑥2(𝑡

′
0 − 1), we obtain that

𝑥2(𝑡
′
0) ≤ 𝑢2𝑥2(𝑡

′
0 − 1) + 𝑥0(𝑡

′
0 − 1) ≤ 2𝑢2𝑥2(𝑡

′
0 − 1).

Thus, max (𝑥2(𝑡)) for any 𝑡 ∈ [1, 𝑡′0] is equal to max (𝑥2(𝑡
′
0), 𝑥2(𝑡

′
0 − 1)) ≤ 2𝑢2𝑥2(𝑡

′
0−1).

Now we derive an upper bound for 𝑥2(𝑡
′
0 − 1) as below:

max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
≥ 𝑥2(𝑡

′
0 − 1) − 𝑥2(𝑡

*)

𝑥0(𝑡*) − 𝑥0(𝑡′0 − 1)

≥ 𝑥2(𝑡
′
0 − 1) − 𝑥2(𝑡

*)

𝑥0(𝑡*)

=
𝑥2(𝑡

′
0 − 1) − 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆

(1 − (1 + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2))𝑄𝑆)

Rearranging the terms, we obtain the below:

𝑥2(𝑡
′
0 − 1) ≤ max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
(1 − (1 + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2))𝑄𝑆) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆

Therefore, the maximum value that 𝑥2(𝑡) can reach for any 𝑡 ∈ [1, 𝑡′0] is thus upper

bounded by

2𝑢2𝑥2(𝑡
′
0 − 1) ≤ 2𝑢2

(︂
max

{︂
2𝑢2 − 1

𝑢2

,
1

2

}︂
(1 − (1 + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2))𝑄𝑆) + 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)𝑄𝑆

)︂

Therefore, in order to reach consensus, it suffices that the right hand side of the

above inequality is less than 𝑄𝑆. After rearranging the terms again, we obtain the

following:

𝑄𝑆 > 𝑄𝑆+ =
max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
1

2𝑢2
+ max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
+ 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2)

(︁
max

{︁
2𝑢2−1
𝑢2

, 1
2

}︁
− 1

)︁ .
Then, combined with the no simultaneous split criterion, i.e., 𝑄𝑆 > 𝛼, to achieve

consensus, QS has to be larger than max {𝑄𝑆+, 𝛼}. Lastly, recall that 𝑄𝑆 has to

fall within the range of consideration [0, 0.5]. Thus the final necessary condition for
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consensus is that 𝑄𝑆 ∈ [0, 0.5] ∧𝑄𝑆 > max {𝑄𝑆+, 𝛼}. We thus finished proving the

theorem.

The above expression is very complicated. Therefore we want to derive a cleaner

and more interpretable result, similar to the forms in Corollary 11. Although we do

not have the analytical proof right now, our simulation results show that 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) ≤
1−𝑢1
1−𝑢2

for all range of the model parameters (𝛼, 𝑢1, 𝑢2), and for all range of 𝑄𝑆 that

satisfy the necessary condition. To that end, we obtain our Strong Conjecture 13 as

below.

Proof of Strong Conjecture 13. To obtain the expressions of 𝑄𝑆 ′
+ shown in Strong

Conjecture 13, we first plug in the upper bound 1−𝑢1

1−𝑢2
for 𝛾(𝑄𝑆, 𝛼, 𝑢1, 𝑢2) into the

bound derived in Theorem 12:

• If 𝑢2 ≥ 2
3
: 𝑄𝑆+ =

max
{︁

2𝑢2−1
𝑢2

, 1
2

}︁
1

2𝑢2
+max

{︁
2𝑢2−1

𝑢2
, 1
2

}︁
+𝛾(𝑄𝑆,𝛼,𝑢1,𝑢2)

(︁
max

{︁
2𝑢2−1

𝑢2
, 1
2

}︁
−1

)︁ ≤ 4𝑢2−2
4𝑢2+2𝑢1−3

• Otherwise: 𝑄𝑆+ =
max

{︁
2𝑢2−1

𝑢2
, 1
2

}︁
1

2𝑢2
+max

{︁
2𝑢2−1

𝑢2
, 1
2

}︁
+𝛾(𝑄𝑆,𝛼,𝑢1,𝑢2)

(︁
max

{︁
2𝑢2−1

𝑢2
, 1
2

}︁
−1

)︁ ≤ 1
1
𝑢2

+1− 1−𝑢1
1−𝑢2

To combine the above two cases, we define that

𝑄𝑆 ′
+ ,

⎧⎪⎨⎪⎩
4𝑢2−2

4𝑢2+2𝑢1−3
if 𝑢2 ≥ 2

3

1
1
𝑢2

+1− 1−𝑢1
1−𝑢2

o.w. .

Since 𝑄𝑆+ ≤ 𝑄𝑆 ′
+, it holds that if 𝑄𝑆 ∈ [0, 0.5]∧𝑄𝑆 > max

{︀
𝑄𝑆 ′

+, 𝛼
}︀
, then 𝑄𝑆 ∈

[0, 0.5] ∧ 𝑄𝑆 > max {𝑄𝑆+, 𝛼} and the emigration ends in a consensus according to

Theorem 12. Therefore, 𝑄𝑆 ∈ [0, 0.5] ∧𝑄𝑆 > max
{︀
𝑄𝑆 ′

+, 𝛼
}︀

is a sufficient condition

for consensus.

3.6 Discussion and Future Work

In this chapter, we used analytical tools to test the hypothesis that the quorum sens-

ing mechanism observed in the collective nest site selection process by Temnothorax

ants helps emigrations reach consensus, when the quorum size take certain desirable
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values. Our theoretical results support this hypothesis. We first analyze the control

group: emigrations that do not use quorums. Without quorum sensing, the only

form of recruitment, tandem runs, does speed up the emigration process, but our

results show that emigrations have a high probability of splitting among multiple

new sites, imposing significant risks to the colony’s survival. We analyze a model

of a two-new-nest environment, but the above result extends easily to environments

with more nests. We then analyze the experimental group: emigrations that do use

quorums. We investigate whether average case emigrations reach consensus with dif-

ferent values of quorum sizes. We thus derive a necessary condition and a sufficient

condition for consensus for an average case emigration. Both conditions are values

of the quorum size within its value range of consideration, [0, 0.5]. The desirable

values of the quorum size show general consistency with experimental findings of the

observed quorum size employed by Temnothorax ant colonies [24, 46], however more

analysis on non-average-case emigrations are needed to fully test our hypothesis and

to better compare the theoretical to observed results. Overall, our results show con-

firmation of our hypothesis, and provide insights into the importance of the quorum

sensing mechanism in an unpredictable environment with multiple nests. Though the

desirable values of the quorum size only apply to the average case emigration and

dynamics, any emigration with population dynamics “close" to the average case likely

share similar results. However, we do not yet have a clear metric on the closeness

between two emigrations or dynamics, and as such it remains a particularly important

possibility for future work.

Additionally, another future work direction is to make our model more bio-plausible.

Specifically, our model does not consider the very small probability that committed

ants “drop out" of the nest they are committed to, and go back to searching. Adding

this into the model could make it more biologically realistic.

One more way to strengthen our theoretical results is by adding a time bound

metric to our consensus problem. Our current consensus metric, the consensus prob-

ability 𝐶, only requires that at least (1 − ∆)𝑁 ants keep staying at either 𝑛1 or 𝑛2

after a finite number of rounds. By adding a time bound metric as well, we would be
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able to better characterize the consensus probability (even if lower than a given 𝐶)

of an emigration by a certain time 𝑡.

Finally, our results and mathematical methodologies can extend to environments

with more than 2 new nests. Applying similar methods to the general environment

can give us more insights on how the number of nests and their qualities might

influence the desirable values for the quorum size, with the goal to avoid splits, or

to ensure consensus, or with an objective involving a specific degree or probability of

consensus.
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Chapter 4

Concluding Remarks

This thesis contains two main projects. The first project in Chapter 2 focuses on de-

veloping a comprehensive and biologically-plausible model that is still robust enough

to enable analytical studies. This model is based on many empirical measurements,

and can perform as well as its predecessor [53, 52] on known phenomenon. In addition,

this model is highly tractable, and can be easily used to test new hypothesis. Among

many interesting examples we surveyed in this chapter, we highlight a particularly

intriguing one: a hypothesized way for ants to perceive a nest’s quality integrates

the peer opinion about that nest, represented by the proportion of ants at that nest

at that time. We also develop a modeling framework that can be adapted to other

biologically distributed algorithms. The Temnothorax ants house-hunting algorithm

can thus be seen as one example of this modeling framework. Additionally, a recent

modeling and data analysis study that extended our house-hunting model to include

geospatial features [3] has also demonstrated the value of this framework and the ease

of use of our simulator.

On the theoretical analysis side, the model in Chapter 2 is set up to enable an-

alytical studies. Chapter 3 is one of these studies, first simplifying the model and

then using analytical tools such as conditional probability, concentration bounds and

Markov mixing time to rigorously prove our results. We test the hypothesis that

appropriate quorum sizes not only tunes the speed-accuracy trade-off as shown in

many previous literature and our Chapter 2, but also plays an essential role in help-
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ing emigrations reach consensus. We show theoretical results on 1) a low probability

of consensus without quorum sensing, and 2) values of the quorum size that are nec-

essary or sufficient for consensus. Our results thus shows confirmation of the main

hypothesis. Additionally, another recent theoretical work on the effect of quorums in

single-nest emigrations [16] also demonstrates the value of the general house-hunting

model in Chapter 2.

Both projects suggest many interesting extensions, as discussed in detail in Sec-

tion 2.9 and Section 3.6. Both projects highlight the elegant ways that noisy and

limited individuals utilizes social information to “offset" their own imperfections. As

such, these results have direct implications for both the biology community, and the

math/computer science community. It is our hope that the work presented in this

thesis can provide valuable tools and insights for the science community at large.
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Appendix A

Supplemental Materials for Chapter 2

A.1 State Transition Details

Exploration

• An ant in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸 has four possible actions. First, she can perform “no_action"

and remain in the current nest. Second, she can perform “search" and go into

the state 𝑠𝑒𝑎𝑟𝑐ℎ𝐸. Third, she can receive a “lead" by another ant to fol-

low a FTR to a destination nest, 𝑒𝑐 ∈ env-choices, in which case she sets

𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and sets 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡

to 𝑒𝑐. Then she transitions to the state 𝑓𝑜𝑙𝑙𝑜𝑤𝐸. Finally, she can receive a

“carry" by another active worker ant to a destination nest 𝑒𝑐 ∈ env-choices, in

which case her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 are changed to 𝑒𝑐, and she stays

in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant is in the state 𝑓𝑜𝑙𝑙𝑜𝑤𝐸 if she is in the middle of following an FTR,

and has two possible actions. First, she can successfully follow the FTR to the

destination nest (“follow_find") and change her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 to her 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡,

which results in the state 𝑎𝑟𝑟𝑖𝑣𝑒𝐸. Otherwise, she may lose contact with her

tandem leader (“get_lost"), and then enters the state 𝑠𝑒𝑎𝑟𝑐ℎ𝐸 and assigns the

value of 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡.

• An ant in the state 𝑠𝑒𝑎𝑟𝑐ℎ𝐸 has three possible actions. First, she can have
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“no_action" and transition to 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸 by staying at her last known 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

Second, she can “find" a new nest, 𝑒𝑐 ∈ env-choices, in this round, assign the

value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 and assign 𝑒𝑐 to both 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and transition into 𝑎𝑟𝑟𝑖𝑣𝑒𝐸 state to evaluate it further.

Third, she can receive an action, “carry", and the results are the same as re-

ceiving the “carry" action in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant in the state 𝑎𝑟𝑟𝑖𝑣𝑒𝐸 has two action options. First, she can “reject"

the nest she just arrived at. She then assigns the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and then that of 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 go into the

𝑠𝑒𝑎𝑟𝑐ℎ𝐸 state. Otherwise, if she performs “no_reject", she transitions into the

state 𝑎𝑡_𝑛𝑒𝑠𝑡𝐴 and assigns the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

Assessment

• An ant in the state 𝑎𝑡_𝑛𝑒𝑠𝑡𝐴 is assessing a new nest and is currently located

at that nest. From here, three actions are available. First, she can “accept" the

nest if she deems it high quality, which results in her transitioning to 𝑎𝑡_𝑛𝑒𝑠𝑡𝐶 .

Second, she may perform “search" to get into the 𝑠𝑒𝑎𝑟𝑐ℎ𝐴 state. Third, she

can receive a “lead" by another ant to follow a FTR to a destination nest,

in which case she assigns the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡

and assigns the destination nest 𝑒𝑐 ∈ env-choices to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and

then she transitions to the state 𝑓𝑜𝑙𝑙𝑜𝑤𝐴. Finally, she can receive a “carry"

by another active worker ant to a destination nest 𝑒𝑐 ∈ env-choices, in which

case her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 are changed to 𝑒𝑐 and transitions back

to 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant in the states 𝑓𝑜𝑙𝑙𝑜𝑤𝐴 or 𝑠𝑒𝑎𝑟𝑐ℎ𝐴 has the same options and variable

changes as in 𝑓𝑜𝑙𝑙𝑜𝑤𝐸 or 𝑠𝑒𝑎𝑟𝑐ℎ𝐸 respectively, but the resulting state sub-

scripted with 𝐴 except the “carry" action.

• An ant in 𝑎𝑟𝑟𝑖𝑣𝑒𝐴 state has the same options and variable changes as in 𝑎𝑟𝑟𝑖𝑣𝑒𝐸,

but with “reject" action leading to 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 .
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Canvassing

• An ant in 𝑎𝑡_𝑛𝑒𝑠𝑡𝐶 state has three available actions. First, she can decide

to “recruit" and go into 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝐶 state. Second, she can decide to

“search" more and result in 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 state. Third, she may receive a “carry" by

another active worker ant to a destination nest, in which case her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 are changed to that nest and results back to 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant in 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝐶 state is at a nest different than her home nest,

and has two options. If she estimates the current nest population to be higher

than the quorum threshold, she performs “quorum_met", swap the values of

ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and enters the state 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑇 . Otherwise,

she performs “quorum_not_met" and enters 𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐶 state.

• An ant in 𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐶 state has three actions available to her. First, she

can “lead" another active worker and lead her on an FTR from the original

home nest to the candidate new nest. She changes her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 to the value

of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and enters 𝑎𝑡_𝑛𝑒𝑠𝑡𝐶 state. Second, she can “get_lost" in

the process if she loses contact with the follower, and enters 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 state.

Lastly, she can “terminate" her emigration if the termination conditions are

met, namely if she has repeated attempts to call other active workers who are

also in 𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐶 state. In this case, she changes her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 to her

ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡, resets 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 to 0, and enters state 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant in 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 state has the same options and variable changes as in 𝑠𝑒𝑎𝑟𝑐ℎ𝐸

with the resulting state sub-scripted with 𝐶.

• An ant in 𝑎𝑟𝑟𝑖𝑣𝑒𝐶 state has the same options and variable changes as in 𝑎𝑟𝑟𝑖𝑣𝑒𝐸,

but with “reject" action leading to 𝑠𝑒𝑎𝑟𝑐ℎ𝐶 .

Transport

• An ant in 𝑎𝑡_𝑛𝑒𝑠𝑡𝑇 state has the same options and variable changes as in

𝑎𝑡_𝑛𝑒𝑠𝑡𝐶 with the resulting state sub-scripted with 𝑇 , except that a “recruit"

113



action results in 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑇 , and that it can receive one additional action “lead",

in which case she assigns the value of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡 to 𝑜𝑙𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡,

assigns the destination nest 𝑒𝑐 ∈ env-choices to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑠𝑡, and transi-

tions to 𝑓𝑜𝑙𝑙𝑜𝑤𝑇 .

• An ant in 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑇 state has three available actions. First, she can decide

to carry another ant, active, passive, or brood, to her newly committed nest.

This results in her entering 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑙𝑒𝑎𝑑𝑇 mode, meaning she can lead a reverse

tandem run (RTR). These are tandem runs lead from the newly committed nest

to the old home nest or another nest. Second, she can decide to “stop_trans"

and stops her transport to go into the state 𝑠𝑒𝑎𝑟𝑐ℎ𝑇 . Third, similar to the state

𝑙𝑒𝑎𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐶 , there is a “terminate" action when the termination condition

is met, namely if she has repeated attempts to carry other active workers who

are also in 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑇 state. In this case, she changes her 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 to her

ℎ𝑜𝑚𝑒_𝑛𝑒𝑠𝑡, resets 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 to 0, and enters state 𝑎𝑡_𝑛𝑒𝑠𝑡𝐸.

• An ant in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑙𝑒𝑎𝑑𝑇 only has two actions as her options. First, she may

perform 𝑛𝑜_𝑎𝑐𝑡𝑖𝑜𝑛 and returns to 𝑎𝑡_𝑛𝑒𝑠𝑡𝑇 state. Second, she may experience

“delay" in her tandem runs, and will stay in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑙𝑒𝑎𝑑𝑇 state. There’s no

conclusion on the purpose of RTRs at this point in the research community, so

we model it as a round-trip from an agent’s candidate nest to the original home

nest and back, eventually ending up with no state changes.

• An ant in the states 𝑓𝑜𝑙𝑙𝑜𝑤𝑇 or 𝑠𝑒𝑎𝑟𝑐ℎ𝑇 has the same options and variable

changes as in 𝑓𝑜𝑙𝑙𝑜𝑤𝐸 or 𝑠𝑒𝑎𝑟𝑐ℎ𝐸 respectively, but the resulting state are sub-

scripted with 𝑇 except the “carry" action.

• An ant in 𝑎𝑟𝑟𝑖𝑣𝑒𝑇 state has the same options and variable changes as in 𝑎𝑟𝑟𝑖𝑣𝑒𝐴,

but with “reject" action leading to 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑇 .

114



A.2 Simulation Details

A.2.1 Sample Configuration File
[ENVIRONMENT]
num_ants = 200
nest_qualities = 0,1,2

[ALGO]
lambda_sigmoid = 8
pop_coeff = 0.35
quorum_thre = 0.15
quorum_offset = 0
search_find = 0.005
follow_find = 0.9
lead_forward = 0.6
transport = 0.7

[SETTINGS]
plot = 0
total_runs_per_setup = 500
num_rounds = 4000
percent_conv = 0.9
persist_rounds = 200

A.2.2 Data Structures and Global Variables

We define four native data structures, as shown in Fig. 2-1. The global variables

include 1) the transition tables defined in Fig. 2-3, 2) Nests, the array of all nests

including the home nest which by default has quality 0 and id 0, and 3) Ants, the

array of all ants in the colony.

A.2.3 Simulation Overview

We describe our algorithm implementation in details below. Our executable software

and instructions are available upon request.

Consider a colony of size 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 where all the ants start the house-hunting

task synchronously. We divide the total time to completion into 𝑟𝑜𝑢𝑛𝑑s, with a

maximum round number of 𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑠_𝑝𝑒𝑟_𝑠𝑒𝑡𝑢𝑝.

At the beginning of round 𝑡, no ant has transitioned yet (instantiate Trans = ∅).

Then a random permutation of all 𝑎𝑛𝑡_𝑖𝑑s is generated as the order of execution.
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When an ant gets her turn during this round, she first checks if her ant_id is in

Trans. If so, she does nothing. Otherwise, knowing its id and current state, she

chooses an action for this round according to the probability distribution defined in

the select-action function.

The action picked by an ant 𝑥 has an 𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑦𝑝𝑒, a receiving ant id, and a nest

id. Please note here that in real ant colonies, an action can involve either just a

single ant, or a pair of ants (tandem run and carry). In the single ant action case,

the receiving ant’s id is assigned value −1. In the pair ant action case, the action

includes the valid 𝑎𝑛𝑡_𝑖𝑑 of the receiving ant 𝑦. Similarly, not all actions require a

nest, in which case the nest id for the action is −1.

By looking up the 𝐴𝑛𝑡𝑠 array, 𝑥 can also get the current external state of all ants

including the receiving ant 𝑦, if any, of the picked action. These values are enough

for 𝑥 to call the transition function, and adds its own id to Trans. The special case

handling is detailed in Section 2.3.2, including the case where 𝑦 might also call a

transition function and adds itself to Trans.

When one round finishes, each ant has had one chance to initiate or receive an

action, and potentially has a new state. Repeat rounds like the above until the criteria

is met for convergence with persistence, or until the program reaches the maximum

number of rounds specified in the configuration file.
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Appendix B

Supplemental Materials for Chapter 3

B.1 Proofs for Section 3.4

Theorem 20. (Hoeffding’s Inequality) If 𝑋1, 𝑋2, ..., 𝑋𝑁 are independent random

variables with finite first and second moments, and 0 ≤ 𝑋𝑖 ≤ 1 for 𝑖 = 1, ..., 𝑛,

then for all 𝐷 ≥ 0,

P

{︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑋𝑖 − E [𝑋𝑖]) ≥ 𝐷

}︃
≤ exp

(︀
−2𝑁𝐷2

)︀
.

Proposition 21. For any round 𝑡 ≥ 1 and ant 𝑎𝑖, it holds that

P
{︀
𝑇 1
𝑖 > 𝑡

}︀
< (1 − 2𝛼)𝑡 = 𝛽𝑡,

where 𝛽 = 1 − 2𝛼.

Proof. Let 𝐹 𝑡 represent the event that 𝑎𝑖 is in state 𝑛0 and does not transition out of

𝑛0 during round 𝑡. That this could happen only if 𝑎𝑖 has not jumped out of 𝑛0 during

any round previous to 𝑡 as well. In turn, this requires that every coin toss that 𝑎𝑖 has

done

Further, 𝐹 𝑡 is influenced by the set of events {𝐹 𝑙} for ∀𝑙 ≤ 𝑡 − 1 only through
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𝐹 𝑡−1. Thus we have the following:

P
{︀
𝐹 𝑡 | 𝐹 𝑡−1 ∧ 𝐹 𝑡−2 ∧ ... ∧ 𝐹 0

}︀
= P

{︀
𝐹 𝑡 | 𝐹 𝑡−1

}︀
P
{︀
𝐹 𝑡−1 | 𝐹 𝑡−2

}︀
P
{︀
𝐹 𝑡−2 | 𝐹 𝑡−3

}︀
...P

{︀
𝐹 2 | 𝐹 1

}︀
P
{︀
𝐹 1

}︀
For any given round 𝑡 ≥ 2, conditioned on 𝐹 𝑡−1 is true, the probability of any ant 𝑎𝑖

still 𝑛𝑜𝑡 transitioning out of 𝑛0 during round 𝑡 is 1−2𝛼(1−𝜏1(𝑡)−𝜏2(𝑡))−𝜏1(𝑡)−𝜏2(𝑡) <

1 − 2𝛼. Furthermore, P {𝐹 1} = 1 − 2𝛼 since there are no ants leading tandem runs

yet and 𝜏1(1) = 𝜏2(1) = 0. Therefore,

Therefore,

P
{︀
𝑇 1
𝑖 > 𝑡

}︀
= P

{︀
𝐹 𝑡 | 𝐹 𝑡−1 ∧ 𝐹 𝑡−2 ∧ ... ∧ 𝐹 0

}︀
= P

{︀
𝐹 𝑡 | 𝐹 𝑡−1

}︀
P
{︀
𝐹 𝑡−1 | 𝐹 𝑡−2

}︀
P
{︀
𝐹 𝑡−2 | 𝐹 𝑡−3

}︀
...P

{︀
𝐹 2 | 𝐹 1

}︀
P
{︀
𝐹 1

}︀
= P

{︀
𝐹 1

}︀ 𝑡∏︁
𝑙=2

P
{︀
𝐹 𝑙 | 𝐹 𝑙−1

}︀
=

𝑡∏︁
𝑙=2

P
{︀
𝐹 𝑙 | 𝐹 𝑙−1

}︀
(1 − 2𝛼)

< (1 − 2𝛼)𝑡−1(1 − 2𝛼)

= (1 − 2𝛼)𝑡.

Proposition 22. Let 𝑇 1
𝑖 be defined as in Definition 2. With probability 1, ant 𝑎𝑖

transitions out of the state 𝑛0 in finite time, i.e.

P
{︀
𝑇 1
𝑖 < ∞

}︀
= 1.

Proof. By definition, we know that {𝑇 1
𝑖 < ∞} = ∪∞

𝑡=1 {𝑇 1
𝑖 ≤ 𝑡}. Thus, it holds that

{︀
𝑇 1
𝑖 = ∞

}︀
=

{︀
𝑇 1
𝑖 < ∞

}︀𝑐
=

(︀
∪∞

𝑡=1

{︀
𝑇 1
𝑖 ≤ 𝑡

}︀)︀𝑐
= ∩∞

𝑡=1

{︀
𝑇 1
𝑖 > 𝑡

}︀
.

It is easy to see that {𝑇 1
𝑖 > 1} ⊃ {𝑇 1

𝑖 > 2} ⊃ · · · ⊃ {𝑇 1
𝑖 > 𝑡} ⊃ {𝑇 1

𝑖 > 𝑡 + 1} ⊃ · · · .
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By continuity of probability [28, Lemma 1.1], we know that

lim
𝑡→∞

P
{︀
𝑇 1
𝑖 > 𝑡

}︀
= P

{︀
∩∞

𝑡=1

{︀
𝑇 1
𝑖 > 𝑡

}︀}︀
.

In addition, from Proposition 21, we have

P
{︀
𝑇 1
𝑖 > 𝑡

}︀
≤ (1 − 2𝛼)𝑡.

Therefore, we have that

{︀
𝑇 1
𝑖 = ∞

}︀
= P

{︀
∩∞

𝑡=1

{︀
𝑇 1
𝑖 > 𝑡

}︀}︀
= lim

𝑡
P
{︀
𝑇 1
𝑖 > 𝑡

}︀
≤ lim

𝑡
(1 − 2𝛼)𝑡 = 0,

proving the proposition.

Corollary 23. With probability 1, all ants jump out of 𝑛0 in finite time, i.e.,

P
{︂

max
𝑖∈[𝑁 ]

𝑇 1
𝑖 < ∞

}︂
= 1.

Proof.

P
{︂{︂

max
𝑖∈[𝑁 ]

𝑇 1
𝑖 < ∞

}︂𝑐}︂
= P

{︀
∃ 𝑖 ∈ [𝑁 ] such that 𝑇 1

𝑖 = ∞
}︀

=
𝑁∑︁
𝑖=1

P
{︀
𝑇 1
𝑖 = ∞

}︀
= 𝑁 × 0 = 0.

Corollary 24 follows immediately from Corollary 23 and Proposition 6.

Corollary 24. For any 𝑡 ≥ max𝑖∈[𝑁 ] 𝑇
1
𝑖 + 1, the state transitions 𝑠𝑖(𝑡) → 𝑠𝑖(𝑡+ 1) is

independent of other ants. Moreover, for all 𝑡 ≥ max𝑖∈[𝑁 ] 𝑇
1
𝑖 ,

P {∃𝑖 ∈ [𝑁 ] such that 𝑠𝑖(𝑡) = 𝑛0} = 0.
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B.2 Proofs for Section 3.5

Lemma 25. If 𝑎, 𝑏, 𝑐, 𝑑 are all positive, the following holds

min

{︂
𝑎

𝑐
,
𝑏

𝑑

}︂
≤ 𝑎 + 𝑏

𝑐 + 𝑑
≤ max

{︂
𝑎

𝑐
,
𝑏

𝑑

}︂
,

where equality only holds if 𝑎
𝑐

= 𝑏
𝑑
.

Proof. If 𝑎
𝑐
≥ 𝑏

𝑑
, then 𝑎+𝑏

𝑐+𝑑
≥

𝑏𝑐
𝑑
+𝑏

𝑐+𝑑
= 𝑏

𝑑
; and 𝑎+𝑏

𝑐+𝑑
> 𝑎

𝑐
otherwise.

If 𝑎
𝑐
≥ 𝑏

𝑑
, then 𝑎+𝑏

𝑐+𝑑
≤ 𝑎+𝑎𝑑

𝑐

𝑐+𝑑
= 𝑎

𝑐
; and 𝑎+𝑏

𝑐+𝑑
< 𝑏

𝑑
otherwise.

Proposition 26. 𝑥2(𝑡)/𝑥1(𝑡) < 1 for ∀𝑡 ∈ [2, 𝑡* − 1]. Additionally, 𝑥′
2(𝑡

*) ≤ 𝑥′
1(𝑡

*)

where equality only holds if 𝑄𝑆 ≤ 𝛼.

Proof. We prove by induction. Preliminary: 𝑡 = 1, 𝑥2(𝑡) = 𝑥1(𝑡) = 𝛼.

Before either nests hit quorum,

Base case: 𝑡 = 1.

𝑥2(𝑡) = 2𝑢2𝛼 + 𝛼(1 − 𝑢1𝛼− 𝑢2𝛼) + (1 − 𝑢1)𝛼

= (2𝑢2 − 𝑢1 + 1)𝛼 + 𝛼(1 − 𝑢1𝛼− 𝑢2𝛼)

< (2𝑢1 − 𝑢2 + 1)𝛼 + 𝛼(1 − 𝑢1𝛼− 𝑢2𝛼)

= 𝑥1(𝑡)

Inductive Step: Assume 𝑥2(𝑡) < 𝑥1(𝑡) for some 𝑡 ∈ [2, 𝑡*−1), we have the following,
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𝑥2(𝑡 + 1) − 𝑥1(𝑡 + 1)

= 2𝑢2𝑥2(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢1)𝑥1(𝑡)

− (2𝑢1𝑥1(𝑡) + 𝛼(𝑥0(𝑡) − 𝑢1𝑥1(𝑡) − 𝑢2𝑥2(𝑡)) + (1 − 𝑢2)𝑥2(𝑡))

= (3𝑢2 − 1)𝑥2(𝑡) − (3𝑢1 − 1)𝑥1(𝑡)

< (3𝑢1 − 1)(𝑥2(𝑡) − 𝑥1(𝑡)), since 𝑢1 > 𝑢2 >
1

3
,

< 0, since 𝑢1 >
1

2
∧ 𝑥2(𝑡) < 𝑥1(𝑡).

This completes the inductive proof and thus proves the first claim in the proposition.

Extending the above proof one more round, we prove that if 𝑄𝑆 > 𝛼, i.e. no nest

hits quorum in the first round, 𝑥′
2(𝑡

*) < 𝑥′
1(𝑡

*) as defined in Eq. (25)-(26).

𝑥′
2(𝑡

*) − 𝑥′
1(𝑡

*)

= (2𝑢2 − 1 + 𝑘)𝑥2(𝑡
* − 1) − (2𝑢1 − 1 + 𝑘)𝑥1(𝑡

* − 1)

< (2𝑢1 − 1 + 𝑘)(𝑥2(𝑡
* − 1) − 𝑥1(𝑡

* − 1)), since 𝑢1 > 𝑢2 >
1

2
,

< 0, since 2𝑢1 − 1 + 𝑘 > 0 ∧ 𝑥2(𝑡) < 𝑥1(𝑡),

where 𝑘 = 𝑢1𝑥1(𝑡*−1)
𝑢1𝑥1(𝑡*−1)+𝑢2𝑥2(𝑡*−1)

if 𝑥0(𝑡
* − 1) < 𝑢1𝑥1(𝑡

* − 1) + 𝑢2𝑥2(𝑡
* − 1) and 𝑘 = 1

otherwise.

Furthermore, if 𝑄𝑆 ≤ 𝛼, Eq. (25)-(26) shows that 𝑥′
2(𝑡

*) = 𝑥2(2) = 𝑥′
1(𝑡

*) =

𝑥1(2) = 𝑄𝑆.

Hence we have finished proving the second part of proposition: 𝑥′
2(𝑡

*) ≤ 𝑥′
1(𝑡

*)

and equality only holds if 𝑄𝑆 < 𝛼.

Proposition 27. 𝑥2(𝑡) monotonically increases for ∀𝑡 < 𝑡′0.

Proof. • For 𝑡 < 𝑡* − 1: 𝑛0 is not empty by time 𝑡 + 1. 𝑥2(𝑡 + 1) = 2𝑢2𝑥2(𝑡) +

𝛼(𝑥0(𝑡) − ̂︀𝑥1(𝑡) − ̂︀𝑥2(𝑡)) + (1 − 𝑢1)𝑥1(𝑡) > 𝑥2(𝑡), since 𝑢2 > 0.5.

• For 𝑡 = 𝑡* − 1: similar to the above, we get 𝑥′
2(𝑡

*) > 𝑥2(𝑡
* − 1). Thus 𝑥2(𝑡

*) −
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𝑥2(𝑡
* − 1) = (𝑥′

2(𝑡
*) − 𝑥2(𝑡

* − 1))𝑑 > 0, where 𝑑 = 𝑥1(𝑡*)−𝑥1(𝑡*−1)
𝑥′
1(𝑡

*)−𝑥1(𝑡*−1)
> 0.

• For 𝑡 ∈ [𝑡*, 𝑡′0): 𝑥2(𝑡 + 1) = 2𝑢2𝑥2(𝑡) + 𝛼(𝑥0(𝑡) − ̂︀𝑥2(𝑡)) > 𝑥2(𝑡).

Proposition 28. 𝑥2(𝑡) monotonically decreases for ∀𝑡 ≥ 𝑡′0 if 𝑛2 doesn’t hit the

quorum by 𝑡′0.

Proof. After 𝑛0 becomes empty, 𝑛2 has no “incoming" flux and only loses ants every

round since 𝑛1 has already hit quorum, according to Fig. 3-1 and Fig. 3-2
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