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Abstract. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new

nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-
hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic

agent with limited power, and there is no central control governing the ants. We show a Ω(logn) lower bound

on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we
show a matching upper bound of expected O(logn) rounds for environments with only one candidate nest

for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective
on how environmental factors such as nest qualities or a quorum rule can affect the emigration process. In

particular, we find that a quorum threshold that is high enough causes transports to the inferior nest to

cease to happen after O(logn) rounds when there are two nests in the environment.

1. Introduction

Recently, there has been an interest in the distributed computing community on studying biologically-
inspired algorithms [1]. Tissues found within the human body and insect colonies of ants and bees are good
examples of naturally occurring systems where there are many agents with limited power, a global goal, and
no central control. Interestingly, an ant colony as a whole exhibits a high level of collective intelligence and
is able to achieve global goals, such as relocating to new nests. It is puzzling how the distributed system is
able to quickly reach consensus through local communications, especially given the high noise levels observed
in nature.

The house-hunting process in ant colonies is a naturally occurring algorithmic task that is closely related
to consensus, a fundamental problem in distributed computing theory. The goal of the ants is to relocate
the colony of ants to a new nest with superior quality. During the house-hunting process, a colony is able
to reach consensus on a new nest and execute the move of the entire colony, even though each individual
actively-scouting ant has information about only a small subset of the new candidate nests.

In 2015, Ghaffari et al. [3] modeled the ant colony house-hunting process as a distributed algorithm on
independent random agents. They also showed theoretical guarantees on the number of rounds required
for various house-hunting algorithms under their model to converge. Recently, Zhao et al. [13] developed a
simulator that closely mimics the ants’ behaviors on both individual and colony levels. The simulator is based
on the agent-based model of ants’ house-hunting process that Pratt et al. [10] created by studying videotaped
behavior of ants. Zhao et al. showed that their simulator is biologically plausible in that it accurately reflects
many behaviors observed in real ant colonies, and their simulator is also useful for predicting some of the
behaviors of ants that are harder for biologists to directly study in experiments. The algorithm presented by
Zhao et al. is more biologically plausible than those studied by Ghaffari et al., but one remaining challenge
is that there are no theoretical bounds on the convergence speed of the algorithm by Zhao et al.

We present an algorithm for house-hunting that is structured like the model considered by Ghaffari et al.
[3] and takes into account the different behavior of ants in different phases observed by biologists Pratt et al.
[10] in ant labs and modelled by Zhao et al. [13] in computer simulations. Thus, our algorithm is biologically
plausible while still tractable to rigorous analysis. Our model is a mathematical agent-based model, with
transition probabilities derived from the data that Pratt et al. collected in their observations of ant colonies
and from computer simulations run by Zhao et al. We show that the theoretical guarantees on the running
time of our algorithm are similar to those of the algorithms considered by Ghaffari et al.

Our work has many implications for both the biology community and the computer science community.
Natural algorithms have evolved over time to have many advantageous properties. For example, algorithmic
tasks carried out by collections of living beings are usually highly adaptive to different types of environments,
robust to noise, and also optimized in terms of their speed and accuracy. Thus, insights from these biological
algorithms can inspire more robust, efficient algorithms for distributed computer systems, such as robot
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swarms [5]. Additionally, using mathematical tools to analyze the house-hunting algorithm can allow for a
better understanding of the qualities of ant colonies that are harder for biologists to directly observe, such
as the dependence on various environmental parameters.

1.1. The House-Hunting Process. Temnothorax ants often search for and move to new nests, as living
in favorable nests is important to the survival of their colony. Their moving process is highly distributed, as
each individual ant has limited power, and there is no central control governing the emigration process.

Ant colonies are typically composed of roughly equal populations of active and passive ants. Active ants
execute the emigration while passive ants, such as brood items or inactive adult ants, are transported to new
nests by active ants.

Biologists have observed that the house-hunting process involves several stages. Active ants search for
nests, assess nests, recruit other ants, and also transport other ants. Once an active ant has found a new
nest of satisfactory quality, it moves on to the recruitment phase, where it recruits other active ants to the
new nest via tandem runs [6, 11]. Should the population of active ants in a new nest surpass a quorum
threshold, then active ants will commit to the new nest and begin transporting (i.e. picking up and carrying)
other ants from the old nest to the new nest [9]. These transports speed up emigration to the new nest.

2. Model

We present a model of Temnothorax ants’ house-hunting process that is both tractable to analysis and
biologically plausible. This algorithm is primarily inspired by the agent-based model for house-hunting in
ant colonies introduced in [13]. Like the model in [13], our algorithm is parameterized by many constants,
which can be tuned to reflect the changing environmental conditions and varied behaviors of ants observed
in nature. Our model differs in that we reduce the number of internal variables stored for each ant and the
number of possible states that the ants can be in, thus simplifying the rules for how ants change locations.
These simplifications make the model tractable for proofs of theoretical guarantees.

In our algorithm, active and passive ants in the colony play different roles in the emigration process. Active
ants transition through many states, including searching for a new nest, evaluating a nest, and recruiting
other ants to the nest by lead forward or transport runs. Passive ants, on the other hand, change location
only when transported by an active ant. The biological insights for these design decisions come from [10].
Each ant changes both state and location at most once on each discrete time step, or round.

2.1. Framework. The environment consists of at least two nests, one of which is the original home of the
colony. Each nest has an associated quality, a nonnegative real number. The ants are modeled as identical
finite state machines that execute computations synchronously in rounds. In each round, an active ant
performs at most one call to each of the functions select action(), select ant(), and transition(), which
are defined in Section 2.2.

We let n denote the total number of ants, and we let na and np denote the number of active ants and
passive ants, respectively, with na = θ(n), np = θ(n), and na + np = n. The location of an ant a is denoted
a.location, which is one of the nests in the environment. Every active ant a has an associated state, denoted
a.state, which is one of 9 possible states: At Nesti, Searchi, Quorum Sensing, Lead Forward, and Transport,
for i ∈ {E,C, T}. The subscripts E,C, and T stand for Exploration, Canvassing, and Transport, three
different phases of active ants described in [10]. For every ant a, the value of a.state begins as At NestE and
the value of a.location begins as the original home nest of the colony. These values are updated by calls to
the helper function transition().

Like the model from [13], our model is further parameterized by adjustable constants. The parameters µq
and µp are the quality coefficient and population coefficient, respectively. They represent the relative weight
that ants give to the quality and population of a nest when evaluating that nest. We denote by θ the quorum
threshold, or the proportion of active ants that must be in a nest before an active ant can commit to that
nest and begin transporting ants to that nest. The constants cs, cf , c`, and ct denote the search constant,
the follow constant, the lead forward constant, and the transport constant. These constants parameterize the
probability that the corresponding type of action succeeds. Finally, λ controls for how noisy individual ants’
decision-making is, with higher λ values corresponding to lower individual noise level. All constants other
than λ range between 0 and 1; λ ranges from 1 to 16 [13].
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2.2. Helper Functions. This subsection defines the helper functions that are called in the house-hunting
Algorithm, which is given in Section 2.3.
select action(a): The input is an ant a. Let n′ be a nest chosen uniformly at random from all of the nests
other than a.location. Let q be the quality of a.location, and let p and pa be the number of ants and active
ants in that nest, respectively. Finally, let q′ and p′ denote the quality and population of nest n′. The ant
probabilistically chooses an action to take: advance or hold. The probability distribution over these actions
depends on the state transition probabilities given in (1):

(1)

Pr[At Nesti → Searchi] = 1−
(
1 + e−λ(µq·q+µp· pn )

)−1

for i ∈ {E, C, T}

Pr[Searchi → At Nesti] = cs ·

(
1 + e

−λ
(
µq·(q′−q)+µp· p

′−p
n

))−1

for i ∈ {E, C, T}

Pr[Quorum Sensing→ Transport] =

{
1 if quorum has been met, that is pa > θ · na
0 otherwise

Pr[Transport→ At NestT] = ct

Pr[Lead Forward→ At NestC] =

{
c` if q′ > q

0 otherwise

The function select action(a) returns (advance, n′) if the ant a probabilistically chooses to transition along
a solid arrow in the state transition diagram (Figure 1); otherwise, this function returns (hold, n′).

AtNestE

AtNestC

AtNestT

SearchE

SearchC

SearchT Transport

Quorum
Sensing

Lead
Forward

Figure 1. The State Transition Diagram. The solid arrows denote the ant choosing to
advance — that is, make progress towards emigration. In contrast, the dashed arrows
denote the ant choosing to hold. The transition probabilities are given in (1).

select ant(a,n′,action): This function takes as input an ant a, a nest n′, and an action action. If action
is hold, then this function immediately returns null. First, we set a′ to null. If a.state is Lead Forward and
there is at least one active ant in nest n′, then let a′ be an active ant chosen uniformly at random from n′.
If a.state is Transport and there is at least one passive ant in nest n′, then let a′ be a passive ant chosen
uniformly at random from n′; if there are only active ants in n′, let a′ be an active ant chosen uniformly at
random from n′. We return a′ with probability cf and null otherwise. Note that the returned ant cannot
be a because a is not in nest n′.

transition(a,a′,n′,action): This function takes as input ants a and a′, a nest n′, and an action action.
If a.state is Searchi for any i ∈ {E,C, T} and action is advance, then we set a.location to n′. If a.state
is Lead Forward or Transport and action is advance, then we set a′.location to a.location. We set a.state
to the state obtained by starting from a.state and following the arrow corresponding to action in the state
transition diagram (Figure 1). If a′ is not null, we set the state of ant a′ to At NestE .
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2.3. Algorithm. With the helper functions defined, we
are ready to present the house-hunting algorithm. Let
P be a permutation of all of the active ants chosen uni-
formly at random. Algorithm 1 shows one round of the
house-hunting algorithm. We repeat the procedure given
in Algorithm 1 until the house-hunting algorithm con-
verges. The house-hunting algorithm converges when all
of the passive ants have moved to a different nest with
superior quality, called the winning nest.
In Algorithm 1, the set M serves to make sure that each
ant transitions at most once: either actively by initiating
an action or passively by getting recruited. If there are
conflicts with the recruitment actions of advancing from
lead forward or transport, then P serves as a tie breaker
between the conflicting actions.

Algorithm 1: One Round of the
HouseHunting Algorithm

1 M : a set of ants, initially ∅
2 for i = 1 to |P | do
3 if aP (i) 6∈M then
4 action, n′ := select action(aP(i))

5 a′ := select ant(aP(i),n
′,action)

6 if a′ ∈M then
7 a′ ← null

8 transition(aP(i),a
′,n′,action)

9 M := M ∪
{
aP (i)

}
∪ {a′}

3. Our Results

In [3], Ghaffari et al. proved a lower bound of Ω(log n) on the running time of their house-hunting
algorithm. Their proof depended on a lemma that stated that all ants in an inferior nest do not find the
winning nest with at least constant probability during each round; we showed that this result is true for

np

2
of the passive ants. The discrepancy by a constant factor does not affect the asymptotic behavior of the
algorithm. Thus, the reasoning from the proof of Theorem 3.2 from [3] implies the following theorem:

Theorem 3.1. If np ≥ 4, then for any constant c > 0, our proposed house-hunting algorithm requires
Ω(log n) rounds for all of the passive ants to move from the original home nest to the winning nest with
probability at least 1

nc .

For the rest of this section, we consider an environment with only two nests: Nest 0 (with quality q0),
and Nest 1 (with quality q1 > q0). All of the ants start in Nest 0 in the At NestE state. Since an active ant
will change locations if it advances from a Search state, the frequency at which ants visit Search states is of
interest to us.

Definition 3.2. For every integer k > 0, random variable R
(k)
0 is the fraction of active ants in Nest 0 that

are in a Search state at the beginning of round k if Nest 0 has active ants at the beginning of round k; and

0 otherwise. R
(k)
1 is similarly defined for Nest 1. Let f0 := mink E

[
R

(k)
0

]
and f1 := maxk E

[
R

(k)
1

]
We do not explicitly compute f0 and f1 since this would require intensive computations. Instead, we

make use of the following useful property:

Lemma 3.3. We have f0, f1 > ε for some constant ε > 0 that is independent of n.

We use the values f0, f1 to state our second result, an upper bound on the expected number of rounds
that the house-hunting algorithm takes to converge when the environment consists of two nests. Recall from
Section 2 that we say that the algorithm converges when all of the passive ants are in the winning nest.

Theorem 3.4. Let

a(ε) := na

(
f0
f1
− ε

f0
f1

+ eα

)
,

where α = −λ(µq(q1 − q0)− µp) and ε > 0 is any small constant less than f0
f1

.

Let random variable Rε denote the number of rounds required for at least a(ε) of the active ants and all
of the passive ants to move from Nest 0 to Nest 1.

If the quorum threshold satisfies 1− a(ε)
na

< θ < a(ε)
na

, then E[Rε] = O(log n).

The lower bound condition on the quorum threshold in Theorem 3.4 allows us to prove that there will be
no more backward transports (transports from the winning nest to the inferior nest) after expected O(log n)
rounds. There is a lot of work in the biology community studying the role of the quorum threshold in the
house-hunting process. As we see with our result, mathematical analyses such as ours can provide possible
explanations for why ant colonies have evolved to use a quorum threshold.
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