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Abstract

Current research in the field of operating systems has been very systems-oriented and re-
sult driven. Little theoretical research has been done in considering the formal ramifications
of these systems level decisions, or in mapping out the topology of the standard operating sys-
tem. Because of this, it is often difficult in operating systems work to get a clear picture of the
high-level interactions between different OS services, or to apportion programming efforts across
well-defined interfaces. Formal specification of the operating system structure and methodol-
ogy would provide a framework for clearer study, discussion, and implementation of operating
systems.

We present a formal method for modelling an operating system as a distributed system
of state machines. Drawing the connection between the various independent services of an
operating system and the independent agents of distributed systems, we model each service of the
operating system as an asynchronous I/O Automaton. Demonstrating both the instructional and
functional value of this modelling technique, we present here two views of the operating system.
The first view, the User Level model, provides a simplified abstraction of the operating system.
This acts as a operating system interface specification as well as an easy first step for teaching
students in the field. The second view, or Kernel Level model, provides an implementation of
the User Level abstract specification, and unveils many of the realities which were abstracted
away in the User Level model. It provides a framework for research in formalizing operating
systems, as well as providing a clear and concise description of many of today’s operating system
elements. Finally, using the powerful mathematical tools developed for I/O Automata, we make
two formal modifications to the Kernel Level model and prove that it in fact does implement
the User Level specification. We thereby assert that the two models are, from the perspective
of the processes, functionally equivalent.
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1 Introduction

Good design, from the highest level down, is fundamental to the success and efficacy of operating
systems. The goal of design is to describe a set of modules that interact with one another in simple,
well defined ways. In achieving this goal, a well-designed system enables people to work indepen-
dently on different modules, with the guarantee that the modules will fit together to accomplish

the larger purpose.

We present here a formal model of generic operating system primitives using I/O Automata.
Leveraging the mathematical structure of automata, we design a formal infrastructure that focuses
thought on system error management and interface design. Through this focus, we arrive at a
design that is clear and concise, as well as tailored to managing system unreliability and breakdown.
Modelling the operating system at two levels, we provide both an abstract specification of the system
and a more detailed implementation of that specification. We then prove, using formal methods

developed for I/O Automata, that the implementation does in fact simulate the specification.

1.1 Background: Formal Models and Specifications

Research in formal models and specifications has been going on for decades. Starting in the early
1970’s, work was done to show that all computable functions over an abstract type could be defined
algebraically using equations of a simple form. Much thought went into these specifications, and

many people considered the problems of when such specifications constituted an adequate definition.

From these works many different approaches to formal modelling have sprung up. Some re-
searchers have stayed within the limits of algebraic equations, working on more abstract and
streamlined versions of the work done before. One example of such work is Yuri Gurevich’s work
on the Abstract State Machine (ASM) Project (formerly known as the Evolving Algebras Project),
an attempt to bridge the gap between formal methods of computation and practical specification
methods [1]. The ASM method focuses on building an algebra for a given algorithm, and using

such an algebra to convince oneself of the correctness of the algorithm.

Other researchers, deciding that purely algebraic approaches to specification were unlikely to be
practical, proposed a combination of algebraic and operational specifications, termed by John V.

Guttag to be “dyadic specifications”[2]. Guttag, along with fellow researchers in his LARCH group,



proceeded to create a powerful theorem prover to check and reason about specifications [3]. These

specifications have been used for checking proofs, as well as for verifying program correctness.

The effort to create the Spec language, led by Butler Lampson, is of particular interest, as it
has been used successfully in formalizing problems in operating systems research. Based on Edsger
Dijkstra’s Guarded Commands and augmented by Lampson with constructs for concurrency and
atomicity, Spec is a formal specification language designed for modelling distributed systems and
algorithms [4]. Lampson’s design of Spec is compelling, as it defines many interesting formal tools
such as correspondence proofs based upon module trace comparison. It also focuses on defining
abstract data types with provable properties and then running actions on state machines which
use these data types. With this methodology, Spec has been used successfully in working on such

problems as caching, fault-tolerance, concurrency, naming, and security.

While these efforts were, and have been, very successful at what they set out to do, none of
them have been directly applied to design and specification of operating systems. Many of the
smaller subsystems that compose operating systems have been modelled extensively, but never the
operating system itself. Yet many of the issues plaguing operating system designers are the same
issues run into by researchers working on distributed systems. As the utility of formal specification
tools has been proven in the distributed systems arena, it seems only reasonable to try a similar

approach in the study of operating systems.

The I/O Automata model developed by Lynch and Tuttle [6] is the ideal candidate for such
a formal specification of an operating system. Designed with the issues of distributed systems
in mind, the I/O Automata is an easily abstractable, relatively compact representation of a state
machine. With most actions driven by I/0O, the emphasis is on reacting properly to the environment
and dealing with outside stimuli. Considering the various components of an operating system in
this light leads us to several beneficial results. First, it encourages thinking about interface design
between components and about detailed formal specifications of interactions. Second, it enforces a
certain level of independence and error management between components, as they should be ready
to deal with unexpected inputs. Third, it allows for a clear and concise description of the operating
system design without many of the implementation details, making for a good tool for discussing

and learning operating system primitives.



1.2 Overview of this thesis

The key results of this thesis are the I/O Automata descriptions of a generic operating system at an
abstract specification level (User Level), and a more detailed, implementation level (Kernel Level).
The design of these descriptions is loosely based on the structure of the NACHOS instructional
operating system [7]. Together with a correspondence proof showing that the Kernel Level simulates
the User Level, these two models of the operating system provide a formal framework for designing,

working on, and teaching operating system primitives.

The thesis is organized as follows: Section 2 defines the I/O automaton model used to formally
specify the operating system at both levels of abstraction, and then goes on to define and justify the
mathematical tools used in the correspondence proof. Section 3 introduces some formal definitions
and conventions used throughout the thesis, including the definition of many of the data types
used in the operating system model. Section 4 describes the User Level model of the operating
system, first with an intuitive explanation of the specification, and then through the usage of I/O
automata. Section 5 does for the Kernel Level model what section 4 did for the User Level, providing
the intuitive and I/O automata model of the Kernel Level implementation of the operating system.
Section 6 introduces an abstraction automaton, which is necessary to enable the User Level Process
to interact in the Kernel Level model. Section 7 describes a series of strong correspondence proofs
between several User and Kernel Level automata, and section 8 provides the full simulation proof
between the User and Kernel Level operating systems. Section 9 describes potential for future work

in the area and concludes the thesis.

2 Formal Model: Definitions and Fundamental Theorems

I/O Automata models are very general, suitable for describing nearly all kinds of asynchronous con-
current systems. They provide a framework for reasoning about system components that interact

with each other and that operate at arbitrary relative speeds.



2.1 Definition of I/O Automata[5]

An I/O automaton’s signature is simply a description of its input, output, and internal actions.
We assume a universal set of actions. A signature S is a triple consisting of three disjoint sets of
actions: the input actions, in(S), the output actions, out(S), and the internal actions, int(S). We
define the ezxternal actions, ext(S), to be in(S) Uout(S); the locally controlled actions local(S), to
be out(S) Uint(S); and acts(S) to be all the actions of S. The external signature, extsig(S), is
defined to be the signature (in(S), out(S), 0).

An I/0 automaton A, consists of five components:

e sig(A), a signature
e states(A), a (not necessarily finite) set of states
e start(A), a nonempty subset of states(A) known as the start states or initial states

e itrans(A), a state-transition relation, where trans(A) C states(A) x acts(sig(A)) x states(A);
this must have the property that for every state s and every input action 7, there is a transition

(s,m,s") € trans(A)

We call an element (s,m,s’) of trans(A) a transition, or step of A. The transition (s, 7, s’) is
called an input transition, output transition, or internal transition based on whether the action =
is an input, output, or internal action. We write s 535" as shorthand for (s, m,s') € trans(A). If
for a particular state s and action m, A has some transition of the form s7ys’, then we say that
7 is enabled in s. Since every input action is required to be enabled in every state, automata are
said to be input-enabled. The input-enabling assumption means that the automaton is not able
to somehow “block” input actions from occurring. This assumption means, for example, that a
process has to be prepared to cope in some way with any possible message value when a message

arrives.

There are two major advantages to having the input-enabling property. First, a serious source
of errors in the development of system components is the failure to specify what the component
does in the face of unexpected inputs. Using a model that requires consideration of arbitrary inputs

is helpful in eliminating such errors. Second, use of input-enabling makes the basic theory of the



model work out nicely; in particular input-enabling makes it reasonable to use simple notions of

external behavior for an automaton, based on sequences of external actions.

In describing I/O Automata, the transition relation is written in a precondition-effect style.
This style groups together all the transitions that involve each particular type of action into a
single piece of code. The code specifies the conditions under which the action is permitted to occur
as a predicate on the pre-state s. Then it describes the changes that occur as a result of the action
in the form of a simple program that is applied to s to yield s’. The entire piece of code gets

executed in a single, atomic transition.

An execution fragment of A is either a finite sequence, sg,m1, $1, 72, ..., T, Sy, Or an infinite
. . Tk
sequence S, T1, 81,2, ..., T, Sy, .., of alternating states and actions of A such that sy —Fys;14

is a transition of A for every k£ > 0. Note that if the sequence is finite, it must end with a state.
An execution fragment beginning with a start state is called an execution. We denote the set of
executions of A by execs(A). A state is said to be reachable in A if it is the final state of a finite

execution of A.

2.2 Composition

The composition operation allows an automaton representing a complex system to be constructed
by composing automata representing individual system components. The composition identifies
actions with the same name in different component automata. When any component automaton
performs a step involving 7, so do all component automata that have m in their signatures. In
order for a countable set of automata to be compatible, their signatures {S;};c; must be such that

V1,7 € 1,i# j, the following hold:

o int(S;) Nacts(S;) =0

° out(Si) N ()Ut(Sj) =0

e No action is contained in infinitely many sets acts(.S;)

Upon composing a set of automata, output actions of the components become output actions

of the composition, internal actions of the components become internal actions of the composition,

and actions that are inputs to some components but outputs of none become input actions of



the composition. Formally, the composition S = [];.; S; of a countable compatible collection of

signatures {S;};c; is defined to be the signature with

e out(S) = Uicrout(S;)
. mt(S) = Uieﬂnt(Si)

° m(S) = Uielin(Si) — UZ'e[OUt(Si)

With that defined, it becomes easy to define the composition of a countable compatible collection

of automata {A;};cr. It is the automaton defined as

o sig(A) = [Lics s79(Ai)
o states(A) = [[;c; states(4;)
o start(A) = [[;c; start(A;)

e trans(A) is the set of triples s 5s' such that, for all i € I, if m# € acts(4;), then s; 55! €

trans(A;); otherwise s; = s/

2.3 Hiding

We now define an operation that “hides” output actions of an I/O automaton by reclassifying them
as internal actions. This prevents them from being used for further communication and means that

they are no longer included in traces.

We first define the hiding operation for signatures: if S is a signature and ¥ C out(S), then
hidey;(S) is defined to be the new signature S’, where in(S") = in(S), out(S’) = out(S) — X, and
int(S") = int(S) U .

The hiding operation for I/O Automata is now easy to define: if A is an automaton and
® C out(A), then hideg (A) is the automaton A’ obtained from A by replacing sig(A) with sig(A") =
hideg(sig(A)).



2.4 Simulations

The simulation proof in Section 7 relies on the tools developed for hierarchical automata. We
can show that a lower level automata implements a higher level automata by obtaining a one-way
relationship between the two, showing that for any execution of the lower-level automaton there is
a “corresponding” execution of the higher-level automaton. One typically does this by defining a

simulation relation between states of the two automata:

Let A and B be two I/O Automata with the same external interface; we think of A as the lower-
level automaton, and B as the higher-level one. Suppose F' is a binary relation over states(A) and
states(B), that is, F C states(A) x states(B). Then F is a simulation relation from A to B,

provided that both of the following are true:

1. If s € start(A), the F[s| N start(B) # 0.

2. If s is a reachable state of A, u € F[s], where u is a reachable state of B, and s 55" € trans(A),
then there is an execution fragment « of B starting with u and ending with some v’ € F[s],

such that trace(a) = trace(rw).

Lemma 1: Let £ be a simulation relation from A; to By, F5 be a simulation relation from Ay to
Bs, and F be the binary relation from states(A; x Ag) to states(By x By) where (uq,us) € F[(s1, $2)]

if and only if u; € Fi[s1] A ug € Fy[sg]. F' is a simulation relation from A; x Ay to By X Bs.
Proof:

We prove this by showing that F' adheres to the definition of simulation relation.

1. If (s1,s2) € start(Ay) x start(Asz), then I(ui, ug) € start(By) x start(Bg) such that (ui,ug) €
F[(s1,s2)]. From the definition of composition, we see that the start states of the composition
of two automata A and B are start(A) x start(B). We know from the simulation relation
that s; € start(A;) and sy € start(Ay) implies that Ju; € Fi[s1] such that uy € start(By)
and Juy € Fylsy] such that uy € start(Bg). Therefore, 3(ui,us) € F(s1,2)] such that

(u1,ug) € start(By, Ba).

2. If (s1, s2) is a reachable state of A; x Ag, (u1,u2) € F[(s1,s2)] is a reachable state of By x By,



and (s1,892) 5 (s],s5) € trans(A; x Asg), then there is an execution fragment a of By X
By starting with (u1,u9) and ending with some (u},u)) € F[(s),s5)] such that trace(a) =

trace(r).

For s; € states(Ay), u1 € Fi[s1], and s1 5], we know from the simulation relation that there
is an execution fragment a; of B; starting with u; and ending with some u} € F[s]], such
that tracep, (1) = tracea, (w). Similarly, for sy € states(As), us € Fy[so], and s 55!, we
know from the simulation relation that there is an execution fragment as of By starting with
ug and ending with some uf, € F[s}], such that tracep,(ay) = tracea,(w). Therefore, (u7,us)
transitions to (u),u)) by a1 - ag. As extsig(A1) = extsig(B1), and extsig(As) = extsig(Bz),
the composition A of A; and As will have the same external signature as the composition B
of By and By. Therefore, since tracep, (a1) = tracea, (w) and tracep,(ag) = tracea,(w), we

can conclude that tracep(a; - ag) = trace(m)

2.5 Strong Correspondence

In the consideration of the various automata which we define in this thesis, it will be meaningful
for us to draw formal parallels between individual automata in the specification and implementa-
tion. For example, it is intuitive that there is a relationship between the Memory Manager at the
specification level, and the Virtual Memory Manager at the implementation level; we would like
to formalize this relationship. However, because these automata do not have the same external
signatures, we cannot prove that one implements the other. Instead, we must define a new notion,
that of strong correspondence, which we will use as an intermediate step in our simulation proof:

Let A and B be two I/O Automata where in(B) C in(A),out(B) C out(A),int(B) C int(A); we
think of B as the higher-level automaton, and A as the lower-level one. Suppose F' is a binary
relation over states(A) and states(B), that is F' C states(A) X states(B). Then F is a strong

correspondence provided that both of the following are true:

1. If s € start(A), then F[s] N start(B) # (.

2. If s 58" € trans(A) Au € F[s] Am € acts(B) then Ju’ € F[s'] such that uSu' € trans(B).



3. f s 58" € trans(A) ANu € F[s] A7 ¢ acts(B) then u € F[s']

With this definition we will be able to show a strong correspondence between individual au-
tomata in the User Level model with automata in the Kernel Level model. We will then be able
to compose these strongly corresponding automata with each other to arrive at a composition of
automata in the specification that strongly correspond to a matching composition in the implemen-

tation. The need to compose strongly corresponding automata motivates the following theorem.

Let Ay, Ag, By, and By be four I/O Automata where in(By) C in(A), out(B1) C out(A),int(B1) C
int(Aq), and in(Bg) C in(As),out(By) C out(As),int(By) C int(As); we think of A; and As as
the lower-level automata, and B; and By as the higher-level ones. Suppose F}j is a strong corre-
spondence over states(A1) and states(Bi), and Fj is a strong correspondence over states(As) and
states(Bs). Let F' be a binary relation over states(A1) X states(As) and states(B7) x states(Bs),

where (u1,u9) € F[(s1,s2)] if and only if uy € Fi[s1] Aug € Fy[se].
Theorem 1: F' is a strong correspondence from states(A; x As) to states(By x By).
Proof:

We prove this by showing that F' adheres to the definition of strong correspondence. The first
property in the definition can be proven straightforwardly. The second and third properties combine
to form four cases with two automata: m € acts(B1) A acts(Bg), m € acts(By), m € acts(Ba), and

7 & acts(B1) V acts(By).

1. If (s1,s2) € start(A; x Ag) then I(ui,ug) € F[(s1,s2)] such that (u;,us) € start(B; x By).

From the definition of composition, we see that the start states of the composition of two
automata A and B are start(A) x start(B). We know from strong correspondence that
s1 € start(A;) and sy € start(Ay) implies that Ju; € Fi[s1] such that u; € start(B;),
and Jug € Fy[sg] such that us € start(Bz). Therefore, 3(ui, ug) € F|(s1,s2)] such that

(u1,u9) € start(By x Ba).

2. If (s1,82) 5 (8], 85) € trans(Ay x A2) A (u1,u2) € F[(s1,82)] AT € acts(By) A € acts(Bs)
then 3(u), uy) € F[(s],sh)] such that (u1,us) S (u),ub) € trans(By x By).
From the definition of strong correspondence we know that Ju} € Fi[s}] such that uy Sul,

and Ju, € Fy[s)] such that usSul. Therefore (u),ul) € F[(s],sh)] by the definition of

10



strong correspondence. From the definition of composition we know that (u1,ug) (), ub),

therefore 3(u},uh) € F[(s], sh)] such that (u1,u9) 5 (ul, ub) € trans(By x Ba).

3. If (s1,82) S (8], 85) € trans(Ay x Ag) A (ur,u2) € F[(s1,52)] A € acts(By) A ¢ acts(By)

then J(u),us) € F[(s),sh)] such that (u1,u9) 5 (u),ug) € trans(By x Bs).

From the definition of strong correspondence we know that Ju} € F[s!] such that u; Su), and
ug € Fy[s)]. Therefore (u},us) € F[(s),s})] by the definition of strong correspondence. From
the definition of composition we know that (u1,ug) 5 (u}, ug), therefore I(u}, ug) € F[(s], s5)]

such that (u1,u2) 5 (u),ug) € trans(By x Ba).

4. If (s1,82) (8], 8h) € trans(Ay x Ag) A (ur,uz) € F[(s1,s2)] A7 ¢ acts(B1) A € acts(Bs)

then J(uq,ub) € F[(s),s5)] such that (u1,u2) 5 (u1,uh) € trans(By x Bs).

This argument holds for exactly the same reason as the argument in the previous item.

5. If (s1,82) (8], 85) € trans(Ay x Ay) A (u1,u2) € F[(s1,82)] A7 ¢ acts(By) A ¢ acts(Bs)

then (u1,ug) € F[(s),s5)].

From the definition of strong correspondence we know that Ju; € Fi[s}] and uy € Fy[sh].

Therefore (u1,us) € F[(s),s})] by the definition of strong correspondence.

In addition to being able to compose strongly corresponding automata, we will need to com-
pose automata in the Kernel Level which correspond to nothing in the User Level with strongly
corresponding automata in the Kernel Level, and still maintain the strong correspondence. This is
necessary as there are automata in the Kernel Level, such as the Scheduler and Interrupt Handler,
which do not exist in any form in the User Level model, but must be included in the correspondence

so as to prove that the full Kernel Level operating system implements the User Level system.

Let A; and B be two automata and let F' be a strong correspondence from A; to B Let As be
an automaton which is compatible with A;. Define G to be a binary relation from A; x A to B,

where u; € G[(s1, s2)] if and only if uy € Fi[s1].
Theorem 2: G is a strong correspondence from A; x As to Bj.

Proof: Intuitively, the states of As have no impact on the correspondence, and therefore, if

F' is a strong correspondence between A, and Bs, then the correspondence will still hold with the

11



addition of the unaccounted for states of A,. Formally the result is derived from the definition of

strong correspondence.

1. If (s1,s2) € start(A; x Ag) then Ju; € G[(s1, s2)] such that u; € start(B).

From the definition of composition, we see that the start states of the composition of two
automata A and B are start(A) x start(B). We know from strong correspondence that
s1 € start(A;) implies that Ju; € F[s;] such that u, € start(B). Therefore, Ju; € [(s1, $2)]

such that u; € start(B).

2. If (s1,82) 5(s), 85) € trans(A; x A2) Auy € F[(s1,82)] A7 € acts(By)
then Ju), € F[(s,,')] such that uy Su} € trans(By)
From the definition of strong correspondence we know that Ju} € F[s)] such that uy Sul.

Therefore u} € F[(s},s5)] by the definition of F. Therefore Ju} € F[(s},s})] such that

u Sul € trans(By)
3. If (s1,82) 5(s), 85) € trans(A; x A2) Auy € F[(s1,52)] A7 ¢ acts(By)
then uy € F[(s], sb)]

From the definition of strong correspondence we know that Ju; € F[s|]. Therefore u; €

FI(s!,s5)] by the definition of F. Therefore u; € F[(s, s)].

With this machinery we can provide strong correspondences between many of the component
automata of the two models, providing interesting results in their own right, as well as simplifying

the act of proving the simulation between the two fully composed operating systems.

2.6 From Strong Correspondence to Simulation

As the goal of the strong correspondence relation is to enable a simulation proof, the final steps in
the proof require converting a strong correspondence relation to a simulation relation. We do this

in two steps:

Theorem 3: If F' is a strong correspondence from A to B, and ¥ C out(A), then hidey (A)

strongly corresponds to hidex (B).

12



Proof: This is derived easily from the definition of strong correspondence. Hiding is merely
the act of changing output actions to internal actions. In the definition of strong correspondence
we see that there is never any consideration of action types, merely the existential evaluation of
whether the action is or is not present in the automaton. Therefore, the action of hiding, which

consists entirely of change action types, has no impact on strong correspondence.

Theorem 4: If F is a strong correspondence from A to B and in(A) = in(B),out(A) =
out(B),int(A) D int(B) then A simulates B.

Proof: We show that the definition of strong correspondence between A and B, augmented
with the fact that in(A) = in(B), out(A) = out(B), is strong enough to imply the definition of a

simulation relation.

Directly from the first requirement of strong correspondence we know that if s € start(A), then

Ju € F[s] N start(B).

From strong correspondence we know that if s is a reachable state of A, Ju € F[s] which is
a reachable state of B. We also know that all actions 7 in A correspond either to 7 in B or the

empty transition. So there are two cases:

1. m € trans(B). In this case the execution fragment « is s,m,s’, and therefore trace(a) =

trace(r).

2. m ¢ trans(B). In this case the execution fragment o = e. We know that = in A must be

internal, because otherwise extsig(A) # extsig(B), and therefore trace(a) = trace(m).

So, from the additional condition that in(A) = in(B), and out(A) = out(B), strong correspondence

implies simulation relation. O

3 Preliminary Definitions and Conventions

The following notation is used throughout the rest of the thesis in the descriptions of the I/O

Automata models.

13



e Predefined Sets and Variables:
Booleans the set {TRUE, FALSE}

Bytes the set of arrays of eight {0, 1}

ByteArrays the set of arrays of Bytes

Chars the set of all ASCII characters

Files the set of all possible file names in the File System

Paths the set of all possible file paths in the File System

Procs the set of all processes. All possible processes are in this set, each with an

infinite number of copies, so that there is no limitation to any permutation
of processes which can be run on the operating system.

Sockets the set of all possible network connections from the local machine

e AllocateArrays:
An AllocateArray manages a large array which it allocates, upon request, into separate con-
tiguous subarrays, or blocks. Each block is a pair (head,n) where head is the index in the
large array of the first element of the subarray, and n is the length of the block. All currently
allocated blocks are maintained in an internal set by the AllocateArray. The AllocateArray

structure implements the following operations:

Empty(n) Initialize an AllocateArray to manage an array of size n, no blocks allocated.
FindBlock(p) Find the block in the AllocateArray with index p in the large array.
If such a block exists, return it, otherwise return FAIL.
NewBlock(n) Find an unused block of size n. Return the index of the head of the block
if one exists, else return FAIL.
RemoveBlock(p) Remove the block starting with first index p. FAIL if
such a block does not exist.
AddBlock(p,n) Add the block (p,n) to the internal set. FAIL if any

of the specified locations are already in a subarray.

e Queues:
A Queue is a list of elements which adds new elements to the end of the list, and removes
elements from the front of the list. In addition to these standard operations the queues used
throughout the thesis have a few additional properties which enhance their use. Queues used

here have the following operations:

14



Empty Initialize a queue to hold no elements.

Enqueue(z) Add an element z to the end of the queue.

Dequeue Remove an element from the front of the queue. FAIL if empty.

Head Return the value of the element at the front of the queue without removing it.

Remove(z)  Remove the first instance of element z from the queue and maintain the queue
structure.

Size Return the number of entries currently stored in the queue.

o Sets:

Sets have all the typical operations of a set. I will primarily use U,N,+, —, C, C.

e State variables of the form State,:

For each process x there is a unique instance of the state variable State,.

e Actions of the form Action,

For each process x there is a unique action Action,.

4 User Level Specification

4.1 Description

In many ways, the process of building a proper formal design for a computer system is a microcosm
of building the system itself. In building a computer system, the first step taken is making a
high level specification detailing system component interfaces and functions. So it is in the formal
design process. We present here, in the form of the User Level model, an abstract specification of
an operating system detailing the interfaces between the various components of the system, and

outlining the required functionality of each of the components.

In specifying an operating system, we consider what it interacts with and the role that it plays
in that interaction. One view of an operating system, and perhaps the easiest one to consider
initially, is as a resource manager, distributing the hardware resources of the computer system
to the processes running on it. This is the perspective that we take in creating the User Level
model of the operating system. Our concern is not with the interaction between the operating

system and the hardware; rather we are interested in the operating system/process interface, and
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the interactions that occur across that boundary. In this capacity, we investigate the process’ view

of the operating system, and how the two interact.

Memory File System
Manager Manager
) I
Network - Process Console
ALU Manager Manager Manager
) )
Y Y Y Y
O O O
Processes

Figure 1: User Level model: conceptual framework

Much of our specification of the operating system at this level is motivated by our description
of the processes that interact with it. We model processes here as independent, concurrently run-
ning automata, interacting with the operating system through the system call interface. As such,
that interaction consists of requests for resources and the responses received for those requests.
Processes are not concerned with the means by which operating systems provide resources, merely
that resources are provided in a consistent and reliable manner. We define the resources of interest
to a process to be: memory, console read/write capabilities, file system access, network access,
computational resources, and process life cycle management. Memory resources, managed by the
Memory Manager, include such functionality as acquiring and freeing memory, as well as reading
from and writing to it. Console resources, governed by the Console Manager, control the simple
I/0O devices for displaying results to and receiving input from the user. File system and network

resources allow for the manipulation of files and handling of network connections. These resources
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are controlled by the File System and Network Managers respectively. Computing resources sup-
ported by the ALU assist processes in performing arithmetic operations and storing the results of
these operations in per process registers. Finally, Process life cycle management is handled by the
Process Manager, and deals with such process requests as spawning new processes, process exiting,
and system halt. As we see in the User Level I/O Automata model, Figure 1, each of these re-
sources is modeled by a separate automaton. By and large, the operating system automata at this
level are independent; the only interconnections are due to the Process manager, which notifies the
different resource managers when a process has been created or killed, and the ALU, which stores
registers in the Memory Manager. Communication between automata in the figure are represented
by arrows—each arrow head represents one direction of communication. Because there is no limi-
tations on the number of processes, they are represented by the large block titled “Processes”, with
an indeterminate number of them contained within. There is in fact a separate communication
link between every process and operating system automaton, but for graphical reasons these are

represented as one single link for all processes.

Because the User Level model, in trying to maintain the simplicity and streamlined aspects
of the system call interface, takes the view of the operating system from the process perspective,
it does not model all aspects of real operating systems. The processes are modelled as running
independently and concurrently; consequently there is no role for scheduling or resource sharing
in this model. Notably, this is not a failing of the model, rather it is simply an interesting point
about the need for scheduling. The idea of a multi-process operating system does not demand
scheduling it only requires that the operating system provide multiple processes with multiple
resources at what appears to the processes to be the same time. Running all the processes on one
processor and dividing processor time with a scheduler is not the only solution to this problem, it
is a choice of implementation. Clearly it would be possible to have a separate processor for each
process (as there are in some parallel machines), and this would require no scheduling at all. We
already see that the specification, in forcing us to state exactly what we require from the operating

system, has eliminated certain aspects of the system and focused heavily on others.

While the abstractions which we make in defining the User Level model hide some of the
intricacies of real modern operating systems, the resultant operating system specification does well
in providing the highest level design of an operating system. This is exactly what we are looking

for in this model—an abstract specification not necessarily of what an operating system looks like,
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but of what functionality it provides. Later, in the Kernel Level model, we will see more aspects
of real modern operating systems, including interrupt driven I/O, process scheduling, and virtual
memory management. These concepts are critical to the success of a real operating system, but

they do not affect the functional specification which we desire in the User Level model.

4.2 Process Definition

The Process definition motivates the rest of the operating system design. Defined to be an inde-
pendent, concurrently running automaton, the Process represents the view of the operating system
environment maintained by a typical program. Ignorant of any sort of resource sharing or limita-

tions, the Process runs under the assumption of a concurrent system with contention free resources.

Processes access all operating system resources through a well-defined system call interface with
the operating system. The operating system is implemented so as to support that interface, and all
processes must be designed to work within its limits. Through understanding the Process’ interac-
tion with the operating system, one understands the reasons for the particular implementation of
each of the OS modules at both levels of specificity described in this thesis. In Figure 2 one sees
the signature of the Process and the single piece of process state that is necessary for the process to
interact properly with the operating system. For the most part, there is no limitation on the actions
of processes; this is intended to model real programs which come in all forms. The only action that
is fixed is the Activate, action, which enforces the concept of killing and creating processes. Even
this action, however, is not required to be exactly as stated; it need only to guarantee that it sets

the Active variable according to the input.

MallocResult;;, MemReadResult,, and MemWriteDone,, are all inputs from the Memory Manager,
with the complementary output actions of Malloc,, Free,, MemRead, and MemWrite,. Input from
the Process Manager comes only from the input action Activate,, which sets the process’ Active
boolean state variable, while the process outputs Halt, Exit,, KillProc and Spawn. Input from the
console manager comes from ConsoleReadResult; and ConsoleWriteResult,, with output going to
it in the forms of ConsoleRead, and ConsoleWrite,. The File System Manager receives from the
process the outputs FSOpen,, FSCreate,, FSReadAt;, FSWriteAt,, FSClose;, and FSDelete,. Simi-
larly, the process receives as input from the File System Manager, FSOpenResult,, FSCreateResult,,

FSReadAtResult,, FSWriteAtResult,, FSCloseResult,, and FSDeleteResult,. The Network Man-
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Process

Signature

Input: Output:

MallocResult, (p), where p € N U{FAIL}
MemReadResult, (v), v € Bytes
MemWriteDone,,
Activate, (b), b € {0,1}
ConsoleReadResult; (y), y € Chars U{EOF}
ConsoleWriteResult, (y), y € {Busy, DONE}
FSOpenResult, (y, path, z),

y € Files,path € Paths,z € FilesU{FAIL}
FSCreateResult, (y, path, z),

y € Files,path € Paths,z € Files U {F}
FSReadAtResult, (y, path, A), y € Files,

path € Paths, A € ByteArrays U {FAIL}
FSWriteAtResult, (y, path, z),y € Files,

path € Paths,z € {DONE, FAIL}
FSCloseResult, (y, path, z),y € Files,

path € Paths,z € {DONE, FAIL}
FSDeleteResult, (y, path, z),y € Files,

path € Paths,z € {DONE, FAIL}
NetOpenResult, (y, z),

y € Sockets,z € {DONE,FAIL}
NetReadResult, (y, A), y € Sockets,

A € ByteArrays U{DONE,FAIL}
NetWriteResult, (y, 2),

y € Sockets,z € {DONE, FAIL}
NetCloseResult, (y, z),

y € Sockets,z € {DONE, FAIL}
OperationResult, (opVal), x € Procs,

opVal € N

Mallocz(n), n € N, z € Procs
Free,(p), p € N
MemRead,(p), p € N
MemWrite, (p,v), p € N, v € Bytes
Halt
Exit,
Spawn(y), y € Procs
KillProc,
ConsoleRead,,
ConsoleWrite, (c), ¢ € Chars
FSOpen, (y, path), y € Files, path € Paths
FSCreate, (y, path,n), y € Files,path € Paths,
neN
FSReadAt, (y, path,n, m), y € Files,
path € Paths,n,m € N
FSWriteAt,. (y, path,n, m, A), y € Files,
path € Paths,n,m € N, A € ByteArrays
FSClosex (y, path), y € Files, path € Paths
FSDelete, (y, path), y € Files,path € Paths
NetOpen,(y), y € Sockets
NetRead.(y,n), y € Sockets,n € N
NetWrite, (y, A), y € Sockets, A € ByteArrays
NetClose, (y), y € Sockets
OperationReq. (op) =z € Procs,
op € Operations

State
Active € Booleans, TRUE if the process is activated.
Actions

Input Activate, (b)
Eff: ifb=1
Active := TRUE
else
Active := FALSE

All internal and output actions in the process must have
Active =TRUE as a precondition.

Figure 2: The Process (User Level Specification)
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ager provides the process with the inputs NetOpenResult, NetReadResult, NetWriteResult, and
NetCloseResult, and receives the outputs NetOpen, NetRead, NetWrite, and NetClose. Finally, the
process communicates to the ALU with the output OperationReq, (op), and receives the results in

the input OperationResult(opV al).

4.3 Memory Manager

In the User Level specification, the Memory Manager is responsible for the allocation and deallo-
cation of memory space to the processes, as well as reading from and writing to allocated memory.
The physical implementation of the memory is abstracted away from the processes, as they can only
access memory by passing pointers to the operating system through a series of system calls. Upon
creation, each process is allocated a process space from which it may use memory; this space is
fixed for the duration of the process. There is no notion of Virtual Memory, as exists in the Kernel

Level implementation, so the number of processes is limited by the size of the memory space.

The state of the Memory Manager is primarily kept in MemSpace,,, Used,, and Freelist, which
together comprise the memory state for each Process,. These per process structures keep track of
the memory that has been allocated and that can still be allocated to each process, as well as all

of the data values that are stored per process.

The paths of requests for Malloc, MemRead and MemWrite and Free go between the Memory
Manager and the processes, and are all fairly similar. Each of the first three requests makes some
decisions and then enqueues a command in the Responses queue, to be picked up by the output
actions MallocResult, MemReadResult, and MemWriteDone respectively. The Free request differs
from these three actions in that it exhibits no external response. MemRead and MemWrite both
use the Used, data structure to evaluate if a memory request is validly within memory already
allocated to the process. Similarly, the Malloc input action uses the Freelist, to determine if there
is any memory available to be allocated. If such free memory exists, it is added to the Used,

structure and removed from the Freelist,.

Requests for CreateProc and KilledProc are handled in a similar fashion to the other input
actions, with the difference that communication is between the Memory Manager and the Process
Manager. Each input action simply enqueues the command (CREATEPROC, ) in the case of
CreateProc, or (KILLEDPROC, z) in the case of KilledProc, in the Responses queue. Each of
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Memory Manager

Signature
Input: Output:
Mallocz(n), n € N, z € Procs MallocResult, (p), where p € N U{FAIL}
Free.(p), p € N MemReadResult, (v), v € Bytes
MemRead,(p), p € N MemWeriteDone,
MemWrite, (p,v), p € N, v € Bytes KillProc(z)
KilledProc(z), x € Procs KilledProcResult(z,v), = € Procs,
CreateProc(z), € Procs ve {DONE,FAIL}
CreateProcResult(z,v), x € Procs,
v € {DONE, FAIL}
State

SPACESIZE, fixed size of process space.
MemSpace,, the memory for process z, an array of size MAXHEAP + MAXSTACK. Initially all 0.
Used,, an AllocateArray holding arrays from MemSpace,, the set of bytes used by process z, initially Empty.

Freelist,, an AllocateArray holding arrays from MemSpace, consisting of bytes that have not yet been allocated in
the heap of process . Empty when process z is not active.

Responses a queue of triples (z,y,2), x € {KILLPROC, KILLPROCRESULT,CREATEPROCRESULT,
MALLOC, MEMREAD, MEMW RITE,REGLOADRESULTY, y € Procs,z € {N,FAIL, DONE,0}.
Initially Empty.

Actions
Input Malloc,(n) InputMemWrite, (p, v)
Eff: p .= Freelist,.NewBlock(n) Eff: if Used,.FindBlock(p)
if p= FAIL then Responses.Enqueue(MEMW RITE, x,p,v)
Responses. Enqueue else
(MALLOC,z, FAIL) Responses. Enqueue( KILLPROC, x)
else
Freelist, . RemoveBlock(p) Input CreateProc(z)
Used..AddBlock(p, n) Eff: y:= DONE or y := FAIL
Responses. Enqueue(M ALLOC, x, p) non-deterministically
if y= DONE
Input Free,(p) Freelist,.Size := SPACESIZE
Eff: if Used,.FindBlock(p) Used, :=
Freelisty. AddBlock(p, n) Responses.Enqueue
Used,,. RemoveBlock(p) (CREATEPROC, z,y)
Input KilledProc(x)
Input MemRead, (p) Eff: y:= DONE or y:= FAIL
Eff: if Used,.FindBlock(p) non-deterministically
Responses.Enqueue(MEMREAD, x, p) Freelist, ==
else Responses.Enqueue(KILLEDPROC, x,y)

Responses.Enqueue(KILLPROC, x)

Figure 3: Memory Manager (User Level Specification)
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Memory Manager

Actions (Cont.):

Output KilledProcResult(z, y) Output MemReadResult, (v)
Pre: Responses.Head = Pre: Responses.Head = (MEMREAD, x,p)
(KILLEDPROC, ,y) Eff: v:= MemSpace,[p)
Eff: Responses.Dequeue Responses. Dequeue
Output MemWriteDone, Output KillProc(x)
Pre: Responses.Head = (MEMW RITE, x,p,v) Pre: Responses.Head = (KILLPROC, x)
Eff: MemSpace,[p] := v Eff: Responses.Dequeue

Responses.Dequeue
Output CreateProcResult(z,y)

Output MallocResult, (p) Pre: Responses.Head =
Pre: Responses.Head = (M ALLOC, x,p) (CREATEPROC, x,y)
Eff: Responses.Dequeue Eff: Responses.Dequeue

Figure 4: Memory Manager (User Level Specification) Cont.

their respective output actions CreateProcResult and KilledProcResult decides non-deterministically
whether or not the action will succeed, and sends a response to the Process Manager. The non-
determinism in the output actions simulates the interaction between the memory module and the
file system that occurs in real implementations of operating systems. In creating a process space,
an operating system tries to allocate swap space in the file system for the virtual memory of a
process, and may find out that there isn’t enough disk space to allocate the swap. This results in
a failure to create the process that is unrelated to the state of the main memory. Similarly, in the
killing of a process, the file system may fail to delete the swap space of a process, resulting in a
failure that is outside the control of the Memory Manager. We therefore model this potential for

failure with a non-deterministic failure when creating or killing a process.

The output KillProc is output whenever a process requests to read or write memory that it does
not own. In this case the Memory Manager determines that the process is attempting an illegal
action, and sends the KillProc command to the Process Manager requesting that the process be

terminated.

4.4 Process Manager

The User Level specification of the Process Manager is an automaton that controls the life cycles of

processes. It is responsible for handling actions that activate and deactivate processes, including a
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Process Manager

Signature

Input:

Halt()

Exitz ()

Spawn(y), y € Procs

OnOff(b), b € {0,1}

KillProc(z), € Procs

KilledProcResult(z,v), * € Procs,
v € {DONE, FAIL}

CreateProcResult(z,v), x € Procs,
v € {DONE, FAIL}

State

Output:
Activate, (b), b € {0,1}
KilledProc(z), € Procs
CreateProc(z), = € Procs

Active, C Procs, the set of all active processes, initially .

Jobs a queue of doubles (z,y), r € {CREATEPROC,KILLEDPROC},y € Procs. Initially Empty.

Responses, a queue of pairs (z,y), © € Procs, y € {0,1}. Initially Empty.

Shell, a special process which is activated when the process handler is turned on.

On, € Booleans, TRUE if the machine is on. Initially FALSE.

Actions

Input Halt,
Eff: Vx € Active
Jobs.Enqueue(KILLEDPROC, )

Input Exit,
Eff: Jobs.Enqueue(KILLEDPROC, x)

Input OnOff(x)
Eff: if z =1 A On = FALSE
On := TRUE
Jobs.Enqueue(CREATEPROC, Shell)
else if z =0 A On = TRUE

On := FALSE

YV € Active
Jobs.Enqueue(KILLEDPROC, x)

Input KillProc(z)
Eff: Jobs.Enqueue(KILLEDPROC, )

Input Spawn(y)
Eff: Jobs.Enqueue(CREATEPROC,y)

Input KilledProcResult(z, v)
Eff: if v=DONE

Responses. Enqueue(z,0)

Input CreateProcResult(z,v)
Eff: if v=DONE
Responses.Enqueue(z, 1)

Output Activate, (b)
Pre: Responses.Head = (x,b)
Eff: ifb=0
Active := Active — {z}
else
Active ;= Active + {z}
Jobs.Dequeue

Output KilledProc(z)
Pre: Jobs.Head = (KILLEDPROC, )
Eff: Jobs.Dequeue

Output CreateProc(z)
Pre: Jobs.Head = (CREATEPROC, x)
Eff: Jobs.Dequeue

Figure 5: Process Manager (User Level Specification)
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system OnOff switch, and the Halt, Exit,, Spawn, and KillProc input actions. The essential control
structure of the Process Manager is the set Active, which holds all processes that are currently

running.

Essentially, all commands to kill a process follow the same path of actions, whether it is Halt
or OnOff(0) that kill all processes, or Exit, or KillProc(z) that kill only one process at a time.
An initial input action comes in signalling to the Process Manager that a process x needs to be
killed. That action is queued in the Jobs queue in the form (KILLEDPROC,z). The output
action KilledProc is then output to the Memory Manager, Network Manager and the File System
Manager, notifying them that a process was killed. The Memory Manager replies to this action
with KilledProcResult, which, as detailed in the Memory Manager section, fails non-deterministically.
The Process Manager, having received the result from the Memory Manager, queues a deactivation
command in the form (z,0) in the Responses queue, if the result from the KilledProcResult was not
FAIL. This response is then output through the command Activate,(0) to the process, shutting it

down.

The path of actions taken to create a process from the OnOff(1) and Spawn(y) commands is
very similar to those taken to kill processes. The same process is used to send out the CreateProc
output as was used for KilledProc. The same procedure occurs in the Memory Manager, where it
non-deterministically outputs a FAIL or DONE for the creation of the process which is received
in the CreateProcResult input in the Process Manager. Given a DON E response, this is then sent

through the Responses queue to the Activate, output action.

The Active state is only modified in the Activate, output, as that action is the single point

through which all successful create and kill process actions pass.

It is interesting to note that, in terms of theoretical modelling difficulty, it is very easy to model
the concept of an initial bootup Shell in the operating sytem. We simply specify a special process
to be that shell, and turn it on automatically when the machine is turned on. In practice, one
would like such a process to be designed so as to enable user input to request the spawning of other
processes. Theoretically, however, such capabilities are not necessary, as the shell is simply the

process which is turned on at startup of the computer.
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4.5 Console Manager

The Console Manager controls the reading from and writing to the single console of the computer.
Essentially, the Console simply keeps the input from the user (not a process, the actual human
user) in Buffer, and gives it out to the processes that request it, while simultaneously outputting
to the screen any data that processes ask it to write to the output console. The only limitation on
reading and writing is that no two write commands can be issued at the same time the console
remains busy during a write command, and cannot receive any other write requests until it finishes

its current task.

The Console Manager is a relatively simple automaton. A read request comes into the automa-
ton in the form of a ConsoleRead, command, which is immediately queued up in the Jobs queue in
the form (READ, ). This command is then immediately handled by the internal Read command,
which enqueues a response in the Responses queue of the form (READRESULT, x,c) where ¢ is
the first character in Buffer if it is not empty, and EOF otherwise. This result is then dispatched

to the process through the output ConsoleReadResult.

Write requests occur in almost the same way, with the initial request coming in as ConsoleWrite,(c),
and being enqueued in the Jobs queue as the command (WRITESCREEN, z,c) if the console is
not busy writing to the screen already. This is then picked up by the internal action WriteToScreen,
which writes the character to the screen, sets the Busy variable back to FALSE, and the enqueues
a response of (WRITESCREEN,z, DONE) in the Responses queue. If the console is busy, then
it rejects the write request immediately and enqueues a response of (WRITERESULT,z, FAIL)
in the Responses queue. In either case, the result is output by the ConsoleWriteResult command,

which goes directly to the process which made the write request originally.

4.6 ALU

The ALU at the User Level represents the computational resources provided by the processor. It
not only services computational operations, but it stores the results for the processes in sets of per
process registers. In keeping with the model of the processes at the User Level, we model the ALU
in such a way so as to allow for concurrent access to it from multiple processes. This demands that

the ALU be able to serve multiple processes at any given time, switching among their respective
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Console Manager

Signature

Input:
ConsoleRead,
ConsoleWrite, (¢), ¢ € Chars

Output:
ConsoleReadResult; (y), y € Chars U{EOF'}
ConsoleWriteResult, (y), y € {FAIL, DONE}

State

Internal:

Read
LoadBuffer
WriteToScreen(c)

Buffer, a queue of Chars, the items input from the console and not yet read. Initially Empty.

Responses a queue of triples (z,y,2), * € {WRITERESULT,READRESULT}y € Procs,z € Chars U

{EOF, Busy, DONE}. Initially Empty.

Jobs, a queue of pairs (z,y),z € {WRITESCREEN,READ},y € Chars to be output to the screen. Initially

Empty.

Busy, boolean variable. TRUE when the console is writing to the screen. Initially FALSE.

Actions

Input ConsoleRead,
Eff: Jobs.Enqueue(READ, x)

Input ConsoleWrite, (c)
Eff: if Busy
Responses.Enqueue(W RITERESULT,
x, FAIL)
else
Busy := TRUE
Jobs.Enqueue(WRITESCREEN, z,c)

Internal Read
Pre: Jobs.Head = (READ, x)
Eff: if Buffer not empty
¢ := Buffer.Dequeue
else
c:= EOF
Responses. Enqueue(READRESULT, x, c)

Internal LoadBuffer
Pre: Input character ¢ from User
Eff: Buffer.Enqueue(c)

Internal WriteToScreen(c)
Pre: Jobs.Head = (WRITESCREEN, x,c)
Eff: Jobs.Dequeue
Busy := FALSE
Responses. Enqueue(W RITERESULT,
z, DONE)

Output ConsoleReadResult, (y)
Pre: Responses.Head = (READRESULT, xz,y)

Eff: Responses.Dequeue

Output ConsoleWriteResult, (y)
Pre: Responses.Head = (WRITERESULT,x,y)

Eff: Responses.Dequeue

Figure 6: Console Manager (User Level Specification)
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ALU

Signature
Input: Output:
OperationReq, (op) x € Procs, op € Operations OperationResult, (opVal), x € Procs, opVal € N
KillProc(z), = € Procs
Internal:

Operate(z, op), x inProcs, op € Operations

State
Registers, a table of registers for all processes, indexed by process. Initially all §.
OutstandingOps, a set of all process-operation pairs for which the operations are still outstanding. Initially .

Responses, a queue of results of the operations, (z,y,2), x € {KILLPROC,OPRESULT}, y € Procs, z € opVals.
Initially Empty.

Actions
Input OperationReq. (op) Output OperationResult, (opVal)
Eff: if Jy € Operations such that Pre: Responses.Head =
(z,y) € OutstandingOps (OPRESULT, x,opVal)
Responses. Enqueue(OPRESULT, x, FAIL) Eff: Responses.Dequeue
else

OutstandingQOps := OutstandingOps U (z,0p)  Output KillProc(zx)
Pre: Responses.Head = (KILLPROC, x)
Internal Operate(z, op) Eff: Responses.Dequeue
Pre: (z,0p) € OutstandingOps

Eff: do operation, store in Registers|z]
if operation raises exception
Responses. Enqueue( KILLPROC, x)
else
Responses. Enqueue
(OPRESULT, x,opVal)
OutstandingOps := OutstandingOps — (x, op)

Figure 7. ALU (User Level Specification)
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register sets. In order to model this functionality simply, we describe the ALU as being able to
directly access all the registers of all the processes. Each process is only allowed to operate on its

own registers, and has no knowledge of those belonging to other processes.

ALU requests come in the form of the OperationReq,(0op) input action, asking the ALU to do
operation op for process z. The ALU places the operation into the OutstandingOps set, in order for
it to be executed. The internal action Operate pulls operation requests out of the QutstandingOps
set, performs the operation, and enqueues the result in the Responses queue. If the operation
requested resulted in an exception, for example if the process requested to divide by zero, the ALU
enqueues a KILLPROC command which is sent to the Process Manager via the output command
KillProc. In the usual case of a successful operation, it enqueues an OPRESU LT command for the

process which requested the operation, resulting in the output action OperationResult,(opVal).

4.7 File System Manager

The File System Manager interfaces the processes to the long term data store of the machine. This
interface provides the processes with a medium within which they can store data which will persist
when the process or computer is turned off. Using a basic tree structure to store the files, each
file is stored according to its path and its filename. All files are leaves in the DirectoryStruct data
structure, and the path of the file dictates the nodes traversed from the root to the file. All file
sizes are specified upon creation of the files and do not change throughout the lifetime of the file.

The DirectoryStruct data structure implements the following five operations:

1. Add(z,path,dir), create a node with name z, add it to the tree in the path specified by path.
If dir = TRUE make the node a directory, otherwise make it a file. If path doesn’t exist, or

if the last node in the path is a file and not a directory, return FAIL.

2. Remove(z, path), delete the node with name z at location path from the tree, return FAIL

if does not exist.
3. Find(x,path), find the file z at location path. Return TRUE if it exists, otherwise FALSE.

4. Read(z,path,n,m), read m bits of data from file x starting at location n. Return FAIL if

is not at least n + m bits long, otherwise return the bit array from n through n + m.
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File System Manager

Signature

Input:
FSOpen,(y, path), y € Files, path € Paths
FSCreate, (y, path, dir,n), y € Files,
path € Paths,n € N
FSReadAt, (y, path,n, m), y € Files,
path € Paths,n,m € N
FSWriteAt, (y, path,n, m, A), y € Files,
path € Paths,n,m € N, A € ByteArrays
FSClose, (y, path), y € Files,path € Paths
FSDelete, (y, path), y € Files, path € Paths
KilledProc(z), € Procs

Internal:
Open Create
ReadAt  WriteAt
Close Delete

State

Output:

FSOpenResult, (y, path, z), y € Files,
path € Paths, z € Files U {FAIL}

FSCreateResult, (y, path, z), y € Files,
path € Paths,z € Files U{FAIL}

FSReadAtResult, (y, path, A), y € Files,
path € Paths, A € ByteArrays U {FAIL}

FSWriteAtResult, (y, path, z), y € Files,
path € Paths,z € {DONE, FAIL}

FSCloseResult, (y, path, z), y € Files,
path € Paths,z € {DONE,FAIL}

FSDeleteResult, (y, path, z), y € Files,
path € Paths,z € {DONE, FAIL}

Open.,, set of files, specificied by name and path, currently held by process z. Initially Empty.

DirectoryStruct, a tree structure for storing files by name and path, representing the directory structure of the
system. All internal nodes are directories, with files only residing at the leaves of the tree. Each file name is

unique from its siblings. Initially Empty.

FSCommands, the set {OPEN, CLOSE, CREATE, DELETE, READAT, W RITEAT?.
FSResults, the set {DONE, FAIL} U Bytes U ByteArrays.

Responses a queue of quintuples (v, w,xz,y,z), v € FSCommands, w € Procs,x € Files,y € Paths,z € FSResults.

Initially Empty.

Jobs a queue of septuples (t,u,v,w,x,y,2), t € FSCommands,u € Procs, v € Paths, w € Files,x € N, z €

ByteArrays. Initially Empty.
Actions

Input FSOpen,(y, path)
Eff: Jobs.Enqueue(OPEN, x,y, path)

Input FSCreate, (y, path, dir,n)
Eff: Jobs.Enqueue
(CREATE, x,y, path,dir,n)

Input FSDelete, (y, path)
Eff: Jobs.Enqueue
(DELETE, z,y,path)

Input FSReadAt, (y, path,n, m)
Eff: Jobs.Enqueue
(READAT, z,y, path,n, m)

Input FSClose, (y, path)
Eff: Jobs.Enqueue
(CLOSE, z,y, path)

Input FSWriteAt, (y, path,n, m, A)
Eff: Jobs.Enqueue
(WRITEAT,x,y,path,n, m, A)

Input KilledProc(x)
Eff: Open, :=10

Internal Open
Pre: Jobs.Head = (OPEN, x,y, path)
Eff: if DirectoryStruct.Find(y, path)V
Vz, (y, path) N Open, =0
Responses. Enqueue
(OPEN,z,y,path, DONE)
Open,, := Open, U {(y, path)}
else
Responses. Enqueue
(OPEN,z,y,path, FAIL)
Jobs.Dequeue

Figure 8: File System Manager (User Level Specification)



File System Manager

Actions (Cont.):

Internal Create
Pre: Jobs.Head = (CREATE, x,y, path,dir,n)
Eff: if DirectoryStruct.Find(y, path)
Responses. Enqueue
(CREATE,x,y,path, FAIL)
else
Responses. Enqueue
(CREATE,x,y,path, DONE)
DirectoryStruct.Add(y, path, dir, n)
Jobs.Dequeue

Internal Delete
Pre: Jobs.Head = (DELETE, z,y, path)
Eff: if DirectoryStruct, Find(y, path) A
Vz,y ¢ Open,
DirectoryStruct. Remove(y, path)
Responses.Enqueue
(DELETE, x,y,path, DONE)
else
Responses.Enqueue
(DELETE, x,y,path, FAIL)
Jobs.Dequeue

Internal ReadAt
Pre: Jobs.Head = (READAT, x,y, path,n,m)
Eff: if y € Open,
A := DirectoryStruct.Read(y, path, n, m)
Responses. Enqueue
(READAT, z,y,path, A)
Jobs.Dequeue

Internal Close
Pre: Jobs.Head = (Close, z,y, path)
Eff: if (y,path) € Open,,
Open,, = Open, — {(y, path)}
Responses.Enqueue
(CLOSE, x,y,path, DONE)
else
Responses.Enqueue
(CLOSE, x,y,path, FAIL)
Jobs.Dequeue

Internal WriteAt
Pre: Jobs.Head =
(WRITEAT,z,y,path,n, m, A)
Eff: if (y,path) € Open,
result =
DirectoryStruct . Write(y, path,n,m, A)
else
result = FAIL
Responses. Enqueue
(WRITEAT,z,y, path, result)
Jobs.Dequeue

Output FSOpenResult, (y, path, z)
Pre: Responses.Head = (OPEN, x,y, path, z)
Eff: Responses.Dequeue

Output FSCreateResult, (y, path, z)
Pre: Responses.Head = (CREATE, z,y,path, z)
Eff: Responses.Dequeue

Output FSCloseResult, (y, path, z)
Pre: Responses.Head = (CLOSE, x,y, path, z)
Eff: Responses.Dequeue

Output FSDeleteResult, (y, path, z)
Pre: Responses.Head = (DELETE, x,y,path, z)
Eff: Responses.Dequeue

Output FSReadAtResult, (y, path, A)
Pre: Responses.Head = (READAT,x,y,path, A)
Eff: Responses.Dequeue

Output FSWriteAtResult, (y, path, z)
Pre: Responses.Head = (W RITEAT, z,y,path, z)
Eff: Responses.Dequeue

Figure 9: File System Manager (User Level Specification) Cont.



5. Write(x,path,n,m, A), write A, a bit array of length m, to file x starting at location n.
Return FAIL if z is not at least n + m bits long, otherwise DONE.

All file system actions, with the exception of KillProc, deal with file manipulation and communi-
cate directly with the processes. Much like the automata we have seen earlier, all of the file related
input actions of the File System Manager enqueue their input request into the internal Jobs queue,
passing with it all arguments necessary to process the request. These requests are then served by
the internal actions whose names correspond to the input actions. Once served, the response to
the action is then enqueued into the Responses queue, from which the corresponding output action

outputs the result back to the process that originally requested the action.

For each process x, the Open, set maintains all the files which it currently has opened. When
a process is killed, the File System receives the KillProc signal from the Process Handler, signalling

it to set Open, to 0.

The issues involved with the Open, Create, Delete, and Close operations deal mainly with check-
ing to see if a given file exists or is open. Open only returns successfully if the file exists and is not
open by any process. Create only succeeds if the file does not exist, while Delete succeeds only if
the file exists and is not open by any process. Finally, Close succeeds only on existing files which

were initially opened by the process that attempts the close action.

The ReadAt and WriteAt commands work only on open, existing files, where the read and write

requests fall within the size limits of the file.

4.8 Network Manager

The User Level specification of the Network Manager describes an automaton that provides the
interface for processes to communicate over the network. The Network Manager keeps track of
open connections held by processes, and allows processes to read and write from the network. It
continuously reads in data from each socket into its respective InBuffer, and outputs data for each
socket from its respective QutBuffer. The socket connections are made on a per process basis, so

no more than one socket is allowed open at a given time between two processes z and y.

Like the File System Manager, all the external actions of the Network Manager, with the

exception of the KillProc input action, go directly between the Network Manager and the currently
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Network Manager

Signature
Input: Output:
NetOpen, (y), y € Sockets NetOpenResult, (y, ), y € Sockets,
NetRead.(y,n), y € Sockets, z € {DONE,FAIL}
n €N NetReadResult, (y, A), y € Sockets,
NetWrite, (y, A), y € Sockets, A € ByteArrays U{DONE,FAIL}
A € ByteArrays NetWriteResult, (y, z), y € Sockets,
NetClose, (y), y € Sockets z€ {DONE,FAIL}
KilledProc(z), x € Procs NetCloseResult, (y, z), y € Sockets,
» € {DONE, FAIL}
Internal:
Open  NetReadInBuffer, 4,
Read x € Procs,y € Sockets
Write  NetWriteOutBuffer, ),
Close x € Procs,y € Sockets
State

Open,,, the set of sockets currently opened by process z. Initially .

Network, the set of all computers with which connections can be opened.

InBuffer, , a queue holding incoming data from socket connection y for process z. Initially Empty.
OutBuffer,, , a queue holding outgoing data from socket connection y for process z. Initially Empty.
NetCommands the set {OPEN,CLOSE, READ,WRITE}.

NetResults the set {DONE, FAIL,} U ByteArrays.

Responses a queue of triples (z,y, z), * € NetCommands,y € Procs,z € NetResults. Initially Empty.

Jobs a queue of quadruples (w, x,y, z), w € NetCommands,xz € Procs,y € N, z € ByteArrays. Initially Empty.

Actions
Input NetOpen, (y) Internal Open
Eff: Jobs.Enqueue(OPEN, x,y) Pre: Jobs.Head = (OPEN,z,y)
Eff: if y € Network Ay ¢ Open,
Input NetClose,(y) Responses. Enqueue(OPEN, z,y, DONE)
Eff: Jobs.Enqueue(CLOSE, x,y) Open,, .= Open, U {y}
else
Input NetRead. (y,n) Responses. Enqueue(OPEN, x,y, FAIL)
Eff: Jobs.Enqueue(READ,z,y,n) Jobs.Dequeue
Input NetWrite, (y,n, A) Internal Close
Eff: Jobs.Enqueue(WRITE, x,y,n, A) Pre: Jobs.Head = (CLOSE, z,y)
Eft: if y € Open,
Input KilledProc(z) Open,, := Open, — {y}
Eff: Open_ =0 Responses. Enqueue(CLOSE, x,y, DONE)
Vy € Network else
OutBuffer, . := 0 Responses.Enqueue(CLOSE, x,y, FAIL)
gz

Jobs.Dequeue

Figure 10: Network Manager (User Level Specification)
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Network Manager

Actions (Cont.):

Internal Write
Pre: Jobs.Head = (WRITE, z,y,n, A)
Eff: if y € Open,
if OutBuffer.Size +n < MAXBUF
OutBuffer. Enqueue(A)
Responses. Enqueue
(WRITE,z,y, DONE)
else
Responses.Enqueue(WRITE, z,y, FAIL)
Jobs.Dequeue

Internal Read
Pre: Jobs.Head = (READ,x,y,n)
Eff: if y € Open,
if InBuffer, ,.Empty = FALSE
A := first n bytes in InBuffer, ,
InBuffer,, ,.Dequeue n times
else
A:= EOF
Responses.Enqueue(READ, x,y, A)
else
Responses.Enqueue(READ, x,y, FAIL)
Jobs.Dequeue

Internal NetReadInBuffer, ,
Pre: Incoming data A from connection

y to process
Eff: InBuffer, ,.Enqueue(A)

Internal NetWriteOutBuffer, ,
Pre: OutBuffer, , .Empty = FALSE
Eff:  OutBuffer, ,.Dequeue

Output NetOpenResult, (y, 2)
Pre: Responses.Head = (OPEN,x,y, z)
Eff: Responses.Dequeue

Output NetCloseResult, (y, z)
Pre: Responses.Head = (CLOSE, x,y, z)
Eff: Responses.Dequeue

Output NetReadResult,(y, A)
Pre: Responses.Head = (READ,x,y, A)
Eff: Responses.Dequeue

Output NetWriteResult, (y, 2)
Pre: Responses.Head = (WRITE, z,y, z)
Eff: Responses.Dequeue

Figure 11: Network Manager (User Level Specification) Cont.
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running processes. These actions are first enqueued in the Jobs queue, and then acted upon by

their respective internal actions, placing the result in the Responses queue.

Also like the File System Manager, each of the internal actions is primarily concerned with
checking that actions are only performed on sockets which are closed in the case of Open, and open
in the cases of Read, Write, and Close. Otherwise, most of the actions are composed of keeping the

Open,, data structure up to date, and properly responding to requests.

The two internal actions NetReadInBuffer, , and NetWriteOutBuffer, , are responsible for reading
in data off of the network and writing out data placed into the buffers by local processes wanting to
communicate. Because the interface between the operating system and the network is not relevant
to the processes nor the rest of the operating system, we consider this to be an internal action as

it has no impact on the rest of our model.

5 Kernel Level Specification

Having seen the User Level model, we understand an abstract specification of an operating system.
It now becomes interesting to look at how such a system is implemented. The motivation for a more
detailed, reality-driven implementation is to build a model that is meaningful for a real operating
system, but still adheres to the goals and ideals set out in the original specification. Such a model
would provide researchers with a formal structure to the operating system, enabling clearer thought
about its various aspects while still providing enough detail to make the model meaningful. At the
same time, this model would be designed so as to implement the abstract specification which is
the User Level model, and thereby provide the error-proof, simple process interface which is so

desirable.

We choose to model a standard uniprocessor system, selecting as our operating system mo-
tivation a simplified UNIX-like model that allows concurrent processes to run independently in
their own protected memory spaces. Such an implementation introduces the complexities of Vir-
tual Memory systems, ALU register swapping, interrupt driven I/O and process scheduling. This
greatly changes the topology of the operating system, as the number of components and the com-
munication between them increases dramatically. Processes are still viewed as autonomous and

concurrent, but in this model they are only given access to valuable resources such as the ALU or
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memory as dictated by a scheduling module. No longer is the operating system merely a server
of resources to the processes, it owns all of the computational resources, without which a process
can do nothing. This model reveals a good deal more about the actual nature of modern operating

systems, providing an interesting formal approach to current implementations.

The introduction of the Scheduler and Interrupt Handler each create obvious changes to the
operating system topology, as each of them introduces a new automaton into the model. Another
change that is equally dramatic and perhaps not as noticeable comes as a result of virtual memory.
With virtual memory, the Virtual Memory Manager relies on an internal secondary storage device
for expanding its memory capacity, thereby complicating every memory access. This model of the
memory management is realistic to real operating system methods, and still adheres to the abstract
specification. Similarly, the ALU is modelled more realistically, only holding one set of registers at

a time, using the an internal register memory to store all the others.

In the presentation of the User Level model we presented the Process first so as to motivate the
definition of the rest of the operating system. In the Kernel Level model we postpone discussing
the Process until the end. In keeping with our goal of implementing an operating system that
exactly implements the interface of the User Level model, we would like to be able to use the exact
same process definition in both models. This requires us, however, to introduce several theoretical
notions which enable us to convert the Kernel Level operating system interface into one with which
the User Level Process can iteract. These theoretical notions center around the creation of an
Abstraction Automaton which acts as a buffer between the User Level Process and the Kernel
Level operating system. Because we want to shield the User Level Process from the scheduling
which transpires in the operating system, the Abstraction Automaton intercepts the Scheduling
commands from the Scheduler to the Processes, and handles all of the scheduling issues itself. We
discuss these concepts at the end of the Kernel Level section, and include in the discussion the

interactions with the processes.

5.1 Scheduler

The Scheduler does not exist in the User Level Specification, as it is a solution to the implementation
issue of limited processor resources. Because only one process can actually run at any given time

on a uniprocessor system, the scheduler is responsible for switching between the different processes
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Scheduler

Signature

Input:
InterruptActivate
Schedule(z,b) « € Procs,b € {0,1}
Activate(z,b) x € Procs,b € {0,1}
Output:
Run,(b) z € Procs,b € {0,1}
State
Active, the active process. Initially 0.
Ready, a queue of descheduled processes waiting to run. Initially Empty.

Sleep, a set of descheduled processes unable to run. Initially, all processes are in Sleep.

Responses, a queue of pairs corresponding to scheduling changes. Each pair is (z,y), ¢ € Procs, y € {0,1}. Initially

Empty.
Actions
Input InterruptActivate Input Schedule(z,b)
Eff: Ready.Enqueue(Active) Eff: ifb=1Axz € Sleep
Responses. Enqueue(Active, 0) Ready.Enqueue(x)
Active := Ready.Dequeue Sleep := Sleep — {z}
Responses. Enqueue(Active, 1) ifb=0Az ¢ Sleep
Sleep := Sleep U {z}
Input Activate(z, b) if Active =«
Eff: ifb=0 Responses.Enqueue(z,0)
if Active = x Active := Ready.Dequeue
Responses.Enqueue(Active, 0) Responses.Enqueue(Active, 1)
Active := Ready.Dequeue else if © € Ready
Responses. Enqueue(Active, 1) Ready.Remove(x)
else if x € Ready
Ready.Remove(x) Output Run.(b)
else if z € Sleep Pre: Responses.Head = (z,b)
Sleep. Remove(x) Eff: Responses.Dequeue

else if b =1 and = ¢ Active U Ready U Sleep
Ready. Enqueue(z)

Figure 13: Scheduler (Kernel Level Specification)
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such that each process gets a fair share of processor time. All requests to the scheduler come from

within the operating system processes are not allowed to send requests to the scheduler.

The important state of the scheduler consists of the Active process and the Ready and Sleep
queues. The Active process is the process that is currently scheduled to run. Because we model
a single processor machine, there is only one Active process. However, this model could easily be
generalized to a multi-processor machine by making Active the set of all currently running processes.
The Ready queue is a queue of processes that are ready to run but are currently not scheduled.
The Sleep queue holds all processes that are waiting on I/O requests to finish. These processes are
not ready to be scheduled until the request finishes, at which point they are reawakened and placed

back on the Ready queue.

The Scheduler simulates a Round Robin scheduling algorithm, and cycles through these pro-
cesses, putting the just-descheduled process at the back of the queue and scheduling the process at
the front of the queue. The decision to model a round-robin scheduling algorithm was arbitrary—
any properly fuctioning scheduling algorithm, such as multi-level feedback queues or fair share

scheduling, would be fine.

Requests to deschedule processes come through the other manager automata in the operating
system. Whenever an I/O operation occurs, whether it be from the Virtual Memory, File System,
Console, or Network, the first action taken by each of these modules is to request that the scheduler
deactivate the process making the I/O request. In real operating systems, because I/O requests
take a relatively long time, the processor idles while a process waits on an I/0 response. In order to
not waste processor time the waiting process is descheduled until the request is finished, at which

point it is reawakened.

Requests to schedule processes come from the Process Manager and the Interrupt Handler. The
Process Manager sends the Scheduler Activate output actions, which signals to the scheduler when
a process has been created or killed. Killed processes are removed from the data structures in the
scheduler, while newly created processes are added to the Ready queue. The Interrupt Handler
sends the Scheduler a periodic InterruptActivate output which signal the Scheduler to switch equally
between processes even without any form of I/O requests. Also, whenever an I/O request is finished,
the Interrupt Handler is signalled by the manager handling the request, and it passes this on to

the scheduler in the form of a Schedule(z, 1) request. This puts a sleeping process back onto the
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Ready queue, enabling it to be rescheduled the next time it is at the head of the queue.

The single output of the Scheduler is the Run command, notifying the process whether it can
or cannot run. As we will see later, that action will not go directly to the process but will instead
go to the Abstraction Automaton, as we would like to maintain the interface we arrived at with

the User Level Process.

5.2 Interrupt Handler

The Interrupt Handler, like the Scheduler, is a module that does not exist in the User Level
Specification, but exists as another artifact of limited resources. It is through the Interrupt Handler
that I/O devices notify the scheduler that their results are ready, and it is also how the scheduler

is signalled periodically to switch processes.

The Interrupt Handler receives only one input action: Interrupt(z). These actions come from
the various I/O managers in the operating system, signalling the Interrupt Handler that process
x has been served, and that it is ready to be rescheduled. The Interrupt Handler, upon receiving
these Interrupt requests, enqueues the process x in the Responses queue. From this the output

Schedule(z, 1) is sent to the scheduler, and the process is dequeued from the Responses queue.

The other output action, InterruptActivate, is not driven as a result of any input actions, but is
triggered by an internal clock mechanism that notifies the Scheduler every TimerTicks ticks of the
clock. The speed at which this clock ticks impacts performance, controlling the rate at which the

operating system switches between processes, but it has no effect on the correctness of the system.

5.3 ALU

The Kernel Level ALU provides the same functionality as the User Level ALU, but it does so with
more limited resources. Like a real operating system, the ALU can only operate on a single set of
registers at a time, and must switch between register sets when receiving operation requests from
different processes. We model this action by keeping the current set of registers in the state variable
CurrentRegs, while internally storing the other registers in an array of memory, RegMem. While in
most cases in real operating systems, the memory for the registers is stored on the same physical

media as the process memory, at this level of abstraction the two have no logical relationship, and
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Interrupt Handler

Signature

Input:
Interrupt(z) = € Procs

Output:
Schedule(z,1) =z € Procs
InterruptActivate
State
Responses, a queue of Procs, processes ready to be scheduled. Initially Empty.
TimerTicks, number of ticks between periodic activation of the scheduler.

Clock, a monotonically increasing counter, triggered to increment at regularly spaced real-time intervals. Initially

0.
Actions
Input Interrupt(z) Output Schedule(z, 1)
Eff: Responses.Enqueue(z) Pre: Responses.Head = x

Eff: Responses.Dequeue
Output InterruptActivate
Pre: Clock mod TimerTicks = 0
Eff: None.

Figure 14: Interrupt Handler (Kernel Level Specification)

therefore we represent them separately.

The ALU signature is identical to that of the User Level ALU, and the flow of actions occurs
in the same way. ALU requests come in the form of the OperationReq, (op) input action, asking
the ALU to do operation op for process z. These requests are placed into the OutstandingOps set,
from which the Operate action takes its input. When necessary, the ALU switches registers from
RegMem, preparing the CurrentRegs variable for the computation. Once the registers are correctly
initiated, the ALU computes the operation and enqueues the result in the Responses queue. As
in the User Level model, if the operation requested resulted in an exception, the ALU enqueues
a KILLPROC command which is sent to the Process Manager. In the usual case of a successful
operation, it enqueues an OPRESU LT command for the process which requested the operation,

resulting in the ouput action OperationResult, (opV al).
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ALU

Signature

Input:

OperationReq. (op) =z € Procs, op € Operations

Internal:
Operate(z, op), © € Procs, op € Operations

State

Output:

OperationResult, (opVal), € Procs, opVal € N
KillProc(z), = € Procs

CurrentRegs, the registers of process currently being serviced. Initially 0.

CurrentProc, the current process whose registers are being stored in CurrentRegs. Initially 0.

OutstandingOps, a set of process-operation pairs for all outstanding operations. Initially 0.

RegMem, an array of registers for all processes, indexed by process. Initially all registers store 0.

Responses, a queue of results of the operations, (z,y,z), v € {KILLPROC,OPRESULT}, y € Procs, z € opVals.

Initially Empty.

Actions

Input OperationReq. (op)
Eff: if dy € Operations such that
(z,y) € OutstandingOps
Responses.Enqueue(OPRESULT, x, FAIL)
else
OutstandingOps := OutstandingOps U (z, op)

Output OperationResult, (opVal)
Pre: Responses.Head =
(OPRESULT, x,0pVal)
Eff: Responses.Dequeue

Output KillProc(z)
Pre: Responses.Head = (KILLPROC, )
Eff: Responses.Dequeue

Internal Operate(z, op)
Pre: (z,op) € OutstandingOps

Eff: if CurrentProc # x
if CurrentProc # 0
Registers.|[CurrentProc] :=
CurrentRegs
CurrentProc := x
CurrentRegs := RegMem/|x]
Conduct operation.
Place result in CurrentRegs
if operation raises exception
Responses.Enqueue( KILLPROC, x)
else
Responses. Enqueue
(OPRESULT, z,0pVal)
OutstandingOps := OutstandingOps — (x, op)

Figure 15: ALU (Kernel Level Specification)

41



5.4 Virtual Memory Manager

The Virtual Memory Manager is the most complicated module in the Kernel Level Specification.
While it implements the same functionality as its User Level analog, the Virtual Memory Manager
introduces a whole new level of complexity with swap spaces and page tables. Whether the Process
Manager is trying to create a process and needs to allocate a Process Space, or an active process
is trying to read from memory, nearly all memory related requests have the potential of requiring

page swapping, and swap space access.

The basic motivation for Virtual Memory is twofold: give each running process the illusion that
it is the only process on the machine, and enable the capability to run more programs concurrently
by using a secondary storage device as a swap space to store program memory that has not been
used for a while. The first is solved through the usage of Page Tables, which map the process’
virtual memory space to physical addresses. These mappings are done in large blocks of memory,
called pages, so as to reduce the size of the page tables. The second goal of enabling more processes
is realized by creating a process swap space for each process. The swap space of a process is the
same size as its entire memory space, allowing for the process memory to be written to the swap
space when the main memory is needed for other operations. Swap space management drives most

of the increased complexity in the Virtual Memory Manager.

The internal state of the Virtual Memory Manager is comprised both of data structures which
manage individual process spaces and structures which are used for the maintenance of the system
memory as a whole. Individual process space state includes PageTable,, Freelist,, and Used,.
PageTable, is the page table of the process, storing the mapping between virtual memory addresses
and the physical locations of those addresses. It is implemented using a PageTable, which is an
array indexed by virtual page number, storing at each location the physical page to which the
virtual page maps. In addition to storing the physical page, the PageTable stores a .V alid bit for
each page, signifying whether the page being indexed has been loaded into main memory. The
entire PageTable has a single value .Size which stores the size in pages of the PageTable. Upon
creation of a process, the PageTable entries are all marked as invalid, and they are only assigned
to physical pages when they are accessed for reads or writes. Freelist, and Used, are complements
of each other: the first holds the free space available for allocation in the process’ heap, while the

second contains all the memory that has already been allocated.
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Virtual Memory Manager

Signature
Input: Output:
Mallocz(n), n € N MallocResult, (p), p € NU {FAIL}
Free,(p), p € N MemReadResult, (v), v € Bytes
MemRead,(p), p € N MemWriteDone,,
MemWrite, (p,v), p € N, v € Bytes CreateProcResult(z,v), x € Procs,
CreateProc(z), € Procs ve {DONE,FAIL}
KilledProc(z), x € Procs KilledProcResult(z,v), = € Procs,
v € {DONE, FAIL}
KillProc(z), z € Procs
Internal: Interrupt(z), © € Procs
Swap Schedule(z,0), x € Procs
State

Mem, an array of bytes, indexed by location. Initially all bytes have value 0.

MemPages, a PageArray, the bit array of available pages. All bits are initialized to zero.

PageTable,, a PageTable, the page table for process z. Initially all values are 0.

Freelist,, an AllocateArray, the free list of memory in the heap of process z. Initially Empty.

Used,, an AllocateArray, list of memory in the heap that is currently in use by process x. Initially Empty.
SwapStore, a directory into which all swap spaces are placed. Initially Empty.

PAGESIZE, fixed size of pages in system.

SPACESIZE, fixed size of process space, is a multiple of PAGESIZE.

VMCommands, the set {M ALLOC, READ,WRITE,CREATE,KILL, KILLED, SCHEDULE,INTERRUPT}.
VMArguments, the set NU {DONE, FAIL} U Bytes U ByteArrays.

Responses, a queue of triples (z,y,z), * € VMCommands,y € Procs,z € VMArguments. Initially Empty.

Actions
Input Malloc,(n) Input CreateProc(z)
Eff: Responses.Enqueue(SCHEDULE, x) Eff: if SwapStore.Add(x, SPACESIZE) = FAIL
p := Freelist,.NewBlock(n) Responses.Enqueue(CREATE,x, FAIL)
if p= FAIL then else
Responses. Enqueue PageTable,.Size := SPACESIZE
(MALLOC,z,FAIL) for i := 1 to PageTable,.Size do
else PageTable,[i].Valid := FALSE
Freelist. RemoveBlock(p) Freelist,.Size := SPACESIZE
Used,.AddBlock(p,n) Used, :=
Responses.Enqueue(M ALLOC, x, p) Responses.Enqueue
Responses. Enqueue(INTERRUPT, x) (CREATE,xz,DONE)

Input Free,(p)
Eff: Responses.Enqueue(SCHEDULE, x)
if Used,.FindBlock(p)
Freelist, . AddBlock(p, n)
Used,, . RemoveBlock(p)
Responses. Enqueue(INTERRUPT, x)

Figure 16: Virtual Memory Manager (Kernel Level Specification)
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Virtual Memory Manager

Actions (cont.)

InputMemRead, (p)
Eff: VirtPage := |p/PAGESIZE|
if Used,.FindBlock(p)
Responses.Enqueue(SCHEDULE, )
if PageTable,[VirtPage].Valid = FALSE
Responses. Enqueue
(SWAP,READ, z,p)
else
Responses.Enqueue(READ, z,p)
else
Responses.Enqueue(KILL, x)

Input KilledProc(z)
Eff: for i :=1 to PageTable,.Size do
if PageTable,[i].Valid = TRUE
PhysPage := PageTable[i]. PhysPage
MemPages.Free(PhysPage)
PageTable,.Size := 0
if SwapStore.Rernove(z) = DONE

Responses.Enqueue(KILLED, z, DONE)

else
Responses.Enqueue(KILLED, z, FAIL)

Input MemWrite, (p, v)
Eff: VirtPage := |p/PAGESIZE|
if Used,.FindBlock(p)
Responses.Enqueue(SCHEDULE x)
if PageTable,[VirtPage].Valid = FALSE
Responses. Enqueue
(SWAP,WRITE, z,p,v)
else
Responses. Enqueue(W RITE, x,p,v)
else
Responses.Enqueue(KILL, 1)

Output CreateProcResult(z, y)
Pre: Responses.Head = (CREATE,x,y)
Eff: Responses.Dequeue

Output KilledProcResult(z, y)
Pre: Responses.Head = (KILLED, z,y)
Eff: Responses.Dequeue

OutputMemWriteDone,
Pre: Responses.Head = (WRITE, z,p,v)
Eff: VirtPage := |p/PAGESIZE |

PhysPage := PageTable | VirtPage]. PhysPage

Mem[PhysPage + p mod PAGESIZE] :=v
MemPages.UsedUpdate( PhysPage)
Responses. Enqueue(INTERRUPT, x)
Responses.Dequeue

Internal Swap
Pre: Responses.Head =
(a = (SWAP, Command, z,p,v))
Eff: VirtPage := |p/PAGESIZE|
PhysPage := MemPages.NextUnused
if PhysPage = INVALID
PhysPage =
MemPages.Least RecentlyU sed
PageTable,| VirtPage] := PhysPage
A := PAGESIZE sized array
containing PhysPage
P .= MemPages[PhysPage].Process
WritePage =
MemPages[PhysPage].VirtPage
n := WritePage x PAGESIZE
m:=n+ PAGESIZE
SwapStore. Write(P, A,n, m)
n := VirtPage x PAGESIZE
m :=n + PAGESIZE
Mem|[PhysPage] := SwapStore.Read(z,n, m)
Mem|[PhysPage].Process := x
Mem|[PhysPage]. VirtPage := VirtPage
PageTable,,[VirtPage].Valid := TRUE
PageTable | VirtPage]. PhysPage := PhysPage
Responses. Enqueue(Command, x,p, v)
a = (Command,x,p,v)

Output MemReadResult, (v)

Pre: Responses.Head = (READ, x,p)

Eff: VirtPage := |p/PAGESIZE|
PhysPage := PageTable,, [ VirtPage]. PhysPage
v := Mem[PhysPage + p mod PAGESIZE]
MemPages.UsedUpdate(PhysPage)
Responses.Enqueue(READ, z,v)
Responses. Enqueue(INTERRUPT, x)

Responses. Dequeue

Output MallocResult, (p)
Pre: Responses.Head = (M ALLOC, x,p)
Eff: Responses.Dequeue

Output KillProc(z)
Pre: Responses.Head = (KILL, x)
Eff: Responses.Dequeue

Output Interrupt(z)
Pre: Responses.Head = (INTERRUPT, )
Eff: Responses.Dequeue

Output Schedule(z,0)
Pre: Responses.Head = (SCHEDULE, x)

Eff: Responses.Dequeue

Figure 17: Virtual Memory Manager (Kernel Level Specification) Cont.
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System-wide memory management is stored in Mem, MemPages, and SwapStore. Mem is
the actual memory of the system, and therefore contains all the memory values at all locations.
MemPages stores information about the state of each of the physical pages in memory. For each
page, MemPages stores a bit signifying whether it is in use (1) or available (0), as well as the value
.Process, storing the Process which currently is mapping to that physical page, and . VirtPage, the
virtual page number in that process’ PageTable which points to the physical page. MemPages

implements the following functions:

.NextUnused, returns the next unused page in memory, if one exists, and marks it as used.

Otherwise, it returns INVALID.

.Least RecentlyU sed, returns the page in memory least recently used

.UsedUpdate(Page), updates the state used to calculate the LeastRecentlyU sed page. The

page Page is updated as having just been used.

.Free(Page), marks Page as unused.

SwapStore is a set of swap spaces, each one identified by the name of the process for which it is
providing swap space. Functionally, the SwapStore structure is very similar to the DirectoryStruct
in the File System; the main difference is that SwapStore lacks any sort of hierarchical directory

strucuture, and is simply one large set of files. SwapStore implements the following five operations:

1. Add(z), create a swap space with name z, if it exists return FAIL, otherwise return DONE.

2. Remove(x), delete the swap space with name z, return FAIL if does not exist.

3. Find(zx), find the swap space with name z. Return TRUE if it exists, otherwise FALSE.

4. Read(xz,n,m), read m bits of data from swap space x starting at location n. Return FAIL if

x is not at least n + m bits long, otherwise return the bit array from n through n + m.

5. Write(x, A,n,m), write A, a bit array of length m, to swap space z starting at location n.

Return FAIL if z is not at least n + m bits long, otherwise DONE.
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The two simplest action paths originate from Malloc and Free requests. These correspond closely
with their counterparts in the User Level mode. In the case of Malloc, the state changes are made
in the Malloc input action, and the result is enqueued in the Responses queue, where it is output by
MallocResult. Free, on the other hand, has no corresponding output, and the transaction finishes
within the action. Each action additionally deschedules the process which made the request at the
beginning of the action, and sends an interrupt to the Interrupt Handler to wake up the process at

the end of the transaction.

The input actions of MemRead and MemWrite, although internally more complicated, result in
paths of actions similar to Malloc. First the request is checked to see if it is for a valid memory
location. If it is not, the command KILL is enqueued in the Responses queue, and a request is
sent to the Process Manager to kill the process which made the illegal request. If the request is
valid, the action Schedule(z,0) is first output to the scheduler. Then the data which is to be read
or written is checked to see if it is currently in the main memory. If the data has been swapped out,
the memory is checked for any unused pages. If no pages are unused, the least recently used page is
swapped out, and the desired page is read into that location in main memory. If there is an unused
page, no pages are swapped out, and the desired page is read into one of the unused pages. Once
the data has been loaded into memory, it is read or written to, depending on the action, and the
result is enqueued in the Responses queue, followed by the enqueuing of an interrupt requeswtin
the Responses queue, requesting that the process making the request be reawakened. The action is

then finished either by MemReadResult for read requests, or by MemWriteDone for write requests.

The remaining two input actions are CreateProc and KilledProc. Each of these is less complicated
than MemRead and MemWrite. In the case of CreateProc, the Virtual Memory Manager attempts
to create a new swap space, and if it fails, it enqueues a failed result in the Responses queue, to
be output by CreateProcResult. Otherwise it initializes the process specific data structures for a
new process space and enqueues a success result in the Responses queue, which is also eventually
output by CreateProcResult. KilledProc acts very similarly, attempting to kill a process swap space,

and then eliminating any process state it was storing for the now defunct process.
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5.5 Console, Network, File System and Process Manager

The differences in these four automata from their User Level analogs are minimal for the Console,

File System, and Network Managers, and actually nonexistent for the Process Manager.

The Console, File System and Network Managers at the Kernel Level implementation incor-
porate the existence of the Scheduler and the Interrupt Handler into their previous forms in the
User Level Specification. Essentially the same, each now makes sure to deschedule a process before

committing to the I/O operation, and only reschedules it upon completion.

The changes to the Console Manager automaton are minor—there is the addition of the Schedule
and Interrupt(z) outputs, and code in the other actions to enable those outputs. Each input action
begins with the enqueuing of the command (SCHEDU LE, x) in the Jobs queue, which turns into
the Schedule(x,0) output. Similarly, each transaction ends with the enqueueing of the command

(INTERRUPT, x) into the Responses queue, which is output as the action Interrupt,.

Changes to the File System and Network Manager automata are equally minor and similar. The
machinery for scheduling and interrupting processes is integrated into the models, but otherwise

the baseline functionality remains the same.

It is interesting to note how few changes are made in these four systems, despite the introduction
of relatively large changes in the operating system topology. It becomes apparent at this stage
that there is a benefit in clearly modelling the separate system components, as such separation of
functionality makes it easy and efficient to port unchanged modules from one model to the next.
Because the life cycles of the processes, their interactions with the console, their need for persistent
storage, and their usage of the network have not changed, neither do the modules that handle these

resources.

6 Abstraction Automaton

In designing a Kernel Level model that implements the User Level specification, we need a system
that maintains the same interface with the Process as originally stated in the User Level design.
In order to maintain the signature of the User Level Process for the processes in the Kernel Level

model, it is necessary to introduce a theoretical interface automaton into the Kernel Level system.
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Console Manager

Signature

Input: Output:
ConsoleRead,, ConsoleReadResult; (y), y € Chars U {EOF}
ConsoleWrite, (¢), ¢ € Chars ConsoleWriteResult, (y), y € {FAIL, DONE}
Schedule(z,0), x € Procs
Internal: Interrupt(x)
Read
LoadBuffer

WriteToScreen(c)
State

Buffer, a queue of Chars, the items input from the console and not yet read. Initially Empty.

Responses a queue of triples (z,y,z), v € {READRESULT,WRITERESULT,INTERRUPT},y € Procs,z €
Chars U {EOF, Busy, DONE}. Initially Empty.

Jobs queue of pairs (z,y), v € {READ,WRITESCREEN,SCHEDULE},y € Procs,z € Chars}. Initially

Empty.

Busy, boolean variable. TRUE when the console is writing to the screen. Initially FALSE.

Actions

Input ConsoleRead,
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(READ, x)

Internal LoadBuffer
Pre: Input character ¢ from User
Eff: Buffer.Enqueue(c)

Internal WriteToScreen(c)
Pre: Jobs.Head = (WRITESCREEN, x,c)
Eff: Jobs.Dequeue
Busy := FALSE
Responses. Enqueue
(WRITERESULT,z, DONE)
Responses. Enqueue(INTERRUPT, 1)

Internal Read
Pre: Jobs.Head = (READ, z)
Eff: if Buffer not empty
¢ := Buffer.Dequeue
else
c:=EOF
Jobs.Dequeue
Responses. Enqueue(READRESULT, x, c)
Responses. Enqueue(INTERRUPT, x)

Input ConsoleWrite, (c)
Eff: if Busy

Responses. Enqueue

(WRITERESULT,z,FAIL)
else

Busy := TRUE

Jobs.Enqueue(SCHEDULE, x)

Jobs.Enqueue(WRITESCREEN, x, c)

Output ConsoleReadResult, (y)
Pre: Responses.Head = (READRESULT, x,y)

Eff: Responses.Dequeue

Output ConsoleWriteResult, (y)
Pre: Responses.Head = (WRITERESULT, z,y)
Eff: Responses.Dequeue

Output Schedule(z,0)
Pre: Jobs.Head = (SCHEDULE, z)
Eff: Jobs.Dequeue

Output Interrupt(z)
Pre: Responses.Head = (INTERRUPT,x)
Eff: Responses.Dequeue

Figure 18: Console Manager (Kernel Level Specification)
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Network Manager

Signature

Input: Output:

NetOpen,(y), © € Procs, y € Sockets
NetRead.(y,n), = € Procs, y € Sockets,n € N
NetWrite, (y,n, A), x € Procs, y € Sockets,

n € N, A € ByteArrays
NetClose, (y), © € Procs, y € Sockets
KilledProc(z), € Procs

Internal:
NetReadInBuffer,,,, € Procs,y € Bytes
NetWriteOutBuffer,,,, © € Procs,y € Bytes
Open
Read
Write
Close

State

NetOpenResult, (y, z), * € Procs, y € Sockets,
2 € {DONE, FAIL}

NetReadResult, (A, z), x € Procs, y € Sockets,

A € ByteArrays U{DONE, FAIL}

NetWriteResult, (y, z), © € Procs, y € Sockets,
2 € {DONE, FAIL}

NetCloseResult, (y, z), © € Procs, y € Sockets
2 € {DONE, FAIL}

Schedule(z,0), x € Procs

Interrupt(z), © € Procs

Open,, the set of sockets currently opened by process z. Initially Empty.

Network, the set of all computers with which connections can be opened.

InBuffer, , a queue holding incoming data from socket connection y for process z. Initially Empty.

OutBuffer

T,y

a queue holding outgoing data from socket connection y for process z. Initially Empty.

NetCommands the set {OPEN,CLOSE, READ,WRITE, INTERRUPT,SCHEDULE}.

NetResults the set {DONE, FAIL,} U ByteArrays.

Jobs a queue of triples (z,y, z), € Procs,y € NetCommands, z € NetResults. Initially Empty.

Responses a queue of triples (z,y, z), x € Procs,y € NetCommands,z € NetResults. Initially Empty.

Actions

Input NetOpen,(y) Input NetWrite,(y, n, A)

Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(OPEN, x,y)

Input NetRead,(y,n)
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(READ, x,y,n)

Input NetClose, (y)
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(CLOSE, z,y)

Input KilledProc(x)
Eff: Open,:= EMPTY
Yy € Network
OutBuffer, , := 0

Eff: Jobs.Enqueue(SCHEDULE, )
Jobs. Enqueue(WRITE,x,y,n, A)

Internal Open

Pre: Jobs.Head = (OPEN, z,y)
Eff: if y € Network Ay ¢ Open,

Responses. Enqueue(OPEN, z,y, DONE)

Open,, .= Open, U {y}
else

Responses. Enqueue(OPEN, x,y, FAIL)

Responses. Enqueue(INTERRUPT, x)
Jobs.Dequeue

Figure 19: Network Manager (Kernel Level Specification)
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Network Manager

Actions: (cont.)

Internal Close
Pre: Jobs.Head = (CLOSE, x,y)
Eff: if y € Open,
Open, := Open, — {y}
Responses.Enqueue(CLOSE, z,y, DONE)
else
Responses.Enqueue(CLOSE, x,y, FAIL)
Responses.Enqueue(INTERRUPT, x)
Jobs.Dequeue

Internal Read
Pre: Jobs.Head = (READ,x,y,n)
Eff: if y € Open,
if InBuffer,, ,.Empty = FALSE
A := first n bytes in buffer
else
A:= EOF
Responses.Enqueue(READ, z,y, A)
else
Responses.Enqueue(READ, x,y, FAIL)
Responses. Enqueue(INTERRUPT, 1)
Jobs.Dequeue

Internal Write
Pre: Jobs.Head = (WRITE, z,y,n,S)
Eff: if y € Open,
if OutBuffer.Size + n < MAXBUF
OutBuffer. Enqueue(A)
Responses. Enqueue
(WRITE,z,y, DONE)
else
Responses. Enqueue
(WRITE,z,y, FAIL)
Responses.Enqueue(INTERRUPT, 1)
Jobs.Dequeue

InternalNetReadInBuffer, ,
Pre: Incoming data A from
connection y to process x

Eff: InBuffer. Enqueue(A)

InternalNetWriteOutBuffer, ,
Pre: OutBuffer. Empty = FALSE

Eff: OutBuffer.Dequeue

Output NetOpenResult,(y, 2)
Pre: Responses.Head = (OPEN, x,y, z)
Eff: Responses.Dequeue

Output NetCloseResult,(y, z)
Pre: Responses.Head = (CLOSE, x,y, z)
Eff: Responses.Dequeue

Output NetReadResult, (A, z)
Pre: Responses.Head = (READAT,x, A, z)
Eff: Responses.Dequeue

Output NetWriteResult, (y, z)
Pre: Responses.Head = (WRITEAT, z,y, z)
Eff: Responses.Dequeue

OutputSchedule(z, 0)
Pre: Jobs.Head = (SCHEDULE, x)

Eff: Jobs.Dequeue

Outputinterrupt(x)
Pre: Responses.Head = (INTERRUPT, )

Eff: Responses.Dequeue

Figure 20: Network Manager (Kernel Level Specification) Cont.
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File System Manager

Signature

Input:
FSOpen,(y, path),y € Files,
path € Paths
FSCreate, (y, path,n),y € Files,
path € Paths,n € N
FSReadAt, (y, path,n,m),y € Files,
path € Paths,n,m € N
FSWriteAt, (y, path,n, m, A),y € Files,
path € Paths,n,m € N, A € ByteArrays
FSClose, (y, path),y € Files, path € Paths
FSDelete, (y, path),y € Files,path € Paths
KilledProc(z), x € Procs

Internal:
Open Create
ReadAt  WriteAt
Close Delete

State
Open

x)

DirectoryStruct, a tree of files, representing the directory structure of the system. All leaves of the tree are files
whose paths are specified by the path from the root to the leaf in the tree. Each name is unique from its

siblings. Initially Empty.

Output:

FSOpenResult, (y, path, z),y € Files,
path € Paths,z € {DONE, FAIL}

FSCreateResult, (y, path, z),y € Files,
path € Paths,z € {DONE, FAIL}

FSReadAtResult, (y, path, A),y € Files,
path € Paths, A € ByteArrays U {FAIL}

FSWriteAtResult, (y, path, z),y € Files,
path € Paths,z € {DONE, FAIL}

FSCloseResult, (y, path, z),y € Files,
path € Paths,z € {DONE, FAIL}

FSDeleteResult, (y, path, z),y € Files,
path € Paths,z € {DONE,FAIL}

Schedule(z,0), € Procs

Interrupt(z), © € Procs

a set of files currently opened by process z. Initially Empty.

FSCommands, {SCHEDULE, OPEN, CREATE, DELETE, CLOSE, READAT, W RITEAT,

KILLPROC,INTERRUPT}

Jobs a queue of triples (z,y, z), x € FSCommands,y € Procs, z € Files. Initially Empty.

Responses a queue of sextuples (u,v,w,z,y,z), u € FSCommands,v € Procs, w € Files,x € N,y € N, z €

ByteArrays. Initially Empty.

Input FSOpen, (y, path)
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(OPEN, z,y, path)

Input FSCreate, (y, path,n)
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(CREATE, x,y, path,n)

Input FSDelete, (y, path)
Eff: Jobs.Enqueue(SCHEDULE, x)
Jobs.Enqueue(DELETE, x,y, path)

Input FSReadAt, (y, path,n,m)
Eff: Jobs.Enqueue
(SCHEDULE, )
Jobs. Enqueue
(READAT, x,y, path,n, m)

Input FSClose, (y, path)
Eff: Jobs.Enqueue
(SCHEDULE, )
Jobs. Enqueue
(CLOSE, x,y, path)

Figure 21: File System Manager (Kernel Level implementation)



File System Manager

Actions: (cont.)

Input FSWriteAt, (y, path,n,m, A)
Eff: Jobs.Enqueue
(SCHEDULE, x)
Jobs. Enqueue
(WRITEAT,x,y,path,n,m, A)

Input KilledProc(x)
Eff: Open, =0

Internal Open
Pre: Jobs.Head = (OPEN, x,y, path)
Eff: if DirectoryStruct.Find(y, path) A
Vz,yN Open, =0
Responses.Enqueue
(OPEN,x,y,path, DONE)
Open, := Open, U {(y, path)}
else
Responses. Enqueue
(OPEN,x,y,path, FAIL)
Responses.Enqueue(INTERRUPT, 1)
Jobs.Dequeue

Internal Create
Pre: Jobs.Head = (CREATE, z,y, path,n)
Eff: if DirectoryStruct.Find(y, path)
Responses.Enqueue
(CREATE, x,y,path, FAIL)
else
Responses.Enqueue
(CREATE, x,y,path, DONE)
DirectoryStruct. Add(y, path,n)
Responses. Enqueue(INTERRUPT, 1)
Jobs.Dequeue

Internal Delete

Pre: Jobs.Head(DELETE, x,y)

Eff: if DirectoryStruct.Find(y, path) AVz,y ¢ Open,
DirectoryStruct.Delete(y, path)
Responses.Enqueue

(DELETE,z,y,path, DONE)
else
Responses.Enqueue
(DELETE,z,y,path, FAIL)
Responses. Enqueue(INTERRUPT, x)
Jobs.Dequeue

Internal ReadAt
Pre: Jobs.Head = (READAT, x,y, path,n, m)
Eff: if (y, path) € Open,
A .= DirectoryStruct.Read(y, path, n, m)
else
A:=FAIL
Responses. Enqueue
(READAT, z,y, path, A)
Responses. Enqueue(INTERRUPT, 1)
Jobs.Dequeue

Internal Close
Pre: Jobs.Head = (CLOSE, x,y, path)
Eff: if (y, path) € Open,
Open,, = Open, — {(y, path)}
Responses.Enqueue
(CLOSE, x,y,path, DONE)
else
Responses. Enqueue
(CLOSE, x,y,path, FAIL)
Responses. Enqueue(INTERRUPT, x)
Jobs.Dequeue

Internal WriteAt
Pre: Jobs.Head = (WRITEAT,x,y,path,n, m, A)
Eff: if y € Open,
result := DirectoryStruct. Write
(y,path,n,m, A)
else
result := FAIL
Responses. Enqueue
(WRITEAT, z,y,path, result)
Responses. Enqueue(INTERRUPT, x)
Jobs.Dequeue

Output FSOpenResult, (y, path, z)
Pre: Responses.Head = (OPEN, x,y, path, z)
Eff: Responses.Dequeue

Output FSCreateResult, (y, path, z)
Pre: Responses.Head = (CREATE,x,y, path, z)
Eff: Responses.Dequeue

Output FSCloseResult, (y, path, z)
Pre: Responses.Head = (CLOSE, x,y, path, z)
Eff: Responses.Dequeue

Figure 22: File System (Kernel Level Specification) Cont.
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File System Manager

Actions: (cont.)

Output FSDeleteResult, (y, path, z) Output Schedule(z, b)
Pre: Responses.Head = Pre: Jobs.Head = (SCHEDULE,b)
(DELETE,x,y,path, z) Eff: Jobs.Dequeue

Eff: Responses.Dequeue
Output Interrupt(z)
Output FSReadAtResult, (y, path, A) Pre: Responses.Head = (INTERRUPT,x)
Pre: Responses.Head = Eff: Responses.Dequeue
(READAT, x,y,path, A)
Eff: Responses.Dequeue

Output FSWriteAtResult, (y, path, z)
Pre: Responses.Head =
(WRITEAT,x,y, path, z)
Eff: Responses.Dequeue

Figure 23: File System (Kernel Level Specification) Cont.

As one may already have noticed, the Process signature detailed at the beginning of this thesis
does not include any input or output actions for interfacing with the Scheduler. Yet it is apparent
that the Scheduler must have some sort of interaction with the Process in order to schedule and

deschedule it. This theoretical construct works to resolve that paradox.

We design the Abstraction automaton to be an interface layer between the Kernel Level Process
and the Operating System that abstracts away the details of the scheduler. Instead of building such
intelligence into the Process, the Abstraction automaton provides, through a series of per process
queues, an interface for the Kernel Level Process that is identical to the one for the User Level
Process. In this way, the Kernel Level Process does not receive any of the Scheduler’s Run,(b)
commands, and is enabled to act as if it has the operating system’s attention at all times. The
Abstraction automaton, on the other hand, only passes on operating system and process outputs
to and from the single process which is currently running. It receives the Run,(b) commands, and

activates the queues of the process dependent upon the Run,(b) commands it receives.

Aside from being a convenient abstraction for the purposes of maintaining the process interface
across the User and Kernel Level models of the operating system, the existence of the Abstraction
automaton is grounded in a real system perspective. The computer programmer, in writing process
programs, is not burdened with the realities of load sharing that occurs on a real multi-process

platform. Instead, he/she writes the program as if it was the only process running on the system,
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Figure 24: Kernel Level model with Abstraction Automaton
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Abstraction Automata

Signature

Input:
ProcessAction, (i), x € Procs, i € ProcActions
OSAction, (i), © € Procs, i € OSActions
Run (b)

Output:
ProcessAction, (i), © € Procs, i € ProcActions
OSAction, (i), € Procs, i € OSActions

State
ProcQutputs,,, the queue of outputs from process « heading towards the operating system. Initially Empty.
08Outputs,, the queue of outputs from the operating system heading towards process z. Initially Empty.

Running, the set of processes currently selected to run by the scheduler. Initially Empty.

Actions
Input ProcessAction, (%) Output OSAction, ()
Eff: ProcOutputs,,. Enqueue(i) Pre: Running = x
080utputs,,.Head =i
Input OSAction,(7) Eff: OSOutputs,.Dequeue

Eff: 0OSOutputs,,. Enqueue(t)
Output ProcessAction, (i)

Input Run,(b) Pre: Running = x
Eff: if b=0 A2z € Running ProcQutputs ,.Head = i
Running := Running — x Eff: ProcOutputs,,.Dequeue

else if b =1 Az ¢ Running
Running := Running + x

Figure 25: Abstraction Automaton
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at a level of abstraction that removes the concept of resource sharing. This is exactly what the
Abstraction automaton provides at the Kernel Level. The reason why this type of module is
not necessary in a real operating system is because processes in a real operating system are not
autonomous state machines running at their own schedule, but are in fact merely streams of code
being run on a single machine. Because of this, they do not need to be signalled to be descheduled;
instead the scheduler simply switches from running one process to running the next. In choosing
to model the Processes as automata, we give them more independence, including control over when
they can and cannot run. We therefore introduce the Abstraction automaton in order to remedy

the problem.

In order to simplify the readability of the Abstraction automaton, we enumerate the output
actions of the Kernel Level Process in the order listed in the Process definition in the User Level,
representing the ith output action of Process z, generally as ProcessAction,(i). Similarly, we
do the same thing for the Kernel Level model of the operating system, ordering the modules
alphabetically and then enumerating all of their actions together into one large index of actions.
Call these operating system outputs OSAction(z,4) for the ith operating system output directed
towards Process x. We leave out one operating system action from the index, Run,(b), which we

will deal with separately in the Abstraction Automaton.

With this simplification of the representation of the Abstraction Automaton, it becomes a
queue storage house which funnels all outputs of process z to the operating system into the queue
ProcOutputs ., and all outputs of the operating system to process x into the queue OSQutputs,. The
variable Running is set to the current process ¢ enabled by the scheduler, and the only outputs from

the Abstraction automaton are from dequeuing the two queues ProcQutputs, and OSOutputs,,.

7 Correspondence Proofs

The power of the User-level definition of the Operating System is that it abstracts away the difficul-
ties of an actual implementation, while still displaying the proper behavior of one. We can therefore
use the User-level definition as a specification, and justify the Kernel-level implementation by show-
ing that it implements the User-level specification. In order to show this correspondence between

the two levels we use the mathematical tools developed for I/O automata, proving that the Kernel
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Level model simulates the User Level. This is accomplished by eventually composing together all
of the automata in the Kernel Level Model into one automaton, doing the same with the User Level
Model, and then proving that the composition at the Kernel Level implements that at the User

Level.

Before composing all of the automata at the Kernel Level we first use the concept of strong
correspondence which we developed in Section 2, to prove several strong correspondences between
the following pairs of Kernel Level and User Level models: Kernel and User Memory Manager,
Kernel and User File System Manager, Kernel and User Console Manager, Kernel and User Network
Manager, and Kernel and User ALU. We exclude the Process Manager from our proofs, simply
because it is identical in all respects on both levels, and therefore trivially corresponds. Once we
have proved these strong correspondences, we then compose together at each level all the modules
for which we have proven strong correspondences. That is to say, we compose together the Kernel
Level Memory, File System, Console, Network, ALU, and Process Managers, and then separately

compose together their User Level counterparts.

Composing together at each level all automata for which we have proven strong correspon-
dences implies that we have composed the entire User Level Model, completing the composition at
that level. However, the composition of strongly corresponding modules leaves out the Scheduler,
Interrupt Handler, and Abstraction automata from the Kernel Level model. Therefore, we must
complete the composition of the Kernel Level model by composing the already composed strongly
corresponding components with the remaining components. Because of several of the general the-

orems we proved earlier in this thesis, these steps follow rather directly.

Finally, after having composed all operating system automata in both the User and Kernel
Level modules, we can prove a simulation relation between them, showing that the Kernel Level

model does in fact implement the User Level specification.

7.1 Memory Manager Simulation
To show that the Virtual Memory Manager K at the Kernel-level meets the specification of the
Memory Manager at the User-level U, we establish a strong correspondence from X to U.

Theorem 5.1 The relation F' in the figure 26 is a strong correspondence from K to U.
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F is a relation between states in I/ and states in K such that w € F[k] if and only if:

e u.MemSpace,[p] = k. Mem[k.PageTable ,[|p/PAGESIZE||.PhysPagex PAGESIZE+(p mod PAGESIZE))
if k.PageTable,[|/PAGESIZE|].Valid = TRUE, otherwise = SwapStore.Read(z,1,p).

o u.Used, = k.Used,.
o u.SPACESIZE = k.SPACESIZE
o u.Freelist, = k.Freelist,

e u.Responses is a subsequence of k. Responses, where for each instance of (SW AP, READ, x,p) or (READ, x,p)
in k.Responses, there is an instance of (READ,xz,p) in u.Responses.  Similarly, each instance of
(SWAP,WRITE, z,p,v) or (WRITE,xz,p,v) in k.Responses corresponds to an instance of (W RITE, x,p,v)
in u.Responses. Additionally, (SCHEDULE, x) and (INTERRUPT, z) in k. Responses correspond to nothing
in u.Responses. All other elements in k.Responses are present in u.Responses.

Figure 26: Memory Manager strong correspondence from implementation to specification

The relationship between the User Level u.MemSpace,[p] and the Kernel Level k.Mem and
k.SwapStore describes the way in which the Virtual Memory Manager at the User Level simulates
a flat memory space for each of the processes. If memory location p for process z is currently loaded
into memory in k.Mem, then the value found in u.MemSpace,[p], can be found be doing a virtual
memory translation to find the location of the value in memory, and looking it up in k.Mem. If
the memory location is not currently loaded into main memory then it is stored at location p in

the process z’s swap space.

The relationship between u. Responses and k. Responses is not conceptually complicated—u. Responses
is essentially a simplification of k. Responses. It is the same queue, except that u.Responses contains
no requests for scheduling or interrupts, and because there is no swapping in the user level, read

and write requests do not go through a swap state.

Proof: In order to show that F' is a strong correspondence from K to U we first show that for
each start state of K, there exists a corresponding start state of U, and that this correspondence is

preserved by each step of K.

If k is a start state of K, Mem and SwapStore,, are all 0, Used,, Freelisty;, and Responses
are empty, and SPACESIZE is set to a predefined value. The start state of U corresponds to this
state, since it too has MemSpace, set to all 0, Used,, Freelist;, and Responses all empty, and

SPACESIZE set to the same predefined value.

Additionally, we show that in(U) C in(K),int(U) C int(K),out(U) C out(C). This is obvious

from inspection of the automata.
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To establish that the strong correspondence is preserved by every step of the implementation,
suppose that k and u are reachable states of K and U respectively such that u € F[k] and that

kI k'. We show there exists a state u' € F[k'] such that u S’ if m € acts(U), otherwise u = u'.

m = Malloc,(n), Free, (p),these actions each correspond to their respective actions in the spec-
ification. Each action, in both the implementation and the specification, modifies Freelist,
and Used, in the same fashion. The only difference between the actions in the specification

and the implementation is the enqueuing of (SCHEDULE, z) and (INTERRU PT, z) in the

Kernel level. This does not affect the relation, so all changes to pertinent state are identical.

m = CreateProc(z), KilledProc(z), these actions each correspond to their respective actions
in the specification. All changes made to Freelist,, Used,, k.SwapStore, k.PageTable,, and

Responses maintain the correspondence relation.

m = Swap, this item has no corresponding action in the specification, and therefore cor-
responds to the empty transition. Although it makes many changes to PageTable,, Mem,
and SwapStore, one can see from inspection that no changes are of the fashion that change
the relation F'. Therefore, the change in state corresponds to no change in the state in the

specification, and relation is preserved.

m = MemRead,(p), MemWrite,(p, v), these input actions each correspond to their respec-
tive input actions in the specification. The only differences between the Kernel level and
User level descriptions is the presence of SCHEDULFE and INTERRU PT commands in
the Kernel level, which aren’t modelled in the User level, and the option of enqueueing
(SW AP, Command, . ..) instead of (Command,...) in k.Responses. This too corresponds to

the User level specification, and therefore the strong correspondence is preserved.

m = Schedule(z,0), Interrupt(z), these actions have no corresponding action in the speci-
fication, and corresponds to the empty transition. All changes to state in these functions
are not modelled in the specification, as the only action is the addition of SCHEDULE
and INTERRUPT commands in the k.Responses queue. These changes do not change the

relation in the strong correspondence function, and the relation is therefore preserved.

m = MallocResult, (p), CreateProcResult(z, y), KilledProcResult(z, y), KillProc(z), these actions

correspond to the same action in the specification, and are enabled in the same state—the
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existence of the corresponding command in the Responses queue. All state changes are exactly
the same, consisting of dequeueing the action from Responses, and thereby preserve the strong

correspondence.

7 = MemReadResult, (v), MemWriteDone,, these actions correspond to the same action in the
specification. Changes made to k.Mem reflect the changes made to u.MemSpace,, thereby
preserving the state correspondence. Each are enabled by the existence of READ and

W RITE respectively in the u.Responses and k.Responses queue, which is preserved by F.

7.2 File System Manager Simulation

To show that the File System Manager K at the Kernel-level meets the specification of the File

System Manager at the User-level U, we establish a strong correspondence from K to U.

Theorem 5.2 The relation F' in figure 27 is a strong correspondence from K to U.

F is a relation between states in I/ and states in K such that w € F[k] if and only if:
o u.Open, = k.Open,
e u.DirectoryStruct = k.DirectoryStruct

e u.Jobs is a subsequence of k.Jobs, where every command in k.Jobs is in u.Jobs with the exception of commands
of the form (SCHEDULE, ).

e u.Responses is a subsequence of k.Responses, where every command in k. Responses is in u. Responses with the
exception of commands of the form (INTERRUPT,z).

Figure 27: File System Manager strong correspondence from implementation to specification

This mapping demonstrates the great similarity between the User Level and Kernel Level File
System Managers, as the only serious difference comes in the absence of requests to the scheduler

and interrupt handler in the User Level Model.

Proof: In order to show that F' is a strong correspondence from K to U we first show that for
each start state of K, there exists a corresponding start state of U, and that this correspondence is

preserved by each step of K.

If k is a start state of KC, Open,, DirectoryStruct, Jobs, and Responses are Empty. The start
state of U corresponds to this state, since it too has Open,,, DirectoryStruct, Jobs, and Responses

Empty.
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Additionally, we show that in(U) C in(K),int(U) C int(K), out(U) C out(K). This is obvious

from inspection of the automata.

To establish that the strong correspondence is preserved by every step of the implementation,
suppose that k£ and u are reachable states of K and U respectively such that v € F[k] and that
kS k'. We show that there exists a state u' € F[k'] such that if 7 € acts(U), uSu', and otherwise

uUu=1u.

1. m = FSOpen,(y), FSCreate,(y,n), FSReadAt,(y,n,m), FSWriteAt,(y,n,m, A), FSClose,(y),
FSDelete,(y), these actions in the implementation correspond to their respective actions in
the specification. For each action the triple (7, z,y) is enqueued in the Jobs queue. In the
implementation, the pair (SCHEDULE, ) is additionally enqueued, but that action is not
represented in the specification. The state function is preserved, so the strong correspondence

is as well.

m = Open, Create, ReadAt, WriteAt, Close, Delete, these actions in the implementation cor-
respond to their respective actions in the specification. Each is enabled by the presence of
(m,2z,y) at the head of the k.Jobs queue. The equality of the Jobs queue is maintained
through the correspondence function, therefore we know that these actions are enabled at
the User level. In each case the triple (7, z,y) is dequeued from the Jobs queue, while the
triple (7, z,y) is enqueued in the Responses queue. Because equality of the DirectoryStruct
structure is maintained through the state correspondence function, we know that all opera-
tions on files will return the same value in both models. Additionally, the Open,, structure
is maintained identically, preserving the state correspondence in both automata. In the im-
plementation, the pair (INTERRU PT, x) is additionally enqueued in Responses, but that
action is not represented in the specification. The state function is preserved, so the strong

correspondence is as well.

m = FSOpenResult, (y, z), FSCreateResult, (y, z), FSReadAtResult, (y, A), FSWriteAtResult, (y, z),
FSCloseResult,(y, z), FSDeleteResult, (y, z) these actions correspond to their respective actions

in the specification. The state change is identical in the implementation and the specification.

7w = Schedule(z,0), Interrupt(z) these actions in the implementation have no corresponding

action in the specification, and therefore correspond to the empty transition. The state
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function is preserved, as the deletions to k..Jobs and k.Responses are not of the form that
requires any related deletion to u.Jobs or u.Responses. So the state function still maps the
new implementation state to the same state in the specification, and the transition is the

empty transition.

7.3 Console Manager Simulation

To show that the Console Manager at the Kernel-level meets the specification of the Console Man-
ager at the User-level, we establish a strong correspondence from K=Kernel-level implementation

to U=User-level specification.

Theorem 5.3 The relation F' in figure 28 is a strong correspondence from K to U.

F is a relation between states in I/ and states in K such that w € F[k] if and only if:
e u.Buffer = k.Buffer
o u.Busy = k.Busy

e u.Responses is a subsequence of k. Responses, where each element in k. Responses is in u.Responses if and only

if it is of the form (WRITERESULT,y,z) or (READRESULT, y, z).

e u.Jobs is a subsequence of k.Jobs, where each element in k.Jobs is in u.Jobs if and only if it is of the form
(WRITESCREEN,y) or (READ, ).

Figure 28: Console Manager strong correspondence from implementation to specification

Much like the File System Manager, the Kernel Level Console Manager differs from its User
Level counterpart only in the addition of requests to the Scheduler and Interrupt Handler for
scheduling requests. This difference manifests itself in nearly every action, with the enqueueing of

SCHEDULE or INTERRUPT commands in the k.Responses and k.Jobs queues.

Proof: In order to show that F' is a strong correspondence from K to U we first show that for
each start state of I, there exists a corresponding start state of I/, and that this correspondence is

preserved by each step of K.

If k is a start state of IC, the Buffer, Jobs and Responses sets are empty, and Busy is FALSE.
The start state of U corresponds to this state, since it has Buffer, Jobs and Responses empty, and

Busy = FALSE.

Additionally, we show that in(U) C in(K),int(U) C int(K),out(U) C out(KC). This is obvious

from inspection of the automata.
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To establish that the strong correspondence is preserved by every step of the implementation,
suppose that k and u are reachable states of K and U respectively such that u € F[k] and that
kI k'. We show that there exists a state u' € F[k'] such that if 7 € acts(U), u"su’, and otherwise
u=u'

1. m = ConsoleRead,, this action in the implementation corresponds to the same action in the

specification. In both cases the pair (READ,x) is enqueued in the Jobs queue. In the
implementation, the pair (SCHEDU LE, z) is additionally enqueued, but that action is not

represented in the specification. The state function is preserved, as is the simulation.

m = ConsoleWrite;, WriteToScreen, these actions simulate their corresponding actions in the
specification. The state change in the implementation matches the state change in the specifi-
cation. wu.Responses and k.Responses are changed in the exact same fashion in both, as is the
state variable Busy in ConsoleWrite,. u.Jobs maintains the property that it is a subsequence
of k.Jobs, where every instance of (W RITESCREEN,y) in k.Jobs is present in u.Jobs. Sim-
ilarly, u. Responses maintains the property that it is a subsequence of k. Responses where every
instance of (WRITERESULT,y,z) and (READRESULT,y, z) present in k.Responses is

present in u.Responses.

m = LoadBuffer, this simulates the same action in the specification. The state change is

identical in the implementation and the specification.

m = ConsoleReadResult,(y), ConsoleWriteResult, (y), these actions simulate their correspond-
ing actions in the specification. The state change is identical in the implementation and the

specification.

m = Schedule(z,0), Interrupt(z), these actions in the implementation simulate their corre-
sponding actions in the specification, and therefore corresponds to the empty transition. All
state changes in the implementation are such that they do not affect the strong correspondence

relation.

7.4 Network Manager Simulation

To show that the Network Manager at the Kernel-level meets the specification of the Network Man-

ager at the User-level, we establish a strong correspondence from K=Kernel-level implementation
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to U=User-level specification.

Theorem 5.4 The relation F' in figure 29 is a strong correspondence from K to U.

F is a relation between states in ¢/ and states in K such that « € F[k] if and only if:
e u.Open, = k.Open,
o u.Network = k.Network
o u.InBuffer, = k.InBuffer
o u.OutBuffer, , = k.OutBuffer, ,

e u.Jobs is a subsequence of k.Jobs, where every command in k.Jobs is in u.Jobs with the exception of commands
of the form (SCHEDULE, ).

e u.Responses is a subsequence of k.Responses, where every command in k. Responses is in u. Responses with the
exception of commands of the form (INTERRUPT,z).

Figure 29: Network Manager strong correspondence from implementation to specification

Like the Console Manager and File System Manager before, the File System Manager’s corre-
spondence is one simply of scheduling commands in the Kernel Level Model and not in the User

Level Model.

Proof: In order to show that F' is a strong correspondence from X to U/ we first show that for
each start state of K, there exists a corresponding start state of U, and that this correspondence is

preserved by each step of K.

Additionally, we show that in(U) C in(K),int(U) C int(K), out(U) C out(K). This is obvious

from inspection of the automata.

OutBuffer

If k is a start state of K, the Open,, Network, InBuffer Responses and Jobs

T,y T,y

sets are empty. The start state of U corresponds to this state, since it has the Open,, Network,

InBuffer OutBuffer, , and Jobs sets empty as well.

:C,ya
To establish that the strong correspondence is preserved by every step of the implementation,
suppose that k£ and u are reachable states of K and U respectively such that v € F[k] and that
kL k'. We show that there exists a state u' € F[k'] such that if 7 € acts(U), uSu', and otherwise
u=u'
m = NetOpen,(y), NetRead,(y,n), NetWrite,(y, n, A), NetClose, (y) these action in the imple-
mentation correspond to their respective actions in the specification. In each case the triple

(m,2,y) is enqueued in the Jobs queue. In the implementation, the pair (SCHEDULE, x)
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is additionally enqueued, but that action is not represented in the specification. The state

function is preserved, so the strong correspondence is as well.

m = Open,Read, Write, Close, these actions in the implementation correspond to their respec-
tive actions in the specification. In each case the triple (m,z,y) is dequeued from the Jobs

queue, and is enqueued in the Responses queue. Because the InBuffer OutBuffer, , and

T,y
Network structures are maintained through the state correspondence function, we know that
all identical operations on them will have identical results. Additionally, the Open, struc-
ture is maintained identically, preserving that state correspondence in both automata. In
the implementation, the pair (INTERRU PT, z) is additionally enqueued in Responses, but

that action is not represented in the specification. The state function is preserved, with no

external image, so the strong correspondence is as well.

7w = KilledProc(z), this action in the implementation corresponds to the same action in the
specification. Because u.Network and k.Network are maintained identically, y will either be
in both or neither of them. Therefore, all changes made to u. OutBuffer, , and k.OutBuffer,, ,

will be identical.

m = NetOpenResult, (y, z), NetReadResult, (A, z), NetWriteResult, (y, z), NetCloseResult, (y, z),
NetReadInBuffer, ,, NetWriteOutBuffer, ,, these actions in the implementation correspond to
their respective actions in the specification. The state change is identical in the implementa-

tion and the specification.

7w = Schedule(z,0), Interrupt(z), these actions in the implementation have no corresponding
action in the specification, and therefore correspond to the empty transition. The state
function is preserved, as the deletions to k.Jobs and k.Responses are not of the form that
require any related deletions to u.Jobs or u.Responses. So the state function still maps the
new implementation state to the same state in the specification, and the transition is the

empty transition.

7.5 ALU Simulation

To show that the ALU at the Kernel-level meets the specification of the ALU at the User-level, we

establish a strong correspondence from K=Kernel-level implementation to /=User-level specifica-
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tion.

Theorem 5.5 The relation F' in figure 30 is a strong correspondence from K to U.

F is a relation between states in ¢/ and states in K such that « € F[k] if and only if:
e u.Responses = k.Responses
o u.OutstandingOps = k. OutstandingOps
o u.Registers[k.CurrentProc] = k.CurrentRegs, for all other registers, u.Registers = k.RegMem.

Figure 30: ALU strong correspondence from implementation to specification

The main difference between the ALU in the User Level Model and the Kernel Level Model is
the existence of a single current set of registers in the Kernel Level. This requires the Kernel Level
Model to switch between registers before performing actions for different processes, an action that
is automatic and immediate for the User Level Model. Because of this, the correspondence between
the two levels demonstrates the relationship of the current registers in the Kernel Level with one
set of registers at the User Level, and all other registers at both levels corresponding in a straight

forward fashion.

Proof: In order to show that F' is a strong correspondence from X to U/ we first show that for
each start state of K, there exists a corresponding start state of U, and that this correspondence is

preserved by each step of K.

Additionally, we show that in(U) C in(K),int(U) C int(K), out(U) C out(K). This is obvious

from inspection of the automata.

If k is a start state of K, the Responses queue is Empty and the QutstandingOps set is (), while
Registers is initially all 0. The start state of U corresponds to this state, since it has the Responses

queue Empty and QutstandingOps set () as well, with CurrentProc = 0, and RegMem initially 0.

To establish that the strong correspondence is preserved by every step of the implementation,
suppose that k£ and u are reachable states of K and U respectively such that v € F[k] and that
kL k'. We show that there exists a state u' € F[k'] such that if 7 € acts(U), uSu', and otherwise

u=u'.

m = OperationReq, (op), this action in the implementation corresponds to its respective action

in the specification. In both cases, the action is triggered by the same external input, and
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both modify the OutstandingOps and Responses state variables in the exact same way. The
state relation function is preserved, consequently the strong correspondence is preserved as

well.

m = Operate(z, op), this action in the implementation corresponds to its respective action in
the specification. Both actions have the same precondition, (x,0p) € QOutstandingOps. As the
state relation function preserves equality between u.QutstandingOps and k.QutstandingOps,
Operate(z, op) must be enabled in the specification whenever it is executed in the implemen-
tation. All operations to k.CurrentProc, k.CurrentRegs, and k.RegMem preserve the relation
with u.Registers. The changes to k.Responses and k.QutstandingOps are identical to those
made to u.Responses and u. OutstandingOps. Therefore the state relation is preserved, as is

the strong correspondence.

m = OperationResult, (opVal), KillProc(z), both of these actions correspond to their re-
spective actions in the specification. Both are enabled by the same state in their respective
Responses queues, which correspond by the state relation function. The action makes iden-
tical changes to the u.Responses queue and the k.Responses queue at either level. As the
changes in the implementation are identical to those in the specification, the state relation

function is preserved, and so is the strong correspondence.

7.6 From Correspondence to Simulation

Having established strong correspondences for the Memory, File System, Network, Console, Pro-
cess, and ALU automata, the task remains of proving that the full Kernel Level operating system
simulates the User Level specification. We prove this in several steps, following the path of reasoning

outlined by the general theorems we established earlier in section 2.

First, we compose the automata in each level for which we have already established strong
correspondences with their counterparts at the other level. That is to say, at the Kernel Level we
compose into one larger automaton the ALU, Virtual Memory, File System, Network, Console, and

Process Managers. Similarly we compose their analogs at the User Level.

Lemma 2: The composition of Kernel Level ALU, Virtual Memory, File System, Network, Con-

sole, and Process Managers strongly corresponds to the composition of User Level ALU, Virtual
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Memory, File System, Network, Console, and Process Managers.

Proof: From Theorem 1 we know that strong correspondence holds under composition. We have
shown in section 7 that each of the Kernel and User Level pairs of ALU, Memory, File System,
Network, Console, and Process Managers strongly correspond. From the definition of composition
in Section 2.2 it is obvious that these automata are compatible, meaning that we can compose
them without any conflicts. The signatures of the composing automata S; are such that Vi, 7,
int(S;) Nacts(S;) = 0, and out(S;) Nout(S;) = 0. We can therefore conclude that the composition

of these automata at the Kernel Level strongly corresponds to the composition at the User Level.

|

We first note that the strong correspondence proven in Lemma 2 includes all of the automaton
in the User Level Model. Therefore, in order to prove that the Kernel Level Model strongly corre-
sponds to the User Level Model, all that remains to be shown is that the inclusion of the remaining
Kernel Level automata does not destroy the strong correspondence. These remaining automata are

the Scheduler, Interrupt Handler, and Abstraction Automaton.

Lemma 3: The composition of Kernel Level Scheduler, Interrupt Handler, Abstraction Automaton,
ALU, Virtual Memory, File System, Network, Console, and Process Managers strongly corresponds
to the composition of User Level ALU, Virtual Memory, File System, Network, Console, and Pro-
cess Managers.

Proof: The only difference between this correspondence and that from Lemma 2 is the addition of
the Scheduler, Interrupt Handler, and Abstraction Automaton to the Kernel Level Composition.
From Theorem 2 we know that, in the case of an already existing strong correspondence, composing
additional compatible automata in the lower level does not affect the strong correspondence of the
composition. By inspection it is obvious that the Scheudler, Interrupt Handler, and Abstraction
Automaton are compatible with the other automata in the Kernel Level Model. We can therefore
add them into the composition, and maintain the strong correspondence between the Kernel Level

and User Level Models.

a

We have now established a strong correspondence between the Kernel Level operating system

and the User Level operating system. The final step is the establishing of a simulation.
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Theorem 6: The Kernel Level implementation simulates the User Level specification.

Proof: From Theorem 4 we know that if F' is a strong correspondence from A to B, and
in(A) = in(B),int(A) D int(B),out(A) = out(B), then A simulates B. Considering the exter-
nal signatures of the composed Kernel Level I and User Level U operating system automata, it
becomes apparent that in(U) C in(K), and out(U) C out(K). All output actions in K which are
not in ¢ can be hidden using the hiding operator defined in Section 2.3 and proven to maintain the
strong correspondence from Theorem 3. The only difficulty lies in eliminating any additional input
actions from K. However there are not additional input actions, as we defined the interface of the
operating systems to be equal, and input actions are only lost, never created, in composition. So

in(A) = in(B), out(A) = out(B), and therefore I simulates U.

8 Conclusions and Future Work

The I/O Automata models of a generic operating system described in this thesis make a first foray
into the relatively uncharted territory of formal design of operating system topology. Using a state
machine model, we create both an abstract specification and a conceptual implementation of an
operating system, and prove that the implementation simulates the specification. Formal models
for operating systems will help the field to provide a formal framework for current and future

research, and to teach new students.

The formal structure provided by the automata model of the operating system creates a peda-
gogical tool for instructing students in operating system design. Few, if any, modern texts break
down the operating system into its component parts as distinctly as the automata model does.
This separation of modules is critical throughout the period of first understanding operating sys-
tem mechanics. While explaining the operating system at a well abstracted level, the automata
model and its formal method of reasoning guides students to focus on interface specification and

modularity within the operating system, an invaluable lesson in good system design.

Perhaps more important than its pedagogical repercussions, a formal model of an operating

system provides a clean theoretical framework upon which to build new operating system research.

69



Initially, it is easy to see how one could expand on the relatively simple implementation presented
here, adding new components and expanding on the complexity of existing ones. One such example
is the File System Manager, as one could easily write replacement modules that implemented a
log-structured file system, the UNIX fast file system, or many others. The only requirement for
the module is that it meet the abstract specification, allowing it to integrate immediately into the

rest of the operating system.

Another interesting example for a module that would be valuable to explore in the framework
of an operating system is a caching automaton. Such an automaton could be specified to have a
simple interface between it and processes allowing requests and responses for memory values, and
an interface to the Memory Manager allowing for memory reads and writes. One could explore
various sorts of caching algorithms in the context of the larger operating system, as well as easily

modify the cache from servicing the memory to servicing the File System or any other sort of

buffered 1/0O device.

Similarly, work on modules such as schedulers could be easily contextualized within the frame-
work of an operating system. As much research has gone into various scheduling algorithms for
different applications, having the capability to easily incorporate new designs into the already
existing operating system structure is desirable. In this way scheduling research could be done sep-
arately from other operating system research, with the knowledge that adherence to the automaton
interface guaranteed the compatibility of any advanced scheduler designs. Scheduling research is
completely performance based, and therefore the true power of an operating system framework for
scheduling research could only be realized with the addition of some form of performance analysis.
The general I/O automaton model can be used to analyze performance, but one must extend the
underlying automaton model to that of timed I/O automata. This extension adds in time-passage
actions, and therefore enables performance measurements. Such automata permit performance

analysis, but it still remains to develop easily usable analysis techniques for this application area.

Future work would not be limited to adding new automata and increasing the complexity of
existing ones; if one modified the operating system to handle multiple processors (not a difficult
task) one could also explore many of the more esoteric problems involved in parallel processing. Such
modifications would be trivial in some automata modules, such as the scheduler, where variables

such as Active would simply change from one active process to a set of them. In other automata,
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such as the Memory Manager, more complicated issues would arise, all of which would need to
be modelled in that automaton. Significant work has been done in the area of formal models for
distributed problems such as memory consistency and inter-processor data routing. It would be
fascinating to place these algorithms in the context of a parallel processor operating system model,
to see what kind of conclusions can be drawn from the more complete view of the machine which

the larger scoped model provides.

Finally, and perhaps most interestingly, it would be fascinating to look at different operating
system paradigms, especially those which have come out in recent years. The current work done on
the exokernel operating system at MIT, and the VINO project at Harvard both describe operating
systems which could exhibit inherent topological and theoretical differences from the operating
system presented in this thesis. For such operating systems a new abstract specification could be
necessary, and it would be interesting to see how these new paradigms manifest themselves in the

formalization.
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