
I/O Automaton Model of Operating System PrimitivesDaniel Yates� Nancy Lynchy Victor Luchangco z Margo SeltzerxMay 13, 1999AbstractCurrent research in the �eld of operating systems has been very systems-oriented and re-sult driven. Little theoretical research has been done in considering the formal rami�cationsof these systems level decisions, or in mapping out the topology of the standard operating sys-tem. Because of this, it is often di�cult in operating systems work to get a clear picture of thehigh-level interactions between di�erent OS services, or to apportion programming e�orts acrosswell-de�ned interfaces. Formal speci�cation of the operating system structure and methodol-ogy would provide a framework for clearer study, discussion, and implementation of operatingsystems.We present a formal method for modelling an operating system as a distributed systemof state machines. Drawing the connection between the various independent services of anoperating system and the independent agents of distributed systems, we model each service of theoperating system as an asynchronous I/OAutomaton. Demonstrating both the instructional andfunctional value of this modelling technique, we present here two views of the operating system.The �rst view, the User Level model, provides a simpli�ed abstraction of the operating system.This acts as a operating system interface speci�cation as well as an easy �rst step for teachingstudents in the �eld. The second view, or Kernel Level model, provides an implementation ofthe User Level abstract speci�cation, and unveils many of the realities which were abstractedaway in the User Level model. It provides a framework for research in formalizing operatingsystems, as well as providing a clear and concise description of many of today's operating systemelements. Finally, using the powerful mathematical tools developed for I/O Automata, we maketwo formal modi�cations to the Kernel Level model and prove that it in fact does implementthe User Level speci�cation. We thereby assert that the two models are, from the perspectiveof the processes, functionally equivalent.Keywords: operating system, formal model, I/O Automata
�Harvard Department of Computer Science, 469 Lowell House Mail Center, Cambridge, MA 02138yMIT Department of Computer Science, 545 Technology Square NE43-366, Cambridge, MA 02139zMIT Department of Computer Science, 54 Technology Square NE43-372, Cambridge, MA 2139xHarvard Department of Computer Science, 29 Oxford Street Pierce 110D, Cambridge, MA 021381

1 IntroductionGood design, from the highest level down, is fundamental to the success and e�cacy of operatingsystems. The goal of design is to describe a set of modules that interact with one another in simple,well de�ned ways. In achieving this goal, a well-designed system enables people to work indepen-dently on di�erent modules, with the guarantee that the modules will �t together to accomplishthe larger purpose.We present here a formal model of generic operating system primitives using I/O Automata.Leveraging the mathematical structure of automata, we design a formal infrastructure that focusesthought on system error management and interface design. Through this focus, we arrive at adesign that is clear and concise, as well as tailored to managing system unreliability and breakdown.Modelling the operating system at two levels, we provide both an abstract speci�cation of the systemand a more detailed implementation of that speci�cation. We then prove, using formal methodsdeveloped for I/O Automata, that the implementation does in fact simulate the speci�cation.1.1 Background: Formal Models and Speci�cationsResearch in formal models and speci�cations has been going on for decades. Starting in the early1970's, work was done to show that all computable functions over an abstract type could be de�nedalgebraically using equations of a simple form. Much thought went into these speci�cations, andmany people considered the problems of when such speci�cations constituted an adequate de�nition.From these works many di�erent approaches to formal modelling have sprung up. Some re-searchers have stayed within the limits of algebraic equations, working on more abstract andstreamlined versions of the work done before. One example of such work is Yuri Gurevich's workon the Abstract State Machine (ASM) Project (formerly known as the Evolving Algebras Project),an attempt to bridge the gap between formal methods of computation and practical speci�cationmethods [1]. The ASM method focuses on building an algebra for a given algorithm, and usingsuch an algebra to convince oneself of the correctness of the algorithm.Other researchers, deciding that purely algebraic approaches to speci�cation were unlikely to bepractical, proposed a combination of algebraic and operational speci�cations, termed by John V.Guttag to be \dyadic speci�cations"[2]. Guttag, along with fellow researchers in his LARCH group,2

proceeded to create a powerful theorem prover to check and reason about speci�cations [3]. Thesespeci�cations have been used for checking proofs, as well as for verifying program correctness.The e�ort to create the Spec language, led by Butler Lampson, is of particular interest, as ithas been used successfully in formalizing problems in operating systems research. Based on EdsgerDijkstra's Guarded Commands and augmented by Lampson with constructs for concurrency andatomicity, Spec is a formal speci�cation language designed for modelling distributed systems andalgorithms [4]. Lampson's design of Spec is compelling, as it de�nes many interesting formal toolssuch as correspondence proofs based upon module trace comparison. It also focuses on de�ningabstract data types with provable properties and then running actions on state machines whichuse these data types. With this methodology, Spec has been used successfully in working on suchproblems as caching, fault-tolerance, concurrency, naming, and security.While these e�orts were, and have been, very successful at what they set out to do, none ofthem have been directly applied to design and speci�cation of operating systems. Many of thesmaller subsystems that compose operating systems have been modelled extensively, but never theoperating system itself. Yet many of the issues plaguing operating system designers are the sameissues run into by researchers working on distributed systems. As the utility of formal speci�cationtools has been proven in the distributed systems arena, it seems only reasonable to try a similarapproach in the study of operating systems.The I/O Automata model developed by Lynch and Tuttle [6] is the ideal candidate for sucha formal speci�cation of an operating system. Designed with the issues of distributed systemsin mind, the I/O Automata is an easily abstractable, relatively compact representation of a statemachine. With most actions driven by I/O, the emphasis is on reacting properly to the environmentand dealing with outside stimuli. Considering the various components of an operating system inthis light leads us to several bene�cial results. First, it encourages thinking about interface designbetween components and about detailed formal speci�cations of interactions. Second, it enforces acertain level of independence and error management between components, as they should be readyto deal with unexpected inputs. Third, it allows for a clear and concise description of the operatingsystem design without many of the implementation details, making for a good tool for discussingand learning operating system primitives.
3

1.2 Overview of this thesisThe key results of this thesis are the I/O Automata descriptions of a generic operating system at anabstract speci�cation level (User Level), and a more detailed, implementation level (Kernel Level).The design of these descriptions is loosely based on the structure of the NACHOS instructionaloperating system [7]. Together with a correspondence proof showing that the Kernel Level simulatesthe User Level, these two models of the operating system provide a formal framework for designing,working on, and teaching operating system primitives.The thesis is organized as follows: Section 2 de�nes the I/O automaton model used to formallyspecify the operating system at both levels of abstraction, and then goes on to de�ne and justify themathematical tools used in the correspondence proof. Section 3 introduces some formal de�nitionsand conventions used throughout the thesis, including the de�nition of many of the data typesused in the operating system model. Section 4 describes the User Level model of the operatingsystem, �rst with an intuitive explanation of the speci�cation, and then through the usage of I/Oautomata. Section 5 does for the Kernel Level model what section 4 did for the User Level, providingthe intuitive and I/O automata model of the Kernel Level implementation of the operating system.Section 6 introduces an abstraction automaton, which is necessary to enable the User Level Processto interact in the Kernel Level model. Section 7 describes a series of strong correspondence proofsbetween several User and Kernel Level automata, and section 8 provides the full simulation proofbetween the User and Kernel Level operating systems. Section 9 describes potential for future workin the area and concludes the thesis.
2 Formal Model: De�nitions and Fundamental TheoremsI/O Automata models are very general, suitable for describing nearly all kinds of asynchronous con-current systems. They provide a framework for reasoning about system components that interactwith each other and that operate at arbitrary relative speeds.4

2.1 De�nition of I/O Automata[5]An I/O automaton's signature is simply a description of its input, output, and internal actions.We assume a universal set of actions. A signature S is a triple consisting of three disjoint sets ofactions: the input actions, in(S), the output actions, out(S), and the internal actions, int(S). Wede�ne the external actions, ext(S), to be in(S) [out(S); the locally controlled actions local(S), tobe out(S) [int(S); and acts(S) to be all the actions of S. The external signature, extsig(S), isde�ned to be the signature (in(S); out(S); ;).An I/O automaton A, consists of �ve components:� sig(A), a signature� states(A), a (not necessarily �nite) set of states� start(A), a nonempty subset of states(A) known as the start states or initial states� trans(A), a state-transition relation, where trans(A) � states(A)�acts(sig(A))�states(A);this must have the property that for every state s and every input action �, there is a transition(s; �; s0) 2 trans(A)We call an element (s; �; s0) of trans(A) a transition, or step of A. The transition (s; �; s0) iscalled an input transition, output transition, or internal transition based on whether the action �is an input, output, or internal action. We write s ��!s0 as shorthand for (s; �; s0) 2 trans(A). Iffor a particular state s and action �, A has some transition of the form s ��!s0, then we say that� is enabled in s. Since every input action is required to be enabled in every state, automata aresaid to be input-enabled. The input-enabling assumption means that the automaton is not ableto somehow \block" input actions from occurring. This assumption means, for example, that aprocess has to be prepared to cope in some way with any possible message value when a messagearrives.There are two major advantages to having the input-enabling property. First, a serious sourceof errors in the development of system components is the failure to specify what the componentdoes in the face of unexpected inputs. Using a model that requires consideration of arbitrary inputsis helpful in eliminating such errors. Second, use of input-enabling makes the basic theory of the5

model work out nicely; in particular input-enabling makes it reasonable to use simple notions ofexternal behavior for an automaton, based on sequences of external actions.In describing I/O Automata, the transition relation is written in a precondition-e�ect style.This style groups together all the transitions that involve each particular type of action into asingle piece of code. The code speci�es the conditions under which the action is permitted to occuras a predicate on the pre-state s. Then it describes the changes that occur as a result of the actionin the form of a simple program that is applied to s to yield s0. The entire piece of code getsexecuted in a single, atomic transition.An execution fragment of A is either a �nite sequence, s0; �1; s1; �2; : : : ; �r; sr, or an in�nitesequence s0; �1; s1; �2; : : : ; �r; sr; : : : , of alternating states and actions of A such that sk �k+1���!sk+1is a transition of A for every k � 0. Note that if the sequence is �nite, it must end with a state.An execution fragment beginning with a start state is called an execution. We denote the set ofexecutions of A by execs(A). A state is said to be reachable in A if it is the �nal state of a �niteexecution of A.2.2 CompositionThe composition operation allows an automaton representing a complex system to be constructedby composing automata representing individual system components. The composition identi�esactions with the same name in di�erent component automata. When any component automatonperforms a step involving �, so do all component automata that have � in their signatures. Inorder for a countable set of automata to be compatible, their signatures fSigi2I must be such that8 i; j 2 I; i 6= j, the following hold:� int(Si) \ acts(Sj) = ;� out(Si) \ out(Sj) = ;� No action is contained in in�nitely many sets acts(Si)Upon composing a set of automata, output actions of the components become output actionsof the composition, internal actions of the components become internal actions of the composition,and actions that are inputs to some components but outputs of none become input actions of6

the composition. Formally, the composition S = Qi2I Si of a countable compatible collection ofsignatures fSigi2I is de�ned to be the signature with� out(S) = [i2Iout(Si)� int(S) = [i2Iint(Si)� in(S) = [i2Iin(Si)� [i2Iout(Si)With that de�ned, it becomes easy to de�ne the composition of a countable compatible collectionof automata fAigi2I . It is the automaton de�ned as� sig(A) =Qi2I sig(Ai)� states(A) =Qi2I states(Ai)� start(A) =Qi2I start(Ai)� trans(A) is the set of triples s ��!s0 such that, for all i 2 I, if � 2 acts(Ai), then si ��!s0i 2trans(Ai); otherwise si = s0i2.3 HidingWe now de�ne an operation that \hides" output actions of an I/O automaton by reclassifying themas internal actions. This prevents them from being used for further communication and means thatthey are no longer included in traces.We �rst de�ne the hiding operation for signatures: if S is a signature and � � out(S), thenhide�(S) is de�ned to be the new signature S0, where in(S0) = in(S), out(S0) = out(S) � �, andint(S0) = int(S) [�.The hiding operation for I/O Automata is now easy to de�ne: if A is an automaton and� � out(A), then hide�(A) is the automaton A0 obtained from A by replacing sig(A) with sig(A0) =hide�(sig(A)). 7

2.4 SimulationsThe simulation proof in Section 7 relies on the tools developed for hierarchical automata. Wecan show that a lower level automata implements a higher level automata by obtaining a one-wayrelationship between the two, showing that for any execution of the lower-level automaton there isa \corresponding" execution of the higher-level automaton. One typically does this by de�ning asimulation relation between states of the two automata:Let A and B be two I/O Automata with the same external interface; we think of A as the lower-level automaton, and B as the higher-level one. Suppose F is a binary relation over states(A) andstates(B), that is, F � states(A) � states(B). Then F is a simulation relation from A to B,provided that both of the following are true:1. If s 2 start(A), the F [s] \ start(B) 6= ;:2. If s is a reachable state of A, u 2 F [s], where u is a reachable state of B, and s ��!s0 2 trans(A),then there is an execution fragment � of B starting with u and ending with some u0 2 F [s0],such that trace(�) = trace(�).Lemma 1: Let F1 be a simulation relation from A1 to B1, F2 be a simulation relation from A2 toB2, and F be the binary relation from states(A1�A2) to states(B1�B2) where (u1; u2) 2 F [(s1; s2)]if and only if u1 2 F1[s1] ^ u2 2 F2[s2]. F is a simulation relation from A1 �A2 to B1 �B2.Proof:We prove this by showing that F adheres to the de�nition of simulation relation.1. If (s1; s2) 2 start(A1)�start(A2), then 9(u1; u2) 2 start(B1)�start(B2) such that (u1; u2) 2F [(s1; s2)]. From the de�nition of composition, we see that the start states of the compositionof two automata A and B are start(A) � start(B). We know from the simulation relationthat s1 2 start(A1) and s2 2 start(A2) implies that 9u1 2 F1[s1] such that u1 2 start(B1)and 9u2 2 F2[s2] such that u2 2 start(B2). Therefore, 9(u1; u2) 2 F [(s1; s2)] such that(u1; u2) 2 start(B1; B2).2. If (s1; s2) is a reachable state of A1�A2, (u1; u2) 2 F [(s1; s2)] is a reachable state of B1�B2,8

and (s1; s2) ��!(s01; s02) 2 trans(A1 � A2), then there is an execution fragment � of B1 �B2 starting with (u1; u2) and ending with some (u01; u02) 2 F [(s01; s02)] such that trace(�) =trace(�).For s1 2 states(A1), u1 2 F1[s1], and s1 ��!s01, we know from the simulation relation that thereis an execution fragment �1 of B1 starting with u1 and ending with some u01 2 F [s01], suchthat traceB1(�1) = traceA1(�). Similarly, for s2 2 states(A2), u2 2 F2[s2], and s2 ��!s02, weknow from the simulation relation that there is an execution fragment �2 of B2 starting withu2 and ending with some u02 2 F [s02], such that traceB2(�2) = traceA2(�). Therefore, (u1; u2)transitions to (u01; u02) by �1 � �2. As extsig(A1) = extsig(B1), and extsig(A2) = extsig(B2),the composition A of A1 and A2 will have the same external signature as the composition Bof B1 and B2. Therefore, since traceB1(�1) = traceA1(�) and traceB2(�2) = traceA2(�), wecan conclude that traceB(�1 � �2) = traceA(�) 22.5 Strong CorrespondenceIn the consideration of the various automata which we de�ne in this thesis, it will be meaningfulfor us to draw formal parallels between individual automata in the speci�cation and implementa-tion. For example, it is intuitive that there is a relationship between the Memory Manager at thespeci�cation level, and the Virtual Memory Manager at the implementation level; we would liketo formalize this relationship. However, because these automata do not have the same externalsignatures, we cannot prove that one implements the other. Instead, we must de�ne a new notion,that of strong correspondence, which we will use as an intermediate step in our simulation proof:Let A and B be two I/O Automata where in(B) � in(A); out(B) � out(A); int(B) � int(A); wethink of B as the higher-level automaton, and A as the lower-level one. Suppose F is a binaryrelation over states(A) and states(B), that is F � states(A) � states(B). Then F is a strongcorrespondence provided that both of the following are true:1. If s 2 start(A), then F [s] \ start(B) 6= ;.2. If s ��!s0 2 trans(A) ^ u 2 F [s] ^ � 2 acts(B) then 9u0 2 F [s0] such that u ��!u0 2 trans(B).9

3. If s ��!s0 2 trans(A) ^ u 2 F [s] ^ � =2 acts(B) then u 2 F [s0]With this de�nition we will be able to show a strong correspondence between individual au-tomata in the User Level model with automata in the Kernel Level model. We will then be ableto compose these strongly corresponding automata with each other to arrive at a composition ofautomata in the speci�cation that strongly correspond to a matching composition in the implemen-tation. The need to compose strongly corresponding automata motivates the following theorem.Let A1, A2, B1, andB2 be four I/O Automata where in(B1) � in(A1); out(B1) � out(A1); int(B1) �int(A1), and in(B2) � in(A2); out(B2) � out(A2); int(B2) � int(A2); we think of A1 and A2 asthe lower-level automata, and B1 and B2 as the higher-level ones. Suppose F1 is a strong corre-spondence over states(A1) and states(B1), and F2 is a strong correspondence over states(A2) andstates(B2). Let F be a binary relation over states(A1)� states(A2) and states(B1)� states(B2),where (u1; u2) 2 F [(s1; s2)] if and only if u1 2 F1[s1] ^ u2 2 F2[s2].Theorem 1: F is a strong correspondence from states(A1 �A2) to states(B1 �B2).Proof:We prove this by showing that F adheres to the de�nition of strong correspondence. The �rstproperty in the de�nition can be proven straightforwardly. The second and third properties combineto form four cases with two automata: � 2 acts(B1) ^ acts(B2), � 2 acts(B1), � 2 acts(B2), and� =2 acts(B1) _ acts(B2).1. If (s1; s2) 2 start(A1 �A2) then 9(u1; u2) 2 F [(s1; s2)] such that (u1; u2) 2 start(B1 �B2).From the de�nition of composition, we see that the start states of the composition of twoautomata A and B are start(A) � start(B). We know from strong correspondence thats1 2 start(A1) and s2 2 start(A2) implies that 9u1 2 F1[s1] such that u1 2 start(B1),and 9u2 2 F2[s2] such that u2 2 start(B2). Therefore, 9(u1; u2) 2 F [(s1; s2)] such that(u1; u2) 2 start(B1 �B2).2. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A2) ^ (u1; u2) 2 F [(s1; s2)] ^ � 2 acts(B1) ^ � 2 acts(B2)then 9(u01; u02) 2 F [(s01; s02)] such that (u1; u2) ��!(u01; u02) 2 trans(B1 �B2).From the de�nition of strong correspondence we know that 9u01 2 F1[s01] such that u1 ��!u01,and 9u02 2 F2[s02] such that u2 ��!u02. Therefore (u01; u02) 2 F [(s01; s02)] by the de�nition of10

strong correspondence. From the de�nition of composition we know that (u1; u2) ��!(u01; u02),therefore 9(u01; u02) 2 F [(s01; s02)] such that (u1; u2) ��!(u01; u02) 2 trans(B1 �B2).3. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A2) ^ (u1; u2) 2 F [(s1; s2)] ^ � 2 acts(B1) ^ � =2 acts(B2)then 9(u01; u2) 2 F [(s01; s02)] such that (u1; u2) ��!(u01; u2) 2 trans(B1 �B2).From the de�nition of strong correspondence we know that 9u01 2 F1[s01] such that u1 ��!u01, andu2 2 F2[s02]. Therefore (u01; u2) 2 F [(s01; s02)] by the de�nition of strong correspondence. Fromthe de�nition of composition we know that (u1; u2) ��!(u01; u2), therefore 9(u01; u2) 2 F [(s01; s02)]such that (u1; u2) ��!(u01; u2) 2 trans(B1 �B2).4. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A2) ^ (u1; u2) 2 F [(s1; s2)] ^ � =2 acts(B1) ^ � 2 acts(B2)then 9(u1; u02) 2 F [(s01; s02)] such that (u1; u2) ��!(u1; u02) 2 trans(B1 �B2).This argument holds for exactly the same reason as the argument in the previous item.5. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A1) ^ (u1; u2) 2 F [(s1; s2)] ^ � =2 acts(B1) ^ � =2 acts(B2)then (u1; u2) 2 F [(s01; s02)].From the de�nition of strong correspondence we know that 9u1 2 F1[s01] and u2 2 F2[s02].Therefore (u1; u2) 2 F [(s01; s02)] by the de�nition of strong correspondence. 2In addition to being able to compose strongly corresponding automata, we will need to com-pose automata in the Kernel Level which correspond to nothing in the User Level with stronglycorresponding automata in the Kernel Level, and still maintain the strong correspondence. This isnecessary as there are automata in the Kernel Level, such as the Scheduler and Interrupt Handler,which do not exist in any form in the User Level model, but must be included in the correspondenceso as to prove that the full Kernel Level operating system implements the User Level system.Let A1 and B be two automata and let F be a strong correspondence from A1 to B Let A2 bean automaton which is compatible with A1. De�ne G to be a binary relation from A1 � A2 to B,where u1 2 G[(s1; s2)] if and only if u1 2 F1[s1].Theorem 2: G is a strong correspondence from A1 �A2 to B1.Proof: Intuitively, the states of A2 have no impact on the correspondence, and therefore, ifF is a strong correspondence between A1 and B2, then the correspondence will still hold with the11

addition of the unaccounted for states of A2. Formally the result is derived from the de�nition ofstrong correspondence.1. If (s1; s2) 2 start(A1 �A2) then 9u1 2 G[(s1; s2)] such that u1 2 start(B).From the de�nition of composition, we see that the start states of the composition of twoautomata A and B are start(A) � start(B). We know from strong correspondence thats1 2 start(A1) implies that 9u1 2 F [s1] such that u1 2 start(B). Therefore, 9u1 2 [(s1; s2)]such that u1 2 start(B1).2. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A2) ^ u1 2 F [(s1; s2)] ^ � 2 acts(B1)then 9u0a 2 F [(s0a; b0)] such that u1 ��!u01 2 trans(B1)From the de�nition of strong correspondence we know that 9u01 2 F [s01] such that u1 ��!u01.Therefore u01 2 F [(s01; s02)] by the de�nition of F . Therefore 9u01 2 F [(s01; s02)] such thatu1 ��!u01 2 trans(B1)3. If (s1; s2) ��!(s01; s02) 2 trans(A1 �A2) ^ u1 2 F [(s1; s2)] ^ � =2 acts(B1)then u1 2 F [(s01; s02)]From the de�nition of strong correspondence we know that 9u1 2 F [s01]. Therefore u1 2F [(s01; s02)] by the de�nition of F . Therefore u1 2 F [(s01; s02)]. 2With this machinery we can provide strong correspondences between many of the componentautomata of the two models, providing interesting results in their own right, as well as simplifyingthe act of proving the simulation between the two fully composed operating systems.2.6 From Strong Correspondence to SimulationAs the goal of the strong correspondence relation is to enable a simulation proof, the �nal steps inthe proof require converting a strong correspondence relation to a simulation relation. We do thisin two steps:Theorem 3: If F is a strong correspondence from A to B, and � � out(A), then hide�(A)strongly corresponds to hide�(B). 12

Proof: This is derived easily from the de�nition of strong correspondence. Hiding is merelythe act of changing output actions to internal actions. In the de�nition of strong correspondencewe see that there is never any consideration of action types, merely the existential evaluation ofwhether the action is or is not present in the automaton. Therefore, the action of hiding, whichconsists entirely of change action types, has no impact on strong correspondence. 2Theorem 4: If F is a strong correspondence from A to B and in(A) = in(B); out(A) =out(B); int(A) � int(B) then A simulates B.Proof: We show that the de�nition of strong correspondence between A and B, augmentedwith the fact that in(A) = in(B); out(A) = out(B), is strong enough to imply the de�nition of asimulation relation.Directly from the �rst requirement of strong correspondence we know that if s 2 start(A), then9u 2 F [s] \ start(B).From strong correspondence we know that if s is a reachable state of A, 9u 2 F [s] which isa reachable state of B. We also know that all actions � in A correspond either to � in B or theempty transition. So there are two cases:1. � 2 trans(B). In this case the execution fragment � is s; �; s0, and therefore trace(�) =trace(�).2. � =2 trans(B). In this case the execution fragment � = �. We know that � in A must beinternal, because otherwise extsig(A) 6= extsig(B), and therefore trace(�) = trace(�).So, from the additional condition that in(A) = in(B), and out(A) = out(B), strong correspondenceimplies simulation relation. 23 Preliminary De�nitions and ConventionsThe following notation is used throughout the rest of the thesis in the descriptions of the I/OAutomata models. 13

� Prede�ned Sets and Variables:Booleans the set fTRUE, FALSEgBytes the set of arrays of eight f0; 1gByteArrays the set of arrays of BytesChars the set of all ASCII charactersFiles the set of all possible �le names in the File SystemPaths the set of all possible �le paths in the File SystemProcs the set of all processes. All possible processes are in this set, each with anin�nite number of copies, so that there is no limitation to any permutationof processes which can be run on the operating system.Sockets the set of all possible network connections from the local machine� AllocateArrays:An AllocateArray manages a large array which it allocates, upon request, into separate con-tiguous subarrays, or blocks. Each block is a pair (head; n) where head is the index in thelarge array of the �rst element of the subarray, and n is the length of the block. All currentlyallocated blocks are maintained in an internal set by the AllocateArray. The AllocateArraystructure implements the following operations:Empty(n) Initialize an AllocateArray to manage an array of size n, no blocks allocated.FindBlock(p) Find the block in the AllocateArray with index p in the large array.If such a block exists, return it, otherwise return FAIL.NewBlock(n) Find an unused block of size n. Return the index of the head of the blockif one exists, else return FAIL.RemoveBlock(p) Remove the block starting with �rst index p. FAIL ifsuch a block does not exist.AddBlock(p; n) Add the block (p; n) to the internal set. FAIL if anyof the speci�ed locations are already in a subarray.� Queues:A Queue is a list of elements which adds new elements to the end of the list, and removeselements from the front of the list. In addition to these standard operations the queues usedthroughout the thesis have a few additional properties which enhance their use. Queues usedhere have the following operations: 14

Empty Initialize a queue to hold no elements.Enqueue(x) Add an element x to the end of the queue.Dequeue Remove an element from the front of the queue. FAIL if empty.Head Return the value of the element at the front of the queue without removing it.Remove(x) Remove the �rst instance of element x from the queue and maintain the queuestructure.Size Return the number of entries currently stored in the queue.� Sets:Sets have all the typical operations of a set. I will primarily use [;\;+;�;�;�.� State variables of the form Statex:For each process x there is a unique instance of the state variable Statex.� Actions of the form ActionxFor each process x there is a unique action Actionx.4 User Level Speci�cation4.1 DescriptionIn many ways, the process of building a proper formal design for a computer system is a microcosmof building the system itself. In building a computer system, the �rst step taken is making ahigh level speci�cation detailing system component interfaces and functions. So it is in the formaldesign process. We present here, in the form of the User Level model, an abstract speci�cation ofan operating system detailing the interfaces between the various components of the system, andoutlining the required functionality of each of the components.In specifying an operating system, we consider what it interacts with and the role that it playsin that interaction. One view of an operating system, and perhaps the easiest one to considerinitially, is as a resource manager, distributing the hardware resources of the computer systemto the processes running on it. This is the perspective that we take in creating the User Levelmodel of the operating system. Our concern is not with the interaction between the operatingsystem and the hardware; rather we are interested in the operating system/process interface, and15

the interactions that occur across that boundary. In this capacity, we investigate the process' viewof the operating system, and how the two interact.

Process jProcess i

Processes

File System
Manager

Manager
Process

Manager
Network

Memory
Manager

ALU Manager
Console

Figure 1: User Level model: conceptual frameworkMuch of our speci�cation of the operating system at this level is motivated by our descriptionof the processes that interact with it. We model processes here as independent, concurrently run-ning automata, interacting with the operating system through the system call interface. As such,that interaction consists of requests for resources and the responses received for those requests.Processes are not concerned with the means by which operating systems provide resources, merelythat resources are provided in a consistent and reliable manner. We de�ne the resources of interestto a process to be: memory, console read/write capabilities, �le system access, network access,computational resources, and process life cycle management. Memory resources, managed by theMemory Manager, include such functionality as acquiring and freeing memory, as well as readingfrom and writing to it. Console resources, governed by the Console Manager, control the simpleI/O devices for displaying results to and receiving input from the user. File system and networkresources allow for the manipulation of �les and handling of network connections. These resources16

are controlled by the File System and Network Managers respectively. Computing resources sup-ported by the ALU assist processes in performing arithmetic operations and storing the results ofthese operations in per process registers. Finally, Process life cycle management is handled by theProcess Manager, and deals with such process requests as spawning new processes, process exiting,and system halt. As we see in the User Level I/O Automata model, Figure 1, each of these re-sources is modeled by a separate automaton. By and large, the operating system automata at thislevel are independent; the only interconnections are due to the Process manager, which noti�es thedi�erent resource managers when a process has been created or killed, and the ALU, which storesregisters in the Memory Manager. Communication between automata in the �gure are representedby arrows|each arrow head represents one direction of communication. Because there is no limi-tations on the number of processes, they are represented by the large block titled \Processes", withan indeterminate number of them contained within. There is in fact a separate communicationlink between every process and operating system automaton, but for graphical reasons these arerepresented as one single link for all processes.Because the User Level model, in trying to maintain the simplicity and streamlined aspectsof the system call interface, takes the view of the operating system from the process perspective,it does not model all aspects of real operating systems. The processes are modelled as runningindependently and concurrently; consequently there is no role for scheduling or resource sharingin this model. Notably, this is not a failing of the model, rather it is simply an interesting pointabout the need for scheduling. The idea of a multi-process operating system does not demandscheduling|it only requires that the operating system provide multiple processes with multipleresources at what appears to the processes to be the same time. Running all the processes on oneprocessor and dividing processor time with a scheduler is not the only solution to this problem, itis a choice of implementation. Clearly it would be possible to have a separate processor for eachprocess (as there are in some parallel machines), and this would require no scheduling at all. Wealready see that the speci�cation, in forcing us to state exactly what we require from the operatingsystem, has eliminated certain aspects of the system and focused heavily on others.While the abstractions which we make in de�ning the User Level model hide some of theintricacies of real modern operating systems, the resultant operating system speci�cation does wellin providing the highest level design of an operating system. This is exactly what we are lookingfor in this model|an abstract speci�cation not necessarily of what an operating system looks like,17

but of what functionality it provides. Later, in the Kernel Level model, we will see more aspectsof real modern operating systems, including interrupt driven I/O, process scheduling, and virtualmemory management. These concepts are critical to the success of a real operating system, butthey do not a�ect the functional speci�cation which we desire in the User Level model.4.2 Process De�nitionThe Process de�nition motivates the rest of the operating system design. De�ned to be an inde-pendent, concurrently running automaton, the Process represents the view of the operating systemenvironment maintained by a typical program. Ignorant of any sort of resource sharing or limita-tions, the Process runs under the assumption of a concurrent system with contention free resources.Processes access all operating system resources through a well-de�ned system call interface withthe operating system. The operating system is implemented so as to support that interface, and allprocesses must be designed to work within its limits. Through understanding the Process' interac-tion with the operating system, one understands the reasons for the particular implementation ofeach of the OS modules at both levels of speci�city described in this thesis. In Figure 2 one seesthe signature of the Process and the single piece of process state that is necessary for the process tointeract properly with the operating system. For the most part, there is no limitation on the actionsof processes; this is intended to model real programs which come in all forms. The only action thatis �xed is the Activatex action, which enforces the concept of killing and creating processes. Eventhis action, however, is not required to be exactly as stated; it need only to guarantee that it setsthe Active variable according to the input.MallocResultx, MemReadResultx, andMemWriteDonex are all inputs from the Memory Manager,with the complementary output actions of Mallocx, Freex, MemReadx and MemWritex. Input fromthe Process Manager comes only from the input action Activatex, which sets the process' Activeboolean state variable, while the process outputs Halt, Exitx, KillProc and Spawn. Input from theconsole manager comes from ConsoleReadResultx and ConsoleWriteResultx, with output going toit in the forms of ConsoleReadx and ConsoleWritex. The File System Manager receives from theprocess the outputs FSOpenx, FSCreatex, FSReadAtx, FSWriteAtx, FSClosex, and FSDeletex. Simi-larly, the process receives as input from the File System Manager, FSOpenResultx, FSCreateResultx,FSReadAtResultx, FSWriteAtResultx, FSCloseResultx, and FSDeleteResultx. The Network Man-18

ProcessSignatureInput:MallocResultx(p), where p 2 N [fFAILgMemReadResultx(v), v 2 BytesMemWriteDonexActivatex(b), b 2 f0; 1gConsoleReadResultx(y), y 2 Chars [fEOFgConsoleWriteResultx(y), y 2 fBusy;DONEgFSOpenResultx(y; path; z),y 2 Files; path 2 Paths; z 2 Files [fFAILgFSCreateResultx(y; path; z),y 2 Files; path 2 Paths; z 2 Files [fFgFSReadAtResultx(y; path;A), y 2 Files,path 2 Paths;A 2 ByteArrays [fFAILgFSWriteAtResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSCloseResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSDeleteResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgNetOpenResultx(y; z),y 2 Sockets ; z 2 fDONE; FAILgNetReadResultx(y;A), y 2 Sockets ,A 2 ByteArrays [fDONE; FAILgNetWriteResultx(y; z),y 2 Sockets ; z 2 fDONE; FAILgNetCloseResultx(y; z),y 2 Sockets ; z 2 fDONE; FAILgOperationResultx(opV al), x 2 Procs ,opVal 2 N

Output:Mallocx(n), n 2 N, x 2 ProcsFreex(p), p 2 NMemReadx(p), p 2 NMemWritex(p; v), p 2 N, v 2 BytesHaltExitxSpawn(y), y 2 ProcsKillProcxConsoleReadxConsoleWritex(c), c 2 CharsFSOpenx(y; path), y 2 Files; path 2 PathsFSCreatex(y; path; n), y 2 Files; path 2 Paths;n 2 NFSReadAtx(y; path; n;m), y 2 Files,path 2 Paths; n;m 2 NFSWriteAtx(y; path; n;m;A), y 2 Files,path 2 Paths; n;m 2 N; A 2 ByteArraysFSClosex(y; path), y 2 Files; path 2 PathsFSDeletex(y; path), y 2 Files; path 2 PathsNetOpenx(y), y 2 SocketsNetReadx(y; n), y 2 Sockets ; n 2 NNetWritex(y;A), y 2 Sockets ; A 2 ByteArraysNetClosex(y), y 2 SocketsOperationReqx(op) x 2 Procs ,op 2 OperationsStateActive 2 Booleans , TRUE if the process is activated.ActionsInput Activatex(b)E�: if b = 1Active := TRUEelseActive := FALSE All internal and output actions in the process must haveActive =TRUE as a precondition.
Figure 2: The Process (User Level Speci�cation)

19

ager provides the process with the inputs NetOpenResult, NetReadResult, NetWriteResult, andNetCloseResult, and receives the outputs NetOpen, NetRead, NetWrite, and NetClose. Finally, theprocess communicates to the ALU with the output OperationReqx(op), and receives the results inthe input OperationResult(opV al).4.3 Memory ManagerIn the User Level speci�cation, the Memory Manager is responsible for the allocation and deallo-cation of memory space to the processes, as well as reading from and writing to allocated memory.The physical implementation of the memory is abstracted away from the processes, as they can onlyaccess memory by passing pointers to the operating system through a series of system calls. Uponcreation, each process is allocated a process space from which it may use memory; this space is�xed for the duration of the process. There is no notion of Virtual Memory, as exists in the KernelLevel implementation, so the number of processes is limited by the size of the memory space.The state of the Memory Manager is primarily kept in MemSpacex, Usedx, and Freelistx whichtogether comprise the memory state for each Processx. These per process structures keep track ofthe memory that has been allocated and that can still be allocated to each process, as well as allof the data values that are stored per process.The paths of requests for Malloc, MemRead and MemWrite and Free go between the MemoryManager and the processes, and are all fairly similar. Each of the �rst three requests makes somedecisions and then enqueues a command in the Responses queue, to be picked up by the outputactions MallocResult, MemReadResult, and MemWriteDone respectively. The Free request di�ersfrom these three actions in that it exhibits no external response. MemRead and MemWrite bothuse the Usedx data structure to evaluate if a memory request is validly within memory alreadyallocated to the process. Similarly, the Malloc input action uses the Freelistx to determine if thereis any memory available to be allocated. If such free memory exists, it is added to the Usedxstructure and removed from the Freelistx.Requests for CreateProc and KilledProc are handled in a similar fashion to the other inputactions, with the di�erence that communication is between the Memory Manager and the ProcessManager. Each input action simply enqueues the command (CREATEPROC; x) in the case ofCreateProc, or (KILLEDPROC; x) in the case of KilledProc, in the Responses queue. Each of20

Memory ManagerSignatureInput:Mallocx(n), n 2 N, x 2 ProcsFreex(p), p 2 NMemReadx(p), p 2 NMemWritex(p; v), p 2 N, v 2 BytesKilledProc(x), x 2 ProcsCreateProc(x), x 2 Procs
Output:MallocResultx(p), where p 2 N [fFAILgMemReadResultx(v), v 2 BytesMemWriteDonexKillProc(x)KilledProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILgCreateProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILgStateSPACESIZE , �xed size of process space.MemSpacex, the memory for process x, an array of size MAXHEAP +MAXSTACK. Initially all 0.Usedx, an AllocateArray holding arrays from MemSpacex, the set of bytes used by process x, initially Empty.Freelistx, an AllocateArray holding arrays from MemSpacex consisting of bytes that have not yet been allocated inthe heap of process x. Empty when process x is not active.Responses a queue of triples (x; y; z), x 2 fKILLPROC;KILLPROCRESULT; CREATEPROCRESULT;MALLOC;MEMREAD;MEMWRITE;REGLOADRESULTg, y 2 Procs ; z 2 fN; FAIL;DONE; 0g.Initially Empty.ActionsInput Mallocx(n)E�: p := Freelistx:NewBlock(n)if p = FAIL thenResponses :Enqueue(MALLOC; x; FAIL)elseFreelistx:RemoveBlock(p)Usedx:AddBlock(p; n)Responses :Enqueue(MALLOC; x; p)Input Freex(p)E�: if Usedx:F indBlock(p)Freelistx:AddBlock(p; n)Usedx:RemoveBlock(p)Input MemReadx(p)E�: if Usedx:F indBlock(p)Responses :Enqueue(MEMREAD; x; p)elseResponses :Enqueue(KILLPROC; x)

InputMemWritex(p; v)E�: if Usedx:F indBlock(p)Responses :Enqueue(MEMWRITE;x; p; v)elseResponses :Enqueue(KILLPROC; x)Input CreateProc(x)E�: y := DONE or y := FAILnon-deterministicallyif y = DONEFreelistx:Size := SPACESIZEUsedx := ;Responses :Enqueue(CREATEPROC;x; y)Input KilledProc(x)E�: y := DONE or y := FAILnon-deterministicallyFreelistx := ;Responses :Enqueue(KILLEDPROC; x; y)Figure 3: Memory Manager (User Level Speci�cation)
21

Memory ManagerActions (Cont.):Output KilledProcResult(x; y)Pre: Responses :Head =(KILLEDPROC; x; y)E�: Responses :DequeueOutput MemWriteDonexPre: Responses :Head = (MEMWRITE;x; p; v)E�: MemSpacex[p] := vResponses :DequeueOutput MallocResultx(p)Pre: Responses :Head = (MALLOC; x; p)E�: Responses :Dequeue
Output MemReadResultx(v)Pre: Responses :Head = (MEMREAD; x; p)E�: v := MemSpacex[p]Responses :DequeueOutput KillProc(x)Pre: Responses :Head = (KILLPROC; x)E�: Responses :DequeueOutput CreateProcResult(x; y)Pre: Responses :Head =(CREATEPROC;x; y)E�: Responses :DequeueFigure 4: Memory Manager (User Level Speci�cation) Cont.their respective output actions CreateProcResult and KilledProcResult decides non-deterministicallywhether or not the action will succeed, and sends a response to the Process Manager. The non-determinism in the output actions simulates the interaction between the memory module and the�le system that occurs in real implementations of operating systems. In creating a process space,an operating system tries to allocate swap space in the �le system for the virtual memory of aprocess, and may �nd out that there isn't enough disk space to allocate the swap. This results ina failure to create the process that is unrelated to the state of the main memory. Similarly, in thekilling of a process, the �le system may fail to delete the swap space of a process, resulting in afailure that is outside the control of the Memory Manager. We therefore model this potential forfailure with a non-deterministic failure when creating or killing a process.The output KillProc is output whenever a process requests to read or write memory that it doesnot own. In this case the Memory Manager determines that the process is attempting an illegalaction, and sends the KillProc command to the Process Manager requesting that the process beterminated.4.4 Process ManagerThe User Level speci�cation of the Process Manager is an automaton that controls the life cycles ofprocesses. It is responsible for handling actions that activate and deactivate processes, including a22

Process ManagerSignatureInput:Halt()Exitx()Spawn(y), y 2 ProcsOnO�(b), b 2 f0; 1gKillProc(x), x 2 ProcsKilledProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILgCreateProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILg
Output:Activatex(b), b 2 f0; 1gKilledProc(x), x 2 ProcsCreateProc(x), x 2 Procs

StateActive , � Procs , the set of all active processes, initially ;.Jobs a queue of doubles (x; y), x 2 fCREATEPROC;KILLEDPROCg; y 2 Procs . Initially Empty.Responses , a queue of pairs (x; y), x 2 Procs , y 2 f0; 1g. Initially Empty.Shell , a special process which is activated when the process handler is turned on.On, 2 Booleans , TRUE if the machine is on. Initially FALSE.ActionsInput HaltxE�: 8x 2 ActiveJobs :Enqueue(KILLEDPROC; x)Input ExitxE�: Jobs :Enqueue(KILLEDPROC; x)Input OnO�(x)E�: if x = 1 ^ On = FALSEOn := TRUEJobs :Enqueue(CREATEPROC;Shell)else if x = 0 ^ On = TRUEOn := FALSE8x 2 ActiveJobs :Enqueue(KILLEDPROC; x)Input KillProc(x)E�: Jobs :Enqueue(KILLEDPROC; x)Input Spawn(y)E�: Jobs :Enqueue(CREATEPROC;y)

Input KilledProcResult(x; v)E�: if v = DONEResponses :Enqueue(x; 0)Input CreateProcResult(x; v)E�: if v = DONEResponses :Enqueue(x; 1)Output Activatex(b)Pre: Responses :Head = (x; b)E�: if b = 0Active := Active � fxgelseActive := Active + fxgJobs :DequeueOutput KilledProc(x)Pre: Jobs :Head = (KILLEDPROC; x)E�: Jobs :DequeueOutput CreateProc(x)Pre: Jobs :Head = (CREATEPROC;x)E�: Jobs :DequeueFigure 5: Process Manager (User Level Speci�cation)23

system OnO� switch, and the Halt, Exitx, Spawn, and KillProc input actions. The essential controlstructure of the Process Manager is the set Active, which holds all processes that are currentlyrunning.Essentially, all commands to kill a process follow the same path of actions, whether it is Haltor OnO�(0) that kill all processes, or Exitx or KillProc(x) that kill only one process at a time.An initial input action comes in signalling to the Process Manager that a process x needs to bekilled. That action is queued in the Jobs queue in the form (KILLEDPROC; x). The outputaction KilledProc is then output to the Memory Manager, Network Manager and the File SystemManager, notifying them that a process was killed. The Memory Manager replies to this actionwith KilledProcResult, which, as detailed in the Memory Manager section, fails non-deterministically.The Process Manager, having received the result from the Memory Manager, queues a deactivationcommand in the form (x; 0) in the Responses queue, if the result from the KilledProcResult was notFAIL. This response is then output through the command Activatex(0) to the process, shutting itdown.The path of actions taken to create a process from the OnO�(1) and Spawn(y) commands isvery similar to those taken to kill processes. The same process is used to send out the CreateProcoutput as was used for KilledProc. The same procedure occurs in the Memory Manager, where itnon-deterministically outputs a FAIL or DONE for the creation of the process which is receivedin the CreateProcResult input in the Process Manager. Given a DONE response, this is then sentthrough the Responses queue to the Activatex output action.The Active state is only modi�ed in the Activatex output, as that action is the single pointthrough which all successful create and kill process actions pass.It is interesting to note that, in terms of theoretical modelling di�culty, it is very easy to modelthe concept of an initial bootup Shell in the operating sytem. We simply specify a special processto be that shell, and turn it on automatically when the machine is turned on. In practice, onewould like such a process to be designed so as to enable user input to request the spawning of otherprocesses. Theoretically, however, such capabilities are not necessary, as the shell is simply theprocess which is turned on at startup of the computer.
24

4.5 Console ManagerThe Console Manager controls the reading from and writing to the single console of the computer.Essentially, the Console simply keeps the input from the user (not a process, the actual humanuser) in Bu�er , and gives it out to the processes that request it, while simultaneously outputtingto the screen any data that processes ask it to write to the output console. The only limitation onreading and writing is that no two write commands can be issued at the same time|the consoleremains busy during a write command, and cannot receive any other write requests until it �nishesits current task.The Console Manager is a relatively simple automaton. A read request comes into the automa-ton in the form of a ConsoleReadx command, which is immediately queued up in the Jobs queue inthe form (READ;x). This command is then immediately handled by the internal Read command,which enqueues a response in the Responses queue of the form (READRESULT; x; c) where c isthe �rst character in Bu�er if it is not empty, and EOF otherwise. This result is then dispatchedto the process through the output ConsoleReadResult.Write requests occur in almost the same way, with the initial request coming in as ConsoleWritex(c),and being enqueued in the Jobs queue as the command (WRITESCREEN; x; c) if the console isnot busy writing to the screen already. This is then picked up by the internal action WriteToScreen,which writes the character to the screen, sets the Busy variable back to FALSE, and the enqueuesa response of (WRITESCREEN; x;DONE) in the Responses queue. If the console is busy, thenit rejects the write request immediately and enqueues a response of (WRITERESULT; x; FAIL)in the Responses queue. In either case, the result is output by the ConsoleWriteResult command,which goes directly to the process which made the write request originally.4.6 ALUThe ALU at the User Level represents the computational resources provided by the processor. Itnot only services computational operations, but it stores the results for the processes in sets of perprocess registers. In keeping with the model of the processes at the User Level, we model the ALUin such a way so as to allow for concurrent access to it from multiple processes. This demands thatthe ALU be able to serve multiple processes at any given time, switching among their respective25

Console ManagerSignatureInput:ConsoleReadxConsoleWritex(c), c 2 CharsOutput:ConsoleReadResultx(y), y 2 Chars [fEOFgConsoleWriteResultx(y), y 2 fFAIL;DONEg
Internal:ReadLoadBu�erWriteToScreen(c)StateBu�er , a queue of Chars , the items input from the console and not yet read. Initially Empty.Responses a queue of triples (x; y; z), x 2 fWRITERESULT;READRESULTgy 2 Procs ; z 2 Chars [fEOF;Busy;DONEg. Initially Empty.Jobs , a queue of pairs (x; y); x 2 fWRITESCREEN;READg; y 2 Chars to be output to the screen. InitiallyEmpty.Busy , boolean variable. TRUE when the console is writing to the screen. Initially FALSE.ActionsInput ConsoleReadxE�: Jobs :Enqueue(READ;x)Input ConsoleWritex(c)E�: if BusyResponses :Enqueue(WRITERESULT;x; FAIL)elseBusy := TRUEJobs :Enqueue(WRITESCREEN;x; c)Internal ReadPre: Jobs :Head = (READ;x)E�: if Bu�er not emptyc := Bu�er :Dequeueelsec := EOFResponses :Enqueue(READRESULT; x; c)

Internal LoadBu�erPre: Input character c from UserE�: Bu�er :Enqueue(c)Internal WriteToScreen(c)Pre: Jobs :Head = (WRITESCREEN;x; c)E�: Jobs :DequeueBusy := FALSEResponses :Enqueue(WRITERESULT;x;DONE)Output ConsoleReadResultx(y)Pre: Responses :Head = (READRESULT; x; y)E�: Responses :DequeueOutput ConsoleWriteResultx(y)Pre: Responses :Head = (WRITERESULT;x; y)E�: Responses :DequeueFigure 6: Console Manager (User Level Speci�cation)
26

ALUSignatureInput:OperationReqx(op) x 2 Procs , op 2 OperationsInternal:Operate(x; op), x inProcs , op 2 Operations Output:OperationResultx(opV al), x 2 Procs , opVal 2 NKillProc(x), x 2 Procs
StateRegisters , a table of registers for all processes, indexed by process. Initially all ;.OutstandingOps , a set of all process-operation pairs for which the operations are still outstanding. Initially ;.Responses , a queue of results of the operations, (x; y; z), x 2 fKILLPROC;OPRESULTg, y 2 Procs , z 2 opV als.Initially Empty.ActionsInput OperationReqx(op)E�: if 9y 2 Operations such that(x; y) 2 OutstandingOpsResponses :Enqueue(OPRESULT; x; FAIL)elseOutstandingOps := OutstandingOps [(x; op)Internal Operate(x; op)Pre: (x; op) 2 OutstandingOpsE�: do operation, store in Registers [x]if operation raises exceptionResponses :Enqueue(KILLPROC; x)elseResponses :Enqueue(OPRESULT; x; opV al)OutstandingOps := OutstandingOps � (x; op)

Output OperationResultx(opV al)Pre: Responses :Head =(OPRESULT; x; opV al)E�: Responses :DequeueOutput KillProc(x)Pre: Responses :Head = (KILLPROC; x)E�: Responses :Dequeue
Figure 7: ALU (User Level Speci�cation)

27

register sets. In order to model this functionality simply, we describe the ALU as being able todirectly access all the registers of all the processes. Each process is only allowed to operate on itsown registers, and has no knowledge of those belonging to other processes.ALU requests come in the form of the OperationReqx(op) input action, asking the ALU to dooperation op for process x. The ALU places the operation into the OutstandingOps set, in order forit to be executed. The internal action Operate pulls operation requests out of the OutstandingOpsset, performs the operation, and enqueues the result in the Responses queue. If the operationrequested resulted in an exception, for example if the process requested to divide by zero, the ALUenqueues a KILLPROC command which is sent to the Process Manager via the output commandKillProc. In the usual case of a successful operation, it enqueues an OPRESULT command for theprocess which requested the operation, resulting in the output action OperationResultx(opV al).4.7 File System ManagerThe File System Manager interfaces the processes to the long term data store of the machine. Thisinterface provides the processes with a medium within which they can store data which will persistwhen the process or computer is turned o�. Using a basic tree structure to store the �les, each�le is stored according to its path and its �lename. All �les are leaves in the DirectoryStruct datastructure, and the path of the �le dictates the nodes traversed from the root to the �le. All �lesizes are speci�ed upon creation of the �les and do not change throughout the lifetime of the �le.The DirectoryStruct data structure implements the following �ve operations:1. Add(x; path; dir), create a node with name x, add it to the tree in the path speci�ed by path.If dir = TRUE make the node a directory, otherwise make it a �le. If path doesn't exist, orif the last node in the path is a �le and not a directory, return FAIL.2. Remove(x; path), delete the node with name x at location path from the tree, return FAILif does not exist.3. Find(x; path), �nd the �le x at location path. Return TRUE if it exists, otherwise FALSE.4. Read(x; path; n;m), read m bits of data from �le x starting at location n. Return FAIL if xis not at least n+m bits long, otherwise return the bit array from n through n+m.28

File System ManagerSignatureInput:FSOpenx(y; path), y 2 Files; path 2 PathsFSCreatex(y; path; dir; n), y 2 Files;path 2 Paths; n 2 NFSReadAtx(y; path; n;m), y 2 Files,path 2 Paths; n;m 2 NFSWriteAtx(y; path; n;m;A), y 2 Files,path 2 Paths; n;m 2 N; A 2 ByteArraysFSClosex(y; path), y 2 Files; path 2 PathsFSDeletex(y; path), y 2 Files; path 2 PathsKilledProc(x), x 2 ProcsInternal:Open CreateReadAt WriteAtClose Delete

Output:FSOpenResultx(y; path; z), y 2 Files;path 2 Paths; z 2 Files [fFAILgFSCreateResultx(y; path; z), y 2 Files;path 2 Paths; z 2 Files [fFAILgFSReadAtResultx(y; path;A), y 2 Files,path 2 Paths;A 2 ByteArrays [fFAILgFSWriteAtResultx(y; path; z), y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSCloseResultx(y; path; z), y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSDeleteResultx(y; path; z), y 2 Files;path 2 Paths; z 2 fDONE; FAILgStateOpenx, set of �les, speci�cied by name and path, currently held by process x. Initially Empty.DirectoryStruct , a tree structure for storing �les by name and path, representing the directory structure of thesystem. All internal nodes are directories, with �les only residing at the leaves of the tree. Each �le name isunique from its siblings. Initially Empty.FSCommands , the set fOPEN;CLOSE; CREATE;DELETE;READAT;WRITEATg.FSResults , the set fDONE; FAILg [Bytes [ByteArrays .Responses a queue of quintuples (v; w; x; y; z), v 2 FSCommands; w 2 Procs ; x 2 Files; y 2 Paths; z 2 FSResults .Initially Empty.Jobs a queue of septuples (t; u; v; w; x; y; z), t 2 FSCommands; u 2 Procs , v 2 Paths, w 2 Files; x 2 N, z 2ByteArrays . Initially Empty.ActionsInput FSOpenx(y; path)E�: Jobs :Enqueue(OPEN; x; y; path)Input FSCreatex(y; path; dir; n)E�: Jobs :Enqueue(CREATE;x; y; path; dir; n)Input FSDeletex(y; path)E�: Jobs :Enqueue(DELETE;x; y; path)Input FSReadAtx(y; path; n;m)E�: Jobs :Enqueue(READAT;x; y; path; n;m)Input FSClosex(y; path)E�: Jobs :Enqueue(CLOSE; x; y; path)

Input FSWriteAtx(y; path; n;m;A)E�: Jobs :Enqueue(WRITEAT;x; y; path; n;m;A)Input KilledProc(x)E�: Openx := ;Internal OpenPre: Jobs :Head = (OPEN; x; y; path)E�: if DirectoryStruct :F ind(y; path)_8z; (y; path) \ Openz = ;Responses :Enqueue(OPEN; x; y; path;DONE)Openx := Openx [f(y; path)gelseResponses :Enqueue(OPEN; x; y; path; FAIL)Jobs :DequeueFigure 8: File System Manager (User Level Speci�cation)29

File System ManagerActions (Cont.):Internal CreatePre: Jobs :Head = (CREATE;x; y; path; dir; n)E�: if DirectoryStruct :F ind(y; path)Responses :Enqueue(CREATE;x; y; path; FAIL)elseResponses :Enqueue(CREATE;x; y; path;DONE)DirectoryStruct :Add(y; path; dir; n)Jobs :DequeueInternal DeletePre: Jobs :Head = (DELETE;x; y; path)E�: if DirectoryStruct ; F ind(y; path) ^8x; y =2 OpenxDirectoryStruct :Remove(y; path)Responses :Enqueue(DELETE;x; y; path;DONE)elseResponses :Enqueue(DELETE;x; y; path; FAIL)Jobs :DequeueInternal ReadAtPre: Jobs :Head = (READAT;x; y; path; n;m)E�: if y 2 OpenxA := DirectoryStruct :Read(y; path; n;m)Responses :Enqueue(READAT;x; y; path;A)Jobs :DequeueInternal ClosePre: Jobs :Head = (Close; x; y; path)E�: if (y; path) 2 OpenxOpenx := Openx � f(y; path)gResponses :Enqueue(CLOSE; x; y; path;DONE)elseResponses :Enqueue(CLOSE; x; y; path; FAIL)Jobs :Dequeue

Internal WriteAtPre: Jobs :Head =(WRITEAT;x; y; path; n;m;A)E�: if (y; path) 2 Openxresult =DirectoryStruct :Write(y; path; n;m;A)elseresult = FAILResponses :Enqueue(WRITEAT;x; y; path; result)Jobs :DequeueOutput FSOpenResultx(y; path; z)Pre: Responses :Head = (OPEN; x; y; path; z)E�: Responses :DequeueOutput FSCreateResultx(y; path; z)Pre: Responses :Head = (CREATE;x; y; path; z)E�: Responses :DequeueOutput FSCloseResultx(y; path; z)Pre: Responses :Head = (CLOSE; x; y; path; z)E�: Responses :DequeueOutput FSDeleteResultx(y; path; z)Pre: Responses :Head = (DELETE;x; y; path; z)E�: Responses :DequeueOutput FSReadAtResultx(y; path;A)Pre: Responses :Head = (READAT;x; y; path;A)E�: Responses :DequeueOutput FSWriteAtResultx(y; path; z)Pre: Responses :Head = (WRITEAT;x; y; path; z)E�: Responses :Dequeue
Figure 9: File System Manager (User Level Speci�cation) Cont.

30

5. Write(x; path; n;m;A), write A, a bit array of length m, to �le x starting at location n.Return FAIL if x is not at least n+m bits long, otherwise DONE.All �le system actions, with the exception of KillProc, deal with �le manipulation and communi-cate directly with the processes. Much like the automata we have seen earlier, all of the �le relatedinput actions of the File System Manager enqueue their input request into the internal Jobs queue,passing with it all arguments necessary to process the request. These requests are then served bythe internal actions whose names correspond to the input actions. Once served, the response tothe action is then enqueued into the Responses queue, from which the corresponding output actionoutputs the result back to the process that originally requested the action.For each process x, the Openx set maintains all the �les which it currently has opened. Whena process is killed, the File System receives the KillProc signal from the Process Handler, signallingit to set Openx to ;.The issues involved with the Open, Create, Delete, and Close operations deal mainly with check-ing to see if a given �le exists or is open. Open only returns successfully if the �le exists and is notopen by any process. Create only succeeds if the �le does not exist, while Delete succeeds only ifthe �le exists and is not open by any process. Finally, Close succeeds only on existing �les whichwere initially opened by the process that attempts the close action.The ReadAt and WriteAt commands work only on open, existing �les, where the read and writerequests fall within the size limits of the �le.4.8 Network ManagerThe User Level speci�cation of the Network Manager describes an automaton that provides theinterface for processes to communicate over the network. The Network Manager keeps track ofopen connections held by processes, and allows processes to read and write from the network. Itcontinuously reads in data from each socket into its respective InBu�er , and outputs data for eachsocket from its respective OutBu�er . The socket connections are made on a per process basis, sono more than one socket is allowed open at a given time between two processes x and y.Like the File System Manager, all the external actions of the Network Manager, with theexception of the KillProc input action, go directly between the Network Manager and the currently31

Network ManagerSignatureInput:NetOpenx(y), y 2 SocketsNetReadx(y; n), y 2 Sockets ,n 2 NNetWritex(y;A), y 2 Sockets ,A 2 ByteArraysNetClosex(y), y 2 SocketsKilledProc(x), x 2 ProcsInternal:Open NetReadInBu�erx;y,Read x 2 Procs ; y 2 SocketsWrite NetWriteOutBu�erx;y,Close x 2 Procs ; y 2 Sockets
Output:NetOpenResultx(y; z), y 2 Sockets ;z 2 fDONE; FAILgNetReadResultx(y;A), y 2 Sockets ,A 2 ByteArrays [fDONE; FAILgNetWriteResultx(y; z), y 2 Sockets ;z 2 fDONE; FAILgNetCloseResultx(y; z), y 2 Sockets ;z 2 fDONE; FAILg

StateOpenx, the set of sockets currently opened by process x. Initially ;.Network , the set of all computers with which connections can be opened.InBu�erx;y a queue holding incoming data from socket connection y for process x. Initially Empty.OutBu�erx;y a queue holding outgoing data from socket connection y for process x. Initially Empty.NetCommands the set fOPEN;CLOSE;READ;WRITEg.NetResults the set fDONE; FAIL; g [ByteArrays .Responses a queue of triples (x; y; z), x 2 NetCommands ; y 2 Procs ; z 2 NetResults . Initially Empty.Jobs a queue of quadruples (w; x; y; z), w 2 NetCommands ; x 2 Procs ; y 2 N, z 2 ByteArrays . Initially Empty.ActionsInput NetOpenx(y)E�: Jobs :Enqueue(OPEN; x; y)Input NetClosex(y)E�: Jobs :Enqueue(CLOSE; x; y)Input NetReadx(y; n)E�: Jobs :Enqueue(READ;x; y; n)Input NetWritex(y; n;A)E�: Jobs :Enqueue(WRITE;x; y; n;A)Input KilledProc(x)E�: Openx := ;8y 2 NetworkOutBu�ery;x := ;

Internal OpenPre: Jobs :Head = (OPEN; x; y)E�: if y 2 Network ^ y =2 OpenxResponses :Enqueue(OPEN; x; y;DONE)Openx := Openx [fygelseResponses :Enqueue(OPEN; x; y; FAIL)Jobs :DequeueInternal ClosePre: Jobs :Head = (CLOSE; x; y)E�: if y 2 OpenxOpenx := Openx � fygResponses :Enqueue(CLOSE; x; y;DONE)elseResponses :Enqueue(CLOSE; x; y; FAIL)Jobs :DequeueFigure 10: Network Manager (User Level Speci�cation)32

Network ManagerActions (Cont.):Internal WritePre: Jobs :Head = (WRITE;x; y; n;A)E�: if y 2 Openxif OutBu�er :Size+ n �MAXBUFOutBu�er :Enqueue(A)Responses :Enqueue(WRITE;x; y;DONE)elseResponses :Enqueue(WRITE;x; y; FAIL)Jobs :DequeueInternal ReadPre: Jobs :Head = (READ;x; y; n)E�: if y 2 Openxif InBu�erx;y:Empty = FALSEA := �rst n bytes in InBu�erx;yInBu�erx;y:Dequeue n timeselseA := EOFResponses :Enqueue(READ; x; y; A)elseResponses :Enqueue(READ; x; y; FAIL)Jobs :Dequeue

Internal NetReadInBu�erx;yPre: Incoming data A from connectiony to process xE�: InBu�erx;y:Enqueue(A)Internal NetWriteOutBu�erx;yPre: OutBu�erx;y:Empty = FALSEE�: OutBu�erx;y:DequeueOutput NetOpenResultx(y; z)Pre: Responses :Head = (OPEN; x; y; z)E�: Responses :DequeueOutput NetCloseResultx(y; z)Pre: Responses :Head = (CLOSE; x; y; z)E�: Responses :DequeueOutput NetReadResultx(y;A)Pre: Responses :Head = (READ;x; y; A)E�: Responses :DequeueOutput NetWriteResultx(y; z)Pre: Responses :Head = (WRITE;x; y; z)E�: Responses :DequeueFigure 11: Network Manager (User Level Speci�cation) Cont.

33

running processes. These actions are �rst enqueued in the Jobs queue, and then acted upon bytheir respective internal actions, placing the result in the Responses queue.Also like the File System Manager, each of the internal actions is primarily concerned withchecking that actions are only performed on sockets which are closed in the case of Open, and openin the cases of Read, Write, and Close. Otherwise, most of the actions are composed of keeping theOpenx data structure up to date, and properly responding to requests.The two internal actions NetReadInBu�erx;y and NetWriteOutBu�erx;y are responsible for readingin data o� of the network and writing out data placed into the bu�ers by local processes wanting tocommunicate. Because the interface between the operating system and the network is not relevantto the processes nor the rest of the operating system, we consider this to be an internal action asit has no impact on the rest of our model.5 Kernel Level Speci�cationHaving seen the User Level model, we understand an abstract speci�cation of an operating system.It now becomes interesting to look at how such a system is implemented. The motivation for a moredetailed, reality-driven implementation is to build a model that is meaningful for a real operatingsystem, but still adheres to the goals and ideals set out in the original speci�cation. Such a modelwould provide researchers with a formal structure to the operating system, enabling clearer thoughtabout its various aspects while still providing enough detail to make the model meaningful. At thesame time, this model would be designed so as to implement the abstract speci�cation which isthe User Level model, and thereby provide the error-proof, simple process interface which is sodesirable.We choose to model a standard uniprocessor system, selecting as our operating system mo-tivation a simpli�ed UNIX-like model that allows concurrent processes to run independently intheir own protected memory spaces. Such an implementation introduces the complexities of Vir-tual Memory systems, ALU register swapping, interrupt driven I/O and process scheduling. Thisgreatly changes the topology of the operating system, as the number of components and the com-munication between them increases dramatically. Processes are still viewed as autonomous andconcurrent, but in this model they are only given access to valuable resources such as the ALU or34

System
Manager

File

Manager
Memory
Virtual

Interrupt
Handler

Scheduler

Manager
Network

Manager
Console

ALU

Manager
Process

Process jProcess i

ProcessesFigure 12: Kernel Level model: Operating System topology
35

memory as dictated by a scheduling module. No longer is the operating system merely a serverof resources to the processes, it owns all of the computational resources, without which a processcan do nothing. This model reveals a good deal more about the actual nature of modern operatingsystems, providing an interesting formal approach to current implementations.The introduction of the Scheduler and Interrupt Handler each create obvious changes to theoperating system topology, as each of them introduces a new automaton into the model. Anotherchange that is equally dramatic and perhaps not as noticeable comes as a result of virtual memory.With virtual memory, the Virtual Memory Manager relies on an internal secondary storage devicefor expanding its memory capacity, thereby complicating every memory access. This model of thememory management is realistic to real operating system methods, and still adheres to the abstractspeci�cation. Similarly, the ALU is modelled more realistically, only holding one set of registers ata time, using the an internal register memory to store all the others.In the presentation of the User Level model we presented the Process �rst so as to motivate thede�nition of the rest of the operating system. In the Kernel Level model we postpone discussingthe Process until the end. In keeping with our goal of implementing an operating system thatexactly implements the interface of the User Level model, we would like to be able to use the exactsame process de�nition in both models. This requires us, however, to introduce several theoreticalnotions which enable us to convert the Kernel Level operating system interface into one with whichthe User Level Process can iteract. These theoretical notions center around the creation of anAbstraction Automaton which acts as a bu�er between the User Level Process and the KernelLevel operating system. Because we want to shield the User Level Process from the schedulingwhich transpires in the operating system, the Abstraction Automaton intercepts the Schedulingcommands from the Scheduler to the Processes, and handles all of the scheduling issues itself. Wediscuss these concepts at the end of the Kernel Level section, and include in the discussion theinteractions with the processes.5.1 SchedulerThe Scheduler does not exist in the User Level Speci�cation, as it is a solution to the implementationissue of limited processor resources. Because only one process can actually run at any given timeon a uniprocessor system, the scheduler is responsible for switching between the di�erent processes36

SchedulerSignatureInput:InterruptActivateSchedule(x; b) x 2 Procs ; b 2 f0; 1gActivate(x; b) x 2 Procs ; b 2 f0; 1gOutput:Runx(b) x 2 Procs ; b 2 f0; 1gStateActive , the active process. Initially 0.Ready , a queue of descheduled processes waiting to run. Initially Empty.Sleep, a set of descheduled processes unable to run. Initially, all processes are in Sleep.Responses , a queue of pairs corresponding to scheduling changes. Each pair is (x; y), x 2 Procs , y 2 f0; 1g. InitiallyEmpty.ActionsInput InterruptActivateE�: Ready :Enqueue(Active)Responses :Enqueue(Active; 0)Active := Ready :DequeueResponses :Enqueue(Active; 1)Input Activate(x; b)E�: if b = 0if Active = xResponses :Enqueue(Active ; 0)Active := Ready :DequeueResponses :Enqueue(Active ; 1)else if x 2 ReadyReady :Remove(x)else if x 2 SleepSleep:Remove(x)else if b = 1 and x =2 Active [Ready [SleepReady :Enqueue(x)

Input Schedule(x; b)E�: if b = 1 ^ x 2 SleepReady :Enqueue(x)Sleep := Sleep � fxgif b = 0 ^ x =2 SleepSleep := Sleep [fxgif Active = xResponses :Enqueue(x; 0)Active := Ready :DequeueResponses :Enqueue(Active; 1)else if x 2 ReadyReady :Remove(x)Output Runx(b)Pre: Responses :Head = (x; b)E�: Responses :Dequeue
Figure 13: Scheduler (Kernel Level Speci�cation)

37

such that each process gets a fair share of processor time. All requests to the scheduler come fromwithin the operating system|processes are not allowed to send requests to the scheduler.The important state of the scheduler consists of the Active process and the Ready and Sleepqueues. The Active process is the process that is currently scheduled to run. Because we modela single processor machine, there is only one Active process. However, this model could easily begeneralized to a multi-processor machine by making Active the set of all currently running processes.The Ready queue is a queue of processes that are ready to run but are currently not scheduled.The Sleep queue holds all processes that are waiting on I/O requests to �nish. These processes arenot ready to be scheduled until the request �nishes, at which point they are reawakened and placedback on the Ready queue.The Scheduler simulates a Round Robin scheduling algorithm, and cycles through these pro-cesses, putting the just-descheduled process at the back of the queue and scheduling the process atthe front of the queue. The decision to model a round-robin scheduling algorithm was arbitrary|any properly fuctioning scheduling algorithm, such as multi-level feedback queues or fair sharescheduling, would be �ne.Requests to deschedule processes come through the other manager automata in the operatingsystem. Whenever an I/O operation occurs, whether it be from the Virtual Memory, File System,Console, or Network, the �rst action taken by each of these modules is to request that the schedulerdeactivate the process making the I/O request. In real operating systems, because I/O requeststake a relatively long time, the processor idles while a process waits on an I/O response. In order tonot waste processor time the waiting process is descheduled until the request is �nished, at whichpoint it is reawakened.Requests to schedule processes come from the Process Manager and the Interrupt Handler. TheProcess Manager sends the Scheduler Activate output actions, which signals to the scheduler whena process has been created or killed. Killed processes are removed from the data structures in thescheduler, while newly created processes are added to the Ready queue. The Interrupt Handlersends the Scheduler a periodic InterruptActivate output which signal the Scheduler to switch equallybetween processes even without any form of I/O requests. Also, whenever an I/O request is �nished,the Interrupt Handler is signalled by the manager handling the request, and it passes this on tothe scheduler in the form of a Schedule(x; 1) request. This puts a sleeping process back onto the38

Ready queue, enabling it to be rescheduled the next time it is at the head of the queue.The single output of the Scheduler is the Run command, notifying the process whether it canor cannot run. As we will see later, that action will not go directly to the process but will insteadgo to the Abstraction Automaton, as we would like to maintain the interface we arrived at withthe User Level Process.5.2 Interrupt HandlerThe Interrupt Handler, like the Scheduler, is a module that does not exist in the User LevelSpeci�cation, but exists as another artifact of limited resources. It is through the Interrupt Handlerthat I/O devices notify the scheduler that their results are ready, and it is also how the scheduleris signalled periodically to switch processes.The Interrupt Handler receives only one input action: Interrupt(x). These actions come fromthe various I/O managers in the operating system, signalling the Interrupt Handler that processx has been served, and that it is ready to be rescheduled. The Interrupt Handler, upon receivingthese Interrupt requests, enqueues the process x in the Responses queue. From this the outputSchedule(x; 1) is sent to the scheduler, and the process is dequeued from the Responses queue.The other output action, InterruptActivate, is not driven as a result of any input actions, but istriggered by an internal clock mechanism that noti�es the Scheduler every TimerTicks ticks of theclock. The speed at which this clock ticks impacts performance, controlling the rate at which theoperating system switches between processes, but it has no e�ect on the correctness of the system.5.3 ALUThe Kernel Level ALU provides the same functionality as the User Level ALU, but it does so withmore limited resources. Like a real operating system, the ALU can only operate on a single set ofregisters at a time, and must switch between register sets when receiving operation requests fromdi�erent processes. We model this action by keeping the current set of registers in the state variableCurrentRegs , while internally storing the other registers in an array of memory, RegMem . While inmost cases in real operating systems, the memory for the registers is stored on the same physicalmedia as the process memory, at this level of abstraction the two have no logical relationship, and39

Interrupt HandlerSignatureInput:Interrupt(x) x 2 ProcsOutput:Schedule(x; 1) x 2 ProcsInterruptActivateStateResponses , a queue of Procs , processes ready to be scheduled. Initially Empty.TimerTicks , number of ticks between periodic activation of the scheduler.Clock , a monotonically increasing counter, triggered to increment at regularly spaced real-time intervals. Initially0.ActionsInput Interrupt(x)E�: Responses :Enqueue(x)Output InterruptActivatePre: Clock mod TimerTicks = 0E�: None. Output Schedule(x; 1)Pre: Responses :Head = xE�: Responses :Dequeue
Figure 14: Interrupt Handler (Kernel Level Speci�cation)

therefore we represent them separately.The ALU signature is identical to that of the User Level ALU, and the ow of actions occursin the same way. ALU requests come in the form of the OperationReqx(op) input action, askingthe ALU to do operation op for process x. These requests are placed into the OutstandingOps set,from which the Operate action takes its input. When necessary, the ALU switches registers fromRegMem, preparing the CurrentRegs variable for the computation. Once the registers are correctlyinitiated, the ALU computes the operation and enqueues the result in the Responses queue. Asin the User Level model, if the operation requested resulted in an exception, the ALU enqueuesa KILLPROC command which is sent to the Process Manager. In the usual case of a successfuloperation, it enqueues an OPRESULT command for the process which requested the operation,resulting in the ouput action OperationResultx(opV al).40

ALUSignatureInput:OperationReqx(op) x 2 Procs , op 2 OperationsInternal:Operate(x; op), x 2 Procs , op 2 Operations Output:OperationResultx(opV al), x 2 Procs , opVal 2 NKillProc(x), x 2 ProcsStateCurrentRegs , the registers of process currently being serviced. Initially ;.CurrentProc , the current process whose registers are being stored in CurrentRegs . Initially 0.OutstandingOps , a set of process-operation pairs for all outstanding operations. Initially ;.RegMem , an array of registers for all processes, indexed by process. Initially all registers store 0.Responses , a queue of results of the operations, (x; y; z), x 2 fKILLPROC;OPRESULTg, y 2 Procs , z 2 opV als.Initially Empty.ActionsInput OperationReqx(op)E�: if 9y 2 Operations such that(x; y) 2 OutstandingOpsResponses :Enqueue(OPRESULT; x; FAIL)elseOutstandingOps := OutstandingOps [(x; op)Output OperationResultx(opV al)Pre: Responses :Head =(OPRESULT; x; opV al)E�: Responses :DequeueOutput KillProc(x)Pre: Responses :Head = (KILLPROC; x)E�: Responses :Dequeue

Internal Operate(x; op)Pre: (x; op) 2 OutstandingOpsE�: if CurrentProc 6= xif CurrentProc 6= 0Registers :[CurrentProc] :=CurrentRegsCurrentProc := xCurrentRegs := RegMem [x]Conduct operation.Place result in CurrentRegsif operation raises exceptionResponses :Enqueue(KILLPROC; x)elseResponses :Enqueue(OPRESULT; x; opV al)OutstandingOps := OutstandingOps � (x; op)Figure 15: ALU (Kernel Level Speci�cation)
41

5.4 Virtual Memory ManagerThe Virtual Memory Manager is the most complicated module in the Kernel Level Speci�cation.While it implements the same functionality as its User Level analog, the Virtual Memory Managerintroduces a whole new level of complexity with swap spaces and page tables. Whether the ProcessManager is trying to create a process and needs to allocate a Process Space, or an active processis trying to read from memory, nearly all memory related requests have the potential of requiringpage swapping, and swap space access.The basic motivation for Virtual Memory is twofold: give each running process the illusion thatit is the only process on the machine, and enable the capability to run more programs concurrentlyby using a secondary storage device as a swap space to store program memory that has not beenused for a while. The �rst is solved through the usage of Page Tables, which map the process'virtual memory space to physical addresses. These mappings are done in large blocks of memory,called pages, so as to reduce the size of the page tables. The second goal of enabling more processesis realized by creating a process swap space for each process. The swap space of a process is thesame size as its entire memory space, allowing for the process memory to be written to the swapspace when the main memory is needed for other operations. Swap space management drives mostof the increased complexity in the Virtual Memory Manager.The internal state of the Virtual Memory Manager is comprised both of data structures whichmanage individual process spaces and structures which are used for the maintenance of the systemmemory as a whole. Individual process space state includes PageTablex, Freelistx, and Usedx.PageTablex is the page table of the process, storing the mapping between virtual memory addressesand the physical locations of those addresses. It is implemented using a PageTable, which is anarray indexed by virtual page number, storing at each location the physical page to which thevirtual page maps. In addition to storing the physical page, the PageTable stores a :V alid bit foreach page, signifying whether the page being indexed has been loaded into main memory. Theentire PageTable has a single value :Size which stores the size in pages of the PageTable. Uponcreation of a process, the PageTable entries are all marked as invalid, and they are only assignedto physical pages when they are accessed for reads or writes. Freelistx and Usedx are complementsof each other: the �rst holds the free space available for allocation in the process' heap, while thesecond contains all the memory that has already been allocated.42

Virtual Memory ManagerSignatureInput:Mallocx(n), n 2 NFreex(p), p 2 NMemReadx(p), p 2 NMemWritex(p; v), p 2 N, v 2 BytesCreateProc(x), x 2 ProcsKilledProc(x), x 2 ProcsInternal:Swap
Output:MallocResultx(p), p 2 N [fFAILgMemReadResultx(v), v 2 BytesMemWriteDonexCreateProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILgKilledProcResult(x; v), x 2 Procs ,v 2 fDONE; FAILgKillProc(x), x 2 ProcsInterrupt(x), x 2 ProcsSchedule(x; 0), x 2 ProcsStateMem, an array of bytes, indexed by location. Initially all bytes have value 0.MemPages , a PageArray, the bit array of available pages. All bits are initialized to zero.PageTablex, a PageTable, the page table for process x. Initially all values are 0.Freelistx, an AllocateArray, the free list of memory in the heap of process x. Initially Empty.Usedx, an AllocateArray, list of memory in the heap that is currently in use by process x. Initially Empty.SwapStore , a directory into which all swap spaces are placed. Initially Empty.PAGESIZE , �xed size of pages in system.SPACESIZE , �xed size of process space, is a multiple of PAGESIZE .VMCommands , the set fMALLOC;READ;WRITE;CREATE;KILL;KILLED; SCHEDULE; INTERRUPTg.VMArguments , the set N [fDONE; FAILg [Bytes [ByteArrays .Responses , a queue of triples (x; y; z), x 2 VMCommands; y 2 Procs ; z 2 VMArguments . Initially Empty.ActionsInput Mallocx(n)E�: Responses :Enqueue(SCHEDULE; x)p := Freelistx:NewBlock(n)if p = FAIL thenResponses :Enqueue(MALLOC; x; FAIL)elseFreelist:RemoveBlock(p)Usedx:AddBlock(p; n)Responses :Enqueue(MALLOC; x; p)Responses :Enqueue(INTERRUPT; x)Input Freex(p)E�: Responses :Enqueue(SCHEDULE; x)if Usedx:F indBlock(p)Freelistx:AddBlock(p; n)Usedx:RemoveBlock(p)Responses :Enqueue(INTERRUPT; x)

Input CreateProc(x)E�: if SwapStore :Add(x;SPACESIZE) = FAILResponses :Enqueue(CREATE;x; FAIL)elsePageTablex:Size := SPACESIZEfor i := 1 to PageTablex:Size doPageTablex[i]:V alid := FALSEFreelistx:Size := SPACESIZEUsedx := ;Responses :Enqueue(CREATE;x;DONE)
Figure 16: Virtual Memory Manager (Kernel Level Speci�cation)43

Virtual Memory ManagerActions (cont.)InputMemReadx(p)E�: VirtPage := bp=PAGESIZEcif Usedx:F indBlock(p)Responses :Enqueue(SCHEDULE; x)if PageTablex[VirtPage]:V alid = FALSEResponses :Enqueue(SWAP;READ; x; p)elseResponses :Enqueue(READ; x; p)elseResponses :Enqueue(KILL; x)Input KilledProc(x)E�: for i := 1 to PageTablex:Size doif PageTablex[i]:V alid = TRUEPhysPage := PageTablex[i]:PhysPageMemPages :F ree(PhysPage)PageTablex:Size := 0if SwapStore :Remove(x) = DONEResponses :Enqueue(KILLED; x;DONE)elseResponses :Enqueue(KILLED; x;FAIL)Input MemWritex(p; v)E�: VirtPage := bp=PAGESIZEcif Usedx:F indBlock(p)Responses :Enqueue(SCHEDULE; x)if PageTablex[VirtPage]:V alid = FALSEResponses :Enqueue(SWAP;WRITE;x; p; v)elseResponses :Enqueue(WRITE;x; p; v)elseResponses :Enqueue(KILL; x)Output CreateProcResult(x; y)Pre: Responses :Head = (CREATE;x; y)E�: Responses :DequeueOutput KilledProcResult(x; y)Pre: Responses :Head = (KILLED; x; y)E�: Responses :DequeueOutputMemWriteDonexPre: Responses :Head = (WRITE;x; p; v)E�: VirtPage := bp=PAGESIZEcPhysPage := PageTablex[VirtPage]:PhysPageMem[PhysPage + p mod PAGESIZE] := vMemPages :UsedUpdate(PhysPage)Responses :Enqueue(INTERRUPT; x)Responses :Dequeue

Internal SwapPre: Responses :Head =(� = (SWAP;Command ; x; p; v))E�: VirtPage := bp=PAGESIZEcPhysPage :=MemPages:NextUnusedif PhysPage = INV ALIDPhysPage :=MemPages:LeastRecentlyUsedPageTablex[VirtPage] := PhysPageA := PAGESIZE sized arraycontaining PhysPageP := MemPages [PhysPage]:P rocessWritePage :=MemPages [PhysPage]:V irtPagen :=WritePage � PAGESIZEm := n+ PAGESIZESwapStore :Write(P;A; n;m)n := VirtPage � PAGESIZEm := n+ PAGESIZEMem[PhysPage] := SwapStore :Read(x; n;m)Mem[PhysPage]:Process := xMem[PhysPage]:VirtPage := VirtPagePageTablex[VirtPage]:V alid := TRUEPageTablex[VirtPage]:PhysPage := PhysPageResponses :Enqueue(Command ; x; p; v)� := (Command ; x; p; v)Output MemReadResultx(v)Pre: Responses :Head = (READ;x; p)E�: VirtPage := bp=PAGESIZEcPhysPage := PageTablex[VirtPage]:PhysPagev := Mem[PhysPage + p mod PAGESIZE]MemPages :UsedUpdate(PhysPage)Responses :Enqueue(READ; x; v)Responses :Enqueue(INTERRUPT; x)Responses :DequeueOutput MallocResultx(p)Pre: Responses :Head = (MALLOC; x; p)E�: Responses :DequeueOutput KillProc(x)Pre: Responses :Head = (KILL; x)E�: Responses :DequeueOutput Interrupt(x)Pre: Responses :Head = (INTERRUPT;x)E�: Responses :DequeueOutput Schedule(x; 0)Pre: Responses :Head = (SCHEDULE; x)E�: Responses :DequeueFigure 17: Virtual Memory Manager (Kernel Level Speci�cation) Cont.44

System-wide memory management is stored in Mem, MemPages, and SwapStore . Mem isthe actual memory of the system, and therefore contains all the memory values at all locations.MemPages stores information about the state of each of the physical pages in memory. For eachpage, MemPages stores a bit signifying whether it is in use (1) or available (0), as well as the value:Process , storing the Process which currently is mapping to that physical page, and :VirtPage, thevirtual page number in that process' PageTable which points to the physical page. MemPagesimplements the following functions:� :NextUnused, returns the next unused page in memory, if one exists, and marks it as used.Otherwise, it returns INV ALID.� :LeastRecentlyUsed, returns the page in memory least recently used� :UsedUpdate(Page), updates the state used to calculate the LeastRecentlyUsed page. Thepage Page is updated as having just been used.� :F ree(Page), marks Page as unused.SwapStore is a set of swap spaces, each one identi�ed by the name of the process for which it isproviding swap space. Functionally, the SwapStore structure is very similar to the DirectoryStructin the File System; the main di�erence is that SwapStore lacks any sort of hierarchical directorystrucuture, and is simply one large set of �les. SwapStore implements the following �ve operations:1. Add(x), create a swap space with name x, if it exists return FAIL, otherwise return DONE.2. Remove(x), delete the swap space with name x, return FAIL if does not exist.3. Find(x), �nd the swap space with name x. Return TRUE if it exists, otherwise FALSE.4. Read(x; n;m), read m bits of data from swap space x starting at location n. Return FAIL ifx is not at least n+m bits long, otherwise return the bit array from n through n+m.5. Write(x;A; n;m), write A, a bit array of length m, to swap space x starting at location n.Return FAIL if x is not at least n+m bits long, otherwise DONE.45

The two simplest action paths originate fromMalloc and Free requests. These correspond closelywith their counterparts in the User Level mode. In the case of Malloc, the state changes are madein the Malloc input action, and the result is enqueued in the Responses queue, where it is output byMallocResult. Free, on the other hand, has no corresponding output, and the transaction �nisheswithin the action. Each action additionally deschedules the process which made the request at thebeginning of the action, and sends an interrupt to the Interrupt Handler to wake up the process atthe end of the transaction.The input actions of MemRead and MemWrite, although internally more complicated, result inpaths of actions similar to Malloc. First the request is checked to see if it is for a valid memorylocation. If it is not, the command KILL is enqueued in the Responses queue, and a request issent to the Process Manager to kill the process which made the illegal request. If the request isvalid, the action Schedule(x; 0) is �rst output to the scheduler. Then the data which is to be reador written is checked to see if it is currently in the main memory. If the data has been swapped out,the memory is checked for any unused pages. If no pages are unused, the least recently used page isswapped out, and the desired page is read into that location in main memory. If there is an unusedpage, no pages are swapped out, and the desired page is read into one of the unused pages. Oncethe data has been loaded into memory, it is read or written to, depending on the action, and theresult is enqueued in the Responses queue, followed by the enqueuing of an interrupt requeswtinthe Responses queue, requesting that the process making the request be reawakened. The action isthen �nished either by MemReadResult for read requests, or by MemWriteDone for write requests.The remaining two input actions are CreateProc and KilledProc. Each of these is less complicatedthan MemRead and MemWrite. In the case of CreateProc, the Virtual Memory Manager attemptsto create a new swap space, and if it fails, it enqueues a failed result in the Responses queue, tobe output by CreateProcResult. Otherwise it initializes the process speci�c data structures for anew process space and enqueues a success result in the Responses queue, which is also eventuallyoutput by CreateProcResult. KilledProc acts very similarly, attempting to kill a process swap space,and then eliminating any process state it was storing for the now defunct process.
46

5.5 Console, Network, File System and Process ManagerThe di�erences in these four automata from their User Level analogs are minimal for the Console,File System, and Network Managers, and actually nonexistent for the Process Manager.The Console, File System and Network Managers at the Kernel Level implementation incor-porate the existence of the Scheduler and the Interrupt Handler into their previous forms in theUser Level Speci�cation. Essentially the same, each now makes sure to deschedule a process beforecommitting to the I/O operation, and only reschedules it upon completion.The changes to the Console Manager automaton are minor|there is the addition of the Scheduleand Interrupt(x) outputs, and code in the other actions to enable those outputs. Each input actionbegins with the enqueuing of the command (SCHEDULE; x) in the Jobs queue, which turns intothe Schedule(x; 0) output. Similarly, each transaction ends with the enqueueing of the command(INTERRUPT; x) into the Responses queue, which is output as the action Interruptx.Changes to the File System and Network Manager automata are equally minor and similar. Themachinery for scheduling and interrupting processes is integrated into the models, but otherwisethe baseline functionality remains the same.It is interesting to note how few changes are made in these four systems, despite the introductionof relatively large changes in the operating system topology. It becomes apparent at this stagethat there is a bene�t in clearly modelling the separate system components, as such separation offunctionality makes it easy and e�cient to port unchanged modules from one model to the next.Because the life cycles of the processes, their interactions with the console, their need for persistentstorage, and their usage of the network have not changed, neither do the modules that handle theseresources.6 Abstraction AutomatonIn designing a Kernel Level model that implements the User Level speci�cation, we need a systemthat maintains the same interface with the Process as originally stated in the User Level design.In order to maintain the signature of the User Level Process for the processes in the Kernel Levelmodel, it is necessary to introduce a theoretical interface automaton into the Kernel Level system.47

Console ManagerSignatureInput:ConsoleReadxConsoleWritex(c), c 2 CharsInternal:ReadLoadBu�erWriteToScreen(c)
Output:ConsoleReadResultx(y), y 2 Chars [fEOFgConsoleWriteResultx(y), y 2 fFAIL;DONEgSchedule(x; 0), x 2 ProcsInterrupt(x)StateBu�er , a queue of Chars , the items input from the console and not yet read. Initially Empty.Responses a queue of triples (x; y; z), x 2 fREADRESULT;WRITERESULT; INTERRUPTg; y 2 Procs ; z 2Chars [fEOF;Busy;DONEg. Initially Empty.Jobs queue of pairs (x; y), x 2 fREAD;WRITESCREEN;SCHEDULEg; y 2 Procs ; z 2 Charsg. InitiallyEmpty.Busy , boolean variable. TRUE when the console is writing to the screen. Initially FALSE.ActionsInput ConsoleReadxE�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(READ;x)Internal LoadBu�erPre: Input character c from UserE�: Bu�er :Enqueue(c)Internal WriteToScreen(c)Pre: Jobs :Head = (WRITESCREEN;x; c)E�: Jobs :DequeueBusy := FALSEResponses :Enqueue(WRITERESULT;x;DONE)Responses :Enqueue(INTERRUPT; x)Internal ReadPre: Jobs :Head = (READ;x)E�: if Bu�er not emptyc := Bu�er :Dequeueelsec := EOFJobs :DequeueResponses :Enqueue(READRESULT; x; c)Responses :Enqueue(INTERRUPT; x)

Input ConsoleWritex(c)E�: if BusyResponses :Enqueue(WRITERESULT;x; FAIL)elseBusy := TRUEJobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(WRITESCREEN;x; c)Output ConsoleReadResultx(y)Pre: Responses :Head = (READRESULT; x; y)E�: Responses :DequeueOutput ConsoleWriteResultx(y)Pre: Responses :Head = (WRITERESULT;x; y)E�: Responses :DequeueOutput Schedule(x; 0)Pre: Jobs :Head = (SCHEDULE; x)E�: Jobs :DequeueOutput Interrupt(x)Pre: Responses :Head = (INTERRUPT;x)E�: Responses :DequeueFigure 18: Console Manager (Kernel Level Speci�cation)
48

Network ManagerSignatureInput:NetOpenx(y), x 2 Procs , y 2 SocketsNetReadx(y; n), x 2 Procs , y 2 Sockets ; n 2 NNetWritex(y; n; A), x 2 Procs , y 2 Sockets ;n 2 N; A 2 ByteArraysNetClosex(y), x 2 Procs , y 2 SocketsKilledProc(x), x 2 ProcsInternal:NetReadInBu�erx;y, x 2 Procs ; y 2 BytesNetWriteOutBu�erx;y, x 2 Procs ; y 2 BytesOpenReadWriteClose

Output:NetOpenResultx(y; z), x 2 Procs , y 2 Sockets ,z 2 fDONE; FAILgNetReadResultx(A; z), x 2 Procs , y 2 Sockets ,>A 2 ByteArrays [fDONE; FAILgNetWriteResultx(y; z), x 2 Procs , y 2 Sockets ,z 2 fDONE; FAILgNetCloseResultx(y; z), x 2 Procs , y 2 Socketsz 2 fDONE; FAILgSchedule(x; 0), x 2 ProcsInterrupt(x), x 2 Procs
StateOpenx, the set of sockets currently opened by process x. Initially Empty.Network , the set of all computers with which connections can be opened.InBu�erx;y a queue holding incoming data from socket connection y for process x. Initially Empty.OutBu�erx;y a queue holding outgoing data from socket connection y for process x. Initially Empty.NetCommands the set fOPEN;CLOSE;READ;WRITE; INTERRUPT;SCHEDULEg.NetResults the set fDONE; FAIL; g [ByteArrays .Jobs a queue of triples (x; y; z), x 2 Procs ; y 2 NetCommands ; z 2 NetResults . Initially Empty.Responses a queue of triples (x; y; z), x 2 Procs ; y 2 NetCommands ; z 2 NetResults . Initially Empty.ActionsInput NetOpenx(y)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(OPEN; x; y)Input NetReadx(y; n)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(READ;x; y; n)Input NetClosex(y)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(CLOSE; x; y)Input KilledProc(x)E�: Openx := EMPTY8y 2 NetworkOutBu�ery;x := ;

Input NetWritex(y; n; A)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(WRITE;x; y; n; A)Internal OpenPre: Jobs :Head = (OPEN; x; y)E�: if y 2 Network ^ y =2 OpenxResponses :Enqueue(OPEN; x; y;DONE)Openx := Openx [fygelseResponses :Enqueue(OPEN; x; y; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :Dequeue
Figure 19: Network Manager (Kernel Level Speci�cation)49

Network ManagerActions: (cont.)Internal ClosePre: Jobs :Head = (CLOSE; x; y)E�: if y 2 OpenxOpenx := Openx � fygResponses :Enqueue(CLOSE; x; y;DONE)elseResponses :Enqueue(CLOSE; x; y; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal ReadPre: Jobs :Head = (READ; x; y; n)E�: if y 2 Openxif InBu�erx;y:Empty = FALSEA := �rst n bytes in bu�erelseA := EOFResponses :Enqueue(READ; x; y; A)elseResponses :Enqueue(READ; x; y; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal WritePre: Jobs :Head = (WRITE;x; y; n; S)E�: if y 2 Openxif OutBu�er :Size+ n �MAXBUFOutBu�er :Enqueue(A)Responses :Enqueue(WRITE;x; y;DONE)elseResponses :Enqueue(WRITE;x; y; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :Dequeue

InternalNetReadInBu�erx;yPre: Incoming data A fromconnection y to process xE�: InBu�er :Enqueue(A)InternalNetWriteOutBu�erx;yPre: OutBu�er :Empty = FALSEE�: OutBu�er :DequeueOutput NetOpenResultx(y; z)Pre: Responses :Head = (OPEN; x; y; z)E�: Responses :DequeueOutput NetCloseResultx(y; z)Pre: Responses :Head = (CLOSE; x; y; z)E�: Responses :DequeueOutput NetReadResultx(A; z)Pre: Responses :Head = (READAT;x;A; z)E�: Responses :DequeueOutput NetWriteResultx(y; z)Pre: Responses :Head = (WRITEAT;x; y; z)E�: Responses :DequeueOutputSchedule(x; 0)Pre: Jobs :Head = (SCHEDULE; x)E�: Jobs :DequeueOutputInterrupt(x)Pre: Responses :Head = (INTERRUPT;x)E�: Responses :DequeueFigure 20: Network Manager (Kernel Level Speci�cation) Cont.
50

File System ManagerSignatureInput:FSOpenx(y; path); y 2 Files;path 2 PathsFSCreatex(y; path; n); y 2 Files;path 2 Paths; n 2 NFSReadAtx(y; path; n;m); y 2 Files;path 2 Paths; n;m 2 NFSWriteAtx(y; path; n;m;A); y 2 Files;path 2 Paths; n;m 2 N; A 2 ByteArraysFSClosex(y; path); y 2 Files; path 2 PathsFSDeletex(y; path); y 2 Files; path 2 PathsKilledProc(x), x 2 ProcsInternal:Open CreateReadAt WriteAtClose Delete

Output:FSOpenResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSCreateResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSReadAtResultx(y; path;A); y 2 Files;path 2 Paths;A 2 ByteArrays [fFAILgFSWriteAtResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSCloseResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgFSDeleteResultx(y; path; z); y 2 Files;path 2 Paths; z 2 fDONE; FAILgSchedule(x; 0), x 2 ProcsInterrupt(x), x 2 ProcsStateOpenx, a set of �les currently opened by process x. Initially Empty.DirectoryStruct , a tree of �les, representing the directory structure of the system. All leaves of the tree are �leswhose paths are speci�ed by the path from the root to the leaf in the tree. Each name is unique from itssiblings. Initially Empty.FSCommands, fSCHEDULE;OPEN;CREATE;DELETE;CLOSE;READAT;WRITEAT;KILLPROC; INTERRUPTgJobs a queue of triples (x; y; z), x 2 FSCommands ; y 2 Procs ; z 2 Files. Initially Empty.Responses a queue of sextuples (u; v; w; x; y; z), u 2 FSCommands; v 2 Procs , w 2 Files; x 2 N, y 2 N, z 2ByteArrays . Initially Empty.Input FSOpenx(y; path)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(OPEN; x; y; path)Input FSCreatex(y; path; n)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(CREATE;x; y; path; n)Input FSDeletex(y; path)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(DELETE;x; y; path)
Input FSReadAtx(y; path; n;m)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(READAT;x; y; path; n;m)Input FSClosex(y; path)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(CLOSE; x; y; path)

Figure 21: File System Manager (Kernel Level implementation)
51

File System ManagerActions: (cont.)Input FSWriteAtx(y; path; n;m;A)E�: Jobs :Enqueue(SCHEDULE; x)Jobs :Enqueue(WRITEAT;x; y; path; n;m;A)Input KilledProc(x)E�: Openx := ;Internal OpenPre: Jobs :Head = (OPEN; x; y; path)E�: if DirectoryStruct :F ind(y; path) ^8x; y \ Openx = ;Responses :Enqueue(OPEN; x; y; path;DONE)Openx := Openx [f(y; path)gelseResponses :Enqueue(OPEN; x; y; path; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal CreatePre: Jobs :Head = (CREATE;x; y; path; n)E�: if DirectoryStruct :F ind(y; path)Responses :Enqueue(CREATE;x; y; path; FAIL)elseResponses :Enqueue(CREATE;x; y; path;DONE)DirectoryStruct :Add(y; path; n)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal DeletePre: Jobs :Head(DELETE;x; y)E�: if DirectoryStruct :F ind(y; path) ^ 8x; y =2 OpenxDirectoryStruct :Delete(y; path)Responses :Enqueue(DELETE;x; y; path;DONE)elseResponses :Enqueue(DELETE;x; y; path; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :Dequeue

Internal ReadAtPre: Jobs :Head = (READAT;x; y; path; n;m)E�: if (y; path) 2 OpenxA := DirectoryStruct :Read(y; path; n;m)elseA := FAILResponses :Enqueue(READAT;x; y; path;A)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal ClosePre: Jobs :Head = (CLOSE; x; y; path)E�: if (y; path) 2 OpenxOpenx := Openx � f(y; path)gResponses :Enqueue(CLOSE; x; y; path;DONE)elseResponses :Enqueue(CLOSE; x; y; path; FAIL)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueInternal WriteAtPre: Jobs :Head = (WRITEAT;x; y; path; n;m;A)E�: if y 2 Openxresult := DirectoryStruct :Write(y; path; n;m;A)elseresult := FAILResponses :Enqueue(WRITEAT;x; y; path; result)Responses :Enqueue(INTERRUPT; x)Jobs :DequeueOutput FSOpenResultx(y; path; z)Pre: Responses :Head = (OPEN; x; y; path; z)E�: Responses :DequeueOutput FSCreateResultx(y; path; z)Pre: Responses :Head = (CREATE;x; y; path; z)E�: Responses :DequeueOutput FSCloseResultx(y; path; z)Pre: Responses :Head = (CLOSE; x; y; path; z)E�: Responses :DequeueFigure 22: File System (Kernel Level Speci�cation) Cont.52

File System ManagerActions: (cont.)Output FSDeleteResultx(y; path; z)Pre: Responses :Head =(DELETE;x; y; path; z)E�: Responses :DequeueOutput FSReadAtResultx(y; path;A)Pre: Responses :Head =(READAT;x; y; path;A)E�: Responses :DequeueOutput FSWriteAtResultx(y; path; z)Pre: Responses :Head =(WRITEAT;x; y; path; z)E�: Responses :Dequeue
Output Schedule(x; b)Pre: Jobs :Head = (SCHEDULE; b)E�: Jobs :DequeueOutput Interrupt(x)Pre: Responses :Head = (INTERRUPT;x)E�: Responses :Dequeue

Figure 23: File System (Kernel Level Speci�cation) Cont.As one may already have noticed, the Process signature detailed at the beginning of this thesisdoes not include any input or output actions for interfacing with the Scheduler. Yet it is apparentthat the Scheduler must have some sort of interaction with the Process in order to schedule anddeschedule it. This theoretical construct works to resolve that paradox.We design the Abstraction automaton to be an interface layer between the Kernel Level Processand the Operating System that abstracts away the details of the scheduler. Instead of building suchintelligence into the Process, the Abstraction automaton provides, through a series of per processqueues, an interface for the Kernel Level Process that is identical to the one for the User LevelProcess. In this way, the Kernel Level Process does not receive any of the Scheduler's Runx(b)commands, and is enabled to act as if it has the operating system's attention at all times. TheAbstraction automaton, on the other hand, only passes on operating system and process outputsto and from the single process which is currently running. It receives the Runx(b) commands, andactivates the queues of the process dependent upon the Runx(b) commands it receives.Aside from being a convenient abstraction for the purposes of maintaining the process interfaceacross the User and Kernel Level models of the operating system, the existence of the Abstractionautomaton is grounded in a real system perspective. The computer programmer, in writing processprograms, is not burdened with the realities of load sharing that occurs on a real multi-processplatform. Instead, he/she writes the program as if it was the only process running on the system,53

Process jProcess i

Processes

System
Manager

File

Manager
Memory
Virtual

Interrupt
Handler

Scheduler

Manager
Network

Manager
Console

Abstraction Automaton

ALU

Manager
Process

Figure 24: Kernel Level model with Abstraction Automaton
54

Abstraction AutomataSignatureInput:ProcessActionx(i), x 2 Procs , i 2 ProcActionsOSActionx(i), x 2 Procs , i 2 OSActionsRunx(b)Output:ProcessActionx(i), x 2 Procs , i 2 ProcActionsOSActionx(i), x 2 Procs , i 2 OSActionsStateProcOutputsx, the queue of outputs from process x heading towards the operating system. Initially Empty.OSOutputsx, the queue of outputs from the operating system heading towards process x. Initially Empty.Running , the set of processes currently selected to run by the scheduler. Initially Empty.ActionsInput ProcessActionx(i)E�: ProcOutputsx:Enqueue(i)Input OSActionx(i)E�: OSOutputsx:Enqueue(i)Input Runx(b)E�: if b = 0 ^ x 2 RunningRunning := Running � xelse if b = 1 ^ x =2 RunningRunning := Running + x
Output OSActionx(i)Pre: Running = xOSOutputsx:Head = iE�: OSOutputsx:DequeueOutput ProcessActionx(i)Pre: Running = xProcOutputsx:Head = iE�: ProcOutputsx:Dequeue

Figure 25: Abstraction Automaton

55

at a level of abstraction that removes the concept of resource sharing. This is exactly what theAbstraction automaton provides at the Kernel Level. The reason why this type of module isnot necessary in a real operating system is because processes in a real operating system are notautonomous state machines running at their own schedule, but are in fact merely streams of codebeing run on a single machine. Because of this, they do not need to be signalled to be descheduled;instead the scheduler simply switches from running one process to running the next. In choosingto model the Processes as automata, we give them more independence, including control over whenthey can and cannot run. We therefore introduce the Abstraction automaton in order to remedythe problem.In order to simplify the readability of the Abstraction automaton, we enumerate the outputactions of the Kernel Level Process in the order listed in the Process de�nition in the User Level,representing the ith output action of Process x, generally as ProcessActionx(i). Similarly, wedo the same thing for the Kernel Level model of the operating system, ordering the modulesalphabetically and then enumerating all of their actions together into one large index of actions.Call these operating system outputs OSAction(x; i) for the ith operating system output directedtowards Process x. We leave out one operating system action from the index, Runx(b), which wewill deal with separately in the Abstraction Automaton.With this simpli�cation of the representation of the Abstraction Automaton, it becomes aqueue storage house which funnels all outputs of process x to the operating system into the queueProcOutputsx, and all outputs of the operating system to process x into the queue OSOutputsx. Thevariable Running is set to the current process i enabled by the scheduler, and the only outputs fromthe Abstraction automaton are from dequeuing the two queues ProcOutputsx and OSOutputsx.
7 Correspondence ProofsThe power of the User-level de�nition of the Operating System is that it abstracts away the di�cul-ties of an actual implementation, while still displaying the proper behavior of one. We can thereforeuse the User-level de�nition as a speci�cation, and justify the Kernel-level implementation by show-ing that it implements the User-level speci�cation. In order to show this correspondence betweenthe two levels we use the mathematical tools developed for I/O automata, proving that the Kernel56

Level model simulates the User Level. This is accomplished by eventually composing together allof the automata in the Kernel Level Model into one automaton, doing the same with the User LevelModel, and then proving that the composition at the Kernel Level implements that at the UserLevel.Before composing all of the automata at the Kernel Level we �rst use the concept of strongcorrespondence which we developed in Section 2, to prove several strong correspondences betweenthe following pairs of Kernel Level and User Level models: Kernel and User Memory Manager,Kernel and User File System Manager, Kernel and User Console Manager, Kernel and User NetworkManager, and Kernel and User ALU. We exclude the Process Manager from our proofs, simplybecause it is identical in all respects on both levels, and therefore trivially corresponds. Once wehave proved these strong correspondences, we then compose together at each level all the modulesfor which we have proven strong correspondences. That is to say, we compose together the KernelLevel Memory, File System, Console, Network, ALU, and Process Managers, and then separatelycompose together their User Level counterparts.Composing together at each level all automata for which we have proven strong correspon-dences implies that we have composed the entire User Level Model, completing the composition atthat level. However, the composition of strongly corresponding modules leaves out the Scheduler,Interrupt Handler, and Abstraction automata from the Kernel Level model. Therefore, we mustcomplete the composition of the Kernel Level model by composing the already composed stronglycorresponding components with the remaining components. Because of several of the general the-orems we proved earlier in this thesis, these steps follow rather directly.Finally, after having composed all operating system automata in both the User and KernelLevel modules, we can prove a simulation relation between them, showing that the Kernel Levelmodel does in fact implement the User Level speci�cation.7.1 Memory Manager SimulationTo show that the Virtual Memory Manager K at the Kernel-level meets the speci�cation of theMemory Manager at the User-level U , we establish a strong correspondence from K to U .Theorem 5.1 The relation F in the �gure 26 is a strong correspondence from K to U .57

F is a relation between states in U and states in K such that u 2 F [k] if and only if:� u:MemSpacex[p] = k:Mem[k:PageTablex[bp=PAGESIZEc]:PhysPage�PAGESIZE+(pmod PAGESIZE)]if k:PageTablex[b=PAGESIZEc]:V alid = TRUE, otherwise = SwapStore :Read(x;1; p).� u:Usedx = k:Usedx� u:SPACESIZE = k:SPACESIZE� u:Freelistx = k:Freelistx� u:Responses is a subsequence of k:Responses , where for each instance of (SWAP;READ;x; p) or (READ; x; p)in k:Responses , there is an instance of (READ; x; p) in u:Responses . Similarly, each instance of(SWAP;WRITE;x; p; v) or (WRITE;x; p; v) in k:Responses corresponds to an instance of (WRITE;x; p; v)in u:Responses . Additionally, (SCHEDULE; x) and (INTERRUPT;x) in k:Responses correspond to nothingin u:Responses . All other elements in k:Responses are present in u:Responses .Figure 26: Memory Manager strong correspondence from implementation to speci�cationThe relationship between the User Level u:MemSpacex[p] and the Kernel Level k:Mem andk:SwapStore describes the way in which the Virtual Memory Manager at the User Level simulatesa at memory space for each of the processes. If memory location p for process x is currently loadedinto memory in k:Mem, then the value found in u:MemSpacex[p], can be found be doing a virtualmemory translation to �nd the location of the value in memory, and looking it up in k:Mem. Ifthe memory location is not currently loaded into main memory then it is stored at location p inthe process x's swap space.The relationship between u:Responses and k:Responses is not conceptually complicated|u:Responsesis essentially a simpli�cation of k:Responses . It is the same queue, except that u:Responses containsno requests for scheduling or interrupts, and because there is no swapping in the user level, readand write requests do not go through a swap state.Proof: In order to show that F is a strong correspondence from K to U we �rst show that foreach start state of K, there exists a corresponding start state of U , and that this correspondence ispreserved by each step of K.If k is a start state of K, Mem and SwapStorex are all 0, Usedx, Freelistx, and Responsesare empty, and SPACESIZE is set to a prede�ned value. The start state of U corresponds to thisstate, since it too has MemSpacex set to all 0, Usedx, Freelistx, and Responses all empty, andSPACESIZE set to the same prede�ned value.Additionally, we show that in(U) � in(K); int(U) � int(K); out(U) � out(K). This is obviousfrom inspection of the automata. 58

To establish that the strong correspondence is preserved by every step of the implementation,suppose that k and u are reachable states of K and U respectively such that u 2 F [k] and thatk ��!k0. We show there exists a state u0 2 F [k0] such that u ��!u0 if � 2 acts(U), otherwise u = u0.� = Mallocx(n);Freex(p),these actions each correspond to their respective actions in the spec-i�cation. Each action, in both the implementation and the speci�cation, modi�es Freelistxand Usedx in the same fashion. The only di�erence between the actions in the speci�cationand the implementation is the enqueuing of (SCHEDULE; x) and (INTERRUPT; x) in theKernel level. This does not a�ect the relation, so all changes to pertinent state are identical.� = CreateProc(x), KilledProc(x), these actions each correspond to their respective actionsin the speci�cation. All changes made to Freelistx, Usedx, k:SwapStore , k:PageTablex, andResponses maintain the correspondence relation.� = Swap, this item has no corresponding action in the speci�cation, and therefore cor-responds to the empty transition. Although it makes many changes to PageTablex, Mem,and SwapStore , one can see from inspection that no changes are of the fashion that changethe relation F . Therefore, the change in state corresponds to no change in the state in thespeci�cation, and relation is preserved.� = MemReadx(p), MemWritex(p; v), these input actions each correspond to their respec-tive input actions in the speci�cation. The only di�erences between the Kernel level andUser level descriptions is the presence of SCHEDULE and INTERRUPT commands inthe Kernel level, which aren't modelled in the User level, and the option of enqueueing(SWAP;Command ; : : :) instead of (Command ; : : :) in k:Responses . This too corresponds tothe User level speci�cation, and therefore the strong correspondence is preserved.� = Schedule(x; 0), Interrupt(x), these actions have no corresponding action in the speci-�cation, and corresponds to the empty transition. All changes to state in these functionsare not modelled in the speci�cation, as the only action is the addition of SCHEDULEand INTERRUPT commands in the k:Responses queue. These changes do not change therelation in the strong correspondence function, and the relation is therefore preserved.� = MallocResultx(p), CreateProcResult(x; y), KilledProcResult(x; y), KillProc(x), these actionscorrespond to the same action in the speci�cation, and are enabled in the same state|the59

existence of the corresponding command in the Responses queue. All state changes are exactlythe same, consisting of dequeueing the action from Responses , and thereby preserve the strongcorrespondence.� = MemReadResultx(v), MemWriteDonex, these actions correspond to the same action in thespeci�cation. Changes made to k:Mem reect the changes made to u:MemSpacex, therebypreserving the state correspondence. Each are enabled by the existence of READ andWRITE respectively in the u:Responses and k:Responses queue, which is preserved by F .7.2 File System Manager SimulationTo show that the File System Manager K at the Kernel-level meets the speci�cation of the FileSystem Manager at the User-level U , we establish a strong correspondence from K to U .Theorem 5.2 The relation F in �gure 27 is a strong correspondence from K to U .F is a relation between states in U and states in K such that u 2 F [k] if and only if:� u:Openx = k:Openx� u:DirectoryStruct = k:DirectoryStruct� u:Jobs is a subsequence of k:Jobs , where every command in k:Jobs is in u:Jobs with the exception of commandsof the form (SCHEDULE; x).� u:Responses is a subsequence of k:Responses , where every command in k:Responses is in u:Responses with theexception of commands of the form (INTERRUPT;x).Figure 27: File System Manager strong correspondence from implementation to speci�cationThis mapping demonstrates the great similarity between the User Level and Kernel Level FileSystem Managers, as the only serious di�erence comes in the absence of requests to the schedulerand interrupt handler in the User Level Model.Proof: In order to show that F is a strong correspondence from K to U we �rst show that foreach start state of K, there exists a corresponding start state of U , and that this correspondence ispreserved by each step of K.If k is a start state of K, Openx, DirectoryStruct , Jobs , and Responses are Empty. The startstate of U corresponds to this state, since it too has Openx, DirectoryStruct , Jobs , and ResponsesEmpty. 60

Additionally, we show that in(U) � in(K); int(U) � int(K); out(U) � out(K). This is obviousfrom inspection of the automata.To establish that the strong correspondence is preserved by every step of the implementation,suppose that k and u are reachable states of K and U respectively such that u 2 F [k] and thatk ��!k0. We show that there exists a state u0 2 F [k0] such that if � 2 acts(U), u ��!u0, and otherwiseu = u0.1. � = FSOpenx(y), FSCreatex(y; n), FSReadAtx(y; n;m), FSWriteAtx(y; n;m;A), FSClosex(y),FSDeletex(y), these actions in the implementation correspond to their respective actions inthe speci�cation. For each action the triple (�; x; y) is enqueued in the Jobs queue. In theimplementation, the pair (SCHEDULE; x) is additionally enqueued, but that action is notrepresented in the speci�cation. The state function is preserved, so the strong correspondenceis as well.� = Open, Create, ReadAt, WriteAt, Close, Delete, these actions in the implementation cor-respond to their respective actions in the speci�cation. Each is enabled by the presence of(�; x; y) at the head of the k:Jobs queue. The equality of the Jobs queue is maintainedthrough the correspondence function, therefore we know that these actions are enabled atthe User level. In each case the triple (�; x; y) is dequeued from the Jobs queue, while thetriple (�; x; y) is enqueued in the Responses queue. Because equality of the DirectoryStructstructure is maintained through the state correspondence function, we know that all opera-tions on �les will return the same value in both models. Additionally, the Openx structureis maintained identically, preserving the state correspondence in both automata. In the im-plementation, the pair (INTERRUPT; x) is additionally enqueued in Responses , but thataction is not represented in the speci�cation. The state function is preserved, so the strongcorrespondence is as well.� = FSOpenResultx(y; z), FSCreateResultx(y; z), FSReadAtResultx(y;A), FSWriteAtResultx(y; z),FSCloseResultx(y; z), FSDeleteResultx(y; z) these actions correspond to their respective actionsin the speci�cation. The state change is identical in the implementation and the speci�cation.� = Schedule(x; 0), Interrupt(x) these actions in the implementation have no correspondingaction in the speci�cation, and therefore correspond to the empty transition. The state61

function is preserved, as the deletions to k:Jobs and k:Responses are not of the form thatrequires any related deletion to u:Jobs or u:Responses . So the state function still maps thenew implementation state to the same state in the speci�cation, and the transition is theempty transition.7.3 Console Manager SimulationTo show that the Console Manager at the Kernel-level meets the speci�cation of the Console Man-ager at the User-level, we establish a strong correspondence from K=Kernel-level implementationto U=User-level speci�cation.Theorem 5.3 The relation F in �gure 28 is a strong correspondence from K to U .F is a relation between states in U and states in K such that u 2 F [k] if and only if:� u:Bu�er = k:Bu�er� u:Busy = k:Busy� u:Responses is a subsequence of k:Responses , where each element in k:Responses is in u:Responses if and onlyif it is of the form (WRITERESULT; y; z) or (READRESULT; y; z).� u:Jobs is a subsequence of k:Jobs , where each element in k:Jobs is in u:Jobs if and only if it is of the form(WRITESCREEN;y) or (READ; x).Figure 28: Console Manager strong correspondence from implementation to speci�cationMuch like the File System Manager, the Kernel Level Console Manager di�ers from its UserLevel counterpart only in the addition of requests to the Scheduler and Interrupt Handler forscheduling requests. This di�erence manifests itself in nearly every action, with the enqueueing ofSCHEDULE or INTERRUPT commands in the k:Responses and k:Jobs queues.Proof: In order to show that F is a strong correspondence from K to U we �rst show that foreach start state of K, there exists a corresponding start state of U , and that this correspondence ispreserved by each step of K.If k is a start state of K, the Bu�er , Jobs and Responses sets are empty, and Busy is FALSE.The start state of U corresponds to this state, since it has Bu�er , Jobs and Responses empty, andBusy = FALSE.Additionally, we show that in(U) � in(K); int(U) � int(K); out(U) � out(K). This is obviousfrom inspection of the automata. 62

To establish that the strong correspondence is preserved by every step of the implementation,suppose that k and u are reachable states of K and U respectively such that u 2 F [k] and thatk ��!k0. We show that there exists a state u0 2 F [k0] such that if � 2 acts(U), u ��!u0, and otherwiseu = u0.1. � = ConsoleReadx, this action in the implementation corresponds to the same action in thespeci�cation. In both cases the pair (READ;x) is enqueued in the Jobs queue. In theimplementation, the pair (SCHEDULE; x) is additionally enqueued, but that action is notrepresented in the speci�cation. The state function is preserved, as is the simulation.� = ConsoleWritex;WriteToScreen, these actions simulate their corresponding actions in thespeci�cation. The state change in the implementation matches the state change in the speci�-cation. u:Responses and k:Responses are changed in the exact same fashion in both, as is thestate variable Busy in ConsoleWritex. u:Jobs maintains the property that it is a subsequenceof k:Jobs , where every instance of (WRITESCREEN; y) in k:Jobs is present in u:Jobs . Sim-ilarly, u:Responses maintains the property that it is a subsequence of k:Responses where everyinstance of (WRITERESULT; y; z) and (READRESULT; y; z) present in k:Responses ispresent in u:Responses .� = LoadBu�er, this simulates the same action in the speci�cation. The state change isidentical in the implementation and the speci�cation.� = ConsoleReadResultx(y);ConsoleWriteResultx(y), these actions simulate their correspond-ing actions in the speci�cation. The state change is identical in the implementation and thespeci�cation.� = Schedule(x; 0), Interrupt(x), these actions in the implementation simulate their corre-sponding actions in the speci�cation, and therefore corresponds to the empty transition. Allstate changes in the implementation are such that they do not a�ect the strong correspondencerelation.7.4 Network Manager SimulationTo show that the Network Manager at the Kernel-level meets the speci�cation of the Network Man-ager at the User-level, we establish a strong correspondence from K=Kernel-level implementation63

to U=User-level speci�cation.Theorem 5.4 The relation F in �gure 29 is a strong correspondence from K to U .F is a relation between states in U and states in K such that u 2 F [k] if and only if:� u:Openx = k:Openx� u:Network = k:Network� u:InBu�erx;y = k:InBu�erx;y� u:OutBu�erx;y = k:OutBu�erx;y� u:Jobs is a subsequence of k:Jobs , where every command in k:Jobs is in u:Jobs with the exception of commandsof the form (SCHEDULE; x).� u:Responses is a subsequence of k:Responses , where every command in k:Responses is in u:Responses with theexception of commands of the form (INTERRUPT;x).Figure 29: Network Manager strong correspondence from implementation to speci�cationLike the Console Manager and File System Manager before, the File System Manager's corre-spondence is one simply of scheduling commands in the Kernel Level Model and not in the UserLevel Model.Proof: In order to show that F is a strong correspondence from K to U we �rst show that foreach start state of K, there exists a corresponding start state of U , and that this correspondence ispreserved by each step of K.Additionally, we show that in(U) � in(K); int(U) � int(K); out(U) � out(K). This is obviousfrom inspection of the automata.If k is a start state of K, the Openx, Network , InBu�erx;y, OutBu�erx;y, Responses and Jobssets are empty. The start state of U corresponds to this state, since it has the Openx, Network ,InBu�erx;y, OutBu�erx;y and Jobs sets empty as well.To establish that the strong correspondence is preserved by every step of the implementation,suppose that k and u are reachable states of K and U respectively such that u 2 F [k] and thatk ��!k0. We show that there exists a state u0 2 F [k0] such that if � 2 acts(U), u ��!u0, and otherwiseu = u0.� = NetOpenx(y), NetReadx(y; n), NetWritex(y; n;A), NetClosex(y) these action in the imple-mentation correspond to their respective actions in the speci�cation. In each case the triple(�; x; y) is enqueued in the Jobs queue. In the implementation, the pair (SCHEDULE; x)64

is additionally enqueued, but that action is not represented in the speci�cation. The statefunction is preserved, so the strong correspondence is as well.� = Open,Read, Write, Close, these actions in the implementation correspond to their respec-tive actions in the speci�cation. In each case the triple (�; x; y) is dequeued from the Jobsqueue, and is enqueued in the Responses queue. Because the InBu�erx;y, OutBu�erx;y andNetwork structures are maintained through the state correspondence function, we know thatall identical operations on them will have identical results. Additionally, the Openx struc-ture is maintained identically, preserving that state correspondence in both automata. Inthe implementation, the pair (INTERRUPT; x) is additionally enqueued in Responses , butthat action is not represented in the speci�cation. The state function is preserved, with noexternal image, so the strong correspondence is as well.� = KilledProc(x), this action in the implementation corresponds to the same action in thespeci�cation. Because u:Network and k:Network are maintained identically, y will either bein both or neither of them. Therefore, all changes made to u:OutBu�erx;y and k:OutBu�erx;ywill be identical.� = NetOpenResultx(y; z), NetReadResultx(A; z), NetWriteResultx(y; z), NetCloseResultx(y; z),NetReadInBu�erx;y, NetWriteOutBu�erx;y, these actions in the implementation correspond totheir respective actions in the speci�cation. The state change is identical in the implementa-tion and the speci�cation.� = Schedule(x; 0), Interrupt(x), these actions in the implementation have no correspondingaction in the speci�cation, and therefore correspond to the empty transition. The statefunction is preserved, as the deletions to k:Jobs and k:Responses are not of the form thatrequire any related deletions to u:Jobs or u:Responses . So the state function still maps thenew implementation state to the same state in the speci�cation, and the transition is theempty transition.7.5 ALU SimulationTo show that the ALU at the Kernel-level meets the speci�cation of the ALU at the User-level, weestablish a strong correspondence from K=Kernel-level implementation to U=User-level speci�ca-65

tion.Theorem 5.5 The relation F in �gure 30 is a strong correspondence from K to U .F is a relation between states in U and states in K such that u 2 F [k] if and only if:� u:Responses = k:Responses� u:OutstandingOps = k:OutstandingOps� u:Registers [k:CurrentProc] = k:CurrentRegs , for all other registers, u:Registers = k:RegMem .Figure 30: ALU strong correspondence from implementation to speci�cationThe main di�erence between the ALU in the User Level Model and the Kernel Level Model isthe existence of a single current set of registers in the Kernel Level. This requires the Kernel LevelModel to switch between registers before performing actions for di�erent processes, an action thatis automatic and immediate for the User Level Model. Because of this, the correspondence betweenthe two levels demonstrates the relationship of the current registers in the Kernel Level with oneset of registers at the User Level, and all other registers at both levels corresponding in a straightforward fashion.Proof: In order to show that F is a strong correspondence from K to U we �rst show that foreach start state of K, there exists a corresponding start state of U , and that this correspondence ispreserved by each step of K.Additionally, we show that in(U) � in(K); int(U) � int(K); out(U) � out(K). This is obviousfrom inspection of the automata.If k is a start state of K, the Responses queue is Empty and the OutstandingOps set is ;, whileRegisters is initially all 0. The start state of U corresponds to this state, since it has the Responsesqueue Empty and OutstandingOps set ; as well, with CurrentProc = 0, and RegMem initially 0.To establish that the strong correspondence is preserved by every step of the implementation,suppose that k and u are reachable states of K and U respectively such that u 2 F [k] and thatk ��!k0. We show that there exists a state u0 2 F [k0] such that if � 2 acts(U), u ��!u0, and otherwiseu = u0.� = OperationReqx(op), this action in the implementation corresponds to its respective actionin the speci�cation. In both cases, the action is triggered by the same external input, and66

both modify the OutstandingOps and Responses state variables in the exact same way. Thestate relation function is preserved, consequently the strong correspondence is preserved aswell.� = Operate(x; op), this action in the implementation corresponds to its respective action inthe speci�cation. Both actions have the same precondition, (x; op) 2 OutstandingOps . As thestate relation function preserves equality between u:OutstandingOps and k:OutstandingOps ,Operate(x; op) must be enabled in the speci�cation whenever it is executed in the implemen-tation. All operations to k:CurrentProc, k:CurrentRegs , and k:RegMem preserve the relationwith u:Registers . The changes to k:Responses and k:OutstandingOps are identical to thosemade to u:Responses and u:OutstandingOps . Therefore the state relation is preserved, as isthe strong correspondence.� = OperationResultx(opV al), KillProc(x), both of these actions correspond to their re-spective actions in the speci�cation. Both are enabled by the same state in their respectiveResponses queues, which correspond by the state relation function. The action makes iden-tical changes to the u:Responses queue and the k:Responses queue at either level. As thechanges in the implementation are identical to those in the speci�cation, the state relationfunction is preserved, and so is the strong correspondence.7.6 From Correspondence to SimulationHaving established strong correspondences for the Memory, File System, Network, Console, Pro-cess, and ALU automata, the task remains of proving that the full Kernel Level operating systemsimulates the User Level speci�cation. We prove this in several steps, following the path of reasoningoutlined by the general theorems we established earlier in section 2.First, we compose the automata in each level for which we have already established strongcorrespondences with their counterparts at the other level. That is to say, at the Kernel Level wecompose into one larger automaton the ALU, Virtual Memory, File System, Network, Console, andProcess Managers. Similarly we compose their analogs at the User Level.Lemma 2: The composition of Kernel Level ALU, Virtual Memory, File System, Network, Con-sole, and Process Managers strongly corresponds to the composition of User Level ALU, Virtual67

Memory, File System, Network, Console, and Process Managers.Proof: From Theorem 1 we know that strong correspondence holds under composition. We haveshown in section 7 that each of the Kernel and User Level pairs of ALU, Memory, File System,Network, Console, and Process Managers strongly correspond. From the de�nition of compositionin Section 2.2 it is obvious that these automata are compatible, meaning that we can composethem without any conicts. The signatures of the composing automata Si are such that 8i; j,int(Si)\ acts(Sj) = ;, and out(Si)\ out(Sj) = ;. We can therefore conclude that the compositionof these automata at the Kernel Level strongly corresponds to the composition at the User Level.2We �rst note that the strong correspondence proven in Lemma 2 includes all of the automatonin the User Level Model. Therefore, in order to prove that the Kernel Level Model strongly corre-sponds to the User Level Model, all that remains to be shown is that the inclusion of the remainingKernel Level automata does not destroy the strong correspondence. These remaining automata arethe Scheduler, Interrupt Handler, and Abstraction Automaton.Lemma 3: The composition of Kernel Level Scheduler, Interrupt Handler, Abstraction Automaton,ALU, Virtual Memory, File System, Network, Console, and Process Managers strongly correspondsto the composition of User Level ALU, Virtual Memory, File System, Network, Console, and Pro-cess Managers.Proof: The only di�erence between this correspondence and that from Lemma 2 is the addition ofthe Scheduler, Interrupt Handler, and Abstraction Automaton to the Kernel Level Composition.From Theorem 2 we know that, in the case of an already existing strong correspondence, composingadditional compatible automata in the lower level does not a�ect the strong correspondence of thecomposition. By inspection it is obvious that the Scheudler, Interrupt Handler, and AbstractionAutomaton are compatible with the other automata in the Kernel Level Model. We can thereforeadd them into the composition, and maintain the strong correspondence between the Kernel Leveland User Level Models. 2We have now established a strong correspondence between the Kernel Level operating systemand the User Level operating system. The �nal step is the establishing of a simulation.68

Theorem 6: The Kernel Level implementation simulates the User Level speci�cation.Proof: From Theorem 4 we know that if F is a strong correspondence from A to B, andin(A) = in(B); int(A) � int(B); out(A) = out(B), then A simulates B. Considering the exter-nal signatures of the composed Kernel Level K and User Level U operating system automata, itbecomes apparent that in(U) � in(K), and out(U) � out(K). All output actions in K which arenot in U can be hidden using the hiding operator de�ned in Section 2.3 and proven to maintain thestrong correspondence from Theorem 3. The only di�culty lies in eliminating any additional inputactions from K. However there are not additional input actions, as we de�ned the interface of theoperating systems to be equal, and input actions are only lost, never created, in composition. Soin(A) = in(B), out(A) = out(B), and therefore K simulates U . 28 Conclusions and Future WorkThe I/O Automata models of a generic operating system described in this thesis make a �rst forayinto the relatively uncharted territory of formal design of operating system topology. Using a statemachine model, we create both an abstract speci�cation and a conceptual implementation of anoperating system, and prove that the implementation simulates the speci�cation. Formal modelsfor operating systems will help the �eld to provide a formal framework for current and futureresearch, and to teach new students.The formal structure provided by the automata model of the operating system creates a peda-gogical tool for instructing students in operating system design. Few, if any, modern texts breakdown the operating system into its component parts as distinctly as the automata model does.This separation of modules is critical throughout the period of �rst understanding operating sys-tem mechanics. While explaining the operating system at a well abstracted level, the automatamodel and its formal method of reasoning guides students to focus on interface speci�cation andmodularity within the operating system, an invaluable lesson in good system design.Perhaps more important than its pedagogical repercussions, a formal model of an operatingsystem provides a clean theoretical framework upon which to build new operating system research.69

Initially, it is easy to see how one could expand on the relatively simple implementation presentedhere, adding new components and expanding on the complexity of existing ones. One such exampleis the File System Manager, as one could easily write replacement modules that implemented alog-structured �le system, the UNIX fast �le system, or many others. The only requirement forthe module is that it meet the abstract speci�cation, allowing it to integrate immediately into therest of the operating system.Another interesting example for a module that would be valuable to explore in the frameworkof an operating system is a caching automaton. Such an automaton could be speci�ed to have asimple interface between it and processes allowing requests and responses for memory values, andan interface to the Memory Manager allowing for memory reads and writes. One could explorevarious sorts of caching algorithms in the context of the larger operating system, as well as easilymodify the cache from servicing the memory to servicing the File System or any other sort ofbu�ered I/O device.Similarly, work on modules such as schedulers could be easily contextualized within the frame-work of an operating system. As much research has gone into various scheduling algorithms fordi�erent applications, having the capability to easily incorporate new designs into the alreadyexisting operating system structure is desirable. In this way scheduling research could be done sep-arately from other operating system research, with the knowledge that adherence to the automatoninterface guaranteed the compatibility of any advanced scheduler designs. Scheduling research iscompletely performance based, and therefore the true power of an operating system framework forscheduling research could only be realized with the addition of some form of performance analysis.The general I/O automaton model can be used to analyze performance, but one must extend theunderlying automaton model to that of timed I/O automata. This extension adds in time-passageactions, and therefore enables performance measurements. Such automata permit performanceanalysis, but it still remains to develop easily usable analysis techniques for this application area.Future work would not be limited to adding new automata and increasing the complexity ofexisting ones; if one modi�ed the operating system to handle multiple processors (not a di�culttask) one could also explore many of the more esoteric problems involved in parallel processing. Suchmodi�cations would be trivial in some automata modules, such as the scheduler, where variablessuch as Active would simply change from one active process to a set of them. In other automata,70

such as the Memory Manager, more complicated issues would arise, all of which would need tobe modelled in that automaton. Signi�cant work has been done in the area of formal models fordistributed problems such as memory consistency and inter-processor data routing. It would befascinating to place these algorithms in the context of a parallel processor operating system model,to see what kind of conclusions can be drawn from the more complete view of the machine whichthe larger scoped model provides.Finally, and perhaps most interestingly, it would be fascinating to look at di�erent operatingsystem paradigms, especially those which have come out in recent years. The current work done onthe exokernel operating system at MIT, and the VINO project at Harvard both describe operatingsystems which could exhibit inherent topological and theoretical di�erences from the operatingsystem presented in this thesis. For such operating systems a new abstract speci�cation could benecessary, and it would be interesting to see how these new paradigms manifest themselves in theformalization.

71

References[1] Y. Gurevich. Evolving algebras 1993: Lipari guide. Speci�cation and Validation Methods, pages9{36, 1995.[2] J. Guttag. Dyadic speci�cation and its impact on reliability. Computer Science TR CSRG-45,University of Toronto, Dec. 1974.[3] J. Guttag and J. Horning. Larch: Languages and tools for formal speci�cation. ACM Transac-tions on Computer Systems, 1993.[4] B. Lampson. 6.826 principles of computer systems. Computer Science TR MIT/LCS/RSS 19,MIT LCS, 1992.[5] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.[6] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219{246, Sept. 1989.[7] T. Narten. A roadmap through nachos. Duke University, 1995.

72

I/O Automaton Model of Generic Operating System Primitives
A Thesis presentedbyDaniel YatesToComputer Sciencein partial full�llment of the honors requirementsfor the degree ofBachelor of ArtsHarvard CollegeCambridge, Massachusetts

April 5, 1999

73

