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Abstract 

A SIMULATION STUDY ON USING THE VIRTUAL NODE LAYER TO IM-

PLEMENT EFFCIENT AND RELIABLE MANET PROTOCOLS 

by JIANG WU 

Advisor: Nancy Griffeth 
 
The Virtual Node Layer (VNLayer) is a cluster based programming abstraction for a 

Mobile Ad-Hoc Network. VNLayer defines fixed or predictably mobile geographical 

regions. In each region, a number of mobile nodes collectively emulate a virtual node, 

which provides services and relays packets for client processes. 

As a clustering scheme with state replication, the VNLayer approach can theoretically 

improve the efficiency and reliability of MANET protocols. As a general programming 

abstraction, the VNLayer hides underlying complexities from protocol developers and 

can be shared by multiple applications. However, the VNLayer also introduces extra 

control overhead and prolongs data forwarding delay, which could be prohibitively 

expensive in terms of performance.  

Based on an existing VNLayer implementation [1], we developed an ns-2 based software 

package, VNSim. VNSim can be used to simulate VNLayer based applications in a 

MANET of up to a few hundred mobile nodes, in order to better understand the impact of 

the VNLayer approach on efficiency and reliability. 
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With VNSim, we did our first case study on a VNLayer based MANET address allocation 

protocol, VNDHCP. Simulation results proved that the VNLayer approach can be used to 

adapt a wireline protocol to MANET. 

We also did an extensive simulation study on VNLayer based MANET routing. A 

wireline routing protocol, RIP, was adapted to run over the VNLayer. With the support 

provided by the VNLayer, the adapted protocol, VNRIP, was implemented very quickly 

and can provide reasonable performance.  

During the study of VNLayer based MANET routing, we identified a number of major 

performance limitations in the existing VNLayer implementation and the models it is 

based on. To tackle the limitations, we created a more realistic link layer model, extended 

the VNLayer model and optimized our VNLayer implementation. 

With the optimized VNLayer implementation, we implemented VNAODV, an adapted 

version of AODV, over the new link and VNLayer models. Simulation results indicate 

that VNAODV delivers more packets and creates more stable routes than standard AODV 

in a dense MANET with high node motion rate and moderate data traffic. 

This research validated the intuition that the VNLayer approach can be used to adapt 

wireline protocols quickly to MANET and to improve the performance of MANET 

protocols. This research also provided us some insights on how to implement and 

optimize cluster based MANET protocols. 
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CHAPTER 1. Overview 

Mobile Ad-hoc Networks (MANETs) are wireless networks set up temporarily among 

wireless devices, without the support of any infrastructure. Wireless devices in a MANET 

may move around continuously and each one of them may need to forward packets for 

other devices in the MANET. Because MANETs can be deployed quickly, they can be 

used for disaster rescue, battlefield communication and sensor networks. 

1.1  Difficulties in Mobile Ad-hoc Networking 

While MANET can be deployed easily, networking in a MANET faces many difficulties.  

• Absences of designated servers: As the word “Ad-hoc” indicates, the first 

difficulty any MANET has to deal with is the absence of designated servers such 

as routers, DNS server and DHCP servers, etc. This is because any wireless 

device can leave the MANET or run out of battery power at any time. Therefore, 

to provide any service, a MANET protocol can’t count on any specific node being 

able to work permanently. Any MANET service has to be supported by wireless 

devices in a distributed way so that the failure of a single device will not 

significantly affect the service. 

• Shared transmission medium: Wireless data transmissions in a MANET are 

usually done in a shared radio channel. Given a radio channel, a packet sent out 

by a wireless device can reach every wireless device within the sender’s radio 
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range. When more than one packet is heard by a wireless device from the same 

radio channel at the same time, neither packet can be received successfully. This 

kind of interference between packets can cause message collisions. Even with 

collision avoidance mechanisms such as CSMA/CA in 802.11, packet collisions 

can still happen due to issues like the “hidden terminal problem”. The result is 

that packets get dropped more frequently in MANETs. MANET protocols must be 

carefully designed to use the wireless channels efficiently while avoiding 

collisions. 

• Limited transmission range: Unlike the long transmission ranges offered by 

cables in wireline networks, the radio range of wireless devices are typically on 

the order of a few hundred meters. Short radio ranges translate to larger network 

diameters and longer forwarding paths when a packet needs to be delivered from 

one node to another. Long forwarding paths in turn translate into long delivery 

latencies, high delivery failure rates and slow routing convergence.  

• Dynamic network topology: The network topology of a MANET can be very 

dynamic due to the mobility of the wireless devices. Unlike wireline networks in 

which links between network devices can be very stable, the links between 

wireless devices break frequently. To keep a MANET protocol operational, a lot 

of control burden is involved in dealing with the dynamic topology. MANET 

protocols have to struggle to keep the balance between performance and 

efficiency.  
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The dynamic topology of a MANET also leads to the lack of network hierarchy in 

a MANET.  A wireline network can be easily constructed as a hierarchical 

network, using routers/switches to carve the network into subnets. This is because 

devices in a wireline network don’t move around. They can stay in a subnet set up 

for them. With the dynamic topology and the absence of fixed routers, there is no 

easy way to bind a mobile device to a specific subnet. Most MANETs are created 

as flat networks, in which the MANET protocols don’t scale well. To improve the 

efficiency of MANET protocols, complex ways must be designed to create 

dynamic hierarchies in MANETs.  

• Limited battery life: Mobile devices in a MANET are powered by batteries. This 

not only limits the lifetimes but also the radio transmission ranges of mobile 

devices. A MANET can split into components when a mobile device connecting 

the partitions together runs out of power. To deal with this problem, many 

MANET network protocols are designed to make efficient use of power and to 

prolong the lifetime of a MANET. 

1.2  What is Virtual Node Layer 

The Virtual Node Layer (VNLayer) [1] is a programming abstraction designed to 

alleviate the difficulties in MANET networking, as discussed above. The VNLayer 

creates mobile device clusters and defines “virtual” servers, called “virtual nodes”, at 

fixed locations or predictably changing locations in a MANET. 
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Different definitions and implementations of the VNLayer have been discussed in 

theoretical literature [2][3][4][5][6][7]. In this thesis, we use a specific implementation of 

VNLayer called “the Reactive VNLayer” [1]. In the Reactive VNLayer, each virtual 

node’s operations are controlled by an automaton driven by incoming messages. For 

simplicity, for the rest of this thesis, we use the term VNLayer to refer to our VNLayer 

implementation. 

In this thesis, we use the VNLayer abstraction with virtual nodes defined at fixed 

locations. A mobile ad-hoc network is divided into regions at fixed geographical 

locations. Within each region, a subset of the physical mobile devices elects a leader, 

which processes and responds to incoming protocol messages. Non-leaders maintain 

replicated states which are consistent with the leader’s state and work as backup servers. 

In each region, this set of nodes hence emulates a virtual node. To physical mobile 

devices in a region, a virtual node works as if it is a fixed local server. Now, within a 

MANET, we have a matrix of virtual nodes/servers defined at fixed locations, which can 

cooperatively provide services in a distributed way. 

 

Figure 1-1 The VNLayer works between the MANET and Applications as a programming 
abstraction 

Application Layer 

Virtual Node Layer 

MANET Link Layer 
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Figure 1-1 shows the relationship between a MANET and the VNLayer. In this thesis, we 

define application layer protocols to be any protocols running on top of the VNLayer.  

This can include routing protocols (which would be considered network layer in the 

Internet or OSI model) and transport layer protocols.1 As a programming abstraction, the 

VNLayer handles tasks such as node location checking, leader election, and state 

synchronization. It also provides a set of user interface functions that can be used by the 

application layer to pass packets and state to the VNLayer. The application layer also 

must implement a number of interface functions required by the VNLayer so that the 

VNLayer can use them to pass packets to the application layer and get/save state to the 

application layer.  At the bottom, the VNLayer interfaces with the MANET link layer. It 

passes packets to the link layer and receives incoming packets from the link layer. It may 

also elect to use link layer services such as address resolution (ARP), RTS-CTS and data 

packet acknowledgement. 

1.3  An Example of VNLayer based Data Forwarding 

Figure 1-2 shows an example of a packet being forwarded through a 12-region MANET 

using VNLayer-based routers.  

                                                 
1 This application layer is different from the application layer in the OSI 7 layer network model. 
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Figure 1-2 Illustration of VNLayer based MANET packet forwarding. 

In each region, a leader node and a number of non-leader nodes emulate a router. For 

example, in region 2.2, the virtual node is emulated by node 1 and node 2 and node 1 is 

the leader node. Pure client node 3 (a client node that doesn’t emulate a virtual node) in 

region 1.0 sends out a packet destined for client node 7 in region 2.2. The packet is first 

processed by local leader node 1 and non-leader node 2. Leader node 1 forwards the 

packet to region 2.0. As a backup router, non-leader node 2 buffers the packet it tries to 

forward to region 2.0 in its sending queue. When node 2 overhears the packet forwarded 

by leader node 1, it removes the matching packet from its sending queue. The virtual 

node emulated routers in region 2.0, 3.1 and 2.2 then forward the packet all the way to 

the destination node 7. Node 4, 5 and 6 are the nodes forwarding the packet. Node 8 

works as a backup router for node 5. Node 7 is the destination node. It also works a 

backup router for node 6. The dotted arrows indicate forwarded packets heard by the 

backup routers. Node 9 is another pure client node that is not involved in the forwarding 
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at all. To a client node, a virtual node in its region works as a fixed router, although it is 

emulated by multiple physical nodes. 

1.4  Benefits of Using the VNLayer 

There are a number of benefits of using the VNLayer. First of all, the VNLayer works as 

a clustering scheme that creates a level of hierarchy in a MANET. This reduces the 

number of nodes that has to handle a distributed network service. It also reduces the work 

load each distributed server has to handle. Therefore, VNLayer based services can be 

more scalable than services that run over a flat MANET.  

In addition, the virtual nodes are defined at known and fixed locations. This makes the 

topology of the overlay network formed by the virtual nodes stable and predictable. It can 

also make the communication between remote virtual nodes easier.  For example, to 

forward a packet to a remote virtual node, when all the virtual nodes are up, a virtual 

node can simply relay the packet to a virtual immediate neighbor node that is closest to 

the destination region and expect a good delivery ratio2.  

As a generalized programming abstraction, the VNLayer hides many MANET 

complexities from programmers. Because programmers only need to deal with the 

VNLayer user interface, rather than dealing with a set of highly unpredictable physical 

nodes, they can deploy applications on both the client side and these virtual static servers 

with greater ease and efficiency. 

                                                 
2 This is used in our address allocation protocol in CHAPTER 5. 
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Furthermore, on mobile nodes emulating the virtual node in a region, application states 

can be kept consistent between leader and non-leader nodes in a region using the state 

synchronization mechanism. Hence, the virtual node in a region can maintain persistent 

state and be fault tolerant even when individual physical nodes might fail or leave a 

region. This state replication capability also helps make the links between neighboring 

virtual nodes more reliable. 

Finally, the geographical location based clustering makes the clustering job trivial and 

robust. In the VNLayer, mobile nodes check their geographical locations to determine the 

clusters they are in. Each time a node’s region changes, it simply joins a new cluster. 

When a cluster’s head leaves the region, the nodes left in the region still stay in the same 

cluster. In dynamic clustering schemes, the membership changes in a cluster can cause 

other clusters to re-cluster. This is known as the “rippling effect” [8]. This problem 

doesn’t exist in VNLayer clustering due to the geographical location based cluster setting. 

1.5  Limitations of the Virtual Node Layer 

One assumption we make in our implementation of the VNLayer is that all mobile nodes 

can find their geographical locations at any time. While this assumption brings great 

convenience for clustering and gives VNLayer based clustering an advantage over other 

dynamic clustering schemes, equipping every mobile device with GPS capability is 

expensive. There is a lot of research [9][10][11] on node localization services that allows 

the majority of mobile nodes in a MANET to infer their locations based on the location of 

a small subset of mobile nodes in the MANET that are equipped with GPS. For example, 
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in [9], Lingxuan Hu et. al. designed a low cost Monte Carlo method in which mobile 

nodes make random predictions about their locations at the end of next time interval and 

use observed beacon messages from seed nodes who know their locations to filter bad 

predictions. The predicted locations finally converge on the actual locations of mobile 

nodes. Since precise localization is not necessary3 for the operation of most VNLayer 

based applications, when not all nodes can have GPS capability, a low cost localization 

algorithm can be used by the VNLayer to determine a mobile node’s region.  

As a clustering scheme, the VNLayer improves the scalability of MANET protocols. 

However, clustering comes with its cost. Within each cluster, control messages have to be 

generated by mobile nodes to do leader election and maintain leadership. In addition, 

during leadership changes, a cluster could stop functioning for a period of time when the 

leader of the cluster is missing.  

In addition, the VNLayer is designed to maintain consistent application state among 

leader and non-leader nodes in each region. This also requires exchange of control 

messages between the leaders and non-leaders to facilitate state synchronizations. 

The VNLayer message overhead is composed of the clustering overhead (leader election 

overhead) and state synchronization overhead. The VNLayer needs to be carefully 

designed in order to keep the VNLayer message overhead low. 

                                                 
3 We only need a node that resides in the geographical area set up for a region or that is very close to the 
area to identify itself with the region. 
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For applications running over the VNLayer, a VNLayer header needs to be added to each 

application message. This increases the traffic overhead when an application is 

implemented over the VNLayer.  

Although the VNLayer state synchronization mechanism can guarantee a certain level of 

state consistency between leader and non-leader nodes, a non-leader node whose state is 

out of sync may have to take over a region before it is able to get its state synchronized. 

As we shall see later, tricky issues (for example, routing loops) can arise when this 

happens.   

In the existing implementation of the VNLayer [1], local broadcast is extensively used to 

ensure all physical nodes emulating a virtual node in the same region can hear a message 

for the virtual node. Because link layer capabilities such as address resolution, RTS/CTS 

and data packet acknowledgment can’t be used on broadcast messages, broadcast is more 

susceptible to transmission failures than unicast messages. As thoroughly discussed in 

[12], messages sent by broadcast not only are subject to higher loss rate by themselves, 

they also interfere with other packets, including other broadcast messages. Excessive use 

of local broadcast can limit a protocol’s effectiveness in conveying messages to the whole 

network. 

To deal with these limitations, we created a more realistic link layer mode, extended the 

existing VNLayer model and optimizations on our VNLayer implementation. 
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1.6  Research Objectives 

The first research objective of this work is to find out whether the VNLayer approach is a 

practical way to adapting wireline based protocols to MANET and to improving the 

efficiency and reliability of existing MANET protocols. The second objective is to design 

and verify techniques that can be used to alleviate the impact of the limitations of the 

VNLayer, as introduced above in section 1.5 . To achieve these objectives, we designed 

an ns-2 based VNLayer simulator, VNSim, and conducted extensive simulation studies 

on a number of VNLayer based applications. 

1.7  Overview of the Simulation Studies  

In this section, we give an overview of the simulations studies we did on VNLayer based 

address allocation, reactive routing and proactive routing in MANET.  

1.7.1  MANET Address Allocation over the VNLayer 

To validate the intuition that the VNLayer approach can be used to adapt wireline 

protocols to MANET, a wireline protocol, DHCP, is adapted to run over the VNLayer. We 

pick DHCP for our first case study for the following reasons.  First, DHCP is a simple 

and important wireline protocol. Second, based on our survey, address allocation in 

MANET is difficult. Existing address allocation protocols for MANET are either node 

robust enough or not scalable for large networks. Third, the state replication capability of 

the VNLayer suits the strict needs of address allocation application on state consistency 

very well. 
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The research goal here is to find out whether a VNLayer based distributed address 

allocation system can actually work in a MANET and whether the VNLayer generates 

too much control overhead. 

1.7.2  Reactive MANET Routing over the VNLayer 

Ad-hoc On-demand Distance Vector routing [13] (AODV) is one of the most popular 

MANET routing protocols. The main strength of AODV is its on-demand nature. Since 

forwarding paths are only created when there is a need for the path, there is no need to 

use periodic routing messages to maintain routes once there is no more traffic using them.  

AODV also has some weaknesses that may be addressed by using the VNLayer 

approach. A major weakness is that AODV’s route discovery is flooding based. Each 

route discovery involves every single physical node in a network. This makes AODV’s 

routing overhead proportional to the number of nodes in a MANET. When a MANET 

contains a large number of physical nodes, AODV’s route discoveries not only cause 

broadcast storms but also are unreliable. Many discovery failures can occur. The use of 

expanded ring search and local repair only partially alleviates the problem because every 

node receiving an RREQ message might still need to forward it or respond to it. 

Another problem of AODV is that the protocol picks routes based only on the path length 

and path freshness, without considering the stability of the route. For example, a 

downstream router that has a shorter route could move away. When the motion rates of 

nodes in a MANET are high, the routes created by AODV might fail frequently, leading 

to large number of route discoveries. 
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A cluster-based scheme like the VNLayer approach is a natural solution to the two 

problems above. By implementing AODV over the VNLayer, we expect the protocol to 

generate less routing overhead and to create routes with better stability. This is because 

the on demand routing is conducted by a set of virtual nodes, each of which takes care of 

a region at a fixed location. Only the virtual nodes in a MANET, rather than every 

physical node, need to send and forward routing messages. The topology and 

connectivity among the virtual nodes at fixed locations are much more stable, especially 

when individual physical nodes are moving around quickly. 

The goal of this simulation study is to find out whether a VNLayer based AODV 

(VNAODV) can provide better routing performance than standard AODV, in terms of 

data message delivery ratio, routing path length, delivery latency and traffic overhead.  

In addition, during the implementation and performance evaluations, failure modes of the 

VNLayer based AODV protocol were investigated. For example, there are cases in which 

a region doesn’t have a leader or has more than one leader. For example, the current 

leader in a region might leave and the leadership needs to be transferred to a non-leader. 

The state on different virtual nodes may not be synchronized. The systems need to be 

engineered to be resilient to such failures. 

1.7.3  Proactive MANET Routing over the VNLayer 

Due to the dynamic network topology of MANETs, traditional proactive routing 

protocols won’t work in a MANET due to the heavy routing traffic overhead. The 

VNLayer approach provides a good way to adapt wireline based proactive routing 
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protocols to the MANET. With the VNLayer, MANET routing can be split into two 

levels, the intra-region routing and inter-region routing. The intra-region routing is trivial. 

Inside a region, each physical node uses the virtual node as the default gateway. Physical 

nodes can communicate with each other directly.  The inter-region routing is handled by 

the overlay network of virtual nodes. Routing in the overlay network involves only the 

virtual nodes rather than all the physical nodes. In addition, the overlay network can have 

a stable topology when the MANET is dense. This is not only because regions are 

defined at fixed geographical locations. It is also because each virtual node is emulated 

by a number of physical nodes. The failure on a single physical node won’t necessarily 

cause a virtual node to fail. 

A simple version of RIP [14], is implemented over the VNLayer. The research objective 

here is to find out whether wireline based proactive routing application can be easily 

adapted to MANET using the VNLayer approach. Again, the major concern is whether 

the VNLayer based RIP protocol will cause high message overhead. As a proactive 

routing protocol, the routing traffic overhead of RIP will be proportional to the total 

number of mobile nodes in the network. This may hurt the performance of the VNLayer 

based RIP protocol. However, with the benefits brought by the VNLayer approach, we 

expect the protocol to perform reasonably well. 

1.7.4  Scope of Optimizations 

In order to improve the performance of VNLayer based applications, optimizations were 

done both in the VNLayer and in the application layer. The majority of our optimizations 
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are done inside the VNLayer. They can benefit any application running over the 

VNLayer. 

In the MANET research community, many research are done on optimizing MANET 

routing protocols through techniques for improving the route maintenance [15], 

optimizing forwarding paths [16], etc. Since the objective of this research is to verify the 

feasibility of adapting routing protocols to MANET using the VNLayer approach, we 

limit our optimizations at the application layer to the ones that are used solve problems 

introduced by the VNLayer approach, rather than general techniques that can be applied 

to MANET routing. We believe the existing optimizations designed by other researcher 

can be easily adopted by virtual node emulated routers. 

1.8  Structure of the Thesis 

This dissertation is structured as follows. CHAPTER 2 discusses related works on 

MANET address allocation, MANET routing. CHAPTER 3 introduces the link layer 

model and VNLayer model we started this research with and the extended models we 

designed in order to improve the performance of VNLayer based applications. Major 

implementation choices we investigated in the simulation study on VNLayer are also 

discussed in this chapter. CHAPTER 4 presents the detailed design of our VNLayer 

implementation. CHAPTER 5 presents the design of our VNLayer based MANET 

address allocation protocol. CHAPTER 6 presents the design of VNAODV, a VNLayer 

based reactive MANET routing protocols adapted from AODV. CHAPTER 7 introduces 

the design of a proactive wireline routing protocol, RIP, adapted to MANET using the 
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VNLayer. CHAPTER 8 presents our simulation results on MANET address allocation 

and MANET routing over the VNLayer. Conclusions and future works are given in 

CHAPTER 9. 
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CHAPTER 2. Background 

In this chapter, we go through a number of related works in the two areas our VNLayer 

based applications are developed for, MANET address allocation and MANET routing.  

2.1  MANET Address Allocation 

A robust address allocation scheme is critical to successful message delivery and correct 

routing operation. However, address allocation in a MANET is difficult. There is no 

centralized entity that can provide DHCP [17] service because any mobile node may 

leave the network at any time. Because most mobile devices are power constrained, using 

any single mobile device as a dedicated server would greatly shorten the lifetime of the 

device. Mobile devices may move around quickly and the wireless link between nodes 

may fail any time due to message collision and congestion. Portions of a MANET may 

separate and merge together frequently. During network partitions, the same address may 

be picked by different mobile devices (duplication) and addresses used by departing 

devices may never be recovered (address leakage). A good MANET address allocation 

protocol should generate little message overhead. It should be distributed, resilient to 

node/link failure, avoid both address duplication and leakage and be able to do all this in 

the presence of network partition and merging.  
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2.1.1  IP Address Auto-Configuration for Ad Hoc Networks (IAAC) 

A simple solution to address allocation was presented by C. Perkins, et al. in [18]. The 

solution assumes a MANET uses DSR [19] or AODV [13] as its routing protocol. When a 

mobile node joining the network needs an address, it first picks a random address from a 

“temporary” address pool (1-2047 from the address block 169.254/16) as its IP address. 

Then, it picks an address from a “permanent” address pool (2048-65534 from the same 

address block above) and floods an AODV or DSR route request message (RREQ) to the 

network. The use of the temporary address is to allow RREP messages to be forwarded 

back to the new node. If there is any mobile node using the address picked, there is 

supposed to be a response (RREP) message from an AODV or DSR router. This way, the 

new node knows the permanent address is not available. It picks a new address and floods 

another RREQ message. Otherwise, to make sure the address is indeed not in use, the 

new node repeats the flooding of the RREQ message a few more rounds before it starts 

using the address as its permanent address.  

IAAC is a simple solution to MANET address allocation. However, there are a number of 

limitations. First, IAAC relies on the assumption that some sort of on-demand routing[20] 

protocol is running in the MANET to support the use of RREQ messages. In addition, 

since IAAC doesn’t detect and handle address duplications, when a network partitions, 

multiple mobile devices can have the same address. This becomes a problem when the 

partitions merge.  

Finally, the use of the small “temporary” address pool can also result in the case in which 

multiple new node are using the same address during their search for available addresses. 
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When this happens, the RREP messages generated for the RREQ messages can be 

returned to the wrong node. Missing RREP messages destined for it, a node might start 

using the “permanent” address it picked. This leads to address duplication.  

There is also a small chance that two new nodes, although with their temporary addresses 

picked differently, pick the same permanent address that is not used by any node in the 

network. Since there will be no response to either node’s RREQ messages, they’ll start 

using the same address. 

As a summary, IAAC has problems with address duplications and network mergers. In 

addition, flooding is used by IAAC to send the RREQ messages. Each time when a new 

node enters a MANET, there will be a few rounds of RREQ storms in which each mobile 

node in the network has to forward the RREQ message. This can affect the performance 

of other applications in the network.  

2.1.2  MANETConf: Configuration of hosts in a mobile ad hoc 
network 

MANETConf [21] is more complex than IAAC. In MANETConf, each mobile node 

maintains two sets of addresses for address allocation. One set, “allocated”, holds the 

addresses that, to the knowledge of the mobile node, have been allocated. The other set, 

“pending”, holds addresses that are in the process of being allocated. Every mobile node 

knows the range of addresses that can be used by the whole network, therefore, any 

address that are not in the two sets above are “free” addresses. 
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In MANETConf, a new node entering the network doesn’t launch its search for available 

address by itself. Instead, it picks one of its immediate neighbors as its address allocation 

proxy.  If a proxy can’t be found, the new node is in a new partition in the network. It 

picks a random address and starts using it.  

Since the proxy node already has an address, it can communicate with other nodes in the 

network in a reliable way. The proxy handles the address allocation and eventually sends 

an available address to the new node. The communication between the new node and the 

proxy can use MAC address, rather than an IP address because it is a one hop 

communication.  

The proxy node does the address allocation as follows. It picks a free address based on its 

knowledge about the “allocated” and “pending”, puts the address in its record of 

“pending” and floods a QUERY message to the network, asking the entire network to 

confirm the selection. Receiving the query messages, a mobile node sends back a NO 

message to reject the selection if the address in question is already in use or marked as 

“pending”, based on the two set of addresses it maintains. Otherwise, the mobile node 

sends back a YES message to confirm the selection. In addition, the proxy node puts the 

address in question in its record of “pending” to prevent the address from being picked 

locally.  

The proxy node needs to collect YES messages from all the addresses in its “allocated” 

set before it can send the attempted address to the new node as an available address. If the 

proxy node receives YES messages from all the addresses in its “allocated” set, it means 
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every other node in the network has confirmed the selection. It puts the address it picked 

in the “allocated” set and tells the new node to start using the address. It also floods 

another message telling every node in the network to move the address it picked for the 

new node into their “allocated address” sets. Therefore, every node in the network knows 

the address is in use. 

If at least one NO message is received or at least one YES messages is missing from 

some node, the proxy node picks a different “free” address and repeats the procedure 

above.  

If not moved to the “allocated” set, an address in the “pending” eventually expires and 

becomes a free address and can be used in address allocations.  

Because a new node can move around before it gets its address allocated, by the time its 

proxy node gets the address allocation done, it may have moved out of the radio range of 

the proxy node. To solve this problem, when a new node moves away from its proxy 

node, it picks a new proxy and asks the new proxy to contact the old proxy for the 

address allocated for it. 

Address leakage can happen when a node using an address leaves a network without 

giving back its address to the network. In MANETConf, an AddressCleanup message is 

flooded by a node about to leave the network to ask all the nodes in the network to 

remove its address from their “allocated” set.  If a node didn’t have a chance to send out 

the AddressCleanup message before it leaves the network, MANETConf can still reclaim 

the address. During address allocations, due to the absence of a mobile node, a proxy 
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node can never collect enough YES messages. If a proxy node notices that it can never 

get either a YES or NO message from an address after a number of QUERY messages are 

flooded. It sends out an AddressCleanup message for the “inactive” address, so that the 

address can be moved back to the set of free addresses on every node.  

There is no need to handle network partition in MANETConf because when it happens, 

addresses used by a partition will eventually be set to free in other partitions. However, 

when partitions merge, there has to be a way to resolve duplicate addresses. To do this, in 

MANETConf, each partition is identified by a 2-tuple of (address, UUID). Where the 

address is the lowest address in a partition and UUID is a unique number generated by 

node with the lowest address in a partition.  

Therefore, when a network partitions, one partition can preserve its identifier because it 

still has the node with the lowest address. The nodes in the other partition eventually 

realize that the node with the lowest address is gone and generate an AddressCleanup 

message. By checking the “allocated” set, the node with the lowest address in the other 

partition generates a new UUID and broadcast it to the partition. This partition gets a new 

identifier. 

Each time two nodes discover each other as immediate neighbors, they exchange their 

partition identifiers. If their identifiers are different, a partition merging procedure starts. 

The two nodes first exchange their “allocated”. Then, they flood the “allocated” set 

received from the other partition in their own partition. Receiving the “allocated” set, 

each node in a region combines it with its own “allocated” set. If there is any duplicate 
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address allocations detected, the node with fewer TCP connections gives up its address 

and requests a new one.  

MANETConf is a comprehensive solution that solved all the problems that can arise in 

MANET address allocation. However, each address allocation in MANETConf involves 

every node in the network. The protocol’s complexity and extensive use of flooding on 

all kinds of message both limit its scalability. 

2.1.3  Zero-Maintenance Address Allocation (ZAL) 

As we have discussed, the main problem of IAAC and MANETConf are their 

inefficiency because each address allocation attempt in the two protocols has to be 

confirmed by all the nodes in the network through flooding. Zero-Maintenance Address 

Allocation is a protocol [22] aiming at improving the efficiency of address allocations in 

MANET. 

Preventing and detecting duplicate address allocation quickly are the key difficulties in 

MANET address allocation that lead to the complexity. To reduce the difficulty of 

duplicate address detections (DAD), ZAL distributes addresses using a different way.  

In a network, the first node owns the entire pool of addresses that can be used by the 

network. The first node picks an address from its address pool for itself. Then, each time 

when a new node joins the network, it asks its neighbors for addresses. Receiving the 

request from a new node, a mobile node offers a slice of its address pool to the new node. 

Receiving multiple offers, the new node accepts the offer with the largest number of 

addresses and takes one address from the offered address pool. Apparently, the control 
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overhead of this kind of one hop address allocation is very low because no DAD is 

necessary in ZAL. 

There are a few problems ZAL has to handle though. First, since the way mobile nodes 

split their address pool is like a binary splitting, the size of the address pool shrinks 

quickly with the increase of the network diameter.  If the first node has an address pool of 

2� addresses, a node that is more than n hops away from it might not be able to get any 

address. To solve this problem, a temporary address pool is set up for nodes to pick their 

addresses from when they can’t receive any offer. Once a node meets a node that can 

offer permanent addresses to it, it gives up the temporary address. 

Now, when multiple nodes pick their addresses from the temporary address pool, 

duplicate address allocation can happen. DAD is needed again. Since the chance that this 

happens is low, it is expected that the control cost of DAD is low.  

ZAL also designed a one hop distribution equalization algorithm in order to optimize how 

mobile nodes split their address pools for their neighbors. Immediate neighbors exchange 

information about the size of their address pools. Based on this information collected, a 

node can find out the total number of addresses owned by its immediate neighbors and 

compare it with the size of its own address pool. If a node owns a large address pool 

compared with the number of addresses owned by its neighbors, the node distributes a 

portion of its addresses to its neighbors. By doing this, the address pool distribution 

among mobile node is fairer and address depletions happen less frequently. The control 
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overhead of this optimization is low because it only involves the message exchanges 

between 1 hop neighbors. 

Second, ZAL has to deal with partition mergers. ZAL uses a similar procedure as the one 

used by MANETConf to handle partition mergers. Each partition is identified by an id 

generated by the first node of a network. When two nodes with different partition ids 

meet each other, ZAL uses the following way to give nodes in the smaller partition the 

addresses belong to the larger partition. Starting from the border between the two 

partitions, nodes in the smaller partition give up their address pools to neighbors that are 

still in the smaller partition and request for addresses from the larger partition. 

Recursively, all the nodes in the smaller partition get addresses from the large partition. 

Compared with MANETConf, ZAL is solution with much lower control overhead. 

However, it doesn’t use address efficiently. A network with diameter n requires the order 

of 2� addresses. In addition, address leak can happen in ZAL when a node crashes before 

it returns the address pool it has. The author claims the probability that this happens is 

low under a given model of the lifetime a mobile node. However, if the node that fails 

happens to have a large chunk of addresses, its impact is big. Third, the handling of 

network merging is not efficient because collecting the information on network size could 

involve O(���  complexity4. 

                                                 
4 The collection of this information is not explained clearly in the paper. The overhead of exchanging this 
information throughout a partition can be costly. 
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2.1.4  MANET Address Allocation in IPv6 

Another solution to MANET address allocation [23] uses a combination of IPv6 MANET 

prefix5 and a node’s MAC address as its address. This solution takes advantage of the 

abundant address space provided by IPv6 and eliminates the need for dynamic address 

allocations in a MANET. As pointed out in [21](section III.C), this solution assumes that 

MAC addresses are unique for each mobile device, which is not always true. In addition, 

when IPv6 is not available and the address space is limited, dynamic address allocation is 

still necessary for MANET applications.  

Another solution [24] uses a combination of a mobile node’s MAC address and the 

network address provided by a designated gateway so that a mobile node in a MANET 

can communicate to the global Internet. This solution is no longer completely a MANET 

address allocation scheme since a fixed gateway node exists in the MANET as an address 

allocation server. 

2.1.5  Summary 

The current solutions are either not reliable or too expensive due to the use of message 

flooding. In our simulation studies, we have found that flooding introduces unacceptable 

overhead and causes large number of message collisions. Therefore, none of the current 

solutions can support large networks. In CHAPTER 5, we introduce our VNLayer based 

address allocation application, VNDHCP, which does address allocations in a clustered 

MANET and doesn’t use flooding for control messages. On top of that, VNDHCP is also 

free of address leakage and duplication in face of network partitions and mergers.  

                                                 
5 The prefix is FE:C0:0:0:FF:FF 
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2.2  MANET Routing 

Compared with routing in wireline networks, routing in a MANET is difficult because of 

MANET’s limited radio range and channel bandwidth, collision prone channel, flat 

network architecture and dynamic network topology.  Popular routing protocols such as 

the distance vector routing protocol RIP[14] and the link state routing protocol OSPF[25]  

can’t be used directly in MANET.  There are three reasons. First, the wireline based 

routing protocols usually assume that the network topology is relatively stable. However, 

the highly dynamic network topology in a MANET leads to frequent route updates and 

slow routing table convergence. Second, the flat network architecture in MANET 

requires each router to have a route entry for every destination, the periodic routing 

information exchange in tradition routing protocols creates much heavier control traffic. 

Third, the wireless channel is shared between adjacent mobile nodes. The heavy routing 

overhead and limited channel bandwidth can cause frequent packet losses due to message 

collisions and congestions.  

Therefore, new protocols that suit the special needs of MANETs must be designed.  The 

routing problem has been studied by the MANET research community for many years. 

Various routing protocols in different categories have been proposed.  

Using Zhou's classification in [20], routing protocols for MANET can be classified into 

the following categories. 

• Topology-based routing protocols 

o Proactive routing protocols 

o Reactive routing protocols 
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• Geographical-based routing protocols 

Topology-based routing protocols are routing protocols calculating the best route to a 

destination based on topology information collected from the network. Within this 

category, proactive routing protocols are routing protocols that calculate the routes to 

all the destinations before a transmission actually happens. Reactive routing protocols 

are routing protocols that calculate the route to a destination only when it's necessary for 

a transmission.  

Geographical-based routing protocols are routing protocols that calculate routes based 

on the geographical locations of the destination node and neighboring nodes. This set of 

routing protocols requires that each mobile node can determine its current location or can 

access a distributed location service that can return the current location of any mobile 

node in the network. With this knowledge, a mobile node can make local forwarding 

decisions based on the geographical location of the destination. Geographical based 

routing suits MANET because it requires fewer routing information exchanges and is 

more scalable. The disadvantages of such routing scheme are: First, each node needs to 

have GPS-like capability, which can be power consuming, and, second, the location 

service may introduce extra message overhead. One of the most popular geographical 

based MANET routing protocol is Greedy Perimeter Stateless Routing (GPSR) [26]. 

GPSR uses greedy routing to relay packets to mobile nodes that are closer to the 

destination than the current router. When no such nodes can be found before a packet 

reaches the destination, GPSR uses face routing to relay packets toward the destination 

using mobile nodes that are farther away from the destination than the current router. 
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In this section, we first discuss a number of popular proactive and reactive MANET 

routing protocols. Then, we introduce two Cluster based routing protocols that are 

designed to improve the efficiency of MANET routing. Because our VNLayer based 

routing is closely related to this set of MANET routing protocols, I summarize the 

differences between the cluster based protocols and the VNLayer approach at the end of 

this section. 

2.2.1  Proactive Routing Protocols 

2.2.1.1  Destination Sequence Distance Vector (DSDV) 

DSDV [27] is one of the earliest MANET routing protocols. As the name suggests, 

DSDV is a distance vector routing protocol based on the classical Bellman-Ford 

algorithm [28] (RIP is a wireline protocol using this algorithm). Its most important 

contribution is the use of a destination sequence number in the routing protocol.  

Now, in the DSDV routing table, other than the destination id and metric, each route 

entry for a destination also contains a sequence number that is originally generated by the 

destination in order to indicate the freshness of a route. 

In DSDV, each router periodically broadcasts Update messages, each of which contains 

its entire routing table or changes to its routing table, to its immediate neighbors. Routers 

update their routes with incoming Update messages. For a destination, if the router 

doesn’t have a route and the Update message contains a route, the route is installed. If 

both the router and the Update message contain a route for a destination, the router 

replaces its route with the one in the Update message if the latter is tagged with a greater 
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sequence number or the latter is tagged with the same sequence number and has a better 

metric.  

In short, a newer route or a better route will be chosen.  

Although DSDV is not much different from traditional wireline-based distance vector 

routing protocols, the use of the sequence numbers reduces the chance of routing loops. 

This feature is used by many other MANET routing protocols. As a proactive routing 

protocol, DSDV doesn’t scale well because every single node in a network has to do the 

periodic broadcasting of routing tables. 

2.2.1.2  Optimized Link State Routing (OLSR) 

Another popular proactive MANET routing protocol is OLSR [29]. OLSR is a link state 

routing protocol similar to OSPF. However, in order to adapt to the MANET 

environment, important optimizations are done in OLSR to drastically reduce its control 

overhead. (Control overhead is the reason why traditional link state routing protocols 

can’t be used in MANET) 

As a link state routing protocols, OLSR routers still construct routing tables using flooded 

link states that are generated by each router in the network to announce its list of 

immediate neighbors. The difference is, Multi Point Relay (MPR) is used in OLSR.  

MPR works as follows. Each router exchanges beacon messages with its immediate 

neighbors and maintains a list of its one hop neighbors. In addition, in the beacon 

messages, a router also gives its immediate neighbors its list of one hop neighbors. 
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Therefore, based on the beacon message exchange, a router can also maintain a list of its 

2 hop neighbors and knows the 2 hop topology of routers around itself. 

Based on this knowledge, a router picks a minimal subset of its one hop neighbors such 

that all of its two hop neighbors can be reached through (aka. covered by) this set of 

nodes. The one hop neighbors chosen are called the MPR nodes of a router. A router then 

informs its MPR nodes that they are chosen as its MPR nodes. 

Now, when a router broadcasts its link state to the network, only the neighbors that are 

chosen by the router as MPR nodes re-broadcast the link state. The link state messages 

are in turn forwarded by the MPR nodes of the MPR nodes of the originator of the 

messages. This way, the number of nodes that participate in the flooding of the link states 

can be greatly reduced.  

In addition, only routers that are chosen by at least one router as its MPR node generate 

link state messages. Finally, a router’s link state message only contains the nodes that 

have chosen it as their MPR nodes (MPR selector nodes).  

This way, both the number of routers originating link states and the size of each link state 

message can also be greatly reduced, while the route toward every single node in the 

network can still be found with the Dijkstra algorithm[30].  

OLSR can greatly reduce the routing overhead. However, in a flat network with large 

number of nodes, its route overhead is still proportional to the size of the network, 

limiting the scalability of the protocol. 
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2.2.2  Reactive Routing Protocols 

Reactive routing protocols only do routing when there is traffic. However, since routes 

are often discovered reactively, there will often be a route discovery delay before a route 

can be used to forward data packets. This category of routing protocols is more suitable 

when the network size and data traffic load are moderate, the network topology is very 

dynamic. 

2.2.2.1  Dynamic Source Routing (DSR) 

Dynamic Source Routing [19] is a source routing protocol that can work in a MANET 

with either undirected or directed links. Each DSR router maintains a route cache (as 

opposed to routing table) that records the entirety of the routes the router has learned for 

each destination. Each destination can have multiple route entries in the route cache. In 

DSR, when a router needs to send a data packet to destination but it doesn’t have a route, 

it does a route discovery by flooding an RREQ messages to the network. The RREQ 

message carries the source of the route discovery, a discovery sequence number 

generated by the source of the route discovery and a vector recording the sequence of 

routers it traverses. The first two fields are used by routers to avoid forwarding RREQ 

messages of the same route discovery more than once. The last field is used to facilitate 

source routing. 

When an RREQ message arrives at a router, the router first creates a routing table entry 

for the initiator of the RREQ by reversing the sequence of routers traversed by the RREQ 

messages.  
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Then, the router checks to see if it has a route to the destination asked for by the RREQ 

message or the router itself is the destination asked for. If so, it returns an RREP message 

to the initiator of the RREQ message. The route the router has will be combined with the 

list of routers traversed by the RREQ message and put in the RREP message. To forward 

the RREP message back to the originator of the RREQ message, a router can use the 

source route it just learned from the RREQ message, or, when the network links are 

directed, the router sends another RREQ message for the initiator, with the RREP 

message attached to it. This way, the RREP message can eventually reach the initiator of 

the route discovery. 

Receiving an RREQ message, if a router doesn’t have a route, it re-broadcasts the RREQ 

message with its id added to the source route carried in the RREQ message. Eventually, 

the RREQ message can reach either the destination or a router that has a route toward the 

destination. In the flooding of the RREQ messages, a router only forwards the RREQ 

messages for the same route discovery (identified by a discovery id and the initiator’s 

node id) once.  

Receiving an RREP message, a router puts the route carried in the message in its route 

cache. When the initiator router receives the RREP message for its route discovery, it 

sends out the data packets it buffered during the route discovery. Each forwarded data 

packet carries a source route, so that the data packets are forwarded along the path picked 

by the first hop router.  
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When a broken link is detected due the absence of acknowledgement for data packets, a 

router sends a ROUTE_ERROR message back to the sender of the data packet. The 

ROUTE_ERROR message carries both sides of the broken link. Receiving the 

ROUTE_ERROR message, each router that has route cache entries using either side of 

the broken link as a downstream router removes those entries. Receiving the 

ROUTE_ERROR message, the sender of the data packets starts another route discovery 

if there is no other route available. 

DSR is simple and can support networks with directed links. Its use of source routing 

helps prevent loop formation. As a reactive routing protocol, no periodic beacons or 

routing updates are used in DSR. In addition, the use of route cache rather than routing 

table helps reduce the number of route discoveries needed because for each destination, 

multiple alternative routes can be cached.  

DSR also has a number of problems. The use of source routing increases the size of both 

routing messages and data packets being forwarded. The use of route cache also uses 

more memory than other approaches. Finally, the use of flooding in a flat MANET is 

costly when the number of mobile nodes in the network is large. 

2.2.2.2  Ad-hoc On-Demand Distance Vector routing (AODV) 

AODV [13] is one of the most popular MANET routing protocols. The core algorithm of 

AODV is very close to DSR. The two protocols both operates in two stages, route 

discovery and route maintenance. However, as the name suggests, AODV is not a source 

routing algorithm. AODV routers use routing tables rather than route caches. That is, for 
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each destination, only one route is maintained a routing table. AODV was proposed by 

Charles E. Perkins, et al., who also proposed DSDV. This might be the reason why 

AODV is similar to DSDV, in that destination sequence numbers, rather than source 

routes are used to ensure freshness of routes and prevent loop formations.  

In AODV, when a router needs to forward a data message but it doesn’t have a route, it 

buffers the data message and sends out a RREQ message. An AODV RREQ message 

carries a 6-tuple including source id, source sequence number, destination id, destination 

sequence number, BCAST id, hop count. The source id is the address of the initiator of 

the route discovery, the source sequence number is a monotonically increasing number 

generated by the initiator to ensure the freshness of routes toward it. The destination id is 

the address of the destination of the data packet. The destination sequence number is the 

largest sequence number generated by the destination node known to the initiator of the 

route discovery (If an initiator knows nothing about a destination’s sequence number, it 

uses 0). The BCAST id is a monotonically increasing number generated by an initiator 

node to uniquely identify a route discovery. The hop count starts with 1. It carries the 

number of hops the RREQ message has traversed.  

When the RREQ arrives at an AODV router, as in DSR, the router first updates its route 

entry for the initiator’s address using the route and information in the RREQ message. As 

in DSDV, if the router doesn’t have a valid route or, compared with the router’s route 

entry for the destination, if the incoming message carries a fresher route or a route that is 

the same fresh but shorter, the route in the incoming message will be used by the routing 

table. 
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Then, the router checks its routing table to see if there is a route fresh enough for the 

destination. (By fresh enough, we mean the router has a route with a sequence number no 

less than the destination sequence number carried in the RREQ message.) If so, the router 

returns an RREP message to the initiator of the route discovery, using the route it just 

learned through the RREQ message. Otherwise, it increase the hop count carried in the 

RREQ message by 1 and rebroadcasts it.  

Eventually, the RREQ message can reach either the destination or a router that knows a 

route to the destination and an RREP message can be returned to the initiator of the route 

discovery. If it is the destination that receives the RREQ message, the RREP message 

carries a new sequence number generated by the destination node, indicating the route is 

the latest. Upon receiving an RREP message, a router updates its route entry for the 

destination the same way as it updates its route for the initiator node with incoming 

RREQ messages.  

As in DSR, the address of the initiator and the BCAST id are used by AODV routers to 

avoid forwarding more than one RREQ message for the same route discovery. Route 

error (RERR) messages are also used to report broken links to upstream routers. When a 

router receives an RERR message, it checks if its routes for the destinations carried in the 

message uses the sender of the message as next hop. If so, it disables the route and report 

the error to its neighbors using another RERR message. 

In addition, a “Ring Search” mechanism is used to control the scope of route discoveries 

in order to reduced the flooding overhead of route discoveries. The basic idea of ring 
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search is to try route discoveries with smaller TTLs used on the RREQ messages first 

before the search for routes is expand to greater scopes. 

In AODV, a local repair mechanism is designed to allow intermediate routers to fix route 

failures locally by starting a route discovery themselves. Basically, when a broken link is 

detected at the 2nd half of a forwarding path, a router buffers the packets it is relaying; 

sets the routes affected to a “repair mode” and send RREQ packets for the affected 

destinations. This way, the need for reporting route errors all the way back to the sender 

of the data message and letting the sender node start a network wide route discovery can 

be reduced.  

DSR and AODV are both on-demand routing protocols that work in similar ways. 

However, there are major differences between them. DSR uses source routing to avoid 

loop formations while AODV uses route sequence numbers. In addition, DSR routers use 

more bandwidth than AODV for routing and data forwarding also due to the use of 

source routing. On the other hand, AODV routers keep only the freshest route for each 

destination. DSR routers maintain a collection of alternative routes for each destination. 

While costly in terms of memory use, DSR responds better to topology changes. 

Performance comparisons on DSR and AODV in [31] proved that AODV scales better 

than DSR while performs worse than DSR in face of frequent network topology changes.  

2.2.3  Cluster Based Routing 

The MANET routing protocols we have discussed so far work with MANETs with no 

hierarchies. The routing process involves every single node in a network. In addition, due 
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the heavy control overhead and unreliability of message flooding, those routing protocols 

usually can’t support a MANET that has over 100 nodes. As in wireline networks, 

hierarchical/cluster based [8] routing is the solution to this problem. By grouping mobile 

node into clusters each of which has a cluster leader, the inter-cluster routing can be 

handled by cluster heads/leaders. This way, the number of mobile nodes that has to be 

involved in the global routing can be reduced and the number of routing entries each 

router (now the cluster heads) has to maintain can also be much smaller. In this section, 

we discuss a number of routing protocols that create clusters in a MANET. 

2.2.3.1  Enhancing Ad Hoc Routing with Dynamic Virtual 
Infrastructures (CEDAR) 

In order to tackle the two problems faced by reactive MANET routing schemes without 

hierarchies, CEDAR6 [32] is designed to provide a virtual infrastructure to on-demand 

routing protocols. CEDAR uses a core extraction algorithm to elect a set of “core” node. 

In essence, this set of core nodes is an approximated minimum dominating set7 that cover 

every single node in a MANET. Each core node then acts as a cluster leader, does routing 

and forwarding for the mobile nodes in its domain (cluster). This way, the number of 

nodes need to be involved in routing is now the number of core nodes. 

The core extraction algorithm results in a set of core nodes that are at most 3 hops from 

each other. To perform route discovery over this virtual overlay network, there needs to 

be a way to for a core node to flood RREQ messages to all the other core nodes. In order 

                                                 
6 CEDAR stands for Core Extraction Distributed Ad-hoc Routing. 
7 In graph theory, a dominating set of a graph represented as G=(V, E) is a subset D of the set of vertices V 
such that every edge in E is connected with at least one member in D.  A minimum dominating set is the 
smallest dominating set of a graph.  
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to solve the problem caused by broadcast based flooding, in CEDAR, a unicast channel is 

created and maintained between neighboring core nodes. Now, a Core Broadcast 

mechanism, rather than simple local broadcast, is used to propagate RREQ messages. On 

a core node, an RREQ message is flooded to neighbor core node using these channels by 

unicast. This way, the reliability of route discovery can be improved and the interference 

of the flooding on other packets in the channel can also be reduced.  

Core Broadcast in CEDAR is unreliable because the maintenance of the unicast channel 

requires periodic beacon messages and the channels are subject to frequent failures in a 

dynamic topology.  

An enhanced version of CEDAR, E-CEDAR (E for enhanced) [12] further improves the 

core broadcast mechanism. In E-CEDAR, every core node maintains a “forwarding set”, 

in which each address is a node that the core node has to deliver RREQ messages to 

during a route discovery. A forwarding set of a core node thus needs to include the core 

node’s 1 hop neighbors that are core nodes, a minimal subset of the core node’s 1 hop 

neighbors that can be used to cover core nodes that are two hops away, and a minimal 

subset of the core node’s 1 hop neighbors that can be used to cover core nodes that are 

three hops away, through nodes dominated by these remote core nodes. Therefore, this 

“forwarding set” serves similar purpose as the MPR set in OLSR. The difference here is 

that the “forwarding set” is used to reach core nodes that are within 3 hops. 

The “forwarding set” is created using periodic beacon messages exchanged between 

nodes. However, the unicast channels are created by local computations rather than using 
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explicit message exchanges between core nodes. Therefore, the enhanced core broadcast 

is more efficient and more resilient to topology changes than the core broadcast in 

CEDAR. 

In order to further reduce packet interferences, E-CEDAR also modified the 802.11 RTS-

CTS mechanism. A NCTS (negative CTS) message is used by a node to reject an RTS 

request if it finds out the RTS is for a Core Broadcast message that it has already 

overheard.  

E-CEDAR is shown to be able to improve the performance of the two reactive routing 

protocols, DSR and AODV, we introduced in the previous section. The core extraction 

algorithm can be used by any application to create a virtual infrastructure in a MANET. 

There are a few problems with E-CEDAR, though. First, the core-extraction algorithm 

creates dynamic clusters based on the edge degree of mobile nodes. The dynamic clusters 

are subject to frequent changes when mobile node moves around quickly. Frequent 

changes in the set of core nodes can lead to unreliable forwarding routes. In addition, in 

order to maintain the connection between the core nodes, periodic beacon messages 

(basically link state messages) still have to be used so that each core node can collect 

information on its 3 hop connectivity to neighboring nodes. This constant overhead is not 

correlated with the data traffic. 

2.2.3.2  Cluster Overlay Broadcast (COB) 

Cluster Overlay Broadcast (COB) [33] works similarly to AODV [13], but with RREQ 

messages and RREP messages flooded only by cluster heads. In COB, dynamic clusters 
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are formed using a 1-hop clustering algorithm, Least Cluster Change [34], in order to 

reduce the clustering changes in face of node mobility. Each data packet sender sends the 

data packet to its local leader first for routing service, using a short range radio 

transmission. Upon receiving a data packet, a cluster leader floods (a controlled flooding) 

a RREQ message to the network using a long range radio transmission. When the 

destination node receives the flooded RREQ, it responds with an ACK messages, which 

works similarly to RREP messages in AODV. Upon receiving the ACK message, a cluster 

leader marks itself as active for the session between the sender node and the destination 

node. When the originating cluster leader receives the ACK message, it also broadcasts 

data packet to the network using the long range radio transmission. At subsequent hops, 

cluster leaders that have been set as active for the session relay the data packet and set 

themselves as inactive for the session. This way, the data packet is forwarded hop by hop 

toward the destination node. COB is proved to perform better than DSR [19] by 

simulations. However, as mentioned above, COB requires mobile nodes to be able to 

switch between two transmission powers and uses broadcast at each forwarding hop. 

Furthermore, a connection created by COB through a route discovery can only be used 

once because a router marks itself inactive for a session between a source and a 

destination once it forwards a packet for the session. This is going to cause unnecessarily 

high control overhead when each session contains a large number of data packets. 

2.2.3.3  Summary  

Cluster based routing protocols such as COB and CEDAR improved the efficiency of 

MANET routing by creating hierarchies in a flat MANET. CEDAR is a more complex 
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and practical solution than COB. However, both COB and CEDAR/E-CEDAR uses 

dynamic clustering, which are subject rippling effects when cluster membership changes. 

In addition, in each cluster, there is only one cluster head. VNLayer based routing is also 

a cluster based routing scheme, in which the leader and non-leaders in each region 

emulate a virtual router. Compared with the existing cluster based MANET routing 

protocols, the VNLayer approach has the following advantages: First, the VNLayer 

approach is a generalized programming abstraction. It hides the complexities such as 

clustering, message buffering and state synchronization from the routing application. In 

addition, the services provided by the VNLayer can be shared by multiple applications, 

rather than just the routing application, so that the overall performance can be improved. 

Second, to our best knowledge, our VNLayer implementation is the first clustering 

scheme that has the capability of maintaining replicated states in a cluster. A virtual node 

emulated router can stay functional even when the cluster head leaves a region. Third, the 

geographical based VNLayer clustering is very efficient and is free of the rippling effect.  
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CHAPTER 3. Models for the Link Layer and 
the VNLayer 

The Virtual Node Layer (VNLayer) is a general programming abstraction that hides 

MANET complexities from applications. With this abstraction, programmers only write 

programs for virtual nodes at fixed geographical locations, emulated by physical nodes 

nearby, so that they don’t need to deal with node motion. In the TCP/IP model [35], the 

virtual node layer resides between the link layer and the Internet Layer. The VNLayer 

uses the service provided by the link layer and provides services to applications at the 

Internet Layer.  To define the VNLayer approach, both the link layer and the VNLayer 

needs to be modeled. In the first section of this chapter, I introduce the models for the 

Link Layer and the VNLayer defined by Mike Spindel in [36]. The second section 

defines a more realistic model for the Link Layer and an extended VNLayer model that 

supports better performance in the presence of message losses. In the third section, I give 

a review on the VNLayer implementation by Mike Spindel. In the last section, the 

implementation choices we investigated in this research will be discussed. 

3.1  The Basic Link Layer and VNLayer Models 

Mike Spindel described models for the link8 layer and the VNLayer in [36]. In this 

section, I give a review on the two models. In this thesis, these two models are called the 

Basic Link Layer model and the Basic VNLayer model. 

                                                 
8 The term used in [36] is physical. However, in real implementation, the link layer is what the VNLayer is 
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3.1.1  The Basic Link Layer Model 

3.1.1.1  Physical Node 

A physical node is modeled as a timed input/output automaton [37] moving arbitrarily in 

a two dimensional plane with no obstacles9. The set of physical nodes is modeled as a 

finite set of automata. The location of a physical node, say node �, is referred to as  ��	
�� 

and its motion rate is bounded by a constant ��
�. 

Location Determination: Each physical node is able to determine its current 

geographical location and the global time every τ time.  

Node Clock: Every physical node has a local clock that runs at the rate of real time and is 

synchronized every τ time. 

Each physical node is able to do arbitrary computation. It is assumed that local 

computations do not take any time10. Physical nodes may suffer stopping failures. That is, 

when a physical node stops, it stops all local computations and stops sending messages. 

3.1.1.2  P-bcast Service 

At the link layer, each physical node is assumed to have access to P-bcast, a broadcast 

service. Physical nodes have different broadcast ranges.  

                                                                                                                                                 
built upon. Therefore, we choose to call the layer which provides basic communication service to the 
VNLayer the link layer.  
9 In [32], obstacles are not considered. However, obstacles not only affect node motion but also affect radio 
range. 
10 This assumption is reasonable because for the protocols under study, network activities dominate the 
power and time requirement. 
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The maximum reliable transmission distance for a physical node �  at geographical 

location ��	 when sending toward geographical location ��� is determined by src and 

dst. 

The P-bcast service guarantees: 

1. Integrity Property: Every message received was previous broadcast. 

2. Reliable Local Delivery Property: Every message broadcast will be received by 

every physical node in-range in a timely manner. When physical node � sends a 

message, there exists a time�, if for a physical node � is located within the reliable 

transmission distance between loc(i) and loc(j). for the entire transmission, then 

physical node � can receive the message in � seconds11. 

The basic link layer model here doesn’t consider message losses. However, in reality, 

there is no wireless link layer without message losses. In the simulations12 described in 

this thesis, message losses are allowed. Thus the second guarantee is not provided by the 

simulations. 

3.1.2  The Basic VNLayer Model 

3.1.2.1  Regions 

The geographical area of a MANET is subdivided in to regions. It is assumed that the 

region configuration is known by every physical node.  Regions are configured or chosen 

so that every physical node in a region can reliably send and receive data from every 

other physical node in the region and neighboring regions.  

                                                 
11 In the simulation, the function is dependant only on the two locations, not on the node i. 
12 VNE simulated the basic VNLayer without collisions. 
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A physical node’s region is uniquely determined by its location. The set of neighbors is 

also determined by the region. For all locations i, j and any physical node p at location i, 

if physical node p is in a region and j is in the same or a neighbor region, then node is 

within the reliable transmission range of node p. 

3.1.2.2  Virtual Nodes 

Each region hosts a virtual node. A virtual node is an automaton driven by incoming 

messages. A virtual node’s operation is defined completely by a msgReceived handler. 

With an incoming message, a virtual node can change its state arbitrarily and send out a 

set of messages using V-bcast.  

Virtual Node Clock: A virtual node doesn’t have access to a real time clock. Instead, it 

simulates a clock by synchronizing to timestamps on incoming messages. 

There are two failure modes of virtual nodes related to the behavior of client processes13.  

1. If there is no client process in a region, the virtual node for the region has failed. 

2. There is a t����� associated with the system such that if a physical node stays in a 

failed region for more than t�����, the virtual node for the region restarts with its 

initial state14. 

3.1.2.3  Client Process 

Client processes hosted by physical nodes solicit services from virtual nodes in each 

region. A physical node can host any number of client processes. For simplicity, for a 

                                                 
13 Here, it is assumed that every physical node emulates a virtual node. 
14 This can also be regarded as a recovery mode. However, the virtual node state won’t be recovered. As we 
are going to see, when a virtual node restarts, there are tricky complications. 
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single application, it is assumed that each physical node hosts at most one client process. 

Therefore, clients can be modeled as a set of timed input-output automata. 

A client process has access to the location of its hosting physical node. It also has access 

to a real-time clock. A client process can communicate with its local virtual node only 

through the V-bcast service. 

3.1.2.4  Virtual Broadcast 

For VNLayer based communication, Clients and Virtual Nodes have access to another 

broadcast service, V-bcast. V-bcast is used by clients and virtual nodes to communicate 

with other clients and virtual nodes. The V-bcast guarantees the Integrity Property and 

Reliable Local Delivery Property. 

V-bcast provides two additional guarantees. First, it guarantees that if a client or a virtual 

node is not in a region originating or neighboring a broadcast, it won’t receive the 

message. Second, it guarantees that all broadcast messages will have a total ordering and 

will be received by all clients and virtual nodes in the same order. 

The V-bcast service therefore requires that a virtual node or a client can communicate 

with any virtual node or client in the same region or in a neighbor region and only with 

those nodes. 

This combination of the reliable delivery and inverse reliability requirements has the 

consequence that in any region, either all client processes and the virtual node in the 



   

 48 

region receive a message or none do. In other words, the transmission is atomic with 

respect to the regions. This is the atomicity property of the basic VNLayer. 

3.1.2.5  Virtual Node State 

The virtual node state includes the clock and discrete variables at the application layer. In 

the absence of message collisions, the VNLayer guarantees that a virtual node maintains 

its current state as long as the virtual node doesn’t fail. When a virtual node does fail and 

restarts, its state resets to its initial state.  

3.1.2.6  Requirements on Applications 

In order to use the VNLayer, an application needs to be able to handle messages passed 

up by the VNLayer. It also needs to allow the VNLayer to read and overwrite its state. 

In addition, an application must be able to tolerate virtual node failures and virtual node 

resets (the two failure modes described in section 3.1.2.2 ). 

3.2  The Extended Link Layer and VNLayer Models 

3.2.1  The Extended Link Layer Model 

In order to use a more realistic communication model, we extended the basic model for 

the link layer. The extended link layer model allows message collisions and losses. 

3.2.1.1  Physical Nodes 

The model for physical nodes is same as the one in the basic VNLayer except that the 

local clock has the current real time and doesn’t need to be synchronized.  
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3.2.1.2  LL-bcast Service 

Instead of P-bcast, each physical node has access to an 802.11 like link layer service, LL-

bcast. Physical nodes have different broadcast ranges. The maximum reliable 

transmission distance between two physical nodes is determined by the sender’s location 

and transmission power and the receiver’s location and receiving capability15. 

Compared with the P-bcast service in the basic link layer model, LL-bcast takes message 

losses16 into consideration. That is, messages may not be received by a destination node 

even if it is in-range. In addition, with LL-bcast, a message can be sent with either a 

broadcast destination address or a unicast destination address. When a broadcast address 

is used, it is not possible for the sender to determine whether a message has been received 

by a potential recipient. We call this kind of data transmission “local broadcast”. When 

unicast address is used, message transmission is more reliable because the sender can 

determine before sending the message if the receiver is around and after sending the 

message if the message is received by the intended recipient17. However, using unicast 

destination addresses in LL-bcast require all physical nodes to listen to all messages and 

process or discard them appropriately. In addition, the improved reliability with unicast 

comes with an additional transmission delay because of the time for an acknowledgement 

from the receiver to the sender. 

                                                 
15 Receiving capability on mobile devices can be different. For example, a device using a high-gain antenna 
can communicate with a device out of the regular radio range. 
16 Here, we assume all message losses are due to collisions. 
17 In 802.11, when unicast is used, Address Resolution, CMSA/CA (using RTS-CTS) and link layer 
acknowledgement and retransmission can be used to detect link failures quickly and improve the reliability 
of data transmission. 
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In the extended link layer model, when the sender of a message can’t determine the 

intended recipient node, a broadcast destination address must be used.  When the sender 

can determine the address of the intended recipient, the message uses the address of the 

recipient. Since all physical nodes listen to all messages, a message sent to a unicast 

destination can still be heard by every mobile in range. I will call this kind of 

transmission “Directed Broadcast”. 

Like P-bcast in the basic link layer model, LL-bcast guarantees the Integrity Property but 

only guarantees the Reliable Local Delivery property in the absence of collisions. 

3.2.2  The Extended VNLayer Model 

In order to improve the performance of VNLayer based applications, we created an 

extended VNLayer model. Now, each virtual node has access to a real-time clock. A 

virtual node or client process is allowed to communicate with other client processes or 

virtual nodes that are not in local or neighbor regions. This removes the inverse reliable 

delivery guarantee provided by the basic VNLayer model.  

3.2.2.1  Regions 

Regions are the same in the extended VNLayer model. 

3.2.2.2  Virtual Nodes 

Virtual nodes have access to a real-time clock. A virtual node in a region is an automaton 

driven not only by incoming message but also by timer events. Therefore, a virtual node’s 

operation is no longer defined completely by a msgReceived handler. In addition to 



   

 51 

incoming message, with a timer expiration event, a virtual node can also change its state 

arbitrarily and send out a set of messages using V-bcast.  

The use of timers allows actions to be taken exactly at scheduled times. Because network 

applications often age state so that it expires and is discarded after a period of time, the 

message driven approach in the basic VNLayer model requires a lot of processing time to 

locate expired state and expired messages in the buffer. Using timers is much more 

efficient. 

Here, we don’t assume each physical node emulates a virtual node18. Each physical node 

that emulates a virtual node is defined as an emulator node. This introduces a change to 

the failure modes. There are two failure modes of virtual nodes related to the behavior of 

emulator nodes.  

1. If there is no active emulator node in a region, the virtual node for the region has 

failed. 

2. If an emulator node stays in a failed region for more than t�����, the virtual node 

for the region restarts. 

3.2.2.3  Client Process 

One difference in the extended VNLayer model is that a client process is allowed to 

receive messages from a virtual node that is not in the client process’s local region. 

Another difference is that a client process doesn’t need to provide the Virtual Nodes with 

clock information, because the Virtual Nodes already have it. 

                                                 
18 This is to reduce the number of emulator nodes when a MANET is dense enough. 
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3.2.2.4  Virtual Broadcast 

In the extended VNLayer model, Clients and Virtual Nodes still have access to V-bcast. 

Like LL-bcast, V-bcast here guarantees the integrity property and guarantees the reliable 

local delivery property only in the absence of collisions. 

V-bcast still guarantees that all broadcast messages will have a total ordering and will be 

received by all clients and virtual nodes in the same order. However, the V-bcast service 

in the extended VNLayer model allows a virtual node or a client to communicate with 

any other virtual node or client in range. That is, V-bcast in the extended VNLayer model 

no longer provides the guarantee that in each region, either all nodes receive a message or 

none do (the atomicity property). 

3.2.2.5  Virtual Node State 

The virtual node state includes the clock and discrete variables at the application layer. A 

virtual node’s clock is synchronized together with its state. 

In the absence of message collisions, the VNLayer still guarantees that a virtual node 

maintains its current state as long as the virtual node doesn’t fail. When a virtual node 

does fail and restart, its state resets to the initial state.  

However, with a lossy channel, the extended VNLayer model can’t guarantee that a 

virtual node retains its current state even when the virtual node doesn’t fail. Due to state 

inconsistencies among emulator nodes, the state on a virtual node might have occasional 

arbitrary changes when leadership of its region changes. This model requires that an 

application tolerate such state changes, which are called “acceptable” state changes.  
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3.2.2.6  Requirements on Application 

In addition to the requirements in the basic VNLayer model, applications over the 

extended VNLayer must be able to tolerate message losses. In addition, due to the 

possibility of arbitrary state changes in the extended VNLayer, applications must be able 

to tolerate acceptable state changes, as described above. 

3.3  The Implementation of the VNLayer 

Our implementation of the VNLayer simulator is based on the implementation of VNE, a 

python based simulator developed by Mike Spindel in [36] for the basic link layer model 

and VNLayer model. With VNE, a Virtual Node based system is implemented as follows.  

A MANET is tiled with square shaped geographical regions at fixed locations. In each 

region, a simple algorithm is used for leader election. In this algorithm, all physical nodes 

that are in the same region have equal opportunity to become leader. Whichever physical 

node that sends out its request for leadership first will be chosen as the leader of the 

region. When a physical node becomes the leader of a region, it sends out periodic 

heartbeat messages to claim its leadership. When missed heartbeat messages exceed a 

threshold, a non-leader node sends out a leader request message and starts a leader re-

election. 

In each region, physical nodes collectively emulate a virtual node. Among the emulator 

nodes in a region, the leader node processes incoming message and sends out response 

messages. The non-leader nodes process incoming messages the same way and the leader 

node does. However, the non-leader nodes buffer their response messages in a sending 
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queue. When a non-leader node receives a response message from the leader node, it 

checks its sending queue for an identical response message. If a match can be found, it 

removes the matched packets from its sending queue. This way, non-leader emulator 

nodes work as backup servers in a region. 

Non-leader emulator nodes maintain replicated virtual node state for the leader node. One 

way to do this is that when a non-leader node can’t find a match for an incoming message 

from the local leader, it considers it a sign of a state inconsistency and synchronizes its 

state with the leaders. In addition, each time an emulator node is set to a non-leader in a 

leader election, it synchronizes its state with the leader.  

In addition, when a node moves into a region and there is already a leader in the region, 

the node becomes a non-leader and synchronizes its state with the leader’s. Therefore, in 

the absence of message collisions, we can guarantee consistent state on a virtual node. 

3.4  Implementation Choices 

In order to support the extended link layer and extended VNLayer model, we 

implemented our own ns-2 bases simulator, VNSim, which uses the service provided by 

the extended link layer model. VNSim supports both the basic VNLayer model and the 

extended VNLayer model. During our simulations, we also investigated possible 

optimizations that can be taken when implementing the VNLayer. In this section, I 

discuss the possible optimizations as implementation choices. 
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3.4.1  Region Shapes and Node Sending and Receiving 
Capabilities 

For simplicity, the simulators for the basic VNLayer model and the extended VNLayer 

model both have used square shaped regions and uniform node sending and receiving 

capabilities. However, other region shapes might utilize radio range more efficiently. For 

example, a network can be tiled by hexagonal regions. 

3.4.2  Leader Election 

Receiving a LeaderRequest message, the leader node rejects the request by a 

LeaderReply message. Non-leader nodes in the same region can be set to send 

LeaderReply messages too. Doing so can reduce the chance that an arriving node falsely 

claim itself as a leader. However, it will also increase the leader election message 

overhead. 

On top of the basic leader election algorithm, to speed the leadership switching, a 

LeaderLeft message can be added to the leader election algorithm to speed leadership 

switching. Now, when a leader leaves a region, it sends out a LeaderLeft message to ask 

the non-leaders in the region to start a leader re-election immediately.  

In addition, in a leader election, nodes that move more slowly and nodes that have had 

their state synchronized with the leader are more likely to become the new leader of a 

region. 
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In addition, to reduce the chance of multi-leadership, we can require that a node that just 

arrived at a region wait longer after sending out its leadership request before it can claim 

leadership. 

Any combination of these choices can be used to improve the performance of either 

model.  The more complex leader election algorithm reduces the number of state resets in 

the basic VNLayer model and arbitrary state changes in the extended VNLayer. However, 

these options are tested by my simulations only for the extended VNLayer model. 

3.4.3  Number of Emulator Nodes 

When a network is dense, it is not necessary to use every physical node to emulate virtual 

nodes. Doing so would increase the burden on every physical node and increase the 

number of state synchronizations. One implementation choice is to allow a physical node 

to decide dynamically on whether it should be an emulator node. This option would put 

control on the total number of physical nodes that are emulating the virtual node in each 

region and increase the efficiency of the VNLayer approach. 

When not every physical node is an emulator node, the guarantees on virtual node still 

hold as long as there is at least one emulator node in a region. 

3.4.4  State to Be Synchronized 

In the implementation of the basic VNLayer model, the entire virtual node state is 

synchronized when a non-leading emulator node detects a state inconsistency. In order to 

reduce the state synchronization traffic overhead, an option is to synchronize only the 

critical part of the virtual node state. We define hard state and soft state as follows.  
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Hard state is the virtual node state that is critical to the correct operation of an 

application. An example of hard state is the address allocation information maintained by 

a DHCP server. Incorrectness on this information can lead to duplicate address 

allocations for extended period of time. 

Soft state is the virtual node state that is non-critical to the correct operation of an 

application. An application will run correctly in spite of incorrect soft state. An example 

of soft state is the non-critical parts of a routing table maintained by a MANET router. 

The non-critical parts include route lifetime, expired routes, etc. Since MANET routers 

are meant to tolerate frequent routing failures due to node mobility, inconsistencies on 

routing tables is not critical to the correct operation of MANET routing. 

With hard state and soft state defined, an implementation options is to let the VNLayer 

synchronize the hard state only. To do this, the programmer of the application layer 

software needs to determine what hard state is and what soft state is. With this option 

turned on, the VNLayer guarantees on hard state remain. 

3.4.5  Subtypes of State Synchronizations 

There are two types of state synchronizations. When a node enters a region and becomes 

non-leader, it synchronizes its state with the leader’s. We call this type of state 

synchronization motion sync because it is triggered by node motion. When a non-leader 

detects state inconsistency, it synchronizes its state with the leader’s. We call this type of 

state synchronization message sync because it is triggered by a message receive event. 
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In the implementation of VNLayer, the two types of state synchronizations can be 

enabled or disabled19. When either subtype of state synchronization is disabled, there will 

be more state inconsistencies on emulator nodes. 

3.4.6  Control Over State Synchronization Frequency 

In order to reduce the number of state synchronizations a virtual node, a minimum inter-

state-synchronization interval can be set up on virtual nodes. However, doing so increases 

the chance that emulator nodes can have out of sync state. 

3.4.7  Use of Overheard State Synchronization Messages 

A non-leader can use any overheard state synchronization message from the leader to 

synchronize its state even if it hasn’t detected any state inconsistency20. This option 

reduces the number of state synchronizations needed in a region.  

3.4.8  State Consistency Checks 

A non-leader emulator node can choose to check every message received from its leader 

to check for state consistencies. In order to reduce the number state synchronizations 

caused by state inconsistencies detected on non-critical part of the virtual node state, an 

implementation can choose to check messages that are more likely to have affected hard 

state only. Doing so would increase the chance an emulator node having its state out of 

sync.  

                                                 
19 It is expected that motion sync is more important than message sync because when an emulator node 
moves into a new region, it relies on a message sync to receive the entire copy of a virtual node state. It's 
also what guarantees consistent state when there are no message losses.  Message sync is used when there 
are message losses to patch up the state.  
20 When a non-leader detects a state inconsistency, it drops all the messages in its sending buffer and 
synchronizes its state with the leader’s. However, when a non-leader’s state is synchronized before it 
detects the state inconsistency, some messages in its sending buffer might not be valid. 
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In addition to using incoming message to look for state inconsistencies, a hash of the 

virtual node state can be carried in each message sent by a virtual node. The state hash 

can be used by emulator nodes to look for state inconsistencies. This option would reduce 

the false positives in state inconsistency detection. However, it also increases the 

processing overhead on virtual nodes. 

3.4.9  State Inferencing 

This option allows non-leader emulator nodes to fix parts of its state by inferring the 

virtual node state from messages sent by the leader emulator node. Doing so can reduce 

the number of state synchronizations. However, this option breaks the abstraction because 

it requires an application on an emulator node to act differently based on its role (leader 

or non-leader) at the VNLayer. 

3.4.10  Communication Rules 

In the basic VNLayer model, a client process can only communicate with its local virtual 

node and virtual nodes can only communicate with neighbor virtual nodes. With the 

extended VNLayer model, an implementation has the option of keeping the rules above 

or allowing a client to receive messages from non-local virtual nodes and allowing a 

virtual node to communicate with any other virtual node that is in range. Doing so would 

reduce the number of forwarding hops needed for a transmission. However, allowing 

virtual nodes to communicate with any other virtual node breaks the atomic reception 

guarantee. State inconsistencies can happen even in the absence of collisions when non-

neighboring virtual nodes communicate with each other through long links. 
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3.4.11  Powerful Emulators 

Another implementation option allows an emulator node to act as the Server for a client 

process that resides on the same physical node, using the application state of the region. 

This implementation choice is called Powerful Emulator because it is like an emulator 

node is given the full power of a server. With this option, rather than being constrained to 

its own region, a client process on an emulator node can seek services from virtual nodes 

in any region. This option can be used when the efficiency of a protocol is critical to its 

performance. However, doing so breaks the abstraction because it requires an emulator 

node to act differently when processing messages from client processes on its host 

physical node and allows an emulator node to act alone. 

3.4.12  Summary of Implementation Choices 

There are two simulators for the VNLayer, VNE [36] simulates the basic VNLayer. 

VNSim simulates both the basic VNLayer and the extended VNLayer. However, it needs 

to be noted that VNSim simulates the basic VNLayer model with the extended link layer 

model. Table 3-1 summarizes the implementation choices investigated by the simulators 

for each model. The impacts of the choices are also listed. 
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Table 3-1: Implementation options investigated by simulations of the VNLayer approach 

Features Options Basic VNLayer 

Model 

Extended VNLayer 

Model 

Impacts 

Region shape Square, hexagon Square Square Using square regions and uni-

form radio ranges simplifies 

simulation 
Node radio range, 

reception ability 

Uniform, non-uniform Uniform Uniform 

Number of emula-

tor nodes 

All physical nodes, a se-

lected subset 

All physical 

nodes 

A physical node can 

dynamically decide to 

be an emulator node or 

not 

Reducing the number of emu-

lator nodes reduces syncs and 

increases chance that regions 

can be empty.  

Leader election Taking node motion rate, 

node status, node state con-

sistency into consideration. 

Simple LeaderLeft message, 

node status, node mo-

tion rate, node state 

consistency took into 

consideration 

The more complex leader elec-

tion algorithm reduces leader 

changes; reduces leader switch-

ing delay and reduces the num-

ber of state resets in the basic 

VNLayer model and arbitrary 

state changes in the extended 

VNLayer model.  

Consistency 

Checking 

Check all messages, check 

only critical messages, 

check state hash 

Check all mes-

sages (For 

VNDHCP, mes-

sages with no 

impact on state 

excluded) 

Check only critical 

messages 

Checking only critical mes-

sages, syncing hard state only, 

doing motion syncs only and 

limiting the rate of state syn-

chronization reduce syncs or 

sync traffic and increase state 
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State to be syn-

chronized 

Sync all state, sync hard 

state only 

Sync all state Sync hard state only 
inconsistency 

Synchronization 

subtypes 

Motion Sync, Message 

Sync 

Always sync. Two sync subtypes can 

be turned on or off 

Limit rate of state 

synchronizations 

Used, not used. N/A Rate limit used on state 

synchronization. 

On overheard 

sync messages 

Ignore, use to sync local 

state 

ignore Use overheard state 

sync messages  

Using overheard sync msgs 

reduces number of syncs. 

Client communi-

cation rules 

Only with local virtual 

node, can receive from any 

virtual node, can send to 

any virtual node 

Only with local 

virtual node 

Can choose between the 

first two options.  

Non-atomic reception when 

long links are used. It increases 

syncs and state inconsistency. 

Virtual node 

communication 

rules 

Can only communicate 

with neighbors, can com-

municate with anyone 

Communicate 

with neighbors 

only 

Can choose between the 

two options 

Powerful Emula-

tor 

Emulator node can act as 

server  for client processes 

on the same physical node 

Not used Investigated Making protocols more effi-

cient but breaks the abstraction. 

State inferencing Used, not used N/A Can be turned on or off Using state inferencing reduces 

syncs but breaks abstraction 
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CHAPTER 4. Virtual Node Layer Implementation 

In this chapter, I first give a review on a python based VNLayer simulator we used at the 

early stage of the research. Then, I present in detail the implementation of our ns-2 based 

simulator VNSim. Because VNSim is built over ns-2, it uses the extended link layer 

model introduced in the previous chapter, which considers packet losses. VNSim can be 

used to simulate both the basic VNLayer model and the extended VNLayer model. 

4.1  Virtual Node Emulator 

Virtual Node Emulator (VNE) [38] developed by M. Spindel, is a light weight VNLayer 

simulator. VNE supports the basic link layer model and the basic VNLayer model as 

introduced in the last chapter. VNE includes a Mobile Node (MN) layer, a Virtual Node 

Emulator (VNE) layer and an Application layer. At the bottom, the MN layer simulates a 

simplified wireless link layer. It supports functions such as node creation, node motion 

and packet transmissions. The VNE layer simulates the VNLayer. It keeps track of a 

node’s current location, sets up a node’s region id, does leader elections, buffers packets 

for the non-leader nodes and synchronizes a non-leader’s state with the leader’s state. On 

top of VNE, the Application layer supports the application servers and clients. 

VNE works well as a tool for proof of concept studies. The coding for applications in 

VNE is easy. In our early work on VNLayer based address allocations, simulations using 

VNE provided quick results and useful insights. However, VNE has a number of 

limitations. First, VNE’s link layer doesn’t model the packet loss caused by message 
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collisions and congestions. This limits the validity of the simulation results. Second, 

Python runs slowly. This makes VNE unsuitable for large scale simulations. Third, VNE 

is time based. Periodic checking on flags, node locations, etc. is used to drive the 

simulation in VNE. This makes the simulation time of VNE scale badly with increasing 

network size. In addition, the fixed checking periods can affect latency related simulation 

results. For example, if the checking period for incoming messages is set to 0.1 second, 

the response time for a message observed by the simulator can appear to be 0.2 second 

even if the actual latency is much shorter.  

4.2  Virtual Node Simulator (VNSim) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 The Architecture of VNSim on a VNLayer equipped physical node 
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To deal with the problems with VNE, we created a discrete event-based VNLayer 

simulator, VNSim, on top of Network Simulator ns-2[39]. As shown in Figure 4-1, 

VNSim is built over the link layer provided by ns-2. It takes advantages of a mature 

simulator of the 802.11 link layer model, which is the same as the extended link layer 

model introduced in Chapter 3. VNSim can be used to simulate both the basic VNLayer 

model and the extended VNLayer model. However, it doesn’t support the basic link layer 

model, which is an unrealistic model.  

Programs for VNLayer based applications are developed at the application layer, which 

implements the following major interface functions required by the VNLayer.  

• receive(): a function that the application layer uses to handle messages passed up 

from the VNLayer. 

• send(): a function that the application layer uses to push messages down to the 

VNLayer. 

• equal(): a function used by a non-leader node to check incoming messages from the 

local leader with the messages in its sending queue. 

• save/get state: functions used by the VNLayer to retrieve or write to the Application 

Layer State. 

• server initialization: a function used by a virtual node to initialize its state when it is 

restarted.   
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Except the send() function, all these functions are triggered by function modules at the 

VNLayer. The send() is initiated by the applications. 

Figure 4-1 also shows the core function modules in the VNLayer.  

• Application Packet Processing Module: a function module that handles 

application packets21 received by the VNLayer from the link layer and passes 

them to the application layer. (To be explained in section 0) 

• Hello Generator: A function module that is used by a node to inform its neighbors 

about its presence. (To be explained in section 4.5.2 ) 

• Location Checking Module: a function module that checks a physical node’s 

geographical location and determines the region a node is in. (To be explained in 

section 4.6 ) 

• Leader Election Module: a function module that determines and maintains a 

node’s leader status by communicating with physical nodes in the same region. 

(To be explained in section 4.7 ) 

• Packet Classifier: a function module that checks and passes incoming messages to 

appropriate function modules. It also keeps track of the activeness of neighbor 

nodes and neighbor regions. (To be explained in section 04.5 ) 

• Sending Queue: A buffer at the VNLayer for packets sent down from the 

application layer. The VNLayer controls when the packets are sent to the link 

layer. (To be explained in section 4.9 0) 

                                                 
21 Packets created by the application layer. 
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• VNLayer State Machine: the state machine that support state replication at the 

VNLayer. (To be explained in section 4.8 ) 

In section 4.3 and section 4.4 , I introduce the VNLayer packet header and the state 

maintained by the VNLayer. Most of the terms used in this chapter are also defined in 

these two sections. Then, I introduce how each core function module works and how they 

interact with each other and with the application layer.  

4.3  VNLayer Packet Header 

The VNLayer inserts a 20 byte VNLayer header to every packet it relays to the link layer. 

The VNLayer header contains the following fields. 

• Type (1 byte): The packet type. 

• Subtype (1 byte): The packet subtype. 

• Region ID (2 bytes): the sender region of the packet 

• Source (4 bytes): the address of the sending physical node 

• Destination (4 bytes): the address of destination physical node 

• Send_time (4 bytes): the sending time of a packet 

• Hash (4 bytes): a hash of the virtual node emulator’s application state at the 

moment the packet is sent. 

There are four types of packets that the VNLayer has to handle; Application messages, 

Leader Election messages, State Synchronization messages and Hello messages.  
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Application messages are the messages sent and received by the VNLayer based 

application. There are four subtypes of VNLayer application messages. Four subtypes 

provide finer grained control on what kind of messages should be used by the VNLayer 

to look for state inconsistencies. 

• Client messages: application messages sent to the VNLayer by a client process. 

Local Client messages are the messages that a client process, which doesn’t know 

anything about the VNLayer, sends to VNLayer on the same node. This kind of 

message is always considered an application message by the VNLayer. Therefore, 

when the VNLayer inserts the VNLayer packet header, the type of the message 

will also be set to “Application message” and the subtype of the message will be 

set to “Client message” 

• Server messages: application messages originated from a virtual node.  

• Forwarded Server messages: application messages forwarded by a virtual node.   

• Forwarded Client Messages: A subset of client messages forwarded by a virtual 

node that neither use nor affect the application state. For example, when a client 

message is relayed by a virtual node to the neighbor that is closest to the 

destination region, the message forwarding doesn’t use any application state, the 

message is a forwarded client message. 

Leader Election messages are messages for leader elections and leadership maintenance. 

There are three subtypes of Leader Election messages. 

• LeaderRequest: messages used to request for leadership 

• LeaderReply: messages sent by a leader to decline a leader request 
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• Heartbeat: periodic messages used by a leader to claim its leadership. 

• LeaderLeft: a new message type in the leader election algorithm for the extended 

VNLayer. It is used by a leader node to inform the non-leaders that it is leaving a 

region. 

State Synchronization messages are messages for state synchronizations between leader 

nodes and non-leader nodes in the same region. There are two subtypes of State 

Synchronization messages.  

• SYN: synchronization request messages sent by a non-leader. 

• SYN-ACK: synchronization response messages sent by a leader. 

Hello messages are generated by the VNLayer to help VNLayer based applications to 

maintain a list of immediate neighbors. 

4.4  VNLayer State 

The VNLayer operates on VNLayer state. The VNLayer state can be changed only by the 

VNLayer but is readable by the application layer22.  

The first part of the VNLayer state is region ID, which identifies the geographical region 

a VNLayer emulator node is in. A region ID is also used to identify the virtual node in a 

region. 

                                                 
22 In VNSim, the VNLayer state is implemented as protected members of the base class for VNLayer based 
applications. 
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The second part of the VNLayer state is the Leader Status. It indicates the leadership 

status of a node in the region. The Leader Status can take one of the following seven 

values. 

• INIT: The initial state before a node learns its region. 

• Unknown: The node just enters a region and doesn’t know about its role. A 

LeaderRequest message is scheduled but not sent out yet. 

• Requested: The node has sent out a LeaderRequest, no response is received yet 

and the LeaderRequest timer hasn’t timed out. 

• Leader: The node is a leader of its current region. 

• Non-leader: The node is a non-leader in its current region. 

• Unstable: The node has missed at least one Heartbeat message from the Leader. 

The third part of the state is VN Status. It is updated by the VNLayer State Machine and 

used by a physical node to determine its current role among the virtual node emulators of 

its region. The VN Status can take one value from the following values.  

• UNKNOWN: The virtual node emulator hasn’t learned its region id and does 

nothing. This is the initial state of a virtual node emulator. 

• NEWNODE: The virtual node emulator just entered a region and hasn’t 

determined its role. 

• SERVER: The virtual node emulator plays the Server role. For the rest of this 

thesis, we refer to a node with this status as a Server node. 
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• BACKUP: The virtual node emulator plays the Backup Server role and it has its 

state synchronized with the Leader’s. For the rest of this thesis, we refer to a node 

with this status as a Backup Server node. 

• SYNC: The virtual node emulator just plays the non-leader role. The emulator 

either just entered a region or it detected a state inconsistency. It is synchronizing 

its state with the leader. 

• PURECLIENT: The virtual node emulator, when not elected as a region leader, 

chooses to not work as a Backup Server. It acts as a pure client and doesn’t 

process to any service request. 

The fourth part of the VNLayer state is a region activeness table that keeps track of the 

activeness of regions from which messages can be heard by the virtual node. Each entry 

in the table maintains a region id, the address of the current leader of the region, the 

activeness of the region and a “lifetime”. 

The fifth part of the VNLayer state is a neighbor list. The list maintains the list of 

physical nodes from which messages have been heard recently. Each entry in the 

neighbor list maintains a physical node’s node id, current region id and a “lifetime”. An 

entry for a physical node in the list will be removed if no messages can be heard from it 

before its lifetime expires.  
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4.5  Packet Classifier 

On an emulator node, the Packet Classifier is the first module that processes an incoming 

message from the link layer. It performs two tasks, Packet Classification and 

Neighbor/Region Activeness Maintenance. 

4.5.1  Packet Classification 

As shown in Figure 4-1, the Packet Classifier passes application messages to the 

application packet processing module; Leader Election messages to the Leader Election 

module and state synchronization messages to the State Synchronization Module. Hello 

messages are handled by the Packet Classifier and not passed to other function modules. 

4.5.2  Neighbor/Region State Maintenance (NRSM) 

When the Packet Classifier receives a Hello message or any other message, it uses it for 

its second functionality, Neighbor and Region Activeness Maintenance. 

The Hello Generator Module in the VNLayer generates Hello messages. The interval 

between Hello messages can be adjusted by both the VNLayer and the Application 

Layer23. Each Hello Message carries the sending time, region id and node id of the 

physical node sending it. When it receives a Hello message, the NRSM on a node 

refreshes the lifetime of the corresponding entry in its neighbor list so the sending node 

stays as the node’s immediate neighbor.  

Since every VNLayer packet carries the sender’s node id and region id, the NRSM uses 

every incoming VNLayer packet as a Hello message. To reduce the number of Hello 

                                                 
23 The generation of Hello messages could be turned off if it is not needed. 
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messages, each time any message is sent by the VNLayer, the Hello Generator delays the 

next Hello message by a Hello interval. 

Each time an entry in the neighbor list is refreshed by an incoming message, the 

VNLayer informs the application layer through an optional “Hello Handling” interface 

function. The application layer decides what to do with the event.  In these simulations, 

the VNRIP application uses these events to update its table of immediate neighbors.  

NRSM uses overheard messages generated by leader nodes to maintain its region 

activeness table. These messages include HeartBeat, LeaderReply, LeaderLeft, SYN-

ACK and application messages. When NRSM hears a message from the leader of a 

region, it updates the leader id of the region and refreshes the timer associated with the 

region. If no leader message can be heard from a region before the timer expires, NRSM 

sets the leader id of the region to UNKNOWN and set the region to inactive. 

There is an exception. When NRSM hears a LeaderLeft message from a region, it sets the 

leader id of the region to UNKNOWN and sets the region to inactive. 

4.6  Location Checking Module 

The Location Checking module in Figure 4-1 checks24 a mobile node’s current location 

and updates the node’s region ID in the VNLayer state.  

Location checking is the first thing an emulator node has to do when it starts running. An 

emulator node does nothing before it learns its region ID. When a node’s Location 

                                                 
24 The location checks can be done either periodically or done around the time a node is predicted to enter a 
different region.  
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Checking module finds out that the node has moved into a new region, it updates the 

Region ID and informs the Leader Election Module and the VNLayer State Machine 

about the region change. 

4.7  Leader Election Module 

As explained in section 3.3 the leader election algorithm works to ensure that the leader is 

the first node that requested leadership in a region without a current leader.  Whenever a 

region change is detected, a node tries to become leader by sending a time stamped 

message requesting leadership (the LeaderRequest message).  If it doesn't hear from a 

current leader (a LeaderReply message or a Heartbeat message) and it doesn't hear an 

earlier LeaderRequest message from another new node in the region, it becomes the 

region leader. One minor implementation choice we have here is whether or not to let the 

non-leaders to respond to LeaderRequest messages too. Doing so would increase the 

leader election traffic overhead while reducing the chance that a newly arrived physical 

node becomes a duplicate leader when the LeaderReply message is lost. 

A number of timers are used to control how long a node waits to send its LeaderRequest 

message (leader request timer), to decide it is not going to hear from an earlier leader 

(request wait timer), to decide when a leader should send the next Heartbeat message 

(Heartbeat timer) and when a non-leader should start a leader election in the absence of 

Heartbeat message from its leader (leader timer).  

Figure 4-3 illustrates the state machine that controls the leader election module. The input 

actions include: the expirations on the timers listed above, region changed event reported 
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by the location checking module, incoming messages such as the LeaderRequest, 

Heartbeat, LeaderReply and LeaderLeft. Figure 4-3 omits some reactions on incoming 

messages that don’t result in state change. For example, when a leader node receives a 

LeaderRequest message, it sends back a LeaderReply message and stays as a leader. 

The initial state of every mobile node is INIT, before it knows its region id. Every time a 

node learns it has entered a new region (the first time it learns its region is also treated as 

entering a new region), its state changes to UNKNOWN. 

 

Figure 4-3 The Leader Election Module State Machine 

The first thing a node has to do when it enters a new region is to determine its role in the 

region by sending out a LeaderRequest message and set up a request timer. If there is no 
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rejection from the region leader (by a LeaderReply) before the request timer expires, it 

changes its state to LEADER. Otherwise, it sets its state a NONLEADER. When a node 

becomes a leader, the Leader Election module sends a leader event to the VNLayer state 

machine25.  

In order to reduce the number of LeaderRequest messages when multiple nodes compete 

for leadership, each node schedules its LeaderRequest message with a random delay26 

using the leader request timer. Before the timer expires on a node, if a LeaderRequest 

message is heard from another node in the region, the node gives up its leader request and 

set its state as NONLEADER. Otherwise, the node sends out its LeaderRequest message; 

changes its state to REQUESTED and set the request wait timer. 

A node starts sending periodic Heartbeat messages right away when it becomes a leader. 

The Heartbeat messages are tagged with the time when the sender becomes the leader of 

the region. Each time a Heartbeat message is sent by a leader node, the node sets its 

Heartbeat time with the Heartbeat interval.  

When a node becomes a non-leader, it uses a leader timer (expiration time set to the 

Heartbeat interval plus the one hop transmission time) and a counter to tell when leader 

election needs to be done. A non-leader tolerates at most 2 Heartbeat misses. The first 

time a Heartbeat message is missing from the leader when the leader time expires, a non-

leader node changes its state to UNSTABLE. When more than 2 HeartBeat messages are 

                                                 
25 When a node becomes a non-leader, it may use a Coin Tosser Function (CTF) to decide whether the node 
shall become a backup server or a pure client node. Details on CTF will be given in section 4.7.5  
26This delay is also used to give nodes that are moving slower and nodes that have their state synchronized 
with the leader precedence in leader election.  
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missing, a non-leader node assumes that its leader has gone and starts an attempt on 

leadership. 

A good leader election algorithm should react to node mobility quickly; avoid duplicate 

leaders and excessive leadership changes. In section 3.4.2 , we discussed a few 

implementation choices on the Leader Election Module aimed at optimizing the leader 

election algorithm. As pointed out in section 3.4.2 , the implementation choices on the 

leader election algorithm don’t affect the guarantees provided by the VNLayer 

abstraction. These optimizations will be explained in detailed in the following 

subsections.  

4.7.1  Faster Leadership Switching 

Because it takes 3 Heartbeat intervals for a region to decide that its leader is gone, 

Leadership switching is slow when waiting on missed HeartBeats. To solve this problem, 

we let a leader node send out a LeaderLeft message when it leaves its region. The 

LeaderLeft messages triggers a leader election right away in the leaders previous region. 

The addition of this message greatly improves the delivery performance. It also lowers 

the requirement on the frequency of periodic Heartbeat messages. The Heartbeat interval 

is increased from 1 second to 5 seconds without affecting the performance of 

applications. The number of Heartbeat messages, the largest fraction of leader election 

messages, is reduced by 5 times. 
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In the case that the leader node crashes before it can send out a LeaderLeft message, the 

non-leader nodes can still detect, although much more slowly, the absence of the leader 

node in three Heartbeat intervals and start another leader election.  

The simulations reported here assume no node failures. Frequent leader failures (as 

opposed to motion out of a region) would require a lower HeartBeat interval to keep the 

leadership switching delay down. 

4.7.2  Reducing Duplicate Leaderships 

Duplicate leaders can happen when messages are lost due to collisions. For example, 

when a node enters a region, it sends out a LeaderRequest message. If the LeaderRequest 

message couldn’t be heard by the current leader of the region or the leader’s LeaderReply 

message couldn’t be heard by the requesting node, the requesting node would claim itself 

as a leader. 

In a routing application, when duplicate leadership happens, a virtual node could forward 

the same data message multiple times toward the same next hop, causing amplified data 

traffic. Second, since the new self-claimed leaders don’t have any route, data packets sent 

to them can trigger incorrect data packet drops and unnecessary route discoveries. This 

disrupts the data forwarding and increases the traffic overhead. Third, when there are 

multiple leaders in a region that have different application states, each incoming message 

could trigger a state synchronization in the region. This increases the state 

synchronization overhead. The increased traffic overhead can in turn cause even more 

duplicate leadership in the network. Therefore, duplicate leadership is very harmful. 
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In a lossy channel, it is impossible to prevent duplicate leadership. However, measures 

can be taken to reduce the chance that duplicate leadership happens and eliminate 

duplicate leadership quickly when it happens.  

Since most duplicate leadership happen when a node enters a new region, we increased 

the delay before a newly arrived node can send its LeaderRequest message. Therefore, 

the newly arrived nodes have a greater chance of receiving a message from the current 

leader of the region and give up its attempt on leadership. In addition, after a newly 

arrived node sends out its LeaderRequest message, it also has to wait longer (than a non-

leader node has to wait in a leader re-election) before it can claim leadership. This 

increase the chance a LeaderReply message can be heard from the current leader by the 

requesting node. 

When a node whose state is LEADER receives a Heartbeat message from the same 

region, it checks when the sender became the leader. If the sender became the leader of 

the region earlier, the node gives up its leadership and sets its state to NONLEADER. If 

the sender became the leader of the region later, the node sends out a Heartbeat message 

right away to ask the other leader to give up its leadership.  

With these optimizations, duplicate leadership rarely occurred in the simulations reported 

here. 

4.7.3  Stabilizing Region Leaderships 

Each time a region leader leaves a region, the services provided by a virtual node has to 

be paused for a period of time so that a new leader can be elected. In a leadership 
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switching, there is always a chance that the new leader doesn’t have consistent state. As 

we are going to see later in this thesis, loops can form when this happens. Therefore, it is 

desirable that the number of region leadership switches be minimized.  

Excessive leadership changes can happen when rapidly moving nodes become leaders, so 

that some penalty for rapid motion is useful in a leader election. In our implementation, 

nodes that can stay in a region longer are given an advantage in the competition for 

leadership. Here, we assume mobile nodes can find out their current motion rates and 

direction they are heading. Based on this information, a mobile node can find out how 

long it would take it to enter a different region. In a leader election, when mobile nodes 

decide their random delay before they can sends out their LeaderRequest messages, 

different random delays are used for nodes with the following 4 different levels of 

stability.  

1. Static nodes: nodes that are not moving. 

2. Stable nodes: nodes that can stay in the current region longer than 2 seconds. 

3. Unstable nodes: nodes that can stay in the current region shorter than 2 seconds 

but longer than 0.1 seconds. (This is the waiting time before a requesting node can 

claim leadership, if there is no rejection.) 

4. Very unstable nodes: nodes that are leaving the current region before it can claim 

their leadership if they send out LeaderRequest messages right away. 

Table 4-1 shows the random backoff settings we used for nodes at different stability 

levels. This way, the slowest nodes send out their LeaderRequest message soonest. 

Therefore, they have the greatest chance of being elected as the leader of the regions they 
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are in. With this optimization used, the average number of leadership changes is reduced 

by 10%. 

Table 4-1 Random backoff settings in leader election for nodes at different level of 
stabilities 

Node Stability Level Random Backoff Setting (picked uniformly random in the range) 

1. Static Nodes 0~0.05 second 

2. Stable Nodes 0.05~0.1 second 

3. Unstable Nodes 0.1~0.15 second 

4. Very Unstable nodes 0.2~0.25 second 

4.7.4  Electing Better Leaders 

When a node whose state is out of sync is elected as the leader, the virtual node in the 

region may operate incorrectly. In order to improve the performance of VNLayer based 

applications, nodes whose application state is out of sync (for example, newly arrived 

nodes) can be given lower precedence in leader elections.  

The solution is, each time a state inconsistency is detected, a non-leader node sets its 

Sync Status to “out-of-sync”. Once its state is synchronized, the non-leader node clears 

the flag. During a leader election, if a node is flagged as “out of sync”, it delays itself 

longer before it can send out its LeaderRequest message. This way, if there are other 

Backup nodes in the region, the chance that the out of sync node takes over the region is 

lower. 
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4.7.5  Reducing the Number of Backup Servers 

When a MANET is dense, there is no need for every region to have many Backup 

Servers. Having too many Backup Servers in a region can also lead to large number of 

state synchronizations27. As discussed in section 3.4.3 , an optimization can be done to 

control the number of Backup Servers in a region. 

An optional Coin Tosser Function (CTF) is added to the leader election module to reduce 

the number of Backup Servers when the network is dense. Each time the Leader Election 

Module on a node finds out the node is to become a non-leader, it calls the CTF to decide 

whether the node will become a Backup Server or a Pure Client node. The CTF makes 

the decision using a preset threshold value and the current estimated number of nodes in 

the region. The preset threshold value is an integer between 0 and 1000. If the threshold 

is 1000, a non-leader node always sets itself to be a Backup Server. If the threshold is 0, a 

non-leader node always set itself as a Pure Client node. This actually means there is no 

Backup Server in any region. The CTF calculates the current number of physical nodes in 

the local region using the neighbor list maintained by the Neighbor and Region State 

Maintenance functionality in the Packet Classifier. Let this number be “size”, the 

following formula is used to calculate the probability � that the node will set itself as a 

Backup server. If the node density of the local region is 0, p is set to preset 

threshold/1000 

�� ���� � 0, � !
������ �"���"���

2000 # ���� 
 

                                                 
27 Both MSG-SYNC and MOV-SYNCs 
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�� ���� ! 0, � !
������ �"���"���

1000
 

The CTF makes a random Boolean decision with probability � and informs the VNLayer 

state machine about the decision on whether a non-leader node is to be a Pure Client node 

or a Backup Server. 

4.8  The VNLayer State Machine 

Figure 4-3 shows the state machine that controls the core VNLayer operations. The state 

transitions are triggered by input actions such as “regionChange” events generated by the 

Location Checking Module, “leader” event generated by the Leader Election Module 

(when a node becomes a region leader), “backup server” or “pureClient” event generated 

by Coin Tosser Module, state inconsistency detected by the Consistency Manager, 

synchronization waiting timer expiration and incoming messages such as the SYN 

message and SYN-ACK messages. The output action includes the sending of SYN and 

SYN-ACK messages. 

The VNLayer of every mobile node starts with the initial state UNKNOWN before it 

finds out for the first time about its region id. Once its region id is known, a node enters 

the state NEWNODE. In addition, whenever a node enters a new region, the state of the 

node always transits into NEWNODE.  
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Figure 4-4 The VNLayer State Machine 

Each time a node enters the state NEWNODE, the node resets the state at the application 

layer using the interface function “server initialization”. After this, the node waits for the 

events from the Leader Election module so that it can determine what role it will play in 

the new region. If the Leader Election Module decides that the node is the leader of the 

region, the node changes its state to SERVER. When the Leader Election Module decides 

that the node will be a non-leader, if the Coin Tosser Function decides that the node will 
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become a Backup Server, the node sets its state to SYNC. Otherwise, the node changes 

its state to PURECLIENT. 

A Server node remains in the state SERVER as long as it stays in its region. In addition to 

responding to application messages, it also handles incoming requests for state 

synchronizations. However, when duplicate leadership happens and the node’s Leader 

Election module decides to give up its leadership, the Coin Tosser Function will then 

decide whether the node shall act as a Pure Client node or a Backup Server. 

When a node is to act as a Backup Server, the next thing it needs to do is to synchronize 

its state with the leader’s state. Therefore, it asks the State Synchronization Module 

(SSM) to do a state synchronization. More details on the State Synchronization Module 

will be given in the next section. Once the node’s state is synchronized, its state turns to 

BACKUP and it becomes an operational Backup Server of its region.  

As mentioned before, a Backup Server node checks its state with the Server node’s state 

(using the Consistency Manager). Once it determines that its state is out of sync, it 

changes its state to SYNC and asks the State Synchronization Module to do a state 

synchronization.  

When the leader of a region leaves, a leader election will be done by the leader election 

module. This results in changing the role a node has to play in the region, even if the 

VNLayer status of a node is originally PURECLIENT.  
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4.9  Sending Queue 

As discussed in chapter 3, the application layer on both Server nodes and Backup Server 

nodes put their response messages in a sending queue in the VNLayer. However, only the 

response messages on a Server node actually get sent.  

If a node’s VN Status is Server, the Sending Queue module is enabled to send. Packets in 

the queue are sent out one by one, with a small interval (10ms) between each sending. 

The small interval between each sending is added to reduce message collisions in the 

channel. 

When a node’s VN Status turns from Backup Server into Server, as a result of a leader 

election, the sending queue will also be enabled to send so that the packets remained 

there will be sent out. The packets stored in the sending queue are set to expire after a 

period of time (2 seconds). This prevents Backup Server nodes from sending out very old 

messages left in their sending queues, when they become Server nodes of its region. 

As explained in section 3.2.1 , the extended link layer model allows physical nodes and 

virtual nodes to communicate using Directed Broadcast28 whenever it is possible. When 

this implementation choice is used, if a packet to be sent is destined for a virtual node 

rather than a physical node, the current leader of the region hosting the virtual node will 

be looked up from the region activeness table. If the current leader is known, the packet is 

                                                 
28 Direct Broadcast means when promiscuous mode is used by physical nodes, a packet can be broadcast to 
nearby physical nodes using a unicast destination address. The use of unicast destination address allows 
link layer acknowledgement and re-transmission.  
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sent out using a unicast destination address. Otherwise, the packet is sent out using a 

broadcast destination address. 

In order to use Directed Broadcast, we need to consider packet transmissions in the 

following three cases: 

 Client process to virtual node transmission: Client processes use the region activeness 

table maintained by the Packet Classifier to find out the address of the leader of the 

virtual node. If the address is known, it sends the packet to the address of the leader node 

by unicast.  

When the address of the leader node is unavailable, the client process sends its packet 

using a broadcast address. With the response packet sent out by leader node, the Packet 

Classifier will find out the address of the leader. 

This implementation requires a client process to be able to keep track of the address of 

the leaders of regions. This breaks the abstraction and makes it harder to develop client 

code. One alternative implantation is to let virtual node emulator nodes to use two IP 

addresses, one unique address identifies itself, the other one identifies its region. When a 

client process needs to communicate with a virtual node, it uses the IP address for the 

region. The Server node in the region responds to unicast packets destined for the virtual 

node. However, doing so requires a more complicated link layer model. 

Virtual node to virtual node transmission: When a virtual node needs to send a packet 

to another virtual node, from the region activeness table, it can find the address of the 
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current leader of the destination region. The packet is sent to the leader node of the 

destination region using unicast. 

When the transmission of the packet fails due to leader changes, the sender virtual node 

replaces the address of the destination region to UNKNOWN. This transmission failure 

can be reported to the application layer together with the packet in question. The 

application layer then determines whether the packet shall be retransmitted or not.  

When the address of a region’s leader is unknown, a virtual node sends packets to the 

region by broadcast. 

If a LeaderLeft message is missed by a virtual node, a node that sent the LeaderLeft may 

continue receiving packets for its old region’s virtual node after it has left the region. In 

this case, the node sends another LeaderLeft message to inform the neighborhood again 

about the leadership change.  

Virtual node to client process transmissions: When a virtual node needs to send a 

packet to a client process, the address of the client node is known to the virtual node. 

Using unicast destination address for this transmission is natural. 

4.10  Application Packet Processing 

In this section, we explain in detail how the Application Packet Processing Module 

works. This involves a number of sub-modules. Figure 4-5 shows a detailed illustration 

of the module. 
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4.10.1  Client Message Handler (CMH) 

If a physical node is equipped with VNLayer capability, all local client messages are 

passed to the CMH by the Packet Classifier.  Since other emulator nodes in the same 

region need to hear the message too, the CMH module makes a copy of the client 

message, and broadcasts it to the MANET. After this, the CMH module passes the client 

message to the next module, Application Packet Filtering (APF). 

If a physical node doesn’t support VNLayer, it still needs to implement the CMH module 

so that its local client message can have a VNLayer header, with type set as VNLayer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Details of the Application Packet Processing Module 
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Application message and subtype set as Client Message. The CMH module then 

broadcasts the Client Message to the MANET. 

4.10.1.1  Implementing the Powerful Emulator Option 

This section presents the implementation of the Powerful Emulator option. As introduced 

in section 3.4.10 , an implementation choice called Powerful Emulator  can be used to 

allow emulator nodes to act as independent servers and process local client messages 

directly. When this option is turned on, the CMH module does nothing except  passing 

the local client messages to the server process at the Application Layer through an 

interface function called Direct Client Message Handling (DCMH). DCMH handles 

client messages alone.  

Because the DCMH function at the application layer can communicate with other virtual 

nodes on its own, messages sent by the DCMH function always need to be sent directly 

to the link layer rather than controlled by the Sending Queue. Therefore, the DCMH 

function is given direct access to the link layer. Every packet sent out by the DCMH 

function is set as a Client Message, so that it won’t trigger any state synchronization on 

other emulator nodes in the same region. Simulations on VNAODV with the Powerful 

Emulator option use this function. 

4.10.2  Application Packet Filtering (APF) 

When implementing the basic VNLayer model, a VNLayer application packet can only 

be passed on if it comes from the local region or from an immediate neighbor 
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region/virtual node. Hence, the APF module drops all messages coming from non-

neighboring regions. 

With our extended VNLayer model, virtual nodes are allowed to communicate with any 

virtual node it can reach. When implementing the extended VNLayer model, packets sent 

from any virtual node can be passed on by APF. Doing this reduces the reliability of the 

virtual node based network while increases the efficiency of it. In section 6.3.2 , we can 

see this implementation allows us to use fewer hops to forward data packets in a routing 

application. 

In addition to filtering packets coming from remote regions, the APF also blocks 

application packets on emulator nodes whose state is out of sync. This is to ensure 

VNLayer emulator nodes whose state is out of sync don’t process incoming application 

messages and generate bad response messages. 

4.10.3  Application Packet Total Ordering (APTO) 

This module buffers packets passed up from the APF module for a short period of time29. 

The packets buffered will be sorted using their sending times to increase the likelihood 

that different virtual node emulators receive packets in roughly the same order. Order 

matters because we want the state on each emulator node to change in the same sequence. 

This way, when the next module, Consistency Manager, uses the incoming messages to 

detect state inconsistencies, it makes fewer false positive detections of an out-of-sync 

state. 

                                                 
29 We set this parameter to 10 milliseconds. 
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4.10.4  Consistency Manager (CM) 

Consistency Manager is the last module an incoming packet has to go through before it is 

passed onto the application layer. The Consistency Manager cleans up the sending queue 

and detects state inconsistencies using incoming application packets, and passes packets 

to the application layer.  

4.10.4.1  Sending Queue Clean Up and State Consistency 
Check 

Since the Server node and Backup Server nodes in the same region are supposed to 

prepare the same sequence of responses message, a Backup Server should receive from 

the Server node a copy of every message in its sending buffer. On a Backup Server node, 

the consistency manager uses the messages it receives from the Server node to drop 

identical response messages from its sending queue and to detect state inconsistency 

when no identical response messages can be found. 

On a Backup Server node, when the Consistency Manager receives a VNLayer 

application packet from the local region, it checks the subtype field in the VNLayer 

header.  

Each Client message is sent by a single client process and it is not buffered in the sending 

queue. Therefore, this subtype of local application messages is ignored by the 

Consistency Manager. As defined earlier, Forwarded Client Messages have nothing to do 

with the application state. Therefore, we don’t do state consistency checks on Forwarded 

Client Messages either. 
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For Server Messages and Forwarded Server Messages, the Consistency Manager checks 

the sending queue to see if it holds a packet that is identical to the incoming packet. To 

tell whether two response packets are identical, the Consistency Manager calls the 

application layer user interface function equal(). In the VNLayer design in [1], two 

packets have to be exactly the same so that they can be considered the same. This way, 

there is no need to ask the application layer to check if two packets are the same. Since 

there are cases in which we might want to allow the response messages of from a Backup 

Server node and the Server node to be a little bit different. For example, the timestamp on 

each response message could be slightly different due to out of synch clocks on different 

node. However, triggering a state synchronization over such differences may not worth 

the cost. Therefore, we propose to allow the VNLayer to ask the application layer to 

check whether two packets are similar enough to be considered identical response to the 

same message. 

If a match can be found, the Consistency Manager removes the matching packet from the 

sending queue. If no match can be found, the Consistency Manager asks the state 

synchronization module to do a state synchronization (This is a MSG-SYNC.).  

When a VNLayer based application involves large number of Forwarded Server 

Messages (for example, routing application), in a lossy channel, the state synchronization 

overhead can be very heavy because Backup Server nodes in a region could miss many 

packets received by the Server node in the same region. Therefore, in such applications, 

to reduce the number of MSG-SYNCs, we only do state synchronization checks on 

Server Messages. 
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Another option provided by the Consistency Manager is to use the VNLayer header state 

hash field to check for state inconsistencies. To do this, each outgoing message shall 

carry a hash of the sending node’s application state. Using an application interface 

function, getHash(), the CM can check if the local state is the same as the Server node’s 

state. One disadvantage of the method is the computation cost involved in the state 

hashing. Also, many state synchronizations can be triggered by state inconsistencies on 

irrelevant parts of the state. To alleviate the impact these problems, the getHash() 

function in the application layer could be programmed to just do state Hashing a subset of 

the server’s state that is deemed critical.   

4.10.4.2  Passing Application Packets to the Application Layer 

Depending on the VN Status of a node, the Consistency Manager decides whether an 

application packet needs to be passed to the application layer though the interface 

function receive(). If a node’s VN Status is Server or Backup, the Consistency Manager 

passes the packet to the application layer. If a node’s VN Status is PURECLIENT, the 

CM doesn’t pass the packet to the application layer. 

4.11  State Synchronization 

Application layer state is maintained by the application layer. In order to do state 

synchronization, the VNLayer can read and change the application layer state through the 

API.  
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When the State Synchronization Module is asked30 to do a state synchronization, it sends 

out a SYN message by unicast and sets a waiting timer for the response. When a Server 

node receives a SYN, it uses an interface function, getState(), to retrieve the local 

application state and creates a SYN-ACK message. When a Backup Server node receives 

a SYN-ACK message from the Server node, it uses another interface function saveState() 

to update its local state with the payload of the SYN-ACK message. 

If the timer expires and no SYN-ACK message is received, the Backup Server tries again. 

The time interval between consecutive synchronization attempts increases linearly with 

each additional attempt. 

In VNE, each non-leader checks all incoming messages from the local leader to look for 

state inconsistencies. Each packet missed by a non-leader node due to collision could 

trigger a state synchronization. Therefore, the state synchronization overhead increases 

quickly with heavier application traffic. In addition, in a state synchronization, a Server 

node has to send its state to the Backup Servers. The size of each SYN-ACK message can 

be large when the application layer state is large.  

Because state synchronization messages can be large and consume a lot of bandwidth, we 

want to reduce the number of unnecessary state synchronizations. In the following 

subsections, I discuss in detail the optimizations/implementation choices we used to 

reduce the size of the SYN-ACK messages, to reduce the number of SYN and SYN-ACK 

                                                 
30 by either the VNLayer State Machine or the Consistency Manager Module in the application message 
processing function. 
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messages and to reduce the number of state synchronizations that are triggered in the 

consistency manager. 

4.11.1  State to be Synchronized 

In section 3.4.4 , I introduced the optimization we used to reduce the state 

synchronization overhead by including only hard state in state synchronizations 

messages. The application layer decides what state is hard state and what state is soft 

state. The VNLayer creates SYN-ACK messages using the state passed down from the 

application layer. 

If there is further need on reducing the size of the SYN-ACK messages, one solution is to 

synchronize only the portion of the state that is deemed critical. For example, in a routing 

application, the routes that are in use and the routes that are recently used can be deemed 

as critical state. In addition, the information maintained for a router in region, (for 

example, the local time) shall also be deemed critical. 

4.11.2  Subtypes of State Synchronizations 

As explained in section 3.4.5 , there are two types of state synchronizations in the 

VNLayer. The first type is motion sync (MOV-SYNC). MOV-SYNCs happen when a 

node enters a new region and becomes a Backup Server. The second type is message sync 

(MSG-SYNC). MSG-SYNCs happen when a Backup Server node detects state 

inconsistencies based incoming messages from the local Server node.  Based on our 

observation, in routing applications, MOV-SYNCs are more important in keeping the 

state of the Backup Servers consistent with the Server’s. This is easy to understand. When 
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a node just enters a new region, it has completely no idea about the current state of the 

virtual node emulated router of the region. The quickest way it can get its state updated is 

to do a state synchronization with the Server node. However, MSG-SYNCs are like doing 

patches on emulator states that has flaws. Routing application’s requirement on state 

consistency is not as strict as in MANET address allocation. For example, a Backup 

Server may use a different viable next hop from the Server node’s simply because it 

received RREP messages in a different sequence. When the Backup Server takes over the 

region, nothing bad will happen. A MSG-SYNC triggered by this kind of state 

inconsistency will be unnecessary. Therefore, in the VNLayer, we provide the option for 

the user to turn off MSG-SYNC completely when it is deemed necessary31. 

4.11.3  Control Over State Synchronization Frequency 

As introduced in section 3.4.6 , a limit can be set up for the maximum frequency a Server 

node can send out SYN-ACK messages. For example, a Server node can be set to send 

out at most one SYN-ACK message to its region per second.  

4.11.4  Use Overheard SYN-ACK messages. 

When a Backup Server’s state is inconsistent with the Server’s, it is likely that there are 

other Backup Servers in the region whose states are inconsistent too. Therefore, multiple 

non-leaders in the same region can send out their SYN messages together. Responding to 

each SYN message with a SYN-ACK is not necessary.  

                                                 
31 With another option, MOV-SYNC can also be turned off. In the next chapter, simulations are done to test 
what happens when all state synchronizations are turned off.  



   

 98 

As introduced in and section 3.4.7 , we can let Backup Servers use overheard SYN-ACK 

messages to update their state. This is done as follows. SYN-ACK messages sent out by 

the Server node as a broadcast message so that every Backup Server node can use it to 

update their state. A random backoff mechanism is used by the Backup Server nodes so 

that they delay their SYN messages with a random period of time before sending them. 

When a SYN message is heard from another node in the same region, a Backup Server 

whose SYN message hasn’t been sent out cancels the SYN message.  

4.11.5  State Consistency Checks 

In VNE, a non-leader uses every incoming message from the local leader node to check 

for state inconsistencies. In a routing application, when the data traffic is heavy and the 

channel is congested, the Server node and Backup Server nodes in a region could receive 

very different sets of messages. Therefore, many MSG-SYNCs could be triggered. In 

order to reduce the number of state synchronizations, in section 3.4.8 , I introduced the 

optimization in which only messages that affects hard state are checked for state 

inconsistencies. In this section, I discuss this optimization in greater detail. 

We classified VNLayer application messages into four subtypes, Client Messages, Server 

Messages, Forwarded Client Messages and Forwarded Server messages. The reason why 

we do this is because different application messages reflect the application state in 

different ways. In general, Server Message are the most connected to the application state 

because they are usually generated based on the application state. Client Messages have 

nothing to do with the application state because they are generated by the client process. 

When the application state is used to forward Forwarded Server Messages and Forwarded 
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Client Messages and can be affected by the forwarding operations, these two types of 

messages are connected to the application state too.  
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CHAPTER 5. MANET Address Allocation over 
the VNLayer 

In this chapter, I present a VNLayer based address allocation protocol for MANET, 

VNDHCP (Virtual Node Dynamic Host Control Protocol). VNDHCP is adapted from the 

standard DHCP [17] for a wireline network, which operates basically as follows. When a 

client in a network needs an IP address, it broadcasts a DISCOVER message to the 

network. When a DHCP server receives the DISCOVER message and it has available IP 

addresses, it sends out an OFFER message by broadcast. When the client receives the 

OFFER, it confirms to the server that it wants to use the IP address by sending back a 

REQUEST message. When the server receives the REQUEST message, it sends back an 

ACK message, informing the client that it can start using the IP address it asked for, for a 

period of time (a lease time). Before the lease time expires, the client sends another 

REQUEST message to renew the lease with the server. The server confirms the renewal 

request with another ACK. By renewing the lease for its address periodically with the 

server, a client can use an IP address assigned by the DHCP server indefinitely. 

VNDHCP was implemented over VNSim using the extended link layer model32 and the 

basic VNLayer model. In VNDHCP, address allocation servers are emulated by the 

virtual node in each region. The addresses owned by the MANET are partitioned into 

pools33 for allocation to the virtual node servers. Inside each region, a client process can 

                                                 
32 This is due to the use of VNSim, which uses the link layer service provided by ns-2. 
33 In our implementation, the address pool owned by each virtual node is of the same size. 
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ask for addresses from the local virtual node, as if it is a fixed DHCP [17] server in the 

region. The operations of VNDHCP are therefore the same as DHCP when both the client 

and server are in the same region. However, this isn’t always the case because a client 

process can leave the region after getting its address allocated. To solve this problem, 

VNDHCP lets a client node talk to the virtual node that originally supplied its address in 

order to renew its lease on the address. This inter-region communication is supported by a 

simple geographical routing algorithm. 

As discussed in section 2.1 , a MANET address allocation server should allocate 

addresses to clients in such a way that each client can get an address until all addresses 

have been allocated; that no two clients have the same address; and an address can 

eventually be recovered for allocation to a second client if the client using it fails or 

leaves the network.  It should be able to achieve this in the presence of message losses. In 

addition, since the address allocation servers in VNDHCP are emulated by virtual nodes, 

they must work correctly under the failure modes of the VNLayer, which include virtual 

node failures and resets. 

The following sections explain how VNDHCP operates inside a single region and how a 

client node can get its address renewed or allocated from a remote virtual node. An 

important VNLayer implementation choice that reduces the state synchronization 

overhead is also explained. Section 5.5 discusses the advantages and disadvantages of 

VNDHCP, compared with other MANET address allocation protocols.  
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5.1  Address Allocation and Renewal inside a Single Region 

 

Figure 5-1 Address Allocation and Address Renewal in VNDHCP 

Figure 5-1 illustrates the basic operations of the VNDHCP protocol, from a client’s point 

of view34. In a region, a client process that needs an address broadcasts a REQUEST 

message to its region. Each REQUEST message is uniquely identified by the sender’s id 

and a sequence number generated by the client process. When a REQUEST message is 

received by a virtual node, it responds with an available address if it has one, using an 

OFFER message. Receiving the OFFER message, the client process confirms that it 

wants to use the address by sending back an ACQUIRE message35. Upon receiving an 

ACQUIRE message from the client process to which it offered the address, the virtual 

node sends an ACK message to the client process. The ACK message carries the amount 

of time the address can be used (the lease time) by the client process. Receiving the ACK 

                                                 
34 The protocol is the same for address allocation across region borders. However, the messages would be 
relayed by the local virtual node to neighboring regions. However, from the point of view of a client, the 
interaction it has with a virtual server is the same as shown in the figure. 
35 The reason why this confirmation step is needed is because a client process can receive multiple 
OFFERs, as we’ll see soon. 
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message, the client process can start using the address for a lease time. These four steps 

conclude the address allocation stage of VNDHCP. If an offered address isn’t allocated 

with an ACK, it remains available. 

To prevent duplicate address assignment and to allow reallocation of unused addresses, 

each address in the address pool of a virtual node is associated with a flag indicating the 

allocation status of the address. The flag can take one of three values free, pending36 and 

assigned. Each address is also associated with a value, lifetime37, which indicates when a 

pending or assigned address should be set back to free. In addition, each address is also 

associated with a value, owner, which records the id38 of node that is currently using the 

address. 

In order to keep using an address, a client process has to renew the lease before the lease 

on its address expires. The renewal comes from the virtual node that originally assigned 

the address. To renew an address lease, a client process sends out a RENEW message to 

the virtual node (indentified by its region id). When a virtual node receives a RENEW 

message, it checks its state to see if the address in question is indeed assigned to the 

sender of the RENEW message. If so, it extends the lifetime of the assigned address by 

another lease time and sends an RACK message back to the client process. Like the ACK 

message, the RACK message carries the amount time the client process can keep using 

the address. On receiving the RACK message, the client process refreshes the lease time 

                                                 
36 An address is “pending” state when it is offered to a client process but yet allocated to a client process. 
37 It is set to a lease time when an address is allocated. It is set to a smaller value when an address is set to 
“pending”. 
38 MAC address, for example. 
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on its address. These two steps conclude an address renewal. This RENEW-RACK 

procedure repeats between a client process and a virtual node every lease time.  

If an address renewal fails because the RENEW message from the client to the server is 

lost in the channel and the lease expires, the virtual node will set the address allocated to 

the client process back to free.39 On the client process, when the lease on the address it 

uses expires, it gives up the address and start a new address allocation procedure.  

If an address renewal fails because the RACK message from the server to the client is lost 

in the channel, the client process will give up the address when its lease expires. On the 

virtual node, the address remains as allocated for another lease time. Then, the lifetime 

on the address also expires. The address will also be set back to a free address. 

5.2  Address Allocations and Renewals across Region Borders  

If a client process never leaves the region where it gets its address assigned, the address 

allocation and renewal procedures are almost the same as DHCP’s address allocation and 

renewal procedure. However, in VNDHCP, a client process may leave the region from 

which it originally got its address. A virtual node that assigned an address for a client 

process can also crash when the virtual node’s region becomes empty. Therefore, some 

alterations are necessary to VNDHCP.  

There are three cases in which address allocations and renewals need to be done across 

region borders. First, a virtual node may run out of address (Section 5.2.1 ).  Second, a 

                                                 
39 There is no extra attempt on renewal allowed in VNDHCP. 
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In the first case, when a local virtual node runs out of free addresses for client processes 
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process by source routing, using the inverse of the forwarding path carried in the 

REQUEST message.  

A client process may get multiple OFFERs relayed (by its local virtual node) to it from its 

immediate neighbor virtual nodes. The client process takes the first OFFER and sends 

back an ACQUIRE message toward the region that originated the OFFER message. The 

local virtual node forwards the ACQUIRE message by broadcast to its immediate 

neighbor regions. Like the forwarded REQUEST messages, the ACQUIRE message 

records the virtual nodes that have forwarded it. When the virtual node that made the 

offer receives the ACQUIRE message, it sends back an ACK message. The message is 

also forwarded back to the client process the inverse of the forwarding path carried in the 

ACQUIRE message.  

5.2.2  Node Motion 

In the second case, when a client process needs to renew its address lease, it might have 

already left the region from which it initially got its address. A client process must be able 

to renew its address lease with the remote virtual node that originally assigned it its 

address. Therefore, the RENEW message needs to be forwarded by virtual nodes toward 

a remote region and the RACK message also needs to be forwarded from a remote region 

back to the region where the client process is.  

5.2.3  Virtual Node Reset 

In the third case, in VNDHCP, when a virtual node is just booted up in an empty region, 

it sets all the addresses in its address pool as “assigned” for a whole lease time and set the 
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owner of all the addresses as “unknown”. This is because the newly booted virtual node 

doesn’t know whether there are client processes in other regions still using an address 

allocated by the region. Setting all the address to “assigned” therefore prevents duplicate 

address allocations.  

During this one lease time waiting period, client processes in the newly booted region 

must rely on the virtual nodes in neighbor regions for address allocation. Address 

allocation and address renewals are done across region borders exactly as we have seen in 

the two cases above. 

If there are indeed client processes using addresses originally assigned by a newly booted 

region, it would be ideal if they can keep using their addresses although the virtual node 

in the newly booted region has crashed before. Receiving a RENEW message for an 

address, if a virtual node finds out that the address is “assigned” and the owner of the 

address is “unknown”, the virtual node extends the lease for the client process and set the 

owner of the address to the original sender of the RENEW message. This way, the truly 

“assigned” addresses can be used by their owners without interruption. Otherwise, if a 

renewal request comes from a node that is not the owner of the address, as recorded by a 

virtual node, the virtual node ignores the RENEW message. This way, a client process 

that is using the address wrongly eventually gives up the address.   

5.3  Application Layer Implementation Choices 

When a virtual node is not able to assign addresses to a local client process due to address 

depletion or due to virtual node reset, as described above, it relays the REQUEST 
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message from the client process to neighbor virtual nodes. In our implementation, we 

allow the REQUEST messages to be relayed to the immediate neighbor regions only. 

This is because in case the local region runs out of addresses, a client process can have up 

to 8 neighbor regions that can help on assigning it an address. This is good enough when 

the address pool maintained by each region is large enough. 

In addition, when an address renewal must be done across region borders, the RENEW 

and RACK messages need to be relayed by intermediate virtual nodes.  The first method 

to forward the RENEW messages is to use flooding. Basically, a RENEW message from 

a client process is relayed by all the virtual nodes that hear it. The flooding of the 

RENEW message is controlled such that a virtual node forwards the same RENEW 

message only once. Flooding is simple and it is guaranteed to able deliver a RENEW 

message as long as there is a path and there is no message loss. However, flooding is also 

expensive in terms of traffic overhead and message collisions.  

Because a client process knows the geographical location of the virtual node that gave it 

its address, the second method is to use a simple geographical based routing to forward 

the RENEW messages. Basically, a RENEW message is forwarded by each virtual node 

to its neighbor virtual node that is closest to the destination virtual node, no matter 

whether the virtual node’s region is empty or not.  

The forwarded RENEW message also records the virtual nodes it travels through, the 

RACK message sent back from the destination virtual node can be forwarded back to the 

client process using source routing. 
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A second choice is, how many hops a RENEW message is forwarded, either by flooding 

or geographical routing. Using a higher hop limit increases the chance a RENEW 

message reaches the intended virtual node and causes higher message overhead. Using a 

lower hop limit reduces the control traffic overhead and the chance the RENEW message 

can reach the intended virtual node. 

5.4  Implementation Choices taken at the VNLayer 
Based on the discussion so far, the VNDHCP protocol is implemented over the extended 

link layer model and the basic VNLayer model. However, performance can be improved 

by reducing synchronization checks based on message types.  Messages are categorized 

into different subtypes by at the application layer. In VNDHCP, the messages types used 

in address allocation are REQUEST, OFFER, ACQUIRE and ACK messages. The other 

two types of packets are used for address renewal. When a message is originated from a 

client, it is marked as a Client Message or (when sent to neighbor virtual nodes by the 

local virtual node) a Forwarded Client Message. When a message is originated from a 

virtual node, it is a Server Message or a Forwarded Server message. 

Based on the observation that all the forwarded address renewal messages, including the 

Forwarded Client messages and Forwarded Server message, are not using or affecting the 

VNDHCP state, we turned off state consistency checks in the VNLayer consistency 

manager on these two types of messages. This optimization reduced the number of state 

synchronizations without affecting either the state consistency among emulator nodes in a 

region or the address allocation performance.  
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5.5  Discussion: VNDHCP vs. Existing Address Allocation 
Solutions 

Compared with existing MANET address allocation solutions introduced in Chapter 2, 

VNDHCP is a distributed address allocation server that has strong failover capability. The 

address allocation workload is shared by the virtual nodes covering separate geographical 

regions in a MANET. Because both the address allocation/renewal and inter-region 

message forwarding are handled by virtual nodes, the failure or movement of individual 

physical nodes won’t affect the address allocation service as long as there are backup 

emulator nodes who can take over a virtual node after a leader moves to another region.  

Although flooding is used for client messages such as REQUEST and ACQUIRE, the 

number of hops that these messages can be forwarded is limited to 2. This generates at 

most two times40 the message overhead than the case that these messages are not 

forwarded at all. When RENEW messages need to be forwarded across region borders, if 

flooding is used, the forwarding of RENEW messages can cause heavy message 

overhead. However, when geographical based routing is used, the renewal message 

overhead is proportional to the hop distance between the client and the server region. In 

that case, our simulation results show that VNDHCP is scalable with increasing network 

sizes. 

Although duplicate address allocations are very rare in VNDHCP, due to clock skew or 

state inconsistencies during region leadership changes, they can still happen. For 

example, due to message losses, a Backup Server doesn’t know an address has been 

                                                 
40 This is because the local virtual node only rebroadcast the messages to one extra hop by sending out one 
message when it can’t do the address allocation. 
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allocated by the Server node. Before the Backup Server can synchronize its state with the 

Server node’s state, it becomes the Server node of its region. It might allocate the address 

to another client process. Because any given address can only be allocated from a single 

virtual node and every client process needs to renew its lease for its address, address 

duplication can be detected within a lease time. When there are multiple nodes using the 

same address, the virtual node assigning the address acknowledges only one of the 

RENEW messages. The client processes that can’t get an RACK message give up their 

addresses.  

VNDHCP doesn’t have the address leakage problem. When the lease on an assigned 

address is not renewed by RENEW messages from the client process, the status of the 

address always goes back to free. 

Due to the fixed setting of regions in the VNLayer implementation and the fixed address 

pool distribution among regions, network partitions and mergers won’t cause any 

problems for the address allocation. When a network partition happens, a client process in 

a network partition using an address allocated from a separate network partition loses the 

address in one lease time. Before this happens, the virtual node in the other partition 

won’t allocate the address to any other node. When two network partitions merge into 

one, the client processes in both partitions can keep using their current addresses. 

Therefore, the virtual node based protocol doesn’t need any special handling for network 

partitions and mergers. 
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VNDHCP also has its disadvantages. First, the virtual node layer generates extra message 

overhead, although our simulation shows that this overhead is small compared to the 

channel bandwidth. Second, when the local virtual node and all the neighbor virtual 

nodes run out of addresses, a client may not be able to get an address even though there 

might still be addresses available in the system. In this case, the REQUEST messages 

may need to be flooded to more regions. Our simulation results show that when the 

address pool on each virtual node is large enough, the chance that a node can’t get an 

address for extended period of is very low. Third, when a region becomes empty and the 

virtual node in the region is down, all the client processes who got their addresses from 

the region have to give up their addresses when the renewal fails. It would be better to 

back up the state of a region at the servers in neighboring regions.  

The advantages over the existing solutions (for example, MANETConf, ZAL) described 

in CHAPTER 2 suggest the virtual node based address allocation protocol can be better 

suited for mobile ad hoc networks than all previous approaches.   
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CHAPTER 6. Reactive Routing over the 
VNLayer 

Simulation results on VNDHCP show that the VNLayer approach is practical for simple 

protocols with little overhead. Can protocols involving continuous activity and generating 

significant overhead also be supported efficiently with the VNLayer approach? One 

rigorous test of this would be adaptation of a mature MANET routing protocol to the 

VNLayer approach. Can the adapted routing protocol deliver a packet, in the absence of 

message losses, with a bounded delay whenever there is a viable forwarding path? To 

answer this question, we created VNAODV, an adapted version of the popular reactive 

routing protocol, AODV, as introduced in section 2.2.2.2 . 

VNAODV uses the core AODV algorithm41. However, there are a few major differences. 

1) In VNAODV, the routing entities are virtual nodes running routing processes at the 

application layer. In the rest of this thesis, we call them vrouters. Vrouters are identified 

by region ids, in contrast to physical nodes, which are identified by their IP addresses.  

2) In addition, the routing table on each vrouter maintains routes for both physical nodes 

and other vrouters.  

3) At the application layer, each VNLayer emulator node implements the functions 

required by the VNLayer API. These functions pass application layer messages to and 

                                                 
41 The simulation code of VNAODV retains the core AODV algorithms, packet types (with additional 
fields) and the settings on most parameters. Therefore, the performance comparisons between AODV and 
VNAODV are fair.  
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from the link layer and allow the VNLayer to initialize, retrieve and synchronize the state 

at the application layer.  

Now, in a MANET supported by VNAODV, the routing job is handled by vrouters at 

fixed locations in non-empty regions. The reduced number of routing entities, the 

relatively stable topology among the vrouters and the state replication capability provided 

by the physical nodes implementing vrouters would seem to give VNAODV an 

advantage over AODV. On the other hand, as we have pointed on in section 1.5 , the basic 

VNLayer model has its limitations. The small region setting leads to longer forwarding 

paths and the use of local broadcast in data delivery leads to heavier message losses. 

However, using the extended link layer model and the extended VNLayer model shortens 

the forwarding paths and greatly reduces the message loss rate in VNAODV.  Simulation 

results presented in Section 8.2  show that VNAODV based on the extended link layer 

and VNLayer models performs better than AODV. 

This chapter first presents the basic operations of VNAODV. Then, it describes how the 

implementation choices provided by the extended VNLayer model improve the 

performance of VNAODV. Finally, it explains a few optimizations at the application layer 

in VNAODV.  

6.1  Basic Operations of VNAODV 

The basic operations of VNAODV include three parts. Route Discovery refers to the 

operations taken by a vrouter to find a route for a data packet. Data Message Forwarding 

refers to the operations taken by vrouters to relay data packets to the destination. Route 
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Maintenance refers to the operations taken by vrouters to detect/fix link failures and 

recover lost data packets.  

6.1.1  Route Discovery 

As a reactive routing protocol, VNAODV doesn’t do any route discovery or maintenance 

when there is no data traffic. When a data message (DMSG) is sent by a client process 

and received by a vrouter42, the vrouter checks its routing table for a route. If a route is 

available, the DMSG is forwarded to the next hop vrouter identified by a region id. If 

there is no route, the DMSG is put in a buffer, namely, the RecvQueue. Then, the vrouter 

starts a route discovery by broadcasting a route request (RREQ) message to all the other 

vrouters. 

An RREQ message carries the address of the destination node (destination address) and 

the last known route sequence number43  for the destination (destination sequence 

number).  It also carries the region id of the virtual node initiating the route discovery 

(the initiator address), a reverse route sequence number and a BCAST id. The last two 

fields are two non-decreasing integers generated by the initiator. The reverse route 

sequence number is used by other routers to update the reverse route for the initiator 

node. The BCAST id is used by other routers to avoid duplicate forwarding of RREQ 

messages. 

                                                 
42 As we have discussed in chapter 3, when the node hosting the client process is a VNLayer emulator node, 
its VNLayer passes the data message up to the application layer and sends a copy of the data packet to the 
channel, by broadcast, so that all the other emulator nodes in the same region can hear it. 
43 The number is 0 initially, when there is no previously known route. 
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In each region, a vrouter responds to incoming RREQ messages the same way as 

standard AODV does, except that the router ids involved now are all vrouter ids, rather 

than the IP addresses of physical nodes. On receiving an RREQ message, a vrouter first 

uses the reverse route information from the RREQ message to update its route for the 

initiator of the route discovery, if necessary44. Then, the vrouter checks to see if it has a 

route for the destination with a sequence number that is no lower than the destination 

sequence number carried in the RREQ message. If so, it means the vrouter has a fresh 

route for the destination. The vrouter sends an RREP message back towards the initiator 

of the route discovery, using the reverse route just learned.  

If the vrouter has no fresh route, it re-broadcasts the RREQ message, with its TTL field 

reduced by 1. The process goes on until every node in the network is reached or the TTLs 

on the RREQ messages reduce to zero.  

Each route discovery is uniquely identified by the initiator address and the BCAST id 

carried in the RREQ messages. When a vrouter sends or forwards an RREQ message, the 

two fields above are saved in a queue for a period of time so that the vrouter doesn’t 

forward the RREQ for the same route discovery again. 

When the flooded RREQ message is received by the destination node or a vrouter that 

has a fresh route for the destination, an RREP message is generated and forwarded back 

toward the initiator of the route discovery. If it is the destination node that receives the 

RREQ message, the RREP message carries a destination sequence number newly 

                                                 
44 If there are two or more alternative routes, the route with a greater destination sequence number or a 
route with the same the same destination sequence number but a smaller hop count is picked. 
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generated by the destination node (As in AODV, it is an even number that is no less than 

the destination sequence number in the RREQ message and greater than the sequence 

number maintained by the destination node for itself.).  

When a vrouter receives an RREP message, it updates its route entry for the destination 

address, if the incoming route is fresher than its own or if the incoming route carries the 

same sequence number but is shorter than its own.  

Unlike AODV, an extra field is added in the RREP message header to specify the next 

hop vrouter that is supposed to forward it, since the RREP messages are sent by broadcast 

at each hop. To take advantage of the broadcast RREP messages, every vrouter that can 

receive an RREP message uses the message to update its routing table. However, only the 

vrouter specified by an RREP message as its next hop forwards the RREP message,.  

The AODV expanding ring search is also implemented in VNAODV. Using the TTL field 

carried in the messages, the expanding ring search puts a limit on how far the RREQ 

messages will be flooded in each route discovery attempt. Each time a route discovery is 

attempted by a vrouter, a wait time is set up in the route entry for the destination. The 

wait time is calculated based on the TTL used for the RREQ message and the estimated 

per hop delay. During the wait time, if more DMSGs are received by the vrouter, they are 

just buffered in the RecvQueue. When the wait timer expires and there is no response for 

the route discovery, another route discovery attempt will be triggered. This time, a greater 

TTL and longer wait time are used to expand the radius of the route discovery. As in 

AODV, at most 3 route discovery attempts are allowed for a DMSG. 
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6.1.2  Data Message Forwarding 

The Data Message forwarding mechanism of VNAODV is also directly adapted from 

AODV. Vrouters forward each DMSG region by region toward the destination node. An 

extra field is added in the DMSG header to specify the next hop vrouter to relay a 

DMSG. Each time a vrouter forwards a DMSG, it extends the lifetime of the route entry 

used. This way, an active route doesn’t expire unless a link failure is detected. 

6.1.3  Route Maintenance 

DMSGs are most frequently lost because a link fails (e.g., an empty region resulting from 

the leader node leaving the region cannot forward messages). Detecting link failures 

quickly is crucial to reducing DMSG delivery failures. AODV forwards DMSGs at each 

forwarding hop using unicast. This permits various mechanisms to be used to detect link 

failure quickly. For example, a failure can be reported when address resolution can’t 

resolve the MAC address of the next hop router, the RTS/CTS mechanism can’t reserve 

the channel with the next hop, or no ACK for the DMSG can be received and 

retransmission attempts also failed.  

In VNAODV, detecting link failures is harder because the VNLayer requires that DMSGs 

be broadcast so that both Server and Backup Server nodes can hear them. None of the 

previously mentioned capabilities such as address resolution, RTS/CTS and data 

acknowledgement and retransmission can be used on broadcast messages. Therefore, the 

route maintenance mechanism used by VNAODV is different from AODV’s.  
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The AODV specification [40] suggests two alternatives to link layer detection. One is 

periodic Hello messages to maintain a neighbor list on each router, using it to detect link 

failures. The other option is “passive acknowledgments”, i.e., if a vrouter overhears its 

next hop vrouter forwarding the message, it treats it as an acknowledgement.  

Using Hello messages, the Hello interval determines how long it takes to detect a broken 

link. To respond to link failures quickly, the Hello interval has to be set to a small value. 

Doing so introduces a constant message overhead uncorrelated with the amount of data 

traffic. To avoid this, we use the passive acknowledgement mechanism45 described next.  

6.1.3.1  Passive Acknowledgement Mechanism 

In AODV, each time a route entry is used to forward a DMSG, its lifetime is reset to 10 

seconds46. In VNAODV, each time a route entry is used to forward a DMSG, we set its 

lifetime to 3 times the maximum estimated per hop Round Trip Time (RTT) and mark it 

as “unacked”. A “unacked” route entry is set back to “acked” by any data message 

overheard from the next hop vrouter, with its lifetime set back to 10 seconds. Therefore, 

the route entry expires quickly if there is no activity detected from the downstream 

region. When this happens, the link to the next hop router is considered unreliable and 

will be checked. 

                                                 
45 The simulation does this at the application layer. However, it is also possible to move the implicit 
acknowledgement of local broadcast messages to the VNLayer 
46 Using the parameter ACTIVE_ROUTE_TIMOUT in AODV. 
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Thus a vrouter in VNAODV considers a DMSG that is forwarded by its next hop vrouter 

within three RTT’s as a passive acknowledgement47.  

At the last forwarding hop, the destination node acknowledges a DMSG with an explicit 

DMSG acknowledgement so that the last hop vrouter can refresh the route used by the 

DMSG. The use of explicit acknowledgements at the last hop increases the message 

overhead proportionally to the data traffic.   

6.1.3.2  Local Connectivity Check before Local Repair 

The likelihood that a link failure reported by link layer detection reflects an actual link 

failure is much higher for AODV than VNAODV, because the vrouters are far more 

likely to miss a passive acknowledgment due to message collisions.  Thus AODV 

assumes that the apparent link failure is real and either drops the DMSG being forwarded 

and sends a route error message (RERR) upstream, or else it starts a local route repair (it 

does the latter when the place the link breaks is closer to the destination than to the 

source of the DMSG being forwarded).   

To avoid excessive route discoveries, VNAODV uses a different recovery mechanism 

from AODV. If a link failure is reported by link layer detection, VNAODV either sends 

an RERR message or starts a local repair. If the link failure was detected by passive 

DMSG acknowledgement, VNAODV first does a Local Connectivity Check (LCC) to 

find out whether the link is really broken. To do LCC, the route entry involved is marked 

as “route in repair” so that incoming DMSG messages are buffered in the RecvQueue, 

                                                 
47 The DMSGs are forwarded by broadcast, making them audible to the previous hop vrouters. 
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waiting for the route to be verified. An RREQ message, with TTL set to 1, is broadcast to 

the neighborhood. Because LCC is not meant to find a fresher route, the RREQ message 

carries the current destination sequence number of the route involved. If the next hop 

vrouter is still working and the link is good, it responds to the message with an RREP 

message. On receiving this message, the router restores the route entry’s status back to 

“up” and delivers the DMSGs buffered in the RecvQueue. If no such message can be 

heard within 2 RTTs, the vrouter considers the link broken and proceeds with one of the 

two AODV options. 

In response to the one hop RREQ, other vrouters in the neighborhood can also provide 

alternative routes. This can reduce the service interruption when the next hop vrouter is 

indeed down. However, to prevent using alternative routes that are actually using the 

current next hop vrouter as a downstream router, upon receiving RREP messages from 

the neighborhood, a vrouter that is doing LCC only accepts alternative routes that are 

either fresher or no longer than the current one. 

6.2  Preventing and Detecting Routing Loops 

One important design objective of routing protocols is to provide loop free forwarding 

paths. In AODV, routing loops rarely48 happen because the routes are tagged with 

sequence numbers to ensure freshness and each physical node creates and maintains its 

own routing tables independently.  

                                                 
48 In our simulations, loops never happen in AODV because no AODV crashes. Therefore, the sequence 
number maintained by a router for a destination is never stale. 
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In VNAODV, routing loops are more likely. The root cause is that in VNAODV, routers 

are virtual nodes, each of which is emulated by a number of physical nodes. When the 

leadership in a virtual node switches and the new leader’s state was inconsistent with the 

state of the old leader, the new leader could accept bad routes.. The following subsections 

explain three cases in which loops can happen in VNAODV and present solutions to 

them. 

6.2.1  Restarted Regions 

Figure 6-1 illustrates the first case in which routing loops can happen when a virtual node 

is booted up by a newly arrived mobile node. A forwarding path is present between node 

S and node D along region 0.1�1.1�2.1�3.1. When the last node (node B) in region 

2.1 leaves, the virtual node in 2.1 is down. Then node C enters the region and boots up 

the region again. At this moment, node C doesn’t know the latest sequence number used 

by the vrouter in region 2.1. Therefore, it may accept an RREP message from region 1.049 

which uses region 1.1 as the next hop toward node D. When the vrouter in region 2.1 

receives a DMSG from region 1.1, it forwards the DMSG to region 1.0. The vrouter in 

region 1.0 in turn forwards the DMSG back to region 1.1. A loop forms. The key problem 

here is that after the vrouter in region 2.1 went down, the vrouter in region 1.1 still 

forwards packets to it. 

                                                 
49 When region 1.0 gets an RREQ message with a sequence number lower than its current sequence 
number, it sends out a RREP message if it has a route. 
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To solve this problem, when the vrouter for a region is restarted by a newly arrived node , 

the vrouter sends out a special RERR message right after it initializes its state. Receiving 

this special RERR message, neighbor vrouters tear down all local routes that are using 

the sender of the RERR message as the next hop vrouter. This way, no DMSGs will be 

delivered to the newly booted vrouter until it learns a valid route. 

6.2.2  Out of Sync Nodes 
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Figure 6-1 A routing loop in VNAODV when a region is booted 

Figure 6-2 A routing loop in VNAODV when an out-of-sync node takes over a region 
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When a non-leader node loses track of the latest sequence number used by the vrouter in 

its region due to message losses, its state is out of sync. If the leader node leaves the 

region before the out-of-sync non-leader’s state could be synchronized with the leader’s 

state, and subsequently the non-leader node takes over the region, forwarding loops can 

form. Figure 6-2 shows an example. Node B was the leader of region 2.1 and node C’s 

state was out of sync. When B leaves the region and C takes over, node C’s sequence 

number for the route toward destination D could be smaller than the latest route sequence 

number used by node B. At some point later, during a route discovery, if an RREP 

message is received from Region 1.0, an out-of-date route could be accepted by the 

vrouter in region 2.1 because the RREP message has a greater sequence number. (A 

correct RREP message from the destination node D could fix the issue right away. 

However, sometimes the destination node D’s RREP message is lost in the channel.) 

When the vrouter in region 1.1 sends a DMSG to region 2.1, the vrouter in region 2.1 

forwards the DMSG to region 1.0. The vrouter in region 1.0 forwards the DMSGs back to 

region 1.1. A loop forms.  
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Figure 6-3 shows another example. Here, node C used to be a Backup Server of region 

2.1 while node B was the Server node. During a route discovery launched from the 

source node S for destination node D, the RREP message returned from the destination 

node D was received by the Server node B but was missed by node C due to collision. 

When the upstream Server node A forwards the RREP message it receives from Server 

node B, the RREP message is accepted by Backup Server node C as a viable route toward 

D through A. Before this problem could be fixed through state synchronization, Server 

node B leaves and node C takes over region 2.1. A loop forms when DMSGs are 

forwarded to region 2.1 from region 1.1. 
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The root cause of the two types of loops here is that a physical node whose state is out of 

sync could take over a region. As introduced in section 4.7.4 with the extended VNLayer 

model, the leader election can make sure that an emulator node with synchronized state is 

more likely to be chosen as region leader than one without synchronized state. However, 

this only makes loop formation less likely, it doesn’t eliminate it. Therefore, we use 

additional loop prevention and loop detection methods in VNAODV.  

In order to reduce the likelihood of loops, when a vrouter receives an RREQ message and 

is about to respond with an RREP message, it compares the next hop vrouter in its route 

with the sender of the RREQ message. If they are the same, it doesn’t send the RREP 

message. This prevents 1 hop loops.  

Loop detection is also used to detect and break loops quickly. First, when a vrouter learns 

that a DMSG is to be forwarded back to the vrouter where it comes from, the vrouter 

drops the DMSG and sends a RERR message upstream to tear down the loop. Second, 

when a DMSG’s TTL field reaches 1 and still hasn’t reached its destination, it indicates 

that something might be wrong with the route. When this happens, a vrouter drops the 

DMSG and sends an RERR message upstream to report the error.  

As an alternative50 to our last loop detection technique, a packet’s expected hop count 

toward the destination could also be used to detect routing loops. The expected hopcount 

at each forwarding router should decrease monotonically as it gets closer and closer to the 

destination.  Instead of decreasing the TTL field as it forwards a DMSG, a vrouter can fill 

                                                 
50 This alternative is not tested in our simulations. 
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the TTL field of a DMSG with the hop count from the route it has for the destination.  

When a DMSG is received, if the local hopcount is greater than the TTL carried by the 

incoming DMSG, a possible loop is detected.  

6.3  Taking Advantage of VNLayer optimizations 

The purpose of the extended link layer model and extended VNLayer model is to 

improve the performance of VNLayer based applications. The last section described how 

an implementation choice (considering state synchronization status in leader election) at 

the VNLayer can help improve the performance of VNAODV. This section gives more 

examples of VNAODV benefits from the implementation choices in the extended 

models. 

6.3.1  Selective State Synchronization and State Consistency 
Checks 

6.3.1.1  Hard State vs. Soft State 

As an implementation option, a virtual node can choose to keep only part of the 

application state (that is, the hard state) synchronized. This reduces the size of the state 

synchronization packets. This requires a design choice for the VNAODV implementer, 

who needs to determine which part of the application state is hard state and which part is 

soft state. On a vrouter, the most important state is the routing table, which contains 

routes that are up, down or under repair51. In addition, each route entry has a large 

number of fields and data structures (for example, a list of pre-cursor nodes is maintained 

for each route entry). The correctness of some state information only affects the 

                                                 
51 The corresponding flags in AODV are RTF_UP, RTF_DOWN, RTF_IN_REPAIR. 
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performance, rather than the correctness of the routing application. For example, the last 

known hop count for a route that is down helps make the expanding ring search more 

effective in the next route discovery.  

In the simulations reported here, for each route entry, the destination id, hop count, 

sequence number and next hop router id are considered hard state, because these values 

directly affect the correctness of route computations. On the other hand, since dead routes 

are only kept in the routing table for reference, they are considered soft state. In addition, 

the reverse route sequence number and the BCAST id are considered hard state because 

the physical node setting these fields for the vrouter in a region can change due to node 

mobility52. Incorrectness on these reverse route sequence numbers can lead to routing 

loops. Outdated BCAST id’s can lead to router discovery failures. 

6.3.1.2  State Consistency Checks 

The extended VNLayer model provides for specifying which messages a Backup Server 

must use to detect state inconsistencies. This reduces number of state synchronizations. 

The simulations reported here specify state consistency checks on “Server Messages” 

only, i.e., those messages that are originated from a vrouter. These include the RREQ, 

RREP and RERR messages sent by a vrouter. These messages directly affect the routing 

table on vrouters. Therefore, they are considered more relevant to the application state 

than DMSGs, which only uses the routing tables on vrouters.  

                                                 
52 These two pieces of information could get lost when a virtual node is down. Hence, when a vrouter is 
booted by an incoming node, the route discovery it launches can fail if the BCAST id it uses happens to 
match with a BCAST id recently used by the region. The Powerful Emulator option, discussed later, can 
alleviate this problem. 
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Using the two optimizations in this section provides a weaker guarantee on state 

consistency among emulator nodes. We can only guarantee each time a vrouter sends an 

RREQ, RREP or RERR message, if any Backup Server didn’t prepare the same message 

in its sending queue, a state synchronization will be initiated to synchronize the hard state 

of all the Backup Servers.  

6.3.2  Shortening Forwarding Paths 

In the basic VNLayer Model, a virtual node only communicates with its immediate 

neighbor virtual nodes, even though it may be able to reach many additional virtual 

nodes. In our square region setting, a virtual node is therefore guaranteed to be able to 

reach every single virtual node emulator in its 8 immediate neighbor regions. While this 

setup ensures reliable communications between virtual nodes, it also requires that each 

pair of consecutive vrouters on a route created by a VNLayer based routing protocol must 

be immediate neighbors.  

In addition, in the basic VNLayer Model, a client process can exchange messages only 

with its local virtual node for services. Therefore, at the first hop, a DMSG from a client 

process always has to be relayed by the local vrouter at the first hop. At the last 

forwarding hop, a DMSG has to be delivered to the destination node by the local vrouter 

in the destination node’s region, even if a vrouter that is earlier in the route can reach the 

destination physical node.   

These communication rules of the basic VNLayer model increase the length of the 

forwarding paths. Long forwarding paths lead to heavier DMSG forwarding traffic 
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overhead, longer forwarding delay, more frequent route discoveries and a higher chance 

for delivery failures due to broken links.  

The extended VNLayer model relaxes the communication rules in the basic VNLayer 

model. It allows any pair of virtual nodes to communicate with each other and allows a 

virtual node to send to packets to any client process it can reach. This makes the use of 

longer links between vrouters and client processes possible In this section, we explain 

how this can be used to improve the performance of VNAODV.  

6.3.2.1  Direct Receipt (DR) 

When a vrouter sends a DMSG addressed to a destination that is in an immediate 

neighbor region, the destination node can receive the packet without the help of its local 

virtual node. The extended VNLayer model provides an implementation choice that 

allows a client process to receive messages from any virtual node. This option is called 

Direct Receipt (DR). A client process using DR in VNAODV can receive a message  sent 

either by its local vrouter or by a vrouter in one of its neighbor regions. This way, a 

vrouter can deliver a DMSG directly to its final destination even if the destination is in a 

neighbor region. 

As illustrated in Figure 6-4, with DR, the vrouter in region 2.1 delivers a DMSG directly 

to its destination D. To make DR work, at the VNLayer, we don’t allow a virtual node to 

receive a message sent to a client process in its region from another virtual node. Hence, 

the vrouter in region 3.1 doesn’t do anything with the DMSG. DR can reduce the length 
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of forwarding paths created by VNAODV by 1 by skipping the vrouter in the final 

destination’s region. 

  

6.3.2.1.1  Direct Route Report from Destination (DRRD) 

With the DR option, since vrouters don’t relay DMSGs from other regions to local client 

processes anymore, their route entries for the destination node may expire even though 

there are still DMSGs forwarded to the destination node. When this happens, a vrouter 

can’t respond to RREQ messages regarding a node in its region even though some 

neighbor vrouters may still know the route. This can slow down route discoveries.  

To eliminate the need for a vrouter to respond to RREQ messages for nodes in its region, 

we allow the destination nodes themselves to respond to RREQ messages heard from 

immediate neighbor regions directly. In addition, vrouters update their routing tables 

using RREP messages heard from destination nodes in their immediate neighbor regions. 
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6.3.2.2  Early Receiving (ER) 

When communication rules are relaxed so that clients can communicate with non-local 

vrouters, another optimization is to allow a client process to receive any DMSG for it is 

the destination, as soon as it can hear it. This means a DMSG can be received by the 

destination even before the vrouters on the forwarding path are done forwarding it. This 

optimization, called Early Receiving (ER), doesn’t reduce the actual number of times a 

DMSG is relayed. However, it reduces the delivery latency. Figure 6-4 also shows the 

effect of ER.  

ER allows a destination client process to continue receiving DMSGs for a while even 

after it leaves its original region. This gives a last hop vrouter more time to react before 

the destination client process leaves its radio range53.   

6.3.2.3  Long Links (LL) 

The relaxation of communication rules allowing a virtual node to talk to any other virtual 

node within its radio range provides another VNAODV optimization called Long Links 

(LL).  

With LL, the vrouters in VNAODV can work the same way as AODV routers. They can 

use any incoming RREP message they hear to update their routing tables and pick any 

vrouter within their reach as next hop vrouters toward the destination. The forwarding 

paths created by VNAODV can therefore be much shorter. Figure 6-5 shows an example 

in which when LL is used, a forwarding hop can be saved. Here, S is the source client 

                                                 
53 The application layer optimization “route correction by destination nodes” in Section 6.4.3 takes 
advantage of this. 
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process. A, B, C and E are the vrouters in region 1.0, 1.1, 2.1 and 3.1, respectively. D is 

the destination client process. Because the vrouter in region 1.0 can reach the vrouter in 

region 2.1 directly, the vrouter in region 1.1 can be skipped. The forwarding path length 

is shortened from 4 to 3. 

 

However, this improvement in efficiency comes at the cost of degraded link stability. 

With LL, the guarantee of reliable transmission between two consecutive vrouters on a 

forwarding path no longer holds even in the absence of message losses. For example, if 

the next hop picked by a vrouter is not in an immediate neighbor region, it is possible that 

only a subset of emulator nodes in the next hop region can hear the messages sent by the 

vrouter. In the next hop region, when the node emulating the leader moves out of range or 

the leader switches to an emulator node that is out of range, the link between the two 

vrouters will break. When this happens, a local route repair or even a network route 

discovery has to be done to fix the route. 

There is an interesting problem that arises with the LL option. This is illustrated in Figure 

6-6. In the example, vrouter B can’t reach client process D directly. In response to a 
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Figure 6-5 One forwarding hop saved by the Long Links option 
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RREQ message, server node E sends an RREP message regarding D, which is in its own 

region. Vrouter B accepts this message and thinks it is just one hop away from D54. Later 

on, when it tries to forward DMSGs directly to node D, it can’t. The reason this problem 

happens is that with LL, a good link to vrouter in the destination node’s region may not 

be a good link to the destination node itself. To avoid this problem with the LL option, 

vrouters don’t report routes to clients in their own regions.  Instead, the clients use DRRD 

to respond directly to RREQ messages. 

 

 

 

 

 

 

6.3.3  Directed Broadcast 

To improve the reliability of data transmission in VNAODV, messages are sent by 

Directed Broadcast when the next hop is the final destination or when the address of the 

leader of the next hop region is known. Otherwise, local broadcast is used, together with 

passive acknowledgement and LCC for route maintenance. 

                                                 
54 Here, we assume the RREP message originated from the destination node is lost. 
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Figure 6-6 With LL option, a vrouter should not report routes for local destination nodes. 
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When local broadcast has to be used to send a DMSG the sender can acquire the address 

of the next hop region’s leader from the first passive acknowledgment (i.e., the forwarded 

DMSG).  Because of this, Directed Broadcast and link layer detection can be used to send 

most DMSGs and to detect most broken links passive DMSG acknowledgement and LCC 

are rarely used at intermediate forwarding hops. Moreover, explicit DMSG 

acknowledgement at the last hop is not needed at all. Therefore, the use of Directed 

Broadcast makes data transmissions more reliable and route maintenance more efficient. 

6.3.4  Powerful Emulator Option 

Both the basic and extended VNLayer models require a client process to get service from 

its local virtual node only. This may lead to an extra forwarding hop in DMSG 

forwarding. This is because no matter whether a client process resides on a Server node 

or not, a message sent from the client process has to be copied by the VNLayer to its 

region so that all the other emulator nodes can get a copy of it. 

Section 3.4.11 described Powerful Emulator, an implementation choice that allows an 

emulator node to act alone as the server for a client process that it hosts. When this option 

is used by VNAODV, an emulator node of a vrouter hosting a client process can act as an 

independent router, using the VNAODV state maintained by the server process on the 

virtual node. When an emulator node receives a DMSG from a client process running on 

the same node, if the destination is in its own region, it delivers the DMSG directly to the 

destination client process; otherwise, it relays the DMSG to a vrouter in a different 

region. Therefore, a client process on an emulator node doesn’t have to rely on the local 

leader for services.  At the first hop, the emulator node doesn’t copy the DMSG to other 
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emulator nodes in the same region because they don’t need to process the DMSG. As 

shown in Figure 6-7, with the Powerful Emulator option used, in addition to hops saved 

by other options, another forwarding hop at the beginning of the forwarding path for a 

DMSG can be saved because the source physical node S (an emulator node) sends its 

DMSG directly to the next hop vrouter C. The forwarding path is reduced from 3 hops to 

2 hops. 

 

 

 

 

 

6.3.4.1  Basic Operations 

As explained in section 4.10.1.1 , when the Powerful Emulator option is used, the 

VNLayer passes a locally generated Client message from  directly to the application layer 

function DCMH. Therefore, to use the Powerful Emulator option, at the application layer, 

the VNAODV server implements the function DCMH55, which does routing for client 

process on an emulator node56 independently, using and updating the routing table it 

maintains.  

                                                 
55 handleClientPacket() in our code. 
56 As opposed to a Pure Client node, this emulator node is the physical node that hosts the client process. 

Figure 6-7 One forwarding hop saved by the Powerful Emulator Option in VNLayer 
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The DCMH function in VNAODV operates as follows. If DCMH learns that the routing 

table on the emulator node has a route for a locally generated DMSG, then it relays the 

DMSG directly to the next hop vrouter or the destination. Otherwise, the DMSG will be 

buffered in RecvQueue on the emulator node and route discoveries will be attempted. 

The DMSGs buffered in the RecvQueue by the Powerful Emulator Option are marked 

differently. They will be sent directly to the link layer, without using the sending queue in 

the VNLayer. If no route can be discovered, the DMSG will eventually be dropped.  

The DCMH function processes routing messages and updates the routing table on an 

emulator node the same way as a regular VNAODV server process does, except that the 

messages sent out by the DCMH function go directly to the link layer. 

If a client process is hosted by a pure client node, it can’t take advantage of the Powerful 

Emulator option. As before, the client process just inserts the VNLayer header to DMSGs 

and broadcast them to its region.  

Shortening the forwarding paths is not the only benefit of using the Powerful Emulator 

option in VNAODV.  When Powerful Emulator option is not used, in a route discovery, 

the BCAST id and reverse route sequence number carried by the RREQ messages are set 

by the first hop vrouter, which is a virtual node. When a virtual node is taken over by an 

out of sync Backup node or booted by an incoming node, the first hop vrouter may lose 

track of the BCAST id and sequence number used by the region. When the Powerful 

Emulator option is used, in the route discoveries initiated by an emulator node for client 

processes on it, the BCAST id and reverse route sequence number carried by the RREQ 
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messages can be uniquely set up by the emulator node. Leadership switching in the 

region of the source node won’t affect the correctness of the BCAST id and reverse route 

sequence number used by route discoveries launched by a “Powerful” emulator node for 

a client process on it. 

6.3.4.2  Additional Considerations 

There are a few additional considerations that must be taken into account with the 

Powerful Emulator option when it is used in VNAODV.  

First, when an emulator node enters a different region, by our VNLayer implementation, 

the state on the node must be cleaned up and synchronized with the leader of the new 

region. Without the Powerful Emulator option, a client process entering a new region 

simply lets the vrouter in the new region handle its DMSGs. The vrouter in the new 

region usually has a route for the destination (through overheard RREP messages). 

However, when the Powerful Emulator option is used, an emulator node hosting a client 

process handles the routing for the client process. Each time such an emulator node enters 

a new region, it loses its routing table and has to wait a while57 before it can determine its 

leader status and gets its routing table synchronized with the vrouter of the new region. 

During this period of time, if there are DMSGs to send for the client process, the 

emulator node has to do a network-wide route discovery. This increases the number of 

network-wide route discoveries.  

                                                 
57 About 1 second. 
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To alleviate this problem, we let the DCMH function on an emulator node do a 1-hop 

route discovery each time it enters a new region while relaying DMSGs for a client 

process on it. The intuition behind this optimization is that when an emulator node 

relaying DMSGs enters a new region, it is very likely that a vrouter within its one hop 

neighborhood still has a viable route for the destination. This optimization greatly 

reduced the number of unnecessary network-wide route discoveries. 

Second, with our original VNLayer implementation, each time an emulator node enters a 

new region, it should discard all the packets it has in its RecvQueue at the application 

layer because it no longer works for the old region. When the Powerful Emulator option 

is turned on, when an emulator node enters a new region, the DMSGs it buffers in its 

RecvQueue for a client process on it should not be discarded, because this emulator node 

is the only node who handles these packets. Therefore, when the Powerful Emulator 

option is used, we let an emulator node keep the DMSGs in its RecvQueue that are sent 

by a client process on it. 

Third, when the Powerful Emulator option is used, the state maintained by the Server 

node in a region may interfere with the state maintained by a Backup Server node serving 

a client process on it independently. The reason is that such a Backup Server node can 

create routes that are not synchronized with the Server node in the region. For example, 

when a Backup Server node discovers a route for a client process on it, due to message 

losses, the Server node in the same region might still have an old route. When the Server 

node sends out a SYN-ACK message in response to a state synchronization request, the 

Backup Server will be forced to change its good route to the bad route the Server node 
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has. To solve this problem, we flag a route that is discovered by a Backup Server node for 

a client process on it a “client route”. As long as a “client route” is still up, messages 

heard from the Server node of the region can’t overwrite it. 

In another case, when a Backup Server node serving a client process on it determines that 

a route is no longer good58, it sets the route to “down” and starts a route discovery.  

However, if the Server node in the region thinks the route is up, messages from the 

Server node may force the Backup Server node to set the route back to “up”. To solve this 

problem, when a Backup Server set a “client route” to “down”, it increases its sequence 

number by 3. (The standard AODV increases the sequence number of a route by 1 when 

it is flagged as “down”.) In addition, we require that in order for a route learned from the 

Server node to turn a route on a Backup Server node from “down” to “up”, the route must 

have a sequence number that is no less than the local route’s sequence number minus 1. 

This way, only a fresh route from the Server node can restore a “client route” that is set to 

“down” by a Backup Server node. 

As discussed before, the Powerful Emulator option provided by the VNLayer actually 

breaks the VNLayer abstraction because it requires an emulator node to act differently 

depending on whether a DMSG message comes from a client process on the node itself. 

It requires the application layer to implement another state machine handling local client 

messages and leads to tricky complications that have to be dealt with carefully at the 

application layer. The solutions to the complications further diversify the behavior of 

                                                 
58 This can result from its own route maintenance. 
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emulator nodes in the same region. One might want to use this option only if doing so can 

greatly improve the efficiency of a VNLayer based application. 

6.4  Optimizations at the Application Layer 

The focus of this simulation study is to find out how to improve the performance of 

VNLayer based protocols using general solutions at the VNLayer. In addition to 

optimizations at the VNLayer, we also tried a number of application layer optimizations 

for VNAODV.  

6.4.1  Local Recovery of DMSGs 

In AODV, when a link failure is detected through link layer detection59, the packet for 

which the link failed is re-buffered and can be re-transmitted once the route is repaired. In 

VNAODV, when local broadcast is used to deliver a DMSG60, link layer detection can’t 

be used. Instead, passive DMSG acknowledgement is used to detect broken links.  

Because of this, when a DMSG is sent by local broadcast, the sender can’t recover it. 

This section describes how to add such a mechanism. 

We use a Local Recovery (LR) mechanism to recover and retransmit DMSGs suspected 

of being lost when local broadcast is used to transmit a DMSG. With LR, the source 

client process tags each DMSG with a sequence number. Each time a DMSG is broadcast 

to a downstream vrouter61, a copy of the DMSG is saved in a buffer called Backlog. 

When a passive DMSG acknowledgement is received, a vrouter checks its Backlog for 
                                                 
59 AODV use unicast at the link layer to deliver DMSGs. A router keeps a copy of the packet that is just 
sent until it is acknowledged. Without an acknowledgement, the link is deemed broken. 
60 For example, when the address of next hop region’s leader is unknown or promiscuous mode is not 
supported 
61 At the last hop, because unicast is used, LR is not needed when the next hop is the destination node.  
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DMSGs from the same session, using the source address, destination address and 

sequence number in each DMSG. The matching DMSG will be dropped from the 

Backlog. The DMSGs in the Backlog that have lower sequence numbers are the DMSGs 

not yet acknowledged. Retransmissions might be necessary for them.  

The DMSG having a sequence number exactly 1 less than the sequence number of the 

passive DMSG acknowledgement will be resent. It is removed from the Backlog and re-

buffered in the RecvQueue. The next time the router checks the RecvQueue, if the route 

for the DMSG’s destination is “up”, the re-buffered DMSG will be re-transmitted.  

To avoid excessive re-transmissions, any other DMSG in the Backlog for the same 

session that has a lower sequence number than the sequence number of the passive 

DMSG acknowledgement is dropped.  

In addition, when a link is suspected of being broken because of a timeout on DMSG 

acknowledgements, there will be a Local Connectivity Check.  Before this is done, if 

there is any DMSG for the same destination in the Backlog, the one with the smallest 

sequence number is removed from the Backlog and re-buffered in RecvQueue. This 

DMSG, which must be unacknowledged, will be re-transmitted once the route is restored.  

With subsequent passive DMSG acknowledgements, the DMSGs left in the Backlog will 

be either dropped or re-buffered. If a session terminates, DMSGs left in the Backlog will 

eventually be timed out and dropped.  
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Re-buffered DMSGs are marked differently so that they won’t be put in the Backlog 

again when they are re-transmitted from the RecvQueue. This means a DMSG can be 

transmitted to the next hop at most twice. Also, to reduce routing traffic, re-buffered 

DMSGs in the RecvQueue won’t trigger any route discoveries. If a re-buffered DMSG in 

the RecvQueue can’t be forwarded, the DMSG will eventually be timed out and dropped. 

Figure 6-8 shows an example of how Local Recovery works. In steps 1 and 2, packets 1 

and 2 have been received successfully but passive acknowledgements have not been 

heard by vrouter A. Vrouter A sends out packet 3 in step 2. Therefore, at the end of step 2, 

vrouter A has 3 packets in its Backlog, packet 1, 2 and 3. In step 3, packet 4 is sent out 

but lost (e. g. due to collision). Vrouter A also received a passive acknowledgement for 

packet 3. It drops packet 1 and 3 from its Backlog and re-buffers packet 2. In step 4, 

packet 2 is retransmitted without being put into the Backlog and a new packet 5 is also 

transmitted and put into the Backlog. In step 5, acknowledgement for packet 5 is 

received. Vrouter drops packet 5 from its Backlog and re-buffers packet 4. In step 6, 

packet 4 is re-transmitted. The retransmission in step 4 is unnecessary and the one in step 

6 is necessary. 
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Figure 6-8 Example on How Local DMSG Recovery Works 
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Due to long transmission delay or out of sequence DMSG forwarding, sometimes the 

passive acknowledgement for a DMSG can come after it has already been re-buffered. In 

order to further reduce unnecessary DMSG retransmissions, when a passive DMSG 

acknowledgement matches with a re-buffered DMSG, the DMSG will be dropped from 

the buffer. 

By doing Local Recovery, when the transmission failure rate is low, the mechanism can 

recover most packets dropped due to link failures. However, Local Recovery does 

introduce extra message forwarding overhead because some DMSGs may be wrongly 

considered lost. When the channel becomes congested, excessive re-buffering and re-

transmission can make the congestion worse. To solve this problem, a minimum interval 

between consecutive DMSG re-buffers is used to put an upper bound on the frequency of 

retransmissions from a vrouter. 

6.4.2  State Inferencing 

To reduce the impact of not doing a state consistency check on all the messages, in 

VNAODV, we can allow the Backup Server nodes to use messages they hear from the 

local Server node to infer its state. We call this option State Inferring (SI).   

With the SI option, when a Backup Server receives a server message from the same 

region, the message must be from its leader. If the message is an RREQ, the Backup 

Server can correct its BCAST id and the current route sequence number using values 

from the RREQ message. If the message is an RREP, the emulator node can correct its 
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sequence number, hop count and route entry flag62 of the corresponding route in its 

routing table. If the message is an RERR, the corresponding route entry can be deleted. If 

the message is a DMSG, it can be used to correct route entry flags and the next hop used 

by the local vrouter for a destination.  

The benefit of using SI is that it can patch the most relevant parts of a Backup Server’s 

state piece by piece without resorting to explicit state synchronizations. The MSG-SYNC 

is costly compared to SI because each MSG-SYNC synchronizes the entire state of a 

Backup Server even when most parts of the state are still in sync. When a route on a 

Backup Server node is patched by SI, the messages generated by the node regarding the 

patched route are going to be the same as the messages generated by the vrouter in the 

future. Therefore, SI can reduce the costly MSG-SYNCs caused by state inconsistencies.  

Reducing the number of consistency checks and synchronizations allows state 

inconsistencies. However, with the SI option, when there is a state inconsistency on a 

Backup Server route for a destination, each time the Server node sends out a DMSG 

toward the destination or a routing message regarding the destination, part of the 

inconsistency can be fixed. When the route in question is up and active on the local 

vrouter, eventually, the inconsistent route will be synchronized with the Server node’s 

route. 

                                                 
62 The status of the route must be RTF_UP. 
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6.4.3  Route Correction by Destination 

Frequently, a destination node moves into a new region while a router is still delivering 

messages to its previous region. With the Early Receiving (ER) mechanism introduced in 

section 6.1.2 , the destination node can continue receiving DMSGs for a while. However, 

if the destination node keeps moving, eventually it will move out of the radio range of the 

last hop vrouter and the link will be broken. Then, a local repair might be needed. A 

simple application layer optimization can reduce the need for local repairs. When a node 

receives a DMSG destined for it and the DMSG is at its last forwarding hop but the 

message is delivered to a wrong region, the destination node sends out an unsolicited 

RREP message without specifying the next hop vrouter. Receiving this RREP message, 

vrouters in the neighborhood update their routes for the destination, without forwarding 

the message. 
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CHAPTER 7. Proactive Routing over the 
VNLayer 

In order to verify that a wireline based routing protocol can be adapted to MANET using 

the VNLayer, we implemented VNRIP. At the application layer, VNRIP is a simplified 

version of RIP [14], a simple distance vector routing protocol suitable for small networks. 

RIP operates as follows. Each RIP router collects the number of subnets connected to it 

and builds its initial routing table. Then, each RIP router broadcast its routing table by a 

Response message to its neighbors. Routers use incoming Response messages to update 

their routing tables. The sender of a Response message that has the shortest route toward 

a subnet is picked as the next hop. Routers send their updated routing tables to their 

neighbors periodically. In the absence of message losses and router failures, eventually, 

every router will have a route to every subnet in the network. In addition to periodical 

routing table updates, RIP also allows a router to explicitly solicit routing tables from all 

of its neighbors or one of its neighbors using a Request message. 

Clearly, the RIP protocol has to be modified to operate in a MANET situation because on 

vrouters, there is no directly connected subnet configured. Instead, each vrouter is 

directly connected with a set of client process in its region. 

Because VNRIP is a proactive routing protocol, virtual node emulated routers (or 

vrouters, using the terminology introduced in CHAPTER 6) pre-calculate routes for all 
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the destinations in a network using route update messages flooded by other vrouters. 

Therefore, even when there is no data traffic at all, there is a constant routing overhead in 

a network running VNRIP. Therefore, the efficiency of VNRIP will be low when the data 

traffic is light. Implementing RIP over the VNLayer instead of on all MANET nodes, 

reduces the number of entities that are involved in the flooding of route updates and 

improves the reliability of the links between neighbor routers. Since the routing table on 

each vrouter contains route entries for each destination node, the state size on each 

vrouter can be large when the network contains a large number of physical nodes. To 

achieve reasonable performance, the protocol has to be carefully designed to reduce the 

state synchronization overhead and routing overhead. In this chapter, we present our 

implementation of VNRIP over the extended link layer model (with message losses) and 

extended VNLayer model63. 

7.1  Message Types 

VNRIP uses three types of control messages.  In addition to RIP’s Request Messages and 

Response messages, it also uses Hello messages.  

As described in CHAPTER 3, Hello message is actually a VNLayer message type. The 

message is broadcast by a client process to let the local vrouter and vrouters in the 

immediate neighbor regions know that they can reach the client process directly. From 

the VNLayer header of a Hello message, a vrouter can determine a client process’s node 

                                                 
63 We didn’t optimize VNRIP using all the implementation choices provided by the extended VNLayer 
model. 
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id and the region it is in. The Hello message is not needed in RIP because directly 

connected subnets are manually configured on RIP routers. 

Each Response message carries a set of route entries known to a vrouter based on its 

routing table. Each route entry in a Response message contains the address of a client 

process (rather than a subnet), the next hop used and number of hops needed by the 

vrouter to reach the client process. Here, the next hop is advertised in the Response 

message so that the next hop vrouter will not use the route entry to update its route for the 

same destination. In RIP, split horizon is used to prevent route loops. This can be done 

because in a wireline based network, Response Messages can be sent individually to a 

router’s neighbors. In VNRIP, loop prevention is done differently64 because every route 

on a vrouter is learnt from the same wireless interface card. 

Request messages are used by a vrouter to look for routes from its immediate neighbor 

vrouters for a destination node. This can happen when a route entry expires or when a 

vrouter is just booted in an empty region. A Request message can be used by a vrouter to 

look for a route toward a single destination or solicit complete routing table updates from 

neighbor vrouters.  

7.2  Routing Table 

The routing table of a VNRIP vrouter includes a route for each client process in a 

MANET. Each route entry in a vrouter’s routing table contains the following fields. 

o Destination id: The address of a client process. 

                                                 
64 It is done by attaching next hops with each route entry advertised. A vrouter rejects routes that uses itself 
as the next hop. 
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o Route flag: This Boolean flag indicates whether a route is valid or invalid. 

o Hop count: The number of hops needed by a vrouter to forward a DMSG to a 

destination client process. If the hop count is 1, it means the destination is in the 

same region as the vrouter’s. If the hop count is 2, it means the destination is in an 

immediate neighbor region. If the hop count is greater than or equal to 16, the 

route is treated as invalid. 

o Next hop: The next hop (a vrouter) used by the current vrouter to forward packets 

to the destination. If the destination is in the local region, the next hop is the id of 

the local vrouter. 

o Changed: This is a Boolean flag indicating whether a route entry has recently 

been changed or not. VNRIP vrouters use this flag to decide whether the entry 

needs to be included in a Response message.  

o Lifetime: This field stores the expiration time of a route entry. With each 

incoming message, a vrouter checks each route entry’s lifetime. If a route entry 

expires, the entry is set to invalid. And the route entry is flagged as “changed”. 

7.3  Routing Updates 

Vrouters create and update route entries through four kinds of routing updates: Hello 

messages, Triggered Partial Updates, Complete Updates and On-demand Updates. 

Triggered Partial Updates and Complete Updates are based on the corresponding 

mechanisms in RIP. On receiving a Response message, a vrouter checks its routing table 

to see if any route can be updated with a better route from the message. On a vrouter, 

when a Response message for a destination is received from the next hop vrouter 
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currently used by the vrouter for the destination, the vrouter always updates the hop count 

and refreshes the lifetime of the route. When a route entry’s hop count or next hop is 

changed, the route entry is flagged as “changed”. 

7.3.1  Hello Messages from Every Physical Node 

Every second, every client process broadcasts a Hello message. Hello messages are used 

by vrouters to create or update route entries for directly connected client processes. In 

addition, each time a client process enters a new region, it also sends out a Hello message 

immediately. This is to ensure the vrouters in the neighborhood65 can be informed about 

the region change quickly. This type of routing update is an essential difference between 

RIP and VNRIP.  In RIP, routers have permanently attached networks, but in VNRIP, 

vrouters don’t have permanently attached networks. 

7.3.2  Triggered Partial Update 

Each time a route entry is flagged as “changed” on a vrouter, the vrouter schedules a 

Triggered Partial Update (TPU) within a Triggered Update Interval (TUI). To reduce the 

number of routing updates, a vrouter doesn’t schedule more TPUs until the scheduled 

TPU is sent. A TPU message carries all the “changed” routes on a vrouter. Once a TPU 

message is sent, all the routes on a vrouter are set back to “unchanged”.  

When the triggering event of a TPU is a Response message from another vrouter, the TUI 

is set to 1 second. When a TPU is triggered by a route change caused by an incoming 

                                                 
65 A Hello message can be used by the vrouters in a client process’s own region and immediate neighbor 
regions to update their routes to the client process. 
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Hello message, the TUI is set to a smaller value (0.5 second) so that the region change of 

a client process can propagate faster.  

7.3.3  On-Demand Update 

When a vrouter has just booted up in a region, it broadcasts a Request message. In 

response, neighbor vrouters set routes that are using the vrouter as next hop to “invalid” 

to prevent loop formation. In addition, the neighbor vrouters also send out On-Demand 

Updates containing their entire routing tables so the newly booted vrouter can construct 

its routing table.  

When a vrouter receives a DMSG but there is no valid route for the destination, it 

broadcasts a Request message just for the destination of the DMSG. In response, 

neighbor vrouters that have routes toward the destination send back On-Demand Updates, 

carrying only the route asked for by the vrouter.  

7.3.4  Complete Update 

Because routes expire, complete routing table updates are necessary even when the 

network topology is static and there is no topology change. However, sending complete 

Updates frequently is costly because each complete Update contains the whole routing 

table a vrouter has. In order to reduce the routing overhead, a relatively long Complete 

Update Interval66 (CUI) is used to control the minimum interval between two consecutive 

complete updates on each vrouter. During this interval, some potentially reachable 

destinations may be unreachable. When a vrouter doesn’t have a route toward a 

                                                 
66 60 seconds in our implementation. 
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destination and none of its neighbor vrouters know a route to the destination, the vrouter 

might have to wait up to a CUI to receive a complete routing update from a remote 

vrouter before it can restore the route for the destination. 

7.4  Data Message Forwarding 

When a DMSG is received by a vrouter, the vrouter checks its routing table for a valid 

route. If there is a route available, the DMSG is forwarded to the next hop region by local 

broadcast. If there is no route available, the DMSG is buffered. As introduced above, a 

Request message is sent out by the vrouter to its neighbor vrouters. When a route is 

learned for the destination, the DMSG is moved to a second buffer. The vrouter delays 

the DMSGs moved into the second buffer a little while before they are forwarded using 

the routing table. The reason for this is to give the vrouter time to pick the best route 

based on the responses to the Request message. This way of handling undeliverable 

DMSGs is different from RIP, which simply drops the messages. 

7.5  Route Maintenance 

As in VNAODV, route maintenance is crucial to VNRIP’s performance. (RIP doesn’t do 

this because links between routers are assumed to be reliable most of the time.) Due to 

the use of local broadcast67 on DMSG forwarding, the leading cause of end to end DMSG 

delivery failures in VNRIP is message collision. As in VNAODV, a passive DMSG 

acknowledgement mechanism is used in VNRIP to detect link failures. Each time a 

vrouter forwards a DMSG, the lifetime associated with the route entry used is shortened. 

                                                 
67 This is the only option we used in our simulation for VNRIP. 
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If there is no passive DMSG acknowledgement from the next hop vrouter received, the 

route entry will expire soon. 

At the last forwarding hop, upon receiving a DMSG, a destination client process sends 

back a Hello message as an explicit DMSG acknowledgement, so that the route entry 

used by the last hop vrouter can be refreshed. 

When a link failure is detected on an entry for a route, the route is flagged as invalid. 

Within a Triggered Update Interval, the invalid route will be announced to neighbor 

vrouters so that they stop using the vrouter as next hop for the destination. Before this, 

when there are more DMSGs arriving for the same destination, the vrouter buffers the 

incoming DMSG and sends out a Request message. Each time a route entry is turned 

from “invalid” to “valid” by an incoming Response message, the DMSG buffer is 

checked. DMSGs in the buffer that can use the updated route will be sent out. If the route 

can’t be restored for the buffered DMSGs, they eventually time out and are dropped. 

7.6  Loop Detection and Prevention 

Loops can happen in VNRIP due to router and link failures and out of sync router state. 

In addition to the loop prevention and detection techniques introduced in section 6.2  

VNRIP uses the following methods to detect loops.  

First, if a vrouter learns from its routing table that the next hop vrouter of a DMSG is the 

vrouter that sent the DMSG, a loop is detected. The vrouter buffers the DMSG, sets the 

current route for the destination to “invalid” and informs its neighbors about the route 



   

 157 

change right away68 with a Response message. The vrouter also broadcasts a Request 

message to neighboring regions, asking for routes toward the destination.   

Second, each DMSG carries a field recording the number of hops the message has 

traversed, if this hopcount value reaches 16 (the value for infinity), it is very likely the 

DMSG has been trapped in a loop. When such a DMSG is received, the message is 

dropped. As above, the vrouter also sets the route affected to “invalid”, informs its 

neighbors about the change and broadcasts a Request message for alternative routes.  

7.7  Optimizations based on VNLayer Implementation 

VNAODV optimizations such as Direct Receipt and Early Receiving can also used by 

VNRIP at the last forwarding hop to shorten the forwarding paths and allow destination 

nodes to continue receiving DMSGs even after leaving its original region. In addition, as 

in VNAODV, Backup Server nodes to check for state inconsistencies on routing 

messages only. However, options such as reducing the state size by synchronizing hard 

state only, using Long Links to shorten forwarding paths, using Directed Broadcast for 

DMSG transmission, and route correction by the destination node are not implemented in 

VNRIP. 

The following two subsections explain two cross layer optimizations of VNRIP based on 

the implementation of the Hello Message Generator and NRSM module in the Packet 

Classifier of our VNLayer implementation. 

                                                 
68 As opposed to waiting for a Triggered Update Interval. 



   

 158 

7.7.1  Hello Messages Sent and Managed by the VNLayer 

To reduce the traffic overhead of Hello messages, on an emulator node, a client process 

can send Hello messages using the Hello Message Generator provided by the VNLayer69. 

As explained in section 4.5.2 , each time a message is sent from the VNLayer, the Hello 

Message Generator delays the next Hello message by another Hello Interval. With every 

incoming message with a VNLayer header (including the Hello messages) the VNLayer 

reports a Hello event to the application layer, which is used by VNRIP to update its 

routing table. 

Compared with sending periodic Hello messages by the application layer itself, using the 

VNLayer to handle Hello messages reduces the Hello traffic overhead and allows a 

vrouter to use overheard messages to update its routing table. However, doing so requires 

a client process to have access to the Hello Message Generator at the VNLayer. This 

breaks the abstraction. 

7.7.2  Neighbor Region Activeness 

As presented in section 4.5.2 , by observing the messages that are sent out by virtual 

nodes, a virtual node keeps track of the active state of the virtual nodes in its immediate 

neighbor regions. Using this feature, in VNRIP, a vrouter treats a route as broken if the 

downstream region is inactive.  

When a vrouter receives a DMSG, if it has a valid route for the DMSG, it checks the 

VNLayer state to see if the next hop virtual node is active. If not, the vrouter buffers the 

                                                 
69On a pure client process, this option can’t be used. 
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DMSG, set the route entry used to “invalid” and sends out a Request message to try to fix 

the route. If the next hop virtual node is active, the vrouter forwards the DMSG and sets 

the timer used to determine the active state of the next hop virtual node to 1.5 times the 

maximum expected one hop Round Trip Time (RTT). This way, the neighbor virtual 

nodes that are used by a vrouter to relay DMSGs are set to inactive faster. This is a cross-

layer optimization because it allows the application layer to modify the VNLayer settings. 

7.8  Summary 

In addition to the optimizations explained in the last section, state inferencing at the 

application layer, as introduced in section 6.4.2 can also be used by VNRIP so that Back 

Servers can use Server messages to patch their state.  

This simple version of RIP protocol was implemented very quickly70. As we’ll see in the 

next chapter, although VNRIP generates heavy routing traffic and synchronization traffic, 

it provides reasonable delivery performance that is not much worse than VNAODV under 

similar settings. With the optimizations applied to VNAODV added to VNRIP, it is likely 

to perform much better. This verifies the intuition that the VNLayer approach can be used 

to adapt wireline protocols to MANET easily.   

 

 

 

 

                                                 
70 The coding and debugging only took about 3 weeks. 
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CHAPTER 8. Performance Evaluation on 
VNLayer based Address Allocation and 

MANET Routing 

So far, I have discussed our implementation and optimizations on VNLayer based 

Address Allocation and MANET routing. In this chapter, I present the simulation results 

on VNDHCP, VNAODV and VNRIP. As we are going to see, VNAODV performs very 

well. This proved that the VNLayer approach can be used to adapt wireline protocols to 

MANET. Routing applications pose greater challenge to the VNLayer approach. From 

the simulation results, we are going see how the optimizations on the VNLayer 

implementation based on the extended VNLayer model improved the performance of 

VNAODV. 

8.1  Performance Evaluation on VNDHCP 

8.1.1  Simulation Settings 

For VNDHCP, we ran our simulations using ns-2.31 on a Linux machine with an Intel 

Pentium 4 3.20GHz CPU and 512M bytes memory. In ns-2, the wireless propagation 

model is set to “freespace”. Two network settings were used: a small network of 40 to 

120 nodes that contains 16 87.5m×87.5m regions in a 350m×350m and a large network 

of 160 nodes that contains 64 87.5m×87.5m regions in a 700m×700m area. All the 

mobile nodes are set to emulate the VNLayer. The packet receiving range is set to 250 
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meters to make sure that a message sent from a region can reach every node in the 

immediate neighboring regions. 

In each region, the address pool size is set to 30 to reduce the chance that a server runs 

out of addresses. The region leaders are set to send out a Heartbeat message every 

second. The lease time is set to 400 seconds. Each simulation ran for 40000 seconds, or 

100 lease times. For each data point, the simulations are repeated 5 times with different 

node mobility traces. Error bars are created with confidence intervals with confidence 

level set to 95%.  

Table 8-1 Settings for 5 Motion Speed Modes 

 slow medium slow medium fast fast 

Minimum speed (m/s) 0.73 1.46 2.92 5.84 

Maximum speed (m/s) 2.92 5.84 11.68 23.36 

Minimum pause time (s) 400 200 100 50 

Maximum pause time (s) 4000 2000 1000 500 

Average cross time (s) 48 24 12 6 

We evaluated the performance of the system with the nodes moving at various speeds. 

Using the random waypoint model, ns-2 mobility traces were generated for four speed 

modes: slow, medium slow, medium fast and fast. The settings used to generate the 

mobility traces for each speed mode are given in Table 8-1. 

Slower speed means that it takes a node longer to travel across a region so that it is less 

likely to be far away from its server when it needs to renew its lease. For example, for 

speed mode “slow”, the 2200 second average pause time is 5.5 times of the lease time. 
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The average time for a moving node to travel across a region is 48 seconds. This means 

that during one lease period, a moving node on average may travel across 8 regions. For 

the speed mode “fast”, the average pause times and crossing times are 8 times shorter. 

8.1.2  Simulation Time 

We first compared the simulation speed of VNE and VNSim with the small network 

setting. Table 8-2 lists the simulation time of VNE and VNSim for various total numbers 

of nodes. The simulation time increase of VNSim is roughly proportional to the square of 

the total number of nodes because each node needs to handle messages from all of its 

neighbors. 

With 40 nodes, VNSim runs around 158 times faster than VNE. However, for the set of 

simulation we did, VNSim doesn’t scale as well as VNE. This may be because of the 

more accurate simulation of the link layer, especially message collisions. With 80 nodes 

and 120 nodes in the network, VNSim runs about 82 times and 60 times faster than VNE, 

respectively. 

Table 8-2 Simulation Speed of VNE and VNSim 

 40 nodes 80 nodes 120 nodes 

VNE simulation time 6.32 hours 13.07 hours 22.09 hours 

VNSim simulation time 2.4 minutes 9.53 minutes 22.23 minutes 

 

8.1.3  VNLayer message overhead 

The first question we want to answer through the simulations is whether a VNLayer 

based system is practical. The main concern here is whether there will be excessive 
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control overhead, including the leader election overhead and state synchronization 

overhead. Because SYN-ACK messages can be big71, large number of synchronizations 

can cause heavy traffic. In addition, during state synchronizations, Backup Server nodes 

that are out of sync ignore all incoming messages and stop acting as Backup Servers. This 

hurts the failover capability of the virtual nodes. 

With the large network setting and speed mode “slow” and “fast”, we did simulations 

with various renewal message forwarding methods (flooding and geographical routing) 

and forwarding hop limits (1 to 8). More details on the simulations can be found in the 

next section. In the worst case, the case with speed mode “fast” and 8 hop flooding used 

for RENEW messages, the virtual node layer generates about 482 messages per region 

per lease time. Over 75% of the messages are the Heartbeat messages sent by region 

leaders. The numbers of LeaderRequest and LeaderReply messages are on the order of 24 

and 50 per region per lease time, respectively. There are more LeaderReply messages 

since multiple nodes may respond to the same LeaderRequest message. The average 

numbers of SYN and SYN-ACK messages are both about 20 per region per lease time. 

These numbers almost stay constant with different forwarding hop limits and forwarding 

methods. This suggests that the VNLayer message overhead is not affected much by how 

the RENEW messages are forwarded. 

From the simulation results, it’s estimated that the packet overhead generated by the 

VNLayer from a single region ranges between 200 bps and 450 bps. Because a node in a 

                                                 
71 Here, the SYN-ACK message carries the application state for the 30 addresses managed by each virtual 
node. 
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region can hear messages from up to 9 regions, the combined channel bandwidth 

overhead for any region can range between 2Kbps and 4.5Kbps. Because the 802.11 

radio channel’s bandwidth is now typically 54Mbps, the virtual node layer uses less than 

0.1% of the bandwidth. The system is therefore practical because it won’t affect the 

normal operation of other protocols on the mobile nodes.  

8.1.4  Different Renewal Methods 

The next problem is how to engineer the protocol at the application layer to get the best 

performance. The renewal process is critical to the performance of VNDHCP because 

when a renewal fails, a client has to stop using the current address and ongoing sessions 

may have to be disconnected. We used the number of addresses allocated to a client 

during the simulations to measure the effectiveness of the renewal process. The more 

addresses that the client has during a given period, the more times a session may be 

disrupted. 

With the large network setting, we run simulations with different forwarding hop limits 

for RENEW messages and forwarding methods, under speed mode “fast” and “slow”. 

The hop limit ranges from 1 to 8. With hop limit 1, RENEW messages are not forwarded, 

at all. With hop limit 8, RENEW messages can be forwarded by up to 7 regions, 

including the local region of the client processes. 
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8.1.4.1  Fast Moving Case 
 

 

Figure 8-1 Allocation performance with different renewal methods, large network, fast 
moving case 

With speed mode “fast”, the average number of allocations per node ranges from 27 to 95 

during the 40000 second simulations, as shown in Figure 8-1. Re-allocations do happen a 

lot in this case due to the fast node motion speed. With hop limit 1, forwarding for 

renewal messages are not allowed, almost every single renewal fails and the client 

process needs a re-allocation. 

For the flooding case, with larger hop limits on how many hops a RENEW message can 

be forwarded, each client process needs fewer and fewer re-allocations. However, this 
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comes at the cost of rapid increasing message overhead. The curve for the number of 

allocations per client flattens as the hop limit approaches 8. 

 

Figure 8-2 Renewal overhead with different renewal methods, large network, fast moving 
case 

For the geographical routing case, the allocations per client and message overhead per 

region started the same as the flooding case when the hop limit is 1 and 2. This is because 

using geographical routing on the RENEW message doesn’t reduce the message overhead 

in either case. After that, the number of allocations per client decreases faster with greater 

hop limits. In addition, using geographical routing generates much less message overhead 

because only one forwarding path is used for every RENEW message. With hop limit 8, 

the geographical routing case generates less than one sixth of the message overhead of 

the corresponding flooding case. 
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Figure 8-2 shows the renewal message overhead and renewal delay with different 

renewal methods and different hop limits. Using flooding, with hop limit 1, the renewal is 

limited to the local region and a successful renewal takes exactly 2 messages, one 

RENEW message and one RACK message. With greater hop limits, it takes each renewal 

more time and messages to finish. With hop limit 8, a renewal takes around 55 messages, 

showing that most of the regions are involved in the flooding of the RENEW messages. 

With geographical routing, the renewal message overhead is the same as the flooding 

case with hop limit 1 and 2. But the average renewal message overhead increases much 

more slowly than the flooding case. Even in the case with hop limit 8, a renewal on 

average takes less than 10 messages. 

Figure 8-3 shows the distribution of the time percentages that each client doesn’t have an 

address for. The value at each data point is the percentage of clients that don’t have an 

address for more than a certain percentage of the simulation time. When flooding is used 

for the RENEW messages, the average addressless time percentages of the clients 

decrease with higher hop limits. With hop limit 8, only 4 percent of the clients don’t have 

an address for more than 0.2% of the simulation time. The geographical routing cases 

show same trends, we only show the hop limit 8 case here, which performs better than the 

4 hop flooding case and worse than the 6 hop flooding case. 
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Figure 8-3 Distribution of addressless times with different renewal methods, large 
network, fast moving case 

8.1.4.2  Slow Moving Case 

With speed mode “slow”, we repeated the simulations. As shown in Figure 8-4, in the 

flooding case, the average number of allocations per client turns flat can even go up a 

little with greater hop limits after hop limit 4. This means that when nodes are moving 

slowly, the flooding of RENEW messages by more hops, instead of helping; can hurt the 

allocation performance with more message collisions and congestions. 
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Figure 8-4 Allocation performance with different renewal methods, large network, slow 
moving case 

In the geographical routing case, the number of re-allocations per client gets lower and 

lower with increasing forwarding hop limits while the message overhead increases much 

slower than the flooding case. Here, the geographical routing case performs much better 

than the flooding case.  

In the slow moving case, the curves in Figure 8-5 show similar trends as those in Figure 

8-2. The difference is that the average renewal message overhead only reaches 28 even in 

the flooding case. This is because with slower node motion speeds, a renewal message on 

average needs to travel through fewer hops. 
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Figure 8-5 Renewal overhead with different renewal methods, large network, slow moving case 

 

Figure 8-6 Distribution of addressless times with different renewal methods, large 
network size, slow moving case 
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Figure 8-6 shows that with slow node motion speeds, the average addressless percentages 

we get here are better than those we get with the fast moving case, where the nodes move 

about 8 times faster. In the flooding case, the average addressless time percentage gets 

worse with greater hop limits. This again demonstrates that when nodes move slowly, 

flooding the RENEW messages by more hops can hurt the allocation performance. Here, 

the 8 hop geographical routing case performs better than all the flooding cases. 

8.1.5  Different Node Densities 

Now the question is what happens with more mobile nodes in the system. Using the small 

network setting and speed modes from “slow” to “fast”, we run simulations with 40, 60, 

80, 100 and 120 nodes, with geographical routing used for the RENEW messages and the 

forwarding hop limit for renewal messages set to 5. 

From Figure 8-7, we can first see that with the small network setting, the allocation 

performance is much better than what the system gets with the large network setting, 

because with large networks, the renewal messages has to travel through more forwarding 

hops and are more susceptible to message loss and routing failure. 
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Figure 8-7 Allocation performance with different node densities and different node 
motion rates when geographical routing used for address renewals 

More importantly, the figure shows that with higher node densities, the allocations per 
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more likely to function most of the time even when nodes are moving fast. This helps the 

clients keep their addresses longer. 

In addition, with increasing node densities, the message overhead increases linearly 

because each node introduces the same amount of application layer burden to the system. 

Together with the curves for allocations per client, we can see with the network densities 

investigated here, we can see the performance of VNDHCP scales well with increasing 

network densities. 

 

Figure 8-8 Virtual node layer message overhead with different node densities 

Figure 8-8 shows the VNLayer message overhead with increasing node densities for the 

speed mode “fast”. The number of Heartbeat messages stays constant since the number of 

region leaders doesn’t vary much for the set of node densities used in the simulation. The 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

40 60 80 100 120
total number of nodes

ot
he

r 
V

N
La

ye
r 

m
es

sa
g

es
 p

er
 r

e
gi

on

20000

25000

30000

35000

40000

45000

h
ea

rt
be

at
 m

e
ss

ag
es

 p
er

 r
eg

io
n

LeaderRequest messages
LeaderReply messages
SYN-REQUEST messages
SYN-ACK messages
Heartbeat messages



   

 174 

average number of LeaderRequest, SYN_REQ and SYN_ACK messages per region 

increase almost linearly because each node sends out roughly the same number of such 

messages. The number of LeaderReply message increases much faster because we allow 

non-leaders in a region to send LeaderReply messages to reject leadership requests too. 

With higher node densities, more and more nodes may respond to the same 

LeaderRequest message. To solve this problem, in our research on VNLayer based 

routing application, we only let the leader node send LeaderReply messages.  

In these simulations, we didn’t investigate the impact of the use of the LeaderLeft 

messages. The Heartbeat interval is set to 1 second. The periodic Heartbeat messages 

compose the greatest portion of VNLayer message overhead. With LeaderLeft message 

used, the performance VNDHCP is expected to be better because fewer Heartbeats are 

needed and the leadership switching can take place much faster.  

8.1.6  Summary 

In this section, I summarize on what is learned through the simulation studies on 

VNLayer based MANET address allocation.  

8.1.6.1  On the Performance of VNSim 

Simulation results in this case study showed that VNSim runs much faster than VNE, and 

is suitable for a network of up to a few hundred mobile nodes. VNSim can be used to 

validate any VNLayer-based application. 
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8.1.6.2  On the VNLayer 

The simulation results on VNDHCP show that the VNLayer overhead is quite small. This 

proves that VNLayer based systems are practical. One reason for the low VNLayer 

overhead is the VNLayer implementation choice we take at the VNLayer. We choose to 

let Backup Servers to check only Server Messages from the Server node to look for state 

inconsistencies. The number of state synchronizations due to message losses (MSG-

SYNCs) is reduced. However, the main reason why the VNLayer overhead is small is 

because low application layer overhead due to the long address lease time (400 seconds). 

As we are going to see in the simulation results for VNLayer based MANET routing, the 

use of VNLayer can cause heavy control traffic overhead. 

Simulation results were obtained for a wide range of configurations, from a small 16 

region network (350 meters by 350 meters) to a large 64 region network (700 meters by 

700 meters) and for a variety of mobile node speeds, from a slow walk to vehicle speed. 

VNDHCP is proven to work well with all the simulation settings. For over 99.9% of the 

time; most client processes have addresses allocated. The overlay network is quite stable 

when the density of mobile nodes is high enough to make virtual node failure unlikely. 

Therefore, the main reason for the good performance is that failover capability provided 

by the VNLayer. Without the replicated state maintained by Backup Server in each 

region, each time a virtual node is down, all the client processes that got their addresses 

from the region would have to request for a new address. 
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As any cluster-based solutions, the use of the VNLayer approach makes VNDHCP scale 

well with greater node densities72 because the number of entities that have to be involved 

in the address allocation is bounded by the number of regions in a network. As shown in 

section 8.1.5 , a VNLayer based application would perform the best with a MANET that 

is dense enough so that the virtual nodes can stay up longer. 

As discussed earlier in section 5.5 , VNDHCP doesn’t have to handle network partitions 

and mergers in a MANET due to the fixed region settings. In addition, the geographical 

location based region settings also allows VNDHCP to use the light weight geographical 

base routing to forward address renewal messages. Finally, with most programming 

handled in the VNLayer, the coding for the VNDHCP server and client are made easier.  

All these benefits demonstrate that the VNLayer approach can be used to adapt a wireline 

protocol like DHCP to the MANET environment. 

On the other hand, the use of the VNLayer approach does bring a few complications. 

First, as discussed in section 5.2.3 , special care has to be taken to avoid duplicate address 

allocations in VNDHCP. The loss of state due to virtual node resets is a general problem 

to any VNLayer based applications. This means the application layer code has to be 

modified. Second, in VNLayer based applications, since servers are virtual nodes 

emulated by multiple physical nodes, state inconsistencies can lead to complicated 

situations such as address duplication in VNDHCP. In a lossy channel, it is hard and 

                                                 
72 With or without using VNLayer, we can expect an MANET address allocation protocol to perform worse 
when the geographical size of the network increases because data forwarding will be less reliable. 
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costly (in terms of VNLayer overhead) to keep states on emulator nodes synchronized 

most of the time. 

8.1.6.3  On the Implementation Choices in VNDHCP 

The simulation results also show that flooding hurts the scalability of protocols and 

should be avoided. As opposed to using flooding, the use of a simple geographical based 

routing to forward RENEW message greatly improved the address allocation 

performance.  

Many address renewals still fail when empty next hop regions are picked to forward 

RENEW messages. To improve the success ratio of renewal attempts, a more reliable 

routing algorithm, rather than the simple geographical routing, shall be used. For 

example, VNAODV can be used to work together with VNDHCP.   

8.2  Performance Evaluation on VNAODV and VNRIP 

In this chapter, I present performance evaluations results on the two VNLayer based 

routing protocols, VNAODV and VNRIP. The performance results we got with the 

AODV code provided by the ns2 package is used as a benchmark in performance 

evaluations.  

First, I present the simulation results we got with our initial implementation of VNAODV 

and our implementation of VNRIP. For this version of VNAODV, the major 

optimizations using the capabilities provided by the extended VNLayer model are not 

used. The application layer optimizations (for example, the local recovery option) for 

VNAODV are not used either. This section serves to present the base line performance of 
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VNAODV and VNRIP and to verify the major causes of performance issues with 

VNLayer based routing protocols. 

In the three sections that follow, I present the effect of the three major optimizations we 

did to the VNAODV using the features provided by the extended VNLayer model. As we 

are going to see, with state synchronizations overhead reduced, forwarding path 

shortened and reliability of data transmission improved, VNAODV can outperform 

AODV due to the reduce control overhead and improved route stability.  

A major strength of the VNLayer approach is that virtual node can maintain replicated 

state. On one hand, this make the virtual node able to maintain persistent state and be 

fault tolerant. On the other hand, doing so requires extra control overhead. We use one 

section to go to depth on how state replication affects the performance of VNLayer based 

routing protocols. As we are going to see, strict state synchronization is not necessary for 

VNLayer based MANET routing. In addition, Message Sync is not as important as 

Motion Sync. 

In addition to the three major optimizations that greatly improved the performance of 

VNAODV, there are other VNLayer optimizations and application layer optimizations. 

We investigate the effect of these optimizations carefully with two separate sections. 

To further validate the simulation results, we did more simulations with various node 

motion rates and a larger network size. The simulation results will be presented at the end 

of the chapter. 
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In our simulations, a 700m x 700m network is divided into 64 87.5m x 87.5m square 

regions. The network contains 60 to 240 mobile nodes. The radio range on each mobile 

node is set to 250 meters so that a message sent out by a node in a region can be heard by 

any other node in the same region and the immediate neighbor regions. The 802.11 

channel bandwidth is set to 11Mbps, with RTS-CTS disabled. 

Node mobility patterns are generated by CanuMobiSim-1.3.4 using the Random 

Waypoint Model. Two motion modes, slow mode and fast mode are used. With the slow 

motion mode, the minimum pause time is set to 100 seconds and maximum pause time is 

set to 200 seconds. The minimum motion rate is set to 0.73 m/s and maximum speed is 

set to 2.92 m/s (average speed 1.825m/s). With the fast motion mode, pause times are set 

the same way as in the fast motion mode. The minimum motion rate is set to 5.84 m/s and 

maximum speed is set to 23.36 m/s (average speed 17.52m/s).  

Various number of Constant Bit Rate (CBR) sessions are created between random pairs 

of mobile nodes. No two sessions share either the source node or the destination node. 

Each session is set to transmit ten 64 byte UDP messages per second and to last 

throughout the simulation time. Each simulation lasts 450 seconds. The trace for the first 

50 seconds in each simulation is skipped to allow the routing to stabilize before 

measurements are started. We repeated each simulation 10 times for each data point 

collected. Error bars are generated with confidence level of 95%. 
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AODV uses 30 for the maximum RREQ TTL in ring search. In our implementation, we 

set the maximum TTL to 10 in the expanding ring searches in both standard AODV and 

VNAODV. 

We evaluated the delivery performance of the protocols simulated using the following 

metrics: packet delivery fraction, path length of successful end-to-end deliveries, end-to-

end delivery delay and network wide traffic overhead for various types of overheads, in 

terms of bits per second. For most simulations, we set the network size to 240 nodes and 

the node mobility to fast motion mode, making it a dense and highly dynamic network. 

8.2.1  VNRIP and Base Line Implementation of VNAODV 

In this section, I present the simulation result we got with an initial implementation of 

VNAODV (for the rest of this chapter, we make modifications based on this 

implementation) and our implementation of VNRIP, as described in Chapter 7. Here, 

among the VNLayer optimizations, both VNAODV and VNRIP use selective state 

synchronization and selective state consistency checks in order to bring down the state 

synchronization overhead and get reasonable performance. The optimization that allows a 

client process to receive DMSGs directly from an immediate neighbor region (DR) and 

the optimization that allows a client process to continue receive a DMSG even if the 

packet is not destined for its region (ER) are also used by both VNAODV and VNRIP. As 

explained in section 6.3.2 , these two simple optimizations can save a few forwarding 

hops at the end of a forwarding path. However, optimizations such as Long Links, 

Directed Broadcast and Powerful Emulator are not used by these two implementations. 
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This version of VNAODV doesn’t use any of the application layer optimizations 

introduced in section 6.4 , either. 

8.2.1.1  Packet Delivery Fraction (PDF) 

Figure 8-9 shows the PDF of successful end-to-end DMSG deliveries for AODV, 

VNAODV and VNRIP, with different number of CBR sessions created among the 

physical nodes. The plot shows that both VNAODV and VNRIP can outperform AODV 

when the number of CBR sessions is low. However, they don’t scale as well as AODV, 

whose delivery ratio stays roughly the same with more sessions. 

 
 

Figure 8-9 Packet Delivery Fraction of AODV, VNAODV and VNRIP 
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data traffic load. With a dense network like the one we use, even with small number of 

sessions, its routing overhead is significant already. Another reason is that VNRIP is not 

equipped with some of the optimizations VNAODV has. For example, unicast based 

delivery of DMSGs at the last hop is not used for VNRIP. Therefore, the destination 

client process has to send route update messages to the last hop vrouter as explicit DMSG 

acknowledgements.  

8.2.1.2  Forwarding Path Length and Forwarding Latency 

Figure 8-10 shows the length of forwarding paths created by AODV, VNRIP and 

VNAODV that are used by successful DMSG deliveries, with various number of CBR 

sessions. We can see, VNAODV and VNRIP both create much longer forwarding paths 

than AODV. This is because the feature in the extended VNLayer model that allows any 

pair of virtual nodes and any client processes to communicate is not used. Long 

forwarding paths leads to long forwarding delays and more frequent delivery failures. 

Figure 8-11 verifies that the forwarding latencies of VNAODV and VNRIP are both 

much longer than AODV’s. Here, we can see in terms of the length of forwarding paths 

and packet delivery latency, VNAODV and VNRIP performs roughly the same.  

In Figure 8-11, we can also see that AODV’s delivery latency actually improves with 

greater number of CBR sessions. One reason for this is that with more sessions, more 

routers launch local repair attempts that can help build reverse paths toward these routers. 

Some of these routers can be the destinations of other CBR sessions. Due to the saved 

route discoveries, the average delivery latency is shortened with larger number of CBR 

sessions.  
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Figure 8-10 Length of Forwarding Paths Created by AODV, VNRIP and VNAODV 

 

Figure 8-11 End to End DMSG Delivery Latency of AODV, VNAODV and VNRIP 
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In addition to the longer forwarding paths created by VNAODV, there are two other 

reasons that the end-to-end delivery latencies of the VNAODV are longer than AODV’s. 

First, the VNLayer delays the incoming messages for a short period of time so that they 

can be sorted using their time stamps. This inserts a delay at every forwarding hop. 

Second, at every forwarding hop except the last one, a DMSG is broadcast to the wireless 

channel. To reduce collisions, every broadcast message is delayed by a random period of 

time before it is sent out to the channel. This “jitter sending” technique inserts another 

piece of delay at each hop.  

8.2.1.3  Traffic Overhead 

The more channel bandwidth a protocol consumes, the more message losses can happen 

due to collisions and congestions. It would also affect the operation of other protocols in 

the network. Therefore, a good MANET protocol should create as little traffic as possible 

to get a task done.  

The AODV traffic overhead consists of two parts, the data forwarding traffic and routing 

traffic73. The routing traffic is the only control traffic in AODV. In VNAODV, there are 4 

types of traffic generated: data forwarding traffic, routing traffic, state synchronization 

traffic and leader election traffic. The last three types of traffic compose the control traffic 

in VNAODV. Because the state synchronization traffic and leader election traffic are 

generated by the VNLayer, we consider them VNLayer traffic overhead. 

  

                                                 
73 Here, we didn’t measure the link layer overhead of AODV, which can be caused by address resolution 
(ARP) and MAC layer data packet acknowledgements and re-transmissions. Therefore, the total traffic here 
does not reflect the actual bandwidth use accurately. 
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Figure 8-12 Routing Traffic Overheads of AODV, VNAODV and VNRIP 

 

Figure 8-13 Control Traffic Overheads of AODV, VNAODV and VNRIP 

 

Figure 8-14 Total Traffic Overheads of AODV, VNAODV and VNRIP 
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Figure 8-12,  

Figure 8-13 and Figure 8-14 compare the routing, control and total traffic overhead 

generated by AODV, VNAODV and VNRIP with various number of CBR sessions.  

From Figure 8-12, we can see the routing overhead of VNRIP is the heaviest due to its 

proactive nature. Rather than staying constant, the routing overhead of VNRIP goes up 

with more CBR sessions. This is because with more CBR sessions, the number of 

triggered routing updates and on-demand routing updates74 increases. Among the three 

protocols, VNAODV generates the least routing traffic. VNAODV outperforms VNRIP 

because it is an on-demand routing protocol. As expected, it also outperforms AODV due 

to the reduced number of entities that have to be involved in the routing operations. 

The efficiency of VNAODV’s routing operations doesn’t come free. The VNLayer 

creates extra control overhead, including the leader election overhead and state 

synchronization overhead. Figure 8-13 shows that the total control traffic overhead of 

VNAODV is roughly the same as AODV’s control traffic, which is equal to the routing 

                                                 
74 These routing updates are generated as result of DMSG delivery failures. 
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overhead. This suggests that the use of VNLayer approach can reduce the total control 

overhead of a MANET routing protocol, if we can further reduce the leader election 

overhead and state synchronization overhead. Since the leader election traffic overhead is 

a small and constant value75 independent of other operations of the VNLayer and the 

operations of specific applications, reducing the state synchronization traffic is important 

to further reduce the control traffic overhead. 

The total traffic generated by each protocol includes the controls traffic and data forward 

traffic. Figure 8-14 shows that AODV generates the least total network traffic. It 

outperforms VNAODV because it generates less data forwarding traffic. This is first 

because VNAODV creates longer forwarding paths than the ones created by AODV.  

Another reason is that a VNLayer header is attached to every DMSG forwarded by 

VNAODV. This adds an extra 20 bytes of traffic per packet. Because the size of the 

VNLayer header is hard to be made smaller, in order to further improve the performance 

of VNAODV reducing the forwarding path length is important. 

Since VNRIP and VNAODV generate roughly the same amount of data forwarding 

traffic76, it is easy to understand that VNRIP creates the most total traffic because its 

control traffic is the heaviest. 

                                                 
75 Around 8Kbps for the whole network, the smallest part of control traffic overhead. 
76 Not shown in the plot. 
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8.2.1.4  Causes of Delivery Failures 

In order to improve the performance of VNAODV, we did a careful investigation on the 

causes of end to end DMSG delivery failures in both AODV and VNAODV. The AODV 

simulation trace reports three causes for DMSG drops, IFQ and NRTE, CBK.  

In AODV, when a network-wide route discovery or a local route repair fails, a router 

drops all the DMSGs it has in its sending buffer and link layer interface queue that are 

destined for the unreachable destination. Such drops are reported as IFQ and NRTE 

failures. CBK drops happen when the link layer detects a transmission failure and the 

router decides not to do local route repair for it. Figure 8-15 shows the percentage of 

DMSG delivery failures caused by these three causes with increasing number of CBR 

sessions. 

 

Figure 8-15 Causes of End to End Delivery Failures in AODV 
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From Figure 8-15 we can see less than 10 percent of the delivery failures are due to the 

link layer failures during DMSG transmissions. On the other hand, most of the delivery 

failures are due to the failures of route discoveries and local route repairs. This is because 

the route discovery and route repair of AODV is done by flooding RREQ messages to 

every physical node in a MANET. When the network is dense, these flooding based route 

discovery and route repair are subject to frequent failures. 

Our trace analyzer can detect the following five causes of DMSG delivery failures.  

1. Transmission Failure: a DMSG is sent out to the next hop vrouter. The vrouter is 

active but the DMSG is never received.  

2. Destination Node Gone: a DMSG is delivered to its destination, but the 

destination client process has left its region and didn’t receive the message.  

3. No Route: a vrouter received a DMSG sent toward it but never forwarded the 

DMSG out. 

4. Region Leaderless: there are physical nodes in a region. However, there is no 

leader present in the region. Therefore, a DMSG sent to the vrouter in the region 

couldn’t be forwarded. 

5. Region Down:  a region is empty when a DMSG is forwarded to it. 
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Figure 8-16 Causes of End to End DMSG Delivery Failures in VNAODV 

Figure 8-16 shows the percentage of end to end DMSG delivery failures caused by the 
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The simulation results here show that to improve the performance of VNAODV, reducing 

the length for forwarding paths, state synchronization overhead and DMSG transmission 

failures will be most effective. 

8.2.2  The Effect of Selective State Synchronizations and 
Selective State Consistency Checks 

The VNAODV and VNRIP implementation we evaluated in the last section already had 

two major VNLayer optimizations adopted. First, the two VNLayer based routing 

protocols don’t keep the entirety of the vrouter states synchronized. Instead, only the part 

of a vrouter’s routing table that is considered hard state are kept synchronized by the 

emulator nodes. In addition, a Backup Server doesn’t check every incoming message 

from the local Server node to look for state inconsistencies. Instead, only Server 

messages that are generated by a vrouter are checked. These two optimizations allowed 

us to greatly reduce the state synchronization overhead and to greatly improve the 

performance of VNAODV and VNRIP.  
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Figure 8-17 The Packet Delivery Fraction of VNAODV with selective state 
synchronization and selective state synchronization checks disabled 

 

Figure 8-18 The control traffic overhead of VNAODV with selective state synchronization 
and selective state synchronization checks disabled 
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Figure 8-17 and Figure 8-18 shows what happens to the PDF and control traffic of the 

base line VNAODV implementation in the last section when the two optimizations are 

disabled. When the entire routing tables have to be synchronized and a Backup Server 

have to check all messages from the local Server, the control traffic becomes very heavy 

due to the larger state sizes and more frequent state synchronizations. We can see the PDF 

drops much faster with increasing number of CBR sessions. 

Now, when we let a Backup Server to check only Server messages from its local Server 

for state inconsistencies, VNAODV’s control traffic becomes much lighter and its PDF 

curve is much flatter. However, because state synchronizations still involve the entire 

application state, VNAODV in this case still generates much more control traffic than the 

base line implementation does.  
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The two figures also show what happens when state synchronization among emulator 

nodes is completely disabled. We can see that without state synchronization, VNAODV 

can actually perform better than the case when the two optimizations are not used. This 

interesting result suggests that for a VNLayer based MANET routing application, 

keeping routing table synchronized among emulator nodes is not critical to the 

performance. At the same time, excessive state synchronization can hurt the performance.  

8.2.3  The Effect of Using Long Links 

On top of the base line implementation, the next thing we did to improve the performance 

of VNAODV is to try to further reduce the length for the forwarding paths by using the 

Long Links option, which basically allows virtual nodes and client processes to 

communicate with each other as long as they can. Figure 8-20 shows the effect of using 

LL on the length of forwarding paths created by VNAODV.  

Without LL, on average, the forwarding paths created by VNAODV are much longer than 

the forwarding paths created by AODV. With LL, the forwarding paths created by 

VNAODV are on average only about half a hop longer than the ones created by AODV. 

Considering the fact that even with LL, at the first hop, a client process still has to deliver 

its DMSGs to the local virtual node for routing, often resulting in an unnecessary extra 

hop in the forwarding path, the paths created by VNAODV with LL are already no worse 

than the ones created by AODV. 

Shortened forwarding paths lead to less data forwarding traffic, fewer packet collisions 

and better PDF. Figure 8-20 verifies that with LL, the PDF of VNAODV is greatly 
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improved. Now, VNAODV performs no worse than AODV up to 25 CBR sessions. 

Figure 8-19 shows that with LL, the delivery latency of VNAODV is also greatly reduced 

as a result of the shortened forwarding paths. Finally, Figure 8-22 shows that with LL, the 

total amount of traffic generated by VNAODV is also reduced. This is because the 

shortened forwarding paths reduce both the data forwarding traffic and the routing traffic 

due to less frequent forwarding failures. 

 

Figure 8-19 The Effect of Using Long Links on the Forwarding Path Length of VNAODV 
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Figure 8-20 The Effect of using Long Links on VNAODV’s PDF 

 

Figure 8-21 The Effect of using Long Links on the Delivery Latency of VNAODV 
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Figure 8-22 The Effect of using Long Links on the Total Traffic Overhead of VNAODV 
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Figure 8-23 The Effect of using Directed Broadcast on the PDF of VNAODV 
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77 Extra traffic is generated by the link layer for packet acknowledgements. Not measured in simulations. 
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cause of DMSG delivery failures, the number of such failures has been greatly reduced 

due to the use of Directed Broadcast. 

Now we have a version of VNLayer based routing protocol that clearly outperforms 

AODV. However, this comes at the cost of requiring every physical node in a MANET to 

support promiscuous mode and a more complicated VNLayer implementation that can 

keep track of the address of region leaders.  

8.2.5  Route Stability Brought by the VNLayer Approach 

Since VNAODV is a clustering based routing protocol, it is easy to understand that it 

performs better than AODV because the number of entities that have to be involved in 

routing is reduced. However, on top of that, we also expected that the VNLayer approach 

can improve the performance of applications with a stable topology among virtual nodes 

(cluster heads) due to its fixed region settings. In this section, we find out whether this is 

the case for VNAODV. 

For a routing application, a stable topology among vrouters translates into more reliable 

forwarding paths. In this research, we use the number of route discoveries78 done by each 

protocol to infer the reliability of forwarding paths created by AODV and VNAODV. 

Because each route discovery could involve a large number of routers, we want the 

number of network-wide route discoveries to be as small as possible. 

                                                 
78 This includes local route repairs but doesn’t include the 1 hop Local Connectivity Checks in VNAODV.  
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Figure 8-24 Route Discoveries/Repairs done by AODV and VNAODV 

Figure 8-24 shows the route discoveries and local route repairs done by AODV and 

VNAODV with various number of CBR sessions. A separate curve is drawn for the three 

major versions of VNAODV we have seen so far. We can see that without using Long 

Links and Directed Broadcast, VNAODV performs much smaller number of route 

discoveries than AODV at every data point, suggesting that the forwarding paths created 

by this version of  VNAODV breaks less frequently than the ones created by AODV.  

As expected, the use of Long Links made the forwarding paths less stable because long 

links are not as reliable as the links created between immediate neighbor regions. The use 

of Directed Broadcast reduces the number of route discoveries. This is not because using 

DB improves the reliability of forwarding paths. It is because DB reduces data 
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transmission failures and in turn reduces the chance that a link is falsely determined as 

broken as a result of unacknowledged79 data transmissions.  

8.2.5.1  CBR Sessions with Static Endpoints 

In the simulations we have presented so far, the endpoints in each CBR session are set to 

move at random80. Therefore, when either the source client process or the destination 

client process leaves one region, VNAODV may have to do a route repair or even a 

network wide route discovery. To further verify that the VNLayer approach can indeed 

improve the stability of forwarding paths, we repeated the simulations above with 

modified CBR sessions such that the source and destination client processes for each 

CBR session stays at the same geographical location throughout a simulation.  

                                                 
79 Either explicitly or implicitly. 
80 Using the random waypoint model. 
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Figure 8-25 PDF of AODV and VNAODV with Static Endpoints in CBR sessions 

 

Figure 8-26 Route Stability of AODV & VNAODV with Static Endpoints in CBR sessions 
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In this case, the forwarding paths created by VNAODV are expected to be much more 

stable than the ones created by AODV. This is because a forwarding path used by 

VNAODV for a CBR sessions is a sequence of vrouters in between the static source and 

destination client processes. As long as this sequence of vrouters stays up. The same 

forwarding path can be used in face of mobility of the physical nodes emulating the 

vrouters. On the other hand, in AODV, the mobility of any router on a forwarding path 

can lead to a route repair or a network-wide route discovery.  

Figure 8-25 shows that the PDF of AODV and VNAODV both improve when the 

endpoints of the CBR sessions are changed from mobile to static. Figure 8-26 shows that 

in the static endpoints cases, the advantage VNAODV has over AODV on route stability 

is much greater than the original cases with mobile endpoints. This verifies our intuition.  

8.2.6  The Value of State Replication 

An important capability provided by the VNLayer is state replication. As we have 

discussed, state replication allows a virtual node to maintain persistent application state in 

face of node mobility. However, this comes at the cost of extra control overhead. We have 

already shown in section 8.2.2 that doing no state synchronization at all in VNAODV is 

better than synchronizing the entire application state and check every local Server 

message for state inconsistencies. However, in the case without state synchronization, 

there are still Backup Servers in each region that handles application messages using and 

updating their own copy of the application state. This is still a form of state replication. 

Now, the question is, to what extent do we need to rely on state replication? What 

happens if we don’t use Backup Servers at all?  
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In addition, there are two subtypes of state synchronizations. A MOV-SYNC happens 

when a physical node move into a different region and becomes a Backup Server. A 

MSG-SYNCs happens when state consistency checks on incoming messages detects a 

state inconsistency. Intuitively, a MOV-SYNC is more important than a MSG-SYC 

because a Backup Server newly arrived at a region relies on the MOV-SYNC to get a 

copy of the application state. On the hand, MSG-SYNCs are used to patch up the state of 

Backup Server. The question is, can we turn off MSG-SYNC so that we can further 

reduce the state synchronization overhead. 

Figure 8-27 and Figure 8-28 show the PDF and route stability of a VNAODV 

implementation81 when state replication is completely turned off, when MSG-SYNC is 

turned off or when there is not state synchronization.  

It is hard to tell whether turning off just MSG-SYNC hurt either the PDF or route 

stability, because the curves for the two cases cross each other. This is because each time 

a physical node moves into a new region and becomes a Backup Server, it can still 

receive a copy of the Server’s state with a MOV-SYNC. Backup Servers still process 

incoming messages and update their state except that they don’t check messages from the 

Server for state inconsistencies. In addition, with MSG-SYNCs disabled, the reduction on 

state synchronization traffic reduces transmission failures and helps improve the packet 

delivery fraction.  

                                                 
81 This version of VNAODV is the base line implementation with the long link option used. 
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Figure 8-27 PDF of VNAODV with Different State Sync Modes 

 

Figure 8-28 Route Stability of VNAODV with Different State Sync Modes 
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Turning off both MSG-SYNC and MOV-SYNC saves all state synchronization traffic. 

However, from the figures we can see this clearly hurts the PDF and route stability. This 

is because each time a physical node enters a region and become a Backup Server; it 

doesn’t get any part of the application state from the Server. When the Backup Server 

becomes the Server of the region, it may not have a route for a DMSG and extra routing 

operations have to be done. 

Turning off state replication completely hurts the PDF and route reliability the most. In 

this case, Backup Server nodes ignore every incoming application message. Every time 

the Server node of a region leaves, a session using the region as a forwarding hop has to 

fix its route by either local route repairs or network-wide route discoveries. Therefore, a 

lot more route discoveries are needed in this case. 

However, even in the last case, the PDF of VNAODV is still not much worse than the 

first case. This shows that state replication is not critical to the performance of VNAODV, 

which is designed to be resilient to route changes. As we have seen, reducing 

transmission failures caused by heavy control traffic overhead, long forwarding paths and 

local broadcast matters more to the performance of VNAODV. 

8.2.7  Effect of other Optimizations at the VNLayer 

8.2.7.1  The Powerful Emulator Option 

As explained in section 0, the Powerful Emulator option can be used to VNAODV to 

further shorten the forwarding paths by allowing an emulator node hosting a client 

process to work as a router independently.  
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Figure 8-29 and Figure 8-30 and Figure 8-31 show what happens to the PDF, average 

forwarding path length and delivery latency of VNAODV82 when the Powerful Emulator 

(PC) option is used. To see the effect of shortened forwarding paths, the figures also show 

another curve for the VNAODV implementation with only the Directed Broadcast option 

used. We can see with PC used, the PDF curve becomes even flatter. This is because in 

this 8 by 8 region network, saving 1 forwarding hop can cut down the data forwarding 

traffic overhead a lot. With lower traffic overhead and fewer forwarding hops, the chance 

that transmission failure happens is lower.  

With PC, a client process no longer has to communicate with the local server for routing 

service. From Figure 8-30, we can see that the average length of the paths created by 

VNAODV is even shorter than the paths created by AODV. This is probably due to the 

better stability of the forwarding paths created by VNAODV. Since the average 

forwarding path was only about 3 hops, with almost one extra hop saved on average, PC 

can save us one third of the data forwarding traffic. 

                                                 
82 An implementation that is equipped with both the Long Link (LL) and Directed Broadcast(DB) options. 
This is also the implementation that gives us the best performance so far. 
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Figure 8-29 The Effect of Using the Powerful Emulator Option on the PDF of VNAODV 

 

Figure 8-30 The Effect of Using the PC on the forwarding path length of VNAODV 
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Figure 8-31 The Effect of Using the PC Option on the delivery latency of VNAODV 

With forwarding paths shortened by PC, the end to end delivery latency of VNAODV is 

even lower. Now, with small number of CBR sessions, the delivery latency of VNAODV 

can be shorter than AODV. However, since VNAODV introduces the total ordering delay 

and can’t take advantage of reverse routes learned from other route discoveries to shorten 

route set up times. When there are 5 CBR sessions or more, the delivery latency of 

VNAODV is still longer than AODV’s. 

Another thing we can see here is that the DB option by itself can bring most part of the 
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shortens the forwarding paths and forwarding delay, but not much on the PDF of 
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: The Effect of the Powerful Client Option 

(700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV+DB

VNAODV+DB+LL

VNAODV+DB+LL+PC



   

 210 

8.2.7.2  Control Over the Number of Emulator Nodes in a Region  

When a MANET is dense, using every physical node as an emulator node is not only 

unnecessary but also costly because the more Backup Servers there is in a region, the 

more state synchronizations will be needed. As introduced in section 4.7.5 , our VNLayer 

implementation can adjust the number of Backup Servers in a region by changing a 

threshold value, which controls the chance a non-leader node sets itself as pure client. 

When the threshold is set to 1000, every non-leader node becomes a Backup Server. 

When the threshold is set to 0, there will be no Backup Servers. Figure 8-32 and Figure 

8-33 show the effect of using different thresholds on the PDF and control overhead of 

VNAODV. The VNAODV implementation here is equipped with both the Directed 

Broadcast option and the long link option.  

From the figures, we can see with threshold 750 is used, the control overhead of 

VNAODV is much lower than the case with threshold 1000 (all non-leaders become 

Backup Servers). This is due to the number of state synchronization messages is reduced 

when the number of Backup Servers is reduced. With the reduced control traffic, we can 

see the PDF of VNAODV is also better than the case with threshold 1000. 

However, when we further reduce the threshold to 500, the control overhead actually 

goes up a little. This is because with fewer Backup Nodes, the number of sync messages 

actually increases a little due to the reduced state consistency among emulator nodes. In 

this case, the PDF of VNAODV is still good, though. When the threshold is reduced to 

250, VNAODV performs worse both in terms of PDF. This is because there is not enough 

Backup Servers in the regions anymore and routes break more frequently.  
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Figure 8-32 The Effect of Reducing the Number of Backup Servers in a region on the 
PDF of VNAODV 

 

Figure 8-33 The Effect of Reducing the Number of Backup Servers in a region on the 
Control Overhead of VNAODV 
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8.2.8  The Effect of Application Layer Optimizations 

8.2.8.1  Local Recovery 

As we have pointed out, data transmission failures at the link layer is the lead cause of 

end to end DMSG delivery failures. Local Recovery is an option we designed at the 

application layer of VNAODV to reduce the impact of transmission failures on the 

performance of VNAODV. Therefore, Local Recovery and Directed Broadcast serve the 

same purpose. However, they are used under different situations. Directed Broadcast can 

be used when the address of the recipient of a packet is known and when promiscuous 

mode can be used on all physical nodes. When either condition can’t be satisfied83, Local 

Recovery can be used to recover DMSGs that are suspected of being lost.  

Figure 8-34 and Figure 8-35 compares the impact of Local Recovery and Directed 

Broadcast on the PDF and control overhead of VNAODV. Here, the VNAODV 

implementation uses the Long Links option. From the plots, we can see using DB by 

itself does a better job than using LR itself on both parameters. This is because LR can 

only recover a portion of the DMSGs lost and doing so comes with unnecessary 

retransmissions of DMSGs that are falsely determined as being lost.  

When both DB and LR are used84, our simulation results showed that VNAODV 

performs at little better than the case when only DB is used. Actually, LR can also be 

implemented at the VNLayer for packets that can’t be delivered by DB. This way, 

applications don’t have to do Local Recovery for application messages anymore. 

                                                 
83 One example is that when the address of a next hop region’s leader is unknown, local broadcast has to be 
used. In this case, LR can be used to reduce transmission failures. 
84 LR only works on DMSGs that are sent by local broadcast. 
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Figure 8-34 The Effect of Directed Broadcast and Local Recovery on the PDF of 
VNAODV 

 

Figure 8-35 The Effect of Directed Broadcast and Local Recovery on control overhead of 
VNAODV 

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 5 10 15 20 25

P
a

ck
e

t 
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Directed Broadcast 

and Local Recovery (700x700, 240 nodes, 11Mbps, fast 

motion)

AODV

VNAODV+LL

VNAODV+LL+DB

VNAODV+LL+LR

0

20000

40000

60000

80000

100000

120000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: The Effect of Directed 

Broadcast and Local Recovery (700x700, 240 nodes, 

11Mbps, fast motion)

AODV
VNAODV+LL
VNAODV+LL+DB
VNAODV+LL+LR



   

 214 

8.2.8.2  Route Correction by Destination 

Route Correction (RC) is a simple optimization we did at the application layer of 

VNAODV so that when a client process receives a DMSG destined for it but not destined 

for its region, it sends out an RREP message reminding nearby vrouters about its current 

location. With route correction, we expect VNAODV to respond to the mobility of 

destination client process better. Figure 8-36, Figure 8-37 and Figure 8-38 show the effect 

of Route Correction on the PDF, route stability and control overhead of VNAODV. Here, 

the VNAODV implementation is equipped with both DB and LL. From the plots, we can 

see that RC doesn’t improve the PDF (it is already very good), it does reduce the number 

of route discoveries that have to be done and it also reduces the delivery latency.  

 

Figure 8-36 The Effect of Route Correction on the PDF of VNAODV 

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4 5 6

P
a

ck
e

t 
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Route Correction at the 

Last Hop(700x700, 240 nodes, 11Mbps, fast motion)

VNAODV+LL+DB+RC

VNAODV+LL+DB



   

 215 

 

Figure 8-37 The Effect of Route Correction on the route stability of VNAODV 

 

Figure 8-38 The Effect of Route Correction on the delivery latency of VNAODV 
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8.2.9  Different Node Motion Rates and Different Node Densities 

 

Figure 8-39 The PDF of VNAODV with different node densities and node motion rates 

Figure 8-39 compares the delivery ratio of VNAODV and AODV with different node 
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As expected, AODV and VNAODV perform better with slower node motion rates. Figure 

8 shows that VNAODV is less sensitive to mobility rate increase than AODV, due to the 

more stable forwarding paths created by VNAODV. 

8.2.10  Different Network Sizes 

The network size we used in the simulations so far is 700m x 700m, which is quite small. 

On average, a data packet delivery only takes a little over 2 hops. To further validate the 

results, we run the simulations on a large network with more mobile nodes. Now, the 

network covers a 1050m x 1050m area and contains 500 physical nodes. The network is 

split into 12 by 12 square regions. The node density of this network is roughly the same 

as the small 8 by 8 region network we used before. The fast motion mode is used for 

node mobility. Here, each simulation runs for 200 seconds. For each data point, we still 

repeat the simulation 5 times. 

Figure 8-40 and Figure 8-41 show the PDF and route stability of AODV and VNAODV 

equipped with various optimizations. The trend of the curves matches with the ones we 

got before with the small network setting. When both Directed Broadcast and Long Links 

are used by VNAODV, we got the best PDF. In addition, compared with the curves we 

got with the small network VNAODV outperforms AODV even more. This is because 

AODV routing here involves even more physical nodes. On route stability, VNAODV 

using Directed Broadcast but not using Long Links again creates the most stable routes. 
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Figure 8-40 The PDF of AODV and VNAODV in a large network setting 

 

Figure 8-41 The Route Stability of AODV and VNAODV in a large network setting 
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Figure 8-42 and Figure 8-43 show the delivery latency and control overhead of AODV 

and VNAODV equipped with various optimizations. Unlike what happens with the small 

network setup, the delivery latency of AODV increases with more CBR sessions. This 

might be because with the much heavier routing traffic overhead, the route discovery 

time gets longer and longer with more CBR sessions. Now, we can see when both 

Directed Broadcast and Long Links are used, the delivery latency of VNAODV is the 

best and is about the same as AODV’s. This verifies that with a larger network, using the 

Long Links options brings greater benefit on delivery latency.   

Figure 8-43 shows that with DB used, the control overhead of VNAODV is the best. On 

top of that, with LL used, the control overhead doesn’t improve although the forwarding 

paths are shortened. Finally, as before, the total traffic overhead generated by VNAODV 

is still heavier than AODV’s total traffic, even with both DB and LL used. 

 

Figure 8-42 The Delivery Latency of AODV and VNAODV in a large network setting 
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Figure 8-43 The Control Overhead of AODV and VNAODV in a large network setting 

 

Figure 8-44 The Total Traffic Overhead of AODV and VNAODV in a large network 
setting 
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8.2.11  Different Region Setups 

In the large network setting we used last section, following the definition in the VNLayer 

model, the network was divided into 12x12 regions. However, the performance 

improvement brought by the Long Links option suggests that the regions could be set 

larger for routing applications. To test the impact of the size of the regions on the 

performance of VNAODV, we repeated the simulations with the network divided into 

6x6 regions and 8x8 regions. Here, this version of VNAODV is equipped with options 

such as Long Links, Local Recovery and Powerful Emulator. 

 

Figure 8-45 The PDF of AODV and VNAODV with different region setups
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Figure 8-45 shows the data packet delivery ratio of AODV and VNAODV with different 

region setups. We can see VNAODV still outperforms AODV under all region setups. 

Reducing the region setting from 12x12 regions to 8x8 regions doesn’t hurt the PDF of 

VNAODV. This is because reducing the total number of regions can reduce the number 

of vrouters in the network and reduce the number of flooded RREQ messages. However, 

if we further reduce the number of regions to 6x6 regions, the delivery performance 

drops. This is because the regions are too large and the links between vrouters are too 

unstable and sometimes a vrouter may even not be able to reach any vrouter around it. 

This result verifies that for routing applications, using larger regions won’t hurt the 

delivery performance.  
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Figure 8-46 and Figure 8-47 compare the forwarding paths length and delivery latency of 

AODV and VNAODV.  When the network is divided into 12x12 regions or 8x8 regions 

VNAODV creates shorter forwarding paths and causes less forwarding delay than AODV 

does, due to the use of the Powerful Emulator option. However, due to the use of Long 

Links, using large regions didn’t affect the forwarding path length much. When the 

network is divided into 6x6 regions, VNAODV creates longer forwarding paths than 

AODV and causes longer forwarding delay. VNAODV no longer outperforms AODV. 

From Figure 8-48, we can see using an 8x8 region setup rather than the standard 12x12 

region setup produces the least total network traffic. Dividing the network into 6x6 

region, causes more network traffic. The simulation results in this section suggests that 

when state synchronization among emulator nodes is not important to the performance of 

an application, larger regions can be used to improve the performance of a VNLayer 

based application by reducing the number of virtual nodes in a network.  
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Figure 8-46 Forwarding Path Length of AODV and VNAODV with different region setups 

 

Figure 8-47 Delivery Latency of AODV and VNAODV with different region setups 

 

Figure 8-48 Total Traffic Overhead of AODV and VNAODV with different region setups 
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8.2.12  Summary 

In this section, I summarize what is learned through the simulation study on VNLayer 

based MANET routing.  

Through extensive simulations, it is shown that our VNLayer based reactive routing 

protocol, VNAODV, can outperform the standard AODV, due to the better routing 

efficiency and reliability brought by the VNLayer approach. This was achieved with 

optimizations using the using the extended VNLayer model. Among the optimizations, 

selective state synchronization and selective state consistency checks reduced the state 

synchronization overhead. Allowing any client processes and virtual nodes to 

communicate with each other reduced the forwarding path length and led to shorted 

delivery latency. Finally, using Directed Broadcast for data transmissions drastically 

reduced the frequency of transmission failures. 

We verified that the VNLayer based AODV routing protocol creates more stable routes 

than the ones created by AODV. We also showed that state replication is not critical to the 

performance of VNAODV. This is possibly the reason why we could relax the limits in 

the basic VNLayer model. 

We also investigated the effect of a few optimizations at the VNLayer and application 

layer on the performance of VNAODV. It is shown that the Powerful Emulator option can 

further reduce the length of forwarding paths create by VNAODV. It is also shown that 

by reducing the number of Backup Servers and cutting down unnecessary control 

overhead, the performance of VNAODV can be improved when a network is dense 
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enough. The local recovery options can be used as an alternative way to reduce delivery 

failures caused by link layer transmission failures. The Route Correction option can 

slightly improve reliability of the routes created by VNAODV. 
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CHAPTER 9. Conclusions and Future Works 

This dissertation presents a series of simulation studies on using the VNLayer approach 

to implement efficient and reliable applications in MANET. The major contributions of 

this dissertation are: 

• A discrete-event based simulator, VNSim, that runs on top of ns2 [39], which can 

efficiently simulate a VNLayer based network of up to a few hundred physical 

nodes.  

• Identification of a number of performance limitations in the link layer and 

VNLayer models (presented in section 3.1 ) used in the original VNLayer 

simulations[36].  

• Extension of the VNLayer model to address the limitations. This dissertation 

verified that the VNLayer approach can be used to adapt wireline protocols to 

MANET and to improve the reliability and efficiency of MANET protocols. 

In this chapter, I first present on the simulation results. Then, I present the future works. 

9.1  Simulation Results 

VNSim is an efficient ns-2 based simulator for VNLayer applications, developed for this 

study of MANET address allocation and routing protocols.  With VNSim, using a simple 

VNLayer based MANET address allocation protocol, VNDHCP, we validated the 
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intuition that the VNLayer approach can be used to adapt wireline protocols to MANET. 

Simulations were done for a small network of 16 regions with 40 to 120 mobile nodes 

and a larger network of 64 regions with 160 mobile nodes, with rate of motion for the 

mobile nodes varying from quite slow to quite fast. The simulations showed that 

VNDHCP performs well and the VNLayer layer overhead is small. 

Simulation studies are also presented for VNAODV, a VNLayer based routing protocol 

adapted from the standard AODV. With this work, we discovered problems with the basic 

VNLayer model. These problems hurt the routing performance badly. To tackle the 

problems, we created a link layer model that reflects the properties of the MANET more 

accurately. We also extended the VNLayer model to relax some limits at the VNLayer.  

Based on the new models, we applied three major VNLayer optimizations in our 

VNLayer implementation:  

• By doing selective state synchronization and selective consistency checks on 

incoming messages, the state synchronization traffic overhead was greatly 

reduced. This in turn leads to fewer collisions and message losses. 

• By allowing long links to be used at the VNLayer, the length of VNAODV’s 

forwarding paths and the average delivery latency of VNAODV were greatly 

reduced. Shortened forwarding paths also lead to fewer message losses. 
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• The replacement of local broadcast with Directed Broadcast on data transmission 

reduces message losses. This optimization brought the biggest improvement on 

packet delivery fraction.  

Simulation results also showed that VNAODV generates much less routing overhead due 

to the reduced number of entities that have to be involved in route discoveries. It is also 

shown the routes created by VNAODV breaks less frequently, due to the stability of the 

links between virtual nodes. As a result, VNAODV is able to outperform AODV in terms 

of packet delivery percentage, routing overhead and route reliability. However, the use of 

the VNLayer approach does introduce extra traffic overhead (due to extra packet header 

and extra forwarding at the first hop) and extra packet processing delay. 

This work also validated the intuition that the VNLayer approach, as a generalized 

programming abstraction that hides the complexity of clustering and state replication, can 

be used to simplify software development and to quickly adapt wireline protocols to the 

MANET environment. VNRIP, a simple version of RIP built over the VNLayer, was 

developed very quickly and shown to perform quite well. 

This work also led to other VNLayer implementation optimizations. For example, the 

leader election mechanism was modified to reduce multi-leadership in regions, to shorten 

leader switching delay, to provide more stability in the region leaders, and to reduce the 

chance that out-of-sync nodes become leaders. New function modules are designed in the 

VNLayer to keep track of the activeness of neighbor regions, the leaders of neighbor 

regions and the whereabouts about physical nodes in the neighborhood. Finally, our 
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VNLayer implementation can also adjust the number of Backup Servers in a region so 

that in a dense network, not every physical node has to emulate the virtual node in its 

region. It is shown in simulations that these optimizations can be used to improve the 

performance of VNLayer based applications. 

9.2  Future works 

9.2.1  Applying Insights gained on the Implementation of Cluster-
based MANET Protocols 

This research provided significant insights on how to implement cluster based MANET 

protocols with state replication capabilities. More work can be done to apply such 

insights to other cluster based MANET protocols. In this section, I summarize the 

important points we learned through the simulation study. 

9.2.1.1  On Reducing Control Traffic Overhead 

Clustering and state replication improve the efficiency and reliability of MANET 

protocols. However, they both come with their control overhead. In the simulation results 

with VNLayer based routing, the majority of DMSG (data message) delivery failures are 

caused by transmission failures at the link layer. Reducing message overhead always 

resulted in better delivery performance. To get better performance, it is important to keep 

the control overhead on clustering and state synchronization as low as possible.  

9.2.1.1.1  Clustering Message Overhead 

The clustering overhead is determined by the cluster setting and node mobility. It is not 

affected by the kinds of applications using the clustering scheme. When clusters are 

maintained through leader elections, the clustering overhead can be reduced by careful 
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adjustment on the periodic leadership claim message (in our implementation, the 

Heartbeat messages) and how many non-leaders shall participate in the rejection of a 

leadership request.  

In our implementation, with the use of the explicit LeaderLeft message, we were able to 

reduce the frequency of Heartbeats from once per second to once per five seconds 

without affecting the performance of the applications.  

In response to a leader request, if more non-leaders can send the rejection message, the 

chance of having duplicate leadership in a region is lower. However, the leader election 

overhead is also higher. This could become a problem with a dense network. In our 

implementation, in order to reduce the leader election overhead, we only allow the leader 

to reject a leader request. 

9.2.1.1.2  State Synchronization Message Overhead 

The state synchronization message overhead depends on the state size and the number of 

state synchronizations needed. Without proper control, this part of the traffic overhead 

can easily overwhelm the network. The following general approaches can be used to 

reduce the state synchronization traffic overhead when strictly synchronized state is not 

critical to the correctness of an application.   

First, we distinguished hard state and soft state in the extended VNLayer model and 

allow an application to do state synchronization only on hard state. As defined in section 

3.4.4 , Hard state is the virtual node state that is critical to the correct operation of an 
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application. Soft state is the virtual node state that is non-critical to the correct operation 

of an application. 

It is the application developer’s job to determine which part of application state is hard 

state and which part is soft state. For example, in VNAODV, we only synchronize the 

destination sequence number, next hop and metric of valid routing entries because these 

are considered hard state. 

Second, we put an upper bound on state synchronization traffic overhead by limiting the 

frequency of state synchronizations done by a leader.  

Third, we allow non-leaders to synchronize their state with state synchronization 

messages directed to other non-leaders.  When state inconsistency is detected by a non-

leader, it is likely that many non-leaders in the same cluster need a state synchronization 

too. To reduce the number of synchronization requests, non-leaders can use a random 

backoff mechanism when sending their requests. In addition, when a non-leader hears 

another synchronization request, it cancels its own request. To be able to do this, each no-

leader synchronizes its state to the state sent in any synchronization response from the 

leader of its region.  

Fourth, using the state inferencing option, non-leaders can use overheard application 

messages from the leader node to update their state to reduce the need for explicit state 

synchronization. As explained in section 3.4.9 , this is an optimization at the application 

layer that would break the abstraction, though.  
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Fifth, a non-leader can use only relevant messages from the leader to check for state 

inconsistency. This would reduce the number of unnecessary state synchronizations 

triggered by message losses. For example, in VNDHCP, we didn’t do state consistency 

checks with Forwarded Server messages because they have nothing to do with the 

application state (the address allocation status).  

9.2.1.1.3  Reduction on Periodic Hello messages 

Many MANET applications require mobile nodes to use periodic Hello or KeepAlive 

messages to maintain a list of direct neighbors. This kind of message overhead is 

proportional to the total number of nodes in a network and is not desirable for MANET 

applications. To reduce the frequency of Hello messages, a clustering scheme can be 

implemented to provide coordinated tracking of the presence of neighbors.  Our VNLayer 

implementation is able to track the activity each neighbor by treating every incoming 

message a Hello message. When a node is silent over a long period of time, the VNLayer 

sends out a Hello message. Each time a Hello message is received; the VNLayer sends a 

Hello event to the application layer. This way, the number of Hello messages needed by 

an application is reduced.  

9.2.1.2  On Reducing Transmission Failures 

Local broadcast is a simple way to send a packet to multiple physical nodes nearby. 

However, data transmissions by local broadcast are not reliable due to the lack of link 

layer support on address resolution, RTC-CTS based channel reservation, and data packet 

acknowledgements and retransmissions. It was the main reason why our VNLayer based 

routing protocols didn’t scale well initially. 
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When promiscuous mode is available on every physical node, Directed Broadcast, as 

defined here, can be used for data transmission when the destination is a single physical 

node or when the destination is a cluster whose leader’s address is known. 

For packets that have to be sent by local broadcast, since the link layer doesn’t provide 

data acknowledgement and retransmission, a custom designed local recovery mechanism 

can be used together with passive data acknowledgement to detect link failures quickly 

and reduce transmission failures. The local recovery mechanism used by VNAODV in 

this thesis, as described in section 6.4.1 , is shown to be able to greatly improve the 

packet delivery fraction. 

9.2.1.3  On Shortening Forwarding Paths 

Clustering may affect the optimality of forwarding paths created by an application when a 

physical node is allowed to communicate with its cluster head only or when inter-cluster 

communications are limited to clusters next to each other. Our simulation results showed 

that when the major goal is to get more messages delivered across the network rather than 

maintaining consistent state within each cluster, it is desirable to allow a physical node to 

communicate with any cluster head directly and allow any two clusters to communicate 

with each other directly. 

9.2.1.4  On Better Leader Election 

A clustering scheme should be engineered so that duplicate leadership happens rarely, 

leadership switches don’t happen too frequently, and leadership switching can be done 

quickly. In our VNLayer implementation, optimizations are done to achieve these goals. 
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This section presents optimizations that can be used by any clustering scheme to improve 

its leader election mechanism.   

9.2.1.4.1  Dealing with Multi-leadership 

Multi-leadership happens when the channel is lossy. Multi-leadership can cause problems 

such as duplicate message forwarding, heavy traffic overhead, and disrupted state 

synchronization. While reducing traffic overhead can alleviate this problem, quick 

resolution of multi-leadership is also important. One simple solution is to let the leader 

that got its leadership earliest force the other leaders to give up their leadership 

immediately. Another solution we used is to delay new nodes in a cluster longer before it 

can claim its leadership, so that it chance it hears a leader Heartbeat message or a 

LeaderReply message is greater. 

9.2.1.4.2  Quick Cluster Leadership Switching 

If a region remains leaderless for a long period of time, large number of messages could 

be dropped. Hence, there is a need to make leadership switching as quickly as possible. 

The addition of the LeaderLeft message to the leader election mechanism greatly 

improved the performance of VNLayer based applications. In a cluster-based protocol, if 

possible, a cluster leader should inform its original cluster when it leaves the cluster.  

9.2.1.4.3  Stabilizing Cluster Leadership 

Frequently switching leaders causes more state synchronizations and more packet drops. 

Hence we want the leader elected for a region to last longer. In our VNLayer 

implementation, in a leader election, nodes moving slower are given higher precedence in 
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the contest for leadership so that the resulting leadership could be more stable. To achieve 

this, we use different leadership claim waiting times for nodes moving with different 

speeds. The faster a node is moving, the longer the node has to wait before it can sends 

out its leader election request. 

9.2.1.5  Reducing the Impact of Virtual Node Resets 

As we have seen, for VNDHCP, VNAODV and VNRIP, special measures have to be 

designed to deal with problems that can arise when a virtual node reboots and lost its 

state. In VNDHCP, each time a virtual node reboots, in order to prevent duplicate address 

allocation, we let the virtual node wait a full lease time before it can allocate addresses. In 

VNAODV, when the vrouter in a region reboots, in order to prevent loops, it sends out an 

RERR message so that no other vrouters use it as the next hop. In VNRIP, we let a 

rebooted vrouter send out a Request message to request routing tables from its neighbors, 

this message also informs the neighbors not to use it as the next hop anymore. 

It would be desirable to develop a generalized way to deal with virtual node resets. For 

example, a VNLayer message can be sent to neighbor regions when a virtual node is 

restarted so that neighboring regions can take any actions required on loss of a neighbor’s 

state. This way, no additional protocol message type needs to be designed at the 

application layer. What an application would need to do would be to implement an 

interface function that handles neighbor server failures. 
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9.2.2  More Works on VNRIP 

VNRIP demonstrated its potential as a MANET routing protocol with reasonable 

performance. A reason that VNRIP didn’t perform as well as VNAODV was because 

VNLayer optimizations such as LL and Directed Broadcast were not applied on the 

VNRIP simulations. Further study could be done on VNRIP to implement passive DMSG 

acknowledgement, local packet recovery, LL and Powerful Emulators on VNRIP. These 

optimizations are expected to further improve the performance of VNRIP. As a proactive 

routing protocol, VNRIP is not expected to perform as well as VNAODV when the 

number of data message sessions is small. However, it can have an advantage over 

VNAODV when the total number of concurrent sessions is large. 

9.2.3  Better Region Setups 

In this research, the way we set up the regions is clearly not optimal. The better 

performance brought by the use of long links and the negligible performance difference 

when fewer regions are used suggest that better region set up can reduce the number of 

regions needed to cover a network and improve the efficiency of VNLayer based routing 

protocols. Further investigations can be done on using different shaped regions and 

overlapping85 region setups. 

9.2.4  The VNLayer Shared by Multiple Applications 

In this research, for each case study, the VNLayer supports only one application at a time. 

One important advantage of using the VNLayer approach is that multiple applications can 

share the services provided by the VNLayer. For example, multiple applications can share 

                                                 
85 When a physical node is in the overlapping area of two regions, it identifies itself with only one region. 
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the same leader election mechanism so that the average control cost on each application 

can be reduced. More research can be done on how to use one VNLayer state machine to 

support multiple applications86. 

9.2.5  Geographical based MANET Routing 

The VNLayer also provides a good platform to implement geographical based MANET 

routing. A GPSR [26] like geographical based MANET routing protocol can be 

implemented over the VNLayer. Geographical based MANET routing requires a 

distributed location service, such as GLS (grid location service) [41]. Virtual nodes can 

be turned into location servers. Using the location service, virtual node emulated routers 

can do geographical routing the same way as GPSR does. The well-known geographical 

locations for the virtual nodes and the grid topology among virtual node can be expected 

to make the geographical based routing easier. 

  

                                                 
86 Because the only part of the VNLayer function that can be shared is the leader election algorithm, sharing 
the VNLayer among multiple applications may not produce much benefit while making the state machine 
more complicated. 
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Appendix A:  Simulating the VNLayer with ns-2 

Based on the design of the Virtual Node Emulator Layer and the Application Layer in 

VNE, we developed a new simulator, VNSim, for VNLayer based applications on the ns-

2 platform [39]. As one of the most popular network simulators, ns-2 has a mature 

implementation of the 802.11 wireless link layer. The development of VNSim is easier 

than VNE because the most complicated part, the Mobile Node Layer in VNE is provided 

by the ns-2 platform. In addition, ns-2 is written with C++, which runs much faster than 

python. VNSim is designed as a discrete event-based simulator. No periodic state 

checking is used. Therefore, VNSim is more scalable than VNE. In this chapter, we 

introduce the structure and major design choices we made on VNSim.  

A.1  The Structure of VNSim 

VNSim is structured in the same way an implementation of VNLayer would be structured 

on a real mobile device. VNSim implemented all the function modules introduced in 

CHAPTER 3.  Figure A.1-1 shows the architecture of a VNLayer emulator node 

simulated by VNSim. Built upon the ns-2 platform, the VNLayer interacts with the ns-2 

platform in order to send and receive packets to the simulated wireless channel. At the 

top, the VNLayer interacts with the application layer, reads and writes application layer 

state and sending commands to the application layer through the interface functions 

implemented by the application layer.  
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Figure A.1-1 Architecture of a VNLayer emulator node in VNSIM 

In VNSim, the VNLayer of each VNLayer emulator node is implemented with 3 types of 

ns-2 agents, agent JOIN, agent VNS and agent VNC. When there are multiple VNLayer 

based applications, there will be an agent VNS and agent VNC for each application. 

Agent JOIN, shared by all VNLayer applications, implements the location checking 

module and leader election module. It communicates region changes and leader status 

changes to the other two types of agents, using two types of messages, REGION and 

LEADER. Agent VNS interfaces with the code for an application server process. On 

Backup Servers, it also buffers server response messages and keeps the application state 

synchronized with the Server node’s state. Agent VNC interfaces with the code for an 

application client process. As inter-agent messages on the same node, the REGION and 

LEADER messages from agent JOIN to agent VNC are sent as loopback messages. So 

are the messages exchanged between agent VNC and agent VNS on the same node. The 

code for Agent JOIN, agent VNS and agent VNC, provides the implementation of the 

VNLayer abstraction. The application server built over the code of Agent VNS and the 
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application client processes built over the code of Agent VNC compose the Application 

Layer. 

 

Figure A.1-2 Interaction between a Leader node and a Non-leader Node 

Figure A.1-2 shows the interaction between the agents on two mobile nodes. The mobile 

node above acts as a Server node. The mobile node below acts as a Backup Server that 

also hosts a client process. The JOIN agents on the two nodes interact with each other for 

leader election and maintenance. The agent VNC on the Backup Server node interacts 

with the agent VNS on the Server node for services. The agent VNS on the Backup 

Server node gets a copy of all the client messages from agent VNC on the same node and 

prepares its response messages. It also listens to the channel and uses Server messages 

from the same region to detect state inconsistencies.   

A.2  Agent JOIN 

Agent JOIN is an agent shared by all other VNLayer agents for location checking and 

leader election. In ns2, each agent on a simulated mobile node is associated with a 

different port number. To receive the leader election result and location checking result 
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from agent JOIN, VNLayer agents register their port numbers with agent JOIN to receive 

location information and leader election results.  

In VNSim, mobile nodes move according to standard ns-2 mobility traces generated 

using the random waypoint model [31]. Agent JOIN checks a node’s current location to 

determine the region the node is in and to check whether it has entered a new region. The 

ns-2 implementation of the class MobileNode provides methods for determining a mobile 

node’s current location, motion speed and direction. Using the region boundaries, a 

node’s current region can be derived from its current location. On a node, if agent JOIN 

finds out that the node’s current region is different from the one on record, a 

RegionChanged event is triggered. The region id of the current region is recorded. A 

REGION message is then sent to each agent port registered with it.  

In addition, when a leader election is done, agent JOIN sends a LEADER message to 

each agent port registered with it. 

To improve the scalability of the simulation, instead of checking the location periodically, 

VNSim checks the location when a node enters the network; when it starts moving; and 

when it crosses a region boundary. To generate region-boundary crossing events, we use a 

node’s current location, motion rate and direction of motion to predict the time a node 

enters a new region. This way, we only do location checks when necessary. 
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A.3  VNServer, the Parent Class of VNLayer Application 
Servers 

Agent VNS buffers and sends the application server messages, synchronizes a non-

leader’s state with the leader’s state, and simulates the application server. In VNSim, 

Agent VNS is defined in a class called VNServer. 

Agent VNS sorts the incoming packets with the timestamp carried in the packets and put 

them into a buffer, before they are passed on to the consistency manager. A bi-directional 

linked list is used as the sending queue on each mobile node. A timer is used to schedule 

the sending of the messages in the sending queue. with a short interval between 

consecutive packet transmissions. Since Backup Server nodes don’t send response 

messages, they don’t set the sending timer. When the Server node in the region leaves or 

crashes, a Backup Server node may become the Server of the region and start to set the 

sending timer.  

Any application server class created over the VNLayer must uses VNServer as its parent 

class and implements a set of virtual functions declared by VNServer. Therefore, an 

application server is an extended agent VNS that includes the application server code. An 

application server agent starts running or restarts each time when it receives a REGION 

message from agent JOIN. Each time a REGION message is received, if the node’s 

region is changed, agent VNS resets the application layer state and waits for the result of 

leader election from agent JOIN (LEADER message). Once the leader status is 

determined, agent VNS decides whether the node shall behave as a Server node or a 

Backup Server node or a Pure Client (using the Coin Tosser module). A Server node 
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initializes its state and starts to process application packets right away. A Backup Server 

node needs to get its state synchronized with the Server’s state before it can process 

application packets.  

A.4  VNClient, the Parent Class of Application Clients 

Although a client process doesn’t need to know anything about the VNLayer, it can’t 

communicate directly with a virtual node before its packets are tagged with its region id. 

This is done by Agent VNC, defined in class VNClient, by inserting a VNLayer message 

header to every client message.  

In VNSim, the class for a client process shall be declared as a child class of VNClient. 

Then, an application client in VNSim is simulated by an extended Agent VNC. An 

application client agent starts running when it gets a REGION message from agent JOIN.  

A.5  Issues with Port Number 

In ns-2, an agent can only hear messages destined to its listening port. However, for state 

synchronization purpose, the agent VNS on a Backup Server node needs to hear all the 

server messages received by the client process on the same node. However, these server 

messages are sent to the port used by agent VNC, rather than the port used by agent VNS.  

To solve this problem, in the application layer code for a client processes, when a server 

message is received, a copy of the message is sent to agent VNS on the same node using 

a loopback message.  

A.6  Modified VNSim Structure for Routing Applications 

The VNSim with the structure introduced above was used to simulate our VNLayer based 

MANET address allocation protocol and routing protocols such as VNAODV and 
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VNRIP. When VNSim is used to simulate VNLayer based routing applications, we 

modified the VNSim structure so that it accepts data traffic generated by third party 

traffic generators. In ns-2, built-in MANET routing protocols are implemented as 

individual agents working at the routing layer, which decides how to forward incoming 

traffic or local data traffic generated by the node itself. The built-in routing agents can 

process TCP or UDP data traffic generated by built in traffic generator agents. To make 

the performance comparison between the ns-2 built-in routing protocols and our 

VNLayer based routing protocol fair, we made VNSim an ns-2 compliant routing agent.  

Figure A.6-1 shows the architecture of the modified VNSim. Now, the functions provided 

by the three types of ns2 agents are integrated into one agent called Agent VN. Agent 

VNC in the original structure is not needed when the client process is provided by a built-

in traffic generator agent87. The client message handler module that was implemented in 

agent VNC is now provided by agent VN. Agent VN works at the ns-2 routing layer. 

When a client message is received from a local traffic generator agent, agent VN adds the 

                                                 
87 In our simulation, the ns-2 agent, CBR is used to generate constant bit rate UDP traffic. 
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Figure A.6-1 the Architecture of the Modified VNSim 
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VNLayer packet header to the message and passes it to the application layer. The leader 

election module and location checking module implemented by Agent JOIN are also 

provided by agent VN. The integration of all the VNLayer function modules into one 

agent allows us to use only one ns2 port number for the simulated VNLayer. Inter-agent 

communications are not done by function calls within the same agent rather than 

loopback messages. This simplifies the simulator code. The problem with this 

implementation is that the leader election module can only used by a single VNLayer 

based application. 

A.7  Interface Functions required by VNSim for VNLayer 
based Applications 

Table A.7-1 lists out all the interface functions that have to be implemented by the 

application layer code. In addition to these functions, the VNLayer sending queue is 

accessible by the application layer. By calling a function enqueue(), the application layer 

can easily pass a response message down to the VNLayer.  

Table A.7-1 Interface Functions Required by the VNLayer Class in VNSim 

Interface Function Purpose 

equal() A function used by the VNLayer consistency manager to check if two application 

layer packets are the response to the same incoming message.  

getState() Used by the VNLayer to retrieve application layer state 

saveState() Used by the VNLayer to synchronize application layer state with incoming SYN-

ACK messages 
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getStateSize() Used by the VNLayer to get the size of the application layer state in bytes 

getStateHash() Used by the VNLayer to retrieve a hash of the application layer state 

handlePacket() Used by the VNLayer to pass application layer packets to the application layer 

handleApplMsg() Used by the VNLayer to pass application layer packets to the application layer 

when a node is out of sync 

handleClientPacket() Used by the VNLayer to pass client messages to the application layer when the 

option Powerful Emulator is turned on 

handleHello() Used by the VNLayer to pass a Hello event to the application layer when any 

message with a VNLayer header  is received by the VNLayer. 

Server_init() Used by the VNLayer to initialize the application layer state when a node enters a 

new region 
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