

A SIMULATION STUDY ON USING THE VIRTUAL NODE

LAYER TO IMPLEMENT EFFICIENT AND RELIABLE MANET

PROTOCOLS

by

JIANG WU

A thesis submitted to the Graduate Fac-
ulty in Computer Science in partial ful-
fillment of the requirements for the de-

gree of

Doctor of Philosophy,

The City University of New York

2011

ii

©2010

JIANG WU

All Rights Reserved

iii

This manuscript has been read and accepted by the Graduate Faculty in Com-

puter Science in satisfaction of the dissertation requirement for the degree of

Doctor of Philosophy.

(Nancy Griffeth)

Date Chair of Examining Committee

(Theodore Brown)

Date Executive Officer

Amotz Bar-Noy

Ping Ji

Bilal Khan

Nancy Lynch

Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

 iv

Abstract

A SIMULATION STUDY ON USING THE VIRTUAL NODE LAYER TO IM-

PLEMENT EFFCIENT AND RELIABLE MANET PROTOCOLS

by JIANG WU

Advisor: Nancy Griffeth

The Virtual Node Layer (VNLayer) is a cluster based programming abstraction for a

Mobile Ad-Hoc Network. VNLayer defines fixed or predictably mobile geographical

regions. In each region, a number of mobile nodes collectively emulate a virtual node,

which provides services and relays packets for client processes.

As a clustering scheme with state replication, the VNLayer approach can theoretically

improve the efficiency and reliability of MANET protocols. As a general programming

abstraction, the VNLayer hides underlying complexities from protocol developers and

can be shared by multiple applications. However, the VNLayer also introduces extra

control overhead and prolongs data forwarding delay, which could be prohibitively

expensive in terms of performance.

Based on an existing VNLayer implementation [1], we developed an ns-2 based software

package, VNSim. VNSim can be used to simulate VNLayer based applications in a

MANET of up to a few hundred mobile nodes, in order to better understand the impact of

the VNLayer approach on efficiency and reliability.

 v

With VNSim, we did our first case study on a VNLayer based MANET address allocation

protocol, VNDHCP. Simulation results proved that the VNLayer approach can be used to

adapt a wireline protocol to MANET.

We also did an extensive simulation study on VNLayer based MANET routing. A

wireline routing protocol, RIP, was adapted to run over the VNLayer. With the support

provided by the VNLayer, the adapted protocol, VNRIP, was implemented very quickly

and can provide reasonable performance.

During the study of VNLayer based MANET routing, we identified a number of major

performance limitations in the existing VNLayer implementation and the models it is

based on. To tackle the limitations, we created a more realistic link layer model, extended

the VNLayer model and optimized our VNLayer implementation.

With the optimized VNLayer implementation, we implemented VNAODV, an adapted

version of AODV, over the new link and VNLayer models. Simulation results indicate

that VNAODV delivers more packets and creates more stable routes than standard AODV

in a dense MANET with high node motion rate and moderate data traffic.

This research validated the intuition that the VNLayer approach can be used to adapt

wireline protocols quickly to MANET and to improve the performance of MANET

protocols. This research also provided us some insights on how to implement and

optimize cluster based MANET protocols.

 vi

Dedication

This is dedicated to my father, mother and wife. Their strong support made

everything possible.

 vii

Acknowledgments

I would like to first thank Professor Nancy Griffeth for her guidance through this long

journey. This is not only for her painstaking effort in advising me on my research,

correcting papers together with me, but also for her strong support on my personal life.

I’ve learned a lot more than scientific research from her. I would also like to thank Prof.

Nancy Lynch and her research group for providing me the research topic, source code

and inspiring discussions. I would especially thank Calvin Newport for his help on

solving problems I had with simulations and his resourceful suggestions. I would also

thank Mike Spindel for his great help in providing me his simulator for the Virtual Node

Layer, based on which my simulator was created. His patient email responses at the early

stage of research helped me to get started very quickly. In addition, I would thank Costas

Djouvas, Yuri Cantor, Prof. Ping Ji, Prof. Bilal Khan and Prof. Amotz Barnoy on

providing great comments and suggestions on my research.

 viii

Table of Contents

Contents

Abstract .. iv

Dedication .. vi

Acknowledgments... vii

Table of Contents ... viii

Contents ... viii

List of Tables .. xiv

List of Figures ... xv

CHAPTER 1. Overview ... 1

1.1 Difficulties in Mobile Ad-hoc Networking .. 1

1.2 What is Virtual Node Layer ... 3

1.3 An Example of VNLayer based Data Forwarding ... 5

1.4 Benefits of Using the VNLayer .. 7

1.5 Limitations of the Virtual Node Layer ... 8

1.6 Research Objectives ..11

1.7 Overview of the Simulation Studies ...11

1.7.1 MANET Address Allocation over the VNLayer ..11

1.7.2 Reactive MANET Routing over the VNLayer ... 12

1.7.3 Proactive MANET Routing over the VNLayer .. 13

1.7.4 Scope of Optimizations ... 14

1.8 Structure of the Thesis .. 15

CHAPTER 2. Background .. 17

2.1 MANET Address Allocation .. 17

2.1.1 IP Address Auto-Configuration for Ad Hoc Networks (IAAC) 18

2.1.2 MANETConf: Configuration of hosts in a mobile ad hoc network............ 19

 ix

2.1.3 Zero-Maintenance Address Allocation (ZAL) .. 23

2.1.4 MANET Address Allocation in IPv6 .. 26

2.1.5 Summary ... 26

2.2 MANET Routing .. 27

2.2.1 Proactive Routing Protocols ... 29

2.2.2 Reactive Routing Protocols... 32

2.2.3 Cluster Based Routing .. 37

CHAPTER 3. Models for the Link Layer and the VNLayer 43

3.1 The Basic Link Layer and VNLayer Models ... 43

3.1.1 The Basic Link Layer Model .. 44

3.1.2 The Basic VNLayer Model ... 45

3.2 The Extended Link Layer and VNLayer Models ... 48

3.2.1 The Extended Link Layer Model .. 48

3.2.2 The Extended VNLayer Model ... 50

3.3 The Implementation of the VNLayer ... 53

3.4 Implementation Choices ... 54

3.4.1 Region Shapes and Node Sending and Receiving Capabilities 55

3.4.2 Leader Election ... 55

3.4.3 Number of Emulator Nodes .. 56

3.4.4 State to Be Synchronized .. 56

3.4.5 Subtypes of State Synchronizations .. 57

3.4.6 Control Over State Synchronization Frequency ... 58

3.4.7 Use of Overheard State Synchronization Messages 58

3.4.8 State Consistency Checks ... 58

3.4.9 State Inferencing ... 59

3.4.10 Communication Rules ... 59

3.4.11 Powerful Emulators .. 60

3.4.12 Summary of Implementation Choices .. 60

CHAPTER 4. Virtual Node Layer Implementation .. 63

 x

4.1 Virtual Node Emulator ... 63

4.2 Virtual Node Simulator (VNSim) .. 64

4.3 VNLayer Packet Header... 67

4.4 VNLayer State .. 69

4.5 Packet Classifier ... 72

4.5.1 Packet Classification ... 72

4.5.2 Neighbor/Region State Maintenance (NRSM) ... 72

4.6 Location Checking Module .. 73

4.7 Leader Election Module ... 74

4.7.1 Faster Leadership Switching ... 77

4.7.2 Reducing Duplicate Leaderships .. 78

4.7.3 Stabilizing Region Leaderships .. 79

4.7.4 Electing Better Leaders ... 81

4.7.5 Reducing the Number of Backup Servers ... 82

4.8 The VNLayer State Machine .. 83

4.9 Sending Queue ... 86

4.10 Application Packet Processing ... 88

4.10.1 Client Message Handler (CMH) ... 89

4.10.2 Application Packet Filtering (APF) .. 90

4.10.3 Application Packet Total Ordering (APTO) ... 91

4.10.4 Consistency Manager (CM) .. 92

4.11 State Synchronization ... 94

4.11.1 State to be Synchronized ... 96

4.11.2 Subtypes of State Synchronizations .. 96

4.11.3 Control Over State Synchronization Frequency ... 97

4.11.4 Use Overheard SYN-ACK messages.. 97

4.11.5 State Consistency Checks ... 98

CHAPTER 5. MANET Address Allocation over the VNLayer 100

5.1 Address Allocation and Renewal inside a Single Region 102

 xi

5.2 Address Allocations and Renewals across Region Borders 104

5.2.1 Local Address Depletion ... 105

5.2.2 Node Motion ... 106

5.2.3 Virtual Node Reset .. 106

5.3 Application Layer Implementation Choices .. 107

5.4 Implementation Choices taken at the VNLayer ..110

5.5 Discussion: VNDHCP vs. Existing Address Allocation Solutions 111

CHAPTER 6. Reactive Routing over the VNLayer ..114

6.1 Basic Operations of VNAODV ...115

6.1.1 Route Discovery...116

6.1.2 Data Message Forwarding ...119

6.1.3 Route Maintenance ..119

6.2 Preventing and Detecting Routing Loops .. 122

6.2.1 Restarted Regions ... 123

6.2.2 Out of Sync Nodes .. 124

6.3 Taking Advantage of VNLayer optimizations.. 128

6.3.1 Selective State Synchronization and State Consistency Checks............... 128

6.3.2 Shortening Forwarding Paths .. 130

6.3.3 Directed Broadcast .. 135

6.3.4 Powerful Emulator Option .. 136

6.4 Optimizations at the Application Layer ... 142

6.4.1 Local Recovery of DMSGs ... 142

6.4.2 State Inferencing ... 146

6.4.3 Route Correction by Destination .. 148

CHAPTER 7. Proactive Routing over the VNLayer .. 149

7.1 Message Types ... 150

7.2 Routing Table ... 151

7.3 Routing Updates ... 152

7.3.1 Hello Messages from Every Physical Node.. 153

 xii

7.3.2 Triggered Partial Update ... 153

7.3.3 On-Demand Update .. 154

7.3.4 Complete Update .. 154

7.4 Data Message Forwarding .. 155

7.5 Route Maintenance ... 155

7.6 Loop Detection and Prevention .. 156

7.7 Optimizations based on VNLayer Implementation .. 157

7.7.1 Hello Messages Sent and Managed by the VNLayer 158

7.7.2 Neighbor Region Activeness... 158

7.8 Summary .. 159

CHAPTER 8. Performance Evaluation on VNLayer based Address Allocation and
MANET Routing 160

8.1 Performance Evaluation on VNDHCP ... 160

8.1.1 Simulation Settings ... 160

8.1.2 Simulation Time .. 162

8.1.3 VNLayer message overhead ... 162

8.1.4 Different Renewal Methods .. 164

8.1.5 Different Node Densities .. 171

8.1.6 Summary ... 174

8.2 Performance Evaluation on VNAODV and VNRIP .. 177

8.2.1 VNRIP and Base Line Implementation of VNAODV 180

8.2.2 The Effect of Selective State Synchronizations and Selective State
Consistency Checks .. 191

8.2.3 The Effect of Using Long Links ... 194

8.2.4 The Effect of Using Directed Broadcast ... 197

8.2.5 Route Stability Brought by the VNLayer Approach 199

8.2.6 The Value of State Replication.. 203

8.2.7 Effect of other Optimizations at the VNLayer .. 206

8.2.8 The Effect of Application Layer Optimizations .. 212

8.2.9 Different Node Motion Rates and Different Node Densities 216

 xiii

8.2.10 Different Network Sizes ... 217

8.2.11 Different Region Setups .. 221

8.2.12 Summary ... 225

CHAPTER 9. Conclusions and Future Works .. 227

9.1 Simulation Results.. 227

9.2 Future works ... 230

9.2.1 Applying Insights gained on the Implementation of Cluster-based MANET
Protocols ... 230

9.2.2 More Works on VNRIP ... 237

9.2.3 Better Region Setups... 237

9.2.4 The VNLayer Shared by Multiple Applications 237

9.2.5 Geographical based MANET Routing .. 238

Appendix A: Simulating the VNLayer with ns-2 ... 239

A.1 The Structure of VNSim .. 239

A.2 Agent JOIN .. 241

A.3 VNServer, the Parent Class of VNLayer Application Servers 243

A.4 VNClient, the Parent Class of Application Clients .. 244

A.5 Issues with Port Number .. 244

A.6 Modified VNSim Structure for Routing Applications ... 244

A.7 Interface Functions required by VNSim for VNLayer based Applications 246

Bibliography ... 248

 xiv

List of Tables

Table Page
Table 3-1: Implementation options investigated by simulations of the VNLayer approach
... 61

Table 4-1 Random backoff settings in leader election for nodes at different level of
stabilities ... 81

Table 8-1 Settings for 5 Motion Speed Modes ... 161

Table 8-2 Simulation Speed of VNE and VNSim ... 162

Table A.7-1 Interface Functions Required by the VNLayer Class in VNSim 246

 xv

List of Figures

Figure Page

Figure 1-1 The VNLayer works between the MANET and Applications as a programming
abstraction ... 4

Figure 1-2 Illustration of VNLayer based MANET packet forwarding. 6

Figure 4-1 The Architecture of VNSim on a VNLayer equipped physical node 64
Figure 4-2 A routing loop in VNAODV when a region is booted 64

Figure 4-3 The Leader Election Module State Machine ... 75

Figure 4-4 The VNLayer State Machine ... 84

Figure 4-5 Details of the Application Packet Processing Module 89

Figure 5-1 Address Allocation and Address Renewal in VNDHCP 102

Figure 5-2 Address Allocation across Region Borders when a Region Runs Out of
Addresses .. 105

Figure 5-3 An address lease renewal across region borders (geographical based routing
for RENEW messages) ... 109

Figure 6-1 A routing loop in VNAODV when a region is booted 124

Figure 6-2 A routing loop in VNAODV when an out-of-sync node takes over a region 124

Figure 6-3 Routing loops in VNAODV when a Backup node learns a wrong route 126

Figure 6-4 Optimizations in VNAODV that shorten forwarding paths 132

Figure 6-5 One forwarding hop saved by the Long Links option 134

Figure 6-6 With LL option, a vrouter should not report routes for local destination nodes.
... 135

Figure 6-7 One forwarding hop saved by the Powerful Emulator Option in VNLayer . 137
Figure 6-8 Example on How Local DMSG Recovery Works .. 145

Figure 8-1 Allocation performance with different renewal methods, large network, fast
moving case .. 165

Figure 8-2 Renewal overhead with different renewal methods, large network, fast moving
case .. 166

Figure 8-3 Distribution of addressless times with different renewal methods, large
network, fast moving case ... 168

Figure 8-4 Allocation performance with different renewal methods, large network, slow
moving case .. 169

Figure 8-5 Renewal overhead with different renewal methods, large network, slow
moving case .. 170

Figure 8-6 Distribution of addressless times with different renewal methods, large

 xvi

network size, slow moving case.. 170

Figure 8-7 Allocation performance with different node densities and different node
motion rates when geographical routing used for address renewals 172

Figure 8-8 Virtual node layer message overhead with different node densities 173
Figure 8-9 Packet Delivery Fraction of AODV, VNAODV and VNRIP 181

Figure 8-10 Length of Forwarding Paths Created by AODV, VNRIP and VNAODV ... 183

Figure 8-11 End to End DMSG Delivery Latency of AODV, VNAODV and VNRIP .. 183
Figure 8-12 Routing Traffic Overheads of AODV, VNAODV and VNRIP 185

Figure 8-13 Control Traffic Overheads of AODV, VNAODV and VNRIP 185

Figure 8-14 Total Traffic Overheads of AODV, VNAODV and VNRIP 185

Figure 8-15 Causes of End to End Delivery Failures in AODV 188

Figure 8-16 Causes of End to End DMSG Delivery Failures in VNAODV 190

Figure 8-17 The Packet Delivery Fraction of VNAODV with selective state
synchronization and selective state synchronization checks disabled 192

Figure 8-18 The control traffic overhead of VNAODV with selective state
synchronization and selective state synchronization checks disabled 192

Figure 8-19 The Effect of Using Long Links on the Forwarding Path Length of
VNAODV ... 195

Figure 8-20 The Effect of using Long Links on VNAODV’s PDF 196

Figure 8-21 The Effect of using Long Links on the Delivery Latency of VNAODV 196

Figure 8-22 The Effect of using Long Links on the Total Traffic Overhead of VNAODV
... 197

Figure 8-23 The Effect of using Directed Broadcast on the PDF of VNAODV 198
Figure 8-24 Route Discoveries/Repairs done by AODV and VNAODV 200

Figure 8-25 PDF of AODV and VNAODV with Static Endpoints in CBR sessions 202

Figure 8-26 Route Stability of AODV & VNAODV with Static Endpoints in CBR
sessions ... 202

Figure 8-27 PDF of VNAODV with Different State Sync Modes 205

Figure 8-28 Route Stability of VNAODV with Different State Sync Modes 205

Figure 8-29 The Effect of Using the Powerful Emulator Option on the PDF of VNAODV
... 208

Figure 8-30 The Effect of Using the PC on the forwarding path length of VNAODV .. 208

Figure 8-31 The Effect of Using the PC Option on the delivery latency of VNAODV . 209

Figure 8-32 The Effect of Reducing the Number of Backup Servers in a region on the
PDF of VNAODV ..211

Figure 8-33 The Effect of Reducing the Number of Backup Servers in a region on the
Control Overhead of VNAODV ..211

Figure 8-34 The Effect of Directed Broadcast and Local Recovery on the PDF of
VNAODV ... 213

Figure 8-35 The Effect of Directed Broadcast and Local Recovery on control overhead of

 xvii

VNAODV ... 213

Figure 8-36 The Effect of Route Correction on the PDF of VNAODV 214

Figure 8-37 The Effect of Route Correction on the route stability of VNAODV 215
Figure 8-38 The Effect of Route Correction on the delivery latency of VNAODV 215
Figure 8-39 The PDF of VNAODV with different node densities and node motion rates
... 216

Figure 8-40 The PDF of AODV and VNAODV in a large network setting 218
Figure 8-41 The Route Stability of AODV and VNAODV in a large network setting .. 218
Figure 8-42 The Delivery Latency of AODV and VNAODV in a large network setting219
Figure 8-43 The Control Overhead of AODV and VNAODV in a large network setting
... 220

Figure 8-44 The Total Traffic Overhead of AODV and VNAODV in a large network
setting .. 220

Figure 8-45 The PDF of AODV and VNAODV with different region setups 221

Figure 8-46 Forwarding Path Length of AODV and VNAODV with different region
setups... 224

Figure 8-47 Delivery Latency of AODV and VNAODV with different region setups .. 224
Figure 8-48 Total Traffic Overhead of AODV and VNAODV with different region setups
... 224

Figure A.1-1 Architecture of a VNLayer emulator node in VNSIM 240

Figure A.1-2 Interaction between a Leader node and a Non-leader Node 241
Figure A.6-1 the Architecture of the Modified VNSim .. 245

 1

CHAPTER 1. Overview

Mobile Ad-hoc Networks (MANETs) are wireless networks set up temporarily among

wireless devices, without the support of any infrastructure. Wireless devices in a MANET

may move around continuously and each one of them may need to forward packets for

other devices in the MANET. Because MANETs can be deployed quickly, they can be

used for disaster rescue, battlefield communication and sensor networks.

1.1 Difficulties in Mobile Ad-hoc Networking

While MANET can be deployed easily, networking in a MANET faces many difficulties.

• Absences of designated servers: As the word “Ad-hoc” indicates, the first

difficulty any MANET has to deal with is the absence of designated servers such

as routers, DNS server and DHCP servers, etc. This is because any wireless

device can leave the MANET or run out of battery power at any time. Therefore,

to provide any service, a MANET protocol can’t count on any specific node being

able to work permanently. Any MANET service has to be supported by wireless

devices in a distributed way so that the failure of a single device will not

significantly affect the service.

• Shared transmission medium: Wireless data transmissions in a MANET are

usually done in a shared radio channel. Given a radio channel, a packet sent out

by a wireless device can reach every wireless device within the sender’s radio

 2

range. When more than one packet is heard by a wireless device from the same

radio channel at the same time, neither packet can be received successfully. This

kind of interference between packets can cause message collisions. Even with

collision avoidance mechanisms such as CSMA/CA in 802.11, packet collisions

can still happen due to issues like the “hidden terminal problem”. The result is

that packets get dropped more frequently in MANETs. MANET protocols must be

carefully designed to use the wireless channels efficiently while avoiding

collisions.

• Limited transmission range: Unlike the long transmission ranges offered by

cables in wireline networks, the radio range of wireless devices are typically on

the order of a few hundred meters. Short radio ranges translate to larger network

diameters and longer forwarding paths when a packet needs to be delivered from

one node to another. Long forwarding paths in turn translate into long delivery

latencies, high delivery failure rates and slow routing convergence.

• Dynamic network topology: The network topology of a MANET can be very

dynamic due to the mobility of the wireless devices. Unlike wireline networks in

which links between network devices can be very stable, the links between

wireless devices break frequently. To keep a MANET protocol operational, a lot

of control burden is involved in dealing with the dynamic topology. MANET

protocols have to struggle to keep the balance between performance and

efficiency.

 3

The dynamic topology of a MANET also leads to the lack of network hierarchy in

a MANET. A wireline network can be easily constructed as a hierarchical

network, using routers/switches to carve the network into subnets. This is because

devices in a wireline network don’t move around. They can stay in a subnet set up

for them. With the dynamic topology and the absence of fixed routers, there is no

easy way to bind a mobile device to a specific subnet. Most MANETs are created

as flat networks, in which the MANET protocols don’t scale well. To improve the

efficiency of MANET protocols, complex ways must be designed to create

dynamic hierarchies in MANETs.

• Limited battery life: Mobile devices in a MANET are powered by batteries. This

not only limits the lifetimes but also the radio transmission ranges of mobile

devices. A MANET can split into components when a mobile device connecting

the partitions together runs out of power. To deal with this problem, many

MANET network protocols are designed to make efficient use of power and to

prolong the lifetime of a MANET.

1.2 What is Virtual Node Layer

The Virtual Node Layer (VNLayer) [1] is a programming abstraction designed to

alleviate the difficulties in MANET networking, as discussed above. The VNLayer

creates mobile device clusters and defines “virtual” servers, called “virtual nodes”, at

fixed locations or predictably changing locations in a MANET.

 4

Different definitions and implementations of the VNLayer have been discussed in

theoretical literature [2][3][4][5][6][7]. In this thesis, we use a specific implementation of

VNLayer called “the Reactive VNLayer” [1]. In the Reactive VNLayer, each virtual

node’s operations are controlled by an automaton driven by incoming messages. For

simplicity, for the rest of this thesis, we use the term VNLayer to refer to our VNLayer

implementation.

In this thesis, we use the VNLayer abstraction with virtual nodes defined at fixed

locations. A mobile ad-hoc network is divided into regions at fixed geographical

locations. Within each region, a subset of the physical mobile devices elects a leader,

which processes and responds to incoming protocol messages. Non-leaders maintain

replicated states which are consistent with the leader’s state and work as backup servers.

In each region, this set of nodes hence emulates a virtual node. To physical mobile

devices in a region, a virtual node works as if it is a fixed local server. Now, within a

MANET, we have a matrix of virtual nodes/servers defined at fixed locations, which can

cooperatively provide services in a distributed way.

Figure 1-1 The VNLayer works between the MANET and Applications as a programming
abstraction

Application Layer

Virtual Node Layer

MANET Link Layer

 5

Figure 1-1 shows the relationship between a MANET and the VNLayer. In this thesis, we

define application layer protocols to be any protocols running on top of the VNLayer.

This can include routing protocols (which would be considered network layer in the

Internet or OSI model) and transport layer protocols.1 As a programming abstraction, the

VNLayer handles tasks such as node location checking, leader election, and state

synchronization. It also provides a set of user interface functions that can be used by the

application layer to pass packets and state to the VNLayer. The application layer also

must implement a number of interface functions required by the VNLayer so that the

VNLayer can use them to pass packets to the application layer and get/save state to the

application layer. At the bottom, the VNLayer interfaces with the MANET link layer. It

passes packets to the link layer and receives incoming packets from the link layer. It may

also elect to use link layer services such as address resolution (ARP), RTS-CTS and data

packet acknowledgement.

1.3 An Example of VNLayer based Data Forwarding

Figure 1-2 shows an example of a packet being forwarded through a 12-region MANET

using VNLayer-based routers.

1 This application layer is different from the application layer in the OSI 7 layer network model.

 6

Figure 1-2 Illustration of VNLayer based MANET packet forwarding.

In each region, a leader node and a number of non-leader nodes emulate a router. For

example, in region 2.2, the virtual node is emulated by node 1 and node 2 and node 1 is

the leader node. Pure client node 3 (a client node that doesn’t emulate a virtual node) in

region 1.0 sends out a packet destined for client node 7 in region 2.2. The packet is first

processed by local leader node 1 and non-leader node 2. Leader node 1 forwards the

packet to region 2.0. As a backup router, non-leader node 2 buffers the packet it tries to

forward to region 2.0 in its sending queue. When node 2 overhears the packet forwarded

by leader node 1, it removes the matching packet from its sending queue. The virtual

node emulated routers in region 2.0, 3.1 and 2.2 then forward the packet all the way to

the destination node 7. Node 4, 5 and 6 are the nodes forwarding the packet. Node 8

works as a backup router for node 5. Node 7 is the destination node. It also works a

backup router for node 6. The dotted arrows indicate forwarded packets heard by the

backup routers. Node 9 is another pure client node that is not involved in the forwarding

 7

at all. To a client node, a virtual node in its region works as a fixed router, although it is

emulated by multiple physical nodes.

1.4 Benefits of Using the VNLayer

There are a number of benefits of using the VNLayer. First of all, the VNLayer works as

a clustering scheme that creates a level of hierarchy in a MANET. This reduces the

number of nodes that has to handle a distributed network service. It also reduces the work

load each distributed server has to handle. Therefore, VNLayer based services can be

more scalable than services that run over a flat MANET.

In addition, the virtual nodes are defined at known and fixed locations. This makes the

topology of the overlay network formed by the virtual nodes stable and predictable. It can

also make the communication between remote virtual nodes easier. For example, to

forward a packet to a remote virtual node, when all the virtual nodes are up, a virtual

node can simply relay the packet to a virtual immediate neighbor node that is closest to

the destination region and expect a good delivery ratio2.

As a generalized programming abstraction, the VNLayer hides many MANET

complexities from programmers. Because programmers only need to deal with the

VNLayer user interface, rather than dealing with a set of highly unpredictable physical

nodes, they can deploy applications on both the client side and these virtual static servers

with greater ease and efficiency.

2 This is used in our address allocation protocol in CHAPTER 5.

 8

Furthermore, on mobile nodes emulating the virtual node in a region, application states

can be kept consistent between leader and non-leader nodes in a region using the state

synchronization mechanism. Hence, the virtual node in a region can maintain persistent

state and be fault tolerant even when individual physical nodes might fail or leave a

region. This state replication capability also helps make the links between neighboring

virtual nodes more reliable.

Finally, the geographical location based clustering makes the clustering job trivial and

robust. In the VNLayer, mobile nodes check their geographical locations to determine the

clusters they are in. Each time a node’s region changes, it simply joins a new cluster.

When a cluster’s head leaves the region, the nodes left in the region still stay in the same

cluster. In dynamic clustering schemes, the membership changes in a cluster can cause

other clusters to re-cluster. This is known as the “rippling effect” [8]. This problem

doesn’t exist in VNLayer clustering due to the geographical location based cluster setting.

1.5 Limitations of the Virtual Node Layer

One assumption we make in our implementation of the VNLayer is that all mobile nodes

can find their geographical locations at any time. While this assumption brings great

convenience for clustering and gives VNLayer based clustering an advantage over other

dynamic clustering schemes, equipping every mobile device with GPS capability is

expensive. There is a lot of research [9][10][11] on node localization services that allows

the majority of mobile nodes in a MANET to infer their locations based on the location of

a small subset of mobile nodes in the MANET that are equipped with GPS. For example,

 9

in [9], Lingxuan Hu et. al. designed a low cost Monte Carlo method in which mobile

nodes make random predictions about their locations at the end of next time interval and

use observed beacon messages from seed nodes who know their locations to filter bad

predictions. The predicted locations finally converge on the actual locations of mobile

nodes. Since precise localization is not necessary3 for the operation of most VNLayer

based applications, when not all nodes can have GPS capability, a low cost localization

algorithm can be used by the VNLayer to determine a mobile node’s region.

As a clustering scheme, the VNLayer improves the scalability of MANET protocols.

However, clustering comes with its cost. Within each cluster, control messages have to be

generated by mobile nodes to do leader election and maintain leadership. In addition,

during leadership changes, a cluster could stop functioning for a period of time when the

leader of the cluster is missing.

In addition, the VNLayer is designed to maintain consistent application state among

leader and non-leader nodes in each region. This also requires exchange of control

messages between the leaders and non-leaders to facilitate state synchronizations.

The VNLayer message overhead is composed of the clustering overhead (leader election

overhead) and state synchronization overhead. The VNLayer needs to be carefully

designed in order to keep the VNLayer message overhead low.

3 We only need a node that resides in the geographical area set up for a region or that is very close to the
area to identify itself with the region.

 10

For applications running over the VNLayer, a VNLayer header needs to be added to each

application message. This increases the traffic overhead when an application is

implemented over the VNLayer.

Although the VNLayer state synchronization mechanism can guarantee a certain level of

state consistency between leader and non-leader nodes, a non-leader node whose state is

out of sync may have to take over a region before it is able to get its state synchronized.

As we shall see later, tricky issues (for example, routing loops) can arise when this

happens.

In the existing implementation of the VNLayer [1], local broadcast is extensively used to

ensure all physical nodes emulating a virtual node in the same region can hear a message

for the virtual node. Because link layer capabilities such as address resolution, RTS/CTS

and data packet acknowledgment can’t be used on broadcast messages, broadcast is more

susceptible to transmission failures than unicast messages. As thoroughly discussed in

[12], messages sent by broadcast not only are subject to higher loss rate by themselves,

they also interfere with other packets, including other broadcast messages. Excessive use

of local broadcast can limit a protocol’s effectiveness in conveying messages to the whole

network.

To deal with these limitations, we created a more realistic link layer mode, extended the

existing VNLayer model and optimizations on our VNLayer implementation.

 11

1.6 Research Objectives

The first research objective of this work is to find out whether the VNLayer approach is a

practical way to adapting wireline based protocols to MANET and to improving the

efficiency and reliability of existing MANET protocols. The second objective is to design

and verify techniques that can be used to alleviate the impact of the limitations of the

VNLayer, as introduced above in section 1.5 . To achieve these objectives, we designed

an ns-2 based VNLayer simulator, VNSim, and conducted extensive simulation studies

on a number of VNLayer based applications.

1.7 Overview of the Simulation Studies

In this section, we give an overview of the simulations studies we did on VNLayer based

address allocation, reactive routing and proactive routing in MANET.

1.7.1 MANET Address Allocation over the VNLayer

To validate the intuition that the VNLayer approach can be used to adapt wireline

protocols to MANET, a wireline protocol, DHCP, is adapted to run over the VNLayer. We

pick DHCP for our first case study for the following reasons. First, DHCP is a simple

and important wireline protocol. Second, based on our survey, address allocation in

MANET is difficult. Existing address allocation protocols for MANET are either node

robust enough or not scalable for large networks. Third, the state replication capability of

the VNLayer suits the strict needs of address allocation application on state consistency

very well.

 12

The research goal here is to find out whether a VNLayer based distributed address

allocation system can actually work in a MANET and whether the VNLayer generates

too much control overhead.

1.7.2 Reactive MANET Routing over the VNLayer

Ad-hoc On-demand Distance Vector routing [13] (AODV) is one of the most popular

MANET routing protocols. The main strength of AODV is its on-demand nature. Since

forwarding paths are only created when there is a need for the path, there is no need to

use periodic routing messages to maintain routes once there is no more traffic using them.

AODV also has some weaknesses that may be addressed by using the VNLayer

approach. A major weakness is that AODV’s route discovery is flooding based. Each

route discovery involves every single physical node in a network. This makes AODV’s

routing overhead proportional to the number of nodes in a MANET. When a MANET

contains a large number of physical nodes, AODV’s route discoveries not only cause

broadcast storms but also are unreliable. Many discovery failures can occur. The use of

expanded ring search and local repair only partially alleviates the problem because every

node receiving an RREQ message might still need to forward it or respond to it.

Another problem of AODV is that the protocol picks routes based only on the path length

and path freshness, without considering the stability of the route. For example, a

downstream router that has a shorter route could move away. When the motion rates of

nodes in a MANET are high, the routes created by AODV might fail frequently, leading

to large number of route discoveries.

 13

A cluster-based scheme like the VNLayer approach is a natural solution to the two

problems above. By implementing AODV over the VNLayer, we expect the protocol to

generate less routing overhead and to create routes with better stability. This is because

the on demand routing is conducted by a set of virtual nodes, each of which takes care of

a region at a fixed location. Only the virtual nodes in a MANET, rather than every

physical node, need to send and forward routing messages. The topology and

connectivity among the virtual nodes at fixed locations are much more stable, especially

when individual physical nodes are moving around quickly.

The goal of this simulation study is to find out whether a VNLayer based AODV

(VNAODV) can provide better routing performance than standard AODV, in terms of

data message delivery ratio, routing path length, delivery latency and traffic overhead.

In addition, during the implementation and performance evaluations, failure modes of the

VNLayer based AODV protocol were investigated. For example, there are cases in which

a region doesn’t have a leader or has more than one leader. For example, the current

leader in a region might leave and the leadership needs to be transferred to a non-leader.

The state on different virtual nodes may not be synchronized. The systems need to be

engineered to be resilient to such failures.

1.7.3 Proactive MANET Routing over the VNLayer

Due to the dynamic network topology of MANETs, traditional proactive routing

protocols won’t work in a MANET due to the heavy routing traffic overhead. The

VNLayer approach provides a good way to adapt wireline based proactive routing

 14

protocols to the MANET. With the VNLayer, MANET routing can be split into two

levels, the intra-region routing and inter-region routing. The intra-region routing is trivial.

Inside a region, each physical node uses the virtual node as the default gateway. Physical

nodes can communicate with each other directly. The inter-region routing is handled by

the overlay network of virtual nodes. Routing in the overlay network involves only the

virtual nodes rather than all the physical nodes. In addition, the overlay network can have

a stable topology when the MANET is dense. This is not only because regions are

defined at fixed geographical locations. It is also because each virtual node is emulated

by a number of physical nodes. The failure on a single physical node won’t necessarily

cause a virtual node to fail.

A simple version of RIP [14], is implemented over the VNLayer. The research objective

here is to find out whether wireline based proactive routing application can be easily

adapted to MANET using the VNLayer approach. Again, the major concern is whether

the VNLayer based RIP protocol will cause high message overhead. As a proactive

routing protocol, the routing traffic overhead of RIP will be proportional to the total

number of mobile nodes in the network. This may hurt the performance of the VNLayer

based RIP protocol. However, with the benefits brought by the VNLayer approach, we

expect the protocol to perform reasonably well.

1.7.4 Scope of Optimizations

In order to improve the performance of VNLayer based applications, optimizations were

done both in the VNLayer and in the application layer. The majority of our optimizations

 15

are done inside the VNLayer. They can benefit any application running over the

VNLayer.

In the MANET research community, many research are done on optimizing MANET

routing protocols through techniques for improving the route maintenance [15],

optimizing forwarding paths [16], etc. Since the objective of this research is to verify the

feasibility of adapting routing protocols to MANET using the VNLayer approach, we

limit our optimizations at the application layer to the ones that are used solve problems

introduced by the VNLayer approach, rather than general techniques that can be applied

to MANET routing. We believe the existing optimizations designed by other researcher

can be easily adopted by virtual node emulated routers.

1.8 Structure of the Thesis

This dissertation is structured as follows. CHAPTER 2 discusses related works on

MANET address allocation, MANET routing. CHAPTER 3 introduces the link layer

model and VNLayer model we started this research with and the extended models we

designed in order to improve the performance of VNLayer based applications. Major

implementation choices we investigated in the simulation study on VNLayer are also

discussed in this chapter. CHAPTER 4 presents the detailed design of our VNLayer

implementation. CHAPTER 5 presents the design of our VNLayer based MANET

address allocation protocol. CHAPTER 6 presents the design of VNAODV, a VNLayer

based reactive MANET routing protocols adapted from AODV. CHAPTER 7 introduces

the design of a proactive wireline routing protocol, RIP, adapted to MANET using the

 16

VNLayer. CHAPTER 8 presents our simulation results on MANET address allocation

and MANET routing over the VNLayer. Conclusions and future works are given in

CHAPTER 9.

17

CHAPTER 2. Background

In this chapter, we go through a number of related works in the two areas our VNLayer

based applications are developed for, MANET address allocation and MANET routing.

2.1 MANET Address Allocation

A robust address allocation scheme is critical to successful message delivery and correct

routing operation. However, address allocation in a MANET is difficult. There is no

centralized entity that can provide DHCP [17] service because any mobile node may

leave the network at any time. Because most mobile devices are power constrained, using

any single mobile device as a dedicated server would greatly shorten the lifetime of the

device. Mobile devices may move around quickly and the wireless link between nodes

may fail any time due to message collision and congestion. Portions of a MANET may

separate and merge together frequently. During network partitions, the same address may

be picked by different mobile devices (duplication) and addresses used by departing

devices may never be recovered (address leakage). A good MANET address allocation

protocol should generate little message overhead. It should be distributed, resilient to

node/link failure, avoid both address duplication and leakage and be able to do all this in

the presence of network partition and merging.

 18

2.1.1 IP Address Auto-Configuration for Ad Hoc Networks (IAAC)

A simple solution to address allocation was presented by C. Perkins, et al. in [18]. The

solution assumes a MANET uses DSR [19] or AODV [13] as its routing protocol. When a

mobile node joining the network needs an address, it first picks a random address from a

“temporary” address pool (1-2047 from the address block 169.254/16) as its IP address.

Then, it picks an address from a “permanent” address pool (2048-65534 from the same

address block above) and floods an AODV or DSR route request message (RREQ) to the

network. The use of the temporary address is to allow RREP messages to be forwarded

back to the new node. If there is any mobile node using the address picked, there is

supposed to be a response (RREP) message from an AODV or DSR router. This way, the

new node knows the permanent address is not available. It picks a new address and floods

another RREQ message. Otherwise, to make sure the address is indeed not in use, the

new node repeats the flooding of the RREQ message a few more rounds before it starts

using the address as its permanent address.

IAAC is a simple solution to MANET address allocation. However, there are a number of

limitations. First, IAAC relies on the assumption that some sort of on-demand routing[20]

protocol is running in the MANET to support the use of RREQ messages. In addition,

since IAAC doesn’t detect and handle address duplications, when a network partitions,

multiple mobile devices can have the same address. This becomes a problem when the

partitions merge.

Finally, the use of the small “temporary” address pool can also result in the case in which

multiple new node are using the same address during their search for available addresses.

 19

When this happens, the RREP messages generated for the RREQ messages can be

returned to the wrong node. Missing RREP messages destined for it, a node might start

using the “permanent” address it picked. This leads to address duplication.

There is also a small chance that two new nodes, although with their temporary addresses

picked differently, pick the same permanent address that is not used by any node in the

network. Since there will be no response to either node’s RREQ messages, they’ll start

using the same address.

As a summary, IAAC has problems with address duplications and network mergers. In

addition, flooding is used by IAAC to send the RREQ messages. Each time when a new

node enters a MANET, there will be a few rounds of RREQ storms in which each mobile

node in the network has to forward the RREQ message. This can affect the performance

of other applications in the network.

2.1.2 MANETConf: Configuration of hosts in a mobile ad hoc
network

MANETConf [21] is more complex than IAAC. In MANETConf, each mobile node

maintains two sets of addresses for address allocation. One set, “allocated”, holds the

addresses that, to the knowledge of the mobile node, have been allocated. The other set,

“pending”, holds addresses that are in the process of being allocated. Every mobile node

knows the range of addresses that can be used by the whole network, therefore, any

address that are not in the two sets above are “free” addresses.

 20

In MANETConf, a new node entering the network doesn’t launch its search for available

address by itself. Instead, it picks one of its immediate neighbors as its address allocation

proxy. If a proxy can’t be found, the new node is in a new partition in the network. It

picks a random address and starts using it.

Since the proxy node already has an address, it can communicate with other nodes in the

network in a reliable way. The proxy handles the address allocation and eventually sends

an available address to the new node. The communication between the new node and the

proxy can use MAC address, rather than an IP address because it is a one hop

communication.

The proxy node does the address allocation as follows. It picks a free address based on its

knowledge about the “allocated” and “pending”, puts the address in its record of

“pending” and floods a QUERY message to the network, asking the entire network to

confirm the selection. Receiving the query messages, a mobile node sends back a NO

message to reject the selection if the address in question is already in use or marked as

“pending”, based on the two set of addresses it maintains. Otherwise, the mobile node

sends back a YES message to confirm the selection. In addition, the proxy node puts the

address in question in its record of “pending” to prevent the address from being picked

locally.

The proxy node needs to collect YES messages from all the addresses in its “allocated”

set before it can send the attempted address to the new node as an available address. If the

proxy node receives YES messages from all the addresses in its “allocated” set, it means

 21

every other node in the network has confirmed the selection. It puts the address it picked

in the “allocated” set and tells the new node to start using the address. It also floods

another message telling every node in the network to move the address it picked for the

new node into their “allocated address” sets. Therefore, every node in the network knows

the address is in use.

If at least one NO message is received or at least one YES messages is missing from

some node, the proxy node picks a different “free” address and repeats the procedure

above.

If not moved to the “allocated” set, an address in the “pending” eventually expires and

becomes a free address and can be used in address allocations.

Because a new node can move around before it gets its address allocated, by the time its

proxy node gets the address allocation done, it may have moved out of the radio range of

the proxy node. To solve this problem, when a new node moves away from its proxy

node, it picks a new proxy and asks the new proxy to contact the old proxy for the

address allocated for it.

Address leakage can happen when a node using an address leaves a network without

giving back its address to the network. In MANETConf, an AddressCleanup message is

flooded by a node about to leave the network to ask all the nodes in the network to

remove its address from their “allocated” set. If a node didn’t have a chance to send out

the AddressCleanup message before it leaves the network, MANETConf can still reclaim

the address. During address allocations, due to the absence of a mobile node, a proxy

 22

node can never collect enough YES messages. If a proxy node notices that it can never

get either a YES or NO message from an address after a number of QUERY messages are

flooded. It sends out an AddressCleanup message for the “inactive” address, so that the

address can be moved back to the set of free addresses on every node.

There is no need to handle network partition in MANETConf because when it happens,

addresses used by a partition will eventually be set to free in other partitions. However,

when partitions merge, there has to be a way to resolve duplicate addresses. To do this, in

MANETConf, each partition is identified by a 2-tuple of (address, UUID). Where the

address is the lowest address in a partition and UUID is a unique number generated by

node with the lowest address in a partition.

Therefore, when a network partitions, one partition can preserve its identifier because it

still has the node with the lowest address. The nodes in the other partition eventually

realize that the node with the lowest address is gone and generate an AddressCleanup

message. By checking the “allocated” set, the node with the lowest address in the other

partition generates a new UUID and broadcast it to the partition. This partition gets a new

identifier.

Each time two nodes discover each other as immediate neighbors, they exchange their

partition identifiers. If their identifiers are different, a partition merging procedure starts.

The two nodes first exchange their “allocated”. Then, they flood the “allocated” set

received from the other partition in their own partition. Receiving the “allocated” set,

each node in a region combines it with its own “allocated” set. If there is any duplicate

 23

address allocations detected, the node with fewer TCP connections gives up its address

and requests a new one.

MANETConf is a comprehensive solution that solved all the problems that can arise in

MANET address allocation. However, each address allocation in MANETConf involves

every node in the network. The protocol’s complexity and extensive use of flooding on

all kinds of message both limit its scalability.

2.1.3 Zero-Maintenance Address Allocation (ZAL)

As we have discussed, the main problem of IAAC and MANETConf are their

inefficiency because each address allocation attempt in the two protocols has to be

confirmed by all the nodes in the network through flooding. Zero-Maintenance Address

Allocation is a protocol [22] aiming at improving the efficiency of address allocations in

MANET.

Preventing and detecting duplicate address allocation quickly are the key difficulties in

MANET address allocation that lead to the complexity. To reduce the difficulty of

duplicate address detections (DAD), ZAL distributes addresses using a different way.

In a network, the first node owns the entire pool of addresses that can be used by the

network. The first node picks an address from its address pool for itself. Then, each time

when a new node joins the network, it asks its neighbors for addresses. Receiving the

request from a new node, a mobile node offers a slice of its address pool to the new node.

Receiving multiple offers, the new node accepts the offer with the largest number of

addresses and takes one address from the offered address pool. Apparently, the control

 24

overhead of this kind of one hop address allocation is very low because no DAD is

necessary in ZAL.

There are a few problems ZAL has to handle though. First, since the way mobile nodes

split their address pool is like a binary splitting, the size of the address pool shrinks

quickly with the increase of the network diameter. If the first node has an address pool of

2� addresses, a node that is more than n hops away from it might not be able to get any

address. To solve this problem, a temporary address pool is set up for nodes to pick their

addresses from when they can’t receive any offer. Once a node meets a node that can

offer permanent addresses to it, it gives up the temporary address.

Now, when multiple nodes pick their addresses from the temporary address pool,

duplicate address allocation can happen. DAD is needed again. Since the chance that this

happens is low, it is expected that the control cost of DAD is low.

ZAL also designed a one hop distribution equalization algorithm in order to optimize how

mobile nodes split their address pools for their neighbors. Immediate neighbors exchange

information about the size of their address pools. Based on this information collected, a

node can find out the total number of addresses owned by its immediate neighbors and

compare it with the size of its own address pool. If a node owns a large address pool

compared with the number of addresses owned by its neighbors, the node distributes a

portion of its addresses to its neighbors. By doing this, the address pool distribution

among mobile node is fairer and address depletions happen less frequently. The control

 25

overhead of this optimization is low because it only involves the message exchanges

between 1 hop neighbors.

Second, ZAL has to deal with partition mergers. ZAL uses a similar procedure as the one

used by MANETConf to handle partition mergers. Each partition is identified by an id

generated by the first node of a network. When two nodes with different partition ids

meet each other, ZAL uses the following way to give nodes in the smaller partition the

addresses belong to the larger partition. Starting from the border between the two

partitions, nodes in the smaller partition give up their address pools to neighbors that are

still in the smaller partition and request for addresses from the larger partition.

Recursively, all the nodes in the smaller partition get addresses from the large partition.

Compared with MANETConf, ZAL is solution with much lower control overhead.

However, it doesn’t use address efficiently. A network with diameter n requires the order

of 2� addresses. In addition, address leak can happen in ZAL when a node crashes before

it returns the address pool it has. The author claims the probability that this happens is

low under a given model of the lifetime a mobile node. However, if the node that fails

happens to have a large chunk of addresses, its impact is big. Third, the handling of

network merging is not efficient because collecting the information on network size could

involve O(��� complexity4.

4 The collection of this information is not explained clearly in the paper. The overhead of exchanging this
information throughout a partition can be costly.

 26

2.1.4 MANET Address Allocation in IPv6

Another solution to MANET address allocation [23] uses a combination of IPv6 MANET

prefix5 and a node’s MAC address as its address. This solution takes advantage of the

abundant address space provided by IPv6 and eliminates the need for dynamic address

allocations in a MANET. As pointed out in [21](section III.C), this solution assumes that

MAC addresses are unique for each mobile device, which is not always true. In addition,

when IPv6 is not available and the address space is limited, dynamic address allocation is

still necessary for MANET applications.

Another solution [24] uses a combination of a mobile node’s MAC address and the

network address provided by a designated gateway so that a mobile node in a MANET

can communicate to the global Internet. This solution is no longer completely a MANET

address allocation scheme since a fixed gateway node exists in the MANET as an address

allocation server.

2.1.5 Summary

The current solutions are either not reliable or too expensive due to the use of message

flooding. In our simulation studies, we have found that flooding introduces unacceptable

overhead and causes large number of message collisions. Therefore, none of the current

solutions can support large networks. In CHAPTER 5, we introduce our VNLayer based

address allocation application, VNDHCP, which does address allocations in a clustered

MANET and doesn’t use flooding for control messages. On top of that, VNDHCP is also

free of address leakage and duplication in face of network partitions and mergers.

5 The prefix is FE:C0:0:0:FF:FF

 27

2.2 MANET Routing

Compared with routing in wireline networks, routing in a MANET is difficult because of

MANET’s limited radio range and channel bandwidth, collision prone channel, flat

network architecture and dynamic network topology. Popular routing protocols such as

the distance vector routing protocol RIP[14] and the link state routing protocol OSPF[25]

can’t be used directly in MANET. There are three reasons. First, the wireline based

routing protocols usually assume that the network topology is relatively stable. However,

the highly dynamic network topology in a MANET leads to frequent route updates and

slow routing table convergence. Second, the flat network architecture in MANET

requires each router to have a route entry for every destination, the periodic routing

information exchange in tradition routing protocols creates much heavier control traffic.

Third, the wireless channel is shared between adjacent mobile nodes. The heavy routing

overhead and limited channel bandwidth can cause frequent packet losses due to message

collisions and congestions.

Therefore, new protocols that suit the special needs of MANETs must be designed. The

routing problem has been studied by the MANET research community for many years.

Various routing protocols in different categories have been proposed.

Using Zhou's classification in [20], routing protocols for MANET can be classified into

the following categories.

• Topology-based routing protocols

o Proactive routing protocols

o Reactive routing protocols

 28

• Geographical-based routing protocols

Topology-based routing protocols are routing protocols calculating the best route to a

destination based on topology information collected from the network. Within this

category, proactive routing protocols are routing protocols that calculate the routes to

all the destinations before a transmission actually happens. Reactive routing protocols

are routing protocols that calculate the route to a destination only when it's necessary for

a transmission.

Geographical-based routing protocols are routing protocols that calculate routes based

on the geographical locations of the destination node and neighboring nodes. This set of

routing protocols requires that each mobile node can determine its current location or can

access a distributed location service that can return the current location of any mobile

node in the network. With this knowledge, a mobile node can make local forwarding

decisions based on the geographical location of the destination. Geographical based

routing suits MANET because it requires fewer routing information exchanges and is

more scalable. The disadvantages of such routing scheme are: First, each node needs to

have GPS-like capability, which can be power consuming, and, second, the location

service may introduce extra message overhead. One of the most popular geographical

based MANET routing protocol is Greedy Perimeter Stateless Routing (GPSR) [26].

GPSR uses greedy routing to relay packets to mobile nodes that are closer to the

destination than the current router. When no such nodes can be found before a packet

reaches the destination, GPSR uses face routing to relay packets toward the destination

using mobile nodes that are farther away from the destination than the current router.

 29

In this section, we first discuss a number of popular proactive and reactive MANET

routing protocols. Then, we introduce two Cluster based routing protocols that are

designed to improve the efficiency of MANET routing. Because our VNLayer based

routing is closely related to this set of MANET routing protocols, I summarize the

differences between the cluster based protocols and the VNLayer approach at the end of

this section.

2.2.1 Proactive Routing Protocols

2.2.1.1 Destination Sequence Distance Vector (DSDV)

DSDV [27] is one of the earliest MANET routing protocols. As the name suggests,

DSDV is a distance vector routing protocol based on the classical Bellman-Ford

algorithm [28] (RIP is a wireline protocol using this algorithm). Its most important

contribution is the use of a destination sequence number in the routing protocol.

Now, in the DSDV routing table, other than the destination id and metric, each route

entry for a destination also contains a sequence number that is originally generated by the

destination in order to indicate the freshness of a route.

In DSDV, each router periodically broadcasts Update messages, each of which contains

its entire routing table or changes to its routing table, to its immediate neighbors. Routers

update their routes with incoming Update messages. For a destination, if the router

doesn’t have a route and the Update message contains a route, the route is installed. If

both the router and the Update message contain a route for a destination, the router

replaces its route with the one in the Update message if the latter is tagged with a greater

 30

sequence number or the latter is tagged with the same sequence number and has a better

metric.

In short, a newer route or a better route will be chosen.

Although DSDV is not much different from traditional wireline-based distance vector

routing protocols, the use of the sequence numbers reduces the chance of routing loops.

This feature is used by many other MANET routing protocols. As a proactive routing

protocol, DSDV doesn’t scale well because every single node in a network has to do the

periodic broadcasting of routing tables.

2.2.1.2 Optimized Link State Routing (OLSR)

Another popular proactive MANET routing protocol is OLSR [29]. OLSR is a link state

routing protocol similar to OSPF. However, in order to adapt to the MANET

environment, important optimizations are done in OLSR to drastically reduce its control

overhead. (Control overhead is the reason why traditional link state routing protocols

can’t be used in MANET)

As a link state routing protocols, OLSR routers still construct routing tables using flooded

link states that are generated by each router in the network to announce its list of

immediate neighbors. The difference is, Multi Point Relay (MPR) is used in OLSR.

MPR works as follows. Each router exchanges beacon messages with its immediate

neighbors and maintains a list of its one hop neighbors. In addition, in the beacon

messages, a router also gives its immediate neighbors its list of one hop neighbors.

 31

Therefore, based on the beacon message exchange, a router can also maintain a list of its

2 hop neighbors and knows the 2 hop topology of routers around itself.

Based on this knowledge, a router picks a minimal subset of its one hop neighbors such

that all of its two hop neighbors can be reached through (aka. covered by) this set of

nodes. The one hop neighbors chosen are called the MPR nodes of a router. A router then

informs its MPR nodes that they are chosen as its MPR nodes.

Now, when a router broadcasts its link state to the network, only the neighbors that are

chosen by the router as MPR nodes re-broadcast the link state. The link state messages

are in turn forwarded by the MPR nodes of the MPR nodes of the originator of the

messages. This way, the number of nodes that participate in the flooding of the link states

can be greatly reduced.

In addition, only routers that are chosen by at least one router as its MPR node generate

link state messages. Finally, a router’s link state message only contains the nodes that

have chosen it as their MPR nodes (MPR selector nodes).

This way, both the number of routers originating link states and the size of each link state

message can also be greatly reduced, while the route toward every single node in the

network can still be found with the Dijkstra algorithm[30].

OLSR can greatly reduce the routing overhead. However, in a flat network with large

number of nodes, its route overhead is still proportional to the size of the network,

limiting the scalability of the protocol.

 32

2.2.2 Reactive Routing Protocols

Reactive routing protocols only do routing when there is traffic. However, since routes

are often discovered reactively, there will often be a route discovery delay before a route

can be used to forward data packets. This category of routing protocols is more suitable

when the network size and data traffic load are moderate, the network topology is very

dynamic.

2.2.2.1 Dynamic Source Routing (DSR)

Dynamic Source Routing [19] is a source routing protocol that can work in a MANET

with either undirected or directed links. Each DSR router maintains a route cache (as

opposed to routing table) that records the entirety of the routes the router has learned for

each destination. Each destination can have multiple route entries in the route cache. In

DSR, when a router needs to send a data packet to destination but it doesn’t have a route,

it does a route discovery by flooding an RREQ messages to the network. The RREQ

message carries the source of the route discovery, a discovery sequence number

generated by the source of the route discovery and a vector recording the sequence of

routers it traverses. The first two fields are used by routers to avoid forwarding RREQ

messages of the same route discovery more than once. The last field is used to facilitate

source routing.

When an RREQ message arrives at a router, the router first creates a routing table entry

for the initiator of the RREQ by reversing the sequence of routers traversed by the RREQ

messages.

 33

Then, the router checks to see if it has a route to the destination asked for by the RREQ

message or the router itself is the destination asked for. If so, it returns an RREP message

to the initiator of the RREQ message. The route the router has will be combined with the

list of routers traversed by the RREQ message and put in the RREP message. To forward

the RREP message back to the originator of the RREQ message, a router can use the

source route it just learned from the RREQ message, or, when the network links are

directed, the router sends another RREQ message for the initiator, with the RREP

message attached to it. This way, the RREP message can eventually reach the initiator of

the route discovery.

Receiving an RREQ message, if a router doesn’t have a route, it re-broadcasts the RREQ

message with its id added to the source route carried in the RREQ message. Eventually,

the RREQ message can reach either the destination or a router that has a route toward the

destination. In the flooding of the RREQ messages, a router only forwards the RREQ

messages for the same route discovery (identified by a discovery id and the initiator’s

node id) once.

Receiving an RREP message, a router puts the route carried in the message in its route

cache. When the initiator router receives the RREP message for its route discovery, it

sends out the data packets it buffered during the route discovery. Each forwarded data

packet carries a source route, so that the data packets are forwarded along the path picked

by the first hop router.

 34

When a broken link is detected due the absence of acknowledgement for data packets, a

router sends a ROUTE_ERROR message back to the sender of the data packet. The

ROUTE_ERROR message carries both sides of the broken link. Receiving the

ROUTE_ERROR message, each router that has route cache entries using either side of

the broken link as a downstream router removes those entries. Receiving the

ROUTE_ERROR message, the sender of the data packets starts another route discovery

if there is no other route available.

DSR is simple and can support networks with directed links. Its use of source routing

helps prevent loop formation. As a reactive routing protocol, no periodic beacons or

routing updates are used in DSR. In addition, the use of route cache rather than routing

table helps reduce the number of route discoveries needed because for each destination,

multiple alternative routes can be cached.

DSR also has a number of problems. The use of source routing increases the size of both

routing messages and data packets being forwarded. The use of route cache also uses

more memory than other approaches. Finally, the use of flooding in a flat MANET is

costly when the number of mobile nodes in the network is large.

2.2.2.2 Ad-hoc On-Demand Distance Vector routing (AODV)

AODV [13] is one of the most popular MANET routing protocols. The core algorithm of

AODV is very close to DSR. The two protocols both operates in two stages, route

discovery and route maintenance. However, as the name suggests, AODV is not a source

routing algorithm. AODV routers use routing tables rather than route caches. That is, for

 35

each destination, only one route is maintained a routing table. AODV was proposed by

Charles E. Perkins, et al., who also proposed DSDV. This might be the reason why

AODV is similar to DSDV, in that destination sequence numbers, rather than source

routes are used to ensure freshness of routes and prevent loop formations.

In AODV, when a router needs to forward a data message but it doesn’t have a route, it

buffers the data message and sends out a RREQ message. An AODV RREQ message

carries a 6-tuple including source id, source sequence number, destination id, destination

sequence number, BCAST id, hop count. The source id is the address of the initiator of

the route discovery, the source sequence number is a monotonically increasing number

generated by the initiator to ensure the freshness of routes toward it. The destination id is

the address of the destination of the data packet. The destination sequence number is the

largest sequence number generated by the destination node known to the initiator of the

route discovery (If an initiator knows nothing about a destination’s sequence number, it

uses 0). The BCAST id is a monotonically increasing number generated by an initiator

node to uniquely identify a route discovery. The hop count starts with 1. It carries the

number of hops the RREQ message has traversed.

When the RREQ arrives at an AODV router, as in DSR, the router first updates its route

entry for the initiator’s address using the route and information in the RREQ message. As

in DSDV, if the router doesn’t have a valid route or, compared with the router’s route

entry for the destination, if the incoming message carries a fresher route or a route that is

the same fresh but shorter, the route in the incoming message will be used by the routing

table.

 36

Then, the router checks its routing table to see if there is a route fresh enough for the

destination. (By fresh enough, we mean the router has a route with a sequence number no

less than the destination sequence number carried in the RREQ message.) If so, the router

returns an RREP message to the initiator of the route discovery, using the route it just

learned through the RREQ message. Otherwise, it increase the hop count carried in the

RREQ message by 1 and rebroadcasts it.

Eventually, the RREQ message can reach either the destination or a router that knows a

route to the destination and an RREP message can be returned to the initiator of the route

discovery. If it is the destination that receives the RREQ message, the RREP message

carries a new sequence number generated by the destination node, indicating the route is

the latest. Upon receiving an RREP message, a router updates its route entry for the

destination the same way as it updates its route for the initiator node with incoming

RREQ messages.

As in DSR, the address of the initiator and the BCAST id are used by AODV routers to

avoid forwarding more than one RREQ message for the same route discovery. Route

error (RERR) messages are also used to report broken links to upstream routers. When a

router receives an RERR message, it checks if its routes for the destinations carried in the

message uses the sender of the message as next hop. If so, it disables the route and report

the error to its neighbors using another RERR message.

In addition, a “Ring Search” mechanism is used to control the scope of route discoveries

in order to reduced the flooding overhead of route discoveries. The basic idea of ring

 37

search is to try route discoveries with smaller TTLs used on the RREQ messages first

before the search for routes is expand to greater scopes.

In AODV, a local repair mechanism is designed to allow intermediate routers to fix route

failures locally by starting a route discovery themselves. Basically, when a broken link is

detected at the 2nd half of a forwarding path, a router buffers the packets it is relaying;

sets the routes affected to a “repair mode” and send RREQ packets for the affected

destinations. This way, the need for reporting route errors all the way back to the sender

of the data message and letting the sender node start a network wide route discovery can

be reduced.

DSR and AODV are both on-demand routing protocols that work in similar ways.

However, there are major differences between them. DSR uses source routing to avoid

loop formations while AODV uses route sequence numbers. In addition, DSR routers use

more bandwidth than AODV for routing and data forwarding also due to the use of

source routing. On the other hand, AODV routers keep only the freshest route for each

destination. DSR routers maintain a collection of alternative routes for each destination.

While costly in terms of memory use, DSR responds better to topology changes.

Performance comparisons on DSR and AODV in [31] proved that AODV scales better

than DSR while performs worse than DSR in face of frequent network topology changes.

2.2.3 Cluster Based Routing

The MANET routing protocols we have discussed so far work with MANETs with no

hierarchies. The routing process involves every single node in a network. In addition, due

 38

the heavy control overhead and unreliability of message flooding, those routing protocols

usually can’t support a MANET that has over 100 nodes. As in wireline networks,

hierarchical/cluster based [8] routing is the solution to this problem. By grouping mobile

node into clusters each of which has a cluster leader, the inter-cluster routing can be

handled by cluster heads/leaders. This way, the number of mobile nodes that has to be

involved in the global routing can be reduced and the number of routing entries each

router (now the cluster heads) has to maintain can also be much smaller. In this section,

we discuss a number of routing protocols that create clusters in a MANET.

2.2.3.1 Enhancing Ad Hoc Routing with Dynamic Virtual
Infrastructures (CEDAR)

In order to tackle the two problems faced by reactive MANET routing schemes without

hierarchies, CEDAR6 [32] is designed to provide a virtual infrastructure to on-demand

routing protocols. CEDAR uses a core extraction algorithm to elect a set of “core” node.

In essence, this set of core nodes is an approximated minimum dominating set7 that cover

every single node in a MANET. Each core node then acts as a cluster leader, does routing

and forwarding for the mobile nodes in its domain (cluster). This way, the number of

nodes need to be involved in routing is now the number of core nodes.

The core extraction algorithm results in a set of core nodes that are at most 3 hops from

each other. To perform route discovery over this virtual overlay network, there needs to

be a way to for a core node to flood RREQ messages to all the other core nodes. In order

6 CEDAR stands for Core Extraction Distributed Ad-hoc Routing.
7 In graph theory, a dominating set of a graph represented as G=(V, E) is a subset D of the set of vertices V
such that every edge in E is connected with at least one member in D. A minimum dominating set is the
smallest dominating set of a graph.

 39

to solve the problem caused by broadcast based flooding, in CEDAR, a unicast channel is

created and maintained between neighboring core nodes. Now, a Core Broadcast

mechanism, rather than simple local broadcast, is used to propagate RREQ messages. On

a core node, an RREQ message is flooded to neighbor core node using these channels by

unicast. This way, the reliability of route discovery can be improved and the interference

of the flooding on other packets in the channel can also be reduced.

Core Broadcast in CEDAR is unreliable because the maintenance of the unicast channel

requires periodic beacon messages and the channels are subject to frequent failures in a

dynamic topology.

An enhanced version of CEDAR, E-CEDAR (E for enhanced) [12] further improves the

core broadcast mechanism. In E-CEDAR, every core node maintains a “forwarding set”,

in which each address is a node that the core node has to deliver RREQ messages to

during a route discovery. A forwarding set of a core node thus needs to include the core

node’s 1 hop neighbors that are core nodes, a minimal subset of the core node’s 1 hop

neighbors that can be used to cover core nodes that are two hops away, and a minimal

subset of the core node’s 1 hop neighbors that can be used to cover core nodes that are

three hops away, through nodes dominated by these remote core nodes. Therefore, this

“forwarding set” serves similar purpose as the MPR set in OLSR. The difference here is

that the “forwarding set” is used to reach core nodes that are within 3 hops.

The “forwarding set” is created using periodic beacon messages exchanged between

nodes. However, the unicast channels are created by local computations rather than using

 40

explicit message exchanges between core nodes. Therefore, the enhanced core broadcast

is more efficient and more resilient to topology changes than the core broadcast in

CEDAR.

In order to further reduce packet interferences, E-CEDAR also modified the 802.11 RTS-

CTS mechanism. A NCTS (negative CTS) message is used by a node to reject an RTS

request if it finds out the RTS is for a Core Broadcast message that it has already

overheard.

E-CEDAR is shown to be able to improve the performance of the two reactive routing

protocols, DSR and AODV, we introduced in the previous section. The core extraction

algorithm can be used by any application to create a virtual infrastructure in a MANET.

There are a few problems with E-CEDAR, though. First, the core-extraction algorithm

creates dynamic clusters based on the edge degree of mobile nodes. The dynamic clusters

are subject to frequent changes when mobile node moves around quickly. Frequent

changes in the set of core nodes can lead to unreliable forwarding routes. In addition, in

order to maintain the connection between the core nodes, periodic beacon messages

(basically link state messages) still have to be used so that each core node can collect

information on its 3 hop connectivity to neighboring nodes. This constant overhead is not

correlated with the data traffic.

2.2.3.2 Cluster Overlay Broadcast (COB)

Cluster Overlay Broadcast (COB) [33] works similarly to AODV [13], but with RREQ

messages and RREP messages flooded only by cluster heads. In COB, dynamic clusters

 41

are formed using a 1-hop clustering algorithm, Least Cluster Change [34], in order to

reduce the clustering changes in face of node mobility. Each data packet sender sends the

data packet to its local leader first for routing service, using a short range radio

transmission. Upon receiving a data packet, a cluster leader floods (a controlled flooding)

a RREQ message to the network using a long range radio transmission. When the

destination node receives the flooded RREQ, it responds with an ACK messages, which

works similarly to RREP messages in AODV. Upon receiving the ACK message, a cluster

leader marks itself as active for the session between the sender node and the destination

node. When the originating cluster leader receives the ACK message, it also broadcasts

data packet to the network using the long range radio transmission. At subsequent hops,

cluster leaders that have been set as active for the session relay the data packet and set

themselves as inactive for the session. This way, the data packet is forwarded hop by hop

toward the destination node. COB is proved to perform better than DSR [19] by

simulations. However, as mentioned above, COB requires mobile nodes to be able to

switch between two transmission powers and uses broadcast at each forwarding hop.

Furthermore, a connection created by COB through a route discovery can only be used

once because a router marks itself inactive for a session between a source and a

destination once it forwards a packet for the session. This is going to cause unnecessarily

high control overhead when each session contains a large number of data packets.

2.2.3.3 Summary

Cluster based routing protocols such as COB and CEDAR improved the efficiency of

MANET routing by creating hierarchies in a flat MANET. CEDAR is a more complex

 42

and practical solution than COB. However, both COB and CEDAR/E-CEDAR uses

dynamic clustering, which are subject rippling effects when cluster membership changes.

In addition, in each cluster, there is only one cluster head. VNLayer based routing is also

a cluster based routing scheme, in which the leader and non-leaders in each region

emulate a virtual router. Compared with the existing cluster based MANET routing

protocols, the VNLayer approach has the following advantages: First, the VNLayer

approach is a generalized programming abstraction. It hides the complexities such as

clustering, message buffering and state synchronization from the routing application. In

addition, the services provided by the VNLayer can be shared by multiple applications,

rather than just the routing application, so that the overall performance can be improved.

Second, to our best knowledge, our VNLayer implementation is the first clustering

scheme that has the capability of maintaining replicated states in a cluster. A virtual node

emulated router can stay functional even when the cluster head leaves a region. Third, the

geographical based VNLayer clustering is very efficient and is free of the rippling effect.

 43

CHAPTER 3. Models for the Link Layer and
the VNLayer

The Virtual Node Layer (VNLayer) is a general programming abstraction that hides

MANET complexities from applications. With this abstraction, programmers only write

programs for virtual nodes at fixed geographical locations, emulated by physical nodes

nearby, so that they don’t need to deal with node motion. In the TCP/IP model [35], the

virtual node layer resides between the link layer and the Internet Layer. The VNLayer

uses the service provided by the link layer and provides services to applications at the

Internet Layer. To define the VNLayer approach, both the link layer and the VNLayer

needs to be modeled. In the first section of this chapter, I introduce the models for the

Link Layer and the VNLayer defined by Mike Spindel in [36]. The second section

defines a more realistic model for the Link Layer and an extended VNLayer model that

supports better performance in the presence of message losses. In the third section, I give

a review on the VNLayer implementation by Mike Spindel. In the last section, the

implementation choices we investigated in this research will be discussed.

3.1 The Basic Link Layer and VNLayer Models

Mike Spindel described models for the link8 layer and the VNLayer in [36]. In this

section, I give a review on the two models. In this thesis, these two models are called the

Basic Link Layer model and the Basic VNLayer model.

8 The term used in [36] is physical. However, in real implementation, the link layer is what the VNLayer is

 44

3.1.1 The Basic Link Layer Model

3.1.1.1 Physical Node

A physical node is modeled as a timed input/output automaton [37] moving arbitrarily in

a two dimensional plane with no obstacles9. The set of physical nodes is modeled as a

finite set of automata. The location of a physical node, say node �, is referred to as ��	
��

and its motion rate is bounded by a constant ��
�.

Location Determination: Each physical node is able to determine its current

geographical location and the global time every τ time.

Node Clock: Every physical node has a local clock that runs at the rate of real time and is

synchronized every τ time.

Each physical node is able to do arbitrary computation. It is assumed that local

computations do not take any time10. Physical nodes may suffer stopping failures. That is,

when a physical node stops, it stops all local computations and stops sending messages.

3.1.1.2 P-bcast Service

At the link layer, each physical node is assumed to have access to P-bcast, a broadcast

service. Physical nodes have different broadcast ranges.

built upon. Therefore, we choose to call the layer which provides basic communication service to the
VNLayer the link layer.
9 In [32], obstacles are not considered. However, obstacles not only affect node motion but also affect radio
range.
10 This assumption is reasonable because for the protocols under study, network activities dominate the
power and time requirement.

 45

The maximum reliable transmission distance for a physical node � at geographical

location ��	 when sending toward geographical location ��� is determined by src and

dst.

The P-bcast service guarantees:

1. Integrity Property: Every message received was previous broadcast.

2. Reliable Local Delivery Property: Every message broadcast will be received by

every physical node in-range in a timely manner. When physical node � sends a

message, there exists a time�, if for a physical node � is located within the reliable

transmission distance between loc(i) and loc(j). for the entire transmission, then

physical node � can receive the message in � seconds11.

The basic link layer model here doesn’t consider message losses. However, in reality,

there is no wireless link layer without message losses. In the simulations12 described in

this thesis, message losses are allowed. Thus the second guarantee is not provided by the

simulations.

3.1.2 The Basic VNLayer Model

3.1.2.1 Regions

The geographical area of a MANET is subdivided in to regions. It is assumed that the

region configuration is known by every physical node. Regions are configured or chosen

so that every physical node in a region can reliably send and receive data from every

other physical node in the region and neighboring regions.

11 In the simulation, the function is dependant only on the two locations, not on the node i.
12 VNE simulated the basic VNLayer without collisions.

 46

A physical node’s region is uniquely determined by its location. The set of neighbors is

also determined by the region. For all locations i, j and any physical node p at location i,

if physical node p is in a region and j is in the same or a neighbor region, then node is

within the reliable transmission range of node p.

3.1.2.2 Virtual Nodes

Each region hosts a virtual node. A virtual node is an automaton driven by incoming

messages. A virtual node’s operation is defined completely by a msgReceived handler.

With an incoming message, a virtual node can change its state arbitrarily and send out a

set of messages using V-bcast.

Virtual Node Clock: A virtual node doesn’t have access to a real time clock. Instead, it

simulates a clock by synchronizing to timestamps on incoming messages.

There are two failure modes of virtual nodes related to the behavior of client processes13.

1. If there is no client process in a region, the virtual node for the region has failed.

2. There is a t����� associated with the system such that if a physical node stays in a

failed region for more than t�����, the virtual node for the region restarts with its

initial state14.

3.1.2.3 Client Process

Client processes hosted by physical nodes solicit services from virtual nodes in each

region. A physical node can host any number of client processes. For simplicity, for a

13 Here, it is assumed that every physical node emulates a virtual node.
14 This can also be regarded as a recovery mode. However, the virtual node state won’t be recovered. As we
are going to see, when a virtual node restarts, there are tricky complications.

 47

single application, it is assumed that each physical node hosts at most one client process.

Therefore, clients can be modeled as a set of timed input-output automata.

A client process has access to the location of its hosting physical node. It also has access

to a real-time clock. A client process can communicate with its local virtual node only

through the V-bcast service.

3.1.2.4 Virtual Broadcast

For VNLayer based communication, Clients and Virtual Nodes have access to another

broadcast service, V-bcast. V-bcast is used by clients and virtual nodes to communicate

with other clients and virtual nodes. The V-bcast guarantees the Integrity Property and

Reliable Local Delivery Property.

V-bcast provides two additional guarantees. First, it guarantees that if a client or a virtual

node is not in a region originating or neighboring a broadcast, it won’t receive the

message. Second, it guarantees that all broadcast messages will have a total ordering and

will be received by all clients and virtual nodes in the same order.

The V-bcast service therefore requires that a virtual node or a client can communicate

with any virtual node or client in the same region or in a neighbor region and only with

those nodes.

This combination of the reliable delivery and inverse reliability requirements has the

consequence that in any region, either all client processes and the virtual node in the

 48

region receive a message or none do. In other words, the transmission is atomic with

respect to the regions. This is the atomicity property of the basic VNLayer.

3.1.2.5 Virtual Node State

The virtual node state includes the clock and discrete variables at the application layer. In

the absence of message collisions, the VNLayer guarantees that a virtual node maintains

its current state as long as the virtual node doesn’t fail. When a virtual node does fail and

restarts, its state resets to its initial state.

3.1.2.6 Requirements on Applications

In order to use the VNLayer, an application needs to be able to handle messages passed

up by the VNLayer. It also needs to allow the VNLayer to read and overwrite its state.

In addition, an application must be able to tolerate virtual node failures and virtual node

resets (the two failure modes described in section 3.1.2.2).

3.2 The Extended Link Layer and VNLayer Models

3.2.1 The Extended Link Layer Model

In order to use a more realistic communication model, we extended the basic model for

the link layer. The extended link layer model allows message collisions and losses.

3.2.1.1 Physical Nodes

The model for physical nodes is same as the one in the basic VNLayer except that the

local clock has the current real time and doesn’t need to be synchronized.

 49

3.2.1.2 LL-bcast Service

Instead of P-bcast, each physical node has access to an 802.11 like link layer service, LL-

bcast. Physical nodes have different broadcast ranges. The maximum reliable

transmission distance between two physical nodes is determined by the sender’s location

and transmission power and the receiver’s location and receiving capability15.

Compared with the P-bcast service in the basic link layer model, LL-bcast takes message

losses16 into consideration. That is, messages may not be received by a destination node

even if it is in-range. In addition, with LL-bcast, a message can be sent with either a

broadcast destination address or a unicast destination address. When a broadcast address

is used, it is not possible for the sender to determine whether a message has been received

by a potential recipient. We call this kind of data transmission “local broadcast”. When

unicast address is used, message transmission is more reliable because the sender can

determine before sending the message if the receiver is around and after sending the

message if the message is received by the intended recipient17. However, using unicast

destination addresses in LL-bcast require all physical nodes to listen to all messages and

process or discard them appropriately. In addition, the improved reliability with unicast

comes with an additional transmission delay because of the time for an acknowledgement

from the receiver to the sender.

15 Receiving capability on mobile devices can be different. For example, a device using a high-gain antenna
can communicate with a device out of the regular radio range.
16 Here, we assume all message losses are due to collisions.
17 In 802.11, when unicast is used, Address Resolution, CMSA/CA (using RTS-CTS) and link layer
acknowledgement and retransmission can be used to detect link failures quickly and improve the reliability
of data transmission.

 50

In the extended link layer model, when the sender of a message can’t determine the

intended recipient node, a broadcast destination address must be used. When the sender

can determine the address of the intended recipient, the message uses the address of the

recipient. Since all physical nodes listen to all messages, a message sent to a unicast

destination can still be heard by every mobile in range. I will call this kind of

transmission “Directed Broadcast”.

Like P-bcast in the basic link layer model, LL-bcast guarantees the Integrity Property but

only guarantees the Reliable Local Delivery property in the absence of collisions.

3.2.2 The Extended VNLayer Model

In order to improve the performance of VNLayer based applications, we created an

extended VNLayer model. Now, each virtual node has access to a real-time clock. A

virtual node or client process is allowed to communicate with other client processes or

virtual nodes that are not in local or neighbor regions. This removes the inverse reliable

delivery guarantee provided by the basic VNLayer model.

3.2.2.1 Regions

Regions are the same in the extended VNLayer model.

3.2.2.2 Virtual Nodes

Virtual nodes have access to a real-time clock. A virtual node in a region is an automaton

driven not only by incoming message but also by timer events. Therefore, a virtual node’s

operation is no longer defined completely by a msgReceived handler. In addition to

 51

incoming message, with a timer expiration event, a virtual node can also change its state

arbitrarily and send out a set of messages using V-bcast.

The use of timers allows actions to be taken exactly at scheduled times. Because network

applications often age state so that it expires and is discarded after a period of time, the

message driven approach in the basic VNLayer model requires a lot of processing time to

locate expired state and expired messages in the buffer. Using timers is much more

efficient.

Here, we don’t assume each physical node emulates a virtual node18. Each physical node

that emulates a virtual node is defined as an emulator node. This introduces a change to

the failure modes. There are two failure modes of virtual nodes related to the behavior of

emulator nodes.

1. If there is no active emulator node in a region, the virtual node for the region has

failed.

2. If an emulator node stays in a failed region for more than t�����, the virtual node

for the region restarts.

3.2.2.3 Client Process

One difference in the extended VNLayer model is that a client process is allowed to

receive messages from a virtual node that is not in the client process’s local region.

Another difference is that a client process doesn’t need to provide the Virtual Nodes with

clock information, because the Virtual Nodes already have it.

18 This is to reduce the number of emulator nodes when a MANET is dense enough.

 52

3.2.2.4 Virtual Broadcast

In the extended VNLayer model, Clients and Virtual Nodes still have access to V-bcast.

Like LL-bcast, V-bcast here guarantees the integrity property and guarantees the reliable

local delivery property only in the absence of collisions.

V-bcast still guarantees that all broadcast messages will have a total ordering and will be

received by all clients and virtual nodes in the same order. However, the V-bcast service

in the extended VNLayer model allows a virtual node or a client to communicate with

any other virtual node or client in range. That is, V-bcast in the extended VNLayer model

no longer provides the guarantee that in each region, either all nodes receive a message or

none do (the atomicity property).

3.2.2.5 Virtual Node State

The virtual node state includes the clock and discrete variables at the application layer. A

virtual node’s clock is synchronized together with its state.

In the absence of message collisions, the VNLayer still guarantees that a virtual node

maintains its current state as long as the virtual node doesn’t fail. When a virtual node

does fail and restart, its state resets to the initial state.

However, with a lossy channel, the extended VNLayer model can’t guarantee that a

virtual node retains its current state even when the virtual node doesn’t fail. Due to state

inconsistencies among emulator nodes, the state on a virtual node might have occasional

arbitrary changes when leadership of its region changes. This model requires that an

application tolerate such state changes, which are called “acceptable” state changes.

 53

3.2.2.6 Requirements on Application

In addition to the requirements in the basic VNLayer model, applications over the

extended VNLayer must be able to tolerate message losses. In addition, due to the

possibility of arbitrary state changes in the extended VNLayer, applications must be able

to tolerate acceptable state changes, as described above.

3.3 The Implementation of the VNLayer

Our implementation of the VNLayer simulator is based on the implementation of VNE, a

python based simulator developed by Mike Spindel in [36] for the basic link layer model

and VNLayer model. With VNE, a Virtual Node based system is implemented as follows.

A MANET is tiled with square shaped geographical regions at fixed locations. In each

region, a simple algorithm is used for leader election. In this algorithm, all physical nodes

that are in the same region have equal opportunity to become leader. Whichever physical

node that sends out its request for leadership first will be chosen as the leader of the

region. When a physical node becomes the leader of a region, it sends out periodic

heartbeat messages to claim its leadership. When missed heartbeat messages exceed a

threshold, a non-leader node sends out a leader request message and starts a leader re-

election.

In each region, physical nodes collectively emulate a virtual node. Among the emulator

nodes in a region, the leader node processes incoming message and sends out response

messages. The non-leader nodes process incoming messages the same way and the leader

node does. However, the non-leader nodes buffer their response messages in a sending

 54

queue. When a non-leader node receives a response message from the leader node, it

checks its sending queue for an identical response message. If a match can be found, it

removes the matched packets from its sending queue. This way, non-leader emulator

nodes work as backup servers in a region.

Non-leader emulator nodes maintain replicated virtual node state for the leader node. One

way to do this is that when a non-leader node can’t find a match for an incoming message

from the local leader, it considers it a sign of a state inconsistency and synchronizes its

state with the leaders. In addition, each time an emulator node is set to a non-leader in a

leader election, it synchronizes its state with the leader.

In addition, when a node moves into a region and there is already a leader in the region,

the node becomes a non-leader and synchronizes its state with the leader’s. Therefore, in

the absence of message collisions, we can guarantee consistent state on a virtual node.

3.4 Implementation Choices

In order to support the extended link layer and extended VNLayer model, we

implemented our own ns-2 bases simulator, VNSim, which uses the service provided by

the extended link layer model. VNSim supports both the basic VNLayer model and the

extended VNLayer model. During our simulations, we also investigated possible

optimizations that can be taken when implementing the VNLayer. In this section, I

discuss the possible optimizations as implementation choices.

 55

3.4.1 Region Shapes and Node Sending and Receiving
Capabilities

For simplicity, the simulators for the basic VNLayer model and the extended VNLayer

model both have used square shaped regions and uniform node sending and receiving

capabilities. However, other region shapes might utilize radio range more efficiently. For

example, a network can be tiled by hexagonal regions.

3.4.2 Leader Election

Receiving a LeaderRequest message, the leader node rejects the request by a

LeaderReply message. Non-leader nodes in the same region can be set to send

LeaderReply messages too. Doing so can reduce the chance that an arriving node falsely

claim itself as a leader. However, it will also increase the leader election message

overhead.

On top of the basic leader election algorithm, to speed the leadership switching, a

LeaderLeft message can be added to the leader election algorithm to speed leadership

switching. Now, when a leader leaves a region, it sends out a LeaderLeft message to ask

the non-leaders in the region to start a leader re-election immediately.

In addition, in a leader election, nodes that move more slowly and nodes that have had

their state synchronized with the leader are more likely to become the new leader of a

region.

 56

In addition, to reduce the chance of multi-leadership, we can require that a node that just

arrived at a region wait longer after sending out its leadership request before it can claim

leadership.

Any combination of these choices can be used to improve the performance of either

model. The more complex leader election algorithm reduces the number of state resets in

the basic VNLayer model and arbitrary state changes in the extended VNLayer. However,

these options are tested by my simulations only for the extended VNLayer model.

3.4.3 Number of Emulator Nodes

When a network is dense, it is not necessary to use every physical node to emulate virtual

nodes. Doing so would increase the burden on every physical node and increase the

number of state synchronizations. One implementation choice is to allow a physical node

to decide dynamically on whether it should be an emulator node. This option would put

control on the total number of physical nodes that are emulating the virtual node in each

region and increase the efficiency of the VNLayer approach.

When not every physical node is an emulator node, the guarantees on virtual node still

hold as long as there is at least one emulator node in a region.

3.4.4 State to Be Synchronized

In the implementation of the basic VNLayer model, the entire virtual node state is

synchronized when a non-leading emulator node detects a state inconsistency. In order to

reduce the state synchronization traffic overhead, an option is to synchronize only the

critical part of the virtual node state. We define hard state and soft state as follows.

 57

Hard state is the virtual node state that is critical to the correct operation of an

application. An example of hard state is the address allocation information maintained by

a DHCP server. Incorrectness on this information can lead to duplicate address

allocations for extended period of time.

Soft state is the virtual node state that is non-critical to the correct operation of an

application. An application will run correctly in spite of incorrect soft state. An example

of soft state is the non-critical parts of a routing table maintained by a MANET router.

The non-critical parts include route lifetime, expired routes, etc. Since MANET routers

are meant to tolerate frequent routing failures due to node mobility, inconsistencies on

routing tables is not critical to the correct operation of MANET routing.

With hard state and soft state defined, an implementation options is to let the VNLayer

synchronize the hard state only. To do this, the programmer of the application layer

software needs to determine what hard state is and what soft state is. With this option

turned on, the VNLayer guarantees on hard state remain.

3.4.5 Subtypes of State Synchronizations

There are two types of state synchronizations. When a node enters a region and becomes

non-leader, it synchronizes its state with the leader’s. We call this type of state

synchronization motion sync because it is triggered by node motion. When a non-leader

detects state inconsistency, it synchronizes its state with the leader’s. We call this type of

state synchronization message sync because it is triggered by a message receive event.

 58

In the implementation of VNLayer, the two types of state synchronizations can be

enabled or disabled19. When either subtype of state synchronization is disabled, there will

be more state inconsistencies on emulator nodes.

3.4.6 Control Over State Synchronization Frequency

In order to reduce the number of state synchronizations a virtual node, a minimum inter-

state-synchronization interval can be set up on virtual nodes. However, doing so increases

the chance that emulator nodes can have out of sync state.

3.4.7 Use of Overheard State Synchronization Messages

A non-leader can use any overheard state synchronization message from the leader to

synchronize its state even if it hasn’t detected any state inconsistency20. This option

reduces the number of state synchronizations needed in a region.

3.4.8 State Consistency Checks

A non-leader emulator node can choose to check every message received from its leader

to check for state consistencies. In order to reduce the number state synchronizations

caused by state inconsistencies detected on non-critical part of the virtual node state, an

implementation can choose to check messages that are more likely to have affected hard

state only. Doing so would increase the chance an emulator node having its state out of

sync.

19 It is expected that motion sync is more important than message sync because when an emulator node
moves into a new region, it relies on a message sync to receive the entire copy of a virtual node state. It's
also what guarantees consistent state when there are no message losses. Message sync is used when there
are message losses to patch up the state.
20 When a non-leader detects a state inconsistency, it drops all the messages in its sending buffer and
synchronizes its state with the leader’s. However, when a non-leader’s state is synchronized before it
detects the state inconsistency, some messages in its sending buffer might not be valid.

 59

In addition to using incoming message to look for state inconsistencies, a hash of the

virtual node state can be carried in each message sent by a virtual node. The state hash

can be used by emulator nodes to look for state inconsistencies. This option would reduce

the false positives in state inconsistency detection. However, it also increases the

processing overhead on virtual nodes.

3.4.9 State Inferencing

This option allows non-leader emulator nodes to fix parts of its state by inferring the

virtual node state from messages sent by the leader emulator node. Doing so can reduce

the number of state synchronizations. However, this option breaks the abstraction because

it requires an application on an emulator node to act differently based on its role (leader

or non-leader) at the VNLayer.

3.4.10 Communication Rules

In the basic VNLayer model, a client process can only communicate with its local virtual

node and virtual nodes can only communicate with neighbor virtual nodes. With the

extended VNLayer model, an implementation has the option of keeping the rules above

or allowing a client to receive messages from non-local virtual nodes and allowing a

virtual node to communicate with any other virtual node that is in range. Doing so would

reduce the number of forwarding hops needed for a transmission. However, allowing

virtual nodes to communicate with any other virtual node breaks the atomic reception

guarantee. State inconsistencies can happen even in the absence of collisions when non-

neighboring virtual nodes communicate with each other through long links.

 60

3.4.11 Powerful Emulators

Another implementation option allows an emulator node to act as the Server for a client

process that resides on the same physical node, using the application state of the region.

This implementation choice is called Powerful Emulator because it is like an emulator

node is given the full power of a server. With this option, rather than being constrained to

its own region, a client process on an emulator node can seek services from virtual nodes

in any region. This option can be used when the efficiency of a protocol is critical to its

performance. However, doing so breaks the abstraction because it requires an emulator

node to act differently when processing messages from client processes on its host

physical node and allows an emulator node to act alone.

3.4.12 Summary of Implementation Choices

There are two simulators for the VNLayer, VNE [36] simulates the basic VNLayer.

VNSim simulates both the basic VNLayer and the extended VNLayer. However, it needs

to be noted that VNSim simulates the basic VNLayer model with the extended link layer

model. Table 3-1 summarizes the implementation choices investigated by the simulators

for each model. The impacts of the choices are also listed.

 61

Table 3-1: Implementation options investigated by simulations of the VNLayer approach

Features Options Basic VNLayer

Model

Extended VNLayer

Model

Impacts

Region shape Square, hexagon Square Square Using square regions and uni-

form radio ranges simplifies

simulation
Node radio range,

reception ability

Uniform, non-uniform Uniform Uniform

Number of emula-

tor nodes

All physical nodes, a se-

lected subset

All physical

nodes

A physical node can

dynamically decide to

be an emulator node or

not

Reducing the number of emu-

lator nodes reduces syncs and

increases chance that regions

can be empty.

Leader election Taking node motion rate,

node status, node state con-

sistency into consideration.

Simple LeaderLeft message,

node status, node mo-

tion rate, node state

consistency took into

consideration

The more complex leader elec-

tion algorithm reduces leader

changes; reduces leader switch-

ing delay and reduces the num-

ber of state resets in the basic

VNLayer model and arbitrary

state changes in the extended

VNLayer model.

Consistency

Checking

Check all messages, check

only critical messages,

check state hash

Check all mes-

sages (For

VNDHCP, mes-

sages with no

impact on state

excluded)

Check only critical

messages

Checking only critical mes-

sages, syncing hard state only,

doing motion syncs only and

limiting the rate of state syn-

chronization reduce syncs or

sync traffic and increase state

 62

State to be syn-

chronized

Sync all state, sync hard

state only

Sync all state Sync hard state only
inconsistency

Synchronization

subtypes

Motion Sync, Message

Sync

Always sync. Two sync subtypes can

be turned on or off

Limit rate of state

synchronizations

Used, not used. N/A Rate limit used on state

synchronization.

On overheard

sync messages

Ignore, use to sync local

state

ignore Use overheard state

sync messages

Using overheard sync msgs

reduces number of syncs.

Client communi-

cation rules

Only with local virtual

node, can receive from any

virtual node, can send to

any virtual node

Only with local

virtual node

Can choose between the

first two options.

Non-atomic reception when

long links are used. It increases

syncs and state inconsistency.

Virtual node

communication

rules

Can only communicate

with neighbors, can com-

municate with anyone

Communicate

with neighbors

only

Can choose between the

two options

Powerful Emula-

tor

Emulator node can act as

server for client processes

on the same physical node

Not used Investigated Making protocols more effi-

cient but breaks the abstraction.

State inferencing Used, not used N/A Can be turned on or off Using state inferencing reduces

syncs but breaks abstraction

 63

CHAPTER 4. Virtual Node Layer Implementation

In this chapter, I first give a review on a python based VNLayer simulator we used at the

early stage of the research. Then, I present in detail the implementation of our ns-2 based

simulator VNSim. Because VNSim is built over ns-2, it uses the extended link layer

model introduced in the previous chapter, which considers packet losses. VNSim can be

used to simulate both the basic VNLayer model and the extended VNLayer model.

4.1 Virtual Node Emulator

Virtual Node Emulator (VNE) [38] developed by M. Spindel, is a light weight VNLayer

simulator. VNE supports the basic link layer model and the basic VNLayer model as

introduced in the last chapter. VNE includes a Mobile Node (MN) layer, a Virtual Node

Emulator (VNE) layer and an Application layer. At the bottom, the MN layer simulates a

simplified wireless link layer. It supports functions such as node creation, node motion

and packet transmissions. The VNE layer simulates the VNLayer. It keeps track of a

node’s current location, sets up a node’s region id, does leader elections, buffers packets

for the non-leader nodes and synchronizes a non-leader’s state with the leader’s state. On

top of VNE, the Application layer supports the application servers and clients.

VNE works well as a tool for proof of concept studies. The coding for applications in

VNE is easy. In our early work on VNLayer based address allocations, simulations using

VNE provided quick results and useful insights. However, VNE has a number of

limitations. First, VNE’s link layer doesn’t model the packet loss caused by message

 64

collisions and congestions. This limits the validity of the simulation results. Second,

Python runs slowly. This makes VNE unsuitable for large scale simulations. Third, VNE

is time based. Periodic checking on flags, node locations, etc. is used to drive the

simulation in VNE. This makes the simulation time of VNE scale badly with increasing

network size. In addition, the fixed checking periods can affect latency related simulation

results. For example, if the checking period for incoming messages is set to 0.1 second,

the response time for a message observed by the simulator can appear to be 0.2 second

even if the actual latency is much shorter.

4.2 Virtual Node Simulator (VNSim)

Figure 4-1 The Architecture of VNSim on a VNLayer equipped physical node

Application Layer (VNLayer based applications)

VNLayer
VNLayer State Machine Sending

Queue

Location Checking
Module

Receive() Send()

Save/Get
State

Equal() Server
Initialization

Application Packet
Processing

VNLayer
API:

Packet Classifier

Link Layer (provided by ns-2)

State Synchronization
Module

Leader Election Module

Hello
Generator

 65

To deal with the problems with VNE, we created a discrete event-based VNLayer

simulator, VNSim, on top of Network Simulator ns-2[39]. As shown in Figure 4-1,

VNSim is built over the link layer provided by ns-2. It takes advantages of a mature

simulator of the 802.11 link layer model, which is the same as the extended link layer

model introduced in Chapter 3. VNSim can be used to simulate both the basic VNLayer

model and the extended VNLayer model. However, it doesn’t support the basic link layer

model, which is an unrealistic model.

Programs for VNLayer based applications are developed at the application layer, which

implements the following major interface functions required by the VNLayer.

• receive(): a function that the application layer uses to handle messages passed up

from the VNLayer.

• send(): a function that the application layer uses to push messages down to the

VNLayer.

• equal(): a function used by a non-leader node to check incoming messages from the

local leader with the messages in its sending queue.

• save/get state: functions used by the VNLayer to retrieve or write to the Application

Layer State.

• server initialization: a function used by a virtual node to initialize its state when it is

restarted.

 66

Except the send() function, all these functions are triggered by function modules at the

VNLayer. The send() is initiated by the applications.

Figure 4-1 also shows the core function modules in the VNLayer.

• Application Packet Processing Module: a function module that handles

application packets21 received by the VNLayer from the link layer and passes

them to the application layer. (To be explained in section 0)

• Hello Generator: A function module that is used by a node to inform its neighbors

about its presence. (To be explained in section 4.5.2)

• Location Checking Module: a function module that checks a physical node’s

geographical location and determines the region a node is in. (To be explained in

section 4.6)

• Leader Election Module: a function module that determines and maintains a

node’s leader status by communicating with physical nodes in the same region.

(To be explained in section 4.7)

• Packet Classifier: a function module that checks and passes incoming messages to

appropriate function modules. It also keeps track of the activeness of neighbor

nodes and neighbor regions. (To be explained in section 04.5)

• Sending Queue: A buffer at the VNLayer for packets sent down from the

application layer. The VNLayer controls when the packets are sent to the link

layer. (To be explained in section 4.9 0)

21 Packets created by the application layer.

 67

• VNLayer State Machine: the state machine that support state replication at the

VNLayer. (To be explained in section 4.8)

In section 4.3 and section 4.4 , I introduce the VNLayer packet header and the state

maintained by the VNLayer. Most of the terms used in this chapter are also defined in

these two sections. Then, I introduce how each core function module works and how they

interact with each other and with the application layer.

4.3 VNLayer Packet Header

The VNLayer inserts a 20 byte VNLayer header to every packet it relays to the link layer.

The VNLayer header contains the following fields.

• Type (1 byte): The packet type.

• Subtype (1 byte): The packet subtype.

• Region ID (2 bytes): the sender region of the packet

• Source (4 bytes): the address of the sending physical node

• Destination (4 bytes): the address of destination physical node

• Send_time (4 bytes): the sending time of a packet

• Hash (4 bytes): a hash of the virtual node emulator’s application state at the

moment the packet is sent.

There are four types of packets that the VNLayer has to handle; Application messages,

Leader Election messages, State Synchronization messages and Hello messages.

 68

Application messages are the messages sent and received by the VNLayer based

application. There are four subtypes of VNLayer application messages. Four subtypes

provide finer grained control on what kind of messages should be used by the VNLayer

to look for state inconsistencies.

• Client messages: application messages sent to the VNLayer by a client process.

Local Client messages are the messages that a client process, which doesn’t know

anything about the VNLayer, sends to VNLayer on the same node. This kind of

message is always considered an application message by the VNLayer. Therefore,

when the VNLayer inserts the VNLayer packet header, the type of the message

will also be set to “Application message” and the subtype of the message will be

set to “Client message”

• Server messages: application messages originated from a virtual node.

• Forwarded Server messages: application messages forwarded by a virtual node.

• Forwarded Client Messages: A subset of client messages forwarded by a virtual

node that neither use nor affect the application state. For example, when a client

message is relayed by a virtual node to the neighbor that is closest to the

destination region, the message forwarding doesn’t use any application state, the

message is a forwarded client message.

Leader Election messages are messages for leader elections and leadership maintenance.

There are three subtypes of Leader Election messages.

• LeaderRequest: messages used to request for leadership

• LeaderReply: messages sent by a leader to decline a leader request

 69

• Heartbeat: periodic messages used by a leader to claim its leadership.

• LeaderLeft: a new message type in the leader election algorithm for the extended

VNLayer. It is used by a leader node to inform the non-leaders that it is leaving a

region.

State Synchronization messages are messages for state synchronizations between leader

nodes and non-leader nodes in the same region. There are two subtypes of State

Synchronization messages.

• SYN: synchronization request messages sent by a non-leader.

• SYN-ACK: synchronization response messages sent by a leader.

Hello messages are generated by the VNLayer to help VNLayer based applications to

maintain a list of immediate neighbors.

4.4 VNLayer State

The VNLayer operates on VNLayer state. The VNLayer state can be changed only by the

VNLayer but is readable by the application layer22.

The first part of the VNLayer state is region ID, which identifies the geographical region

a VNLayer emulator node is in. A region ID is also used to identify the virtual node in a

region.

22 In VNSim, the VNLayer state is implemented as protected members of the base class for VNLayer based
applications.

 70

The second part of the VNLayer state is the Leader Status. It indicates the leadership

status of a node in the region. The Leader Status can take one of the following seven

values.

• INIT: The initial state before a node learns its region.

• Unknown: The node just enters a region and doesn’t know about its role. A

LeaderRequest message is scheduled but not sent out yet.

• Requested: The node has sent out a LeaderRequest, no response is received yet

and the LeaderRequest timer hasn’t timed out.

• Leader: The node is a leader of its current region.

• Non-leader: The node is a non-leader in its current region.

• Unstable: The node has missed at least one Heartbeat message from the Leader.

The third part of the state is VN Status. It is updated by the VNLayer State Machine and

used by a physical node to determine its current role among the virtual node emulators of

its region. The VN Status can take one value from the following values.

• UNKNOWN: The virtual node emulator hasn’t learned its region id and does

nothing. This is the initial state of a virtual node emulator.

• NEWNODE: The virtual node emulator just entered a region and hasn’t

determined its role.

• SERVER: The virtual node emulator plays the Server role. For the rest of this

thesis, we refer to a node with this status as a Server node.

 71

• BACKUP: The virtual node emulator plays the Backup Server role and it has its

state synchronized with the Leader’s. For the rest of this thesis, we refer to a node

with this status as a Backup Server node.

• SYNC: The virtual node emulator just plays the non-leader role. The emulator

either just entered a region or it detected a state inconsistency. It is synchronizing

its state with the leader.

• PURECLIENT: The virtual node emulator, when not elected as a region leader,

chooses to not work as a Backup Server. It acts as a pure client and doesn’t

process to any service request.

The fourth part of the VNLayer state is a region activeness table that keeps track of the

activeness of regions from which messages can be heard by the virtual node. Each entry

in the table maintains a region id, the address of the current leader of the region, the

activeness of the region and a “lifetime”.

The fifth part of the VNLayer state is a neighbor list. The list maintains the list of

physical nodes from which messages have been heard recently. Each entry in the

neighbor list maintains a physical node’s node id, current region id and a “lifetime”. An

entry for a physical node in the list will be removed if no messages can be heard from it

before its lifetime expires.

 72

4.5 Packet Classifier

On an emulator node, the Packet Classifier is the first module that processes an incoming

message from the link layer. It performs two tasks, Packet Classification and

Neighbor/Region Activeness Maintenance.

4.5.1 Packet Classification

As shown in Figure 4-1, the Packet Classifier passes application messages to the

application packet processing module; Leader Election messages to the Leader Election

module and state synchronization messages to the State Synchronization Module. Hello

messages are handled by the Packet Classifier and not passed to other function modules.

4.5.2 Neighbor/Region State Maintenance (NRSM)

When the Packet Classifier receives a Hello message or any other message, it uses it for

its second functionality, Neighbor and Region Activeness Maintenance.

The Hello Generator Module in the VNLayer generates Hello messages. The interval

between Hello messages can be adjusted by both the VNLayer and the Application

Layer23. Each Hello Message carries the sending time, region id and node id of the

physical node sending it. When it receives a Hello message, the NRSM on a node

refreshes the lifetime of the corresponding entry in its neighbor list so the sending node

stays as the node’s immediate neighbor.

Since every VNLayer packet carries the sender’s node id and region id, the NRSM uses

every incoming VNLayer packet as a Hello message. To reduce the number of Hello

23 The generation of Hello messages could be turned off if it is not needed.

 73

messages, each time any message is sent by the VNLayer, the Hello Generator delays the

next Hello message by a Hello interval.

Each time an entry in the neighbor list is refreshed by an incoming message, the

VNLayer informs the application layer through an optional “Hello Handling” interface

function. The application layer decides what to do with the event. In these simulations,

the VNRIP application uses these events to update its table of immediate neighbors.

NRSM uses overheard messages generated by leader nodes to maintain its region

activeness table. These messages include HeartBeat, LeaderReply, LeaderLeft, SYN-

ACK and application messages. When NRSM hears a message from the leader of a

region, it updates the leader id of the region and refreshes the timer associated with the

region. If no leader message can be heard from a region before the timer expires, NRSM

sets the leader id of the region to UNKNOWN and set the region to inactive.

There is an exception. When NRSM hears a LeaderLeft message from a region, it sets the

leader id of the region to UNKNOWN and sets the region to inactive.

4.6 Location Checking Module

The Location Checking module in Figure 4-1 checks24 a mobile node’s current location

and updates the node’s region ID in the VNLayer state.

Location checking is the first thing an emulator node has to do when it starts running. An

emulator node does nothing before it learns its region ID. When a node’s Location

24 The location checks can be done either periodically or done around the time a node is predicted to enter a
different region.

 74

Checking module finds out that the node has moved into a new region, it updates the

Region ID and informs the Leader Election Module and the VNLayer State Machine

about the region change.

4.7 Leader Election Module

As explained in section 3.3 the leader election algorithm works to ensure that the leader is

the first node that requested leadership in a region without a current leader. Whenever a

region change is detected, a node tries to become leader by sending a time stamped

message requesting leadership (the LeaderRequest message). If it doesn't hear from a

current leader (a LeaderReply message or a Heartbeat message) and it doesn't hear an

earlier LeaderRequest message from another new node in the region, it becomes the

region leader. One minor implementation choice we have here is whether or not to let the

non-leaders to respond to LeaderRequest messages too. Doing so would increase the

leader election traffic overhead while reducing the chance that a newly arrived physical

node becomes a duplicate leader when the LeaderReply message is lost.

A number of timers are used to control how long a node waits to send its LeaderRequest

message (leader request timer), to decide it is not going to hear from an earlier leader

(request wait timer), to decide when a leader should send the next Heartbeat message

(Heartbeat timer) and when a non-leader should start a leader election in the absence of

Heartbeat message from its leader (leader timer).

Figure 4-3 illustrates the state machine that controls the leader election module. The input

actions include: the expirations on the timers listed above, region changed event reported

 75

by the location checking module, incoming messages such as the LeaderRequest,

Heartbeat, LeaderReply and LeaderLeft. Figure 4-3 omits some reactions on incoming

messages that don’t result in state change. For example, when a leader node receives a

LeaderRequest message, it sends back a LeaderReply message and stays as a leader.

The initial state of every mobile node is INIT, before it knows its region id. Every time a

node learns it has entered a new region (the first time it learns its region is also treated as

entering a new region), its state changes to UNKNOWN.

Figure 4-3 The Leader Election Module State Machine

The first thing a node has to do when it enters a new region is to determine its role in the

region by sending out a LeaderRequest message and set up a request timer. If there is no

 76

rejection from the region leader (by a LeaderReply) before the request timer expires, it

changes its state to LEADER. Otherwise, it sets its state a NONLEADER. When a node

becomes a leader, the Leader Election module sends a leader event to the VNLayer state

machine25.

In order to reduce the number of LeaderRequest messages when multiple nodes compete

for leadership, each node schedules its LeaderRequest message with a random delay26

using the leader request timer. Before the timer expires on a node, if a LeaderRequest

message is heard from another node in the region, the node gives up its leader request and

set its state as NONLEADER. Otherwise, the node sends out its LeaderRequest message;

changes its state to REQUESTED and set the request wait timer.

A node starts sending periodic Heartbeat messages right away when it becomes a leader.

The Heartbeat messages are tagged with the time when the sender becomes the leader of

the region. Each time a Heartbeat message is sent by a leader node, the node sets its

Heartbeat time with the Heartbeat interval.

When a node becomes a non-leader, it uses a leader timer (expiration time set to the

Heartbeat interval plus the one hop transmission time) and a counter to tell when leader

election needs to be done. A non-leader tolerates at most 2 Heartbeat misses. The first

time a Heartbeat message is missing from the leader when the leader time expires, a non-

leader node changes its state to UNSTABLE. When more than 2 HeartBeat messages are

25 When a node becomes a non-leader, it may use a Coin Tosser Function (CTF) to decide whether the node
shall become a backup server or a pure client node. Details on CTF will be given in section 4.7.5
26This delay is also used to give nodes that are moving slower and nodes that have their state synchronized
with the leader precedence in leader election.

 77

missing, a non-leader node assumes that its leader has gone and starts an attempt on

leadership.

A good leader election algorithm should react to node mobility quickly; avoid duplicate

leaders and excessive leadership changes. In section 3.4.2 , we discussed a few

implementation choices on the Leader Election Module aimed at optimizing the leader

election algorithm. As pointed out in section 3.4.2 , the implementation choices on the

leader election algorithm don’t affect the guarantees provided by the VNLayer

abstraction. These optimizations will be explained in detailed in the following

subsections.

4.7.1 Faster Leadership Switching

Because it takes 3 Heartbeat intervals for a region to decide that its leader is gone,

Leadership switching is slow when waiting on missed HeartBeats. To solve this problem,

we let a leader node send out a LeaderLeft message when it leaves its region. The

LeaderLeft messages triggers a leader election right away in the leaders previous region.

The addition of this message greatly improves the delivery performance. It also lowers

the requirement on the frequency of periodic Heartbeat messages. The Heartbeat interval

is increased from 1 second to 5 seconds without affecting the performance of

applications. The number of Heartbeat messages, the largest fraction of leader election

messages, is reduced by 5 times.

 78

In the case that the leader node crashes before it can send out a LeaderLeft message, the

non-leader nodes can still detect, although much more slowly, the absence of the leader

node in three Heartbeat intervals and start another leader election.

The simulations reported here assume no node failures. Frequent leader failures (as

opposed to motion out of a region) would require a lower HeartBeat interval to keep the

leadership switching delay down.

4.7.2 Reducing Duplicate Leaderships

Duplicate leaders can happen when messages are lost due to collisions. For example,

when a node enters a region, it sends out a LeaderRequest message. If the LeaderRequest

message couldn’t be heard by the current leader of the region or the leader’s LeaderReply

message couldn’t be heard by the requesting node, the requesting node would claim itself

as a leader.

In a routing application, when duplicate leadership happens, a virtual node could forward

the same data message multiple times toward the same next hop, causing amplified data

traffic. Second, since the new self-claimed leaders don’t have any route, data packets sent

to them can trigger incorrect data packet drops and unnecessary route discoveries. This

disrupts the data forwarding and increases the traffic overhead. Third, when there are

multiple leaders in a region that have different application states, each incoming message

could trigger a state synchronization in the region. This increases the state

synchronization overhead. The increased traffic overhead can in turn cause even more

duplicate leadership in the network. Therefore, duplicate leadership is very harmful.

 79

In a lossy channel, it is impossible to prevent duplicate leadership. However, measures

can be taken to reduce the chance that duplicate leadership happens and eliminate

duplicate leadership quickly when it happens.

Since most duplicate leadership happen when a node enters a new region, we increased

the delay before a newly arrived node can send its LeaderRequest message. Therefore,

the newly arrived nodes have a greater chance of receiving a message from the current

leader of the region and give up its attempt on leadership. In addition, after a newly

arrived node sends out its LeaderRequest message, it also has to wait longer (than a non-

leader node has to wait in a leader re-election) before it can claim leadership. This

increase the chance a LeaderReply message can be heard from the current leader by the

requesting node.

When a node whose state is LEADER receives a Heartbeat message from the same

region, it checks when the sender became the leader. If the sender became the leader of

the region earlier, the node gives up its leadership and sets its state to NONLEADER. If

the sender became the leader of the region later, the node sends out a Heartbeat message

right away to ask the other leader to give up its leadership.

With these optimizations, duplicate leadership rarely occurred in the simulations reported

here.

4.7.3 Stabilizing Region Leaderships

Each time a region leader leaves a region, the services provided by a virtual node has to

be paused for a period of time so that a new leader can be elected. In a leadership

 80

switching, there is always a chance that the new leader doesn’t have consistent state. As

we are going to see later in this thesis, loops can form when this happens. Therefore, it is

desirable that the number of region leadership switches be minimized.

Excessive leadership changes can happen when rapidly moving nodes become leaders, so

that some penalty for rapid motion is useful in a leader election. In our implementation,

nodes that can stay in a region longer are given an advantage in the competition for

leadership. Here, we assume mobile nodes can find out their current motion rates and

direction they are heading. Based on this information, a mobile node can find out how

long it would take it to enter a different region. In a leader election, when mobile nodes

decide their random delay before they can sends out their LeaderRequest messages,

different random delays are used for nodes with the following 4 different levels of

stability.

1. Static nodes: nodes that are not moving.

2. Stable nodes: nodes that can stay in the current region longer than 2 seconds.

3. Unstable nodes: nodes that can stay in the current region shorter than 2 seconds

but longer than 0.1 seconds. (This is the waiting time before a requesting node can

claim leadership, if there is no rejection.)

4. Very unstable nodes: nodes that are leaving the current region before it can claim

their leadership if they send out LeaderRequest messages right away.

Table 4-1 shows the random backoff settings we used for nodes at different stability

levels. This way, the slowest nodes send out their LeaderRequest message soonest.

Therefore, they have the greatest chance of being elected as the leader of the regions they

 81

are in. With this optimization used, the average number of leadership changes is reduced

by 10%.

Table 4-1 Random backoff settings in leader election for nodes at different level of
stabilities

Node Stability Level Random Backoff Setting (picked uniformly random in the range)

1. Static Nodes 0~0.05 second

2. Stable Nodes 0.05~0.1 second

3. Unstable Nodes 0.1~0.15 second

4. Very Unstable nodes 0.2~0.25 second

4.7.4 Electing Better Leaders

When a node whose state is out of sync is elected as the leader, the virtual node in the

region may operate incorrectly. In order to improve the performance of VNLayer based

applications, nodes whose application state is out of sync (for example, newly arrived

nodes) can be given lower precedence in leader elections.

The solution is, each time a state inconsistency is detected, a non-leader node sets its

Sync Status to “out-of-sync”. Once its state is synchronized, the non-leader node clears

the flag. During a leader election, if a node is flagged as “out of sync”, it delays itself

longer before it can send out its LeaderRequest message. This way, if there are other

Backup nodes in the region, the chance that the out of sync node takes over the region is

lower.

 82

4.7.5 Reducing the Number of Backup Servers

When a MANET is dense, there is no need for every region to have many Backup

Servers. Having too many Backup Servers in a region can also lead to large number of

state synchronizations27. As discussed in section 3.4.3 , an optimization can be done to

control the number of Backup Servers in a region.

An optional Coin Tosser Function (CTF) is added to the leader election module to reduce

the number of Backup Servers when the network is dense. Each time the Leader Election

Module on a node finds out the node is to become a non-leader, it calls the CTF to decide

whether the node will become a Backup Server or a Pure Client node. The CTF makes

the decision using a preset threshold value and the current estimated number of nodes in

the region. The preset threshold value is an integer between 0 and 1000. If the threshold

is 1000, a non-leader node always sets itself to be a Backup Server. If the threshold is 0, a

non-leader node always set itself as a Pure Client node. This actually means there is no

Backup Server in any region. The CTF calculates the current number of physical nodes in

the local region using the neighbor list maintained by the Neighbor and Region State

Maintenance functionality in the Packet Classifier. Let this number be “size”, the

following formula is used to calculate the probability � that the node will set itself as a

Backup server. If the node density of the local region is 0, p is set to preset

threshold/1000

�� ���� � 0, � !
������ �"���"���

2000 # ����

27 Both MSG-SYNC and MOV-SYNCs

 83

�� ���� ! 0, � !
������ �"���"���

1000

The CTF makes a random Boolean decision with probability � and informs the VNLayer

state machine about the decision on whether a non-leader node is to be a Pure Client node

or a Backup Server.

4.8 The VNLayer State Machine

Figure 4-3 shows the state machine that controls the core VNLayer operations. The state

transitions are triggered by input actions such as “regionChange” events generated by the

Location Checking Module, “leader” event generated by the Leader Election Module

(when a node becomes a region leader), “backup server” or “pureClient” event generated

by Coin Tosser Module, state inconsistency detected by the Consistency Manager,

synchronization waiting timer expiration and incoming messages such as the SYN

message and SYN-ACK messages. The output action includes the sending of SYN and

SYN-ACK messages.

The VNLayer of every mobile node starts with the initial state UNKNOWN before it

finds out for the first time about its region id. Once its region id is known, a node enters

the state NEWNODE. In addition, whenever a node enters a new region, the state of the

node always transits into NEWNODE.

 84

Figure 4-4 The VNLayer State Machine

Each time a node enters the state NEWNODE, the node resets the state at the application

layer using the interface function “server initialization”. After this, the node waits for the

events from the Leader Election module so that it can determine what role it will play in

the new region. If the Leader Election Module decides that the node is the leader of the

region, the node changes its state to SERVER. When the Leader Election Module decides

that the node will be a non-leader, if the Coin Tosser Function decides that the node will

 85

become a Backup Server, the node sets its state to SYNC. Otherwise, the node changes

its state to PURECLIENT.

A Server node remains in the state SERVER as long as it stays in its region. In addition to

responding to application messages, it also handles incoming requests for state

synchronizations. However, when duplicate leadership happens and the node’s Leader

Election module decides to give up its leadership, the Coin Tosser Function will then

decide whether the node shall act as a Pure Client node or a Backup Server.

When a node is to act as a Backup Server, the next thing it needs to do is to synchronize

its state with the leader’s state. Therefore, it asks the State Synchronization Module

(SSM) to do a state synchronization. More details on the State Synchronization Module

will be given in the next section. Once the node’s state is synchronized, its state turns to

BACKUP and it becomes an operational Backup Server of its region.

As mentioned before, a Backup Server node checks its state with the Server node’s state

(using the Consistency Manager). Once it determines that its state is out of sync, it

changes its state to SYNC and asks the State Synchronization Module to do a state

synchronization.

When the leader of a region leaves, a leader election will be done by the leader election

module. This results in changing the role a node has to play in the region, even if the

VNLayer status of a node is originally PURECLIENT.

 86

4.9 Sending Queue

As discussed in chapter 3, the application layer on both Server nodes and Backup Server

nodes put their response messages in a sending queue in the VNLayer. However, only the

response messages on a Server node actually get sent.

If a node’s VN Status is Server, the Sending Queue module is enabled to send. Packets in

the queue are sent out one by one, with a small interval (10ms) between each sending.

The small interval between each sending is added to reduce message collisions in the

channel.

When a node’s VN Status turns from Backup Server into Server, as a result of a leader

election, the sending queue will also be enabled to send so that the packets remained

there will be sent out. The packets stored in the sending queue are set to expire after a

period of time (2 seconds). This prevents Backup Server nodes from sending out very old

messages left in their sending queues, when they become Server nodes of its region.

As explained in section 3.2.1 , the extended link layer model allows physical nodes and

virtual nodes to communicate using Directed Broadcast28 whenever it is possible. When

this implementation choice is used, if a packet to be sent is destined for a virtual node

rather than a physical node, the current leader of the region hosting the virtual node will

be looked up from the region activeness table. If the current leader is known, the packet is

28 Direct Broadcast means when promiscuous mode is used by physical nodes, a packet can be broadcast to
nearby physical nodes using a unicast destination address. The use of unicast destination address allows
link layer acknowledgement and re-transmission.

 87

sent out using a unicast destination address. Otherwise, the packet is sent out using a

broadcast destination address.

In order to use Directed Broadcast, we need to consider packet transmissions in the

following three cases:

 Client process to virtual node transmission: Client processes use the region activeness

table maintained by the Packet Classifier to find out the address of the leader of the

virtual node. If the address is known, it sends the packet to the address of the leader node

by unicast.

When the address of the leader node is unavailable, the client process sends its packet

using a broadcast address. With the response packet sent out by leader node, the Packet

Classifier will find out the address of the leader.

This implementation requires a client process to be able to keep track of the address of

the leaders of regions. This breaks the abstraction and makes it harder to develop client

code. One alternative implantation is to let virtual node emulator nodes to use two IP

addresses, one unique address identifies itself, the other one identifies its region. When a

client process needs to communicate with a virtual node, it uses the IP address for the

region. The Server node in the region responds to unicast packets destined for the virtual

node. However, doing so requires a more complicated link layer model.

Virtual node to virtual node transmission: When a virtual node needs to send a packet

to another virtual node, from the region activeness table, it can find the address of the

 88

current leader of the destination region. The packet is sent to the leader node of the

destination region using unicast.

When the transmission of the packet fails due to leader changes, the sender virtual node

replaces the address of the destination region to UNKNOWN. This transmission failure

can be reported to the application layer together with the packet in question. The

application layer then determines whether the packet shall be retransmitted or not.

When the address of a region’s leader is unknown, a virtual node sends packets to the

region by broadcast.

If a LeaderLeft message is missed by a virtual node, a node that sent the LeaderLeft may

continue receiving packets for its old region’s virtual node after it has left the region. In

this case, the node sends another LeaderLeft message to inform the neighborhood again

about the leadership change.

Virtual node to client process transmissions: When a virtual node needs to send a

packet to a client process, the address of the client node is known to the virtual node.

Using unicast destination address for this transmission is natural.

4.10 Application Packet Processing

In this section, we explain in detail how the Application Packet Processing Module

works. This involves a number of sub-modules. Figure 4-5 shows a detailed illustration

of the module.

 89

4.10.1 Client Message Handler (CMH)

If a physical node is equipped with VNLayer capability, all local client messages are

passed to the CMH by the Packet Classifier. Since other emulator nodes in the same

region need to hear the message too, the CMH module makes a copy of the client

message, and broadcasts it to the MANET. After this, the CMH module passes the client

message to the next module, Application Packet Filtering (APF).

If a physical node doesn’t support VNLayer, it still needs to implement the CMH module

so that its local client message can have a VNLayer header, with type set as VNLayer

Figure 4-5 Details of the Application Packet Processing Module

The Application
Packet Processing
Module

VNLayer
VNLayer State

Machine

Application Layer (VNLayer based applications)

Receive() Equal()

Consistency Manager

VNLayer API:

Packet Classifier

Link Layer (provided by ns-2)

Application Packet Total
Odering

Application Packet Filtering

Client Message Handler

DCMH

 90

Application message and subtype set as Client Message. The CMH module then

broadcasts the Client Message to the MANET.

4.10.1.1 Implementing the Powerful Emulator Option

This section presents the implementation of the Powerful Emulator option. As introduced

in section 3.4.10 , an implementation choice called Powerful Emulator can be used to

allow emulator nodes to act as independent servers and process local client messages

directly. When this option is turned on, the CMH module does nothing except passing

the local client messages to the server process at the Application Layer through an

interface function called Direct Client Message Handling (DCMH). DCMH handles

client messages alone.

Because the DCMH function at the application layer can communicate with other virtual

nodes on its own, messages sent by the DCMH function always need to be sent directly

to the link layer rather than controlled by the Sending Queue. Therefore, the DCMH

function is given direct access to the link layer. Every packet sent out by the DCMH

function is set as a Client Message, so that it won’t trigger any state synchronization on

other emulator nodes in the same region. Simulations on VNAODV with the Powerful

Emulator option use this function.

4.10.2 Application Packet Filtering (APF)

When implementing the basic VNLayer model, a VNLayer application packet can only

be passed on if it comes from the local region or from an immediate neighbor

 91

region/virtual node. Hence, the APF module drops all messages coming from non-

neighboring regions.

With our extended VNLayer model, virtual nodes are allowed to communicate with any

virtual node it can reach. When implementing the extended VNLayer model, packets sent

from any virtual node can be passed on by APF. Doing this reduces the reliability of the

virtual node based network while increases the efficiency of it. In section 6.3.2 , we can

see this implementation allows us to use fewer hops to forward data packets in a routing

application.

In addition to filtering packets coming from remote regions, the APF also blocks

application packets on emulator nodes whose state is out of sync. This is to ensure

VNLayer emulator nodes whose state is out of sync don’t process incoming application

messages and generate bad response messages.

4.10.3 Application Packet Total Ordering (APTO)

This module buffers packets passed up from the APF module for a short period of time29.

The packets buffered will be sorted using their sending times to increase the likelihood

that different virtual node emulators receive packets in roughly the same order. Order

matters because we want the state on each emulator node to change in the same sequence.

This way, when the next module, Consistency Manager, uses the incoming messages to

detect state inconsistencies, it makes fewer false positive detections of an out-of-sync

state.

29 We set this parameter to 10 milliseconds.

 92

4.10.4 Consistency Manager (CM)

Consistency Manager is the last module an incoming packet has to go through before it is

passed onto the application layer. The Consistency Manager cleans up the sending queue

and detects state inconsistencies using incoming application packets, and passes packets

to the application layer.

4.10.4.1 Sending Queue Clean Up and State Consistency
Check

Since the Server node and Backup Server nodes in the same region are supposed to

prepare the same sequence of responses message, a Backup Server should receive from

the Server node a copy of every message in its sending buffer. On a Backup Server node,

the consistency manager uses the messages it receives from the Server node to drop

identical response messages from its sending queue and to detect state inconsistency

when no identical response messages can be found.

On a Backup Server node, when the Consistency Manager receives a VNLayer

application packet from the local region, it checks the subtype field in the VNLayer

header.

Each Client message is sent by a single client process and it is not buffered in the sending

queue. Therefore, this subtype of local application messages is ignored by the

Consistency Manager. As defined earlier, Forwarded Client Messages have nothing to do

with the application state. Therefore, we don’t do state consistency checks on Forwarded

Client Messages either.

 93

For Server Messages and Forwarded Server Messages, the Consistency Manager checks

the sending queue to see if it holds a packet that is identical to the incoming packet. To

tell whether two response packets are identical, the Consistency Manager calls the

application layer user interface function equal(). In the VNLayer design in [1], two

packets have to be exactly the same so that they can be considered the same. This way,

there is no need to ask the application layer to check if two packets are the same. Since

there are cases in which we might want to allow the response messages of from a Backup

Server node and the Server node to be a little bit different. For example, the timestamp on

each response message could be slightly different due to out of synch clocks on different

node. However, triggering a state synchronization over such differences may not worth

the cost. Therefore, we propose to allow the VNLayer to ask the application layer to

check whether two packets are similar enough to be considered identical response to the

same message.

If a match can be found, the Consistency Manager removes the matching packet from the

sending queue. If no match can be found, the Consistency Manager asks the state

synchronization module to do a state synchronization (This is a MSG-SYNC.).

When a VNLayer based application involves large number of Forwarded Server

Messages (for example, routing application), in a lossy channel, the state synchronization

overhead can be very heavy because Backup Server nodes in a region could miss many

packets received by the Server node in the same region. Therefore, in such applications,

to reduce the number of MSG-SYNCs, we only do state synchronization checks on

Server Messages.

 94

Another option provided by the Consistency Manager is to use the VNLayer header state

hash field to check for state inconsistencies. To do this, each outgoing message shall

carry a hash of the sending node’s application state. Using an application interface

function, getHash(), the CM can check if the local state is the same as the Server node’s

state. One disadvantage of the method is the computation cost involved in the state

hashing. Also, many state synchronizations can be triggered by state inconsistencies on

irrelevant parts of the state. To alleviate the impact these problems, the getHash()

function in the application layer could be programmed to just do state Hashing a subset of

the server’s state that is deemed critical.

4.10.4.2 Passing Application Packets to the Application Layer

Depending on the VN Status of a node, the Consistency Manager decides whether an

application packet needs to be passed to the application layer though the interface

function receive(). If a node’s VN Status is Server or Backup, the Consistency Manager

passes the packet to the application layer. If a node’s VN Status is PURECLIENT, the

CM doesn’t pass the packet to the application layer.

4.11 State Synchronization

Application layer state is maintained by the application layer. In order to do state

synchronization, the VNLayer can read and change the application layer state through the

API.

 95

When the State Synchronization Module is asked30 to do a state synchronization, it sends

out a SYN message by unicast and sets a waiting timer for the response. When a Server

node receives a SYN, it uses an interface function, getState(), to retrieve the local

application state and creates a SYN-ACK message. When a Backup Server node receives

a SYN-ACK message from the Server node, it uses another interface function saveState()

to update its local state with the payload of the SYN-ACK message.

If the timer expires and no SYN-ACK message is received, the Backup Server tries again.

The time interval between consecutive synchronization attempts increases linearly with

each additional attempt.

In VNE, each non-leader checks all incoming messages from the local leader to look for

state inconsistencies. Each packet missed by a non-leader node due to collision could

trigger a state synchronization. Therefore, the state synchronization overhead increases

quickly with heavier application traffic. In addition, in a state synchronization, a Server

node has to send its state to the Backup Servers. The size of each SYN-ACK message can

be large when the application layer state is large.

Because state synchronization messages can be large and consume a lot of bandwidth, we

want to reduce the number of unnecessary state synchronizations. In the following

subsections, I discuss in detail the optimizations/implementation choices we used to

reduce the size of the SYN-ACK messages, to reduce the number of SYN and SYN-ACK

30 by either the VNLayer State Machine or the Consistency Manager Module in the application message
processing function.

 96

messages and to reduce the number of state synchronizations that are triggered in the

consistency manager.

4.11.1 State to be Synchronized

In section 3.4.4 , I introduced the optimization we used to reduce the state

synchronization overhead by including only hard state in state synchronizations

messages. The application layer decides what state is hard state and what state is soft

state. The VNLayer creates SYN-ACK messages using the state passed down from the

application layer.

If there is further need on reducing the size of the SYN-ACK messages, one solution is to

synchronize only the portion of the state that is deemed critical. For example, in a routing

application, the routes that are in use and the routes that are recently used can be deemed

as critical state. In addition, the information maintained for a router in region, (for

example, the local time) shall also be deemed critical.

4.11.2 Subtypes of State Synchronizations

As explained in section 3.4.5 , there are two types of state synchronizations in the

VNLayer. The first type is motion sync (MOV-SYNC). MOV-SYNCs happen when a

node enters a new region and becomes a Backup Server. The second type is message sync

(MSG-SYNC). MSG-SYNCs happen when a Backup Server node detects state

inconsistencies based incoming messages from the local Server node. Based on our

observation, in routing applications, MOV-SYNCs are more important in keeping the

state of the Backup Servers consistent with the Server’s. This is easy to understand. When

 97

a node just enters a new region, it has completely no idea about the current state of the

virtual node emulated router of the region. The quickest way it can get its state updated is

to do a state synchronization with the Server node. However, MSG-SYNCs are like doing

patches on emulator states that has flaws. Routing application’s requirement on state

consistency is not as strict as in MANET address allocation. For example, a Backup

Server may use a different viable next hop from the Server node’s simply because it

received RREP messages in a different sequence. When the Backup Server takes over the

region, nothing bad will happen. A MSG-SYNC triggered by this kind of state

inconsistency will be unnecessary. Therefore, in the VNLayer, we provide the option for

the user to turn off MSG-SYNC completely when it is deemed necessary31.

4.11.3 Control Over State Synchronization Frequency

As introduced in section 3.4.6 , a limit can be set up for the maximum frequency a Server

node can send out SYN-ACK messages. For example, a Server node can be set to send

out at most one SYN-ACK message to its region per second.

4.11.4 Use Overheard SYN-ACK messages.

When a Backup Server’s state is inconsistent with the Server’s, it is likely that there are

other Backup Servers in the region whose states are inconsistent too. Therefore, multiple

non-leaders in the same region can send out their SYN messages together. Responding to

each SYN message with a SYN-ACK is not necessary.

31 With another option, MOV-SYNC can also be turned off. In the next chapter, simulations are done to test
what happens when all state synchronizations are turned off.

 98

As introduced in and section 3.4.7 , we can let Backup Servers use overheard SYN-ACK

messages to update their state. This is done as follows. SYN-ACK messages sent out by

the Server node as a broadcast message so that every Backup Server node can use it to

update their state. A random backoff mechanism is used by the Backup Server nodes so

that they delay their SYN messages with a random period of time before sending them.

When a SYN message is heard from another node in the same region, a Backup Server

whose SYN message hasn’t been sent out cancels the SYN message.

4.11.5 State Consistency Checks

In VNE, a non-leader uses every incoming message from the local leader node to check

for state inconsistencies. In a routing application, when the data traffic is heavy and the

channel is congested, the Server node and Backup Server nodes in a region could receive

very different sets of messages. Therefore, many MSG-SYNCs could be triggered. In

order to reduce the number of state synchronizations, in section 3.4.8 , I introduced the

optimization in which only messages that affects hard state are checked for state

inconsistencies. In this section, I discuss this optimization in greater detail.

We classified VNLayer application messages into four subtypes, Client Messages, Server

Messages, Forwarded Client Messages and Forwarded Server messages. The reason why

we do this is because different application messages reflect the application state in

different ways. In general, Server Message are the most connected to the application state

because they are usually generated based on the application state. Client Messages have

nothing to do with the application state because they are generated by the client process.

When the application state is used to forward Forwarded Server Messages and Forwarded

 99

Client Messages and can be affected by the forwarding operations, these two types of

messages are connected to the application state too.

 100

CHAPTER 5. MANET Address Allocation over
the VNLayer

In this chapter, I present a VNLayer based address allocation protocol for MANET,

VNDHCP (Virtual Node Dynamic Host Control Protocol). VNDHCP is adapted from the

standard DHCP [17] for a wireline network, which operates basically as follows. When a

client in a network needs an IP address, it broadcasts a DISCOVER message to the

network. When a DHCP server receives the DISCOVER message and it has available IP

addresses, it sends out an OFFER message by broadcast. When the client receives the

OFFER, it confirms to the server that it wants to use the IP address by sending back a

REQUEST message. When the server receives the REQUEST message, it sends back an

ACK message, informing the client that it can start using the IP address it asked for, for a

period of time (a lease time). Before the lease time expires, the client sends another

REQUEST message to renew the lease with the server. The server confirms the renewal

request with another ACK. By renewing the lease for its address periodically with the

server, a client can use an IP address assigned by the DHCP server indefinitely.

VNDHCP was implemented over VNSim using the extended link layer model32 and the

basic VNLayer model. In VNDHCP, address allocation servers are emulated by the

virtual node in each region. The addresses owned by the MANET are partitioned into

pools33 for allocation to the virtual node servers. Inside each region, a client process can

32 This is due to the use of VNSim, which uses the link layer service provided by ns-2.
33 In our implementation, the address pool owned by each virtual node is of the same size.

 101

ask for addresses from the local virtual node, as if it is a fixed DHCP [17] server in the

region. The operations of VNDHCP are therefore the same as DHCP when both the client

and server are in the same region. However, this isn’t always the case because a client

process can leave the region after getting its address allocated. To solve this problem,

VNDHCP lets a client node talk to the virtual node that originally supplied its address in

order to renew its lease on the address. This inter-region communication is supported by a

simple geographical routing algorithm.

As discussed in section 2.1 , a MANET address allocation server should allocate

addresses to clients in such a way that each client can get an address until all addresses

have been allocated; that no two clients have the same address; and an address can

eventually be recovered for allocation to a second client if the client using it fails or

leaves the network. It should be able to achieve this in the presence of message losses. In

addition, since the address allocation servers in VNDHCP are emulated by virtual nodes,

they must work correctly under the failure modes of the VNLayer, which include virtual

node failures and resets.

The following sections explain how VNDHCP operates inside a single region and how a

client node can get its address renewed or allocated from a remote virtual node. An

important VNLayer implementation choice that reduces the state synchronization

overhead is also explained. Section 5.5 discusses the advantages and disadvantages of

VNDHCP, compared with other MANET address allocation protocols.

 102

5.1 Address Allocation and Renewal inside a Single Region

Figure 5-1 Address Allocation and Address Renewal in VNDHCP

Figure 5-1 illustrates the basic operations of the VNDHCP protocol, from a client’s point

of view34. In a region, a client process that needs an address broadcasts a REQUEST

message to its region. Each REQUEST message is uniquely identified by the sender’s id

and a sequence number generated by the client process. When a REQUEST message is

received by a virtual node, it responds with an available address if it has one, using an

OFFER message. Receiving the OFFER message, the client process confirms that it

wants to use the address by sending back an ACQUIRE message35. Upon receiving an

ACQUIRE message from the client process to which it offered the address, the virtual

node sends an ACK message to the client process. The ACK message carries the amount

of time the address can be used (the lease time) by the client process. Receiving the ACK

34 The protocol is the same for address allocation across region borders. However, the messages would be
relayed by the local virtual node to neighboring regions. However, from the point of view of a client, the
interaction it has with a virtual server is the same as shown in the figure.
35 The reason why this confirmation step is needed is because a client process can receive multiple
OFFERs, as we’ll see soon.

Address

Allocation

Address

Renewal

Client

RENEW

RENEW

ACK

ACQUIRE

REQUEST

OFFER

RACK

RACK

Server

 103

message, the client process can start using the address for a lease time. These four steps

conclude the address allocation stage of VNDHCP. If an offered address isn’t allocated

with an ACK, it remains available.

To prevent duplicate address assignment and to allow reallocation of unused addresses,

each address in the address pool of a virtual node is associated with a flag indicating the

allocation status of the address. The flag can take one of three values free, pending36 and

assigned. Each address is also associated with a value, lifetime37, which indicates when a

pending or assigned address should be set back to free. In addition, each address is also

associated with a value, owner, which records the id38 of node that is currently using the

address.

In order to keep using an address, a client process has to renew the lease before the lease

on its address expires. The renewal comes from the virtual node that originally assigned

the address. To renew an address lease, a client process sends out a RENEW message to

the virtual node (indentified by its region id). When a virtual node receives a RENEW

message, it checks its state to see if the address in question is indeed assigned to the

sender of the RENEW message. If so, it extends the lifetime of the assigned address by

another lease time and sends an RACK message back to the client process. Like the ACK

message, the RACK message carries the amount time the client process can keep using

the address. On receiving the RACK message, the client process refreshes the lease time

36 An address is “pending” state when it is offered to a client process but yet allocated to a client process.
37 It is set to a lease time when an address is allocated. It is set to a smaller value when an address is set to
“pending”.
38 MAC address, for example.

 104

on its address. These two steps conclude an address renewal. This RENEW-RACK

procedure repeats between a client process and a virtual node every lease time.

If an address renewal fails because the RENEW message from the client to the server is

lost in the channel and the lease expires, the virtual node will set the address allocated to

the client process back to free.39 On the client process, when the lease on the address it

uses expires, it gives up the address and start a new address allocation procedure.

If an address renewal fails because the RACK message from the server to the client is lost

in the channel, the client process will give up the address when its lease expires. On the

virtual node, the address remains as allocated for another lease time. Then, the lifetime

on the address also expires. The address will also be set back to a free address.

5.2 Address Allocations and Renewals across Region Borders

If a client process never leaves the region where it gets its address assigned, the address

allocation and renewal procedures are almost the same as DHCP’s address allocation and

renewal procedure. However, in VNDHCP, a client process may leave the region from

which it originally got its address. A virtual node that assigned an address for a client

process can also crash when the virtual node’s region becomes empty. Therefore, some

alterations are necessary to VNDHCP.

There are three cases in which address allocations and renewals need to be done across

region borders. First, a virtual node may run out of address (Section 5.2.1). Second, a

39 There is no extra attempt on renewal allowed in VNDHCP.

client node may leave the region from which it got its address (Section

nodes may leave a region so that the virtual node is “down” for a period (Section

5.2.1 Local Address Depletion

Figure 5-2 Address Allocation across Region Borders when a Region R
Addresses

In the first case, when a local virtual node runs out of free addresses for client processes

in the same region, it forwards the REQUEST message it receives from the client process

to its immediate neighbor regions. As shown in

the client process on node 5 is forwarded by the virtual node in region 0.2 to its

immediate neighbor regions. In the forwarded REQUEST message, the

virtual nodes the message travels through is recorded. On receiving the forwarded

REQUEST messages, virtual nodes in the neighbor regions send back OFFER messages

when they have free addresses. These OFFER messages are forwarded back to the cli

105

leave the region from which it got its address (Section 5.2.2

nodes may leave a region so that the virtual node is “down” for a period (Section

Local Address Depletion

Address Allocation across Region Borders when a Region R

when a local virtual node runs out of free addresses for client processes

in the same region, it forwards the REQUEST message it receives from the client process

to its immediate neighbor regions. As shown in Figure 5-2, the REQUEST message from

the client process on node 5 is forwarded by the virtual node in region 0.2 to its

immediate neighbor regions. In the forwarded REQUEST message, the

virtual nodes the message travels through is recorded. On receiving the forwarded

REQUEST messages, virtual nodes in the neighbor regions send back OFFER messages

when they have free addresses. These OFFER messages are forwarded back to the cli

5.2.2). Third, all

nodes may leave a region so that the virtual node is “down” for a period (Section 5.2.3).

Address Allocation across Region Borders when a Region Runs Out of

when a local virtual node runs out of free addresses for client processes

in the same region, it forwards the REQUEST message it receives from the client process

, the REQUEST message from

the client process on node 5 is forwarded by the virtual node in region 0.2 to its

immediate neighbor regions. In the forwarded REQUEST message, the sequence of

virtual nodes the message travels through is recorded. On receiving the forwarded

REQUEST messages, virtual nodes in the neighbor regions send back OFFER messages

when they have free addresses. These OFFER messages are forwarded back to the client

 106

process by source routing, using the inverse of the forwarding path carried in the

REQUEST message.

A client process may get multiple OFFERs relayed (by its local virtual node) to it from its

immediate neighbor virtual nodes. The client process takes the first OFFER and sends

back an ACQUIRE message toward the region that originated the OFFER message. The

local virtual node forwards the ACQUIRE message by broadcast to its immediate

neighbor regions. Like the forwarded REQUEST messages, the ACQUIRE message

records the virtual nodes that have forwarded it. When the virtual node that made the

offer receives the ACQUIRE message, it sends back an ACK message. The message is

also forwarded back to the client process the inverse of the forwarding path carried in the

ACQUIRE message.

5.2.2 Node Motion

In the second case, when a client process needs to renew its address lease, it might have

already left the region from which it initially got its address. A client process must be able

to renew its address lease with the remote virtual node that originally assigned it its

address. Therefore, the RENEW message needs to be forwarded by virtual nodes toward

a remote region and the RACK message also needs to be forwarded from a remote region

back to the region where the client process is.

5.2.3 Virtual Node Reset

In the third case, in VNDHCP, when a virtual node is just booted up in an empty region,

it sets all the addresses in its address pool as “assigned” for a whole lease time and set the

 107

owner of all the addresses as “unknown”. This is because the newly booted virtual node

doesn’t know whether there are client processes in other regions still using an address

allocated by the region. Setting all the address to “assigned” therefore prevents duplicate

address allocations.

During this one lease time waiting period, client processes in the newly booted region

must rely on the virtual nodes in neighbor regions for address allocation. Address

allocation and address renewals are done across region borders exactly as we have seen in

the two cases above.

If there are indeed client processes using addresses originally assigned by a newly booted

region, it would be ideal if they can keep using their addresses although the virtual node

in the newly booted region has crashed before. Receiving a RENEW message for an

address, if a virtual node finds out that the address is “assigned” and the owner of the

address is “unknown”, the virtual node extends the lease for the client process and set the

owner of the address to the original sender of the RENEW message. This way, the truly

“assigned” addresses can be used by their owners without interruption. Otherwise, if a

renewal request comes from a node that is not the owner of the address, as recorded by a

virtual node, the virtual node ignores the RENEW message. This way, a client process

that is using the address wrongly eventually gives up the address.

5.3 Application Layer Implementation Choices

When a virtual node is not able to assign addresses to a local client process due to address

depletion or due to virtual node reset, as described above, it relays the REQUEST

 108

message from the client process to neighbor virtual nodes. In our implementation, we

allow the REQUEST messages to be relayed to the immediate neighbor regions only.

This is because in case the local region runs out of addresses, a client process can have up

to 8 neighbor regions that can help on assigning it an address. This is good enough when

the address pool maintained by each region is large enough.

In addition, when an address renewal must be done across region borders, the RENEW

and RACK messages need to be relayed by intermediate virtual nodes. The first method

to forward the RENEW messages is to use flooding. Basically, a RENEW message from

a client process is relayed by all the virtual nodes that hear it. The flooding of the

RENEW message is controlled such that a virtual node forwards the same RENEW

message only once. Flooding is simple and it is guaranteed to able deliver a RENEW

message as long as there is a path and there is no message loss. However, flooding is also

expensive in terms of traffic overhead and message collisions.

Because a client process knows the geographical location of the virtual node that gave it

its address, the second method is to use a simple geographical based routing to forward

the RENEW messages. Basically, a RENEW message is forwarded by each virtual node

to its neighbor virtual node that is closest to the destination virtual node, no matter

whether the virtual node’s region is empty or not.

The forwarded RENEW message also records the virtual nodes it travels through, the

RACK message sent back from the destination virtual node can be forwarded back to the

client process using source routing.

Figure 5-3 An address lease renewal across region borders (geographical based routing

As illustrated in Figure 5

in region 2.2. When the client process tries to renew its address lease, it has already

moved into region 0.0. Its RENEW messages is first forwarded by virtual node in region

0.0 to region 1.1, the nei

virtual node in region 1.1 then forwards the RENEW message to region 2.2. The RACK

message sent back from the virtual node in region 2.2 is forwarded back along the route

used by the RENEW mes

Thus a choice must be made between

RENEW messages. Flooding generates more messages than geographical routing.

flooded RENEW message

single path picked by geographical routing may fail

109

n address lease renewal across region borders (geographical based routing
for RENEW messages)

5-3, the client process on node 1 initially got its address allocated

in region 2.2. When the client process tries to renew its address lease, it has already

moved into region 0.0. Its RENEW messages is first forwarded by virtual node in region

0.0 to region 1.1, the neighbor region that is closest to the destination region 2.2. The

virtual node in region 1.1 then forwards the RENEW message to region 2.2. The RACK

message sent back from the virtual node in region 2.2 is forwarded back along the route

used by the RENEW message.

Thus a choice must be made between flooding or geographical routing for forwarding the

RENEW messages. Flooding generates more messages than geographical routing.

flooded RENEW message, however, is more likely to reach the server region because th

single path picked by geographical routing may fail due to node mobility or message loss

n address lease renewal across region borders (geographical based routing

process on node 1 initially got its address allocated

in region 2.2. When the client process tries to renew its address lease, it has already

moved into region 0.0. Its RENEW messages is first forwarded by virtual node in region

ghbor region that is closest to the destination region 2.2. The

virtual node in region 1.1 then forwards the RENEW message to region 2.2. The RACK

message sent back from the virtual node in region 2.2 is forwarded back along the route

for forwarding the

RENEW messages. Flooding generates more messages than geographical routing. A

reach the server region because the

due to node mobility or message loss.

 110

A second choice is, how many hops a RENEW message is forwarded, either by flooding

or geographical routing. Using a higher hop limit increases the chance a RENEW

message reaches the intended virtual node and causes higher message overhead. Using a

lower hop limit reduces the control traffic overhead and the chance the RENEW message

can reach the intended virtual node.

5.4 Implementation Choices taken at the VNLayer
Based on the discussion so far, the VNDHCP protocol is implemented over the extended

link layer model and the basic VNLayer model. However, performance can be improved

by reducing synchronization checks based on message types. Messages are categorized

into different subtypes by at the application layer. In VNDHCP, the messages types used

in address allocation are REQUEST, OFFER, ACQUIRE and ACK messages. The other

two types of packets are used for address renewal. When a message is originated from a

client, it is marked as a Client Message or (when sent to neighbor virtual nodes by the

local virtual node) a Forwarded Client Message. When a message is originated from a

virtual node, it is a Server Message or a Forwarded Server message.

Based on the observation that all the forwarded address renewal messages, including the

Forwarded Client messages and Forwarded Server message, are not using or affecting the

VNDHCP state, we turned off state consistency checks in the VNLayer consistency

manager on these two types of messages. This optimization reduced the number of state

synchronizations without affecting either the state consistency among emulator nodes in a

region or the address allocation performance.

 111

5.5 Discussion: VNDHCP vs. Existing Address Allocation
Solutions

Compared with existing MANET address allocation solutions introduced in Chapter 2,

VNDHCP is a distributed address allocation server that has strong failover capability. The

address allocation workload is shared by the virtual nodes covering separate geographical

regions in a MANET. Because both the address allocation/renewal and inter-region

message forwarding are handled by virtual nodes, the failure or movement of individual

physical nodes won’t affect the address allocation service as long as there are backup

emulator nodes who can take over a virtual node after a leader moves to another region.

Although flooding is used for client messages such as REQUEST and ACQUIRE, the

number of hops that these messages can be forwarded is limited to 2. This generates at

most two times40 the message overhead than the case that these messages are not

forwarded at all. When RENEW messages need to be forwarded across region borders, if

flooding is used, the forwarding of RENEW messages can cause heavy message

overhead. However, when geographical based routing is used, the renewal message

overhead is proportional to the hop distance between the client and the server region. In

that case, our simulation results show that VNDHCP is scalable with increasing network

sizes.

Although duplicate address allocations are very rare in VNDHCP, due to clock skew or

state inconsistencies during region leadership changes, they can still happen. For

example, due to message losses, a Backup Server doesn’t know an address has been

40 This is because the local virtual node only rebroadcast the messages to one extra hop by sending out one
message when it can’t do the address allocation.

 112

allocated by the Server node. Before the Backup Server can synchronize its state with the

Server node’s state, it becomes the Server node of its region. It might allocate the address

to another client process. Because any given address can only be allocated from a single

virtual node and every client process needs to renew its lease for its address, address

duplication can be detected within a lease time. When there are multiple nodes using the

same address, the virtual node assigning the address acknowledges only one of the

RENEW messages. The client processes that can’t get an RACK message give up their

addresses.

VNDHCP doesn’t have the address leakage problem. When the lease on an assigned

address is not renewed by RENEW messages from the client process, the status of the

address always goes back to free.

Due to the fixed setting of regions in the VNLayer implementation and the fixed address

pool distribution among regions, network partitions and mergers won’t cause any

problems for the address allocation. When a network partition happens, a client process in

a network partition using an address allocated from a separate network partition loses the

address in one lease time. Before this happens, the virtual node in the other partition

won’t allocate the address to any other node. When two network partitions merge into

one, the client processes in both partitions can keep using their current addresses.

Therefore, the virtual node based protocol doesn’t need any special handling for network

partitions and mergers.

 113

VNDHCP also has its disadvantages. First, the virtual node layer generates extra message

overhead, although our simulation shows that this overhead is small compared to the

channel bandwidth. Second, when the local virtual node and all the neighbor virtual

nodes run out of addresses, a client may not be able to get an address even though there

might still be addresses available in the system. In this case, the REQUEST messages

may need to be flooded to more regions. Our simulation results show that when the

address pool on each virtual node is large enough, the chance that a node can’t get an

address for extended period of is very low. Third, when a region becomes empty and the

virtual node in the region is down, all the client processes who got their addresses from

the region have to give up their addresses when the renewal fails. It would be better to

back up the state of a region at the servers in neighboring regions.

The advantages over the existing solutions (for example, MANETConf, ZAL) described

in CHAPTER 2 suggest the virtual node based address allocation protocol can be better

suited for mobile ad hoc networks than all previous approaches.

 114

CHAPTER 6. Reactive Routing over the
VNLayer

Simulation results on VNDHCP show that the VNLayer approach is practical for simple

protocols with little overhead. Can protocols involving continuous activity and generating

significant overhead also be supported efficiently with the VNLayer approach? One

rigorous test of this would be adaptation of a mature MANET routing protocol to the

VNLayer approach. Can the adapted routing protocol deliver a packet, in the absence of

message losses, with a bounded delay whenever there is a viable forwarding path? To

answer this question, we created VNAODV, an adapted version of the popular reactive

routing protocol, AODV, as introduced in section 2.2.2.2 .

VNAODV uses the core AODV algorithm41. However, there are a few major differences.

1) In VNAODV, the routing entities are virtual nodes running routing processes at the

application layer. In the rest of this thesis, we call them vrouters. Vrouters are identified

by region ids, in contrast to physical nodes, which are identified by their IP addresses.

2) In addition, the routing table on each vrouter maintains routes for both physical nodes

and other vrouters.

3) At the application layer, each VNLayer emulator node implements the functions

required by the VNLayer API. These functions pass application layer messages to and

41 The simulation code of VNAODV retains the core AODV algorithms, packet types (with additional
fields) and the settings on most parameters. Therefore, the performance comparisons between AODV and
VNAODV are fair.

 115

from the link layer and allow the VNLayer to initialize, retrieve and synchronize the state

at the application layer.

Now, in a MANET supported by VNAODV, the routing job is handled by vrouters at

fixed locations in non-empty regions. The reduced number of routing entities, the

relatively stable topology among the vrouters and the state replication capability provided

by the physical nodes implementing vrouters would seem to give VNAODV an

advantage over AODV. On the other hand, as we have pointed on in section 1.5 , the basic

VNLayer model has its limitations. The small region setting leads to longer forwarding

paths and the use of local broadcast in data delivery leads to heavier message losses.

However, using the extended link layer model and the extended VNLayer model shortens

the forwarding paths and greatly reduces the message loss rate in VNAODV. Simulation

results presented in Section 8.2 show that VNAODV based on the extended link layer

and VNLayer models performs better than AODV.

This chapter first presents the basic operations of VNAODV. Then, it describes how the

implementation choices provided by the extended VNLayer model improve the

performance of VNAODV. Finally, it explains a few optimizations at the application layer

in VNAODV.

6.1 Basic Operations of VNAODV

The basic operations of VNAODV include three parts. Route Discovery refers to the

operations taken by a vrouter to find a route for a data packet. Data Message Forwarding

refers to the operations taken by vrouters to relay data packets to the destination. Route

 116

Maintenance refers to the operations taken by vrouters to detect/fix link failures and

recover lost data packets.

6.1.1 Route Discovery

As a reactive routing protocol, VNAODV doesn’t do any route discovery or maintenance

when there is no data traffic. When a data message (DMSG) is sent by a client process

and received by a vrouter42, the vrouter checks its routing table for a route. If a route is

available, the DMSG is forwarded to the next hop vrouter identified by a region id. If

there is no route, the DMSG is put in a buffer, namely, the RecvQueue. Then, the vrouter

starts a route discovery by broadcasting a route request (RREQ) message to all the other

vrouters.

An RREQ message carries the address of the destination node (destination address) and

the last known route sequence number43 for the destination (destination sequence

number). It also carries the region id of the virtual node initiating the route discovery

(the initiator address), a reverse route sequence number and a BCAST id. The last two

fields are two non-decreasing integers generated by the initiator. The reverse route

sequence number is used by other routers to update the reverse route for the initiator

node. The BCAST id is used by other routers to avoid duplicate forwarding of RREQ

messages.

42 As we have discussed in chapter 3, when the node hosting the client process is a VNLayer emulator node,
its VNLayer passes the data message up to the application layer and sends a copy of the data packet to the
channel, by broadcast, so that all the other emulator nodes in the same region can hear it.
43 The number is 0 initially, when there is no previously known route.

 117

In each region, a vrouter responds to incoming RREQ messages the same way as

standard AODV does, except that the router ids involved now are all vrouter ids, rather

than the IP addresses of physical nodes. On receiving an RREQ message, a vrouter first

uses the reverse route information from the RREQ message to update its route for the

initiator of the route discovery, if necessary44. Then, the vrouter checks to see if it has a

route for the destination with a sequence number that is no lower than the destination

sequence number carried in the RREQ message. If so, it means the vrouter has a fresh

route for the destination. The vrouter sends an RREP message back towards the initiator

of the route discovery, using the reverse route just learned.

If the vrouter has no fresh route, it re-broadcasts the RREQ message, with its TTL field

reduced by 1. The process goes on until every node in the network is reached or the TTLs

on the RREQ messages reduce to zero.

Each route discovery is uniquely identified by the initiator address and the BCAST id

carried in the RREQ messages. When a vrouter sends or forwards an RREQ message, the

two fields above are saved in a queue for a period of time so that the vrouter doesn’t

forward the RREQ for the same route discovery again.

When the flooded RREQ message is received by the destination node or a vrouter that

has a fresh route for the destination, an RREP message is generated and forwarded back

toward the initiator of the route discovery. If it is the destination node that receives the

RREQ message, the RREP message carries a destination sequence number newly

44 If there are two or more alternative routes, the route with a greater destination sequence number or a
route with the same the same destination sequence number but a smaller hop count is picked.

 118

generated by the destination node (As in AODV, it is an even number that is no less than

the destination sequence number in the RREQ message and greater than the sequence

number maintained by the destination node for itself.).

When a vrouter receives an RREP message, it updates its route entry for the destination

address, if the incoming route is fresher than its own or if the incoming route carries the

same sequence number but is shorter than its own.

Unlike AODV, an extra field is added in the RREP message header to specify the next

hop vrouter that is supposed to forward it, since the RREP messages are sent by broadcast

at each hop. To take advantage of the broadcast RREP messages, every vrouter that can

receive an RREP message uses the message to update its routing table. However, only the

vrouter specified by an RREP message as its next hop forwards the RREP message,.

The AODV expanding ring search is also implemented in VNAODV. Using the TTL field

carried in the messages, the expanding ring search puts a limit on how far the RREQ

messages will be flooded in each route discovery attempt. Each time a route discovery is

attempted by a vrouter, a wait time is set up in the route entry for the destination. The

wait time is calculated based on the TTL used for the RREQ message and the estimated

per hop delay. During the wait time, if more DMSGs are received by the vrouter, they are

just buffered in the RecvQueue. When the wait timer expires and there is no response for

the route discovery, another route discovery attempt will be triggered. This time, a greater

TTL and longer wait time are used to expand the radius of the route discovery. As in

AODV, at most 3 route discovery attempts are allowed for a DMSG.

 119

6.1.2 Data Message Forwarding

The Data Message forwarding mechanism of VNAODV is also directly adapted from

AODV. Vrouters forward each DMSG region by region toward the destination node. An

extra field is added in the DMSG header to specify the next hop vrouter to relay a

DMSG. Each time a vrouter forwards a DMSG, it extends the lifetime of the route entry

used. This way, an active route doesn’t expire unless a link failure is detected.

6.1.3 Route Maintenance

DMSGs are most frequently lost because a link fails (e.g., an empty region resulting from

the leader node leaving the region cannot forward messages). Detecting link failures

quickly is crucial to reducing DMSG delivery failures. AODV forwards DMSGs at each

forwarding hop using unicast. This permits various mechanisms to be used to detect link

failure quickly. For example, a failure can be reported when address resolution can’t

resolve the MAC address of the next hop router, the RTS/CTS mechanism can’t reserve

the channel with the next hop, or no ACK for the DMSG can be received and

retransmission attempts also failed.

In VNAODV, detecting link failures is harder because the VNLayer requires that DMSGs

be broadcast so that both Server and Backup Server nodes can hear them. None of the

previously mentioned capabilities such as address resolution, RTS/CTS and data

acknowledgement and retransmission can be used on broadcast messages. Therefore, the

route maintenance mechanism used by VNAODV is different from AODV’s.

 120

The AODV specification [40] suggests two alternatives to link layer detection. One is

periodic Hello messages to maintain a neighbor list on each router, using it to detect link

failures. The other option is “passive acknowledgments”, i.e., if a vrouter overhears its

next hop vrouter forwarding the message, it treats it as an acknowledgement.

Using Hello messages, the Hello interval determines how long it takes to detect a broken

link. To respond to link failures quickly, the Hello interval has to be set to a small value.

Doing so introduces a constant message overhead uncorrelated with the amount of data

traffic. To avoid this, we use the passive acknowledgement mechanism45 described next.

6.1.3.1 Passive Acknowledgement Mechanism

In AODV, each time a route entry is used to forward a DMSG, its lifetime is reset to 10

seconds46. In VNAODV, each time a route entry is used to forward a DMSG, we set its

lifetime to 3 times the maximum estimated per hop Round Trip Time (RTT) and mark it

as “unacked”. A “unacked” route entry is set back to “acked” by any data message

overheard from the next hop vrouter, with its lifetime set back to 10 seconds. Therefore,

the route entry expires quickly if there is no activity detected from the downstream

region. When this happens, the link to the next hop router is considered unreliable and

will be checked.

45 The simulation does this at the application layer. However, it is also possible to move the implicit
acknowledgement of local broadcast messages to the VNLayer
46 Using the parameter ACTIVE_ROUTE_TIMOUT in AODV.

 121

Thus a vrouter in VNAODV considers a DMSG that is forwarded by its next hop vrouter

within three RTT’s as a passive acknowledgement47.

At the last forwarding hop, the destination node acknowledges a DMSG with an explicit

DMSG acknowledgement so that the last hop vrouter can refresh the route used by the

DMSG. The use of explicit acknowledgements at the last hop increases the message

overhead proportionally to the data traffic.

6.1.3.2 Local Connectivity Check before Local Repair

The likelihood that a link failure reported by link layer detection reflects an actual link

failure is much higher for AODV than VNAODV, because the vrouters are far more

likely to miss a passive acknowledgment due to message collisions. Thus AODV

assumes that the apparent link failure is real and either drops the DMSG being forwarded

and sends a route error message (RERR) upstream, or else it starts a local route repair (it

does the latter when the place the link breaks is closer to the destination than to the

source of the DMSG being forwarded).

To avoid excessive route discoveries, VNAODV uses a different recovery mechanism

from AODV. If a link failure is reported by link layer detection, VNAODV either sends

an RERR message or starts a local repair. If the link failure was detected by passive

DMSG acknowledgement, VNAODV first does a Local Connectivity Check (LCC) to

find out whether the link is really broken. To do LCC, the route entry involved is marked

as “route in repair” so that incoming DMSG messages are buffered in the RecvQueue,

47 The DMSGs are forwarded by broadcast, making them audible to the previous hop vrouters.

 122

waiting for the route to be verified. An RREQ message, with TTL set to 1, is broadcast to

the neighborhood. Because LCC is not meant to find a fresher route, the RREQ message

carries the current destination sequence number of the route involved. If the next hop

vrouter is still working and the link is good, it responds to the message with an RREP

message. On receiving this message, the router restores the route entry’s status back to

“up” and delivers the DMSGs buffered in the RecvQueue. If no such message can be

heard within 2 RTTs, the vrouter considers the link broken and proceeds with one of the

two AODV options.

In response to the one hop RREQ, other vrouters in the neighborhood can also provide

alternative routes. This can reduce the service interruption when the next hop vrouter is

indeed down. However, to prevent using alternative routes that are actually using the

current next hop vrouter as a downstream router, upon receiving RREP messages from

the neighborhood, a vrouter that is doing LCC only accepts alternative routes that are

either fresher or no longer than the current one.

6.2 Preventing and Detecting Routing Loops

One important design objective of routing protocols is to provide loop free forwarding

paths. In AODV, routing loops rarely48 happen because the routes are tagged with

sequence numbers to ensure freshness and each physical node creates and maintains its

own routing tables independently.

48 In our simulations, loops never happen in AODV because no AODV crashes. Therefore, the sequence
number maintained by a router for a destination is never stale.

 123

In VNAODV, routing loops are more likely. The root cause is that in VNAODV, routers

are virtual nodes, each of which is emulated by a number of physical nodes. When the

leadership in a virtual node switches and the new leader’s state was inconsistent with the

state of the old leader, the new leader could accept bad routes.. The following subsections

explain three cases in which loops can happen in VNAODV and present solutions to

them.

6.2.1 Restarted Regions

Figure 6-1 illustrates the first case in which routing loops can happen when a virtual node

is booted up by a newly arrived mobile node. A forwarding path is present between node

S and node D along region 0.1�1.1�2.1�3.1. When the last node (node B) in region

2.1 leaves, the virtual node in 2.1 is down. Then node C enters the region and boots up

the region again. At this moment, node C doesn’t know the latest sequence number used

by the vrouter in region 2.1. Therefore, it may accept an RREP message from region 1.049

which uses region 1.1 as the next hop toward node D. When the vrouter in region 2.1

receives a DMSG from region 1.1, it forwards the DMSG to region 1.0. The vrouter in

region 1.0 in turn forwards the DMSG back to region 1.1. A loop forms. The key problem

here is that after the vrouter in region 2.1 went down, the vrouter in region 1.1 still

forwards packets to it.

49 When region 1.0 gets an RREQ message with a sequence number lower than its current sequence
number, it sends out a RREP message if it has a route.

 124

To solve this problem, when the vrouter for a region is restarted by a newly arrived node ,

the vrouter sends out a special RERR message right after it initializes its state. Receiving

this special RERR message, neighbor vrouters tear down all local routes that are using

the sender of the RERR message as the next hop vrouter. This way, no DMSGs will be

delivered to the newly booted vrouter until it learns a valid route.

6.2.2 Out of Sync Nodes

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B

A C

Bad RREP

Good RREP

E

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B

A C

Bad RREP

Good RREP

E

Figure 6-1 A routing loop in VNAODV when a region is booted

Figure 6-2 A routing loop in VNAODV when an out-of-sync node takes over a region

 125

When a non-leader node loses track of the latest sequence number used by the vrouter in

its region due to message losses, its state is out of sync. If the leader node leaves the

region before the out-of-sync non-leader’s state could be synchronized with the leader’s

state, and subsequently the non-leader node takes over the region, forwarding loops can

form. Figure 6-2 shows an example. Node B was the leader of region 2.1 and node C’s

state was out of sync. When B leaves the region and C takes over, node C’s sequence

number for the route toward destination D could be smaller than the latest route sequence

number used by node B. At some point later, during a route discovery, if an RREP

message is received from Region 1.0, an out-of-date route could be accepted by the

vrouter in region 2.1 because the RREP message has a greater sequence number. (A

correct RREP message from the destination node D could fix the issue right away.

However, sometimes the destination node D’s RREP message is lost in the channel.)

When the vrouter in region 1.1 sends a DMSG to region 2.1, the vrouter in region 2.1

forwards the DMSG to region 1.0. The vrouter in region 1.0 forwards the DMSGs back to

region 1.1. A loop forms.

 126

Figure 6-3 shows another example. Here, node C used to be a Backup Server of region

2.1 while node B was the Server node. During a route discovery launched from the

source node S for destination node D, the RREP message returned from the destination

node D was received by the Server node B but was missed by node C due to collision.

When the upstream Server node A forwards the RREP message it receives from Server

node B, the RREP message is accepted by Backup Server node C as a viable route toward

D through A. Before this problem could be fixed through state synchronization, Server

node B leaves and node C takes over region 2.1. A loop forms when DMSGs are

forwarded to region 2.1 from region 1.1.

1.1 2.1

0.1 2.1 1.1 3.1

D S

C

A

B

RREP

RREP RREP

RREP

RREQ

RREQ

RREQ

bad route taken

0.1 3.1

D S

C

A

Route Discovery

DMSG forwarding when
node C takes over region 2.1

Figure 6-3 Routing loops in VNAODV when a Backup node learns a wrong route

 127

The root cause of the two types of loops here is that a physical node whose state is out of

sync could take over a region. As introduced in section 4.7.4 with the extended VNLayer

model, the leader election can make sure that an emulator node with synchronized state is

more likely to be chosen as region leader than one without synchronized state. However,

this only makes loop formation less likely, it doesn’t eliminate it. Therefore, we use

additional loop prevention and loop detection methods in VNAODV.

In order to reduce the likelihood of loops, when a vrouter receives an RREQ message and

is about to respond with an RREP message, it compares the next hop vrouter in its route

with the sender of the RREQ message. If they are the same, it doesn’t send the RREP

message. This prevents 1 hop loops.

Loop detection is also used to detect and break loops quickly. First, when a vrouter learns

that a DMSG is to be forwarded back to the vrouter where it comes from, the vrouter

drops the DMSG and sends a RERR message upstream to tear down the loop. Second,

when a DMSG’s TTL field reaches 1 and still hasn’t reached its destination, it indicates

that something might be wrong with the route. When this happens, a vrouter drops the

DMSG and sends an RERR message upstream to report the error.

As an alternative50 to our last loop detection technique, a packet’s expected hop count

toward the destination could also be used to detect routing loops. The expected hopcount

at each forwarding router should decrease monotonically as it gets closer and closer to the

destination. Instead of decreasing the TTL field as it forwards a DMSG, a vrouter can fill

50 This alternative is not tested in our simulations.

 128

the TTL field of a DMSG with the hop count from the route it has for the destination.

When a DMSG is received, if the local hopcount is greater than the TTL carried by the

incoming DMSG, a possible loop is detected.

6.3 Taking Advantage of VNLayer optimizations

The purpose of the extended link layer model and extended VNLayer model is to

improve the performance of VNLayer based applications. The last section described how

an implementation choice (considering state synchronization status in leader election) at

the VNLayer can help improve the performance of VNAODV. This section gives more

examples of VNAODV benefits from the implementation choices in the extended

models.

6.3.1 Selective State Synchronization and State Consistency
Checks

6.3.1.1 Hard State vs. Soft State

As an implementation option, a virtual node can choose to keep only part of the

application state (that is, the hard state) synchronized. This reduces the size of the state

synchronization packets. This requires a design choice for the VNAODV implementer,

who needs to determine which part of the application state is hard state and which part is

soft state. On a vrouter, the most important state is the routing table, which contains

routes that are up, down or under repair51. In addition, each route entry has a large

number of fields and data structures (for example, a list of pre-cursor nodes is maintained

for each route entry). The correctness of some state information only affects the

51 The corresponding flags in AODV are RTF_UP, RTF_DOWN, RTF_IN_REPAIR.

 129

performance, rather than the correctness of the routing application. For example, the last

known hop count for a route that is down helps make the expanding ring search more

effective in the next route discovery.

In the simulations reported here, for each route entry, the destination id, hop count,

sequence number and next hop router id are considered hard state, because these values

directly affect the correctness of route computations. On the other hand, since dead routes

are only kept in the routing table for reference, they are considered soft state. In addition,

the reverse route sequence number and the BCAST id are considered hard state because

the physical node setting these fields for the vrouter in a region can change due to node

mobility52. Incorrectness on these reverse route sequence numbers can lead to routing

loops. Outdated BCAST id’s can lead to router discovery failures.

6.3.1.2 State Consistency Checks

The extended VNLayer model provides for specifying which messages a Backup Server

must use to detect state inconsistencies. This reduces number of state synchronizations.

The simulations reported here specify state consistency checks on “Server Messages”

only, i.e., those messages that are originated from a vrouter. These include the RREQ,

RREP and RERR messages sent by a vrouter. These messages directly affect the routing

table on vrouters. Therefore, they are considered more relevant to the application state

than DMSGs, which only uses the routing tables on vrouters.

52 These two pieces of information could get lost when a virtual node is down. Hence, when a vrouter is
booted by an incoming node, the route discovery it launches can fail if the BCAST id it uses happens to
match with a BCAST id recently used by the region. The Powerful Emulator option, discussed later, can
alleviate this problem.

 130

Using the two optimizations in this section provides a weaker guarantee on state

consistency among emulator nodes. We can only guarantee each time a vrouter sends an

RREQ, RREP or RERR message, if any Backup Server didn’t prepare the same message

in its sending queue, a state synchronization will be initiated to synchronize the hard state

of all the Backup Servers.

6.3.2 Shortening Forwarding Paths

In the basic VNLayer Model, a virtual node only communicates with its immediate

neighbor virtual nodes, even though it may be able to reach many additional virtual

nodes. In our square region setting, a virtual node is therefore guaranteed to be able to

reach every single virtual node emulator in its 8 immediate neighbor regions. While this

setup ensures reliable communications between virtual nodes, it also requires that each

pair of consecutive vrouters on a route created by a VNLayer based routing protocol must

be immediate neighbors.

In addition, in the basic VNLayer Model, a client process can exchange messages only

with its local virtual node for services. Therefore, at the first hop, a DMSG from a client

process always has to be relayed by the local vrouter at the first hop. At the last

forwarding hop, a DMSG has to be delivered to the destination node by the local vrouter

in the destination node’s region, even if a vrouter that is earlier in the route can reach the

destination physical node.

These communication rules of the basic VNLayer model increase the length of the

forwarding paths. Long forwarding paths lead to heavier DMSG forwarding traffic

 131

overhead, longer forwarding delay, more frequent route discoveries and a higher chance

for delivery failures due to broken links.

The extended VNLayer model relaxes the communication rules in the basic VNLayer

model. It allows any pair of virtual nodes to communicate with each other and allows a

virtual node to send to packets to any client process it can reach. This makes the use of

longer links between vrouters and client processes possible In this section, we explain

how this can be used to improve the performance of VNAODV.

6.3.2.1 Direct Receipt (DR)

When a vrouter sends a DMSG addressed to a destination that is in an immediate

neighbor region, the destination node can receive the packet without the help of its local

virtual node. The extended VNLayer model provides an implementation choice that

allows a client process to receive messages from any virtual node. This option is called

Direct Receipt (DR). A client process using DR in VNAODV can receive a message sent

either by its local vrouter or by a vrouter in one of its neighbor regions. This way, a

vrouter can deliver a DMSG directly to its final destination even if the destination is in a

neighbor region.

As illustrated in Figure 6-4, with DR, the vrouter in region 2.1 delivers a DMSG directly

to its destination D. To make DR work, at the VNLayer, we don’t allow a virtual node to

receive a message sent to a client process in its region from another virtual node. Hence,

the vrouter in region 3.1 doesn’t do anything with the DMSG. DR can reduce the length

 132

of forwarding paths created by VNAODV by 1 by skipping the vrouter in the final

destination’s region.

6.3.2.1.1 Direct Route Report from Destination (DRRD)

With the DR option, since vrouters don’t relay DMSGs from other regions to local client

processes anymore, their route entries for the destination node may expire even though

there are still DMSGs forwarded to the destination node. When this happens, a vrouter

can’t respond to RREQ messages regarding a node in its region even though some

neighbor vrouters may still know the route. This can slow down route discoveries.

To eliminate the need for a vrouter to respond to RREQ messages for nodes in its region,

we allow the destination nodes themselves to respond to RREQ messages heard from

immediate neighbor regions directly. In addition, vrouters update their routing tables

using RREP messages heard from destination nodes in their immediate neighbor regions.

.

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B A C E

1 hop saved
by DR

x x

ER may save another hop but not the
packet sending by node C

Figure 6-4 Optimizations in VNAODV that shorten forwarding paths

 133

6.3.2.2 Early Receiving (ER)

When communication rules are relaxed so that clients can communicate with non-local

vrouters, another optimization is to allow a client process to receive any DMSG for it is

the destination, as soon as it can hear it. This means a DMSG can be received by the

destination even before the vrouters on the forwarding path are done forwarding it. This

optimization, called Early Receiving (ER), doesn’t reduce the actual number of times a

DMSG is relayed. However, it reduces the delivery latency. Figure 6-4 also shows the

effect of ER.

ER allows a destination client process to continue receiving DMSGs for a while even

after it leaves its original region. This gives a last hop vrouter more time to react before

the destination client process leaves its radio range53.

6.3.2.3 Long Links (LL)

The relaxation of communication rules allowing a virtual node to talk to any other virtual

node within its radio range provides another VNAODV optimization called Long Links

(LL).

With LL, the vrouters in VNAODV can work the same way as AODV routers. They can

use any incoming RREP message they hear to update their routing tables and pick any

vrouter within their reach as next hop vrouters toward the destination. The forwarding

paths created by VNAODV can therefore be much shorter. Figure 6-5 shows an example

in which when LL is used, a forwarding hop can be saved. Here, S is the source client

53 The application layer optimization “route correction by destination nodes” in Section 6.4.3 takes
advantage of this.

 134

process. A, B, C and E are the vrouters in region 1.0, 1.1, 2.1 and 3.1, respectively. D is

the destination client process. Because the vrouter in region 1.0 can reach the vrouter in

region 2.1 directly, the vrouter in region 1.1 can be skipped. The forwarding path length

is shortened from 4 to 3.

However, this improvement in efficiency comes at the cost of degraded link stability.

With LL, the guarantee of reliable transmission between two consecutive vrouters on a

forwarding path no longer holds even in the absence of message losses. For example, if

the next hop picked by a vrouter is not in an immediate neighbor region, it is possible that

only a subset of emulator nodes in the next hop region can hear the messages sent by the

vrouter. In the next hop region, when the node emulating the leader moves out of range or

the leader switches to an emulator node that is out of range, the link between the two

vrouters will break. When this happens, a local route repair or even a network route

discovery has to be done to fix the route.

There is an interesting problem that arises with the LL option. This is illustrated in Figure

6-6. In the example, vrouter B can’t reach client process D directly. In response to a

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B A C E

1 hop saved
by LL

1 hop saved
by DR

x x x x

Figure 6-5 One forwarding hop saved by the Long Links option

 135

RREQ message, server node E sends an RREP message regarding D, which is in its own

region. Vrouter B accepts this message and thinks it is just one hop away from D54. Later

on, when it tries to forward DMSGs directly to node D, it can’t. The reason this problem

happens is that with LL, a good link to vrouter in the destination node’s region may not

be a good link to the destination node itself. To avoid this problem with the LL option,

vrouters don’t report routes to clients in their own regions. Instead, the clients use DRRD

to respond directly to RREQ messages.

6.3.3 Directed Broadcast

To improve the reliability of data transmission in VNAODV, messages are sent by

Directed Broadcast when the next hop is the final destination or when the address of the

leader of the next hop region is known. Otherwise, local broadcast is used, together with

passive acknowledgement and LCC for route maintenance.

54 Here, we assume the RREP message originated from the destination node is lost.

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B A C E

Figure 6-6 With LL option, a vrouter should not report routes for local destination nodes.

The DMSG can’t
reach node D.

RREP from server node E

 136

When local broadcast has to be used to send a DMSG the sender can acquire the address

of the next hop region’s leader from the first passive acknowledgment (i.e., the forwarded

DMSG). Because of this, Directed Broadcast and link layer detection can be used to send

most DMSGs and to detect most broken links passive DMSG acknowledgement and LCC

are rarely used at intermediate forwarding hops. Moreover, explicit DMSG

acknowledgement at the last hop is not needed at all. Therefore, the use of Directed

Broadcast makes data transmissions more reliable and route maintenance more efficient.

6.3.4 Powerful Emulator Option

Both the basic and extended VNLayer models require a client process to get service from

its local virtual node only. This may lead to an extra forwarding hop in DMSG

forwarding. This is because no matter whether a client process resides on a Server node

or not, a message sent from the client process has to be copied by the VNLayer to its

region so that all the other emulator nodes can get a copy of it.

Section 3.4.11 described Powerful Emulator, an implementation choice that allows an

emulator node to act alone as the server for a client process that it hosts. When this option

is used by VNAODV, an emulator node of a vrouter hosting a client process can act as an

independent router, using the VNAODV state maintained by the server process on the

virtual node. When an emulator node receives a DMSG from a client process running on

the same node, if the destination is in its own region, it delivers the DMSG directly to the

destination client process; otherwise, it relays the DMSG to a vrouter in a different

region. Therefore, a client process on an emulator node doesn’t have to rely on the local

leader for services. At the first hop, the emulator node doesn’t copy the DMSG to other

 137

emulator nodes in the same region because they don’t need to process the DMSG. As

shown in Figure 6-7, with the Powerful Emulator option used, in addition to hops saved

by other options, another forwarding hop at the beginning of the forwarding path for a

DMSG can be saved because the source physical node S (an emulator node) sends its

DMSG directly to the next hop vrouter C. The forwarding path is reduced from 3 hops to

2 hops.

6.3.4.1 Basic Operations

As explained in section 4.10.1.1 , when the Powerful Emulator option is used, the

VNLayer passes a locally generated Client message from directly to the application layer

function DCMH. Therefore, to use the Powerful Emulator option, at the application layer,

the VNAODV server implements the function DCMH55, which does routing for client

process on an emulator node56 independently, using and updating the routing table it

maintains.

55 handleClientPacket() in our code.
56 As opposed to a Pure Client node, this emulator node is the physical node that hosts the client process.

Figure 6-7 One forwarding hop saved by the Powerful Emulator Option in VNLayer

0.1 2.1

0.0

1.1

1.0 2.0

3.1

3.0

D S

B A C E

1 hop saved
by LL

1 hop saved
by DR in
section 0

Another hop saved
by the Powerful
Emulator option

x x x x

x

x

 138

The DCMH function in VNAODV operates as follows. If DCMH learns that the routing

table on the emulator node has a route for a locally generated DMSG, then it relays the

DMSG directly to the next hop vrouter or the destination. Otherwise, the DMSG will be

buffered in RecvQueue on the emulator node and route discoveries will be attempted.

The DMSGs buffered in the RecvQueue by the Powerful Emulator Option are marked

differently. They will be sent directly to the link layer, without using the sending queue in

the VNLayer. If no route can be discovered, the DMSG will eventually be dropped.

The DCMH function processes routing messages and updates the routing table on an

emulator node the same way as a regular VNAODV server process does, except that the

messages sent out by the DCMH function go directly to the link layer.

If a client process is hosted by a pure client node, it can’t take advantage of the Powerful

Emulator option. As before, the client process just inserts the VNLayer header to DMSGs

and broadcast them to its region.

Shortening the forwarding paths is not the only benefit of using the Powerful Emulator

option in VNAODV. When Powerful Emulator option is not used, in a route discovery,

the BCAST id and reverse route sequence number carried by the RREQ messages are set

by the first hop vrouter, which is a virtual node. When a virtual node is taken over by an

out of sync Backup node or booted by an incoming node, the first hop vrouter may lose

track of the BCAST id and sequence number used by the region. When the Powerful

Emulator option is used, in the route discoveries initiated by an emulator node for client

processes on it, the BCAST id and reverse route sequence number carried by the RREQ

 139

messages can be uniquely set up by the emulator node. Leadership switching in the

region of the source node won’t affect the correctness of the BCAST id and reverse route

sequence number used by route discoveries launched by a “Powerful” emulator node for

a client process on it.

6.3.4.2 Additional Considerations

There are a few additional considerations that must be taken into account with the

Powerful Emulator option when it is used in VNAODV.

First, when an emulator node enters a different region, by our VNLayer implementation,

the state on the node must be cleaned up and synchronized with the leader of the new

region. Without the Powerful Emulator option, a client process entering a new region

simply lets the vrouter in the new region handle its DMSGs. The vrouter in the new

region usually has a route for the destination (through overheard RREP messages).

However, when the Powerful Emulator option is used, an emulator node hosting a client

process handles the routing for the client process. Each time such an emulator node enters

a new region, it loses its routing table and has to wait a while57 before it can determine its

leader status and gets its routing table synchronized with the vrouter of the new region.

During this period of time, if there are DMSGs to send for the client process, the

emulator node has to do a network-wide route discovery. This increases the number of

network-wide route discoveries.

57 About 1 second.

 140

To alleviate this problem, we let the DCMH function on an emulator node do a 1-hop

route discovery each time it enters a new region while relaying DMSGs for a client

process on it. The intuition behind this optimization is that when an emulator node

relaying DMSGs enters a new region, it is very likely that a vrouter within its one hop

neighborhood still has a viable route for the destination. This optimization greatly

reduced the number of unnecessary network-wide route discoveries.

Second, with our original VNLayer implementation, each time an emulator node enters a

new region, it should discard all the packets it has in its RecvQueue at the application

layer because it no longer works for the old region. When the Powerful Emulator option

is turned on, when an emulator node enters a new region, the DMSGs it buffers in its

RecvQueue for a client process on it should not be discarded, because this emulator node

is the only node who handles these packets. Therefore, when the Powerful Emulator

option is used, we let an emulator node keep the DMSGs in its RecvQueue that are sent

by a client process on it.

Third, when the Powerful Emulator option is used, the state maintained by the Server

node in a region may interfere with the state maintained by a Backup Server node serving

a client process on it independently. The reason is that such a Backup Server node can

create routes that are not synchronized with the Server node in the region. For example,

when a Backup Server node discovers a route for a client process on it, due to message

losses, the Server node in the same region might still have an old route. When the Server

node sends out a SYN-ACK message in response to a state synchronization request, the

Backup Server will be forced to change its good route to the bad route the Server node

 141

has. To solve this problem, we flag a route that is discovered by a Backup Server node for

a client process on it a “client route”. As long as a “client route” is still up, messages

heard from the Server node of the region can’t overwrite it.

In another case, when a Backup Server node serving a client process on it determines that

a route is no longer good58, it sets the route to “down” and starts a route discovery.

However, if the Server node in the region thinks the route is up, messages from the

Server node may force the Backup Server node to set the route back to “up”. To solve this

problem, when a Backup Server set a “client route” to “down”, it increases its sequence

number by 3. (The standard AODV increases the sequence number of a route by 1 when

it is flagged as “down”.) In addition, we require that in order for a route learned from the

Server node to turn a route on a Backup Server node from “down” to “up”, the route must

have a sequence number that is no less than the local route’s sequence number minus 1.

This way, only a fresh route from the Server node can restore a “client route” that is set to

“down” by a Backup Server node.

As discussed before, the Powerful Emulator option provided by the VNLayer actually

breaks the VNLayer abstraction because it requires an emulator node to act differently

depending on whether a DMSG message comes from a client process on the node itself.

It requires the application layer to implement another state machine handling local client

messages and leads to tricky complications that have to be dealt with carefully at the

application layer. The solutions to the complications further diversify the behavior of

58 This can result from its own route maintenance.

 142

emulator nodes in the same region. One might want to use this option only if doing so can

greatly improve the efficiency of a VNLayer based application.

6.4 Optimizations at the Application Layer

The focus of this simulation study is to find out how to improve the performance of

VNLayer based protocols using general solutions at the VNLayer. In addition to

optimizations at the VNLayer, we also tried a number of application layer optimizations

for VNAODV.

6.4.1 Local Recovery of DMSGs

In AODV, when a link failure is detected through link layer detection59, the packet for

which the link failed is re-buffered and can be re-transmitted once the route is repaired. In

VNAODV, when local broadcast is used to deliver a DMSG60, link layer detection can’t

be used. Instead, passive DMSG acknowledgement is used to detect broken links.

Because of this, when a DMSG is sent by local broadcast, the sender can’t recover it.

This section describes how to add such a mechanism.

We use a Local Recovery (LR) mechanism to recover and retransmit DMSGs suspected

of being lost when local broadcast is used to transmit a DMSG. With LR, the source

client process tags each DMSG with a sequence number. Each time a DMSG is broadcast

to a downstream vrouter61, a copy of the DMSG is saved in a buffer called Backlog.

When a passive DMSG acknowledgement is received, a vrouter checks its Backlog for

59 AODV use unicast at the link layer to deliver DMSGs. A router keeps a copy of the packet that is just
sent until it is acknowledged. Without an acknowledgement, the link is deemed broken.
60 For example, when the address of next hop region’s leader is unknown or promiscuous mode is not
supported
61 At the last hop, because unicast is used, LR is not needed when the next hop is the destination node.

 143

DMSGs from the same session, using the source address, destination address and

sequence number in each DMSG. The matching DMSG will be dropped from the

Backlog. The DMSGs in the Backlog that have lower sequence numbers are the DMSGs

not yet acknowledged. Retransmissions might be necessary for them.

The DMSG having a sequence number exactly 1 less than the sequence number of the

passive DMSG acknowledgement will be resent. It is removed from the Backlog and re-

buffered in the RecvQueue. The next time the router checks the RecvQueue, if the route

for the DMSG’s destination is “up”, the re-buffered DMSG will be re-transmitted.

To avoid excessive re-transmissions, any other DMSG in the Backlog for the same

session that has a lower sequence number than the sequence number of the passive

DMSG acknowledgement is dropped.

In addition, when a link is suspected of being broken because of a timeout on DMSG

acknowledgements, there will be a Local Connectivity Check. Before this is done, if

there is any DMSG for the same destination in the Backlog, the one with the smallest

sequence number is removed from the Backlog and re-buffered in RecvQueue. This

DMSG, which must be unacknowledged, will be re-transmitted once the route is restored.

With subsequent passive DMSG acknowledgements, the DMSGs left in the Backlog will

be either dropped or re-buffered. If a session terminates, DMSGs left in the Backlog will

eventually be timed out and dropped.

 144

Re-buffered DMSGs are marked differently so that they won’t be put in the Backlog

again when they are re-transmitted from the RecvQueue. This means a DMSG can be

transmitted to the next hop at most twice. Also, to reduce routing traffic, re-buffered

DMSGs in the RecvQueue won’t trigger any route discoveries. If a re-buffered DMSG in

the RecvQueue can’t be forwarded, the DMSG will eventually be timed out and dropped.

Figure 6-8 shows an example of how Local Recovery works. In steps 1 and 2, packets 1

and 2 have been received successfully but passive acknowledgements have not been

heard by vrouter A. Vrouter A sends out packet 3 in step 2. Therefore, at the end of step 2,

vrouter A has 3 packets in its Backlog, packet 1, 2 and 3. In step 3, packet 4 is sent out

but lost (e. g. due to collision). Vrouter A also received a passive acknowledgement for

packet 3. It drops packet 1 and 3 from its Backlog and re-buffers packet 2. In step 4,

packet 2 is retransmitted without being put into the Backlog and a new packet 5 is also

transmitted and put into the Backlog. In step 5, acknowledgement for packet 5 is

received. Vrouter drops packet 5 from its Backlog and re-buffers packet 4. In step 6,

packet 4 is re-transmitted. The retransmission in step 4 is unnecessary and the one in step

6 is necessary.

 145

Figure 6-8 Example on How Local DMSG Recovery Works

A B

2 1

2 1

Backlog:
(1)

1

C

A B

3 2

3 2 1

Backlog:

2

C

A B

4 3

3 4 2 1

Backlog:

3

C

A B

5 2

4

Backlog:

2

C

A B

6 5

4

Backlog:

5

C

(2)

(3)

(4)

(5)

Ack for packet 1 missing

Ack for packet 2 missing

dropped
rebuffered

matched

Packet 2 retransmitted, but not
put into backlog again

Packet 4 lost

5

5

Re-buffered matched

A B

4 6

6

Backlog:

6

C

(6)

Packet 4 retransmitted

matched

 146

Due to long transmission delay or out of sequence DMSG forwarding, sometimes the

passive acknowledgement for a DMSG can come after it has already been re-buffered. In

order to further reduce unnecessary DMSG retransmissions, when a passive DMSG

acknowledgement matches with a re-buffered DMSG, the DMSG will be dropped from

the buffer.

By doing Local Recovery, when the transmission failure rate is low, the mechanism can

recover most packets dropped due to link failures. However, Local Recovery does

introduce extra message forwarding overhead because some DMSGs may be wrongly

considered lost. When the channel becomes congested, excessive re-buffering and re-

transmission can make the congestion worse. To solve this problem, a minimum interval

between consecutive DMSG re-buffers is used to put an upper bound on the frequency of

retransmissions from a vrouter.

6.4.2 State Inferencing

To reduce the impact of not doing a state consistency check on all the messages, in

VNAODV, we can allow the Backup Server nodes to use messages they hear from the

local Server node to infer its state. We call this option State Inferring (SI).

With the SI option, when a Backup Server receives a server message from the same

region, the message must be from its leader. If the message is an RREQ, the Backup

Server can correct its BCAST id and the current route sequence number using values

from the RREQ message. If the message is an RREP, the emulator node can correct its

 147

sequence number, hop count and route entry flag62 of the corresponding route in its

routing table. If the message is an RERR, the corresponding route entry can be deleted. If

the message is a DMSG, it can be used to correct route entry flags and the next hop used

by the local vrouter for a destination.

The benefit of using SI is that it can patch the most relevant parts of a Backup Server’s

state piece by piece without resorting to explicit state synchronizations. The MSG-SYNC

is costly compared to SI because each MSG-SYNC synchronizes the entire state of a

Backup Server even when most parts of the state are still in sync. When a route on a

Backup Server node is patched by SI, the messages generated by the node regarding the

patched route are going to be the same as the messages generated by the vrouter in the

future. Therefore, SI can reduce the costly MSG-SYNCs caused by state inconsistencies.

Reducing the number of consistency checks and synchronizations allows state

inconsistencies. However, with the SI option, when there is a state inconsistency on a

Backup Server route for a destination, each time the Server node sends out a DMSG

toward the destination or a routing message regarding the destination, part of the

inconsistency can be fixed. When the route in question is up and active on the local

vrouter, eventually, the inconsistent route will be synchronized with the Server node’s

route.

62 The status of the route must be RTF_UP.

 148

6.4.3 Route Correction by Destination

Frequently, a destination node moves into a new region while a router is still delivering

messages to its previous region. With the Early Receiving (ER) mechanism introduced in

section 6.1.2 , the destination node can continue receiving DMSGs for a while. However,

if the destination node keeps moving, eventually it will move out of the radio range of the

last hop vrouter and the link will be broken. Then, a local repair might be needed. A

simple application layer optimization can reduce the need for local repairs. When a node

receives a DMSG destined for it and the DMSG is at its last forwarding hop but the

message is delivered to a wrong region, the destination node sends out an unsolicited

RREP message without specifying the next hop vrouter. Receiving this RREP message,

vrouters in the neighborhood update their routes for the destination, without forwarding

the message.

 149

CHAPTER 7. Proactive Routing over the
VNLayer

In order to verify that a wireline based routing protocol can be adapted to MANET using

the VNLayer, we implemented VNRIP. At the application layer, VNRIP is a simplified

version of RIP [14], a simple distance vector routing protocol suitable for small networks.

RIP operates as follows. Each RIP router collects the number of subnets connected to it

and builds its initial routing table. Then, each RIP router broadcast its routing table by a

Response message to its neighbors. Routers use incoming Response messages to update

their routing tables. The sender of a Response message that has the shortest route toward

a subnet is picked as the next hop. Routers send their updated routing tables to their

neighbors periodically. In the absence of message losses and router failures, eventually,

every router will have a route to every subnet in the network. In addition to periodical

routing table updates, RIP also allows a router to explicitly solicit routing tables from all

of its neighbors or one of its neighbors using a Request message.

Clearly, the RIP protocol has to be modified to operate in a MANET situation because on

vrouters, there is no directly connected subnet configured. Instead, each vrouter is

directly connected with a set of client process in its region.

Because VNRIP is a proactive routing protocol, virtual node emulated routers (or

vrouters, using the terminology introduced in CHAPTER 6) pre-calculate routes for all

 150

the destinations in a network using route update messages flooded by other vrouters.

Therefore, even when there is no data traffic at all, there is a constant routing overhead in

a network running VNRIP. Therefore, the efficiency of VNRIP will be low when the data

traffic is light. Implementing RIP over the VNLayer instead of on all MANET nodes,

reduces the number of entities that are involved in the flooding of route updates and

improves the reliability of the links between neighbor routers. Since the routing table on

each vrouter contains route entries for each destination node, the state size on each

vrouter can be large when the network contains a large number of physical nodes. To

achieve reasonable performance, the protocol has to be carefully designed to reduce the

state synchronization overhead and routing overhead. In this chapter, we present our

implementation of VNRIP over the extended link layer model (with message losses) and

extended VNLayer model63.

7.1 Message Types

VNRIP uses three types of control messages. In addition to RIP’s Request Messages and

Response messages, it also uses Hello messages.

As described in CHAPTER 3, Hello message is actually a VNLayer message type. The

message is broadcast by a client process to let the local vrouter and vrouters in the

immediate neighbor regions know that they can reach the client process directly. From

the VNLayer header of a Hello message, a vrouter can determine a client process’s node

63 We didn’t optimize VNRIP using all the implementation choices provided by the extended VNLayer
model.

 151

id and the region it is in. The Hello message is not needed in RIP because directly

connected subnets are manually configured on RIP routers.

Each Response message carries a set of route entries known to a vrouter based on its

routing table. Each route entry in a Response message contains the address of a client

process (rather than a subnet), the next hop used and number of hops needed by the

vrouter to reach the client process. Here, the next hop is advertised in the Response

message so that the next hop vrouter will not use the route entry to update its route for the

same destination. In RIP, split horizon is used to prevent route loops. This can be done

because in a wireline based network, Response Messages can be sent individually to a

router’s neighbors. In VNRIP, loop prevention is done differently64 because every route

on a vrouter is learnt from the same wireless interface card.

Request messages are used by a vrouter to look for routes from its immediate neighbor

vrouters for a destination node. This can happen when a route entry expires or when a

vrouter is just booted in an empty region. A Request message can be used by a vrouter to

look for a route toward a single destination or solicit complete routing table updates from

neighbor vrouters.

7.2 Routing Table

The routing table of a VNRIP vrouter includes a route for each client process in a

MANET. Each route entry in a vrouter’s routing table contains the following fields.

o Destination id: The address of a client process.

64 It is done by attaching next hops with each route entry advertised. A vrouter rejects routes that uses itself
as the next hop.

 152

o Route flag: This Boolean flag indicates whether a route is valid or invalid.

o Hop count: The number of hops needed by a vrouter to forward a DMSG to a

destination client process. If the hop count is 1, it means the destination is in the

same region as the vrouter’s. If the hop count is 2, it means the destination is in an

immediate neighbor region. If the hop count is greater than or equal to 16, the

route is treated as invalid.

o Next hop: The next hop (a vrouter) used by the current vrouter to forward packets

to the destination. If the destination is in the local region, the next hop is the id of

the local vrouter.

o Changed: This is a Boolean flag indicating whether a route entry has recently

been changed or not. VNRIP vrouters use this flag to decide whether the entry

needs to be included in a Response message.

o Lifetime: This field stores the expiration time of a route entry. With each

incoming message, a vrouter checks each route entry’s lifetime. If a route entry

expires, the entry is set to invalid. And the route entry is flagged as “changed”.

7.3 Routing Updates

Vrouters create and update route entries through four kinds of routing updates: Hello

messages, Triggered Partial Updates, Complete Updates and On-demand Updates.

Triggered Partial Updates and Complete Updates are based on the corresponding

mechanisms in RIP. On receiving a Response message, a vrouter checks its routing table

to see if any route can be updated with a better route from the message. On a vrouter,

when a Response message for a destination is received from the next hop vrouter

 153

currently used by the vrouter for the destination, the vrouter always updates the hop count

and refreshes the lifetime of the route. When a route entry’s hop count or next hop is

changed, the route entry is flagged as “changed”.

7.3.1 Hello Messages from Every Physical Node

Every second, every client process broadcasts a Hello message. Hello messages are used

by vrouters to create or update route entries for directly connected client processes. In

addition, each time a client process enters a new region, it also sends out a Hello message

immediately. This is to ensure the vrouters in the neighborhood65 can be informed about

the region change quickly. This type of routing update is an essential difference between

RIP and VNRIP. In RIP, routers have permanently attached networks, but in VNRIP,

vrouters don’t have permanently attached networks.

7.3.2 Triggered Partial Update

Each time a route entry is flagged as “changed” on a vrouter, the vrouter schedules a

Triggered Partial Update (TPU) within a Triggered Update Interval (TUI). To reduce the

number of routing updates, a vrouter doesn’t schedule more TPUs until the scheduled

TPU is sent. A TPU message carries all the “changed” routes on a vrouter. Once a TPU

message is sent, all the routes on a vrouter are set back to “unchanged”.

When the triggering event of a TPU is a Response message from another vrouter, the TUI

is set to 1 second. When a TPU is triggered by a route change caused by an incoming

65 A Hello message can be used by the vrouters in a client process’s own region and immediate neighbor
regions to update their routes to the client process.

 154

Hello message, the TUI is set to a smaller value (0.5 second) so that the region change of

a client process can propagate faster.

7.3.3 On-Demand Update

When a vrouter has just booted up in a region, it broadcasts a Request message. In

response, neighbor vrouters set routes that are using the vrouter as next hop to “invalid”

to prevent loop formation. In addition, the neighbor vrouters also send out On-Demand

Updates containing their entire routing tables so the newly booted vrouter can construct

its routing table.

When a vrouter receives a DMSG but there is no valid route for the destination, it

broadcasts a Request message just for the destination of the DMSG. In response,

neighbor vrouters that have routes toward the destination send back On-Demand Updates,

carrying only the route asked for by the vrouter.

7.3.4 Complete Update

Because routes expire, complete routing table updates are necessary even when the

network topology is static and there is no topology change. However, sending complete

Updates frequently is costly because each complete Update contains the whole routing

table a vrouter has. In order to reduce the routing overhead, a relatively long Complete

Update Interval66 (CUI) is used to control the minimum interval between two consecutive

complete updates on each vrouter. During this interval, some potentially reachable

destinations may be unreachable. When a vrouter doesn’t have a route toward a

66 60 seconds in our implementation.

 155

destination and none of its neighbor vrouters know a route to the destination, the vrouter

might have to wait up to a CUI to receive a complete routing update from a remote

vrouter before it can restore the route for the destination.

7.4 Data Message Forwarding

When a DMSG is received by a vrouter, the vrouter checks its routing table for a valid

route. If there is a route available, the DMSG is forwarded to the next hop region by local

broadcast. If there is no route available, the DMSG is buffered. As introduced above, a

Request message is sent out by the vrouter to its neighbor vrouters. When a route is

learned for the destination, the DMSG is moved to a second buffer. The vrouter delays

the DMSGs moved into the second buffer a little while before they are forwarded using

the routing table. The reason for this is to give the vrouter time to pick the best route

based on the responses to the Request message. This way of handling undeliverable

DMSGs is different from RIP, which simply drops the messages.

7.5 Route Maintenance

As in VNAODV, route maintenance is crucial to VNRIP’s performance. (RIP doesn’t do

this because links between routers are assumed to be reliable most of the time.) Due to

the use of local broadcast67 on DMSG forwarding, the leading cause of end to end DMSG

delivery failures in VNRIP is message collision. As in VNAODV, a passive DMSG

acknowledgement mechanism is used in VNRIP to detect link failures. Each time a

vrouter forwards a DMSG, the lifetime associated with the route entry used is shortened.

67 This is the only option we used in our simulation for VNRIP.

 156

If there is no passive DMSG acknowledgement from the next hop vrouter received, the

route entry will expire soon.

At the last forwarding hop, upon receiving a DMSG, a destination client process sends

back a Hello message as an explicit DMSG acknowledgement, so that the route entry

used by the last hop vrouter can be refreshed.

When a link failure is detected on an entry for a route, the route is flagged as invalid.

Within a Triggered Update Interval, the invalid route will be announced to neighbor

vrouters so that they stop using the vrouter as next hop for the destination. Before this,

when there are more DMSGs arriving for the same destination, the vrouter buffers the

incoming DMSG and sends out a Request message. Each time a route entry is turned

from “invalid” to “valid” by an incoming Response message, the DMSG buffer is

checked. DMSGs in the buffer that can use the updated route will be sent out. If the route

can’t be restored for the buffered DMSGs, they eventually time out and are dropped.

7.6 Loop Detection and Prevention

Loops can happen in VNRIP due to router and link failures and out of sync router state.

In addition to the loop prevention and detection techniques introduced in section 6.2

VNRIP uses the following methods to detect loops.

First, if a vrouter learns from its routing table that the next hop vrouter of a DMSG is the

vrouter that sent the DMSG, a loop is detected. The vrouter buffers the DMSG, sets the

current route for the destination to “invalid” and informs its neighbors about the route

 157

change right away68 with a Response message. The vrouter also broadcasts a Request

message to neighboring regions, asking for routes toward the destination.

Second, each DMSG carries a field recording the number of hops the message has

traversed, if this hopcount value reaches 16 (the value for infinity), it is very likely the

DMSG has been trapped in a loop. When such a DMSG is received, the message is

dropped. As above, the vrouter also sets the route affected to “invalid”, informs its

neighbors about the change and broadcasts a Request message for alternative routes.

7.7 Optimizations based on VNLayer Implementation

VNAODV optimizations such as Direct Receipt and Early Receiving can also used by

VNRIP at the last forwarding hop to shorten the forwarding paths and allow destination

nodes to continue receiving DMSGs even after leaving its original region. In addition, as

in VNAODV, Backup Server nodes to check for state inconsistencies on routing

messages only. However, options such as reducing the state size by synchronizing hard

state only, using Long Links to shorten forwarding paths, using Directed Broadcast for

DMSG transmission, and route correction by the destination node are not implemented in

VNRIP.

The following two subsections explain two cross layer optimizations of VNRIP based on

the implementation of the Hello Message Generator and NRSM module in the Packet

Classifier of our VNLayer implementation.

68 As opposed to waiting for a Triggered Update Interval.

 158

7.7.1 Hello Messages Sent and Managed by the VNLayer

To reduce the traffic overhead of Hello messages, on an emulator node, a client process

can send Hello messages using the Hello Message Generator provided by the VNLayer69.

As explained in section 4.5.2 , each time a message is sent from the VNLayer, the Hello

Message Generator delays the next Hello message by another Hello Interval. With every

incoming message with a VNLayer header (including the Hello messages) the VNLayer

reports a Hello event to the application layer, which is used by VNRIP to update its

routing table.

Compared with sending periodic Hello messages by the application layer itself, using the

VNLayer to handle Hello messages reduces the Hello traffic overhead and allows a

vrouter to use overheard messages to update its routing table. However, doing so requires

a client process to have access to the Hello Message Generator at the VNLayer. This

breaks the abstraction.

7.7.2 Neighbor Region Activeness

As presented in section 4.5.2 , by observing the messages that are sent out by virtual

nodes, a virtual node keeps track of the active state of the virtual nodes in its immediate

neighbor regions. Using this feature, in VNRIP, a vrouter treats a route as broken if the

downstream region is inactive.

When a vrouter receives a DMSG, if it has a valid route for the DMSG, it checks the

VNLayer state to see if the next hop virtual node is active. If not, the vrouter buffers the

69On a pure client process, this option can’t be used.

 159

DMSG, set the route entry used to “invalid” and sends out a Request message to try to fix

the route. If the next hop virtual node is active, the vrouter forwards the DMSG and sets

the timer used to determine the active state of the next hop virtual node to 1.5 times the

maximum expected one hop Round Trip Time (RTT). This way, the neighbor virtual

nodes that are used by a vrouter to relay DMSGs are set to inactive faster. This is a cross-

layer optimization because it allows the application layer to modify the VNLayer settings.

7.8 Summary

In addition to the optimizations explained in the last section, state inferencing at the

application layer, as introduced in section 6.4.2 can also be used by VNRIP so that Back

Servers can use Server messages to patch their state.

This simple version of RIP protocol was implemented very quickly70. As we’ll see in the

next chapter, although VNRIP generates heavy routing traffic and synchronization traffic,

it provides reasonable delivery performance that is not much worse than VNAODV under

similar settings. With the optimizations applied to VNAODV added to VNRIP, it is likely

to perform much better. This verifies the intuition that the VNLayer approach can be used

to adapt wireline protocols to MANET easily.

70 The coding and debugging only took about 3 weeks.

 160

CHAPTER 8. Performance Evaluation on
VNLayer based Address Allocation and

MANET Routing

So far, I have discussed our implementation and optimizations on VNLayer based

Address Allocation and MANET routing. In this chapter, I present the simulation results

on VNDHCP, VNAODV and VNRIP. As we are going to see, VNAODV performs very

well. This proved that the VNLayer approach can be used to adapt wireline protocols to

MANET. Routing applications pose greater challenge to the VNLayer approach. From

the simulation results, we are going see how the optimizations on the VNLayer

implementation based on the extended VNLayer model improved the performance of

VNAODV.

8.1 Performance Evaluation on VNDHCP

8.1.1 Simulation Settings

For VNDHCP, we ran our simulations using ns-2.31 on a Linux machine with an Intel

Pentium 4 3.20GHz CPU and 512M bytes memory. In ns-2, the wireless propagation

model is set to “freespace”. Two network settings were used: a small network of 40 to

120 nodes that contains 16 87.5m×87.5m regions in a 350m×350m and a large network

of 160 nodes that contains 64 87.5m×87.5m regions in a 700m×700m area. All the

mobile nodes are set to emulate the VNLayer. The packet receiving range is set to 250

 161

meters to make sure that a message sent from a region can reach every node in the

immediate neighboring regions.

In each region, the address pool size is set to 30 to reduce the chance that a server runs

out of addresses. The region leaders are set to send out a Heartbeat message every

second. The lease time is set to 400 seconds. Each simulation ran for 40000 seconds, or

100 lease times. For each data point, the simulations are repeated 5 times with different

node mobility traces. Error bars are created with confidence intervals with confidence

level set to 95%.

Table 8-1 Settings for 5 Motion Speed Modes

 slow medium slow medium fast fast

Minimum speed (m/s) 0.73 1.46 2.92 5.84

Maximum speed (m/s) 2.92 5.84 11.68 23.36

Minimum pause time (s) 400 200 100 50

Maximum pause time (s) 4000 2000 1000 500

Average cross time (s) 48 24 12 6

We evaluated the performance of the system with the nodes moving at various speeds.

Using the random waypoint model, ns-2 mobility traces were generated for four speed

modes: slow, medium slow, medium fast and fast. The settings used to generate the

mobility traces for each speed mode are given in Table 8-1.

Slower speed means that it takes a node longer to travel across a region so that it is less

likely to be far away from its server when it needs to renew its lease. For example, for

speed mode “slow”, the 2200 second average pause time is 5.5 times of the lease time.

 162

The average time for a moving node to travel across a region is 48 seconds. This means

that during one lease period, a moving node on average may travel across 8 regions. For

the speed mode “fast”, the average pause times and crossing times are 8 times shorter.

8.1.2 Simulation Time

We first compared the simulation speed of VNE and VNSim with the small network

setting. Table 8-2 lists the simulation time of VNE and VNSim for various total numbers

of nodes. The simulation time increase of VNSim is roughly proportional to the square of

the total number of nodes because each node needs to handle messages from all of its

neighbors.

With 40 nodes, VNSim runs around 158 times faster than VNE. However, for the set of

simulation we did, VNSim doesn’t scale as well as VNE. This may be because of the

more accurate simulation of the link layer, especially message collisions. With 80 nodes

and 120 nodes in the network, VNSim runs about 82 times and 60 times faster than VNE,

respectively.

Table 8-2 Simulation Speed of VNE and VNSim

 40 nodes 80 nodes 120 nodes

VNE simulation time 6.32 hours 13.07 hours 22.09 hours

VNSim simulation time 2.4 minutes 9.53 minutes 22.23 minutes

8.1.3 VNLayer message overhead

The first question we want to answer through the simulations is whether a VNLayer

based system is practical. The main concern here is whether there will be excessive

 163

control overhead, including the leader election overhead and state synchronization

overhead. Because SYN-ACK messages can be big71, large number of synchronizations

can cause heavy traffic. In addition, during state synchronizations, Backup Server nodes

that are out of sync ignore all incoming messages and stop acting as Backup Servers. This

hurts the failover capability of the virtual nodes.

With the large network setting and speed mode “slow” and “fast”, we did simulations

with various renewal message forwarding methods (flooding and geographical routing)

and forwarding hop limits (1 to 8). More details on the simulations can be found in the

next section. In the worst case, the case with speed mode “fast” and 8 hop flooding used

for RENEW messages, the virtual node layer generates about 482 messages per region

per lease time. Over 75% of the messages are the Heartbeat messages sent by region

leaders. The numbers of LeaderRequest and LeaderReply messages are on the order of 24

and 50 per region per lease time, respectively. There are more LeaderReply messages

since multiple nodes may respond to the same LeaderRequest message. The average

numbers of SYN and SYN-ACK messages are both about 20 per region per lease time.

These numbers almost stay constant with different forwarding hop limits and forwarding

methods. This suggests that the VNLayer message overhead is not affected much by how

the RENEW messages are forwarded.

From the simulation results, it’s estimated that the packet overhead generated by the

VNLayer from a single region ranges between 200 bps and 450 bps. Because a node in a

71 Here, the SYN-ACK message carries the application state for the 30 addresses managed by each virtual
node.

 164

region can hear messages from up to 9 regions, the combined channel bandwidth

overhead for any region can range between 2Kbps and 4.5Kbps. Because the 802.11

radio channel’s bandwidth is now typically 54Mbps, the virtual node layer uses less than

0.1% of the bandwidth. The system is therefore practical because it won’t affect the

normal operation of other protocols on the mobile nodes.

8.1.4 Different Renewal Methods

The next problem is how to engineer the protocol at the application layer to get the best

performance. The renewal process is critical to the performance of VNDHCP because

when a renewal fails, a client has to stop using the current address and ongoing sessions

may have to be disconnected. We used the number of addresses allocated to a client

during the simulations to measure the effectiveness of the renewal process. The more

addresses that the client has during a given period, the more times a session may be

disrupted.

With the large network setting, we run simulations with different forwarding hop limits

for RENEW messages and forwarding methods, under speed mode “fast” and “slow”.

The hop limit ranges from 1 to 8. With hop limit 1, RENEW messages are not forwarded,

at all. With hop limit 8, RENEW messages can be forwarded by up to 7 regions,

including the local region of the client processes.

 165

8.1.4.1 Fast Moving Case

Figure 8-1 Allocation performance with different renewal methods, large network, fast
moving case

With speed mode “fast”, the average number of allocations per node ranges from 27 to 95

during the 40000 second simulations, as shown in Figure 8-1. Re-allocations do happen a

lot in this case due to the fast node motion speed. With hop limit 1, forwarding for

renewal messages are not allowed, almost every single renewal fails and the client

process needs a re-allocation.

For the flooding case, with larger hop limits on how many hops a RENEW message can

be forwarded, each client process needs fewer and fewer re-allocations. However, this

0

2000

4000

6000

8000

10000

12000

14000

16000

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8

av
er

ag
e

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

re
gi

on

al
lo

ca
tio

ns
 p

er
 c

lie
nt

forwarding hop limit

allocations per client (flooding)
allocations per client (geo-routing)
message overhead (flooding)
message overhead (geo-routing)

 166

comes at the cost of rapid increasing message overhead. The curve for the number of

allocations per client flattens as the hop limit approaches 8.

Figure 8-2 Renewal overhead with different renewal methods, large network, fast moving
case

For the geographical routing case, the allocations per client and message overhead per

region started the same as the flooding case when the hop limit is 1 and 2. This is because

using geographical routing on the RENEW message doesn’t reduce the message overhead

in either case. After that, the number of allocations per client decreases faster with greater

hop limits. In addition, using geographical routing generates much less message overhead

because only one forwarding path is used for every RENEW message. With hop limit 8,

the geographical routing case generates less than one sixth of the message overhead of

the corresponding flooding case.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

10

20

30

40

50

60

70

1 2 4 6 8

de
la

y
pe

r
re

ne
w

al
 (

se
co

nd
s)

nu
m

be
r o

f m
es

sa
ge

s
pe

r
re

ne
w

al

forwarding hop limit

msgs per renewal (flooding)
msgs per renewal (geo-routing)
delay per renewal (flooding)
delay per renewal (geo-routing)

 167

Figure 8-2 shows the renewal message overhead and renewal delay with different

renewal methods and different hop limits. Using flooding, with hop limit 1, the renewal is

limited to the local region and a successful renewal takes exactly 2 messages, one

RENEW message and one RACK message. With greater hop limits, it takes each renewal

more time and messages to finish. With hop limit 8, a renewal takes around 55 messages,

showing that most of the regions are involved in the flooding of the RENEW messages.

With geographical routing, the renewal message overhead is the same as the flooding

case with hop limit 1 and 2. But the average renewal message overhead increases much

more slowly than the flooding case. Even in the case with hop limit 8, a renewal on

average takes less than 10 messages.

Figure 8-3 shows the distribution of the time percentages that each client doesn’t have an

address for. The value at each data point is the percentage of clients that don’t have an

address for more than a certain percentage of the simulation time. When flooding is used

for the RENEW messages, the average addressless time percentages of the clients

decrease with higher hop limits. With hop limit 8, only 4 percent of the clients don’t have

an address for more than 0.2% of the simulation time. The geographical routing cases

show same trends, we only show the hop limit 8 case here, which performs better than the

4 hop flooding case and worse than the 6 hop flooding case.

 168

Figure 8-3 Distribution of addressless times with different renewal methods, large
network, fast moving case

8.1.4.2 Slow Moving Case

With speed mode “slow”, we repeated the simulations. As shown in Figure 8-4, in the

flooding case, the average number of allocations per client turns flat can even go up a

little with greater hop limits after hop limit 4. This means that when nodes are moving

slowly, the flooding of RENEW messages by more hops, instead of helping; can hurt the

allocation performance with more message collisions and congestions.

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pe
rc

en
ta

ge
 o

f n
od

es

addressless time percentage greater than or equal to (%)

flooding, hop limit 1
flooding, hop limit 2
flooding, hop limit 4
flooding, hop limit 6
flooding, hop limit 8
geo-routing, hop limit 8

flooding, hop limit 8

flooding, hop limit 6

flooding, hop limit 4

flooding, hop limit 1

flooding, hop limit 2

geo-routing, hop limit 8

 169

Figure 8-4 Allocation performance with different renewal methods, large network, slow
moving case

In the geographical routing case, the number of re-allocations per client gets lower and

lower with increasing forwarding hop limits while the message overhead increases much

slower than the flooding case. Here, the geographical routing case performs much better

than the flooding case.

In the slow moving case, the curves in Figure 8-5 show similar trends as those in Figure

8-2. The difference is that the average renewal message overhead only reaches 28 even in

the flooding case. This is because with slower node motion speeds, a renewal message on

average needs to travel through fewer hops.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

5

10

15

20

25

30

1 2 4 6 8

av
er

ag
e

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

re
gi

on

al
lo

ca
tio

ns
 p

er
 c

lie
nt

forwarding hop limit

allocations per client (flooding)
allocations per client (geo-routing)
message overhead (flooding)
message overhead (geo-routing)

 170

Figure 8-5 Renewal overhead with different renewal methods, large network, slow moving case

Figure 8-6 Distribution of addressless times with different renewal methods, large
network size, slow moving case

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0

5

10

15

20

25

30

35

1 2 4 6 8

de
la

y
pe

r
re

ne
w

al
 (

se
co

nd
s)

nu
m

be
r o

f m
es

sa
ge

s
pe

r
re

ne
w

al

forwarding hop limit

msgs per renewal (flooding)
msgs per renewal (geo-routing)
delay per renewal (flooding)
delay per renewal (geo-routing)

0

10

20

30

40

50

60

70

80

90

100

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

pe
rc

en
ta

ge
 o

f n
od

es

addressless time percentage greater than or equal to (%)

flooding, hop limit 1
flooding, hop limit 2
flooding, hop limit 4
flooding, hop limit 6
flooding, hop limit 8
geo-routing, hop limit 8

 171

Figure 8-6 shows that with slow node motion speeds, the average addressless percentages

we get here are better than those we get with the fast moving case, where the nodes move

about 8 times faster. In the flooding case, the average addressless time percentage gets

worse with greater hop limits. This again demonstrates that when nodes move slowly,

flooding the RENEW messages by more hops can hurt the allocation performance. Here,

the 8 hop geographical routing case performs better than all the flooding cases.

8.1.5 Different Node Densities

Now the question is what happens with more mobile nodes in the system. Using the small

network setting and speed modes from “slow” to “fast”, we run simulations with 40, 60,

80, 100 and 120 nodes, with geographical routing used for the RENEW messages and the

forwarding hop limit for renewal messages set to 5.

From Figure 8-7, we can first see that with the small network setting, the allocation

performance is much better than what the system gets with the large network setting,

because with large networks, the renewal messages has to travel through more forwarding

hops and are more susceptible to message loss and routing failure.

 172

Figure 8-7 Allocation performance with different node densities and different node
motion rates when geographical routing used for address renewals

More importantly, the figure shows that with higher node densities, the allocations per

client decreases quickly at first and then gets stable or even increases slowly. At the

beginning, with higher node densities, the probability that a region is empty and the

virtual node in it is down drops very quickly and renewals are less likely to fail. Then,

when the node density becomes too high, the benefit above will be offset by the

increasing message overhead. This suggests that the system performs the best with a node

density that is neither too low nor too high.

In addition, with increasing node densities, the curves for different motion speed modes

get closer and closer to each other. This indicates that with higher node densities, the

system is less and less sensitive to node motion speeds, because the virtual nodes are

0

2

4

6

8

10

12

14

16

40 60 80 100 120
total number of nodes

al
lo

ca
tio

ns
 p

er
 c

lie
nt

0

500

1000

1500

2000

2500

3000

3500

4000

4500

av
er

ag
e

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

re
gi

on

allocations per client (slow)
allocations per client (medium slow)
allocation per client (medium fast)
allocations per client (fast)
message overhead (slow)
message overhead (medium slow)
message overhead (medium fast)
message overhead (fast)

 173

more likely to function most of the time even when nodes are moving fast. This helps the

clients keep their addresses longer.

In addition, with increasing node densities, the message overhead increases linearly

because each node introduces the same amount of application layer burden to the system.

Together with the curves for allocations per client, we can see with the network densities

investigated here, we can see the performance of VNDHCP scales well with increasing

network densities.

Figure 8-8 Virtual node layer message overhead with different node densities

Figure 8-8 shows the VNLayer message overhead with increasing node densities for the

speed mode “fast”. The number of Heartbeat messages stays constant since the number of

region leaders doesn’t vary much for the set of node densities used in the simulation. The

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

40 60 80 100 120
total number of nodes

ot
he

r
V

N
La

ye
r

m
es

sa
g

es
 p

er
 r

e
gi

on

20000

25000

30000

35000

40000

45000

h
ea

rt
be

at
 m

e
ss

ag
es

 p
er

 r
eg

io
n

LeaderRequest messages
LeaderReply messages
SYN-REQUEST messages
SYN-ACK messages
Heartbeat messages

 174

average number of LeaderRequest, SYN_REQ and SYN_ACK messages per region

increase almost linearly because each node sends out roughly the same number of such

messages. The number of LeaderReply message increases much faster because we allow

non-leaders in a region to send LeaderReply messages to reject leadership requests too.

With higher node densities, more and more nodes may respond to the same

LeaderRequest message. To solve this problem, in our research on VNLayer based

routing application, we only let the leader node send LeaderReply messages.

In these simulations, we didn’t investigate the impact of the use of the LeaderLeft

messages. The Heartbeat interval is set to 1 second. The periodic Heartbeat messages

compose the greatest portion of VNLayer message overhead. With LeaderLeft message

used, the performance VNDHCP is expected to be better because fewer Heartbeats are

needed and the leadership switching can take place much faster.

8.1.6 Summary

In this section, I summarize on what is learned through the simulation studies on

VNLayer based MANET address allocation.

8.1.6.1 On the Performance of VNSim

Simulation results in this case study showed that VNSim runs much faster than VNE, and

is suitable for a network of up to a few hundred mobile nodes. VNSim can be used to

validate any VNLayer-based application.

 175

8.1.6.2 On the VNLayer

The simulation results on VNDHCP show that the VNLayer overhead is quite small. This

proves that VNLayer based systems are practical. One reason for the low VNLayer

overhead is the VNLayer implementation choice we take at the VNLayer. We choose to

let Backup Servers to check only Server Messages from the Server node to look for state

inconsistencies. The number of state synchronizations due to message losses (MSG-

SYNCs) is reduced. However, the main reason why the VNLayer overhead is small is

because low application layer overhead due to the long address lease time (400 seconds).

As we are going to see in the simulation results for VNLayer based MANET routing, the

use of VNLayer can cause heavy control traffic overhead.

Simulation results were obtained for a wide range of configurations, from a small 16

region network (350 meters by 350 meters) to a large 64 region network (700 meters by

700 meters) and for a variety of mobile node speeds, from a slow walk to vehicle speed.

VNDHCP is proven to work well with all the simulation settings. For over 99.9% of the

time; most client processes have addresses allocated. The overlay network is quite stable

when the density of mobile nodes is high enough to make virtual node failure unlikely.

Therefore, the main reason for the good performance is that failover capability provided

by the VNLayer. Without the replicated state maintained by Backup Server in each

region, each time a virtual node is down, all the client processes that got their addresses

from the region would have to request for a new address.

 176

As any cluster-based solutions, the use of the VNLayer approach makes VNDHCP scale

well with greater node densities72 because the number of entities that have to be involved

in the address allocation is bounded by the number of regions in a network. As shown in

section 8.1.5 , a VNLayer based application would perform the best with a MANET that

is dense enough so that the virtual nodes can stay up longer.

As discussed earlier in section 5.5 , VNDHCP doesn’t have to handle network partitions

and mergers in a MANET due to the fixed region settings. In addition, the geographical

location based region settings also allows VNDHCP to use the light weight geographical

base routing to forward address renewal messages. Finally, with most programming

handled in the VNLayer, the coding for the VNDHCP server and client are made easier.

All these benefits demonstrate that the VNLayer approach can be used to adapt a wireline

protocol like DHCP to the MANET environment.

On the other hand, the use of the VNLayer approach does bring a few complications.

First, as discussed in section 5.2.3 , special care has to be taken to avoid duplicate address

allocations in VNDHCP. The loss of state due to virtual node resets is a general problem

to any VNLayer based applications. This means the application layer code has to be

modified. Second, in VNLayer based applications, since servers are virtual nodes

emulated by multiple physical nodes, state inconsistencies can lead to complicated

situations such as address duplication in VNDHCP. In a lossy channel, it is hard and

72 With or without using VNLayer, we can expect an MANET address allocation protocol to perform worse
when the geographical size of the network increases because data forwarding will be less reliable.

 177

costly (in terms of VNLayer overhead) to keep states on emulator nodes synchronized

most of the time.

8.1.6.3 On the Implementation Choices in VNDHCP

The simulation results also show that flooding hurts the scalability of protocols and

should be avoided. As opposed to using flooding, the use of a simple geographical based

routing to forward RENEW message greatly improved the address allocation

performance.

Many address renewals still fail when empty next hop regions are picked to forward

RENEW messages. To improve the success ratio of renewal attempts, a more reliable

routing algorithm, rather than the simple geographical routing, shall be used. For

example, VNAODV can be used to work together with VNDHCP.

8.2 Performance Evaluation on VNAODV and VNRIP

In this chapter, I present performance evaluations results on the two VNLayer based

routing protocols, VNAODV and VNRIP. The performance results we got with the

AODV code provided by the ns2 package is used as a benchmark in performance

evaluations.

First, I present the simulation results we got with our initial implementation of VNAODV

and our implementation of VNRIP. For this version of VNAODV, the major

optimizations using the capabilities provided by the extended VNLayer model are not

used. The application layer optimizations (for example, the local recovery option) for

VNAODV are not used either. This section serves to present the base line performance of

 178

VNAODV and VNRIP and to verify the major causes of performance issues with

VNLayer based routing protocols.

In the three sections that follow, I present the effect of the three major optimizations we

did to the VNAODV using the features provided by the extended VNLayer model. As we

are going to see, with state synchronizations overhead reduced, forwarding path

shortened and reliability of data transmission improved, VNAODV can outperform

AODV due to the reduce control overhead and improved route stability.

A major strength of the VNLayer approach is that virtual node can maintain replicated

state. On one hand, this make the virtual node able to maintain persistent state and be

fault tolerant. On the other hand, doing so requires extra control overhead. We use one

section to go to depth on how state replication affects the performance of VNLayer based

routing protocols. As we are going to see, strict state synchronization is not necessary for

VNLayer based MANET routing. In addition, Message Sync is not as important as

Motion Sync.

In addition to the three major optimizations that greatly improved the performance of

VNAODV, there are other VNLayer optimizations and application layer optimizations.

We investigate the effect of these optimizations carefully with two separate sections.

To further validate the simulation results, we did more simulations with various node

motion rates and a larger network size. The simulation results will be presented at the end

of the chapter.

 179

In our simulations, a 700m x 700m network is divided into 64 87.5m x 87.5m square

regions. The network contains 60 to 240 mobile nodes. The radio range on each mobile

node is set to 250 meters so that a message sent out by a node in a region can be heard by

any other node in the same region and the immediate neighbor regions. The 802.11

channel bandwidth is set to 11Mbps, with RTS-CTS disabled.

Node mobility patterns are generated by CanuMobiSim-1.3.4 using the Random

Waypoint Model. Two motion modes, slow mode and fast mode are used. With the slow

motion mode, the minimum pause time is set to 100 seconds and maximum pause time is

set to 200 seconds. The minimum motion rate is set to 0.73 m/s and maximum speed is

set to 2.92 m/s (average speed 1.825m/s). With the fast motion mode, pause times are set

the same way as in the fast motion mode. The minimum motion rate is set to 5.84 m/s and

maximum speed is set to 23.36 m/s (average speed 17.52m/s).

Various number of Constant Bit Rate (CBR) sessions are created between random pairs

of mobile nodes. No two sessions share either the source node or the destination node.

Each session is set to transmit ten 64 byte UDP messages per second and to last

throughout the simulation time. Each simulation lasts 450 seconds. The trace for the first

50 seconds in each simulation is skipped to allow the routing to stabilize before

measurements are started. We repeated each simulation 10 times for each data point

collected. Error bars are generated with confidence level of 95%.

 180

AODV uses 30 for the maximum RREQ TTL in ring search. In our implementation, we

set the maximum TTL to 10 in the expanding ring searches in both standard AODV and

VNAODV.

We evaluated the delivery performance of the protocols simulated using the following

metrics: packet delivery fraction, path length of successful end-to-end deliveries, end-to-

end delivery delay and network wide traffic overhead for various types of overheads, in

terms of bits per second. For most simulations, we set the network size to 240 nodes and

the node mobility to fast motion mode, making it a dense and highly dynamic network.

8.2.1 VNRIP and Base Line Implementation of VNAODV

In this section, I present the simulation result we got with an initial implementation of

VNAODV (for the rest of this chapter, we make modifications based on this

implementation) and our implementation of VNRIP, as described in Chapter 7. Here,

among the VNLayer optimizations, both VNAODV and VNRIP use selective state

synchronization and selective state consistency checks in order to bring down the state

synchronization overhead and get reasonable performance. The optimization that allows a

client process to receive DMSGs directly from an immediate neighbor region (DR) and

the optimization that allows a client process to continue receive a DMSG even if the

packet is not destined for its region (ER) are also used by both VNAODV and VNRIP. As

explained in section 6.3.2 , these two simple optimizations can save a few forwarding

hops at the end of a forwarding path. However, optimizations such as Long Links,

Directed Broadcast and Powerful Emulator are not used by these two implementations.

 181

This version of VNAODV doesn’t use any of the application layer optimizations

introduced in section 6.4 , either.

8.2.1.1 Packet Delivery Fraction (PDF)

Figure 8-9 shows the PDF of successful end-to-end DMSG deliveries for AODV,

VNAODV and VNRIP, with different number of CBR sessions created among the

physical nodes. The plot shows that both VNAODV and VNRIP can outperform AODV

when the number of CBR sessions is low. However, they don’t scale as well as AODV,

whose delivery ratio stays roughly the same with more sessions.

Figure 8-9 Packet Delivery Fraction of AODV, VNAODV and VNRIP

VNRIP performs worse than VNAODV. The most important reason is that VNRIP is a

proactive protocol. Its routing overhead is proportional to the network size rather than the

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: Base Line Performance of

VNAODV and VNRIP (700x700, 240 nodes, 11Mbps, fast

motion)

AODV

VNAODV

VNRIP

 182

data traffic load. With a dense network like the one we use, even with small number of

sessions, its routing overhead is significant already. Another reason is that VNRIP is not

equipped with some of the optimizations VNAODV has. For example, unicast based

delivery of DMSGs at the last hop is not used for VNRIP. Therefore, the destination

client process has to send route update messages to the last hop vrouter as explicit DMSG

acknowledgements.

8.2.1.2 Forwarding Path Length and Forwarding Latency

Figure 8-10 shows the length of forwarding paths created by AODV, VNRIP and

VNAODV that are used by successful DMSG deliveries, with various number of CBR

sessions. We can see, VNAODV and VNRIP both create much longer forwarding paths

than AODV. This is because the feature in the extended VNLayer model that allows any

pair of virtual nodes and any client processes to communicate is not used. Long

forwarding paths leads to long forwarding delays and more frequent delivery failures.

Figure 8-11 verifies that the forwarding latencies of VNAODV and VNRIP are both

much longer than AODV’s. Here, we can see in terms of the length of forwarding paths

and packet delivery latency, VNAODV and VNRIP performs roughly the same.

In Figure 8-11, we can also see that AODV’s delivery latency actually improves with

greater number of CBR sessions. One reason for this is that with more sessions, more

routers launch local repair attempts that can help build reverse paths toward these routers.

Some of these routers can be the destinations of other CBR sessions. Due to the saved

route discoveries, the average delivery latency is shortened with larger number of CBR

sessions.

 183

Figure 8-10 Length of Forwarding Paths Created by AODV, VNRIP and VNAODV

Figure 8-11 End to End DMSG Delivery Latency of AODV, VNAODV and VNRIP

0

1

2

3

4

5

6

1 5 10 15 20 25

F
o

rw
a

rd
in

g
 P

a
th

 L
e

n
g

th

Number of CBR Sessions

Forwarding Path Length: Base Line Performance of VNAODV

and VNRIP (700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNRIP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: Base Line Performance of VNAODV and

VNRIP (700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNRIP

 184

In addition to the longer forwarding paths created by VNAODV, there are two other

reasons that the end-to-end delivery latencies of the VNAODV are longer than AODV’s.

First, the VNLayer delays the incoming messages for a short period of time so that they

can be sorted using their time stamps. This inserts a delay at every forwarding hop.

Second, at every forwarding hop except the last one, a DMSG is broadcast to the wireless

channel. To reduce collisions, every broadcast message is delayed by a random period of

time before it is sent out to the channel. This “jitter sending” technique inserts another

piece of delay at each hop.

8.2.1.3 Traffic Overhead

The more channel bandwidth a protocol consumes, the more message losses can happen

due to collisions and congestions. It would also affect the operation of other protocols in

the network. Therefore, a good MANET protocol should create as little traffic as possible

to get a task done.

The AODV traffic overhead consists of two parts, the data forwarding traffic and routing

traffic73. The routing traffic is the only control traffic in AODV. In VNAODV, there are 4

types of traffic generated: data forwarding traffic, routing traffic, state synchronization

traffic and leader election traffic. The last three types of traffic compose the control traffic

in VNAODV. Because the state synchronization traffic and leader election traffic are

generated by the VNLayer, we consider them VNLayer traffic overhead.

73 Here, we didn’t measure the link layer overhead of AODV, which can be caused by address resolution
(ARP) and MAC layer data packet acknowledgements and re-transmissions. Therefore, the total traffic here
does not reflect the actual bandwidth use accurately.

 185

Figure 8-12 Routing Traffic Overheads of AODV, VNAODV and VNRIP

Figure 8-13 Control Traffic Overheads of AODV, VNAODV and VNRIP

Figure 8-14 Total Traffic Overheads of AODV, VNAODV and VNRIP

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

RoutingOverhead: Base Line Performance of VNAODV and

VNRIP(700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNRIP

0

50000

100000

150000

200000

250000

300000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: Base Line Performance of

VNAODV and VNRIP(700x700, 240 nodes, 11Mbps, fast

motion)
AODV

VNAODV

VNRIP

0

200000

400000

600000

800000

1000000

1200000

1400000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Total Overhead: Base Line Performance of VNAODV and

VNRIP(700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNRIP

 186

Figure 8-12,

Figure 8-13 and Figure 8-14 compare the routing, control and total traffic overhead

generated by AODV, VNAODV and VNRIP with various number of CBR sessions.

From Figure 8-12, we can see the routing overhead of VNRIP is the heaviest due to its

proactive nature. Rather than staying constant, the routing overhead of VNRIP goes up

with more CBR sessions. This is because with more CBR sessions, the number of

triggered routing updates and on-demand routing updates74 increases. Among the three

protocols, VNAODV generates the least routing traffic. VNAODV outperforms VNRIP

because it is an on-demand routing protocol. As expected, it also outperforms AODV due

to the reduced number of entities that have to be involved in the routing operations.

The efficiency of VNAODV’s routing operations doesn’t come free. The VNLayer

creates extra control overhead, including the leader election overhead and state

synchronization overhead. Figure 8-13 shows that the total control traffic overhead of

VNAODV is roughly the same as AODV’s control traffic, which is equal to the routing

74 These routing updates are generated as result of DMSG delivery failures.

0

50000

100000

150000

200000

250000

300000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: Base Line Performance of

VNAODV and VNRIP(700x700, 240 nodes, 11Mbps, fast

motion)
AODV

VNAODV

VNRIP

 187

overhead. This suggests that the use of VNLayer approach can reduce the total control

overhead of a MANET routing protocol, if we can further reduce the leader election

overhead and state synchronization overhead. Since the leader election traffic overhead is

a small and constant value75 independent of other operations of the VNLayer and the

operations of specific applications, reducing the state synchronization traffic is important

to further reduce the control traffic overhead.

The total traffic generated by each protocol includes the controls traffic and data forward

traffic. Figure 8-14 shows that AODV generates the least total network traffic. It

outperforms VNAODV because it generates less data forwarding traffic. This is first

because VNAODV creates longer forwarding paths than the ones created by AODV.

Another reason is that a VNLayer header is attached to every DMSG forwarded by

VNAODV. This adds an extra 20 bytes of traffic per packet. Because the size of the

VNLayer header is hard to be made smaller, in order to further improve the performance

of VNAODV reducing the forwarding path length is important.

Since VNRIP and VNAODV generate roughly the same amount of data forwarding

traffic76, it is easy to understand that VNRIP creates the most total traffic because its

control traffic is the heaviest.

75 Around 8Kbps for the whole network, the smallest part of control traffic overhead.
76 Not shown in the plot.

 188

8.2.1.4 Causes of Delivery Failures

In order to improve the performance of VNAODV, we did a careful investigation on the

causes of end to end DMSG delivery failures in both AODV and VNAODV. The AODV

simulation trace reports three causes for DMSG drops, IFQ and NRTE, CBK.

In AODV, when a network-wide route discovery or a local route repair fails, a router

drops all the DMSGs it has in its sending buffer and link layer interface queue that are

destined for the unreachable destination. Such drops are reported as IFQ and NRTE

failures. CBK drops happen when the link layer detects a transmission failure and the

router decides not to do local route repair for it. Figure 8-15 shows the percentage of

DMSG delivery failures caused by these three causes with increasing number of CBR

sessions.

Figure 8-15 Causes of End to End Delivery Failures in AODV

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25

C
a

u
se

 o
f

P
a

ck
e

t
D

ro
p

s
(%

)

Number of CBR sessions

NRTE drops

IFQ Drops

CBK drops

 189

From Figure 8-15 we can see less than 10 percent of the delivery failures are due to the

link layer failures during DMSG transmissions. On the other hand, most of the delivery

failures are due to the failures of route discoveries and local route repairs. This is because

the route discovery and route repair of AODV is done by flooding RREQ messages to

every physical node in a MANET. When the network is dense, these flooding based route

discovery and route repair are subject to frequent failures.

Our trace analyzer can detect the following five causes of DMSG delivery failures.

1. Transmission Failure: a DMSG is sent out to the next hop vrouter. The vrouter is

active but the DMSG is never received.

2. Destination Node Gone: a DMSG is delivered to its destination, but the

destination client process has left its region and didn’t receive the message.

3. No Route: a vrouter received a DMSG sent toward it but never forwarded the

DMSG out.

4. Region Leaderless: there are physical nodes in a region. However, there is no

leader present in the region. Therefore, a DMSG sent to the vrouter in the region

couldn’t be forwarded.

5. Region Down: a region is empty when a DMSG is forwarded to it.

 190

Figure 8-16 Causes of End to End DMSG Delivery Failures in VNAODV

Figure 8-16 shows the percentage of end to end DMSG delivery failures caused by the

five reasons in VNAODV, with various number of CBR sessions. Unlike AODV, the

leading cause of DMSG delivery failures in VNAODV routing is transmission failures.

This is mainly due to the use of local broadcast in forwarding DMSGs in this VNAODV

implementation. Two much smaller fractions of DMSG delivery failures are caused by

leaderless or empty regions. “Destination Node Gone” causes a very small fraction of

DMSG delivery failures. “No Route” also causes a very small portion of DMSG delivery

failures. This suggests that the use of the VNLayer approach greatly reduced the chance

that a route discovery or a route repair fails.

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25

C
a

u
se

 o
f

P
a

ck
e

t
D

ro
p

s
(%

)

Number of CBR sessions

Transmission Failures

Destination Node Gone

No Route

Region Leaderless

Region Down

 191

The simulation results here show that to improve the performance of VNAODV, reducing

the length for forwarding paths, state synchronization overhead and DMSG transmission

failures will be most effective.

8.2.2 The Effect of Selective State Synchronizations and
Selective State Consistency Checks

The VNAODV and VNRIP implementation we evaluated in the last section already had

two major VNLayer optimizations adopted. First, the two VNLayer based routing

protocols don’t keep the entirety of the vrouter states synchronized. Instead, only the part

of a vrouter’s routing table that is considered hard state are kept synchronized by the

emulator nodes. In addition, a Backup Server doesn’t check every incoming message

from the local Server node to look for state inconsistencies. Instead, only Server

messages that are generated by a vrouter are checked. These two optimizations allowed

us to greatly reduce the state synchronization overhead and to greatly improve the

performance of VNAODV and VNRIP.

 192

Figure 8-17 The Packet Delivery Fraction of VNAODV with selective state
synchronization and selective state synchronization checks disabled

Figure 8-18 The control traffic overhead of VNAODV with selective state synchronization
and selective state synchronization checks disabled

0.75

0.8

0.85

0.9

0.95

1

1.05

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Selective State

Synchronization and State Consistency Checks (700x700, 240

nodes, 11Mbps, fast motion)

Sync hard state+check Server messages

Sync entire state+check Server messages

Sync entire state+check all messages

no state synchronization

Standard AODV

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: The Effect of Selective State

Synchronization and State Consistency Checks (700x700, 240

nodes, 11Mbps, fast motion)

Sync hard state+check Server messages

Sync entire state+check Server messages

Sync entire state+check all messages

no state synchronization

 193

Figure 8-17 and Figure 8-18 shows what happens to the PDF and control traffic of the

base line VNAODV implementation in the last section when the two optimizations are

disabled. When the entire routing tables have to be synchronized and a Backup Server

have to check all messages from the local Server, the control traffic becomes very heavy

due to the larger state sizes and more frequent state synchronizations. We can see the PDF

drops much faster with increasing number of CBR sessions.

Now, when we let a Backup Server to check only Server messages from its local Server

for state inconsistencies, VNAODV’s control traffic becomes much lighter and its PDF

curve is much flatter. However, because state synchronizations still involve the entire

application state, VNAODV in this case still generates much more control traffic than the

base line implementation does.

0.75

0.8

0.85

0.9

0.95

1

1.05

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Selective State

Synchronization and State Consistency Checks (700x700, 240

nodes, 11Mbps, fast motion)

Sync hard state+check Server messages

Sync entire state+check Server messages

Sync entire state+check all messages

no state synchronization

Standard AODV

 194

The two figures also show what happens when state synchronization among emulator

nodes is completely disabled. We can see that without state synchronization, VNAODV

can actually perform better than the case when the two optimizations are not used. This

interesting result suggests that for a VNLayer based MANET routing application,

keeping routing table synchronized among emulator nodes is not critical to the

performance. At the same time, excessive state synchronization can hurt the performance.

8.2.3 The Effect of Using Long Links

On top of the base line implementation, the next thing we did to improve the performance

of VNAODV is to try to further reduce the length for the forwarding paths by using the

Long Links option, which basically allows virtual nodes and client processes to

communicate with each other as long as they can. Figure 8-20 shows the effect of using

LL on the length of forwarding paths created by VNAODV.

Without LL, on average, the forwarding paths created by VNAODV are much longer than

the forwarding paths created by AODV. With LL, the forwarding paths created by

VNAODV are on average only about half a hop longer than the ones created by AODV.

Considering the fact that even with LL, at the first hop, a client process still has to deliver

its DMSGs to the local virtual node for routing, often resulting in an unnecessary extra

hop in the forwarding path, the paths created by VNAODV with LL are already no worse

than the ones created by AODV.

Shortened forwarding paths lead to less data forwarding traffic, fewer packet collisions

and better PDF. Figure 8-20 verifies that with LL, the PDF of VNAODV is greatly

 195

improved. Now, VNAODV performs no worse than AODV up to 25 CBR sessions.

Figure 8-19 shows that with LL, the delivery latency of VNAODV is also greatly reduced

as a result of the shortened forwarding paths. Finally, Figure 8-22 shows that with LL, the

total amount of traffic generated by VNAODV is also reduced. This is because the

shortened forwarding paths reduce both the data forwarding traffic and the routing traffic

due to less frequent forwarding failures.

Figure 8-19 The Effect of Using Long Links on the Forwarding Path Length of VNAODV

0

1

2

3

4

5

6

1 5 10 15 20 25

F
o

rw
a

rd
in

g
 P

a
th

 L
e

n
g

th

Number of CBR Sessions

Forwarding Path Length: The Effect of Long Links (700x700,

240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNAODV+LL

 196

Figure 8-20 The Effect of using Long Links on VNAODV’s PDF

Figure 8-21 The Effect of using Long Links on the Delivery Latency of VNAODV

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Long Links (700x700,

240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNAODV+LL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy
 (

se
co

n
d

s)

Number of CBR Sessions

Delivery Latency: The Effect of Long Links (700x700,

240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNAODV+LL

 197

Figure 8-22 The Effect of using Long Links on the Total Traffic Overhead of VNAODV

8.2.4 The Effect of Using Directed Broadcast

Now we have improved the performance of VNAODV by reducing the state

synchronization overhead and forwarding path length. The third major direction we took

on to improve the performance of VNAODV is to reduce the transmission failures at the

link layer. Based on the observation that the local broadcast based data transmission

causes the majority of packet delivery failures the capabilities provided by the extended

link layer model, we designed the optimization that uses Directed Broadcast for data

transmissions. With Directed Broadcast, a unicast destination address is used to transmit a

packet whenever the leader of the next hop region is known or the next hop is a client

process.

0

200000

400000

600000

800000

1000000

1200000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Total Overhead: The Effect of Long Links (700x700, 240

nodes, 11Mbps, fast motion)

AODV

VNAODV

VNAODV+LL

 198

Figure 8-23 The Effect of using Directed Broadcast on the PDF of VNAODV

Figure 8-23 shows the effect of using Directed Broadcast on top of the base line

VNAODV implementation optimized with the LL option. The use of Directed Broadcast”

for data transmissions drastically improved the PDF of VNAODV and turned the PDF

curve flat. Since the use of Directed Broadcast is just a different way of transmitting

packets at the link layer, it doesn’t increase or reduce the delivery latency and traffic

overhead77. This is verified by our simulation results.

Further investigations show that with Directed Broadcast used, the percentage of DMSG

delivery failures caused by data transmission failures dropped from about 84% to about

60%, on average. This indicates that although data transmission failure is still the leading

77 Extra traffic is generated by the link layer for packet acknowledgements. Not measured in simulations.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Directed

Broadcast (700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV+LL

VNAODV+LL+DB

 199

cause of DMSG delivery failures, the number of such failures has been greatly reduced

due to the use of Directed Broadcast.

Now we have a version of VNLayer based routing protocol that clearly outperforms

AODV. However, this comes at the cost of requiring every physical node in a MANET to

support promiscuous mode and a more complicated VNLayer implementation that can

keep track of the address of region leaders.

8.2.5 Route Stability Brought by the VNLayer Approach

Since VNAODV is a clustering based routing protocol, it is easy to understand that it

performs better than AODV because the number of entities that have to be involved in

routing is reduced. However, on top of that, we also expected that the VNLayer approach

can improve the performance of applications with a stable topology among virtual nodes

(cluster heads) due to its fixed region settings. In this section, we find out whether this is

the case for VNAODV.

For a routing application, a stable topology among vrouters translates into more reliable

forwarding paths. In this research, we use the number of route discoveries78 done by each

protocol to infer the reliability of forwarding paths created by AODV and VNAODV.

Because each route discovery could involve a large number of routers, we want the

number of network-wide route discoveries to be as small as possible.

78 This includes local route repairs but doesn’t include the 1 hop Local Connectivity Checks in VNAODV.

 200

Figure 8-24 Route Discoveries/Repairs done by AODV and VNAODV

Figure 8-24 shows the route discoveries and local route repairs done by AODV and

VNAODV with various number of CBR sessions. A separate curve is drawn for the three

major versions of VNAODV we have seen so far. We can see that without using Long

Links and Directed Broadcast, VNAODV performs much smaller number of route

discoveries than AODV at every data point, suggesting that the forwarding paths created

by this version of VNAODV breaks less frequently than the ones created by AODV.

As expected, the use of Long Links made the forwarding paths less stable because long

links are not as reliable as the links created between immediate neighbor regions. The use

of Directed Broadcast reduces the number of route discoveries. This is not because using

DB improves the reliability of forwarding paths. It is because DB reduces data

0

50

100

150

200

250

300

350

400

450

500

1 5 10 15 20 25

N
u

m
b

e
r

o
f

R
o

u
te

 D
is

co
v

e
ri

e
s

Number of CBR Sessions

Route Stability: The Effect of Long Links and Directed

Broadcast (700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV

VNAODV+LL

VNAODV+LL+DB

 201

transmission failures and in turn reduces the chance that a link is falsely determined as

broken as a result of unacknowledged79 data transmissions.

8.2.5.1 CBR Sessions with Static Endpoints

In the simulations we have presented so far, the endpoints in each CBR session are set to

move at random80. Therefore, when either the source client process or the destination

client process leaves one region, VNAODV may have to do a route repair or even a

network wide route discovery. To further verify that the VNLayer approach can indeed

improve the stability of forwarding paths, we repeated the simulations above with

modified CBR sessions such that the source and destination client processes for each

CBR session stays at the same geographical location throughout a simulation.

79 Either explicitly or implicitly.
80 Using the random waypoint model.

 202

Figure 8-25 PDF of AODV and VNAODV with Static Endpoints in CBR sessions

Figure 8-26 Route Stability of AODV & VNAODV with Static Endpoints in CBR sessions

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: AODV vs. VNAODV with static

endpoints (700x700, 240 nodes, 11Mbps, fast motion)

AODV

AODV with static endpoints

VNAODV

VNAODV with static endpoints

0

50

100

150

200

250

300

350

400

450

500

1 5 10 15 20 25

N
u

m
b

e
r

o
f

R
o

u
te

 D
is

co
v

e
ri

e
s

Number of CBR Sessions

Route Stability: AODV vs. VNAODV with static end

points(700x700, 240 nodes, 11Mbps, fast motion)

AODV

AODV with static endpoints

VNAODV

VNAODV with static endpoints

 203

In this case, the forwarding paths created by VNAODV are expected to be much more

stable than the ones created by AODV. This is because a forwarding path used by

VNAODV for a CBR sessions is a sequence of vrouters in between the static source and

destination client processes. As long as this sequence of vrouters stays up. The same

forwarding path can be used in face of mobility of the physical nodes emulating the

vrouters. On the other hand, in AODV, the mobility of any router on a forwarding path

can lead to a route repair or a network-wide route discovery.

Figure 8-25 shows that the PDF of AODV and VNAODV both improve when the

endpoints of the CBR sessions are changed from mobile to static. Figure 8-26 shows that

in the static endpoints cases, the advantage VNAODV has over AODV on route stability

is much greater than the original cases with mobile endpoints. This verifies our intuition.

8.2.6 The Value of State Replication

An important capability provided by the VNLayer is state replication. As we have

discussed, state replication allows a virtual node to maintain persistent application state in

face of node mobility. However, this comes at the cost of extra control overhead. We have

already shown in section 8.2.2 that doing no state synchronization at all in VNAODV is

better than synchronizing the entire application state and check every local Server

message for state inconsistencies. However, in the case without state synchronization,

there are still Backup Servers in each region that handles application messages using and

updating their own copy of the application state. This is still a form of state replication.

Now, the question is, to what extent do we need to rely on state replication? What

happens if we don’t use Backup Servers at all?

 204

In addition, there are two subtypes of state synchronizations. A MOV-SYNC happens

when a physical node move into a different region and becomes a Backup Server. A

MSG-SYNCs happens when state consistency checks on incoming messages detects a

state inconsistency. Intuitively, a MOV-SYNC is more important than a MSG-SYC

because a Backup Server newly arrived at a region relies on the MOV-SYNC to get a

copy of the application state. On the hand, MSG-SYNCs are used to patch up the state of

Backup Server. The question is, can we turn off MSG-SYNC so that we can further

reduce the state synchronization overhead.

Figure 8-27 and Figure 8-28 show the PDF and route stability of a VNAODV

implementation81 when state replication is completely turned off, when MSG-SYNC is

turned off or when there is not state synchronization.

It is hard to tell whether turning off just MSG-SYNC hurt either the PDF or route

stability, because the curves for the two cases cross each other. This is because each time

a physical node moves into a new region and becomes a Backup Server, it can still

receive a copy of the Server’s state with a MOV-SYNC. Backup Servers still process

incoming messages and update their state except that they don’t check messages from the

Server for state inconsistencies. In addition, with MSG-SYNCs disabled, the reduction on

state synchronization traffic reduces transmission failures and helps improve the packet

delivery fraction.

81 This version of VNAODV is the base line implementation with the long link option used.

 205

Figure 8-27 PDF of VNAODV with Different State Sync Modes

Figure 8-28 Route Stability of VNAODV with Different State Sync Modes

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of State Replication

(700x700, 240 nodes, 11Mbps, fast motion)

VNAODV no state replication

VNAODV no sync

VNAODV MOV-SYNC only

VNAODV both syncs

0

100

200

300

400

500

600

1 5 10 15 20 25

N
u

m
b

e
r

o
f

R
o

u
te

 D
is

co
v

e
ri

e
s

Number of CBR Sessions

Route Stability: The Effect of State Replication(700x700,

240 nodes, 11Mbps, fast motion)

VNAODV no state replication

VNAODV no sync

VNAODV MOV-SYNC only

VNAODV both syncs

 206

Turning off both MSG-SYNC and MOV-SYNC saves all state synchronization traffic.

However, from the figures we can see this clearly hurts the PDF and route stability. This

is because each time a physical node enters a region and become a Backup Server; it

doesn’t get any part of the application state from the Server. When the Backup Server

becomes the Server of the region, it may not have a route for a DMSG and extra routing

operations have to be done.

Turning off state replication completely hurts the PDF and route reliability the most. In

this case, Backup Server nodes ignore every incoming application message. Every time

the Server node of a region leaves, a session using the region as a forwarding hop has to

fix its route by either local route repairs or network-wide route discoveries. Therefore, a

lot more route discoveries are needed in this case.

However, even in the last case, the PDF of VNAODV is still not much worse than the

first case. This shows that state replication is not critical to the performance of VNAODV,

which is designed to be resilient to route changes. As we have seen, reducing

transmission failures caused by heavy control traffic overhead, long forwarding paths and

local broadcast matters more to the performance of VNAODV.

8.2.7 Effect of other Optimizations at the VNLayer

8.2.7.1 The Powerful Emulator Option

As explained in section 0, the Powerful Emulator option can be used to VNAODV to

further shorten the forwarding paths by allowing an emulator node hosting a client

process to work as a router independently.

 207

Figure 8-29 and Figure 8-30 and Figure 8-31 show what happens to the PDF, average

forwarding path length and delivery latency of VNAODV82 when the Powerful Emulator

(PC) option is used. To see the effect of shortened forwarding paths, the figures also show

another curve for the VNAODV implementation with only the Directed Broadcast option

used. We can see with PC used, the PDF curve becomes even flatter. This is because in

this 8 by 8 region network, saving 1 forwarding hop can cut down the data forwarding

traffic overhead a lot. With lower traffic overhead and fewer forwarding hops, the chance

that transmission failure happens is lower.

With PC, a client process no longer has to communicate with the local server for routing

service. From Figure 8-30, we can see that the average length of the paths created by

VNAODV is even shorter than the paths created by AODV. This is probably due to the

better stability of the forwarding paths created by VNAODV. Since the average

forwarding path was only about 3 hops, with almost one extra hop saved on average, PC

can save us one third of the data forwarding traffic.

82 An implementation that is equipped with both the Long Link (LL) and Directed Broadcast(DB) options.
This is also the implementation that gives us the best performance so far.

 208

Figure 8-29 The Effect of Using the Powerful Emulator Option on the PDF of VNAODV

Figure 8-30 The Effect of Using the PC on the forwarding path length of VNAODV

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of the Poweful Client

Option (700x700, 240 nodes, 11Mbps, fast motion)

VNAODV+DB

VNAODV+DB+LL

VNAODV+DB+LL+PC

0

1

2

3

4

5

6

1 5 10 15 20 25

F
o

rw
a

rd
in

g
 P

a
th

 L
e

n
g

th

Number of CBR Sessions

Forwarding Path Length: The Effect of the Powerful Client

Option (700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV+DB

VNAODV+DB+LL

VNAODV+DB+LL+PC

 209

Figure 8-31 The Effect of Using the PC Option on the delivery latency of VNAODV

With forwarding paths shortened by PC, the end to end delivery latency of VNAODV is

even lower. Now, with small number of CBR sessions, the delivery latency of VNAODV

can be shorter than AODV. However, since VNAODV introduces the total ordering delay

and can’t take advantage of reverse routes learned from other route discoveries to shorten

route set up times. When there are 5 CBR sessions or more, the delivery latency of

VNAODV is still longer than AODV’s.

Another thing we can see here is that the DB option by itself can bring most part of the

improvement on the PDF VNAODV. On top of that, adding the Long Link option

shortens the forwarding paths and forwarding delay, but not much on the PDF of

VNAODV.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: The Effect of the Powerful Client Option

(700x700, 240 nodes, 11Mbps, fast motion)

AODV

VNAODV+DB

VNAODV+DB+LL

VNAODV+DB+LL+PC

 210

8.2.7.2 Control Over the Number of Emulator Nodes in a Region

When a MANET is dense, using every physical node as an emulator node is not only

unnecessary but also costly because the more Backup Servers there is in a region, the

more state synchronizations will be needed. As introduced in section 4.7.5 , our VNLayer

implementation can adjust the number of Backup Servers in a region by changing a

threshold value, which controls the chance a non-leader node sets itself as pure client.

When the threshold is set to 1000, every non-leader node becomes a Backup Server.

When the threshold is set to 0, there will be no Backup Servers. Figure 8-32 and Figure

8-33 show the effect of using different thresholds on the PDF and control overhead of

VNAODV. The VNAODV implementation here is equipped with both the Directed

Broadcast option and the long link option.

From the figures, we can see with threshold 750 is used, the control overhead of

VNAODV is much lower than the case with threshold 1000 (all non-leaders become

Backup Servers). This is due to the number of state synchronization messages is reduced

when the number of Backup Servers is reduced. With the reduced control traffic, we can

see the PDF of VNAODV is also better than the case with threshold 1000.

However, when we further reduce the threshold to 500, the control overhead actually

goes up a little. This is because with fewer Backup Nodes, the number of sync messages

actually increases a little due to the reduced state consistency among emulator nodes. In

this case, the PDF of VNAODV is still good, though. When the threshold is reduced to

250, VNAODV performs worse both in terms of PDF. This is because there is not enough

Backup Servers in the regions anymore and routes break more frequently.

 211

Figure 8-32 The Effect of Reducing the Number of Backup Servers in a region on the
PDF of VNAODV

Figure 8-33 The Effect of Reducing the Number of Backup Servers in a region on the
Control Overhead of VNAODV

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

160 240 320 400 480 560

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of Physical Nodes

Packet Delivery Fraction with Different Number of Backup

Servers (700x700, 240 nodes, 11Mbps, fast motion)

threshold=1000

threshold=750

threshold=500

threshold=250

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

160 240 320 400 480 560

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead with Different Number of Backup

Servers (700x700, 240 nodes, 11Mbps, fast motion)

threshold=1000

threshold=750

threshold=500

threshold=250

 212

8.2.8 The Effect of Application Layer Optimizations

8.2.8.1 Local Recovery

As we have pointed out, data transmission failures at the link layer is the lead cause of

end to end DMSG delivery failures. Local Recovery is an option we designed at the

application layer of VNAODV to reduce the impact of transmission failures on the

performance of VNAODV. Therefore, Local Recovery and Directed Broadcast serve the

same purpose. However, they are used under different situations. Directed Broadcast can

be used when the address of the recipient of a packet is known and when promiscuous

mode can be used on all physical nodes. When either condition can’t be satisfied83, Local

Recovery can be used to recover DMSGs that are suspected of being lost.

Figure 8-34 and Figure 8-35 compares the impact of Local Recovery and Directed

Broadcast on the PDF and control overhead of VNAODV. Here, the VNAODV

implementation uses the Long Links option. From the plots, we can see using DB by

itself does a better job than using LR itself on both parameters. This is because LR can

only recover a portion of the DMSGs lost and doing so comes with unnecessary

retransmissions of DMSGs that are falsely determined as being lost.

When both DB and LR are used84, our simulation results showed that VNAODV

performs at little better than the case when only DB is used. Actually, LR can also be

implemented at the VNLayer for packets that can’t be delivered by DB. This way,

applications don’t have to do Local Recovery for application messages anymore.

83 One example is that when the address of a next hop region’s leader is unknown, local broadcast has to be
used. In this case, LR can be used to reduce transmission failures.
84 LR only works on DMSGs that are sent by local broadcast.

 213

Figure 8-34 The Effect of Directed Broadcast and Local Recovery on the PDF of
VNAODV

Figure 8-35 The Effect of Directed Broadcast and Local Recovery on control overhead of
VNAODV

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Directed Broadcast

and Local Recovery (700x700, 240 nodes, 11Mbps, fast

motion)

AODV

VNAODV+LL

VNAODV+LL+DB

VNAODV+LL+LR

0

20000

40000

60000

80000

100000

120000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: The Effect of Directed

Broadcast and Local Recovery (700x700, 240 nodes,

11Mbps, fast motion)

AODV
VNAODV+LL
VNAODV+LL+DB
VNAODV+LL+LR

 214

8.2.8.2 Route Correction by Destination

Route Correction (RC) is a simple optimization we did at the application layer of

VNAODV so that when a client process receives a DMSG destined for it but not destined

for its region, it sends out an RREP message reminding nearby vrouters about its current

location. With route correction, we expect VNAODV to respond to the mobility of

destination client process better. Figure 8-36, Figure 8-37 and Figure 8-38 show the effect

of Route Correction on the PDF, route stability and control overhead of VNAODV. Here,

the VNAODV implementation is equipped with both DB and LL. From the plots, we can

see that RC doesn’t improve the PDF (it is already very good), it does reduce the number

of route discoveries that have to be done and it also reduces the delivery latency.

Figure 8-36 The Effect of Route Correction on the PDF of VNAODV

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4 5 6

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Route Correction at the

Last Hop(700x700, 240 nodes, 11Mbps, fast motion)

VNAODV+LL+DB+RC

VNAODV+LL+DB

 215

Figure 8-37 The Effect of Route Correction on the route stability of VNAODV

Figure 8-38 The Effect of Route Correction on the delivery latency of VNAODV

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

N
u

m
b

e
r

o
f

R
o

u
te

 D
is

co
v

e
ri

e
s

Number of CBR Sessions

Route Stability: The Effect of Route Correction at the

Last Hop (700x700, 240 nodes, 11Mbps, fast motion)

VNAODV+LL+DB+RC

VNAODV+LL+DB

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: The Effect of Route Correction at the Last

Hop(700x700, 240 nodes, 11Mbps, fast motion)

VNAODV+LL+DB+RC

VNAODV+LL+DB

 216

8.2.9 Different Node Motion Rates and Different Node Densities

Figure 8-39 The PDF of VNAODV with different node densities and node motion rates

Figure 8-39 compares the delivery ratio of VNAODV and AODV with different node

densities and node motion rates (fast mode and slow mode) with 15 CBR sessions. With

increased network density, each route discovery in AODV involves heavier flooding

more RREQ messages, resulting in more frequent discovery failures. Therefore, its PDF

drops fast. With low network density, VNAODV doesn’t much advantage over AODV.

We can see it performs even a little worse due to the lack of backup servers and more

frequent virtual node failures. As the network gets denser, VNAODV outperforms AODV

more and more because the number of vrouters in the network is bounded by the number

of regions. This verifies that VNAODV scales better than AODV.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

60 120 180 240

P
a

ck
et

 D
el

iv
er

y
F

ra
ct

io
n

Number of Nodes

VNAODV, slow node motion

Standard AODV, slow node motion

VNAODV, fast node motion

Standard AODV, fast node motion

 217

As expected, AODV and VNAODV perform better with slower node motion rates. Figure

8 shows that VNAODV is less sensitive to mobility rate increase than AODV, due to the

more stable forwarding paths created by VNAODV.

8.2.10 Different Network Sizes

The network size we used in the simulations so far is 700m x 700m, which is quite small.

On average, a data packet delivery only takes a little over 2 hops. To further validate the

results, we run the simulations on a large network with more mobile nodes. Now, the

network covers a 1050m x 1050m area and contains 500 physical nodes. The network is

split into 12 by 12 square regions. The node density of this network is roughly the same

as the small 8 by 8 region network we used before. The fast motion mode is used for

node mobility. Here, each simulation runs for 200 seconds. For each data point, we still

repeat the simulation 5 times.

Figure 8-40 and Figure 8-41 show the PDF and route stability of AODV and VNAODV

equipped with various optimizations. The trend of the curves matches with the ones we

got before with the small network setting. When both Directed Broadcast and Long Links

are used by VNAODV, we got the best PDF. In addition, compared with the curves we

got with the small network VNAODV outperforms AODV even more. This is because

AODV routing here involves even more physical nodes. On route stability, VNAODV

using Directed Broadcast but not using Long Links again creates the most stable routes.

 218

Figure 8-40 The PDF of AODV and VNAODV in a large network setting

Figure 8-41 The Route Stability of AODV and VNAODV in a large network setting

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Directed Broadcast and

Long Links (1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV(base line)

VNAODV+DB

VNAODV+DB+LL

0

100

200

300

400

500

600

1 5 10 15 20 25

N
u

m
b

e
r

o
f

R
o

u
te

 D
is

co
v

e
ri

e
s

Number of CBR Sessions

Route Stability: The Effect of Directed Broadcast and Long

Links(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV(base line)

VNAODV+DB

VNAODV+DB+LL

 219

Figure 8-42 and Figure 8-43 show the delivery latency and control overhead of AODV

and VNAODV equipped with various optimizations. Unlike what happens with the small

network setup, the delivery latency of AODV increases with more CBR sessions. This

might be because with the much heavier routing traffic overhead, the route discovery

time gets longer and longer with more CBR sessions. Now, we can see when both

Directed Broadcast and Long Links are used, the delivery latency of VNAODV is the

best and is about the same as AODV’s. This verifies that with a larger network, using the

Long Links options brings greater benefit on delivery latency.

Figure 8-43 shows that with DB used, the control overhead of VNAODV is the best. On

top of that, with LL used, the control overhead doesn’t improve although the forwarding

paths are shortened. Finally, as before, the total traffic overhead generated by VNAODV

is still heavier than AODV’s total traffic, even with both DB and LL used.

Figure 8-42 The Delivery Latency of AODV and VNAODV in a large network setting

0

0.05

0.1

0.15

0.2

0.25

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: The Effect of Directed Broadcast and

Long Links(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV(base line)

VNAODV+DB

VNAODV+DB+LL

 220

Figure 8-43 The Control Overhead of AODV and VNAODV in a large network setting

Figure 8-44 The Total Traffic Overhead of AODV and VNAODV in a large network
setting

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

Control Traffic Overhead: The Effect of Directed Broadcast

and Long Links(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV(base line)

VNAODV+DB

VNAODV+DB+LL

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

TotalOverhead: The Effect of Directed Broadcast and Long

Links(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV(base line)

VNAODV+DB

VNAODV+DB+LL

 221

8.2.11 Different Region Setups

In the large network setting we used last section, following the definition in the VNLayer

model, the network was divided into 12x12 regions. However, the performance

improvement brought by the Long Links option suggests that the regions could be set

larger for routing applications. To test the impact of the size of the regions on the

performance of VNAODV, we repeated the simulations with the network divided into

6x6 regions and 8x8 regions. Here, this version of VNAODV is equipped with options

such as Long Links, Local Recovery and Powerful Emulator.

Figure 8-45 The PDF of AODV and VNAODV with different region setups

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Different Region

Setups(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV 12x12 regions

VNAODV 8x8 regions

VNAODV 6x6 regions

 222

Figure 8-45 shows the data packet delivery ratio of AODV and VNAODV with different

region setups. We can see VNAODV still outperforms AODV under all region setups.

Reducing the region setting from 12x12 regions to 8x8 regions doesn’t hurt the PDF of

VNAODV. This is because reducing the total number of regions can reduce the number

of vrouters in the network and reduce the number of flooded RREQ messages. However,

if we further reduce the number of regions to 6x6 regions, the delivery performance

drops. This is because the regions are too large and the links between vrouters are too

unstable and sometimes a vrouter may even not be able to reach any vrouter around it.

This result verifies that for routing applications, using larger regions won’t hurt the

delivery performance.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 10 15 20 25

P
a

ck
e

t
D

e
li

v
e

ry
 F

ra
ct

io
n

Number of CBR Sessions

Packet Delivery Fraction: The Effect of Different Region

Setups(1050x1050, 500 nodes, 11Mbps, fast motion)

AODV

VNAODV 12x12 regions

VNAODV 8x8 regions

VNAODV 6x6 regions

 223

Figure 8-46 and Figure 8-47 compare the forwarding paths length and delivery latency of

AODV and VNAODV. When the network is divided into 12x12 regions or 8x8 regions

VNAODV creates shorter forwarding paths and causes less forwarding delay than AODV

does, due to the use of the Powerful Emulator option. However, due to the use of Long

Links, using large regions didn’t affect the forwarding path length much. When the

network is divided into 6x6 regions, VNAODV creates longer forwarding paths than

AODV and causes longer forwarding delay. VNAODV no longer outperforms AODV.

From Figure 8-48, we can see using an 8x8 region setup rather than the standard 12x12

region setup produces the least total network traffic. Dividing the network into 6x6

region, causes more network traffic. The simulation results in this section suggests that

when state synchronization among emulator nodes is not important to the performance of

an application, larger regions can be used to improve the performance of a VNLayer

based application by reducing the number of virtual nodes in a network.

 224

Figure 8-46 Forwarding Path Length of AODV and VNAODV with different region setups

Figure 8-47 Delivery Latency of AODV and VNAODV with different region setups

Figure 8-48 Total Traffic Overhead of AODV and VNAODV with different region setups

0

1

2

3

4

5

1 5 10 15 20 25

F
o

rw
a

rd
in

g
 P

a
th

 L
e

n
g

th

Number of CBR Sessions

Forwarding Path Length: The Effect of Different

Region Setups (1050x1050, 500 nodes, 11Mbps,

fast motion)

AODV
VNAODV 12x12 regions
VNAODV 8x8 regions
VNAODV 6x6 regions

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 5 10 15 20 25

D
e

li
v

e
ry

 L
a

te
n

cy

Number of CBR Sessions

Delivery Latency: The Effect of Different Region

Setups (1050x1050, 500 nodes, 11Mbps, fast

motion)

AODV

VNAODV 12x12 regions

VNAODV 8x8 regions

VNAODV 6x6 regions

0

200000

400000

600000

800000

1000000

1200000

1 5 10 15 20 25

T
ra

ff
ic

 O
v

e
re

h
a

d
 (

b
p

s)

Number of CBR Sessions

TotalOverhead: The Effect of Different Region

Setups (1050x1050, 500 nodes, 11Mbps, fast

motion)

AODV

VNAODV 12x12 regions

VNAODV 8x8 regions

VNAODV 6x6 regions

 225

8.2.12 Summary

In this section, I summarize what is learned through the simulation study on VNLayer

based MANET routing.

Through extensive simulations, it is shown that our VNLayer based reactive routing

protocol, VNAODV, can outperform the standard AODV, due to the better routing

efficiency and reliability brought by the VNLayer approach. This was achieved with

optimizations using the using the extended VNLayer model. Among the optimizations,

selective state synchronization and selective state consistency checks reduced the state

synchronization overhead. Allowing any client processes and virtual nodes to

communicate with each other reduced the forwarding path length and led to shorted

delivery latency. Finally, using Directed Broadcast for data transmissions drastically

reduced the frequency of transmission failures.

We verified that the VNLayer based AODV routing protocol creates more stable routes

than the ones created by AODV. We also showed that state replication is not critical to the

performance of VNAODV. This is possibly the reason why we could relax the limits in

the basic VNLayer model.

We also investigated the effect of a few optimizations at the VNLayer and application

layer on the performance of VNAODV. It is shown that the Powerful Emulator option can

further reduce the length of forwarding paths create by VNAODV. It is also shown that

by reducing the number of Backup Servers and cutting down unnecessary control

overhead, the performance of VNAODV can be improved when a network is dense

 226

enough. The local recovery options can be used as an alternative way to reduce delivery

failures caused by link layer transmission failures. The Route Correction option can

slightly improve reliability of the routes created by VNAODV.

 227

CHAPTER 9. Conclusions and Future Works

This dissertation presents a series of simulation studies on using the VNLayer approach

to implement efficient and reliable applications in MANET. The major contributions of

this dissertation are:

• A discrete-event based simulator, VNSim, that runs on top of ns2 [39], which can

efficiently simulate a VNLayer based network of up to a few hundred physical

nodes.

• Identification of a number of performance limitations in the link layer and

VNLayer models (presented in section 3.1) used in the original VNLayer

simulations[36].

• Extension of the VNLayer model to address the limitations. This dissertation

verified that the VNLayer approach can be used to adapt wireline protocols to

MANET and to improve the reliability and efficiency of MANET protocols.

In this chapter, I first present on the simulation results. Then, I present the future works.

9.1 Simulation Results

VNSim is an efficient ns-2 based simulator for VNLayer applications, developed for this

study of MANET address allocation and routing protocols. With VNSim, using a simple

VNLayer based MANET address allocation protocol, VNDHCP, we validated the

 228

intuition that the VNLayer approach can be used to adapt wireline protocols to MANET.

Simulations were done for a small network of 16 regions with 40 to 120 mobile nodes

and a larger network of 64 regions with 160 mobile nodes, with rate of motion for the

mobile nodes varying from quite slow to quite fast. The simulations showed that

VNDHCP performs well and the VNLayer layer overhead is small.

Simulation studies are also presented for VNAODV, a VNLayer based routing protocol

adapted from the standard AODV. With this work, we discovered problems with the basic

VNLayer model. These problems hurt the routing performance badly. To tackle the

problems, we created a link layer model that reflects the properties of the MANET more

accurately. We also extended the VNLayer model to relax some limits at the VNLayer.

Based on the new models, we applied three major VNLayer optimizations in our

VNLayer implementation:

• By doing selective state synchronization and selective consistency checks on

incoming messages, the state synchronization traffic overhead was greatly

reduced. This in turn leads to fewer collisions and message losses.

• By allowing long links to be used at the VNLayer, the length of VNAODV’s

forwarding paths and the average delivery latency of VNAODV were greatly

reduced. Shortened forwarding paths also lead to fewer message losses.

 229

• The replacement of local broadcast with Directed Broadcast on data transmission

reduces message losses. This optimization brought the biggest improvement on

packet delivery fraction.

Simulation results also showed that VNAODV generates much less routing overhead due

to the reduced number of entities that have to be involved in route discoveries. It is also

shown the routes created by VNAODV breaks less frequently, due to the stability of the

links between virtual nodes. As a result, VNAODV is able to outperform AODV in terms

of packet delivery percentage, routing overhead and route reliability. However, the use of

the VNLayer approach does introduce extra traffic overhead (due to extra packet header

and extra forwarding at the first hop) and extra packet processing delay.

This work also validated the intuition that the VNLayer approach, as a generalized

programming abstraction that hides the complexity of clustering and state replication, can

be used to simplify software development and to quickly adapt wireline protocols to the

MANET environment. VNRIP, a simple version of RIP built over the VNLayer, was

developed very quickly and shown to perform quite well.

This work also led to other VNLayer implementation optimizations. For example, the

leader election mechanism was modified to reduce multi-leadership in regions, to shorten

leader switching delay, to provide more stability in the region leaders, and to reduce the

chance that out-of-sync nodes become leaders. New function modules are designed in the

VNLayer to keep track of the activeness of neighbor regions, the leaders of neighbor

regions and the whereabouts about physical nodes in the neighborhood. Finally, our

 230

VNLayer implementation can also adjust the number of Backup Servers in a region so

that in a dense network, not every physical node has to emulate the virtual node in its

region. It is shown in simulations that these optimizations can be used to improve the

performance of VNLayer based applications.

9.2 Future works

9.2.1 Applying Insights gained on the Implementation of Cluster-
based MANET Protocols

This research provided significant insights on how to implement cluster based MANET

protocols with state replication capabilities. More work can be done to apply such

insights to other cluster based MANET protocols. In this section, I summarize the

important points we learned through the simulation study.

9.2.1.1 On Reducing Control Traffic Overhead

Clustering and state replication improve the efficiency and reliability of MANET

protocols. However, they both come with their control overhead. In the simulation results

with VNLayer based routing, the majority of DMSG (data message) delivery failures are

caused by transmission failures at the link layer. Reducing message overhead always

resulted in better delivery performance. To get better performance, it is important to keep

the control overhead on clustering and state synchronization as low as possible.

9.2.1.1.1 Clustering Message Overhead

The clustering overhead is determined by the cluster setting and node mobility. It is not

affected by the kinds of applications using the clustering scheme. When clusters are

maintained through leader elections, the clustering overhead can be reduced by careful

 231

adjustment on the periodic leadership claim message (in our implementation, the

Heartbeat messages) and how many non-leaders shall participate in the rejection of a

leadership request.

In our implementation, with the use of the explicit LeaderLeft message, we were able to

reduce the frequency of Heartbeats from once per second to once per five seconds

without affecting the performance of the applications.

In response to a leader request, if more non-leaders can send the rejection message, the

chance of having duplicate leadership in a region is lower. However, the leader election

overhead is also higher. This could become a problem with a dense network. In our

implementation, in order to reduce the leader election overhead, we only allow the leader

to reject a leader request.

9.2.1.1.2 State Synchronization Message Overhead

The state synchronization message overhead depends on the state size and the number of

state synchronizations needed. Without proper control, this part of the traffic overhead

can easily overwhelm the network. The following general approaches can be used to

reduce the state synchronization traffic overhead when strictly synchronized state is not

critical to the correctness of an application.

First, we distinguished hard state and soft state in the extended VNLayer model and

allow an application to do state synchronization only on hard state. As defined in section

3.4.4 , Hard state is the virtual node state that is critical to the correct operation of an

 232

application. Soft state is the virtual node state that is non-critical to the correct operation

of an application.

It is the application developer’s job to determine which part of application state is hard

state and which part is soft state. For example, in VNAODV, we only synchronize the

destination sequence number, next hop and metric of valid routing entries because these

are considered hard state.

Second, we put an upper bound on state synchronization traffic overhead by limiting the

frequency of state synchronizations done by a leader.

Third, we allow non-leaders to synchronize their state with state synchronization

messages directed to other non-leaders. When state inconsistency is detected by a non-

leader, it is likely that many non-leaders in the same cluster need a state synchronization

too. To reduce the number of synchronization requests, non-leaders can use a random

backoff mechanism when sending their requests. In addition, when a non-leader hears

another synchronization request, it cancels its own request. To be able to do this, each no-

leader synchronizes its state to the state sent in any synchronization response from the

leader of its region.

Fourth, using the state inferencing option, non-leaders can use overheard application

messages from the leader node to update their state to reduce the need for explicit state

synchronization. As explained in section 3.4.9 , this is an optimization at the application

layer that would break the abstraction, though.

 233

Fifth, a non-leader can use only relevant messages from the leader to check for state

inconsistency. This would reduce the number of unnecessary state synchronizations

triggered by message losses. For example, in VNDHCP, we didn’t do state consistency

checks with Forwarded Server messages because they have nothing to do with the

application state (the address allocation status).

9.2.1.1.3 Reduction on Periodic Hello messages

Many MANET applications require mobile nodes to use periodic Hello or KeepAlive

messages to maintain a list of direct neighbors. This kind of message overhead is

proportional to the total number of nodes in a network and is not desirable for MANET

applications. To reduce the frequency of Hello messages, a clustering scheme can be

implemented to provide coordinated tracking of the presence of neighbors. Our VNLayer

implementation is able to track the activity each neighbor by treating every incoming

message a Hello message. When a node is silent over a long period of time, the VNLayer

sends out a Hello message. Each time a Hello message is received; the VNLayer sends a

Hello event to the application layer. This way, the number of Hello messages needed by

an application is reduced.

9.2.1.2 On Reducing Transmission Failures

Local broadcast is a simple way to send a packet to multiple physical nodes nearby.

However, data transmissions by local broadcast are not reliable due to the lack of link

layer support on address resolution, RTC-CTS based channel reservation, and data packet

acknowledgements and retransmissions. It was the main reason why our VNLayer based

routing protocols didn’t scale well initially.

 234

When promiscuous mode is available on every physical node, Directed Broadcast, as

defined here, can be used for data transmission when the destination is a single physical

node or when the destination is a cluster whose leader’s address is known.

For packets that have to be sent by local broadcast, since the link layer doesn’t provide

data acknowledgement and retransmission, a custom designed local recovery mechanism

can be used together with passive data acknowledgement to detect link failures quickly

and reduce transmission failures. The local recovery mechanism used by VNAODV in

this thesis, as described in section 6.4.1 , is shown to be able to greatly improve the

packet delivery fraction.

9.2.1.3 On Shortening Forwarding Paths

Clustering may affect the optimality of forwarding paths created by an application when a

physical node is allowed to communicate with its cluster head only or when inter-cluster

communications are limited to clusters next to each other. Our simulation results showed

that when the major goal is to get more messages delivered across the network rather than

maintaining consistent state within each cluster, it is desirable to allow a physical node to

communicate with any cluster head directly and allow any two clusters to communicate

with each other directly.

9.2.1.4 On Better Leader Election

A clustering scheme should be engineered so that duplicate leadership happens rarely,

leadership switches don’t happen too frequently, and leadership switching can be done

quickly. In our VNLayer implementation, optimizations are done to achieve these goals.

 235

This section presents optimizations that can be used by any clustering scheme to improve

its leader election mechanism.

9.2.1.4.1 Dealing with Multi-leadership

Multi-leadership happens when the channel is lossy. Multi-leadership can cause problems

such as duplicate message forwarding, heavy traffic overhead, and disrupted state

synchronization. While reducing traffic overhead can alleviate this problem, quick

resolution of multi-leadership is also important. One simple solution is to let the leader

that got its leadership earliest force the other leaders to give up their leadership

immediately. Another solution we used is to delay new nodes in a cluster longer before it

can claim its leadership, so that it chance it hears a leader Heartbeat message or a

LeaderReply message is greater.

9.2.1.4.2 Quick Cluster Leadership Switching

If a region remains leaderless for a long period of time, large number of messages could

be dropped. Hence, there is a need to make leadership switching as quickly as possible.

The addition of the LeaderLeft message to the leader election mechanism greatly

improved the performance of VNLayer based applications. In a cluster-based protocol, if

possible, a cluster leader should inform its original cluster when it leaves the cluster.

9.2.1.4.3 Stabilizing Cluster Leadership

Frequently switching leaders causes more state synchronizations and more packet drops.

Hence we want the leader elected for a region to last longer. In our VNLayer

implementation, in a leader election, nodes moving slower are given higher precedence in

 236

the contest for leadership so that the resulting leadership could be more stable. To achieve

this, we use different leadership claim waiting times for nodes moving with different

speeds. The faster a node is moving, the longer the node has to wait before it can sends

out its leader election request.

9.2.1.5 Reducing the Impact of Virtual Node Resets

As we have seen, for VNDHCP, VNAODV and VNRIP, special measures have to be

designed to deal with problems that can arise when a virtual node reboots and lost its

state. In VNDHCP, each time a virtual node reboots, in order to prevent duplicate address

allocation, we let the virtual node wait a full lease time before it can allocate addresses. In

VNAODV, when the vrouter in a region reboots, in order to prevent loops, it sends out an

RERR message so that no other vrouters use it as the next hop. In VNRIP, we let a

rebooted vrouter send out a Request message to request routing tables from its neighbors,

this message also informs the neighbors not to use it as the next hop anymore.

It would be desirable to develop a generalized way to deal with virtual node resets. For

example, a VNLayer message can be sent to neighbor regions when a virtual node is

restarted so that neighboring regions can take any actions required on loss of a neighbor’s

state. This way, no additional protocol message type needs to be designed at the

application layer. What an application would need to do would be to implement an

interface function that handles neighbor server failures.

 237

9.2.2 More Works on VNRIP

VNRIP demonstrated its potential as a MANET routing protocol with reasonable

performance. A reason that VNRIP didn’t perform as well as VNAODV was because

VNLayer optimizations such as LL and Directed Broadcast were not applied on the

VNRIP simulations. Further study could be done on VNRIP to implement passive DMSG

acknowledgement, local packet recovery, LL and Powerful Emulators on VNRIP. These

optimizations are expected to further improve the performance of VNRIP. As a proactive

routing protocol, VNRIP is not expected to perform as well as VNAODV when the

number of data message sessions is small. However, it can have an advantage over

VNAODV when the total number of concurrent sessions is large.

9.2.3 Better Region Setups

In this research, the way we set up the regions is clearly not optimal. The better

performance brought by the use of long links and the negligible performance difference

when fewer regions are used suggest that better region set up can reduce the number of

regions needed to cover a network and improve the efficiency of VNLayer based routing

protocols. Further investigations can be done on using different shaped regions and

overlapping85 region setups.

9.2.4 The VNLayer Shared by Multiple Applications

In this research, for each case study, the VNLayer supports only one application at a time.

One important advantage of using the VNLayer approach is that multiple applications can

share the services provided by the VNLayer. For example, multiple applications can share

85 When a physical node is in the overlapping area of two regions, it identifies itself with only one region.

 238

the same leader election mechanism so that the average control cost on each application

can be reduced. More research can be done on how to use one VNLayer state machine to

support multiple applications86.

9.2.5 Geographical based MANET Routing

The VNLayer also provides a good platform to implement geographical based MANET

routing. A GPSR [26] like geographical based MANET routing protocol can be

implemented over the VNLayer. Geographical based MANET routing requires a

distributed location service, such as GLS (grid location service) [41]. Virtual nodes can

be turned into location servers. Using the location service, virtual node emulated routers

can do geographical routing the same way as GPSR does. The well-known geographical

locations for the virtual nodes and the grid topology among virtual node can be expected

to make the geographical based routing easier.

86 Because the only part of the VNLayer function that can be shared is the leader election algorithm, sharing
the VNLayer among multiple applications may not produce much benefit while making the state machine
more complicated.

 239

Appendix A: Simulating the VNLayer with ns-2

Based on the design of the Virtual Node Emulator Layer and the Application Layer in

VNE, we developed a new simulator, VNSim, for VNLayer based applications on the ns-

2 platform [39]. As one of the most popular network simulators, ns-2 has a mature

implementation of the 802.11 wireless link layer. The development of VNSim is easier

than VNE because the most complicated part, the Mobile Node Layer in VNE is provided

by the ns-2 platform. In addition, ns-2 is written with C++, which runs much faster than

python. VNSim is designed as a discrete event-based simulator. No periodic state

checking is used. Therefore, VNSim is more scalable than VNE. In this chapter, we

introduce the structure and major design choices we made on VNSim.

A.1 The Structure of VNSim

VNSim is structured in the same way an implementation of VNLayer would be structured

on a real mobile device. VNSim implemented all the function modules introduced in

CHAPTER 3. Figure A.1-1 shows the architecture of a VNLayer emulator node

simulated by VNSim. Built upon the ns-2 platform, the VNLayer interacts with the ns-2

platform in order to send and receive packets to the simulated wireless channel. At the

top, the VNLayer interacts with the application layer, reads and writes application layer

state and sending commands to the application layer through the interface functions

implemented by the application layer.

 240

Figure A.1-1 Architecture of a VNLayer emulator node in VNSIM

In VNSim, the VNLayer of each VNLayer emulator node is implemented with 3 types of

ns-2 agents, agent JOIN, agent VNS and agent VNC. When there are multiple VNLayer

based applications, there will be an agent VNS and agent VNC for each application.

Agent JOIN, shared by all VNLayer applications, implements the location checking

module and leader election module. It communicates region changes and leader status

changes to the other two types of agents, using two types of messages, REGION and

LEADER. Agent VNS interfaces with the code for an application server process. On

Backup Servers, it also buffers server response messages and keeps the application state

synchronized with the Server node’s state. Agent VNC interfaces with the code for an

application client process. As inter-agent messages on the same node, the REGION and

LEADER messages from agent JOIN to agent VNC are sent as loopback messages. So

are the messages exchanged between agent VNC and agent VNS on the same node. The

code for Agent JOIN, agent VNS and agent VNC, provides the implementation of the

VNLayer abstraction. The application server built over the code of Agent VNS and the

 241

application client processes built over the code of Agent VNC compose the Application

Layer.

Figure A.1-2 Interaction between a Leader node and a Non-leader Node

Figure A.1-2 shows the interaction between the agents on two mobile nodes. The mobile

node above acts as a Server node. The mobile node below acts as a Backup Server that

also hosts a client process. The JOIN agents on the two nodes interact with each other for

leader election and maintenance. The agent VNC on the Backup Server node interacts

with the agent VNS on the Server node for services. The agent VNS on the Backup

Server node gets a copy of all the client messages from agent VNC on the same node and

prepares its response messages. It also listens to the channel and uses Server messages

from the same region to detect state inconsistencies.

A.2 Agent JOIN

Agent JOIN is an agent shared by all other VNLayer agents for location checking and

leader election. In ns2, each agent on a simulated mobile node is associated with a

different port number. To receive the leader election result and location checking result

JOIN VNS VNC Non-leader

Leader

Leader Election
Messages

Client
Messages

Server Messages

JOIN VNS VNC

Client
Messages

 242

from agent JOIN, VNLayer agents register their port numbers with agent JOIN to receive

location information and leader election results.

In VNSim, mobile nodes move according to standard ns-2 mobility traces generated

using the random waypoint model [31]. Agent JOIN checks a node’s current location to

determine the region the node is in and to check whether it has entered a new region. The

ns-2 implementation of the class MobileNode provides methods for determining a mobile

node’s current location, motion speed and direction. Using the region boundaries, a

node’s current region can be derived from its current location. On a node, if agent JOIN

finds out that the node’s current region is different from the one on record, a

RegionChanged event is triggered. The region id of the current region is recorded. A

REGION message is then sent to each agent port registered with it.

In addition, when a leader election is done, agent JOIN sends a LEADER message to

each agent port registered with it.

To improve the scalability of the simulation, instead of checking the location periodically,

VNSim checks the location when a node enters the network; when it starts moving; and

when it crosses a region boundary. To generate region-boundary crossing events, we use a

node’s current location, motion rate and direction of motion to predict the time a node

enters a new region. This way, we only do location checks when necessary.

 243

A.3 VNServer, the Parent Class of VNLayer Application
Servers

Agent VNS buffers and sends the application server messages, synchronizes a non-

leader’s state with the leader’s state, and simulates the application server. In VNSim,

Agent VNS is defined in a class called VNServer.

Agent VNS sorts the incoming packets with the timestamp carried in the packets and put

them into a buffer, before they are passed on to the consistency manager. A bi-directional

linked list is used as the sending queue on each mobile node. A timer is used to schedule

the sending of the messages in the sending queue. with a short interval between

consecutive packet transmissions. Since Backup Server nodes don’t send response

messages, they don’t set the sending timer. When the Server node in the region leaves or

crashes, a Backup Server node may become the Server of the region and start to set the

sending timer.

Any application server class created over the VNLayer must uses VNServer as its parent

class and implements a set of virtual functions declared by VNServer. Therefore, an

application server is an extended agent VNS that includes the application server code. An

application server agent starts running or restarts each time when it receives a REGION

message from agent JOIN. Each time a REGION message is received, if the node’s

region is changed, agent VNS resets the application layer state and waits for the result of

leader election from agent JOIN (LEADER message). Once the leader status is

determined, agent VNS decides whether the node shall behave as a Server node or a

Backup Server node or a Pure Client (using the Coin Tosser module). A Server node

 244

initializes its state and starts to process application packets right away. A Backup Server

node needs to get its state synchronized with the Server’s state before it can process

application packets.

A.4 VNClient, the Parent Class of Application Clients

Although a client process doesn’t need to know anything about the VNLayer, it can’t

communicate directly with a virtual node before its packets are tagged with its region id.

This is done by Agent VNC, defined in class VNClient, by inserting a VNLayer message

header to every client message.

In VNSim, the class for a client process shall be declared as a child class of VNClient.

Then, an application client in VNSim is simulated by an extended Agent VNC. An

application client agent starts running when it gets a REGION message from agent JOIN.

A.5 Issues with Port Number

In ns-2, an agent can only hear messages destined to its listening port. However, for state

synchronization purpose, the agent VNS on a Backup Server node needs to hear all the

server messages received by the client process on the same node. However, these server

messages are sent to the port used by agent VNC, rather than the port used by agent VNS.

To solve this problem, in the application layer code for a client processes, when a server

message is received, a copy of the message is sent to agent VNS on the same node using

a loopback message.

A.6 Modified VNSim Structure for Routing Applications

The VNSim with the structure introduced above was used to simulate our VNLayer based

MANET address allocation protocol and routing protocols such as VNAODV and

 245

VNRIP. When VNSim is used to simulate VNLayer based routing applications, we

modified the VNSim structure so that it accepts data traffic generated by third party

traffic generators. In ns-2, built-in MANET routing protocols are implemented as

individual agents working at the routing layer, which decides how to forward incoming

traffic or local data traffic generated by the node itself. The built-in routing agents can

process TCP or UDP data traffic generated by built in traffic generator agents. To make

the performance comparison between the ns-2 built-in routing protocols and our

VNLayer based routing protocol fair, we made VNSim an ns-2 compliant routing agent.

Figure A.6-1 shows the architecture of the modified VNSim. Now, the functions provided

by the three types of ns2 agents are integrated into one agent called Agent VN. Agent

VNC in the original structure is not needed when the client process is provided by a built-

in traffic generator agent87. The client message handler module that was implemented in

agent VNC is now provided by agent VN. Agent VN works at the ns-2 routing layer.

When a client message is received from a local traffic generator agent, agent VN adds the

87 In our simulation, the ns-2 agent, CBR is used to generate constant bit rate UDP traffic.

.Appl. Packet

.

Application
Layer

Agent VN

ns-2 platform

Application Server 3rd Party Client Agent

ns-2 link layer

State Read/Write

VNLayer
(ns-2 routing
layer)

Appl. Packet

Figure A.6-1 the Architecture of the Modified VNSim

 246

VNLayer packet header to the message and passes it to the application layer. The leader

election module and location checking module implemented by Agent JOIN are also

provided by agent VN. The integration of all the VNLayer function modules into one

agent allows us to use only one ns2 port number for the simulated VNLayer. Inter-agent

communications are not done by function calls within the same agent rather than

loopback messages. This simplifies the simulator code. The problem with this

implementation is that the leader election module can only used by a single VNLayer

based application.

A.7 Interface Functions required by VNSim for VNLayer
based Applications

Table A.7-1 lists out all the interface functions that have to be implemented by the

application layer code. In addition to these functions, the VNLayer sending queue is

accessible by the application layer. By calling a function enqueue(), the application layer

can easily pass a response message down to the VNLayer.

Table A.7-1 Interface Functions Required by the VNLayer Class in VNSim

Interface Function Purpose

equal() A function used by the VNLayer consistency manager to check if two application

layer packets are the response to the same incoming message.

getState() Used by the VNLayer to retrieve application layer state

saveState() Used by the VNLayer to synchronize application layer state with incoming SYN-

ACK messages

 247

getStateSize() Used by the VNLayer to get the size of the application layer state in bytes

getStateHash() Used by the VNLayer to retrieve a hash of the application layer state

handlePacket() Used by the VNLayer to pass application layer packets to the application layer

handleApplMsg() Used by the VNLayer to pass application layer packets to the application layer

when a node is out of sync

handleClientPacket() Used by the VNLayer to pass client messages to the application layer when the

option Powerful Emulator is turned on

handleHello() Used by the VNLayer to pass a Hello event to the application layer when any

message with a VNLayer header is received by the VNLayer.

Server_init() Used by the VNLayer to initialize the application layer state when a node enters a

new region

 248

Bibliography

[1] M. Brown et al., "The Virtual Node Layer: A programming Abstraction for Wireless
Sensor Networks," in Proceedings of The International Workshop On Wireless
Sensor Network Architecture (WWSNA), Cambridge, MA, Apr. 2007.

[2] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte, "Timed virtual stationary
automata," in in 9th International Conference on Principles of Distributed Systems
(OPODIS 2005), 2005.

[3] S. Dolev et al., "Virtual mobile nodes for mobile adhoc networks," in in Proceeding
of the 18th International Conference on Distributed Computing (DISC).

[4] S. Dolev, S. Gilbert, E. Schiller, A. Shvartsman, and J. Welch, "Autonomous virtual
mobile nodes," in DIAL-M-POMC 2005: Third Annual ACM/SIGMOBILE
International Workshop on Foundation of Mobile Computing, Cologne, Germany,
2005, pp. 62-69.

[5] S., Gilbert, S., Schiller, E., Shvartsman, A., and Welch J. Dolev, "Autonomous
Virtual Mobile Nodes," in the 3rd Workshop on Foundatioins of Mobile Computing
(DIAL-M-POMC), Sept. 2005.

[6] S. Dolev, L. Lahiani, N. Lynch, and T. Nolte, "Self-stabilizing mobile node location
management and message routing," in 7th International Symposium on Self-
Stabilizing Systems (SSS 2005), Barcelona, Spain, Oct. 2005.

[7] S. Gilbert, Virtual Infrastructure for Wireless Ad Hoc Networks, 2007, Ph. D. Thesis,
MIT.

[8] J. Y. Yu and P. Chong, "A survey of clustering schemes for mobile ad hoc networks,"
IEEE Communications Surveys & Tutorials, vol. 7, no. 1, First Qtr., 2005.

[9] L., Evans, D. Hu, "Localization for Mobile Sensor Networks," in Tenth Annual
International Conference on Mobile Computing and Networking (Mobicom 2004),
Philadelphia, 2004.

[10] Jang-Ping Sheu, Wei-Kai Hu, and Jen-Chiao Lin, "Distributed Localization Scheme
for Mobile Sensor Networks," IEEE Transactions on Mobile Computing, vol. 9, no.
4, pp. 516-526, April 2010.

[11] H. Chen, M. H. T. Martins, P. Huang, H. C. So, and K. Sezaki, "Cooperative node
locali-zation for mobile sensor networks," in Proceedings of The 5th International
Conference on Embedded and Ubiquitous Computing, EUC 2008, Shanghai, 2008,
pp. 302-308.

[12] Prasun Sinha, Raghupathy Sivakumar, and Vaduvur Bharghavan, "Enhancing Ad
Hoc Routing with Dynamic Virtual Infrastructures," in Infocom 2001, pp. 1763-
1772.

 249

[13] Charles E. Perkins and Elizabeth M. Royer, "Ad hoc On-Demand Distance Vector
Routing," in the Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA, February 1999, pp. 90-100.

[14] Gary S. Malkin, “Routing Information Protocol V2”, RFC 2453, IETF, January,
1993.

[15] M. Al-Shurman, S.-M. Yoo, and S. Part, "A Performance Simulation for Route
Maintenance in Wirelesss Ad Hoc Networks," in Proceedings of the 42nd annual
Southeast region conference, New York, NY, 2004, pp. 25-30.

[16] Z. Bilgin, B. Khan, and A. Al-Fuqaha, "Only the Short Die Old: Route Optimization
in MANETs by Dynamic Subconnection Shrinking," in The 6th International
Wireless Communications & Mobile Computing Confe-rence, Caen, France, 2010.

[17] Ralph Droms, Dynamic Host Configuration Protocol, RFC 2131, Internet
Engineering Task Force, Network Working Group, March 1997.

[18] Charles E. Perkins, J. T. Malinen, R. Wakikawa, E. M. Belding-Royer, and Y. Sun,
"IP Address Autoconfiguration for Ad Hoc Networks", July 2000, draft-ietfmanet-
autoconf-01.txt, Internet Engineering Task Force, MANET Working Group.

[19] David B. Johnson and David A. Maltz, "Dynamic Source Routing in Ad Hoc
Wireless Networks," Kluwer Academic Publishers, Mobile Computing, vol. 353,
1996.

[20] Hongbo Zhou, "A survey on routing protocols in MANETs," Department of
Computer Sciences, Michigan State University, Technical report MSUCSE-03-8,
2003.

[21] S. Nesargi and R. Prakash, "MANETconf: Configuration of hosts in a mobile ad
hoc," in Infocom 2002.

[22] Baochun Li Zhihua Hu, "ZAL: Zero-Maintenance Address Allocation in Mobile
Wireless," in the Proceedings of the 25th International Conference on Distributed
Computing Systems (ICDCS 2005), 2005, pp. pp.103-112.

[23] S. Thomson and T. Narten, IPv6 Stateless Address Autoconfiguration, RFC 2462,
Internet Engineering Task Force, Zeroconf Working Group, December 1998.

[24] R. Wakikawa, Jari T. Malinen, C. E. Perkins, A. Nilsson, and J. Tuominen, “Global
Connectivity for IPv6 Mobile Ad Hoc Networks”, INTERNET-DRAFT,IETF,
Mobile Ad Hoc Networking Working Group , November 2001.

[25] J. Moy, OSPF Version 2, RFC 2328, IETF, April, 1998.

[26] Brad Karp and Kung H. T, "GPSR: greedy perimeter stateless routing for wireless,"
in Proceedings of the 6th annual international conference on Mobile computing and
networking, 2000, pp. 243-254.

[27] Charles E. Perkins and Pravin Bhagwat, "Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers," in ACM SIGCOMM 1994
Conference on Communications Architectures, Protocols and Applications, 1994.

[28] Richard Bellman, "On a Routing Problem," Quarterly of Applied Mathematics, no.
16(1), pp. 87-90, 1958.

 250

[29] P. Jacquet et al., "Optimized Link State Routing Protocol for Ad Hoc Networks," in
Multi Topic Conference. IEEE INMIC 2001. Technology for the 21th Century.
Proceedings., 2001.

[30] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[31] J. Broch, D. A. Maltz, D. B. Johnson, and Y. C. Hu, "A performance comparison of
multi-hop wireless ad hoc network routing protocols," in Mobilecom, 1998, pp. p85-
97.

[32] Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan, "CEDAR: a Core-
Extraction Distributed Ad Hoc Routing Algorithm," in Infocom 1999, pp. 202-209.

[33] L. Ritchie, H. S. Yang, A. Richa, and M. Reisslein, "Cluster overlay broadcast
(COB): Manet routing with complexity polynomial in source destination distance,"
Mobile Computing, IEEE Transactions on Publication, vol. 5, no. 6, June 2006.

[34] C.-C. Chiang, H.-K.Wu, W. Liu, and M. Gerla, "Routing in clustered multihop,
mobile wireless networks with fading channel," in Proc. IEEE Singapore Int. Conf.
on Networks, 1997, pp. 197-211.

[35] R. Braden, Requirements for Internet Hosts -- Communication Layers, October
1989, RFC 1122, IETF.

[36] Mike Spindel, Simulation and Evaluation of the Reactive Virtual Node Layer, 2007,
Mater's Thesis.

[37] N. Lynch, R. Segala, and F. Vaandrager D. Kaynar, "The theory of timed i/o
automata," Synthesis Lectures on Computer Science, 2006.

[38] M. Spindel. The Virtual Node Emulator. [Online]. https://carbide.mit.edu/trac/vne

[39] The Network Simulator, ns-2. [Online]. http://www.isi.edu/nsnam/ns

[40] C. Perkins, E. Belding-Royer, and S. Das, "Ad Hoc On-demand Distance Vector
Routing", RFC 3561, July 2003, IETF, Network Working Group.

[41] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris, "A scalable location service for geographic ad-hoc routing," in Proceedings
of the 6th ACM International Conference on Mobile Computing and Networking
(MobiCom 2000).

[42] P. Gupta and P. Kumar, "Capacity of wireless networks," University of Illinois,
Urbana-Champaign, Technical report 1999.

[43] G. Pei, M. Gerla, and X. Hong, "LANMAR: Landmark Routing for Large Scale
Wireless Ad Hoc Networks with Group Mobility," in Proceedings of IEEE/ACM
MobiHOC 2000, Boston, MA, Aug. 2000, pp. 11-18.

[44] Kaixin Xu, Xiaoyan Hong, and Mario Gerla, "Landmark routing in ad hoc networks
with mobile backbones," Journal of Parallel and Distributed Computing archive,
vol. 63, no. Issue 2, Special issue on Routing in mobile and wireless ad hoc
networks, pp. 110-122, 2003.

[45] T. Clausen and P. Jacquet, "Optimized Link State Routing Protocol (OLSR)," in RFC
3626, IETF Network Working Group, October 2003.

 251

[46] J Broch, DA Maltz, DB Johnson, Y-C Hu, and J Jetcheva, "A performance
comparison of multi-hop wireless ad hoc network routing protocols," in proceedings
of the Fourth Annual ACM/IEEE International Conference on Mobile Computing
and Networking(Mobicom98), October, 1998.

[47] Ping Ji, Zihui Ge, J. Kurose, and D. Towsley, "A comparison of Hard-state and Soft-
state Signaling Protocols," IEEE/ACM Transactions on Networking, vol. 15, no. 2,
pp. 281-294, April 2007.

[48] D. D. Clark, "The design philosophy of the DARPA internet protocols," in
Proceeding of SIGCOMM, Stanford, CA, August 1988.

