
Transaction Commit in a Realistic Timing Model

Brian A. Coan

Bell Communications Research

Jennifer Lundelius Welch

Massachusetts Institute of Technology

Abstract: An irxporta::t problem in the construction of faut-tolerant distributed

database svsrems IS tile design of noiihlocking tra:rsaczion commit protocols. This

problem has Leen extns:vcy stucted for synchronous systems (i.e.. systems where

no messages Lver arrive late;. In this paper. the sy::ehronv assumption is relaxed. A

new parr7ally synchronous iming n&ocie is given. In this modc, a new nonMocking

randomized ransaction commit. ircitocol is given, based on a 13y’zantine agreement

protocol of Ben-Or. The new protocol works as long as fewer than half the processors

fail. A lower bouud is proved, showing that the number of processor faults tolerated

is optimal. The protocol exhibits a graceful degradation property: when more than

half the processors fail, the protocol blocks, but no processor produces a wrong

answer. A notion of asynchronous round is defined and the protocol is shown to

terminate in a small constant expected number of asynchronous rounds. The final

resut is that no protocol in tips model can tenninate in a hounded expected number

of steps, even if processors are synchronous.

Keywords: Distributed databases, transaction commit, time bounds, fault toler

ance, lower bounds, randormzed protocols.

This work was supported by the Defense Advanced Research Projects Agency

(DARPA) under Contract NOOU14-83-K-U25. by the National Science Founda

tion under Grant DCR-83-02391. by the Office of Army Research under Contract

DAAG29-84-N-OO.38. and Lx- the Office of Naval Researri: under Contract N00014-

.5KO165. A preliminary version of this paper apeared in the Proceedings of the

Fifth Annual ACM Symposium a,, Principles of Distributed Sysims CLi.

I

2

1. Introduction

in a distributed database system a transaction may be processed condurrentiy

at several different processors. To maintain the integrity of the database these pro

cessors must take consistent action regarding the transaction either the results

of the transaction are installed in the database at all processors (the transaction is

committed), or the results are installed at no processor (the transaction is aborted).

The decision whether to abort or commit a transaction is made by a transaction

commit protocol. The objective for such a protocol is to commit as many transac

tions as possible subject to the constraint that each processor must be able to abort

a transaction unilaterally.

A transaction commit protocol must never produce inconsistent decisions, and

it must allow unilateral aborts. ft has some leeway, though. Some protocols can

produce more aborts than others, and some protocols fail to terminate in some

situations. If failures can cause some nonfaulty processors to remain undecided

about the fate of a transaction (at least as long as the failure persists), a processor

is said to block, and the protocol is called blocking. Otherwise, the protocol is

nonblodcing. The most common transaction commit protocol in practice, two phase

commit, is a blocking protocol. A blocking protocol is preferable in real systems to

one that allows inconsistent decisions to be made, since it allows consistent decisions

to be reached after the failures are repaired. A nonbiocking protocol would be more

preferable still.

Many elegant noublocking transaction commit protocols S} [DS have been

developed for completely synchronous systems. obstacle to using these proto

cols in real systems is that a single violation of the timing assumptions (i.e., a late

message) can cause the protocol to produce the wrong answer. The most common

alternative timing model, the completely asynchronous model, unfortunately does

not allow any solution to the transaction conunit problem. either randomized or

deterministic.’ We give a new timing model that is intermediate between the syn

chronous and asynchronous models previously studied. In this model, we give a

new nonblocking transaction commit protocol.

zThe intuition behind this impossibility result is the folLowing. Suppose there is a
protocol that works in an asynchronous system, and guarantees that nonfaulty processors
eventually decide (with probability 1); if the processors all begin with commit and there
are no failures, then they all decide commit; and if any processor begins with abort, then
the nonfaulty processors decide abort. Consider a run in which aLL processors but p begin
with commit and are nonfaulty, while p fails initially. Eventually, the rest of the processors
must decide. Since p could have started with abort, the processors must decide abort. But

3

We model real systems in which messages are usually delivered within some

known time bound but sometimes come late. We do this by assuming a completely

asynchronous system, in which relative processor speeds are unbounded and mes

sages can take arbitrarily long to arrive, and letting the timing behavior affect the

correctness conditions for the transaction commit problem. as follows, If every pro

cessor initially wants to commit the transaction, then the common decision must be

to commit, provided no processors fail and all messages arrive within some known

flxed time bound, If any processor initially wants to abort the transaction, then the

common decision must be to abort, no matter what the timing and fault behavior

of the system is. This problem definition takes advantage of the leeway allowed in

specifying when processors must commit. Assuming that failures and late messages

are relatively rare, the overall progress of the transaction processing system will not

be impeded very much. A similar division is made in [DLS], in which properties

that must always hold are separated from properties that only need hold when the

system is weli.behaved. in most other respects our model differs from theirs.

We prove that in our model no transaction commit protocol can terminate in

a bounded expected number of steps. Consequently a new measure is needed to

analyze the time performance of our protocol. One of the contributions of this

paper is such a measure, which we call an asynchronous round. Our definition of

asynchronous round is strong enough to allow us to show that our protocol termi

nates in a small constant expected number of asynchronous rounds. In Section 2

we argue that this notion of asynchronous round is not unrealistically strong.

Randomization is needed in the protocol because a result of [DDSI implies that

no deterministic protocol is possible. In order to analyze a randomized protocol,

we must define the adversaries against which the protocol will work. Our notion of

the adversary is drawn from [CMSI. The adversary in our model chooses the order

in which processors take steps, when each message will be delivered, and which

processors fail and when (as long as fewer than half fail). It makes these decisions

dynamically, during the execution of the protocol, using unlimited computational

power. The adversary has available at any point in the execution all information

about the hardware and software of the processors, and the pattern of communica

tion up to that time, but it does not know the contents of the messages sent, nor

the local stares of processors, nor the processors’ local random choices, unless that

there is another run that looks identical up to the decision point to all the processors except
p. in which p begins with commit, and all its messages are delayed until after the deciston
is made. But in this run, the decision should have been commit.

4

information is deducible from the pattern of communication. We will he careful to

design our protocol so that it is not deducible.

Our protocol uses a modified version of a solution to the agreement problem.
In the agreement problem each processor begins with, an initial value, 0 or 1, and
decides on a final value. All nonfaulty processors’ final values must be equal, and if
all processors have the same initial value, then that value must be the final value.
Thus if one processor begins with 0 and the rest with 1, either 0 or 1 is a correct
answer to the agreement problem, whereas in the trasxsattion commit problem, the
answer must be 0 (if 0 is identified with abort).

An important difference between the transaction commit problem and the
agreement problem is that in the former, aU processors that decide are required
to agree, including processors that decide and subsequently fail. This strict agree
ment condition is imposed because we assume that failed processors will eventually
recover. The hope is that processors that fail and subsequently recover can be
reintegrated using a separate recovery protocol. Skeen’s thesis has an excellent dis
cussion of recovery protocols [S]. We do not discuss these protocols further in this
paper.

We assume that the faulty processors fail by crashing (i.e., stopping without
warning). This is a realistic assumption that is commonly made in the database
literature [S]. The number of faults tolerated by our protocol is optimal, since we
prove a matching lower bound. Our protocol works as long as more than half the
processors are nonfaulty. An important property of our protocol is that it degrades
gracefully if the bound on the number of faulty processors is exceeded instead of
producing a wrong answer, the protocol simply fails to terminate.

At the beginning of our protocol, processors exchange some messages, and then
execute a modification of Ben-Or’s asynchronous agreement protocol [Be] to decide
the fate of the transaction. The preliminary message exchanges serve two purposes:
first, the differences between the input-output relations for the transaction commit
and agreement problems are resolved, and second, a number of identical random bits
are distributed.’ These identical random bits are used in the agreement protocol
to lower the expected running time from exponential to constant. There is a body
of work dealing with attaining constant expected running time for the agreement

‘We have not solved the global coin toss problem, however, because our protocol does
not guarantee that the identical random bits are successfully distributed; the nature of the
transaction commit problem, as discussed above, is such that our protocol can tolerate
this failure.

5

problem [R] [CMS]; our technique does not solve this problem, for the following
reason. In our protocol, if the identical random bits are not distributed in a timely
fashion, processors can unilaterally decide 0 (abort), because we are solving the
transaction commit problem. Such action is not an option for processors trying
to solve the agreement problem. because it could violate the condition that all
processors decide I if they all start with I.

The transaction commit protocols of Skeen [S] and Dwork and Skeen [DSI
tolerate any number of processor faults, while our protocol only handles fewer than
haff of the processors failing. However, if half or more of the processors fail, our
protocol does not produce a wrong answer but merely fails to terminate, leaving
open the opportunity for processors to recover. Late messages are not a problem
for our protocol because of our model, but as we noted earlier they can cause the
prot000is in [5] and [DS] to produce a wrong answer.

In summary, the principal contributions of this paper are a realistic timing
model, a method for analyzing the time performance of protocols in this model,
an efficient fault-tolerant protocol for the transaction commit prob’em, and lower
bounds showing that the protocol has optimal fault-tolerance, and that no protocol
can terminate in a constant expected number of steps for each processor.

Following an exposition of our formal mode! in Section 2, we present our ran
domized transaction commit protocol in Section 3. Section 4 contains the lower
bound proof showing that our protocol tolerates the maximal number of faulty pro
cessors. Finally, in Section 5 we show that no transaction commit protocol can
guarantee that each processor terminate in a bounded expected number of its own
steps, even if processors are synchronous.

2. Model

Processors are modeled as state machines that communicate by sending mes
sages. Messages can take arbitrarily long to arrive. Our protocol works even in a
very weak model in which there is no bound on the relative frequency with which
processors take steps, and in which there is no atomic broadcast of messages. Our
lower bound results are shown for the stronger case in which processors run in lock-
step synchrony and possess atomic broadcast, in this section we present the weaker
model. In Sections 4 and ö we indicate the necessary changes for the stronger model.
Our model is similar to those in ‘FLP and [ODS].

Throughout this paper. I is identified with “commit and 0 with abort.”

6

2.1 Basic Model

A raw message consists of some text, and the names of the sending and receiving
processors. A message is a (raw message, integer) ordered pair; the integer denotes
the sending time, as will be explained later. The reason for distinguishing between
messages and raw messages is that we do not wish to require timestamps on all
(raw) messages sent by processors, yet this information is useful in the exposition
of the model for distinguishing multiple instances of the same raw message and
determining message delays.

A processor is an infinite state machine, together with a message buffer, and a
random number generator. The message buffer holds messages that have been sent
to tim processor but not yet received, and is modeled as a set of messages. The
random number generator supplies an infinite sequence of n-bit strings. The state
machine’s transition function uses the current state, current random bit string and
set of raw messages received to compute the new state and raw messages to be sent.
Certain states are initial states, designated (id, initval), where id is a nonnegative
integer and initual is either 0 or I. The id element of the initial state is the
processor’s name, or identification number. The initval element is the processor’s
initial value. Each processor can send zero or one message to every processor in one
step. There is an integer in each processor’s state, called its clock, which is 0 in an
initial state, and is always incremented by 1 by the transition function. Thus, the
clock counts how many steps the processor has taken so far. A protocol is a set of
n processors.

A configuration C consists of n states, one for each processor, and ii sets of
messages, one for each processor’s buffer. An initial configuration has all processors
in initial states and nIl buffers equal to the empty set.

An event is denoted (p.M. 6). in which processor p receives the set of messages
M (which can be empty), and the random bit string b.

An event e = (p, M, b) is applicable to configuration C if every message in M
is an element of p’s buffer in C. Let s and M’ be the state and set of raw messages
resulting from applying p’s transition function to p’s state in C. 6, and the raw
messages extracted from M. The configuration resulting from applying e to C,
denoted e(C), is obtained from C by removing all messages in Al from p’s buffer.
changing p’s state to s. and adding the message (in.. 1), for each m E M’. to the
appropriate buffer, where i is the value of p’s clock in s.

7

A schedule is a finite or infinite sequence of events. A finite schedule c
e1e2 . ej. is applicable to configuration C if e1 is applicable to C, e2 is applicable
to e1(C), etc. The resulting configuration is denoted u(C). An influiite schedule is
applicable to C if every finite prefix of the schedule is applicable to C’.

Given configuration C, and schedule applicable to C,, we defae the run I? =

run(C;, a) obtained from C1 and a, as follows. If a = e1e, . e is finite, then ft is
the sequenceC1C1C2e.2 ekCk_I, where C..1 =e1(C). 1 5 i 5 k. Ifa = e1€2 ... is
infmite. then R is the sequence C,e1C2e2.. .. where, for all i. CiejC3e2 .e,C,ti =

run(Ci, C, e2 e-). We also denote a by sched(R). Informally, a run is a schedule
together with its associated configurations.

Processor p is nonfaulty in an infinite run or schedule if it takes an infinite
number of steps: otherwise it is faulty. An infinite nan or schedule is failure-free
if no processor is faulty in it. Since the interleaving of processors steps in a ran
or schedule may be arbitrary, no partcu1ar degree of synchronization is necessarily
achieved.

A message sent by processor p at event e in infinite run R is guarauteed if e is
not the last step of pin 1?. An infinite run .1? is t-admissible, for 0< t 5 rz, if

• the first configuration is an initial configuration,
• at most t processors are faulty, and
• all guaranteed messages sent to nonfaulty processors are eventually received.

The notion of guaranteed messages is used to model the lack of atomic broadcast.
Since messages sent at a processor’s last step do not have to be received, we effec
tively model a processor failing in the middle of a broadcast.

There are two disjoint sets of decision states,)‘ and l’j, such that if a processor
enters a state in I’0 or Y1 it stays in that set forever. A processor decides v when
it is in a state in Y,. A run is deciding if every nonfaulty processor decides. A
configuration C has decision value v if there is some processor whose state in C is
an element of Y,.

2.2 Timing Constraints

We fix a positive constant K 1, which is used to define late messages. A
message rn from p to q is late in nan R = C,ejC2e2... if event e, adds vu to qs
message buffer, and one of the following is tnie. (1)’ There is no event in R that
removes m from q’s message buffer, and some procsor takes more than K steps
in 1? alter e5. (2) There is an event Cr that removes vu from qs message buffer,

S

and some processor takes more than K steps in the schedule e+l e,. A run is
on-time if it contains no late messages.

Ideally we would like a processor to decide in a constant expected number of
its own steps. Unfortunately, as we prove in Section 5, we cannot do this, even if
processors run in lockstep synchrony. Instead, we characterize the time performance
of our protocol using the following definition. Given an infinite run, a processor is
defined inductively to be in a particular asynchronous round (or round) as follows.
Asynchronous round 1 begins for processor p when p first takes a step and ends
after p’s K” step. Asynchronous round r, r > 1. begins for p at the end of p’s
round r — 1 and ends either K of p’s steps after the end of p’s round r — 1, or as
soon as p receives every received message sent by a processor q in q’s round r — 1,
whichever happens later. (We say “every reteived message” in order to make sure
that no round lasts infinitely long due to p’s waiting for a non-guaranteed message
from q that never arrives.)

This definition uses two criteria for ending a round, the number of processor
steps taken and the collection of messages received. These criteria seem naturai in
our timing model, in which processors can take actions depending on the receipt of
messages, as ve11 as on timeouts.

A processor cannot compute its current asynchronous round; the definition is
for our use as omniscient observers as we analyze protocols. The reason we require
a round to last at least K steps is to prevent a round from collapsing to nothing if
no messages are sent in the previous round, If processors take steps in round-robin
order, and receive and send messages only at the beginning of a round, and if each
message sent at the sender’s j’ step is received at the recipient’s (i + K)tI step (for
all i), then this definition is essentially the same as the synchronous round definition
in [DSJ. Thus this definition is not unreasonably strong.

2.3 Safety Conditions

The following definition restricts what mnst happen if a processor decides, but
does not require any processor to decide. A protocol is a transaction commit protocol
if for every t-admissible run

• Agreement Condition: Every configuration has at most one decision value.

• Abort Validity Condition. if the initial vahie of any processor is O, then no
configuration has decision value 1.

9

• Commit Validity Condition: If the initial value of all processors is 1 and R is
failure—free and on-time, then no configuration has decision value 0.

To exclude uiiinterestiug protocols, we require that each processor must be able
to receive at least n messages at each step. Otherwise, processors could swamp the
message system, causing messages to become late not because the message system
misbehaves, but because the ability of the processors to handle all the incoming
itessage traffic is inadequate.’ For instance, the protocol “cause the run to be not
on-time by flooding the message system and then abort is not of much practical
:nterest.

2.4 Adversary

The adversary can be considered a scheduler — it decides which processor
takes a step next and what messages are received. In the introduction we gave an
informal description of the adversary This subsection formalizes the notion.

The rnesage pattern of finite run R = C1e1... ekCk..1.where e, = (p1,iJi,f1)

for all I < < A’. is the sequence of triples (p1, E,, P,). (4P,, Ek, Pk), where P is
the set of processors to which messages were sent by event e1, and E is a set of
Integers indexing the events in the run that sent the messages, M, received in e.
The point of making this definition is to isolate the pattern of message sending and
receiving while hiding the contents of the messages.

An adversary is a function that takes a message pattern, and returns a processor
p and a set E of integers (which may be empty) satisfying the following condition.
i i is in E, then in the j1 element of the message pattern, (pi, E1, P), p is in P
(i.e., there actuaily was a message sent to p at the event), and in no element of
the message pattern does p receive this message (i.e., the message in question has
not yet been received). Thus, the adversary decides on the next processor to take
a step, plus a collection of messages to be received.

Let F be the collection of all n-tuples of infinite sequences of n-bit strings. Each
element of F is a possible set of choices returned by then processors’ random number

‘Suppose each processor can send n messages per step but only receive n—i. Consider
the protocol: At each step, broadcast a message; at step 1, decide 0. We now show that
no irfinite run is on-time. Let R be an infinite run. After Kr.(n — 1) 4- ri events,
(Kn(r- — 1) + n)n messages have been sent, and at most (Krz(n — 1) + n)(u — 1)
have been received. So there are at least Kn(n — 1) — n outstanding messages. By the
pigeonhole principle, some processor p has at cast K(n — 1) ± I outstanding messages
(to be receved). It will take pat least K ± I steps to receive all those messages, by which
time the run will no lo,mer be on-time.

10

generators in an infinite run. A run is uniquely determined by an adversary A, an
initial configuration I, and an element F of F. Denote this run by run(A, .1, F).
The construction of run(A, I, F) =C1e1C2e2... is inductive. Let C1 = I. Suppose
the run up to configuration C, has been constructed. Let p and E be the result of A
acting on the message pattern of run C1e1 . C1. Then e consists of the processor
p, the messages sent to p in all the events indexed by E, and the next unused bit
string in the sequence for p in F. Finally, C÷1 = e1(C1). Since the adversary is
a total function, run(A,I,F) is an infinite run, and thus at least one processor is
nol]Saulty.

If the adversary were not restricted in any way, it could cause all processors
(but one) to fail or no messages to be delivered, and no protocol would he possible.
We limit the power of the adversary in the following reasonable way. We define a
t-admissible adversary to be an adversary such that for all initial configurations I
and all F in F, run(A, I, F) is t-admissible.

For predicate P defined on runs, let Pr[P1 be the probability of the event
{F € F: run(A. I. F) satisfies P}, for a fixed adversary A and initial configuration
I.

The expected value of any complexity measure for a fixed randomized protocol
is defined as follows. Let T be a random variable that given a rim returns the
complexity measure of interest for that run. For fixed t-adxnissible adversary A and
initial configuration I. let the expected value ofT, taken over the random numbers
F, be denoted E(TA,J). Define the expected value for the protocol, ET, to be
maxAI{E(T.4,J)}.

2.5 Liveness Condition

Given jnffijte rim I? and integer r, let DO\E(R. r) be the predicate that every
nonfaulty processor decides by its asynchronous round r in B. A protocol is t
nonblocking if for any t-admissible adversary A and any initial configuration I,

lix PrnoN(rIrnAI.F).r)1 = 1.

2.6 Problem Statement

Our goal is to design a t-nonblocking transaction commit protocol.

11

3. The Randomized Commit Protocol

Our protocol to solve the transaction commit problem is based on the asyn
chronous agreement protocol in [Be]. Similar protocols have been widely used [Br]
[CC] [CMS [R]. For the rest of this section, we assume a fixed t with ii > 2t.

3.1 The Protocol

In this subsection, we present the randomized transaction commit protocol by
describing, for each processor p, the states and transition function of p. First, we
give asl informal description.

Throughout the protocol each processor keeps a vote telling what it cunently
wants to do with the transaction. The processor with id 0 is the coordinator; at its
first step, it chooses vi random bits and distributes them to the other processors, the
participants, by broadcasting a coins message containing the bits. If a participant

receives no message at its first step, it sends a request message to the coordinator
(to try to jog it awake); if no reply is received within 2K steps, the participant sets

its vote to 0 and decides 0. If a participant receives a message at its first step,
it extracts the vi bits and broadcasts them in a coins message, to indicate “I am
participating in the protocol.” If a processor does not receive a coins message from
everyone within 2K steps after broadcasting one, it sets its vote to 0 and decides 0.
Then each processor broadcasts its vote. If a processor does not receive vi votes for

1 within a short time, it sets its vote to 0, but remains undecided.

The rest of the protocol proceeds in stages (as in [Be]), numbered from 1 up
without bound. In stage s, each processor p broadcasts its vote in a stage (s, 1)

message and waits to receive n — t stage (s, 1) messages. If p receives more than

n/2 stage (s, 1) messages with vote v C {0, 1}, then p broadcasts v in a stage (s,2)

message; otherwise p broadcasts “?“ in a stage (s, 2) message. Then p waits to

receive vi — t stage (s,2) messages. If p receives a stage (s,2) message with value

v € {0, 1}, then p sets its vote to U; otherwise, p sets its vote to a random bit, either

the random bit from the coins message if s vi, or else a locally-determined

random bit. If p receives vi — t stage (s, 2) messages for value v C {0, 1}, then p
decides v.

Processor p uses the following constants, variables and subroutines. Constants

are p, ii and K. Variables are:

cIock: nonnegative integer; initially 0.

12

• stage,,: values are “asleep,” request,” “coins,” “vote,” (s, 1) and (5,2) for all
s 1; initially “asleep.”

• timer: nonnegative integer or nil; initially nil.

• coins: n-bit string or nil; initially nil.

• vote,,: boolean; initially p’s initial value.

• decider: boolean or nil; initially nil.

The text of each raw message consists of the sending processor’s current stage,
and optionally a value (0, 1 or “7”), and an n-bit string.

Below we describe p’s transition function, acting on state q of p, set SI of
raw messages, and n-bit string h. The description consists of several clusters of
pseudocode. Each cluster is preceded by a predicate on q and M. The predicate
of at most one cluster is true for any q and A’S. The state of p returned by the
transition function is obtained from q by incrementing clock, by 1, remembering
the set M, and then executing the cluster (if any) whose predicate is true of q and
M. The set of raw messages returned by the transition function is that indicated
by the send and broadcast statements of the appropriate cluster. If no cluster is
true, then no raw messages are sent, the only changes to the state are that clock,,
is incremented and the received messages are remembered.

/* coordinator initiates protocol by distributing n random bits */

stager = “asleep” for p = coordinator:
coins b
stage,, := “coins”
timer clock, + 2K
broadcast (stage,,”?”,coims,)

/* non-coordinator wakes up and requests that coordinator initiate /

stager = “asleep” for p coordinator and M = 0:
stage,, := “request”
timer := clock, + 2K
send “request” to coordinator

I. non-coordinator receives coins /

stage,, = “asleep” or “request” for p coordinator and
there is a message in hi with text (s, u. coins):

coins2, := coins

13

stager := COflS

timer clock,, + 2K
broadcast (stager,”?” coins,,)

1* non-coordinator times out while waiting to receive coins /

stage,, = request’ and clock,, = timers:
vote := 0
decide,, := 0

/ distributing votes ‘/

stagc = “coins” and either clock,, = imcrp or ri coins messages have been
received:

stage,, := vote”
timer clock, ± 2K
if less than vi coins messages have seen received then

voter =0
decider I

broadcast (siage,,vote,,,coins,,)

/* completing stage 0 *7

stager = “vote” and either cloc% = iimer,, or vi vote messages have been
received:

stage,, := (1,1)
if vi votes for 1 have been received

then voter 1
else vote, := 0

broadcast (stage,, vote,, coins,,)

/* finishing first part of stage s *7

stager = (s, 1) and at least n — t stage (s. 1) messages have been received:
siagep := (s,2)
if more than n/2 stage (s. 1) messages received have value v. for some t’,

then broadcast (3tage,. t’, coins,,)
else broadcast (stage,,,”?”, coins)

/* finishing second part of stage .s

stage,, = (s2) and at least vi — t stage (s. 2) messages have been received:

14

stage,, (s + 1,1)
if a stage (s,2) message received has value v, for some v, then

vote1, V

if at least n—t stage (s,2) messages received have value v then decider v

else ifs n then voter coins[s] else voep first bit of 6
broadcast (stage1,,voter, coini)

Transaction Commit Protocol: p’s transition function on input Al, fi,
and arbitrary state

3.2 Proof of Correctness

The proof is organized as follows. Section 3.2.1 shows the safety properties
i.e., that the protocol is a transaction commit protocol. Section 32.2 contains
the probabiiistic analysis, which is applied to show the i-nonblocking property in
Section 3.2.3.

3.2.1 Safety Conditions

Section 3.2.1 culminates in Theorem 8, which shows that the protocol is a
transaction commit protocol.

All the lemmas in Section 32.1 hold for any (infinite) run from an initial
configuration. In particular. they hold for runs in which more than t processors
fail. Stating these results in this way allows us to show the graceful degradation
property of the protocol.

in run fl, processor p is said to be in stage s, for s’ 1, if stage,, = (s, 1) or
(s. 2). We say p complcies stages 0 if p ever sets stagep to (s + 1,1) in R. L€t p’s
decision states Y0 and Y1 be states with decider = 0 and decid = 1 respectively;
Lemma 7 below shows that once p enters a state in ?., it stays in that set forever.
Note that if no nonfaulty processor ever receives a coins message. then no processor
completes stage 0.

Lemma 1: In any run from an initial configuration, if some prncessorp has voter =

0 initially, then eveiy stage (1,1) message has value 0.

Proof: No processor ever receives a vote message with Value 1 from p. Thus no
processor sets its vote to 1 at the end of its vote stage, and no processor broadcasts
a stage (1,1) message with value 1. 0

15

Lemma 2: In any infinite run from an initial configuration. if every processor p
has vote,, = 1 initially, and the run is failure-free and on-time, then every processor

broadcasts a stage (2,1) message with value 2.

Proof: First we show that each processor p broadcasts a vote message with value

1. Suppose either p is the coordinator, or p receives a message at its first step.

Then p broadcasts a coins message at its first step. By time K on p’s clock, each

processor receives p’s coins message and broadcasts its own coins message (if it has

not already done so). By time 2K on p’s clock, p receives n coins messages. Thus

p broadcasts a vote message with value 1.

Now suppose p is not the coordinator and does not receive any messages at

its first step. It sends a request message to the coordinator, which is received by

time K on p’s clock. The coordinator then broadcasts a coins message, if it has not

already done so, and p receives the coins message by time 2K on p’s clock. Then

p broadcasts a coins message; by time 3K on p’s clock, each processor receives p’s

coins message and broadcasts its own coins message (if it has not already done so).

By time 4K on p’s clock p receives n coins messages. Thus p broadcasts a vote

message with value 1.

Now we show that every processor p receives ii vote messages within 2K of its

clock ticks alter it broadcasts its vote. Processor p broadcasts its vote as soon as

it receives its n’ coins message. Suppose its clock reads T then. Since the run

is on-time, every other processor receives its ,i’ coins message, and broadcasts its

vote, by the time p’s clock reads -T + K. Thus p receives all n vote messages by

the time its clock reads T — 2K. Then p broadcasts its stage (1,1) message with

value 1. 0

Lemma 3: In any run from an initial configuration, if every stage (s,2) message

has value v E {0, 1), then every processor that completes stages decides vat stage

5, for any s 1.

Proof: Let p be any processor that broadcasts a stage (s, 2) message. Then p

receives at least ii — t stage (s, 1) messages, all with value,, € jO. 1) by assumption.

Sbce n > 2t. n — t > n/2. Thus p broadcasts a stage (s.2) message with valuer.

Now let p be any processor that completes stage s. Then p receives at least

n — t stage (., 2) messages, all with value v. Thus p decides v. 0

For any s 1, we call a stage (s, 2) message with value v € (0,1 } an S-message

(“S” for set”), because the receipt of such a message can cause a processor to set

16

its vote to v (if this message is among the first ii — t stage (s, 2) messages received
by the processor).

Lemma 4: In any run from an initial configuration, there is at most one value sent
in S-messages during any stage s 1.

Proof: In order to send an S-message for some value v at stage s, a processor must
receive more than n/2 stage (s, 1) messages with value u. Since processors do not
broadcast conflicting messages. fewer than n/2 processors can broadcast a stage
(s, 1) message with value to in Thus, no processor receives more than n/2 stage
(s, 1) messages with value w. and no processor sends an S-message for in at stage

0

Lemma 5: In any run from an initial configuration, if any processor decides v
before stage 1, then
(1) v = 0. and
(2) every processor that completes stage 1 decides v by the end of stage!.

Proof: Suppose p decides before stage 1.

(1) By inspecting the code, we see that p decides 0, and sets its vote to 0 before
broadcasting its vote message.

(2) As in the proof of Lemma 1, every stage (1,1) message has value 0, and by
Lemma 3, every processor that completes stage 1 decides 0. 0

Lemma 6: In any run from an initial configuration, if some processor decidesv at
stage s 1, then

(1) no processor decides w v at stage s, and

(2) every processor that completes stage s + 1 decides v at stage s + 1.

Proof: Suppose processor p decides v at stage s 1. Let q be any processor that
completes stage .s. Since p decides u at stage s, it receives at least vi — t stage (s, 2)
messages with value v before completing stage s. Thus, since vi > 2t and q receives
at least vi — t stage (.,2) messages before completing stages, at least one of these
messages is from a processor from which p receives an S-message for v in stage
s. Since processors do not broadcast conflicting messages, q receives at least one
S-message for p at stage s. By Lemma 4. q sets its vote to v, and thus q broadcasts
a stage (s + 1,1) message with value ix

(1) Ifq decides in stage s. then q decides in

17

(2) By Lemma 3, every processor that completes stage s + 1 decides v at stage

sf1. C

Lemma 7: liz any run from an initial configuration. decider changes vaiue at most

once, for evesy processor p.

Proof: Pick any processor p. if decide,, is set before stage 1, then by Lemma 5,

every processor that completes stage 1 decides v at stage 1. If decide, is set For the

first time in stage a 1, then by Lemma 6, every processor that completes stage

s + I decides v by the end of stage s + 1. Lemma 3 shows that for any r 1. if

even- processor that completes stager decides vat stager, then any processor that

completes stage r -- 1 decides p at stage r + 1.

Theorem 8: Protocol I is a transaction commit protocol.

Proof: Let R be a t-admissible run. First we show the agreement condition, that

there is at most one decision value in every configuration of 1?. If some processor

decides before stage 1. then Lemmas Sand 7 give the result. If no processor decides

until stage s 1, then Lemmas 6 and 7 give the result.

Next we show the abort validity condition. Suppose some processor begins

with initial vaiue 0. If no processor completes stage 0, then Lemma 5 shows that

no processor decides 1, If some processor completes stage 0, then all nonfaulty

processors complete stage s. for all s 0. Lemmas 1 and 3 (with is = t) give the

result.

Finally, we show the commit validity condition. Suppose H is failure-free and

on-time, and all processors begin with 1. Then Lemmas 2 and 3 give the result. C

Since Lemmas 1 through 7 are true for any (inEnite) run from an initial con

figuration, the agreement, abort validity, and commit validity conditions are true

even for runs in which more than t processors fail. This is the graceful degradation

property exhibited by our protocol.

3.2.2 Probabilistic Properties

The analysis in this subsection is directed toward showing that the probability

that all processors that complete stage s, decide by stage s, apporaches 1 as s

increases. Recall that probabilities are taken over the random information, holding

the adversary and initial configuration fixed.

i8

For the following definitions, fix adversary A, initial configuration I, awl F
and F’ in F. Let 1? = run(A, I, F) and R’ = rttn(A, I, F’).

Define F(p, k) to be the k” element in the sequence for p in F.

Dethe coins(F) to be F(O,1) (i.e.. the coordinator’s first n-bit string). It is
easy to see that if coin’p is ever nonnil in .1?. then it equals coin(F), for all p. We
denote the s’ element of coims(F) by coims(F)[s].

For processor p and s 1, define index(R, p. .s) to be the number oi steps taken
by p to complete stage .s in R. If p does not complete stage s, then index(R.p. s)
is undefined. Thus indez(R.p, s) is also the index into the sequence for p in F of
the bit string used to determine the value of voter in stage s. in case s > ii and
receives no S-message in stage s.

The next definition maps a bit to each processor and each stage s > ii in a run,
such that each stage gets new’ bits. This mapping is consistent with the mapping
implemented in the protocol for those cases where a processor uses a random bit.
Let random(R,p,s), for processor p and s > ii, be defined as follows. (1) If p
completes stages in ft. then random(Rp,s) is the first bit of F(p,k), where k =

index(R, p, s). (2) lIp does not complete stage s in ft, then randum(R, p, .c) is the
second bit of F(p, s + 1) (i.e., a safe default).

For 0 S s ii, define F and F’ to be (A, I, s)-equaiif coims(F)[i] = coims(F’)[i]
for all i, 1 5 I s. For s > n, define F and F’ to be (A,I,s)-equal if F and
F’ are (A, I, n)-equal, and for every I, n + 1. 5 i 5 s, and every processor p,
ramdom(R,p, a) = random(R’,p, a).

For a 1, define v(R, a) to be the value of an S-message sent in run ft at stage
If no S-message is sent in ft at stage a, then let v(R, a) = 0. By Lemma 4, v(R, s)

is uniquely defined.

Define MATCH(R, 8) to be the predicate that if s 5 n, then coims(F)[s] =

u(R, a), and ifs > vi, then random(R, p, s) = v(R, a) for all p.

Define SAME(R, a) to be the predicate that all processors that complete stage
& in R set their votes to the same value in stage a.

Define DECrnE(ft. s) to be the predicate that each processor that completes
stage s has decided by the end of stage a in ft.

19

The next lemma characterizes two aspects of runs that are unchanged. once an
adversary and initial configuration are fixed.

Lemma 9: Let A be an adversary; I an initial configuration. and F and F’ C F.
Let II = run(A,I,F) =C1e1C2... and R’ = run(A,I,F’) =

(1) For all i 1, the message pattern of C1e1 .. C, is the same as the message

pattern ofCc..CJ.

(2) For all processors p and ails 1, indez(R,p,s) = indez(R’,p,s).

Proof: (1) The structure of the protocol is such that the random information

does not aect which processors send messages to which other processes it only

affects the values of the local variables and the message contents. But this is the

very information not available to the adversaries under consideration. Thus, for a

fixed adversary and initial configuration, the sequence of processor steps and the

message delays are the same, regardless of the random information.

(2) Follows from (1).

The next lemma states that the value of an S-message sent in stage s + 1 only

depends on the random information available through stage y, once an adversary

and initial configuration are fixed.

Lemma 10: Let R = run(A, I, F) and 1?’ = run(A, I, F’) for adversary A, initial

configuration I, and F andF’ in F. HF and F’ are(A, I.s)-equal. then v(R,s-rl) =

v(R’,s +- 1) for any s 0.

Proof: By Lemma 9, the message patterns for R and R’ are the same. Since F and

F’ are (A, I. 5)-equal. the random information that affects the local variables and

message contents in R and .1?’ up through stage s is the same in F and F’. Thus,

the values of corresponding processors’ variables, and the contents of corresponding

messages sent up through stages are the same in 1? and R’. The random information

used in stage s 1 is not used until the end of stage s + 1, so the same messages are

sent in stage s + 1 in H and H’. even though the stage s + 1 random information

might be different in F and F’. 0

The next lemma states some simple relationships between MATCH, SAME, and

DECEDE.

Lemma 11: Let B = run(A, I, F) for adversary A, initial configuration I and

F€7. For alls1,

(1) MATCH(R,s) implies SAME(R,s), and -

20

(2) SAMEQR, s) implies DECWE(R, s + 1).

Proof: Fix s 1.

(1) If . ii, then MATCH(R,S) means that coin4F)(sj = v(R,s). Thus coinsp
has the same value as any S-message sent n stage s of fl, for all p. Thus, each
processor that completes stage s sets its vote to v(R, s), and SAME(R, s) is true.

If s > n, then MATCII(R,3) means that the first bit of F(p, k), where k =

imdex(Rps), is equal to the value of any S-message sent in stages of R. for all p.
Thus, each processor that completes stage s sets its vote to v(R, s), and SAME(R, s)
is true.

(2) If SAME(R, s) is true, then all stage (s + 1.1) messages have the same value
r E {O. l}. Thus all stage (s + 1,2) messages have value v. Thus, every processor
that completes stages + 1, decides z’, and DECrnE(R,8 + 1) is true. D

The following technical lemma concerns any equivalence class of F, where the
equivalence is defined by (A, I, s)-equaiity.

Lemma 12: Fix adversary A, initial configuration I, and s 0. Partition F into
the maximal equivalence classes, within each of which all elements are (A, I, s)
equal. Pick any class C.
(1) MATCII(rufl(A, .1, F), i) = MATCU(run(A. I. F’). i) for all i, 1 i s, and any
F and F’ in C.
(2) ifs < n, then MATCH(run(A, I, F), s + 1) is true for half the elements F of C;
ifs ii, then MATCH(run(A, I, F), s + 1) is true for a 1/2” fraction of the elements
F of C.

Proof: (1)Choose anyi, 1 <i s, andany Fand F’ inC. Let R= run(A,IF)
and it = run(A,I,F’). Since F and F’ are (A,I,i — 1)-equal, v(R,i) =

by Lemma 10. Since F and F’ are (A, I, i)-equal, coins(F)[ij = coims(F’)fi] if
i Sn. and rcndom(R,p,i) = ramdom(H,p,i) for all p if i > n thus MATCH(R,i)
MATCH(R’, 1).

(2) By Lemma 10, v(run(A,I,F),s + 1) is the same for all FEC.

Suppose s < n. In half the elements F of C, coims(F)[s + 1J = 0, and in
half coins(F)[s + 1] = 1, since all the elements of C are (A,f,s)-equal. Thus
MATCH(run(A. I. F), s ± 1)is true for half the elements F of C.

21

Suppose s it Let R = run(A.I. F) for F in C. MATCE4(R.8 -I-) means
random(R,p,s + 1) = v(R,s + 1) for all p. The position of ramdom(R.p.s —1) in
F depends on whether p completes stage s + 1 in R or not. By Lemma 9. either p
cocpletes stage s + 1 in R for a!l F in C, or p fails to complete stage s — 1 in R

for all F in C. If p does not complete stage s + 1, then random! Rp. . -r 1) is the

second bit of F(p. s+2), obviously a fixed position for allF InC. Tip does complete
stages, then random(R.p.sJ is the first bit of F(p,k), where /c = indeRp.s). By
Lemma 9. k is the same for a11 F in C. so this is also a fixed position for all F in

C. The positions of random(R. p s) for all p are all distinct. Thus a 1/2” fraction

of the elements F of C have random(.p, s) = v(R, s) for all p. D

The next lemma is the key to the termination of the protocol, as well as the

good time performance. It says that there is a high probability that the random

information used to set votes matches the value in S-messages for the first ii stages.

and there is a smaller, but still positive probability for subsequent stages.

Lemma 13: Fix adversary A and initial configuration I. Then

Pñ!\TCH(run(A,I.F).s)1= 1/2 ifs < n, and 1/2” ifs> ii.

Proof: By part (2) of Lemma 12. since the lemma is tme for every equivalence

class of F. 0

The next lemma shows that the events of not matching in different stages are

independent.

Lemma 14: Fix adversary A and initial configuration I. Let R = rzzn(A, 1, F) for

FE F. Then for any s 1,

Pr[-’MATCH(R, 1) A. A -‘MATCH(R, s)] = Pr[-’MATCH(R, 1)] PrLnMATCU(R, s)J.

Proof: Pick any i, 1 s. We will show that

Pr[-’MATCH(R, 1) A ... A -‘MATCH(R, 1)]

= Pr[-’MATCII(R,l) A. A ‘MATCH(R,Z —1)] Pr[-iMATCH(R,i)].

Let X be the set of all F E F such that -‘MATCH(R, 1) A.. A ‘MATCH(R, i — 1)

is true, where 1? = run(A, I, F). Partition F into equivalence classes based on

22

(AI,i — 1)-equalit If F is in X. and F and F’ are (4I.i — l)-equal. then F’ is
also in X. by pan (1) of Lemma 12. Pick any equivalence class C that is a subset
of iC. Part (2) of Lemma 12 gives the result. D

The next lemma shows that the probability that alt processors that complete
stage s, decide by stage s, approaches 1 as s increases.

Lemma 15: For any adversary A and initial configuration I,

urn Pr(DECLDE(run(A, I, F), s)] = 1.

Proof: Let F? = rttn(A, I, F). First note that

PrDECIDE(R. s)] Pr[MArdM(R, 1) ‘1.. V MATCU(R.s — 1).

The reason is that if MATcH(R,s’) is true for some s’, 1 s’ — 1, then by
Lemma 11, SAME(R, s’) is true, asid thus DECIDE(R, ‘ + 1) is true. Since s’ + 1 s,
DECIDE(R,S) is true.

Pr[MATCH(R, 1) V... V MATCH(R,S —1)]

= 1— Pr[-’MATCH(R, 1) A. . A iMATCII(R,S —1)]

= 1— — Pr[MATCN(R,i)]), by Lea 14

1—(1—1/2”)’’. by Lemma 13.

Since 1im,...(1 — 1/2)3_1 = Owe are done. C

3.2.3 Liveness Condition

Lemmas 16 and 17 convert Lemma 15 into a statement about the predicate
DONE, in order to show the t-nonblocking property in Theorem 18.

Lemma 16: In any run from an initial configuration, each processor that completes
stage 0 without having decided is in at most asynchronous round 6.

Proof: Suppose p completes stage 0 without having decided. Then p obtains the
ii random bits in some message by its 2K step. and broadcasts its coins message.
At most 4K steps later, p completes stage 0. Since each asynchronous round lasts
at least K steps, at most 6 rounds elapse.

23

The next lemma shows that each stage s I talces only a bounded number of

asynchronous rounds.

Lemma 17: In any run from an initial configuration, if each processor that com

pletes stage s 0 is in at most asynchronous round r when it completes stage s,

then each processor that completes stage s + 1 is in at most asynchronous round

r + 2 when it completes stage s + 1.

Proof: Let p be any processor that broadcasts a stage (s + 1,1) message. This

happens when p completes stage s, so all stage (s + 1, 1) messages are at most

round r messages.

Let p be any processor that broadcasts a stage (s ± 1,2) message. Processor

p cannot enter round r + 1 until it has received the last of the round r messages,

including all the stage (s + 1, 1) messages. Immediately after receiving the last of

these (if not before), p broadcasts its stage (s + 1,2) message, so all stage (s + 1,2)

messages are at most round r + 1 messages.

No processor p can enter round r + 2 until it has received the last of the round

+ 1 messages, including all the stage (s + 1,2) messages. Yet by the time p receives

all the stage (s + 1,2) messages, p has completed stages + 1. 0

Theorem 18: Protocol I is f-non blocking.

Proof: Pick any t-adrnissible nrn R. Suppose no nonfaulty processor p receives a

coins message in R. Then p decides 0 by time 2K on its clock, i.e., by round 2. Now

suppose some nonfaulty processor receives a coins message in fl. Then, since .1? is

t-adrnissible, every nonfaulty processor receives a coins message in I?, and completes

stages, for all s 0. By Lemmas 16 and 17, DECIDE(R,S) implies O0NE(R,6+2s)

for any t-admissible run R. Lemma 15 gives the result. U

3.3 Time Complexity

Recall that expectation is defined in Section 2.4 to be taken over t-adinissible

adversaries and initial configurations. First, we show that the expected number of

stages is less than 4.

Lemma 1.9: Let X be a random variable giving the least s such that all processors

that complete stage s decide by stage s. Then EX <4.

Proof: Fix t-adiuissible adversary A and initial configuration I. Let R =

run(A, I, F), for F in F. Let q5 = Pr[-’MATCH(R, s)]. Let Y be a random variable

24

ziving the least number s such that I processors that complete stage have the
same vote at the end of stage s. By Lemma 3, X S Y + 1.

EX<E(Y+1)=1+EY=1+ZsPr[Y=s]

1 + Pr [(A;:: ,MATCH(RJ)) AMATCII(R,s)]

+ qq2 q_i(1 — q,), by Lemma 14

=1+(Es1Q2...c._1) _(Es.i2...s)

= 1 + 1 ((s + 1) qIq2
— (Es q1q2 qs)

r2+(s+l—s).qjq2qg

st sn+1

Ne simplify using specific values for q,. For 1 S .s n, q, = 1/2, and for s > ri

= 1 — 1/2”, by Lemma 13.

EX2+E+. E (1)

1 / 1—1/2”
— 21-(1-1/2”)

Theorem 20; All nonfaulty processors decide in a constant expected number of
asynchronous rounds.

25

Proof: Let R = run(A.I.F) for some t-admSssible adversary A. initial configura
tion I, and F e F. If no nonfaulty processor receives a coins message in R, then
every nonfaulty processor decides by round 2.

Suppose some nonfaulty processor receives a coins message in B. Then, since
B is t-admissible, every nonfaulty processor p receives a coins message in R, and
completes stage s, for ails 0. By Lemma 16, p is in at most asynchronous round
6 when it completes stage 0. By Lemma 17, when p completes stage s of Protocol 1,
it is in at most asynchronous round 6 + 2s. The expected number of stages is 4, by
Lemma 19. Therefore all nonfaulty processors decide in 14 expected asynchronous
rounds. C

4. Lower Bound on Number of Processors

The lower bounds proved in the next two sections hold even if processors run
in lockstep synchrony and possess an atomic broadcast capability In this section.
we first give relevant details of this stronger model, and then show that the number
of faults tolerated by our transaction commit protocol is optimal.

A processor failure is represented by an explicit failure step, denoted (p, 1, &).
After a failure step for p, p is in a distinguished failed state. Thus failures can
be evidenced in flnfte runs. (Of course, processors cannot detect failures because
message delivery is asynchronous.) A processor is faulty in a run if it takes a failure
step1 otherwise it is nonfaulty.

Processors take steps in round-robin order, 0 through n — 1; a schedule of the
form (0, M1, f) - .

(n — 1. M,, f,) is a cycle. To enforce the round-robin behavior,
each configuration has a turn component, designating which processor’s turn it is to
take a step. An initial configuration has turn = 0. In order for an event e = (p. *6)
to he applicable to a configuration C, turn(C) must equal p, and if p is in the failed
state in C, then e must be a failure step. After an event is applied, the resulting
configuration’s turn component is incremented by 1 (modulo n).

The guarantee definition is no longer needed, since atomic broadcast is allowed.
The delay of message in that is received in run R is the number of the cycle to which
the receiving event belongs minus the sending time of Tn. An infinite run B is t
admissible, for 0 < ii, if

• the first configuration is an initial configuration,
• at most t processors are faulty,
• all messages sent to a nonfauity processor are received, and

26

• all received messages have delay at least 1.

In this model, the adversary cannot schedule when processors take steps, but
can only determine when a processor fails and what the message delays are.

In this section we show that no protocol, even a randomized one, can solve the
transaction commit problem uniess more than half the processors are nonfaulty. The
intuition behind the proof is similar to that for the coordinated attack problem (first
posed in G; also analyzed in [HM]). We partition the processors into two groups.
each of size at most t. Given a rim that decides 1 (in which all processors begin
with 1). we work backwards from the end of the run to the beginning, delaying
messages between the two groups and showing that the resulting runs must still
decide 1. Eventually we get a nm in which no messages between the groups are
received, yet the processors decide 1. This situation leads to a contradiction, since
one group could have started with U’s, in which case the decision should be 0.

The actual construction of the runs is fairly involved, and is facilitated by the
following definitions and lemmas.

Let state(p, C) be the state of processor p in configuration C, and buff(p, C)
be the state of p’s buffer in C. Given a schedule a and a subset S of the processors,
define aIS to be the subsequence of a consisting of exactly those events that are
steps for processors in S. Also define Icifl(S, a) to be the schedule obtained from t,

by replacing every event (p% *. b) (where * can be Al or I) with (p, 1, b) whenever p
is in 5: similarly, defiuie deafen(S, a) to be the schedule obtained from a by replacing
every event (p, *, &) (where * can be Ad or .L) with (p, 0. b) whenever p is in S.

Lemma 21: Let a be a schedule applicable to configuration C and ,- be a schedule
applicable to configuration D. Let S be a set of processors. If state(, C) =

state(p. D) for all processors p in S and if aS = rS, then for any processor p
in S. state(p, o(C)) = state(p, r(D)).

Proof: Use induction on the length of aIS, and the fact that the transition functions
are deterministic, given states, messages and random numbers. D

Given a partition of the set of processors P into two sets S and 5,, define an
intergroup message (relative to S and S’) to be a message sent from a processor in
S to a processor in S’ or vice versa.

Lemma 22: Let S and 5’ be a partition of the set of processors, and let C and D be
two configurations such that state(p, C) = state(p, D) and buff(p, C) ç buff(p, D)

27

for all p in S. Let o be a schedule applicable to C in which any intergroup message

that is received by pE S in c is in buff (p C). Then

(a) the schedule 6 = kil!(S’. a) is applicable to D;

(b) ilno processor inS’ is in a failed state in D, then the scheduler deafen(S’, a)

is applicable to 13.

Proof: We show (b); (a) is similar. We proceed by induction on the length 1 of a.

Basis: I = 1. Let a = e and = e’. If e is an event for pin S’, then p receives

no messages in e’. This event is clearly applicable to V since p has not failed in 13.

If e is an event for p in 5, then since r = a and buff (p. C) c buff(, D), the fact

that a is applicable to C implies that ,- is applicable to 13.

Imiluctiom: I > 1. Suppose the lemma is true for schedules of length I — 1 and

show for length 1. Let u = c’e be a schedule of length 1. Since a’ has length I — 1.

by the induction hypothesis r’ = deafen(S’.a’) is applicable to D. We must show

that e’ = deafen(S’, e) is applicable to r’(D) = E. if e is an event for pin 5’. then

p receives no messages. This event is clearly applicable to E since p has not failed

in V and no subsequent steps are failure steps.

Suppose e = (p4!, b) for p in S. We must show that each m in M is in

buff(p,E). Choose in in Al and let q be the sender.

If m is in buff p C), then vii is in p’s buffer in every configuration from C to

a’(C). Since bufl(p, C) c buff (p D),and no message is removed from a buffer by r’

that is not removed by a’, in is still in buffp, E).

Suppose in is not in buff (p. C). Then by assumption on a. q is in S. Let a”g

be the prefix of a’ such that (a”a)(C) is when in first appears in p’s buffer. Thus.

q sends m as a result of event g in run(C, a’). Since q is in S, r”g is a prefix of

i-’, where r” = deafen(S’ ,
a”). By the induction hypothesis, r” is applicable to 13,

so by Lemma 21, state(q, c”(C)) = state(q, r”(D)). By the inductive hypothesis,

since the length of a”g is less than 1, g is applicable to r”(D). Thus in is also sent

in run(D, r’). and ni is in p’s buffer in E.

The next theorem shows that for any protocol, there is some finite run that

cmnputes hc wrong decision value, if no more than half the processors are nonfaulty.

Theorem 23: There is no t-nonblorking transaction conjrnit protocol if ii < 2±.

28

Proof: Suppose n 2t and that there is a t-nonblocking transaction cornitut
protocol with processors 0 through n — 1.

Let A=O,...,t—1}andB={t....,n—1). EachofAandBhasatmost

2 eements. The first 2 events of a cycle form an .4-semicycle (each processor in A
takes a step): the remaining events of a cycle form a B-semicyc!e (each processor in
B takes a step). An infinite schedule applicable to all initial configuration consists
of alternating A- and B-semicycles.

Let be the initial configuration in which all processors have initial value
1. Since the protocol is a t-nonblocking transaction commit protoco’, given an
adversary that kills no processors and delivers in cycle j + 1 any message sent in
cycle j (so every run is failure-free and on-time), there is at least one finite deciding
run run(a, I) such that afl processors have decided 1 in a(Iii). Let a = Kj -

where each ir is a semicycle.

Claim: There exist y + 1 finite failure-free schedules a1 through aR,+ such that
for each i, (1) a = it1 7tj...17j, (2) a is applicable to Ij, (3) all processors have
decided 1 in a(I1i), and (4) no intergroup message is received in 7

Proof of Claim: We show the claim by descending induction on i. Let C =

(in - ir1)(Iij) for i 1, and C0 =

Basi-,: i = y + I. Letting °y-l- = a (so that is empty) proves the claim,

Induction: i < y + 1. We assume the claim is true for i + 1 and show it for i.

Assume Jr1 is a B-semicycle, i.e., i is even. (X7I,Te will indicate in parentheses the
changes necessary when in1 is an A-semicycle, i.e., when i is odd.) If no processor
in B receives any message from a processor in A in it1, then letting j =

satisfies properties (1) through (4).

Suppose some processor in B receives a message from some processor in A in

itt. We construct in two steps; first we construct after which all processors
in A have decided, and then we construct in which all processors in B decide.
Then -y will be $iflz.

Define /3 to be deafen(B, ‘r171i). (See Figure 1.) By Lemma 22, /3i is appli
cable to C1_. Since thIA = 1r17141fA, Lemma 21 applies and each processor in A
has the same state in01(C1_1)= F as it does in (ir17,+1)(C.1),so each decides 1
in F. No intergroup message is received in ft1 because processors in B receive no

29

messages in j3,, and processors in A receive no intergroup messages in 7tj7+l or in
/3’.

7r
= C0. • • - I — • a a = 0(m)

A-s.c. B-sc.
IA. B iJ

7i÷t

$1 =deafcn(Bir;7*+t) A ‘- B
B9-A

F

Is—i :11 ii

Figure 1: Construction of 3,

Now we must give a schedule 53 that causes processors in B to decide 1 without

hearing from any processors in A. The intuition is that processors in B must be
able to decide without hearing from processors in A. because it is possible that all
the processors in A have died. By the agreement condition, the processors in B
must decide 1 also. The problem with applying this argument is that there may be
leftover messages sent by processors in A before the point at which the processors

in B think they died, and thus processors in B could wait to receive these messages

before deciding. Thus, we must show that processors in A might have died eve:’

earlier.

Sernicycle 1r1 is part of cycle number [i/2] = fin a. (See Figure 2.) Let D

be the configuration in run(a1,1,,) immediately preceding the (j — I) cyde of a,.

(If j = 1. then let D = Ii,.) Let r be the substring of aa between I,, and D. Let

p be the substring of a between D and C1_1. There are two possibilities for p.

• IN =2, thet D = I andp=w1.Thus, pis an A-semicycle.

• If i > 2, then D = C,_4 and p = ,T_3T,_27r1_1.Thus, p consists of all of cycle

30

j — 1 and the &st half of cycle j (an A-semicvcle followed by a B-sernicyc!e
followed by another .4-semicycle). (Pictured in Figure 2.)

(If Jr is an 4-semicycle, i.e., if i is odd, then there are the following two
possibilities for p.

• If i = 1. then D = I’ and p is emptv

• If i > I, then D = C_3 and p = Thus, p consists of cycle j—i (an
A-semicycle. followed by a B-semicycle).)

cycle j — 1 cycle j

_____________-Th

r A-s.c. B-s.c. A-s.c. B-s.c.
D • C1...1

p
Id l(A,p)

SI =

A/-B
kil(A.8i) B/—A

£ I4:1I IitB:1L

$2 =de44Ab)

lB 8:

Figure 2: Construction of $2

Let p’ = kili(A, p). Since no message is sent and received in the same cycle
in a (and hence in p). any message received in p by a processor p in B from a
processor in A is sent in run(r, Iii). i.e.. prior to cycle j—1, and is in buff(p.D).
By Lemma 22, p’ is applicable to D. Since pjB = p911, Lemma 21 implies that
.state(p,p’(D)) = state(p, C1...1) for all pin if

Consider the schedule 8 = kifl(A 3j). (See Figure 2.) Since the processors in
A are failed and the processors in B receive no messages. sç is obviously applicable to
p’(D). Let El = $(‘(D)). Since $ ID = $ B and state(p. p’(D)) = state(p, C.1)
for all pin B, Lemma 21 implies that state(p, E) = state(p, F) for all pin B.

F

31

By the t-nonblocking property. since 11 t. there must exist a finite deciding

run from E with schedule 6. Suppose the decision value is v. Thus, all processors

in B decide v in 6(E). By choice of a, all messages sent in rurt(r, fri), i.e., before

cycle j — 1, are received by the end of cycle j — 1, i.e., by the end of p or earlier.

Since p’lB = p[B, every processor in B receives in p’ all messages sent to it in

run(r, Iii), i.e., before cycle f—i. Thus in 6, processors in B receive only messages

sent in rrn.(p’36,p’(D)). Since all processors in A are dead in p’/36. B receives no

intergroup messages in &

L€t 2 = deafen(A,6). Pick pin B. From above, state(p.E) = state(p.F).

Let m be any message in buff (p. E); m could only have been sent by a processor q

in B in run(p’3,D), i.e., in cycle f—i or later. Lemma 21 implies that q has the

same state in corresponding configurations in run(p’/3,D) and run(pØ1,D). Thus

q sends the same messages in the two runs, and in is also in buff (p F). Now we

can apply Lemma 22 to show that 52 is applicable to F.

Since j32[B = 6]B and state(p,F) = state(p,E) for all p in B, Lemma 21

implies that each processor p in B is in the same state in /32(F) as in 6(E). So

each processor in B decides v in 3-2(F): by the agreement condition, v = 1, because

processors in A have already decided 1 in F. No intergroup message is received in

•2 because none is received in 6.

Let , = 51/2• We have shown that a = Jr1. . ir_1y satisfies properties (1),

(2), (3) and (4). End of Claim.

Note that a1 is a finite schedule in which no intergroup messages are received.

Constmct schedule a = kill(A,ai). By Lemma 22, a is applicable to I,j. Since

a B = ouR, Lemma 21 implies that each processor in B has the same state in

a(I1) as it does in ai(Iij), and thus also decides 1 in c(Iii).

Let be the initiai configuration in which all processors in A have initial

value 0 and all processors in B have initial value 1. By Lemma 22, a is applicable

to Is,. Since each processor in B begins with the same state in Io as in 1, by

Lemma 21 each has the same state in u(I01) as it does in a(Iii), and thus also

decides 1 in c(1oi). But this violates the abort validity condition, 0

5. Lower Bound on Time

One might imagine a transaction commit protocol far our model such that each

processor could decide in a constant number of its own steps, at least in many runs.

32

For instance, in the protocol presented in Section 3. at most OK steps are required
for a processor to complete stage 0 — a processor need not wait arbitrarily Tong for
messages since the existence of a late message means that the processor is allowed
to abort. Yet in the subsequent stages, no advantage is taken of this flexibility.
and processors wait potentially unbounded time for messages. Unfortunately, the
intuition that it may be possible to use the detection of late messages in order to
shorten the running time (as measured in processor steps) is incorrect. In fact, in
this section we prove that no protocol can guarantee that each processor terminate
in a constant expected number of its own steps, even if processors run in lockstep
synchrony, and even if only one processor can fail.

In particular, we show that for any constant B, there is a 1-admissible adversary
and an initial configuration such that the expected number of cycles needed for all
nonfaulty processors to decide is more than B. The proof is constructed as follows.
We consider the initial configuration in which all processors begin with 1, and the
adversary that kills no processors and delivers all messages with delay 1. If no run
from this initial configuration with this adversary is deciding by cycle B, we are
done. Suppose there is such a B-cycle run that is deciding. We find a point in this
run that has the property there are some very long runs extending from this point
that are not deciding. These runs are kept undeciding by delaying the delivery of
all messages. These runs are so long that they cause the expected value to exceed
B, when calculated with the appropriate initial configuration and adversary.

Thus, we must solve two subproblems. First, we must find the appropriate
point in the run from which the long runs branch off (cf. Lemma 24); second, we
must show that the long runs extending from this point are undeciding (cf. Lemma
25).

We need the following definitions in addition to the definitions and Lemmas 21
and 22 from Section 4.

If p is a processor, then schedule a is v-free if p only takes failure steps in a.

A run is s-slow for some constant x if every message received in the run has
delay at least x. Given a configuration C,a schedule a is i-slow relative to C if the
run obtained by applying a to C is i-slow.

A seed (for protocol F) is an n-tuple of sequences of n-bit strings, such that
either each sequence is infinite or each sequence has the same number of elements.
The length of a seed is the length of one sequence. If seed F has infinite length,
then F is in .1. There is a finite number of seeds of any finite length.

33

A run is F-compatible, for seed F, if for all processors p and all i not exceeding

the length of F, the random string that p receives in its 1th step is the same as

the i’ element of p’s sequence in F. Given configuration C, a schedule a is F-

compatible relative to C if C is reachable by an F-compatible run and run(C, a) is

F-compatible.

For the remainder of this section, we fix an arbitrary 1-nonblocking transaction

commit protocol P. From now on, “mn’ means a 1-admissible run of F, and

“configuration” means a configuration reachable from some initial configuration of

F by a 1-admissible run of P.

Let V be a subset of {O, 1}, x an integer, and F a seed. Configuration C

is {x,F,V}-valent if V is the set of decision values of all configurations that are

reachable from C by an x-slow F-compatible run.

For the rest of this section, let .T be the initial configuration in which all

processors have initial value 1.

The next lemma shows that in an F-compatible run that decides 1, there

exists a configuration from which some F-compatible, x-slow run decides 1, and

from which some other F-compatible, I-slow run decides 0.

Lemma 24: if run(Ii r) is a finite failure-free on-time decithng run that is F-

compatible for finite seed F, then for any integer x > 0 there exists a configuration

in run(1i, r) that is (x, F, {O, 1})-valent.

Proof: Pick such a run run(Ij, ,-) that is F-compatible, and fix a,. By the com

mit validity condition, r(Ii) = C has decision value 1. Thus all runs starting

at C, including v-slow F-compatible runs, have decision value 1, and hence C is

(x, F, {1})-valent.

Let be the initial configuration in which some processor q has initial value

0 and the rest have initial value 1. Since the protocol is 1-nonbiocking and since F

is finite, there is a finite q-free x-slow F-compatible run run(c, I) such that a(I01)

has decision value 0, and by the agreement condition, c(Igi) is (x, F, {O})-valent.

By Lemma 22, a is also applicable to I. By Lemma 21, all processors except

q have the same state in a(Ii) as in c(Ioj), and decide 0 in a(Ij). Thus I is either

(x, F, {0})-valent or (a,, F, {0, lfl-valent. If the latter is true, we are done. Suppose

the former is true.

34

Since F is finite, by the 1-nonbiocking property no configuration in run(11,r)
is (x, F. 0)-valent. The valencies of I and C imply that there must be an event

(p Al, b) and two adjacent configurations in run(11,r), C0 and C1 with C, =

e(C’D), such that C0 is either (x,F, {O})-valent or (x,F, {O,I})-valent, and C, is
either (th, F, {1})-valent or (sF, {O, 1})-valent. (See Figure 3.)

-

e = (p,M.b)
C - C = r(Ii)

e’=Q{i.b’)

Figure 3: Demonstrating the existence of all (r, F, {O,1})-vaient configuration

If either configuration is (sF, {O, 1})-valent, we axe done. Say neither is. Since
the protocol is 1-nonblocking, F is finite, no processor has failed so far, arid C0 is

F, {O})-valent, there is a finite p-free i-slow F-compatible run run(a, C0) in
which the nonfaulty processors decideD. Say a = (p,±.b’)a’. (If F is long enough
to extend past C0, then 1” = b; otherwise. b’ could differ from 1,.) Since a’ is
applicable to C1, Lemma 21 implies that all the processors except p have the same
state in a’(C1) as they do in a(Co) But since they decide 0 in a(Co), and since a’
is F-compatible and s-slow relative to C1, this is a contradiction to the hypothesis
that C is(s,F,{1})-valent. C

The next lemma shows that in a certain situation, processors must remain
undecided as long as no messages are received.

Lemma 25: Let A be the adversary that kills no processors, and that for the first I
events delivers messages after delay I and subsequently delivers messages after delay

35

.r, for some i > 1. Let F be a seed of length x. H the configuration C following

the Vh event in run(.4. 11. F) is (s.F. {O. 1})-valent, then the final configuration in
run(A,I,.F) is (x.F,{O,lfl-valent.

Proof: Let run(A,Ij, F) = run(aa,Ii), where C = 0(h). Assume in contradic

tion that c(C) is not (a,, F, {O, 1})-valent. Since F is finite, by the -nonblocking

property, c(C) cannot be (x, F, 0)-valent. Assume a(C) is (x, F, {u})-valent. Then

there is a configuration D in run(a, C) and some event e = (p M, ii) in a such that

D is (a,, F, (0, 1})-valent and e(D) is (x, F, {w})-valent. Al must be the empty set,
since no messages are received in run(u,C). Suppose to = 0. (The argument is

analogous if w = 1.) The only other event applicable to D that can be part of

an i-slow F-compatible run is (p, 1, b) = e’, because all messages sent more than

a, cycles ago have delay 1 and have already been received, and because F is long

enough to extend to e. (See Figure 4.)

delay 1
- D

e = (p0, b)
e(D) (C)

o/1I IiH
= (,±,b)

lo/ilorEl [II

TI
El

Figure 4: Demonstrating that a(C) is (a,, F, {O, 1})-valent

s;nce D is (iF, {O. 1})-valent, e’(D) must be either (s,F, {0, 1})-valent or

(x, F, {1})-valent. Thus there is some finite p-free i-slow F-compatible run from

e’(D) that has decision value 1; let r be its schedule. Now r is also applicable, x

slow and F-compatible relative to e(D), and all processors except p have the same

state in r((D)) as in r(e’(D)) (by Lemma 21), so they decide 1, contradicting the

valencyofe(D).

36

Given infinite run R, let T(R) be the cycle when the last nonfaulty processor

decides.

Theorem 26: For any constant B, there is a 1-admissible adversary A and an

initial configuration I such that E(TA,I) B.

Proof: Fix B. Let 1 be the set of all runs of the form run(Ai , .T F), where F is

a seed of length B, and A1 is the adversary that kills no processors and delivers all

messages with delay 1. Let 7?I = j. Thus, j is also the number of seeds of length

B.

Caje 1: No run mR is deciding. Let A = A1 and I = I. Then E(TAJ) B.

Case 2: There is some run 1? in 7? that is deciding. Let C be the set of au

configurations in run R, and let In = Cl. Let S be the collection of all seeds with

length jmB that extend the seed of 1?. S is finite; in fact, Si = z/j, where z is the

total number of seeds of length jmB.

We will associate each seed in S with a configuration in C in such a way that

all runs from a configuration in C, using a particular adversary and any of the

associated seeds, is undeciding. The extreme length of these undeciding runs will

cause the desired expected value to exceed B.

For each C € C, define S(C) to be the set of all F C S such that C is

the first (jmB, F, {O, 1})-valent configuration in 1?. By Lemma 24, at least one

(jrnB,F, {O, 1})-valent configuration exists in R; thus, each F C S is in S(C) for

exactly one configuration C.

Fix C to be a configuration in C with IS(C)I * SI. Such a configuration

exists by the pigeonhole principle, since Cj = in. Thus, S(C)I z.

Let 1 be the number of events that precede C in run 1?. Let A be the adversary

that for the first I events delivers me5sages alter delay 1 and that subsequently

delivers messages alter delay jinli. By Lemma 25, for every F in 5(C), the final

configuration of run(A, I, F) is (jrnB, F. {O, 1})-valent. Thus, no processor has

decided in that final configuration, and T(R’) > jrnB, for any infinite run fl’ that

is an extension of run(A,Ii.F).

Let I = I. By choice of C, at least a fraction of all the seeds of length

jmB are in 5(C). Thus, at least a fraction of all infinite seeds have a prefix in

37

5(C). For any infinite seed F with a prefix in S(C). T(run(A.LF)) > jrnB, by
the argmnent above. As a result,

E(TA,I)-4-jmB=B. U

Acknowledgments

We thank Barbara Liskov, Nancy Lynch and Bill Weihl for suggesting this
problem to us, Yoram Moses for helpful comments on an early draft, and Nancy
Lynch for a very careful reading of a recent draft.

References

[Be] M. Ben-Or, “Another Advantage of Free Choice: Completely Asynchronous
Agreement Protocols,” in Proc. rd Symposium on Principles of Dis
tri&uted Computing, pp. 27—30,1983.

[Br] C. Bracha, “An O(log n) Expected Rounds Randomized Byzaiitmne Gen
erals Algorithm,” Proc. 17 Ann. ACM Symp. on Theory of Computing,
pp. 316—326, 1985.

[CC] B. Chor and B. Coan, “A Simple and Efficient Randomized Byzantine
Agreement Algorithm,” IEEE Trans. on Software Engineering, vol. SE
11, no. 6, pp. 531—539, 1985.

[CL] B. Coan and I Lundelius. “Transaction Commit in a Realistic Fault
Model,” Proc. t& Ann. ACM Symp. on Principles of Distributed Com
puting, pp. 40—51, 1986.

[CMS] B. Chor, M. Merritt, and ii Shmoys, “Simple Constant-Time Consensus
Protocols in &aiistic Failure Models,” Proc. 4th Ann. ACM Symp. on
Principles of Distributed Computing, pp. 152—162, 1985.

(ODS] D. i)olev, C. Dwork, and L. Stockmeyer, “On the Minimal Synchronism
Needed for Distributed Consensus,” 1. A CM, vol. 34, to appear.

DLS C. Dwork. N. Lynch, and L. Stockmeyer, “Consensus in the Presence of
Partial Synchrony,” Proc. 3fl1 Ann. ACM Symp. on Principles of Dis
tributed Computing, pp. 103—118, 1984.

38

[DS] C. Uwork and D. Skeen, “The Inherent Cost of Noriblocking Commit
ment,” Proc. Ann. ACM Symp. on Principles of Distributed Cornptt
ing, pp. 1—11, 1983.

[FLP] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of Distributed Con
sensus with One Faulty Process.” J. ACM, vol. 32, no. 2. pp. 374—382,
1985.

J. Gray. “Notes on Data flase Operating Systems’ Research Report
RJ2188(300001)2/23/78, IBM Research Laboratory, San Jose. California.
1977.

[HM] 3. Halpern and Y. Moses, “Knowledge and Common Knowledge in a Dis
tributed Environment,” Proc. 3rd Ann. ACM Sym-p. on Principles of Did
tdbuted Computing, pp. 50—61, 1984 (revised as of January 1986 as IBM
RJ-4421).

M. Rabin. “Randomized Byzantine Cenerais.” Proc. 24 Ann. IEEE
Symp. on Foundations of Computer Science, pp. 403—409, 1983.

[S] D. Skeen, “Crash Recovery in a Distributed Database System,” Ph.D.
Thesis, Department of Electrical Engineering and Computer Science, Uni
versity of California, Berkeley, 1982. (Also available as technical report
UCB/BRL M82/45.)

