
Simulating Synchronous Processors

Jennifer Lundelius Welch
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract:

In this paper we show how a distributed system with synchronous processors
and asynchronous message delays can be simulated by a system with both asvn
chronous processors arid asynchronous rnessa.e delays in the presence of vañous
types of processor faults. Consequently, the result of Fischer, Lynch and Paterson
(1985), that no consensus protocol for asynchronous processors and communication
can tolerate one failstop fault, Implies a result of Dolev, Dwork aM Stockneyer
(1987), that no consensus protocol for synchronous processors and asynchronous
communication can tolerate one failstop fault.

Keywords: Distributed systems, fault tolerance, simulation, consensus problem,
impossibility proofs.

*This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014-83-IC-0125, by the National Science Foundation
under Grants DCR-83-02391 and CCR-8G11442, by the Office of Army Research
under Contract DAAG2Y-84-K-0058. and by the Office of Naval Research under
Contract N00014-85-K-0168.

1

1. Introduction

In this paper we ch ow Ii w a clix t rn! xv t cm wit] i I ronotis)cexx rs
and asynchronous message delays can be simulated by a system in which bo h
processors and messages are asynchronous, in the presence of various types of pro
cessor failures. One application of this result is that now a result of Dolev. Dwork
and Stockmever (1987). that no fault-tolerant eonsensu.s protocol is possible in a
distributed system with asynchronous communication even if processors are syn
chronous. follows easily fron the result of Fischer. Lynch and Paterson (lOSö). that
no fault-tolerant consensus protocol is possible when cor’rnti’:.ication and processors
are asynchronous.

The equivalence of a system with synchronous processors and asynchronous
communication to one in which both processors and communication are asyn
chronous has been a folk theorem in distributed computing circles for some time.
One of the contributions of this paper is to present a careful statement and proof
of this result, using a variant of Lamport clocks (Larnport, 1978). We have made
precise a notion of simulation particularly suited to showing impossibility results.
The novel feature of this paper is applying the simulation result to obtain an easy
proof of the impossibility of fault-tolerant consensus for synchronous processors and
asynchronous communication.

The sense in ‘vhicli we show that the two systems are equivalent is that no
processor can tell if it is in one system or the other. Of course, an outside observer
can tell the difference. For instance, if all the processors are to perform some actf on
at their tenth step, the effect could be quite different, with synchronous processors
(where the actions would happen at the same real time) than with asynchronous
processors (where the actions do not necessarily happen at the same real time).
Thus, the notion of simulation that we deane preserves oca views. but riot global
views.

We observe that the only situation visible to a. processor in the system with
asynchronous processors that cannot happen iu the system with synchronous pro
cessors is for the processor to receive a message at its Ih step that was sent at
the sender’s th step, where j i. To avoid this anomalous situation, our simula
tion tags all messages with the sender’s current step number; then processors save
messages that arrive too early, and wait to process them until they are no longer
early. (Compare Lamport clocks, whidi cause the local clock, or step counter, to
skip ahead when a message with too large a tirnestarup arrives.)

2

Neiger and Toueg (1986) have independently developed the same simulation
technique. However, they do not consider faults, and they apply the simulation
to different problems, namely, determining when one can substitute these modified
Lamport clocks for real time clocks while inaintainiug correctness, and determining
when a variant of common knowledge, achieved with the help of this simulation, can

be substituted for the standard notion of corrunon knowledge. Their paper formally
characterizes types of behavior that cal, lie1,rescrved by this simulation.

Our formal model is presented in Section 2. In Section 3 we show how to do the
simulation for Byzantine processor faults. Simplifications for weaker fault models
are presented in Section 4. Finally, Section demonstrates that the result of foley,
Owork and Stockmeyer (1987) follows fran, that of Fischer, Lynch and Paterson
(1985).

2. Model

We model a general distributed svste]n in which processors communicate by
sending msag. Conceptualy. there is a global cork that !neasllres time in
integer ticks. At each tick. some processors take steps. in which they can atomica’Jy
receive messages. change state and se::d messages. A message buffer holds messages
between the sending and receiviug times, A protocol determines for each processor
the state changes and messages sent, given the old state and messages received.
A run of the protocol specifles at each tick which processors take steps and which
messages are received. Various kinds of faulty processor behaviors are introduced
next. After formally defining what a system is in this general model, we define the
type of sinmlation we are concerned with.

2.1 Basic Model

Messages are assumed to be uniclw and are tagged wit” both the sender’s and
recipient’s names by the message svj:c’n. Tue me.csage buffer holds messages that
have been sent ut not vet received. ft is modeled as a set of messages. A processor
is a deterministic state machine with a set of states, and a transition function that
uses the current state and messages reccvcd ,o compute the new state and messages
to he sent (at most one message to each proresor Certaiii states are designated
imiia1 states. A protocol is a set of n processors. Jr1 our ttrminOloi. a processor is
more than just hare hardware it inciude the local algorithm for changing state

auG senthng messages. A protocol is :he coEection of all the ioca algorithms.

3

A step of processor p is designated either a, indicating that p does some com

putation, or A, indicating that p does nothing. An a step is an active step. A

processor history for processor p, H2, consists of an infinite sequenced1s1d2s2 .. of

states d of p alternating with steps s of p such that d1 is an initial state, and if

= A, then d = d+i The jth state of H2 is denoted state(H2,i), and the i’ step

step(H2,i). Given processor history H and integer i, define active(H8,i) to be the

number of active steps in H2 up to and including the step. A message buffer

history HB is an infinite sequence M1M2 ., where each M is a set of messages

and M1 = 0, such that if message mis in M1 and not in M+1, then mis not in M

for any j > i. The jth element of B is denoted by msgs(HB, i).

A run B of protocol F consists of n processor histories H2, one for each pro

cessor p in F, and a message buffer history HB such that the following are true.

Suppose message m has sender p and recipient q, and i is the smallest integer such

that m is in msgs(Hs, i). (1) Then step(H, i — 1) is axtive. We say n is sent

by p at step i — 1. (2) Furthermore, if j is the greatest integer such that m is in

msgs(Hs,j), then step(H,j) is active. We say mis received by q at step j.

Given a processor history H2, define states(H2)to be the (finite or infinite)

sequence of states d1d2 . ., where d1 = state(H,,, 1) and d1÷1 is the state following

the active step in H2. (The do-nothing steps have been eliminated and the
state transitions isolated.) For a run B = (HB, {H2}pp), define states(R) to be

state8(H2)} pEP.

Various types of processor faults are now considered, classified by their observ

able effects. Suppose processor p has processor history H =d1s1d2s2 . . in run B.

Fix i and let M be the set of messages received by p at step s, and let M’ be the

set of messages sent by pat step s. Processor p operates correctly at step s, if d+1
is the result of p’s transition function applied to d and Ad, and if Ad’ is exactly the

set of messages returned by p’s transition function applied to d and Ad. Processor

p eahihits an omission failure upon sending at s if d+j is the result of p’s transition

function applied to d and a subset S of Ad, and Al’ is a strict subset of the set

of messages returned by p’s transition function applied to d1 arid S. Processor p
exhibits an omission failure upon receiving at sj if p does not operate correctly at
s, but p’s transition function applied to d and a strict subset of M produces d+i
and a set of messages of which Al’ is a subset. A message not used by the transition

function, or not placed in the message buffer is omitted. (Note that these definitions
allow a processor to exhibit an omission failure upon both sending and receiving at
the same step.) Processor p exhibits a B,za.ntine failure at ,s if d1 and M’ cannot

4

he described as the result of ps operating correctly, or p’s exhibiting an omission
failure upon sending or receiving.

Processor p is nonfaultv in run 1? if it. takes an infinite number of active steps
and operates correct!y at each one: otherwise p is faulty. Fau1t processor p is
failstop-faalty in run B if it takes oniy a finite number of active steps and operates
correctly at each one. Faulty processor p is ornis3 ion-faulty in run R if p is aot
failstop-faultv. and at each active step p either operates correctly or exhibits an
omission failure upon sending or receiving. Faulty processor p is Byzantine-faulty
in run R if p is not failstop-faulty or omission-faulty, and at each active step p
operates correctly, exhibits an omission failure, or exhibits a Byzantine failure.

The next definition concerns communication faults. A message in sent in an
infinite run is lost if the recipient takes infinitely many active steps but never receives
711.

2.2 Systems

We are interested in restricting the allowable runs (of any protocol) in different
ways. Fix a protocol P. Let ri,ns(P) be the set of all runs ofF. Define the universe
of all runs. U. to be U.1 P runs(F). A system is a subset of U. The system U can be
characterized as having unreliable, asynchronous communication, since it includes
runs in which messages are lost and rur.s in which messages remain in the buffer
for arbitrarily long periods of time. Similar]y, U has asynchronous processors, since
there is no restriction on the number of \ steps between consecutive active steps in
a processor history. There is also no restriction on the number or types of processor
faults exhibited, when all the rrnls of U are considered.

The following systems are used as building blocks in this paper.

• Syskm SP: the set of all runs such that if a processor takes a step, then all
subsequent steps of that processor arc A steps. This system has synchronous
processors. The processors can know the global clock value, because it is the
same as the number of active steps they have taken.

• System RC: the set of all runs such that no messages are lost. This system has
asynchronous, but reliable, communication.

We can restrict the number and type of faults to be considered by defining:

• System FS(t,): the set of all runs such that at most t processors are failstop
faulty, and the rest are nonfaulty.

5

• System OM(’t): the set of all runs such that at most t processors are omission-

faulty or failstop—faulty, and the rest are i ionfaulty.

• System BZ(t): the set of all runs such that at most t processors are Byzanirie

faulty, omission-faulty or failstop-faulty, and the rest are nonfaulty.

2.3 Simulations

A simulation function f, for processors p’ and p is a function from states of p’
to states of p. Extend fi to map sequences of states of p’ to sequences of states of

p by defining f(d1d2...) = f(d1)f(d2)....

Run R’ = (H’, {H},yp’) of protocol F’ simulates run R = (HB, {H}p)

of protocol F via set F {f,y p C F’} of simulation functions, if there exists a

one-to-one correspondence c between processors of F’ and processors of P with the

following properties. Fix p’ in F’, and let p = c(p’). (1) The simulation function

f,t for p’ and p satisfies f(states(H)) statcs(H). (2) If p’ is nonfaulty in II’,

then p is nonfaulty in R. We say processor p’ simulates processor p for runs 1? and

B’ via f. (The simulation function f does not necessarily cause p to simulate p

for other pairs of runs.)

Protocol in system A’ simulates protocol P in system A if there exists a set

F of simulation functions such that (1) for every run R’ of F’ in system A’, there

exists a run R of P in system A suèh that B’ simulates B via F, and (2) for every

run B of P in system A. there is a run B’ of F’ in system A’ such that fl simulates

B via F. We call F’ a simulation protocol for P relative to A’ and A.

System A’ simulates system A if for any protocol F, there exists a protocol P’
such that protocol F’ in system A’ simulates protocol P in system A.

This definition of simulation is very strong, since the correspondence between

runs of the simulation protocol and runs of the original protocol must be onto. How

ever, for showing lower bounds or impossibility results, this strength is good, and
in fact is necessary for the application in Section 5. A more appropriate definition

for upper bounds would not require the correspondence to be onto, but would need
sonic condition on the responses of the simulation protocol to various inputs of the
original protocol, in order to rule out trivial solutions. As discussed in the intro
duction, this definition of simulation concentrates on the sequences of individual
processors’ state transitions, and is not concerned with global behavior that is only
detectable by an observer outside the system.

6

3. Simulating Synchronous Processors with Byzantine Faults

Our goal is to show that if the communicatiou system is asynchronous, then
synchronous processors “don’t help” i.e., a sytcrn tvtlt asynchronous processors
and asynchronous communication can simulate (the state transitions of) a system
with synchronous processors and asynchronous communication, even if there is any
number of Byzantine-faulty processors. The main idea of the simulation is for each
asynchronous processor to keep track of how many active steps it has taken and
append this number on each message (of the synchronous protocol) sent. The only
situation visible to the processors in the asynchronous case that cannot occur in the
synchronous case is for a processor at its j’ active step to receive a message that
was sent at the sender’s j” active step. where j i. To avoid this anomaly, such

“early” messages are simply saved up until the recipient has passed its 1th active
step, and then they arc uscd in the simulation.

Although the mod& of cozputation presented in this paper gives processors the
ability to receive and segci messages in the same atomic step, and to send messages to
all the processors at one step, this :oer is not necessary for the simulation to work.
If the modei is weakened so that urocessors can send at most one message at a step,
or can only send or receive at a step, but not both. (as studied by Dolev, Dwork and
Stockmeyer (1987)). the same siamlation will show that asynchronous processors
can simulate synchronous processors when communication is asynchronous.

Subsection 3.1 describes the simulation protocol for a given synchronous pro
tocol in more detail. in Subsection 3.2. we show how to map a run of the simulation
protocol to a run of the simulated protocol. The proof of the main result is presented
in Subsection 3.3.

3.1 Simulation Protocol

Fix t between 1 and u. Let system S1(t) be the intersection of systems
BZI) and RC and SP. This is the system WitiL at most I Byzantine-faulty ro—

cessors reliable asynchronous communicatio:i and synchronous processors. Let sys

tem A1(t) be the intersection of systems DZ(t) and RC. This is the system with
at most t Bvzantiie-fauitv processors. reliable asynchronous communication and
asynchronous processors.

Fix a protoco] P. We define a si II a on prc ti nil P for P relative to A 1(t)
and S1(t) as follows. Each processor p iii P’ is assigned a processor p in P to
simulate: it knows the states and transition function for p as well as the processor

correspondence c. Each state d of p has a coitipc,iietit d.sim. It also has components

dearly, which is a set of messages (to be described below), and d.counter, which

tells the sequence number of the next active step p will take. Every message in

tha.t p’ sends in the step following state d has the value of tI.rounter appended to

it. in a tag celled m.tag. Each processor also keeps the necessary information t.o

decide if message in from p’ is the first message from p’ with the tag value rn.tog.

(More than one such message is only sent if p’ is Bvzaiitine-faulty.)

We first describe the states of p’. An initia.i state d of p’ has dsirn equal to

an initial state of p, dearly = 0 and d.counter = 1. There is one initial state of p’

for each initial state of p. Non-initial states are obtained by starting from an initial

state and applying p’s transition function (some number of times).

We now describe p”s transition funct.ioir Suppose that p is in sh,te d and

receives the set of messages M. Let E be the set of at messages in in 11 U dearly

such that ru is the first message received from the sender with the tag value inlay.

Let Al’ be the set of all messages in in £ such that rr’.tog < d.counur. Then p’

calculates the result of the transition function for p applied to d.szrn and I’ (after

removing the tag components of the messages and applying (to the sender’s name).

Call the results the state d” and the message set M”. Let d’ be the new state of p’;

d’.sjrn is set equal to d’.early is set equal to F am] d’.cotrnter is set equal

to d.countcr + 1. The messages sent are those in each tagged with d.counter.

3.2 Constructing Corresponding Runs

Pick a run if = (H. of F’ in system A1(I). We dLscrrne a

particular run II of protocol P corresponding to if. (In the next subsection we

show that fi is in S1(t).)

We define the message buffer history Hp. Suppose processor p’ at its a

active step, sends message ‘ with tog b to processor q’. (As ;vill be discussed in

Section 4, if p’ is not Bvzanti:e-fautv. then a = b.) L€t n, be the message obralneG

from in’ by deleting the tag and changing the sender to p aml the recipient to q. If

b is anything other than a positive i:iteger (for ins:ance. missing) or if In’ is not the

first message received by q’ from p’ with rag ii, then nothing corresponding to in is

present in HB. Otherwise, let i = min(a + lb + 1). (The goal is for in to be sent

in 1? either at the same active step when p’ actually sends in’, or when p’ claims,

via the tag, to have sent it, whichever is earlier.) Suppose q’ receives in’ at its

active step. Let j = ma.x(1, + 1,?). If In’ is ne”r received in Hg’. or if q takes fewer

than j active steps. then in is in nigs(H8.k) precisely for all k i. Ot:erwise in

S

is in msgs(H, k) precisely for i k j. No other messages are present. Clearly

HR is a message history.

We define inductively the processor history H,, = for processor p

in F, which is simulated by processor p’ in F’. Let 14 d’jdd$... For the

basis, d, = d.sim. Suppose the processor history up to d, has been defined. If

there are fewer than i active steps in H. thens A and d+i = d. Otherwise.

= a, and d÷1 = d.i;n, where d is the state following the active step

H,, - Clearly, the sequence H is a processor history for p in P.

Lemma 1: B = (Ha, {HP}PEP), as defined above, is a run of protocol P.

Proof: We already know that the 14’s are processor histories for F. We must

show that the message buffer behaves properly. Suppose message m has sender p

and recipient q, and i is the smallest integer such that in s in mSgS(HB, i) (1)

By construction of K. there exists a such that in’ (m with ag 6) is sent at p’s

0th active step, and i — I = rnir.(a. b). Thus p’ takes at least i — I active steps,

so step(H,,,i —1) is active. (2) Suppose m is received in 1?. Let j be the greatest

integer such that 02 is in msgs(HB,j). By construction of B, there exists / such

that in is received at q”s l active step, j = max(b + 1, I), and q’ takes at least j
active steps. Thus, step(Hq,j) is active. U

3.3 Results

This subsection contains the proof that tile simulation protocol actually works.

For the remainder of this section, fix a run R’ of P’ in A I(IJ, and construct rim I?

from B’ as above. Recall that processor p in F’ simulates processor p in P for runs

B’ and B.

Lemma 2: Processor p takes an infinite number of active steps in B’ if and oniy

if p takes an ffifinite sxrmther oi active steps in R.

Proof: By construction of B. D

Nonfaulty, sending omission-faulty and failstop-faulty behaviors are preserved

by the simulation. However, if a processor p’ exhibits an omission failure upon

receiving in B’ and the message omitted is early, then p in B may exhibit a Weaker

form of faulty behavior (or perhaps be nonfaulty). Similarly, if a processor

exhibits a Byzantine failure in B’ and the Byzantine nature of the error only affects

the tag on a message, theci p in R may exhibit a weaker form of faulty behavior (or

wi-I is he nonfaiji lv). Lemmas .3 and 4 .litu inst rate t licse facts.

9

Lemma 3: If p’ is not Byzantine-faulty and p’ operates correctly at .step(H,

then p operates correctly at step(H,j), where j = active(1
‘,

i).

l’rool: Suppose a.i 51p(JIp i),
J) U.jipIiis j)’ .r4LtIsi.IoJJ JIuI$Ij(,jJ 0

messages M’, and that p receives the set of messages Mat step(Hj). The following

argument shows that M’ = M. We say that a message m’ of R’ and a message m of

R conespond if the text is the same and the senders and recipients are corresponding

processors (with respect to the simulation). Message m is in A’!’ if and only if there

is some corresponding message in’ such that m’ is the first message reccivcd from

the sender in H’ with tag vahie m’.tag, m’.tag is a positive integer, and m.tag < j.
These three conditions are true if and onty if rn is in M.

By construction of K iitofr(H,j) = sta±c(H. i)sim. Since p’ operates cor

rectly at step(H,. i), and it applies ps transition function to atat4Hp,j) and M,

and since statc(H.j + 1) = atate(Hp’. i ± 1).sim. p changes state conectiv at

step(H.j).

Suppose p’ sends the set of messages N’ at .ctep H, i) and p sends the set

of messages N at step(If,j). Since p’ operates correctly, we can deduce that

stae(H, i).countcr = j, all the tags of messages in N are equal to j, there is at

most one message sent to each processor, and no other messages from p’ have tag j

(because p’ is not Byzantine-faulty). Thus, if in’ is in N’, then a corresponding in

is in N, and if in is in N, then a corresponding in’ is in N’.

Thus, p sends the correct messages at step(II,,j). D

Lemma 4: (a) If processor p’ is nonfaulty in H, then processor p is nonfaulty in

B.

(5) If processor p’ is falistop-faulty in B’, then processor p is Faust op-faulty in

B.

(c) If processor p is omission-faulty in II’, then processor p is ornission-fauit’

faiistop-fauitv or nonfauity in R

Proof: Parts (a) and (b) follow from Lemmas 2 and 3.

(c) The hvpo:hess that p is ox:,ission-fautv in B’ is equivalent to assunüng

that at each active step (of which there are either a Hnite or infinite number). p’

either operates correctly or exnib,ts an onission failure, and there is some active

step at which p’ exhibits an omission failure.

10

By Lemma 3, if p’ operates correctly a.t step(H’, 1), then p operates correctly
at step(H,j), wherej = active(H’,i).

Suppose p’ exhibits an omission failure upon sending at step(H’, i). Then by

construction of II, p exhibits an omission failure upon sending at step(H, f) where

j = active(H,i).

Suppose p exhibits an omission failure upon receiving at step(H, i), and

one of the messages omitted is in. Let a = active(H, i) and in.tag = b. If

b < a, then by constniction of B. p exhibits all omission failure upon receiving

at step(H, a) (p’ should have used In in the simulation when m was received). If

b a, then by construction of B, p could exhibit an omission failure upon receiving

at step(H, b + 1) (p should have saved in and used it in the simulation when its

counter reached & + 1). However, it might be the case that the presence or absence

of message in is immaterial to p’s state change and set of messages sent, in which

case p operates correctly at stcp(H, b + 1).

Thus, at each active step in B, p either operates correctly, or exhibits a”

omission failure. The result follows. C

Lemma 5: R is in system S1(t,).

Proof: R is in system SP since, by construction of B, once a processor takes a A

step, all subsequent steps are \ steps.

Since B’ is in system BZ(t), at least n — t processors are nonfaulty in flh• By

Lemma 4, at least n — processors are nonfaulty in B. Thus, B is in system BZ(t).

Next we show that B is in system RC. Suppose message in is sent in B by

processor p to processor q, and q takes infinitely many active steps. In p’ sends

message In’ (n-i with tag b for some positive integer &) to Since B’ is in system

RC, and since by Lemma 2 q takes infinitely many active steps, in’ eventually
arrives in R, say at q5 jili active step. Then in is received at step(Hq,j), where

j=max(&+l,l). C

Theorem 6: System A1(t) simulates system S1(t), for any value of t, 1 St < n.

Proof: Fix any protocol P. Let F’ be the protocol defined above. We must show

that protocol P’ in system Al (E) simulates protocol P in system 51(t) Let the

correspondence c between processors in P’ and processors in P be that implicit in

f-he construction of F’ Define a set F = p’ e F’ } of simulation functions as

11

InEows. Fix p’ in and let p = c(p’). Define si,nization function f,,’ fro,ri stares
of p’ to states f p to be f(d’) = d’.5im.

The first direction is showing that for every run F of P in system Al(t). there
exists a run B of P in system S1(t) such that R’ simulates R via F. Given a. run
of F’ in system A1(i), let R be the run constructed as above. By Lemma 1, 1? is a
run of P. By Lemma 5, R is in system 51(t). Now we must show that B.’ simulates
B. via F. By construction of B., f(state.s(H)) = states(H). Furthermore, if p’
is nonfaulty in B.’, then p is nonfaulty in B., by Lemma 4.

The second direction is showing that given a run 1? of F in Sl(t). there is
a run R’ of P’ in system A1(U such that B.’ simulates P via F. The idea of the
contraction is to :et processors iii take the sa’iw steps at exacth- the same ricks as
do the processors they are simulating in B. and to let the message delays be exacty
the same. The key is to observe that a run in which processors are synchronous is
also in the system with asynchronous processors (i.e.. Slit) is a subset of AHtfl.
The foowing merely formalizes the idea and adds the aporopriate tags to the
messages.

Let B. = (Ha, {H}Ep). Define a message buffer history 11B’ as follows.
Suppose message m from processor p to processor q is in rnsqs(H, i) for some
and let b he the smallest integer such that m is in rnsgs(Hs, b). Then message m’,
equal torn with tag h—i, from processor p’ to processor q’. is in ‘usgs1 B’). No
other messages are in msgs(HB!. I).

Defneprocessor history H = ‘lçs’1ds, . . as follows. Let d 1je the initial state
of p’ with sim component equal to statc(H,, 1). Suppose lie’ hs been ilfined up
to d. Then s step(H.i). Ifs, = A, then d±1 d; otherwise let d+1.sirn =

stofr(H. + 1). ‘:, .eountcr d.c ottiitcr + 1, and d . arty = 0. This deflnes
the states of

It is straighl.forward to show that B’ = (HB’, { H }pfp) is a, run of P in
system Ai(t), and that B.’ simulates B. via F. U

4. Simulating Synèhronous Processors with Weaker Faults

if the strongest type of processor fault allowed is omission, then the simulation
and proofs can be sNghtiy simpified. Fix I between 2 andn. Let system S2(i) be the
intersection of systems OMt) and RC and SP. Let svste:nA2(t be the intersection
of systems OM(i) and RC. The same simulation as in Section 3 can be used, except

12

it is no longer necessary to check if a message is the first one with that tag value.

Since no Byzantine faults are considered, the message tag is always the correct active

step crnrnt, so in constructing a run of the simulated protocol, variables a and & are

always equal. Furthermore. Lemma 4 implLes that each simulated processor has the

same behavior (or better) as its simulating processor.

Theorem 7: System A2(t) simulates system 52(t). for any value of t. 1 t a-

The same simplifications apply if the only type of faiths is failstop. Fix

between 1 and ii. Let system 53(t) he the intersection of systems FS(t) and RC
and SP. Let system A3 be the intersection of systems FS(t) and RC.

Theorem 8: System A3(’t) simulates system S3(t), for any value oft, 1 t n.

5. Application

An important result in the tlieoatical study of distributed systems is that

no consensus protocol operating in a system with asynchronous processors and

asynchronous communication can be guaranteed to terminate, if it must tolerate

even one fauistop processor fault (Fischer. Lynch and Paterson, 1985). This result

was subsequently extended (Dolev, Dwork and Stockmeyer. 1987) to show that

no consensus protocol operating in a system with asynchronous communication.

but with processors in lockstep synchrony, can be guaranteed to terminate, if it

must tolerate even one faistop processor fault. The proof of Doiev, Dwork and

Stockmeyer (1987) followed the spirit of the proof of Fischer, Lynch and Paterson

(1985), but required additional machinery and a more involved argument.

The result of Dolev, Dwork and Stockmeyer (1987) can be seen to be a corollary

of the result of Fischer, Lynch and Paterson (1985), using Theorem 8 of this paper.

Given a system S, a ,onjemsus protocol P for S is a protocol that satisfies the

following. (1) Each processor’s set of non-initial states has two disjoint subsets, the

0-final states and the I-final states. Once a processor enters a v-final state, it is

always in a v-final state. (2) There exists a run of F in S in which a processor

enters a 0-final state, and there exists a run of F in S in which a processor enters a

1-final state. (3) For every run of P in system S, if some processor enters a v-final

state, then no processor enters a w-final state for w v. (4) For every run of P in

system S some processor enters a v-final state, for some v.

The model of Fischer, Lynch and Paterson (1985) corresponds in our model to

the system A3(1) obtained from the intersection of systems FS(1) and RC, i.e., the

13

system with asynchronous processors, at most one of which is failstop-faulty, and
reliable but asynchronous conmm,iication.

Theorem 9: [Fischer, Lynch and Paterson, 1985, Theorem IJ There iS flO cOIISCIJSUS

protocol for system A3(1).

The model of Dolev, Dwork and Stockrneyer (1987) corresponds in our model
to the system 53(1) obtained from the intersection of systems FS(1) and SP and
RC. i.e., the system with lockstep-svnchronous processors, at most one of which is
faistop-fauitv. and reliable but asynchronous communication.

Theorem 10: [Dolev. Dwork and Stockrnever. 1987, Theorem 1OJ There is no
consensus protocol for system S3’1).

We now show that Theorem 10 follows from Theorem 9 using the resu]ts of
this paper.

Theorem 11: If there is no consensus protocol for system A3(l,), then there is no
consensus protocol for system S3(1).

Proof: Suppose in contradiction tnat there 15 a Consensus protoco P for system
53(1). By TheoremS, system A3(1) simulates system 53(1). Thus, there exists a
simulation protocol P’ such that F’ in system A3(1) simulates P in system S3(1).
The protocol P can he used to consrruc a consensus protocol for system A3(1)
simply by letting v-na1 states of F’ be those states d such that d.sim is a v-final

state of F. Since F is a consensus protocol for system 53(1), there is a rim R0 of
F in system S3(1) in which some processor entcrs a 0-final state and another 1-un
1?1 of F in system 53(1) in which some processor enters a 1-final state. Since P’ in
A3(1) simulates Pin S3(1), there is a run R of F’ in system A3(1) that simulates

i.e., in which some processor enters a 0-final state, and another run R of F’ in
svsten A3(1) that simulates R1. i.e., in which some processor enters a 1-final state.
Since P is a consensus protocol for 53(1). and sinCe F is simuated by F, there is

no Inn of F in system A3 1) with processors in conflicting flnal states, and some

processor event’.ialy enters a fiuial state in every run in system A3(I). Thus there
is a consensus protocol for system A3(1), contradicting the hypothesis. C

Acknowledgment

I would like to thank Naucy Lynch for suggesting this problem to me, and
for many helpful ideas. Gil Neiger. Larry Stockmever and the referee pointed out
several errors and many points of confusion.

14

References

Dolev. D.. Dwork. C.. and Stockmever. L. (1987), On the minimal synchronism
needed for distributed consensus. J. A9wc. Comput. Mach., 34. to appear.

Fischer. M.. Lynch, N.. and Paterson. XL (1985), Impossibility of distributed con
sensus with one faulty process. J. Assuc. Comput. Mach.. 32. 374—382.

Larnoort. L. (1978), Time, clocks, and the ordering of events in a distributed system,
Comm. ACM. 21, 558—565.

Neiger, C. and Toueg, S. (1986), Substituting for real thue and common knowledge
in asynchronous distrthuted systems, TRS6-790, Department of Computer Science,
Cornell University.

25

