
Distributed Computing (1990) 4:87 103

DOSS I]B SSD
�9 Springer-Verlag 1990

Transaction commit in a realistic timing model*
Brian A. Coan i and Jennifer Lundelius Welch 2

1 Bellcore, Morristown, NJ 07960, USA
z University of North Carolina, Chapel Hill, NC 27599, USA

Received June 12, 1989 / Accepted March 3, 1990

Brian A. Coan received the
B.S.E. degree in electrical engineer-
ing and computer science from
Princeton University, Princeton,
New Jersey, in 1977; the M.S. de-
gree in computer engineering from
Stanford University, Stanford, Ca-
lifornia, in 1979; and the Ph.D. de-
gree in computer science from the
Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts,
in 1987. He has worked for Amdahl
Corporation and AT & T Bell Lab-
oratories. Currently he is a member
of the technical staff at Bellcore. His
main research interest is fault toler-
ance in distributed systems.

Jennifer Lundelius Welch re-
ceived her B.A. in 1979 from the
University of Texas at Austin, and
her S.M. and Ph.D. from the Mas-
sachusetts Institute of Technology
in 1984 and 1988 respectively. She
was a member of technical staff at
GTE Laboratories Incorporated in
Waltham, Massachusetts, from
1988 to 1989. She is currently an
assistant professor at the Universi-
ty of North Carolina in Chapel
Hill. Her research interests include
algorithms and lower bounds for
distributed computing.

* The authors were with the MIT Laboratory for Computer Science
when the bulk of this work was done. This work was supported
in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Contract N00014-83-K-0125, the National
Science Foundation under Grant DCR-83-02391, the Office of
Army Research under Contract DAAG29-84-K-0058, and the Of-
fice of Naval Research under Contract N00014-85-K-0168. A pre-
liminary version of this paper appears in the Proceedings of the
Fifth Annual A CM Symposium on Principles of Distributed Comput-
ing [2]

Offprint requests to: J. Lundelius Welch

Abstract. A n i m p o r t a n t p r o b l e m in the cons t ruc t i on of
fau l t - to le ran t d i s t r ibu ted d a t a b a s e systems is the design
of n o n b l o c k i n g t r a n s a c t i o n c o m m i t p ro toco ls . This
p r o b l e m has been extensively s tud ied for synch ronous
systems (i.e., systems where no messages ever ar r ive late).
In this paper , the synch rony a s s u m p t i o n is relaxed. A
new pa r t i a l ly s y n c h r o n o u s t iming m o d e l is descr ibed.
Deve loped for this m o d e l is a new n o n b l o c k i n g r a n d o m -
ized t r a n s a c t i o n c o m m i t p ro toco l , which i n c o r p o r a t e s
an agreement p r o t o c o l of Ben-Or. The new p r o t o c o l
works as long as fewer t han half the p rocessors fail. A
ma tch ing lower b o u n d is p roved , showing tha t the
n u m b e r of p roces so r faults to le ra ted is op t imal . If hal f
or more of the p rocessors fail, the p r o t o c o l degrades
graceful ly: it b locks, bu t no p rocesso r p roduces a w r o n g
answer. A n o t i o n of a s y n c h r o n o u s r o u n d is defined, and
the p r o t o c o l is shown to t e rmina te in a smal l cons t an t
expected n u m b e r of a s y n c h r o n o u s rounds . In con t r a s t
it is shown tha t no p r o t o c o l in this m o d e l can gua ran t ee
tha t a p rocesso r t e rmina tes in a b o u n d e d expec ted
n u m b e r of its own steps, even if p rocessors are synchro-
nous.

Key words: Dis t r i bu t ed da t abase s - F a u l t to le rance -
Lower b o u n d s - R a n d o m i z e d p r o t o c o l s T ime b o u n d s
- T r a n s a c t i o n c o m m i t

1 Introduction

In a d i s t r ibu ted d a t a b a s e sys tem a t r a n s a c t i o n m a y be
p rocessed concur ren t ly by several different processors .
To m a i n t a i n the in tegr i ty of the d a t a b a s e these proces-
sors mus t t ake cons is ten t ac t ion r ega rd ing the t r ansac -
t ion ei ther the results of the t r a n s a c t i o n shou ld be
ins ta l led in the d a t a b a s e at all p rocessors (the t r a n s a c t i o n
is committed), or the results shou ld be ins ta l led at no
p rocessor (the t r a n s a c t i o n is aborted). The objec t ive of
a transaction commit protocol is to ensure tha t cons i s ten t

88

action is taken and that as many transactions as practic-
able are committed. The protocol is subject to the con-
straint that each processor must be able to abort a trans-
action unilaterally (i.e., if any processor wishes to abort,
the decision must be abort).

The definition of the transaction commit problem
allows some leeway in protocol design regarding which
circumstances require the decision to be commit. To
avoid useless protocols that abort all transactions, it is
usual to impose the additional requirement that a proto-
col must commit a transaction in any failure-free execu-
tion in which all processors vote commit. In this paper,
we demonstrate the benefit of relaxing that requirement
slightly.

Another variation among protocols is that some may
fail to terminate in certain situations. If failures cause
some nonfaulty processor to remain undecided about
the fate of a transaction (at least as long as the failures
persist), that processor is said to block, and the protocol
is called blocking. Otherwise, the protocol is nonblocking.
The most common transaction commit protocol in prac-
tice, two-phase commit, is a blocking protocol. In the
presence of processor failures, a blocking protocol can
delay transaction processing for a long time, although
it does allow correct action to be taken after the failure
is repaired. The impact of processor failures is somewhat
less with a nonblocking protocol.

Elegant nonblocking transaction commit protocols
have been developed for completely synchronous sys-
tems by Skeen [12] and Dwork and Skeen [6]. An obsta-
cle to using these protocols in real systems is that a
single violation of the timing assumptions (i.e., a late
message) can cause the protocol to fail, producing the
wrong answer. The most common alternative timing
model, the completely asynchronous model, unfortunate-
ly does not allow any solution to the transaction commit
problem, either randomized or deterministic ~. We de-
scribe a new timing model that is intermediate between
the synchronous and asynchronous models previously
studied. In this model, we develop a new nonblocking
transaction commit protocol.

We model real systems in which messages are usually
delivered within some known time bound, but sometimes
come late. Our approach is to assume a completely asyn-
chronous system, in which relative processor speeds are
unbounded and messages can take arbitrarily long to

1 The outline of this impossibility result is the following. Suppose
there is a protocol that works in an asynchronous system and
guarantees that (1) nonfaulty processors eventually decide (with
probability 1); (2) if the processors all begin with commit and there
are no failures, then they all decide commit; and (3) if any processor
begins with abort, then the nonfaulty processors decide abort. Con-
sider a run in which all processors but p begin with commit and
are nonfaulty, while p fails initially. Eventually, the rest of the pro-
cessors must decide. Since p could have started with abort, the
processors must decide abort. There is another run that looks ident-
ical up to the decision point to all the processors except p, in
which p begins with commit, and all its messages are delayed until
after the decision is made. In this run, the decision must be commit.
All processors except p have the same view in the two runs but
must reach different decisions, contradicting the assumed existence
of the protocol

arrive, and to let the timing behavior affect the correct-
ness conditions for the transaction commit problem as
follows. If every processor initially wants to commit the
transaction, then the common decision must be to com-
mit, provided no processors fail and all messages arrive
within some known fixed time bound. If any processor
initially wants to abort the transaction, then the common
decision must be to abort, no matter what the timing
and fault behavior of the system is. This problem defini-
tion takes advantage of the leeway allowed in specifying
when processors must commit. Assuming that failures
and late messages are relatively rare, the overall progress
of the transaction processing system will not be impeded
very much. (Dwork, Lynch, and Stockmeyer [5] make
a similar division between properties that must always
hold and properties that only need hold when the system
is well-behaved. In most other respects our model differs
from theirs.)

In contrast, Dwork and Skeen [-7] study the transac-
tion commit problem in a completely asynchronous
model in which processor failures are detectable, i.e., al-
ways announced in finite time. In this model, they are
able to take advantage of the failure notification to de-
sign efficient nonblocking transaction commit protocols.

We assume that the faulty processors fail by crashing
(i.e., stopping without warning). Our protocol works as
long as more than half the processors are nonfaulty. The
number of faults tolerated by our protocol is optimal,
as shown by the matching lower bound that we prove.
(The synchronous protocols of Skeen [12] and Dwork
and Skeen [6] tolerate any number of processor faults.)
An important property of our protocol is that it degrades
gracefully: if the bound on the number of faulty proces-
sors is exceeded, the protocol simply fails to terminate
instead of producing a wrong answer.

Our protocol uses a modified version of a solution
to the agreement problem. The agreement problem and
the transaction commit problem, although superficially
similar, are different problems. In the agreement problem
each processor begins with an initial value, 0 or 1, and
decides on a final value. All nonfaulty processors' final
values must be equal, and if all processors have the same
initial value, then that value must be the final value.
Thus if one processor begins with 0 and the rest with
I, either 0 or 1 is an acceptable decision for the agree-
ment problem, whereas in the transaction commit prob-
lem, the decision must be 0 (if 0 is identified with abort).

An important difference between the transaction
commit problem and the agreement problem is that in
the former, all processors that decide are required to
agree, including processors that decide and subsequently
fail. This strict agreement condition is imposed because
we assume that failed processors will eventually recover.
The hope is that processors that fail and subsequently
recover can be reintegrated using a separate recovery
protocol. Skeen's thesis [12] has an excellent discussion
of recovery protocols. We do not discuss these protocols
further in this paper. Although the definition of the
agreement problem places no constraints on the de-
cisions reached by faulty processors, some agreement
protocols have the property that even decisions reached

89

by faulty processors are correct. Our transaction commit
protocol incorporates one such agreement protocol.

In our protocol, processors exchange some messages
and then execute a modification of the asynchronous
agreement protocol of Ben-Or [1] to decide the fate of
the transaction. The preliminary message exchanges
serve two purposes: first, the differences between the in-
put-output relations for the transaction commit and
agreement problems are resolved, and second, a number
of identical random bits are distributed 2. These identical
random bits are used in the agreement protocol to lower
the expected running time from exponential to constant.
There is a body of work dealing with attaining constant
expected running time for the agreement problem (see
for example Rabin [11] or Chor, Merritt, and Shmoys
[3]). Our technique does not solve this problem because
of the following difference between the agreement and
transaction commit problems. In our protocol, if the
identical random bits are not distributed in a timely fash-
ion, processors can unilaterally decide 0 (abort) and still
satisfy the conditions of the transaction commit problem.
Such an action is not an option for processors in an
agreement protocol, because it could violate the condi-
tion that all processors decide 1 if they all start with 1.

Randomizat ion is needed in our protocol because
the well-known result of Fischer, Lynch, and Paterson
[8] implies that no deterministic protocol is possible.
In order to analyze a randomized protocol, we must
define the adversary against which the protocol will
work. Our notion of the adversary is inspired by Chor,
Merritt, and Shmoys [3]. The adversary in our model
chooses the order in which processors take steps, when
each message will be delivered, and which processors
fail and when (as long as fewer than half fail). It makes
these decisions dynamically, during the execution of the
protocol, using unlimited computat ional power. The ad-
versary has available at any point in the execution all
information about the hardware and software of the pro-
cessors, and the pattern of communicat ion up to that
time, but it does not know the contents of the messages
sent, nor the local states of processors, nor the proces-
sors' local random choices, unless that information is
deducible from the pattern of communication. We will
be careful to design our protocol so that it is not deduc-
ible.

We prove that in our model no transaction commit
protocol can guarantee that each processor terminates
in a bounded expected number of its own steps, even
if processors are synchronous and only a single fault
is to be tolerated. Consequently a new measure is needed
to analyze the time performance of our protocol. One
of the contributions of this paper is such a measure,
which we call an asynchronous round. Our protocol ter-
minates in a small constant expected number of asyn-
chronous rounds.

2 We have not solved the global coin toss problem, however, be-
cause our protocol does not guarantee that the identical random
bits are successfully distributed. Fortunately, the unique nature of
the transaction commit problem allows us to design a protocol
in which a processor only needs to consult these bits in those
executions in which they have been successfully distributed

Following an exposition of our formal model in
Sect. 2, we present and analyze our randomized transac-
tion commit protocol in Sect. 3. Section 4 contains the
lower bound proof showing that our protocol tolerates
the maximal number of faulty processors. In Sect. 5 we
show that no transaction commit protocol can guarantee
that each processor terminates in a bounded expected
number of its own steps, even if processors are synchro-
nous and only a single fault is to be tolerated. Section 6
contains a summary.

2 Model

There are n processors that are to decide the fate of
a particular transaction. (Our protocol assumes that n >_
1; our lower bounds assume that n > 2, and are not true
if n = 1.) Processors are modeled as state machines that
communicate by sending messages. Messages can take
arbitrarily long to arrive. Our protocol works even in
a very weak model in which there is no bound on the
relative frequency with which processors take steps and
in which there is no atomic broadcast of messages. Our
lower bounds are shown in the stronger model in which
processors run in lockstep synchrony and possess atomic
broadcast. In this section we present the weaker model.
In Sects. 4 and 5 we indicate the necessary changes for
the stronger model. Our model is similar to those of
Fischer, Lynch, and Paterson [8] and Dolev, Dwork,
and Stockmeyer [4].

Throughout this paper, 1 is identified with " c o m m i t "
and 0 with "abor t . "

2.1 Basic model

A raw message consists of some text, and the names
of the sending and receiving processors. A message is
an ordered pair (raw message, integer); the integer den-
otes the sending time, as will be explained later. The
reason for distinguishing between messages and raw
messages is that we do not wish to require t imestamps
on (raw) messages sent by processors, yet this informa-
tion is useful in the exposition of the model for distin-
guishing multiple instances of the same raw message and
determining message delays.

A processor is an infinite-state machine, together with
a message buffer and a random number generator. The
message buffer holds messages that have been sent to
the processor but not yet received and is modeled as
a set of messages. The random number generator sup-
plies an infinite sequence of n-bit strings. Certain proces-
sor states are initial states, designated (id, initval), where
id is a nonnegative integer and initval is either 0 or 1.
The id element of an initial state is the processor 's name,
or identification number. The initval element is the pro-
cessor's initial value. There is an integer in each proces-
sor's state, called its clock, which is 0 in all initial states.
The state machine's transition function is applied to a
state, an n-bit string, and a set of raw messages to pro-
duce another state and a set of raw messages containing

90

at most one raw message per recipient. The transition
function always increments clock by 1.

Described informally, a processor at each step com-
putes a new state and a set of raw messages to send,
based on its current state, the set of raw messages just
received, and an n-bit string from its random number
generator. The processor keeps track of how many steps
it has taken with the clock variable.

A protocol is a set of n processors, with identification
numbers 0 through n - 1. A particular protocol is impli-
cit in all the definitions in the remainder of Sect. 2.

A configuration C consists of n states, one for each
processor, and n sets of messages, one for each proces-
sor's buffer. An initial configuration has all processors
in initial states and all buffers equal to the empty set.

An event is denoted (p, M, b), in which processor p
receives the set of messages M (which can be empty)
and the random bit string b. Such an event is a step
ofp.

An event e=(p , M, b) is applicable to configuration
C if every message in M is an element of p's buffer in
C. Let s and M' be the state and set of raw messages
resulting from applying p's transition function to the tri-
ple consisting of p's state in C, b, and the raw messages
extracted from M. The configuration resulting from ap-
plying e to C, denoted e(C), is obtained from C by remov-
ing all messages in M from p's buffer, changing p's state
to s, and adding the message (m, i), for each m~M', to
the recipient's buffer, where i is the value of p's clock
in s.

A schedule is a finite or infinite sequence of events.
A finite schedule a = el e2... ek is applicable to configura-
tion C if e~ is applicable to C, e 2 is applicable to el(C),
etc. The resulting configuration is denoted a(C). An infi-
nite schedule is applicable to C if every finite prefix of
the schedule is applicable to C.

Given configuration C1 and schedule a applicable
to C~, we define the run R=run(C~, a) obtained from
C1 and 0-, as follows. If o-=el e2 ... ek is finite, then R
is the sequence ClelCzez . . .ekCk+~, where Ci+~
=ei(Ci), l< i<k . If a = e l e2 ... is infinite, then R is the
sequence C1 el C2 e2 - - - , where, for all i_> 1, Ci+ 1 =ei(Ci).
Informally, a run is a schedule together with its associat-
ed configurations.

Processor p is nonfaulty in an infinite run or schedule
if it takes an infinite number of steps; otherwise it is
faulty. An infinite run or schedule is failure-free if no
processor is faulty in it. Since the interleaving of proces-
sors' steps in a run or schedule may be arbitrary, no
particular degree of synchronization is necessarily
achieved. Note that processors cannot be designated as
faulty or nonfaulty in a finite run or schedule.

A message sent by processor p at event e in infinite
run R is guaranteed if e is not the last step of p in R.
An infinite run R is admissible if the first configuration
is an initial configuration and all guaranteed messages
sent to nonfaulty processors are eventually received. The
notion of guaranteed messages is used to model the lack
of atomic broadcast. Since messages sent at a processor's
last step do not have to be received, we effectively model
a processor failing in the middle of a broadcast. An ad-

missible run is t-admissible for 0 < t_< n, if at most t pro-
cessors are faulty in the run.

Each processor's state set contains two disjoint sub-
sets of decision states, I1o and I11, such that the transition
function applied to a state in Y~ produces a state in
Yv (i.e., once a processor enters a state in I10 or Y1 in
a run, it stays in that set forever). A processor decides
v in a run when it is in a state in Yr. A configuration
C has decision value v if there is some processor whose
state in C is an element of Y~. An infinite run is deciding
if every nonfaulty processor decides.

2.2 Timing constraints

We fix a positive constant K > 1, which is used to define
late messages. A message m from p to q is late in (finite
or infinite) run R = C1 el C2 e2... if event es adds m to
q's message buffer, event er removes m from q's message
buffer, and there is some processor that takes more than
K steps in the schedule es+l.. .e, A run is on-time if
it contains no late messages. Note that a message that
is never delivered is not considered late.

Ideally we would like a processor to decide in a con-
stant expected number of its own steps. Unfortunately,
as we prove in Sect. 5, this is impossible, even if proces-
sors run in lockstep synchrony and only a single fault
is to be tolerated. Instead, we characterize the time per-
formance of our protocol using the following definition.
Given an infinite run, a processor is defined inductively
to be in a particular asynchronous round (or round) as
follows. Asynchronous round 1 for processor p consists
of p's first K steps. Asynchronous round r, r > 1, for p
begins with the first step that p takes after the end of
p's round r - 1 . It ends with the first step in which p
has satisfied all of the following three conditions: p has
taken at least K steps in round r, p has received every
guaranteed message that was sent by a processor q in
q's round r - 1 , and in the remainder of the infinite run
there are no steps in which p receives a message that
was sent by a processor q in q's round r - 1 . (Note that
the last two conditions make sure that no round lasts
infinitely long due to p's waiting for a non-guaranteed
message that never arrives.)

This definition uses two criteria for ending a round,
the number of processor steps taken and the collection
of messages received. These criteria seem natural in our
timing model, in which processors can take actions de-
pending on the receipt of messages, as well as on time-
outs.

A processor cannot compute its current asynchro-
nous round; the definition is for our use as ommiscient
observers as we analyze protocols. We require a round
to last at least K steps to prevent a round from collapsing
to nothing if no messages are sent in the previous round.
If processors take steps in round-robin order, and receive
and send messages only at the beginning of a round,
and if each message sent at the sender's i th step is received
at the recipient's (i + K) th step (for all i), then this defini-
tion is essentially the same as the synchronous round
definition of Dwork and Skeen [6].

91

2.3 Safety conditions

The following definition restricts what must happen if
a processor decides, but does not require any processor
to decide. A protocol is a transaction commit protocol
if for every admissible run R:

�9 Agreement Condition: Every configuration has at most
one decision value.
�9 Abort Validity Condition: If the initial value of any
processor is 0, then no configuration has decision
value 1.
�9 Commit Validity Condition: If the initial value of all
processors is 1 and R is failure-free and on-time, then
no configuration has decision value 0.

Since these three conditions must hold for any ad-
missible run, regardless of how many processors are
faulty, our definition of transaction commit protocol in-
corporates the graceful degradation property: processors
may block but will never produce the "wrong" answer.

The definitions in Subsect. 2.1 allow each processor
to receive an unbounded number of messages at each
step. This assumption is not essential to our work, but
to exclude uninteresting protocols, we must require that
each processor be able to receive at least n messages
at each step. Otherwise, processors could swamp the
message system, causing messages to become late, not
because the message system misbehaves, but because the
ability of the processors to handle all the incoming mes-
sage traffic is inadequate 3. For instance, the protocol
"cause the run to be not on-time by flooding the message
system and then abor t " is not of much practical interest.

2.4 Adversary

The adversary can be considered a scheduler: it decides
which processor takes a step next and which messages
are received. In the introduction we gave an informal
description of the adversary. This subsection formalizes
the notion.

The message pattern of finite run R = C 1 el ... eg Ck+ 1,
where ei = (Pi, Mi, bi) for all 1 < i < k, is the sequence of
triples (p~, El, P~)... (Pk, Eg, Pk), where Pi is the set of pro-
cessors to which messages were sent by event e~, and
Ei is a set of integers indexing the events in the run
that sent the messages, M~, received in e~. The point
of making this definition is to isolate the pattern of mes-
sage sending and receiving while hiding the contents of
the messages.

3 For an example of swamping, consider the following. Suppose
each processor can send n messages per step but only receive n - 1.
Consider the protocol: At each step, broadcast a message; at step
1, decide 0. We now show that no infinite failure-free run is on-time.
Let R be an infinite failure-free run. After Kn(n 1)+n events,
(Kn(n-1)+n)n messages have been sent, and at most
(Kn(n-1)+n) (n--l) have been received. So there are at least
Kn(n--1)+n outstanding messages. By the pigeonhole principle,
some processor p has at least K(n 1)+1 outstanding messages
(to be received). It will take p at least K + 1 steps to receive all
those messages, by which time the run will no longer be on-time

An adversary is a function that takes a message pat-
tern (Pl, El, PO... (Pk, Ek, Pk) and returns a processor p,
that will take step k + 1, and a set of at most n messages
sent during the first k events whose receipt is delayed
until the k + 1 ~t event. This set of messages is represented
by a set E of integers, l<_lEl<_n, such that for all
i~E, p~Pi.

Let f f be the collection of all n-tuples of infinite se-
quences of n-bit strings. Each element of Y is an n-tuple
(Xo, ..., X,- l) , where for all p, xp models the sequence
of random strings that could be returned by processor
p's random number generator in p's steps in some infinite
run.

A run is uniquely determined by an adversary A,
an initial configuration I, and an element F of Y . Denote
this run by run(A, I, F). The construction of
run(A, I, F)=C1 el C2 e2 ... is inductive. Let C I = I .
Suppose the run up to configuration Ci has been con-
structed. Let p and E be the result of A acting on the
message pattern of run C~ e l . . . Ci. Then e~ consists of
the processor p, the messages sent to p in all the events
indexed by E, and the next unused bit string in the se-
quence for p in F. Event e~ is applicable to C~ by the
definition of an adversary. We define Ci+l to be ei(Ci).
Since the adversary is a total function, run(A, I, F) is
an infinite run, and thus at least one processor is non-
faulty.

If the adversary were not restricted in any way, it
could cause all processors (but one) to fail or no messages
to be delivered, and no protocol would be possible. We
limit the power of the adversary in the following reason-
able way. We define a t-admissible adversary, for 0 _< t _< n,
to be an adversary such that for all initial configurations
I and all F in i f , run(A, I, F) is t-admissible.

For predicate P defined on runs, let P r [P] be the
probabili ty of the event { F e Y : run(A, I, F) satisfies P},
for a fixed adversary A and initial configuration I.

The expected value of any complexity measure is de-
fined as follows. Let T be a random variable that, for
a given run, is the value of the complexity measure of
interest for that run. For a fixed admissible adversary
A and initial configuration I, let the expected value of
T, taken over all F in ~ , be denoted E(TA, I). Define
the expected value for the protocol for a given value
of t, E(T, t), to be maXA, I{E(TA, I) }, where A is any t-
admissible adversary and I is any initial configuration.

2.5 Liveness condition

Given admissible run R and integer r, let DONE(R, r)
be the predicate that every nonfaulty processor decides
by its asynchronous round r in R. A protocol is t-non-
blocking if for any t-admissible adversary A and any ini-
tial configuration I,

lim Pr[DONE(run(A, I, F), r)] = 1.

The t-nonblocking property means that the probabil-
ity of all the nonfaulty processors having decided goes
to 1 as the number of rounds increases without bound.

92

3 The randomized commit protocol

For all of this section we assume a fixed t > 0 with n > 2 t.
Subsection 3.1 contains the code for our t-nonblocking
transaction commit protocol, preceded by an informal
description. In Subsect. 3.2 we prove that our protocol
is a transaction commit protocol, i.e., it satisfies the safety
conditions. In Subsect. 3.3 we prove an eventual termina-
tion property which is used in Subsect. 3.4 to show that
our protocol is t-nonblocking. Subsection 3.5 contains
the time analysis, in which we show that our protocol
decides in a constant expected number of asynchronous
rounds.

3.1 The protocol

In this subsection we present our randomized transac-
tion commit protocol by describing, for each processor
p, the states and transition function of p. We begin with
an informal description.

Our protocol consists of a few preliminary message
exchanges followed by a modification of the agreement
protocol of Ben-Or [1]. The two purposes of the prelimi-
nary message exchanges are to resolve the differences
between the input/output relations of the transaction
commit and agreement problems (e.g., to ensure that if
any vote is initially 0, then all the inputs to the agreement
"subrout ine" are 0) and for the coordinator to distribute
n random bits to all the processors.

The original protocol of Ben-Or [1] proceeds in
stages, with each processor using one random bit at each
stage. The protocol is sure to terminate once a stage
is reached in which each processor's random bit is equal
to a particular value (chosen for that stage by the advers-
ary). Obviously, if each processor's random bit in a stage
is independent of every other processor's random bit for
that stage, the expected number of stages until termina-
tion is exponential in the number of processors. In our
protocol, the coordinator distributes n random bits to
be used in the first n stages, one bit per stage. Thus
all the processors will share the same random bit in
each of the first n stages. The probability that none of
the n common bits has the required value for its stage
is exponentially small, causing the expected number of
stages until termination to be constant.

We now describe the two parts of our protocol in
more detail.

Throughout the protocol each processor keeps a vote
indicating what it currently wants to do with the transac-
tion. The processor with id 0 is the coordinator; at its
first step, it chooses n random bits and distributes them
to the other processors, the participants, by broadcasting
a coins message containing the bits. (Throughout this
paper we use "broadcas t" to mean send to all proces-
sors.) If a participant receives no message at its first step
(which only happens if the participant unilaterally initi-
ates the protocol), it sends a request message to the coor-
dinator (to try to jog it awake); if no reply is received
within 2K steps, the participant sets its vote to 0 and
decides 0. If a participant either receives a message at

its first step or receives a timely reply to its request mes-
sage, it extracts the n bits and broadcasts them in a
coins message, to indicate that it is participating in the
protocol. If all processors are nonfaulty and the run is
on-time, then each processor receives a coins message
from everyone within 2K steps after broadcasting one.
If a processor does not receive these messages, it sets
its vote to 0 and decides 0. In either event, each processor
then broadcasts its vote. If a processor does not receive
n votes for 1 within an additional 2K of its steps, it
sets its vote to 0, but remains undecided.

The rest of the protocol proceeds in stages (as in
Ben-Or [1]), numbered from 1 up without bound. In
stage s, each processor p broadcasts its vote in a stage
(s, 1) message and waits to receive n - t stage (s, 1) mes-
sages. If p receives at least n - t stage (s, 1) messages with
the same value v~{0, 1), then p broadcasts v in a stage
(s, 2) message; otherwise p broadcasts " ? " in a stage (s, 2)
message. The purpose of the first part of stage s is to
ensure that it is never the case that some processor
broadcasts 0 in a stage (s, 2) message and another proces-
sor broadcasts 1 in a stage (s, 2) message. In the second
part of stage s, processor p waits to receive n - t stage
(s, 2) messages. If p receives a stage (s, 2) message with
value w{0 , 1}, then p sets its vote to v; otherwise, p
sets its vote to a random bit, either the #h random bit
from the coins message if s_<n, or else a locally-deter-
mined random bit. If p receives at least n - t stage (s, 2)
messages for value w{0 , I}, then p decides v.

Processor p uses the following constants and vari-
ables. Constants, in addition to p itself, are n, t, and K
as defined above. Variables are:

�9 clockv: nonnegative integer; initially 0.
�9 stagep: values are "asleep", "request", "coins",
"vote", (s, 1) and (s, 2) for all s> 1; initially "asleep".
�9 timerp: nonnegative integer or oo ; initially oo.
�9 coinsp: n-bit string or nil; initially nil.
�9 votep: boolean; initially p's initial value.
�9 decider: boolean or nil; initially nil.
�9 receivedp: set of raw messages; initially empty.

The text of each raw message consists of either a
possible value for a stage v variable, or a triple containing
a possible value for a stage v variable, an element of
{0, 1, ?}, and an n-bit string.

Below we describe p's transition function, acting on
state q of p, set M of raw messages, and n-bit string
b. The state of p returned by the transition function is
obtained from q in accordance with the following pseu-
docode. The set of raw messages returned by the transi-
tion function is that indicated by the send statements
executed in the pseudocode. The statement " i f expression
then body elseif expression then body ... elseif expression
then body endif" is a multiway branch.

Protocol 1:

/* increment clock and save received raw messages */

clockp:=clockp+l
receivedp:=receivedvuM

/* coordinator initiates protocol
by distributing n random bits */

if stage.="asleep " and p is the coordinator then
coins. := b
stage. :=" coins"
timer. ,=clock. + 2 K
send (stage., "?" , coins.) to all processors

/* non-coordinator wakes up and requests
that coordinator initiate */

elseif stage. = " a s l e e p " and p is not the coordinator
and M = 0 then

stage.:=" request"
timer..'= clock. + 2 K
send (stage.) to the coordinator

/* non-coordinator receives coins before t imeout */

elseif (stage. = " a s l e e p " and p is not the coordinator
and M :# O) or (stagep = " r e q u e s t " and clockp
<_ timer, and M :# O) then

coinsp'.=n-bit string from any raw message in M
stagep :=" coins"
timer. := clock. + 2 K
send (stage., "?" , coins.) to all processors

/* non-coordinator times out while waiting
to receive coins */

elseif stage. = " r e q u e s t " and clock.
= timer, and M = 0 then

vote. :=0
decidep :=0

/* distributing votes */

. Is . i f stagep="coins" and (clock.= timer, or n coins
messages are in received.) then

stage. :=" vote"
timerp ,=clockp+ 2 K
if fewer than n coins messages are in received, then

votep:=O
decide.:=O

endif
send (stage., vote., coins.) to all processors

/* completing stage 0 */

elseif stage. = " v o t e " and (clock.= timer, or n vote
messages are in receivedp) then

stagep:=(1.1)
if fewer than n vote messages

for 1 are in received, then
vOtep:=O

endif
send (stagep, vote., coinsr) to all processors

/* finishing first part of stage s */

elseif stage. = (s, 1) and at least n - t stage (s, 1)
message are in received, then

stage. :=(s, 2)
if there is w{O, 1} such that at least n - t stage

93

(s, 1) messages in received, have value v then
send (stage., v, coins.) to all processors

else
send (stage., " ? " coins.) to all processors

endif

/* finishing second part of stage s */

elseif stage. = (s, 2) and at least n - t stage (s, 2)
messages are in received, then

stagep,=(s+ 1, 1)
if there is re{0, 1} such that a stage (s, 2) message

in received, has value v then
votep,=v /* in Lemma 4 we show that v is

unique */
if at least n - t stage (s, 2) messages
in received, have value v then

decide. :=v
endif

else
if s < n then vote. :=coins. Is]

else votep:=the first bit of b endif
endif
send (stage., vote., coins.) t o all processors

endif

3.2 Safety conditions

This subsection culminates in Theorem 8, which asserts
that Protocol 1 is a transaction commit protocol.

In run R, processor p is said to be in stage s, for
s_> 1, if stage. = (s, 1) or (s, 2). We say p completes stage
s_>0 i fp ever sets stage, to (s+ 1, 1) in R.

Lemma 1. In any admissible run, if for some p vote. = 0
at any time before p broadcasts its vote message, then
every stage (1, 1) message has value O.

Proof Since vote. is never set to 1 before stage 1, no
processor ever receives a vote message with value 1 from
p. Thus no processor broadcasts a stage (1, 1) message
with value 1. []

Lemma 2. In any admissible run, if for all pvo t ep = 1
initially, and the run is failure-free and on-time, then every
processor broadcasts a stage (1, 1) message with value 1.

Proof First we show that each processor p broadcasts
a vote message with value 1. Suppose either p is the
coordinator or p receives a message at its first step. Then
p broadcasts a coins message at its first step. By time
K on p's clock, each processor receives p's coins message
and broadcasts its own coins message (if it has not al-
ready done so). By time 2 K on p's clock, p receives n
coins messages. Thus p broadcasts a vote message with
value 1.

Now suppose p is not the coordinator and does not
receive any messages at its first step. It sends a request
message to the coordinator, which is received by time
K on p's clock. The coordinator then broadcasts a coins

94

message, if it has not already done so, and thus p receives
some message containing the coins (not necessarily from
the coordinator) at time TI<_2K on p's clock. Then p
broadcasts a coins message at time T1; by time T 1 + K
on p's clock, each processor receives p's coins message
and broadcasts its own coins message (if it has not al-
ready done so). By time T 1 + 2 K on p's clock p receives
n coins messages. Thus p broadcasts a vote message with
value 1.

Now we show that every processor p receives n vote
messages within 2 K of its clock ticks after it broadcasts
its vote. Processor p broadcasts its vote as soon as it
receives its n th coins message. Suppose its clock reads
T2 then. Since the run is on-time, every other processor
receives its n th coins message, and broadcasts its vote,
by the time p's clock reads T2+K. Thus p receives
all n vote messages by the time its clock reads Tz+
2K. Then p broadcasts its stage (1,1) message with
value 1. []

Lemma 3. In any admissible run, for all s>_ 1, if every
stage (s, 1) message has value v~{0, 1} then
(1) every stage (s, 2) message has value v;
(2) every stage (s+ 1, 1) message has value v; and
(3) any processor p that completes stage s sets decidep
to v at the end of stage s.

Proof Part 1 is obvious from the code. Parts 2 and 3
follow from part 1 and the code. []

For any s >_ 1, we call a stage (s, 2) message with value
re{0, 1} a stage s S-message ("S" for "set"), because
the receipt of such a message can cause a processor to
set its vote to v (if this message is among the first n - t
stage (s, 2) messages received by the processor).

Lemma 4. In any admissible run, for any f ixed s >_ 1, every
stage s S-message has the same value.

Proof Fix s > 1. In order to send a stage s S-message
with value v, a processor must receive at least n - t stage
(s, 1) messages with value v. Since no processor broad-
casts conflicting messages, at most t processors can
broadcast a stage (s, 1) message with value w =~ v. Thus,
no processor receives more than t stage (s, 1) messages
with value w. Since n>2t , t is less than n - t , and no
processor sends a stage s S-message with value w. []

Lemma 5. In any admissible run, for all s>_ 1 and all
processors p, if p sets decidep to v in stage s, then all
stage (s+ 1, 1) messages have value v.

Proof Suppose p sets decidep to v in stage s. Then p
receives at least n - t stage s S-messages for v. Let Sp
be the set of processors that send stage s S-messages
for v. Let q be any processor that completes stage s.
Then q receives at least n - t stage (s, 2) messages. Since
n > 2 t, at least one of these n - t messages received by
q is from a processor in Sp. Since no processor broad-
casts conflicting messages, q receives at least one stage
s S-message for v. By Lemma 4, q receives no stage s

S-message for any w :# v. Therefore q's stage (s + 1, 1) mes-
sage has value v. []

Lemma 6. In any admissible run, for all processors p and
q (not necessarily distinct) if p sets decidep to v at some
point in the run, and q sets decideq to w at another point
in the run, then v = w.

Proof Without loss of generality, assume that the desig-
nated point for p does not come after the designated
point for q. There are three cases.

Case 1. Processor p sets decidep to v before complet-
ing stage 0, and q sets decideq to w before completing
stage 0. By the code, v = 0 = w.

Case 2. Processor p sets decidep to v before complet-
ing stage 0, and q sets decideq to w at the end of stage
s, for some s >_ 1. By the code, v = 0. By Lemma 1, every
stage (1, 1) message has value 0. By part 2 of Lemma 3
and induction, every stage (s, 1) message has value v.
By part 3 of Lemma 3, w = v.

Case 3. Processor p sets decidep to v at the end of
stage r, for some r > l , and q sets decideq to w at the
end of stage s, for some s>_ 1. By our choice of p and
q, r_< s. There are two subcases.

Case 3a. If r = s , then p receives at least n - t stage
r S-messages for v and q receives at least n - t stage
r S-messages for w. By Lemma 4, v = w.

Case 3b. Suppose r < s . By Lemma5 , all stage
(r+ 1, 1) messages have value v. By part 2 of Lemma 3
and induction, all stage (s, 1) messages have value v. By
part 3 of Lemma 3, w=v. []

Lemma 7. In any admissible run, decidep changes value
at most once, for every processor p.

Proof By Lemma 6. []

Let p's decision states I1o and I11 be states with
decidep=O and decidep= 1 respectively; Lemma 7 shows
that once p enters a state in Y~, v~{0, 1}, it stays in
that set forever. Thus we can say p decides v when p
sets decidep to v for the first time in a run.

Theorem 8. Protocol 1 is a transaction commit protocol.

Proof By Lemma 7 and inspection, Protocol 1 is actually
a protocol, according to our definition. It remains to
show that it is a transaction commit protocol.

Let R be a t-admissible run. The agreement condition
is satisfied by Lemma 6.

Next we show the abort validity condition. Suppose
some processor begins with initial value 0. By the code,
any processor that decides before completing stage 0
decides 0. By Lemma 1 and part 3 of Lemlna 3, any pro-
cessor that completes stage 1 and has not already de-
cided, decides 0 at the end of stage 1.

Finally, we show the commit validity condition. Sup-
pose R is failure-free and on-time, and all processors
begin with 1. Then every processor completes stage 1.
By Lemma 2 and part 3 of Lemma 3, every processor
decides 1 at the end of stage 1. []

95

By our definition of transaction commit protocol, the
agreement, abort validity, and commit validity condi-
tions are true even for runs in which more than t proces-
sors fail. This is the graceful degradation property exhib-
ited by our protocol.

3.3 Eventual termination

The analysis in this subsection shows that the probability
that all processors that complete stage s, decide by stage
s, approaches 1 as s approaches infinity. Recall that
probabilities are taken over the random information (i.e.,
the sample space is ~) , holding the adversary and initial
configuration fixed.

For the following definitions, fix adversary A, initial
configurat ion/ , and F and F' in ~ . Let R=run(A, I, F)
and R ' = run(A, I, F').

Define F(p, k) to be the k th element in the sequence
for p in F.

Define coins(F) to be F(0, 1) (i.e., the coordinator 's
first n-bit string). It is easy to see that if coinsv is ever
nonnil in R, then it equals coins(F), for all p. We denote
the s th element of coins(F) by coins(F) [s].

For processor p and s > 1, define index(R, p, s) to be
the total number of steps taken by p in the run from
the beginning until p completes stage s in R. If p does
not complete stage s, then index(R, p, s) is undefined.
Thus index(R, p, s) is also the index into the sequence
for p in F of the bit string used to determine the value
of vote v in stage s, in case s > n and p receives no stage
s S-message.

The next definition maps a bit to each processor and
each stage s > n in a run, such that each stage gets a
"new" bit, i.e. a bit independent of the bit assigned to
any other stage. This mapping is consistent with the
mapping implemented in the protocol for those cases
where a processor uses a random bit. Let random(R, p, s),
for processor p and s>n, be defined as follows. (1) If
p completes stage s in R, then random(R, p, s) is the first
bit of F(p, k), where k=index(R, p, s). (2) If p does not
complete stage s in R, then random(R, p, s) is the second
bit of F(p, s+ 1) (i.e., a safe default).

For 0_< s__ n, define F and F' to be (A, I, s)-equal if
coins(F) [i] =coins(F) [i] for all i, 1 <iNs . For s>n, de-
fine F and F' to be (A, I, s)-equal if F and F' are (A, I, n)-
equal, and for every i, n + 1_<iN s, and every processor
p, random(R, p, s)=random(R', p, s). Note that for a fixed
A, I, and s, (A, I, s)-equality is an equivalence relation
on Y.

In the following three definitions, s _> 1.
Define v(R, s) to be the value of a stage s S-message

sent in run R. If no stage s S-message is sent in R, then
let v(R, s)=0. By Lemma 4, v(R, s) is well-defined.

Define MATCH(R, S) to be the predicate that if s_<n,
then eoins(F)[s]=v(R,s), and if s>n, then ran-
dom(R, p, s)=v(R, s) for all p.

Define DEC~DE(R, S) to be the predicate that each pro-
cessor that completes stage s has decided by the end
of stage s (or earlier) in R.

The next lemma characterizes two aspects of runs
that are unchanged once an adversary and initial config-
uration are fixed.

Lemma 9. Let A be an adversary, I an initial configura-
tion, and F and F' e ~ . Let R =run(A, I, F)=C1 el C2 ...
and R '=run(A, I, F')=C'I e'l C'2
(1) For all i>_ 1, the message pattern of C1 el ... Ci is the
same as the message pattern of C' 1 e'l ... CI.
(2) For all processors p and all s>_l, index(R, p, s)=in-
dex (R', p, s).

Proof. (Part 1). The structure of the protocol is such that
the random information does not affect which processors
send messages to which other processor it only affects
the values of the local variables and the message con-
tents. But this is the very information not available to
the adversaries under consideration. Thus, for a fixed
adversary and initial configuration, the sequence of pro-
cessor steps and the message delays are the same, regard-
less of the random information.

(Part 2). This follows from part 1 of this lemma. []

The next lemma states that the value of a stage s + 1
S-message only depends on the random information
available through stage s, once an adversary and initial
configuration are fixed.

Lemma 10. Let R=run(A, I, F) and R '=run(A, I, F') for
adversary A, initial configuration I, and F and F' in ~ .
I f F and F' are (A,I,s)-equal, then v (R , s + l) =
v(R', s + l), for any s>O.

Proof. By Lemma 9, the message patterns for R and R'
are the same. Since F and F' are (A, I, s)-equal, the ran-
dom information that affects the local variables and mes-
sage contents in R and R' up through stage s is the
same in F and F'. Thus, the values of corresponding
processors' variables, and the contents of corresponding
messages sent up through stage s are the same in R
and R'. The random information used in a processor's
stage s+ 1 is not used until the end of that stage, so
the same messages are sent in each processor's stage
s+ 1 in R and R', even though the stage s + 1 random
information might be different in F and F'. [2]

The next lemma states a simple relationship between
MATCH and DECIDE.

Lemma 11. Let R=run(A, I, F) for adversary A, initial
configuration I, and F e ~ . For all s> 1, MATCH(R, S) im-
plies DECIDE(R, S + 1).

Proof. Fix s_> 1. At the end of stage s, each processor
sets its vote to be either the value received in a stage
s S-message or its random value for that stage.
MATCH(R, S) means that every processor's random value
for stage s is the same as the value sent in any stage
s S-message. If MATCH(R, S) is true, then processors set
their votes to the same value at the end of stage s, imply-
ing that all stage (s + 1, 1) messages have the same value

96

v~{0,1}. By pa r t3 of Lemma3, DECIDE(R, s+ I) is
true. [~

The following technical lemma concerns any equiva-
lence class of ~-, where the equivalence is defined by
(A, I, s)-equality.

Lemma 12. Fix adversary A, initial configuration I, and
s>O. Partition Y into equivalence classes according to
the (A, I, s)-equal equivalence relation. Pick any class C.
(1) MATCH(run(A, l, F), i)=MATCH(run(A, I, F'), i) for all
i, 1 <_ i <<_ s, and any F and F' in C.
(2) I f s<n, then Pr[MATCH(run(A, I, F), s+ I)[FeC]
= 1/2; /f s>_n, then Pr[MATCH(run(A, I, F), s+ 1)[F~C]
= 1/2".

Proof (Part 1). If s=O, then the result is vacuously true.
Suppose s>0 . Choose any i, l_<i<s, and any F and
F' in C. Let R =run(A, I, F) and R'=run(A, I, U). Since
F and F' are (A, I , / - U - e q u a l , v(R, i)=v(R', i), by Lem-
ma 10. Since F and F' are (A, I,i)-equal, coins(F)[i]
=coins(F')[i] if i nn , and random(R, p, i)=random(R',
p, i) for all p i f / > n; thus MATCH(R, i)= MATCH(R', i).

(Part 2). By Lemma 10, v(run(A, I, F), s+ 1) is the
same for all FeC. Call this value v.

Suppose s <n. For F in C, MATCH(run(A, I, F), s+ 1)
is true if and only if coins(F)[s+l]=v. Recall that
coins(F)[s+l] is equal to either 0 or 1. Pr[coins(F)
[s+ 1] = 0] F e C] = 1/2, since C is the set of all elements
of ~ that are (A, I, s)-equal. Thus Pr[MATCH(run
(A, I, F), s+ 1)1VeC] = 1/2.

Suppose s> n. For F in C, MATCH(run(A, 1, F), s + l)
is true if and only if random(run(A, I, F), p, s+ 1)=v for
all p. Recall that random(run(A, I, F), p, s + l) is equal
to either 0 or l.

Fix processor p. For any F, the position of ran-
dom(run(A, I, F), p, s + l) in F depends on whether p
completes stage s + l in run(A, I ,F) or not. By Lem-
ma 9, either p completes stage s + l in run(A, I, F)
for all F in C, or p fails to complete stage s + l in
run(A, I, F) for all F in C. If p does not complete stage
s + l , then random(run(A, I, F), p, s + l) is the se-
cond bit of F(p, s+2), obviously a fixed position for
all F in C. If p does complete stage s + l , then
random(run(A, I, F), p, s + l) is the first bit of F(p,k),
where k=index(run(A, I, F), p, s+ 1). By Lemma 9, k is
the same for all F in C, so this is also a fixed position
for all F in C.

For all distinct p and q and all F in C, the positions
in F of random(run(A, I, F), p, s) and random(run(A, I, F),
q, s) are distinct.

For any fixed p, Pr[random(run(A , I ,F) ,ps+l)
= 0] F r = 1/2, since C is defined by (A, I, s)-equality.
Thus Pr[MATCH(run(A, I, F), s + 1)]FeC] = 1/2". []

The next lemma is the key to the termination of the
protocol, as well as the good time performance. It says
that there is a high probability that the random informa-
tion used to set votes matches the value in S-messages
for the first n stages, and there is a smaller, but still
positive probability for subsequent stages.

Lemma 13. Fix adversary A and initial configuration I.
Then, for all s >_ 1,

Pr[MAYCn(run(A, I, F), s)] ={1/2 if s < , ;
1/2" otherwise.

Proof By part 2 of Lemma 12, since the lemma is true
for every equivalence class of ~ , under the (A, I, s - 1)-
equal relation. []

The next lemma provides a means of calculating the
probability of certain compound events. These probabili-
ties will be used in the proofs of Lemmas 15 and 19.

Lemma 14. Fix adversary A, initial configuration I, and
s> l. Let R=run(A, I, F) for F e ~ and for all i, l <i<s ,
let M~ be either MATCH(R, i) or ~ MATCH(R, i). Then

Pr[M1 A ... AMs]= f l Pr[Mi] .
i = 1

Proof The proof is by induction on s. The base case
(s= 1) is immediate. Suppose the result holds for s - 1 ;
we show it for s. By the inductive hypothesis, it is suffi-
cient to show P r [M I A ... A M s I = P r [M 1 A ... A
M~_,] .Pr [Ms].

By the definition of conditional probability,

P r [M 1A ... A M s] = P r [M s [M 1A ... AMs_l]

�9 Pr [M1A ... A M s - j .

Thus it is enough to show that Pr[M~IM1A ... A
Ms- 1] = Pr [Ms].

Let X be the set of all F e ~ such that
M~ A ... AMs 1 is true, where R=run(A, I, F). Partition

into equivalence classes based on (A, I, s - D-equality.
If F is in X, and F and F' are (A, 1, s - l) - equa l , then
F' is also in X, by part 1 of Lemma 12. Thus X consists
of some finite number of (A, I, s - 1)-equal equivalence
classes; call them C1 C~.

Define q as follows: if s<n, let q = l / 2 ; if s>n and
Ms=MATCH(R,s), let q=1/2" ; and if s>n and Ms
=--3 MATCH(R, S), let q = 1 - 1/2". By Lemma 13,
Pr [M~]=q. It remains to show that Pr[M~IM1
A ... A Ms-~] =q. Because F e X is the same event as
M 1 A . . . A M s - x , we have that P r [M ~ [M ~ A . . . A
Ms- 1] = P r [M~I F~X] . Now calculate that

k

Pr[M~[FeX]= ~ Pr[M~[FEC~].Pr[Fr
i - 1

k

=q. ~ Pr[FeCi [FeX] ,
i = 1

by part 2 of Lemma 12

=q. []
The next lemma shows that the probability that all

processors that complete stage s, decide by stage s, ap-
proaches 1 as s approaches infinity.

Lemma 15. For any adversary A and initial configuration I,
lim Pr [DECIDE(run(A, I, F), s)] = 1.

s --~ ao

Proof Let R = run (A, I, F). First note that

Pr [DECIDE(R, S)]

> Pr [MATCH(R, 1) V ... V MATCH(R, s -- 1)].

The reason is that if MATCH(R, S') is true for some s', 1 <
s'<_s--1, then by Lemma 11, DECIDE(R,s'+I) is true.
Since s '+ 1 _<s, DECIDE(R, S) is true.

Pr [MATCH(R, 1) V ... V MATCH(R, S-- 1)]

= 1 - -Pr [~ MATCH(R, 1)/X ... /X --n MATCH(R, S-- 1)]
S--I

-- 1 - [I (1 - Pr [MATCH(R, i)]), by Lemma 14
i=1

> l _ (l _ l / 2 n) s 1, b y L e m m a 13.

Since lim (1 -1/2n) ~- 1 = 0 we are done. []

3.4 Liveness condition

Lemma 15 in the last subsection showed that our proto-
col terminates in a bounded expected number of stages.
Lemmas 16 and 17 in this subsection extend that result
to rounds and are used to show the t-nonblocking prop-
erty in Theorem 18.

Lemma 16. In any admissible run, each processor that
completes stage 0 without having decided is in at most
asynchronous round 6.

Proof Suppose p completes stage 0 without having de-
cided. Then p obtains the n random bits in some message
by its 2 K th step, and broadcasts its coins message. At
most 4K steps later, p completes stage 0. Since each
asynchronous round lasts at least K steps, at most
6 rounds elapse. []

The next lemma shows that each stage s_> 1 takes
only a bounded number of asynchronous rounds.

Lemma 17. In any admissible run, if each processor that
completes stage s>_O is in at most asynchronous round
r when it completes stage s, then each processor that com-
pletes stage s + 1 is in at most asynchronous round r + 2
when it completes stage s + 1.

Proof Let p be any processor that broadcasts a stage
(s + 1, 1) message. This happens when p completes stage
s, so all stage (s+ 1, 1) messages are at most round r
messages.

Let p be any processor that broadcasts a stage
(s + 1, 2) message. Processor p cannot finish round r + 1
until it has received the last of the round r messages,
including all the stage (s+ 1, 1) messages. Immediately
after receiving the last of these (if not before), p broad-
casts its stage (s + 1, 2) message, so all stage (s + 1, 2) mes-
sages are at most round r + 1 messages.

No processor p can finish round r + 2 until it has
received the last of the round r + 1 messages, including
all the stage (s + 1, 2) messages. Yet by the time p receives

97

all the stage (s+ 1, 2) messages, p has completed stage
s + l . []

Theorem 18. Protocol 1 is t-nonblocking.

Proof Pick any t-admissible run R. There are two cases.
Case 1. All nonfaulty processors complete stage 0 in

R. Since R is t-admissible, at most t processors fail in
R, and thus every nonfaulty processor completes stage
s, for all s _> 0. By Lemmas 16 and 17, DECIDE(R, S) implies
DONE(R, 6 + 2S). Lemma 15 gives the result.

Case 2. Some nonfaulty processor p does not com-
plete stage 0 in R. By the code, p is stuck in its request
stage. (If a processor ever enters its coins stage, then
by 2 K steps later it enters its vote stage and after at
most another 2K steps it completes stage 0.) Thus p
times out in its request stage after 2K steps, which is
at most two rounds, and decides 0. Note that p never
sends a coins message.

Let q be any nonfaulty processor. If q does not com-
plete stage 0, then the argument in the previous para-
graph shows that q decides in at most two rounds. Sup-
pose q does complete stage 0. Since p never sends a coins
message, q never receives n coins messages, and thus
q times out after at most 4 K steps, which is at most
four rounds, and decides 0. []

3.5 Time complexity

First we show that the expected number of stages of
Protocol 1 is less than 4. Then we show that the expected
number of rounds is constant. Recall that expectation
of complexity measures is defined at the end of Sub-
sect. 2.4.

Lemma 19. Let X be a random variable giving the least
s such that DECIDE(R, S) is true. Then E(X, t)<4.

Proof Fix t-admissible adversary A and initial configura-
tion I. Let R=run(A , I, F), for F in Y . Let qs
= Pr [-7 MATCH (R, s)]. Let Y be a random variable giving
the least s such that MATCH(R, S) is true. By Lemma 11,
X < Y + I .

E(X, t)<<_ 1 + E(Y, t)

= 1 + ~ P r [Y > s] ,
s=O

since Y is nonnegative integer valued

= 2 + ~, Pr /~ -7 MATCH (R, i
s = 1 I-i=1

= 2 + ~ i Pr[-~MATCH(R,i)] , by Lemma 14

= 2 + s~1

~ (0 1) (-]~1) ~ (f i) = 2 + qi + qi " qi �9
s=l i i s=n+l \i=n+l /

98

We simplify using specific values for qi. For 1 < inn,
qi= 1/2, and for i>n, qi= 1 - 1/2", by Lemma 13.

1 1 ~ / 1 \ s - ,
E(X, t)_<2 + s=IL ~-t-2n's:n+ eL tl--~nn)

< 2 + 1 + 1 , �9 1 - - ~
s=l

1 (2"- 1) =3+2.
<4. []

Theorem 20. In any t-admissible run, all nonfaulty proces-
sors decide in a constant expected number of asynchronous
rounds.

Proof Let R = run(A, I, F) for some t-admissible advers-
ary A, initial configuration I, and F ~ . There are two
cases.

Case 1. All nonfaulty processors complete stage 0 in
R. As in Case 1 of the proof of Theorem 18, every non-
faulty processor completes stage s, for all s_>0, and
DEODE(R,s) implies DONE(R, 6+2S). The expected
number of stages is four, by Lemma 19. Therefore all
nonfaulty processors decide in fourteen expected asyn-
chronous rounds.

Case 2. Some nonfaulty processor p does not com-
plete stage 0 in R. The same argument as in Case 2 of
the proof of Theorem 18 shows that every nonfaulty pro-
cessor decides after at most four asynchronous
rounds. []

The proof of the previous theorem shows that every
nonfaulty processor decides the fate of the transaction
in 14 expected rounds. Recall that expectation is defined
with respect to the worst possible adversary, that is, the
worst possible scheduling of processor steps and message
delays. When the system is well-behaved, our protocol
has better performance. In particular, if the coordinator
initiates the protocol, the system is synchronous, and
there are no late messages or failures, then all the proces-
sors decide in 5 K steps, using 4 n 2 messages.

4 Lower bound on number of processors

The lower bounds proved in the next two sections hold
even if processors run in lockstep synchrony and possess
an atomic broadcast capability. In this section, we first
give relevant details of this stronger model, and then
show that the number of faults tolerated by our transac-
tion commit protocol is optimal.

A processor failure is represented by an explicit fail-
ure step, denoted (p, L, b). After a failure step for p, p
is in a distinguished failed state. Thus failures can be
evidenced in finite runs. (Of course, processors cannot
detect failures because message delivery is asynchro-
nous.) A processor is faulty in a run if it takes a failure
step, otherwise it is nonfaulty.

Processors take steps in round-robin order, 0 through
n - 1 ; a schedule of the form (0, M1, f l) . . . (n - 1, Mn, fn)
is a cycle. To enforce the round-robin behavior, each
configuration has a turn component, designating which
processor's turn it is to take a step. An initial configura-
tion has turn=O. In order for an event e=(p, *, b) to
be applicable to a configuration C, turn(C) must equal
p, and if p is in the failed state in C, then e must be
a failure step. After an event is applied, the resulting
configuration's turn component is incremented by 1 (mo-
dulo n).

The notion of a guaranteed message is no longer
needed, since atomic broadcast is allowed.

From event e = (p, M, b) applied to configuration C,
we compute the delay of message m in M (differently
from before) as the number of the cycle in which the
message is received minus the number of the cycle in
which the message is sent. The number of the receiving
cycle is obtained from C by looking at the clock v compo-
nent of p's state. The number of the sending cycle is
obtained from m, which consists of the "sending time"
integer tagged onto the raw message; the sending time
is the value of the sender's clock variable when m is
sent, i.e., the sending cycle number.

An infinite run R is admissible if the first configura-
tion is an initial configuration, all messages sent to a
nonfaulty processor are received, and all received mes-
sages have delay at least 1.

In this model, the adversary cannot schedule when
processors take steps, but can only schedule when a pro-
cessor fails and select the message delays.

In this section we show that no protocol, even a
randomized one, can solve the transaction commit prob-
lem unless more than half the processors are nonfaulty.
The intuition behind the proof is similar to that for the
coordinated attack problem (first posed by Gray [9];
also analyzed by Halpern and Moses [10]). We partition
the processors into two nonempty groups, each of size
at most t. Given a run that decides 1 (in which all proces-
sors begin with 1), we work backwards from the end
of the run to the beginning, delaying messages between
the two groups and showing that the resulting runs must
still decide 1. Eventually we get a run in which no mes-
sages between the groups are received, yet the processors
decide 1. This situation leads to a contradiction, since
one group could have started with 0's, in which case
the decision should be 0.

The actual construction of the runs is fairly involved,
and is facilitated by the following definitions and lem-
mas.

Let state(p, C) be the state of processor p in configu-
ration C, and buff(p, C) be the state of p's buffer in C.
Given a schedule a and a subset S of the processors,
define a[S to be the subsequence of a consisting of exact-
ly those events that are steps for processors in S. Also
define kill(S, a) to be the schedule obtained from a by
replacing every event (p , . , b) (where �9 can be M or •
with (p, _L, b) whenever p is in S; similarly, define
deafen(S, a) to be the schedule obtained from a by replac-
ing every event (p, . , b) (where �9 can be M or • with
(p, 0, b) whenever p is in S.

Lemma 21. Let 6 be a schedule applicable to configuration
C and z be a schedule applicable to configuration D. Let
S be a set of processors. I f state(p, C)=state(p, D) for
all processors p in S and if ~[S = z l S, then for any proces-
sor p in S, state(p, a(C))= state(p, z(O)).

Proof. Use induction on the length of a IS, and the fact
that the transition functions are deterministic, given
states, messages, and random numbers. []

Given a partition of the set of processors P into two
sets S and S', define an intergroup message (relative to
S and S') to be a message sent from a processor in S
to a processor in S' or vice versa.

Lemma 22. Let S and S' be a partition of the set of
processors, and let C and D be two configurations such
that turn(C)=turn(D), and for all p in S, state(p, C)=
state(p, D) and buff(p, C)c_buff (p, D). Let a be a schedule
applicable to C in which any intergroup message that is
received by p~S in 6 is in buff(p, C). Then

(1) the schedule c~ = kill(S', o) is applicable to D;

(2) if no processor in S' is in a failed state in D, then
the schedule z = deafen(S', a) is applicable to D.

Proof. We show part 2; part 1 is similar. We proceed
by induction on the length I of o-.

Basis. 1 = 1. Let o-= e and ~ = e'. If e is an event for
p in S', then p receives no messages in e'. This event
is clearly applicable to D since p has not failed in D.
I fe is an event for p in S, then since z = a and buff(p, C)c_
buff(p, D), the fact that a is applicable to C implies that
z is applicable to D.

Induction. l> 1. Suppose the lemma is true for all
schedules of length l - 1 or shorter. We show it is true
for all schedules of length I. Let o-= a'e be a schedule
of length I. Since a' has length l - 1 , by the inductive
hypothesis z' =deafen(S', a') is applicable to D. We must
show that e'= deafen(S', e) is applicable to z'(D)= E. If
e is an event for p in S', then p receives no messages
in e'. This event is clearly applicable to E since p has
not failed in D and no subsequent steps are failure steps.

Suppose e = (p, M, b) for p in S. Then e' = e. We must
show that each m in M is in buff(p, E) in order to show
that e' is applicable to E. Choose m in M and let q
be the sender.

If m is in buff(p, C), then m is in p's buffer in every
configuration from C to a'(C). Since buff (p, C) c_
buff(p, D) and no message is removed from a buffer by
z' that is not removed by a', m is still in buff(p, E).

Suppose m is not in buff(p, C). Then by assumption
on a, q is in S. Let a"g be the prefix of o-' such that
(a"g) (C) is the first configuration in which m appears
in p's buffer. Thus, q sends m as a result of event g in
run(C, a'). Since q is in S, z"g is a prefix of z', where
z"= deafen(S', a"). By the inductive hypothesis, z" is ap-
plicable to D, so by Lemma21 , state(q,a"(C))=
state(q, "c"(D)). By the inductive hypothesis, since the
length of a "g is less than l, g is applicable to z"(D). Since
q's transition function is deterministic, m is also sent in

99

run(D, z') as a result of event g, and m is in p's buffer
in E. []

The next theorem shows that there can be no non-
blocking transaction commit protocol if half or more
of the processors can fail.

Theorem 23. There is no t-nonblocking transaction commit
protocol if n <_ 2 t.

Proof. Suppose n _< 2 t and there is a t-nonblocking trans-
action commit protocol with processors 0 through n - 1.
Let A = { 0 [n / 2 J - 1 } and B = { [n / 2 J , . . . , n - 1 } .
Each of A and B has at most t elements (and at least
one element, since n > 2). The first [n/2J events of a cycle
form an A-semicycle (each processor in A takes a step);
the remaining events of a cycle form a B-semicycle (each
processor in B takes a step). An infinite schedule appli-
cable to an initial configuration consists of alternating
A- and B-semicycles.

Let I l l be the initial configuration in which all pro-
cessors have initial value 1. Since the protocol is a t-
nonblocking transaction commit protocol, given an ad-
versary that kills no processors and delivers in cycle j + 1
any message sent in cycle j (so every run is failure-free
and on-time) there is at least one finite deciding run
run(Il l , c~) such that all processors have decided 1 in
c~(Ill). Let c~=nl ...ny where each ni is a semicycle.

Claim. There exist y + 1 finite failure-free schedules
51 through ey+l such that for each i, (1) e i=n l . . .hi-1 7i,
(2) cq is applicable to I 11, (3) all processors have decided
1 in ~i(111), and (4) no intergroup message is received
in 7i.

Proof of Claim. Figures 1 and 2 illustrate the proof.
We show the claim by descending induction on i. Let
Ci----(To 1 . . . 7~i) (111) for i_>0.

Basis. i = y + 1. Letting c~y+ ~ = c~ (so that 7y + 1 is
empty) proves the claim.

Induction. i < y + 1. We assume the claim is true for
i + 1 and show it for i.

Assume ni is a B-semicycle, i.e., i is even. (We will
indicate in parentheses the changes, other than switching
" A " and " B ' , that are necessary when n~ is an A-semicy-
cle, i.e., when i is odd.)

We construct 7~ in two steps; first we construct ill,
after which all processors in A have decided, and then
we construct //2, in which all processors in B decide.
T h e n];i will be fll f12"

Define fll to be deafen(B, niTi+ O. (See Fig. 1.) By
part 2 of Lemma 22, fla is applicable to Ci-1. Since

I11 = Co
I l i - 1 ,

�9 " " [i2 ~ (
- A-s.c.

[31 = dea fen (B,1~i~i+ I)

Fig. 1. Construction of fll

F

Tt i

B-s.c. " Ci �9 �9 Cy = at(Z11)

100

//11A = rci ~ 1l A, Lemma 21 applies and each processor
in A has the same state in / / I (C~_I)=F as it does in
(~i 7i+1) (Ci-1), so each decides 1 in F. No intergroup
message is received in//1 because processors in B receive
no messages in//1, and processors in A receive no inter-
group messages in Tc i ~i+ 1 or in//1.

Now we must give a schedule//2 that causes proces-
sors in B to decide 1 without hearing from any proces-
sors in A. (See Fig. 2.) The intuition is that processors
in B must be able to decide without hearing from proces-
sors in A, because it is possible that all the processors
in A have died. By the agreement condition, the proces-
sors in B must decide 1 also. The problem with applying
this argument is that there may be leftover messages
sent by processors in A before the point at which the
processors in B think they died, and thus processors
in B could wait to receive these messages before deciding.
Thus, we must show that processors in A might have
died even earlier.

Semicycle zq is part of cycle number [//2] = j in ~i.
Let D be the configuration in run(Ill, cq) immediately
preceding the (j - 1) 't cycle of cq. If j = 1, then let D =111.
Let r be the substring of ~ between I l l and D. Let
p be the substring of cq between D and C~_ 1. There are
two possibilities for p.

�9 If i=2 , then D=Il l and P = ~ I . Thus, p is an A-semi-
cycle.
�9 If i> 2, then D = C~ 4 and p = hi- 3 Tci- 2 7Yi- 1. Thus,
p consists of all of cycle j - 1 and the first half of cycle
j, i.e., p is an A-semicycle followed by a B-semicycle fol-
lowed by another A-semicycle.

(If ni is an A-semicycle, i.e., if i is odd, then there
are the following two possibilities for p.

�9 I f i = l , then D=II1 and p is empty.
�9 If i > 1, then D = Ci 3 and p = ~ 2 ~i 1- Thus, p con-
sists of cycle j - 1 , i.e., p is an A-semicycle followed by
a B-semicycle).

Let p'=kill(A, p). Since no message is sent and re-
ceived in the same cycle in c~ (and hence in p), any mes-
sage received in p by a processor p in B from a processor
in A is sent in run(Ill, z), i.e., prior to cycle j - - l , and
is in buff(p, D). By part 1 of Lemma 22, p' is applicable
to D. Since Pl B = p ' I B , L e m m a 2 1 implies that
state(p, p'(D))=state(p, Ci_l) for all p in B.

Consider the schedule//'1 = kill(A,//1). Since the pro-
cessors in A are failed and the processors in B receive
no messages, //', is obviously applicable to p'(D). Let
E=fi'l(p'(D)). Since fi'llB=fillB and state(p,p'(D))
=state(p, Ci-1) for all p in B, Lemma 21 implies that
state(p, E)=state(p, F) for all p in B.

By the t-nonblocking property, since IAl<t, there
must exist a finite deciding run from E with schedule
5. Suppose the decision value is v. Thus, all processors
in B decide v in 5 (E). By choice of c~, all messages sent
in run(Ill, r), i.e., before cycle j - 1 , are received by the
end of cycle j - 1, i.e., by the end of p or earlier. Since
p'IB=pIB, every processor in B receives in p' all mes-
sages sent to it in run(Ill, z), i.e., before cycle j - 1. Thus
in 5, processors in B receive only messages sent in

cycle j-1
f - -

A-s.c. I - - g

p' = kilt (A,p)

,1

[3~ : kilt (A,131)

cycle j

B-s.c. I A-s.c. B-s.c.
p Ci-1 ~ C i T[i

[31 : deaf en (g, rri'[i§ [A 2i§ i

F B*/-A 1

~2= deafen(A,6)

Fig. 2. Construction of/32

run(D, P'//'x 5). Since all processors in A are dead in
P'//'l 5, B receives no intergroup messages in 5.

Let ~~2=deafen(A, 5). Pick p in B. From above,
state(p, E)=state(p, F). Let m be any message in buff
(p, E); m could only have been sent by a processor q
in B in run(D, P'//'I), i.e., in cycle j - 1 or later. Lemma 21
implies that q has the same state in corresponding config-
urations in run(O, p'//'~) and run(D, P//1). Thus q sends
the same messages in the two runs, and m is also in
buff(p, F). Now we can apply part 2 of Lemma 22 to
show that/ /2 is applicable to F.

Since //2[B=5[B and state(p, F)=state(p, E) for all
p in B, Lemma 21 implies that each processor p in B
is in the same state in//2(F) as in 5(E). So each processor
in B decides v in //2(F); by the agreement condition,
v = 1, because processors in A have already decided 1
in F. No intergroup message is received in //2 because
none is received in 5.

Let 7i=//1//2- We have shown that cq=~ 1 . . .~i-1 7i
satisfies properties 1, 2, 3, and 4. End of Claim.

Note that c~1 is a finite schedule in which no inter-
group messages are received. Construct schedule cr
=kill(A, c%). By part 1 of Lemma 22, 0- is applicable to
111. Since 0-[B=el [B, Lemma 21 implies that each pro-
cessor in B has the same state in 0-(111) as it does in
~1(111), and thus also decides 1 in 0-(111).

Let 101 be the initial configuration in which all pro-
cessors in A have initial value 0 and all processors in
B have initial value 1. By part 1 of Lemma 22, 0- is appli-
cable to I01. Since each processor in B begins with the
same state in lol as in 111, by Lemma 21 each has the
same state in o"(lol) as it does in 0-(I10, and thus also
decides 1 in a(Io0. But this violates the abort validity
condition. []

5 Lower bound on time

One might imagine a transaction commit protocol for
our model such that each processor could decide in a
constant number of its own steps, at least in many runs.
For instance, in the protocol presented in Sect. 3, at most

101

6K steps are required for a processor to complete stage
0 - a processor need not wait arbitrarily long for mes-
sages since the existence of a late message means that
the processor is allowed to abort. Yet in the subsequent
stages, no advantage is taken of this flexibility, and pro-
cessors wait potentially unbounded time for messages.
Unfortunately, the intuition that it may be possible to
use the detection of late messages in order to shorten
the running time (as measured in processor steps) is in-
correct. In fact, in this section we prove that no protocol
can guarantee that each processor terminates in a con-
stant expected number of its own steps, even if processors
run in lockstep synchrony, and even if only one processor
can fail.

In particular, we show that for any constant B and
any fixed protocol, there is a 1-admissible adversary and
an initial configuration such that the expected number
of cycles needed for all nonfaulty processors to decide
is more than B. The proof is constructed as follows. We
consider the initial configuration in which all processors
begin with 1 and the adversary that kills no processors
and delivers all messages with delay 1. If no run from
this initial configuration with this adversary is deciding
by cycle B, we are done. Suppose there is such a B-cycle
run that is deciding. We find a point in this run that
has the property there are some very long runs (with
a different adversary) extending from this point that are
not deciding. These runs are kept undeciding by delaying
the delivery of all messages; they are so long that they
cause the expected value to exceed B, when calculated
with the appropriate initial configuration and adversary.

Thus, we must solve two subproblems. First, we must
find the appropriate point in the run from which the
long runs branch off (cf. Lemma 24); second, we must
show that the long runs extending from this point are
undeciding (cf. Lemma 25).

We need the following definitions in addition to the
definitions and Lemmas 21 and 22 from Sect. 4.

For the remainder of this section, we fix an arbitrary
1-nonblocking transaction commit protocol P. From
now on, " run" means a 1-admissible run of P, and "con-
figuration" means a configuration reachable from some
initial configuration of P by a 1-admissible run of P.

If p is a processor, then schedule a is p-free if p only
takes failure steps in a.

A run is x-slow for some constant x if every message
received in the run has delay at least x. Given a configu-
ration C, a schedule a is x-slow relative to C if the run
obtained by applying a to C is x-slow.

A seed (for protocol P) is an n-tuple of sequences
of n-bit strings, such that either each sequence is infinite
or each sequence has the same number of elements. The
length of a seed is the length of one sequence. If seed
F has infinite length, then F is in Y . There is a finite
number of seeds of any finite length.

A run is F-compatible, for seed F, if for all processors
p and all i not exceeding the length of F, the random
string that p receives in its i th step of the run is the
same as the i th element of p's sequence in F. Given config-
uration C, a schedule a is F-compatible relative to C
if there is an initial configuration I and a schedule

applicable to I such that v (I)=C and run(l, r~r) is F-
compatible.

Let V be a subset of {0, 1}, x an integer, and F a
seed. Configuration C is (x, F, V)-valent if V is the set
of decision values of all configurations that are reachable
from C by an x-slow F-compatible run.

For the rest of this section, let I1 be the initial config-
uration in which all processors have initial value 1.

The next lemma shows that in any F-compatible run
that decides 1, there exists a configuration from which
some F-compatible, x-slow run decides 1, and from
which some other F-compatible, x-slow run decides 0.

Lemma 24. I f run(I1, z) is a finite failure-free on-time
deciding run that is F-compatible for finite seed F, then
for any integer x > 0 there exists a configuration in
run(I1, ~) that is (x, F, {0, 1})-valent.

Proof Pick such a run run(I1, r) that is F-compatible,
and fix x. (See Fig. 3; in the figure a v in a box below
a configuration means that the configuration is
(x, F, {v})-valent.) By the commit validity condition,
~(I1)= C has decision value 1. Thus all runs starting at
C, including x-slow F-compatible runs, have decision
value 1, and hence C is (x, F, {1})-valent.

Let Iol be the initial configuration in which some
processor q has initial value 0 and the rest have initial
value 1. Since the protocol is 1-nonblocking and satisfies
the abort validity condition and since F is finite, there
is a finite q-free x-slow F-compatible run run(Io 1, a) such
that a(Iol) has decision value 0, and by the agreement
condition, ~r(I01) is (x, F, {0})-valent.

By part 1 of Lemma 22, a is also applicable to 11.
By Lemma 21, all processors except q have the same
state in a(I i) as in a(Io0, and decide 0 in a(I1). Thus
11 is either (x, F, {0})-valent or (x, F, {0, 1})-valent. If the
latter is true, we are done, since 11 is the desired configu-
ration. Suppose the former is true.

Since F is finite, by the 1-nonblocking property no
configuration in run(I1, ~) is (x, F, 0)-valent. The valen-
cies of 11 and C imply that in run(Ii, ~) there must be
an event e--(p, M, b) and two adjacent configurations
Co and C1 with Cl=e(Co), such that Co is either
(x, F, {0})-valent or (x, F, {0, 1})-valent, and Cx is either
(x, F, {1})-valent or (x, F, {0, 1})-valent. If either configu-
ration is (x, F, {0, 1})-valent, we have found the desired
configuration. Suppose neither is.

Since the protocol is 1-nonblocking, F is finite, no

e = (p,M,b)
11 [o - Ci
[] [] []

[] []

[]

C = T(I I)

[]

Fig. 3. Demonstrating the existence of an (x, F, {0, 1})-valent con-
figuration

102

processor has failed so far, and Co is (x, F, {0})-valent,
there is a finite p-free x-slow F-compatible run run(Co, ~)
in which the nonfaulty processors decide 0. Say
c~= (p, • b') c(. (If F is long enough to extend past Co,
then b'=b; otherwise, b' could differ from b.) It is easy
to show that c(is applicable to C 1. Lemma 21 implies
that all the processors except p have the same state in
c~'(C~) as they do in e(Co). But since they decide 0 in
c~(Co), they decide 0 in c((C O. Since ~' is F-compatible
and x-slow relative to C~, this is a contradiction to the
hypothesis that Ct is (x, F, {1})-valent. []

The next lemma shows that in a certain situation,
processors must remain undecided as long as no mes-
sages are received. (For seed F with finite length x, ad-
versary A, and initial configuration I, let run(A, I, F) be
the x-cycle run defined by the obvious analogy with the
infinite length case in Subsect. 2.4.)

Lemma 25. Choose any nonnegative integers I and x with
x > I. Let A be the adversary that kills no processors, and
that for the first l events delivers messages after delay
1 and subsequently delivers messages after delay x. Let
F be a seed of length x. I f the configuration C following
the l 'h event in run(A, I1, F) is (x, F, {0, 1})-valent, then
the final configuration in run(A, I1, F) is (x, F, {0, 1})-va-
lent.

Proof Let run(A, 11, F)=run(I1, aa), where c~ consists of
l events and C = e (I 0 is (x, F, {0, 1})-valent. (See Fig. 4.)
Assume in contradiction that a(C) is not (x, F, {0, 1})-
valent. Since F is finite, by the 1-nonblocking property
a(C) cannot be (x,F, 0)-valent. Assume a(C) is
(x, F, {v})-valent for some v~{0, 1}. Then there is a con-
figuration D in run(C, a) and some event e=(p, M, b)
in a such that D is (x,F, {0, 1})-valent and e(D) is
(x,F, {w})-valent for some we{0, 1}. M must be the
empty set, since no messages are received in run(C, a).
Suppose w = 0. (The argument is analogous if w = 1.) The
only other event applicable to D that can be part of
an x-slow F-compatible run is (p, L, b)= e', because all
messages sent more than x cycles ago have delay 1 and
have already been received, and because F is long
enough to extend to e.

Since D is (x, F, {0, 1})-valent, e'(D) must be either
(x, F, (0, l})-valent or (x, F, {1})-valent. Thus there is
some finite p-free x-slow F-compatible run from e'(D)
that has decision value 1; let z be its schedule. It is easy
to show that z is applicable to e(D); r is also x-slow
and F-compatible relative to e(D), and all processors
except p have the same state in ~(e(D)) as in z(e'(D))
(by Lemma 21). Thus all processors except p decide 1
in z(e(D)), contradicting the valency of e(D). []

Given infinite run R, let T(R) be the cycle when the
last nonfaulty processor decides.

Theorem 26. For any constant B, there is a 1-admissible
adversary A and an initial configuration I such that
E(TA, t)~B.

Proof Fix B. Let ~ be the set of all runs of the form
run(A~, I1, F), where F is a seed of length B, and A s

delay I e = {p, f~,b}
11 - -- [D - - e(O)

[]or[] []

1
Fig. 4. Demonstrating that a(C) is (x, F, {0 ,l})-valent

r
[]

is the adversary that kills no processors and delivers
all messages with delay 1. Let [~]=j . Thus, j is also
the number of seeds of length B.

Case t. No run in ~ is deciding. Let A=A1 and
I=11. Then E(TA, I)>_B.

Case 2. There is some run R in ~ that is deciding.
Let ~g be the set of all configurations in run R, and
let m=[~[. Let 50 be the collection of all seeds with
length jmB that extend the seed of R. Y is finite; in
fact, [5Pl=z/j, where z is the total number of seeds of
length j m B.

We will associate each seed in 5 ~ with a configuration
in ~. For each configuration in cg, we will associate a
specific adversary. The associations will be made in such
a way that all runs from a configuration in c~, using
its particular adversary and any of the associated seeds,
is undeciding. The desired adversary is the adversary
for that configuration with the most seeds. The extreme
length of these undeciding runs will cause the desired
expected value to exceed B for this adversary.

For each CeC~, define S(C) to be the set of all F e 5 p
such that C is the first (jmB, F, {0, l})-valent configura-
tion in R. By Lemma 24, at least one (]mB, F, {0, 1})-
valent configuration exists in R; thus, each F e Y is in
S(C) for exactly one configuration C. 1

Fix C to be a configuration in c6 with IS(C)t>_~

Such a configuration exists by the pigeonhole principle,
1

since Icgl--m. Thus, IS(C)[>_~m.z, where z is the total

number of seeds of length jmB.
Let l be the number of events that precede C in run

R. Let A be the adversary that for the first l events de-
livers messages after delay 1 and that subsequently de-
livers messages after delayjmB. By Lemma 25, for every
F in S(C), the final configuration of run(A, It, F) is
(~roB, F, {0, 1})-valent. Thus, no processor has decided
in that final configuration, and T(R')>jmB, for any infi-
nite run R' that is an extension of run(A, I1, F).

1
Let I=I i . By choice of C, at least __ of the seeds

jm
1

of length jmB are in S(C). Thus, at least __ of all infinite
jm

seeds have a prefix in S(C). For any infinite seed F with
a prefix in S(C), T(run(A, I, F))>jmB, by the argument

103

above. As a result,

E(T~,;)>-~m'jmB=B. []

6 Summary

In summary , the pr incipal con t r ibu t ions of this paper
are a realistic t iming model, a method for analyzing the
time performance of protocols in this model, an efficient
faul t - tolerant protocol for the t ransac t ion commit prob-
lem, and lower bounds showing that the protocol has
opt imal fault-tolerance, and that no protocol can guar-
antee that each processor terminates in a b o u n d e d ex-
pected n u m b e r of its own steps, even if processors run
in lockstep synchrony and only one processor can fail.

Acknowledgements. We would like to thank B.H. Liskov, N.A.
Lynch, and W.E. Weihl for suggesting this problem to us; A.D.
Fekete, Y.O. Moses, and M.R. Tuttle for helpful comments on
an early draft; and N.A. Lynch for a very careful reading of a
recent draft. We also appreciate the helpful comments of two anon-
ymous referees.

References

1. Ben-Or M: Another advantage of free choice: Completely asyn-
chronous agreement protocols. In: Proc 2nd Annu ACM Syrup
Principles Distrib Comput 1983, pp 27-30

2. Coan BA, Lundelius J: Transaction commit in a realistic fault
model. In: Proc 5th Annu ACM Symp Principles Distrib Com-
put 1986, pp 40--51

3. Chor B, Merritt M, Shmoys D: Simple constant-time consensus
protocols in realistic failure models. J ACM 36:591 614
(1989)

4. Dolev D, Dwork C, Stockmeyer L: On the minimal syn-
chronism needed for distributed consensus. J ACM 34:77 97
(1987)

5. Dwork C, Lynch NA, Stockmeyer L: Consensus in the presence
of partial synchrony. J ACM 35:288 323 (1988)

6. Dwork C, Skeen D: The inherent cost of nonblocking commit-
ment. In: Proc 2nd Annu ACM Symp Principles Distrib Corn-
put 1983, pp 1 11

7. Dwork C, Skeen D: Patterns of communication in consensus
protocols. In: Proc 3rd Annu ACM Syrup Principles Distrib
Comput 1984, pp 143-153

8. Fischer M J, Lynch NA, Paterson MS: Impossibility of distrib-
uted consensus with one faulty process. J ACM 32:374 382
(1985)

9. Gray J: Notes on database operating systems. In: Bayer R,
Graham RM, Seegmiiller G (eds) Operating systems: an ad-
vanced course. Lect Notes Comput Sci, vol 60. Springer, Berlin
Heidelberg New York 1978, pp 393 481

10. Halpern JY, Moses YO: Knowledge and common knowledge
in a distributed environment. In: Proc 3rd Annu ACM Symp
Principles Distrib Comput 1984, pp 50~61 (revised as of Jan.
1986 as IBM-R J-4421)

11. Rabin MO: Randomized Byzantine generals. In: Proc 24th
Annu IEEE Symp Found Comput Sci 1983, pp 403~409

12. Skeen D: Crash recovery in a distributed database system.
Ph.D. dissertation, University of California, Berkeley 1982
(available as UCB/ERL M82/45)

