
Distributed Computing (1990) 4:87 103 

DOSS I]B SSD 
�9 Springer-Verlag 1990 

Transaction commit in a realistic timing model* 
Brian A. Coan i and Jennifer Lundelius Welch 2 

1 Bellcore, Morristown, NJ 07960, USA 
z University of North Carolina, Chapel Hill, NC 27599, USA 

Received June 12, 1989 / Accepted March 3, 1990 

Brian A. Coan received the 
B.S.E. degree in electrical engineer- 
ing and computer science from 
Princeton University, Princeton, 
New Jersey, in 1977; the M.S. de- 
gree in computer engineering from 
Stanford University, Stanford, Ca- 
lifornia, in 1979; and the Ph.D. de- 
gree in computer science from the 
Massachusetts Institute of Tech- 
nology, Cambridge, Massachusetts, 
in 1987. He has worked for Amdahl 
Corporation and AT & T Bell Lab- 
oratories. Currently he is a member 
of the technical staff at Bellcore. His 
main research interest is fault toler- 
ance in distributed systems. 

Jennifer Lundelius Welch re- 
ceived her B.A. in 1979 from the 
University of Texas at Austin, and 
her S.M. and Ph.D. from the Mas- 
sachusetts Institute of Technology 
in 1984 and 1988 respectively. She 
was a member of technical staff at 
GTE Laboratories Incorporated in 
Waltham, Massachusetts, from 
1988 to 1989. She is currently an 
assistant professor at the Universi- 
ty of North Carolina in Chapel 
Hill. Her research interests include 
algorithms and lower bounds for 
distributed computing. 

* The authors were with the MIT Laboratory for Computer Science 
when the bulk of this work was done. This work was supported 
in part by the Advanced Research Projects Agency of the Depart- 
ment of Defense under Contract N00014-83-K-0125, the National 
Science Foundation under Grant DCR-83-02391, the Office of 
Army Research under Contract DAAG29-84-K-0058, and the Of- 
fice of Naval Research under Contract N00014-85-K-0168. A pre- 
liminary version of this paper appears in the Proceedings of the 
Fifth Annual A CM Symposium on Principles of Distributed Comput- 
ing [2] 

Offprint requests to: J. Lundelius Welch 

Abstract. A n  i m p o r t a n t  p r o b l e m  in the cons t ruc t i on  of  
fau l t - to le ran t  d i s t r ibu ted  d a t a b a s e  systems is the design 
of  n o n b l o c k i n g  t r a n s a c t i o n  c o m m i t  p ro toco ls .  This  
p r o b l e m  has  been  extensively  s tud ied  for synch ronous  
systems (i.e., systems where  no messages  ever ar r ive  late). 
In  this paper ,  the synch rony  a s s u m p t i o n  is relaxed.  A 
new pa r t i a l ly  s y n c h r o n o u s  t iming m o d e l  is descr ibed.  
Deve loped  for this m o d e l  is a new n o n b l o c k i n g  r a n d o m -  
ized t r a n s a c t i o n  c o m m i t  p ro toco l ,  which  i n c o r p o r a t e s  
an  agreement  p r o t o c o l  of  Ben-Or.  The  new p r o t o c o l  
works  as long as fewer t han  half  the p rocessors  fail. A 
ma tch ing  lower  b o u n d  is p roved ,  showing  tha t  the  
n u m b e r  of  p roces so r  faults  to le ra ted  is op t imal .  If  hal f  
or  more  of the p rocessors  fail, the p r o t o c o l  degrades  
graceful ly:  it b locks,  bu t  no  p rocesso r  p roduces  a w r o n g  
answer.  A n o t i o n  of  a s y n c h r o n o u s  r o u n d  is defined, and  
the p r o t o c o l  is shown to t e rmina te  in a smal l  cons t an t  
expected  n u m b e r  of  a s y n c h r o n o u s  rounds .  In  con t r a s t  
it  is shown tha t  no p r o t o c o l  in this m o d e l  can  gua ran t ee  
tha t  a p rocesso r  t e rmina tes  in a b o u n d e d  expec ted  
n u m b e r  of its own steps, even if p rocessors  are  synchro-  
nous.  

Key words: Dis t r i bu t ed  da t abase s  - F a u l t  to le rance  - 
Lower  b o u n d s -  R a n d o m i z e d  p r o t o c o l s  T ime b o u n d s  
- T r a n s a c t i o n  c o m m i t  

1 Introduction 

In  a d i s t r ibu ted  d a t a b a s e  sys tem a t r a n s a c t i o n  m a y  be 
p rocessed  concur ren t ly  by  several  different processors .  
To m a i n t a i n  the in tegr i ty  of the  d a t a b a s e  these proces-  
sors  mus t  t ake  cons is ten t  ac t ion  r ega rd ing  the t r ansac -  
t ion ei ther  the results  of  the t r a n s a c t i o n  shou ld  be 
ins ta l led  in the d a t a b a s e  at  all p rocessors  (the t r a n s a c t i o n  
is committed), or  the results  shou ld  be ins ta l led  at  no 
p rocessor  (the t r a n s a c t i o n  is aborted). The  objec t ive  of  
a transaction commit protocol is to ensure  tha t  cons i s ten t  
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action is taken and that as many transactions as practic- 
able are committed. The protocol is subject to the con- 
straint that each processor must be able to abort  a trans- 
action unilaterally (i.e., if any processor wishes to abort, 
the decision must be abort). 

The definition of the transaction commit problem 
allows some leeway in protocol design regarding which 
circumstances require the decision to be commit. To 
avoid useless protocols that abort all transactions, it is 
usual to impose the additional requirement that a proto- 
col must commit a transaction in any failure-free execu- 
tion in which all processors vote commit. In this paper, 
we demonstrate the benefit of relaxing that requirement 
slightly. 

Another variation among protocols is that some may 
fail to terminate in certain situations. If failures cause 
some nonfaulty processor to remain undecided about 
the fate of a transaction (at least as long as the failures 
persist), that processor is said to block, and the protocol 
is called blocking. Otherwise, the protocol is nonblocking. 
The most common transaction commit protocol in prac- 
tice, two-phase commit, is a blocking protocol. In the 
presence of processor failures, a blocking protocol can 
delay transaction processing for a long time, although 
it does allow correct action to be taken after the failure 
is repaired. The impact of processor failures is somewhat 
less with a nonblocking protocol. 

Elegant nonblocking transaction commit protocols 
have been developed for completely synchronous sys- 
tems by Skeen [12] and Dwork and Skeen [6]. An obsta- 
cle to using these protocols in real systems is that a 
single violation of the timing assumptions (i.e., a late 
message) can cause the protocol to fail, producing the 
wrong answer. The most common alternative timing 
model, the completely asynchronous model, unfortunate- 
ly does not allow any solution to the transaction commit 
problem, either randomized or deterministic ~. We de- 
scribe a new timing model that is intermediate between 
the synchronous and asynchronous models previously 
studied. In this model, we develop a new nonblocking 
transaction commit protocol. 

We model real systems in which messages are usually 
delivered within some known time bound, but sometimes 
come late. Our approach is to assume a completely asyn- 
chronous system, in which relative processor speeds are 
unbounded and messages can take arbitrarily long to 

1 The outline of this impossibility result is the following. Suppose 
there is a protocol that works in an asynchronous system and 
guarantees that (1) nonfaulty processors eventually decide (with 
probability 1); (2) if the processors all begin with commit and there 
are no failures, then they all decide commit; and (3) if any processor 
begins with abort, then the nonfaulty processors decide abort. Con- 
sider a run in which all processors but p begin with commit and 
are nonfaulty, while p fails initially. Eventually, the rest of the pro- 
cessors must decide. Since p could have started with abort, the 
processors must decide abort. There is another run that looks ident- 
ical up to the decision point to all the processors except p, in 
which p begins with commit, and all its messages are delayed until 
after the decision is made. In this run, the decision must be commit. 
All processors except p have the same view in the two runs but 
must reach different decisions, contradicting the assumed existence 
of the protocol 

arrive, and to let the timing behavior affect the correct- 
ness conditions for the transaction commit problem as 
follows. If every processor initially wants to commit the 
transaction, then the common decision must be to com- 
mit, provided no processors fail and all messages arrive 
within some known fixed time bound. If any processor 
initially wants to abort the transaction, then the common 
decision must be to abort, no matter  what the timing 
and fault behavior of the system is. This problem defini- 
tion takes advantage of the leeway allowed in specifying 
when processors must commit. Assuming that failures 
and late messages are relatively rare, the overall progress 
of the transaction processing system will not be impeded 
very much. (Dwork, Lynch, and Stockmeyer [5] make 
a similar division between properties that must always 
hold and properties that only need hold when the system 
is well-behaved. In most other respects our model differs 
from theirs.) 

In contrast, Dwork and Skeen [-7] study the transac- 
tion commit problem in a completely asynchronous 
model in which processor failures are detectable, i.e., al- 
ways announced in finite time. In this model, they are 
able to take advantage of the failure notification to de- 
sign efficient nonblocking transaction commit protocols. 

We assume that the faulty processors fail by crashing 
(i.e., stopping without warning). Our protocol works as 
long as more than half the processors are nonfaulty. The 
number of faults tolerated by our protocol is optimal, 
as shown by the matching lower bound that we prove. 
(The synchronous protocols of Skeen [12] and Dwork 
and Skeen [6] tolerate any number of processor faults.) 
An important  property of our protocol is that it degrades 
gracefully: if the bound on the number of faulty proces- 
sors is exceeded, the protocol simply fails to terminate 
instead of producing a wrong answer. 

Our protocol uses a modified version of a solution 
to the agreement problem. The agreement problem and 
the transaction commit problem, although superficially 
similar, are different problems. In the agreement problem 
each processor begins with an initial value, 0 or 1, and 
decides on a final value. All nonfaulty processors' final 
values must be equal, and if all processors have the same 
initial value, then that value must be the final value. 
Thus if one processor begins with 0 and the rest with 
I, either 0 or 1 is an acceptable decision for the agree- 
ment problem, whereas in the transaction commit prob- 
lem, the decision must be 0 (if 0 is identified with abort). 

An important difference between the transaction 
commit problem and the agreement problem is that in 
the former, all processors that decide are required to 
agree, including processors that decide and subsequently 
fail. This strict agreement condition is imposed because 
we assume that failed processors will eventually recover. 
The hope is that processors that fail and subsequently 
recover can be reintegrated using a separate recovery 
protocol. Skeen's thesis [12] has an excellent discussion 
of recovery protocols. We do not discuss these protocols 
further in this paper. Although the definition of the 
agreement problem places no constraints on the de- 
cisions reached by faulty processors, some agreement 
protocols have the property that even decisions reached 
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by faulty processors are correct. Our transaction commit  
protocol  incorporates one such agreement protocol. 

In our protocol, processors exchange some messages 
and then execute a modification of the asynchronous 
agreement protocol of Ben-Or [1] to decide the fate of 
the transaction. The preliminary message exchanges 
serve two purposes: first, the differences between the in- 
put-output  relations for the transaction commit  and 
agreement problems are resolved, and second, a number  
of identical random bits are distributed 2. These identical 
random bits are used in the agreement protocol to lower 
the expected running time from exponential to constant. 
There is a body of work dealing with attaining constant 
expected running time for the agreement problem (see 
for example Rabin [11] or Chor, Merritt, and Shmoys 
[3]). Our technique does not solve this problem because 
of the following difference between the agreement and 
transaction commit  problems. In our protocol, if the 
identical random bits are not distributed in a timely fash- 
ion, processors can unilaterally decide 0 (abort) and still 
satisfy the conditions of the transaction commit  problem. 
Such an action is not an option for processors in an 
agreement protocol, because it could violate the condi- 
tion that all processors decide 1 if they all start with 1. 

Randomizat ion is needed in our protocol because 
the well-known result of Fischer, Lynch, and Paterson 
[8] implies that no deterministic protocol is possible. 
In order to analyze a randomized protocol, we must 
define the adversary against which the protocol will 
work. Our notion of the adversary is inspired by Chor, 
Merritt, and Shmoys [3]. The adversary in our model 
chooses the order in which processors take steps, when 
each message will be delivered, and which processors 
fail and when (as long as fewer than half fail). It makes 
these decisions dynamically, during the execution of the 
protocol,  using unlimited computat ional  power. The ad- 
versary has available at any point in the execution all 
information about  the hardware and software of the pro- 
cessors, and the pattern of communicat ion up to that 
time, but it does not know the contents of the messages 
sent, nor  the local states of processors, nor the proces- 
sors' local random choices, unless that information is 
deducible from the pattern of communication. We will 
be careful to design our protocol so that it is not deduc- 
ible. 

We prove that in our model no transaction commit  
protocol  can guarantee that each processor terminates 
in a bounded expected number  of its own steps, even 
if processors are synchronous and only a single fault 
is to be tolerated. Consequently a new measure is needed 
to analyze the time performance of our protocol. One 
of the contributions of this paper  is such a measure, 
which we call an asynchronous round. Our protocol  ter- 
minates in a small constant expected number  of asyn- 
chronous rounds. 

2 We have not solved the global coin toss problem, however, be- 
cause our protocol does not guarantee that the identical random 
bits are successfully distributed. Fortunately, the unique nature of 
the transaction commit problem allows us to design a protocol 
in which a processor only needs to consult these bits in those 
executions in which they have been successfully distributed 

Following an exposition of our formal model in 
Sect. 2, we present and analyze our randomized transac- 
tion commit  protocol  in Sect. 3. Section 4 contains the 
lower bound proof  showing that our protocol  tolerates 
the maximal number  of faulty processors. In Sect. 5 we 
show that no transaction commit  protocol  can guarantee 
that each processor terminates in a bounded expected 
number  of its own steps, even if processors are synchro- 
nous and only a single fault is to be tolerated. Section 6 
contains a summary.  

2 Model 

There are n processors that are to decide the fate of 
a particular transaction. (Our protocol assumes that n >_ 
1; our lower bounds assume that n > 2, and are not true 
if n = 1.) Processors are modeled as state machines that 
communicate  by sending messages. Messages can take 
arbitrarily long to arrive. Our protocol works even in 
a very weak model in which there is no bound on the 
relative frequency with which processors take steps and 
in which there is no atomic broadcast  of messages. Our 
lower bounds are shown in the stronger model in which 
processors run in lockstep synchrony and possess atomic 
broadcast.  In this section we present the weaker model. 
In Sects. 4 and 5 we indicate the necessary changes for 
the stronger model. Our model is similar to those of 
Fischer, Lynch, and Paterson [8] and Dolev, Dwork,  
and Stockmeyer [4]. 

Throughout  this paper, 1 is identified with " c o m m i t "  
and 0 with "abor t . "  

2.1 Basic model 

A raw message consists of some text, and the names 
of the sending and receiving processors. A message is 
an ordered pair (raw message, integer); the integer den- 
otes the sending time, as will be explained later. The 
reason for distinguishing between messages and raw 
messages is that we do not wish to require t imestamps 
on (raw) messages sent by processors, yet this informa- 
tion is useful in the exposition of the model for distin- 
guishing multiple instances of the same raw message and 
determining message delays. 

A processor is an infinite-state machine, together with 
a message buffer and a random number  generator. The 
message buffer holds messages that have been sent to 
the processor but not yet received and is modeled as 
a set of messages. The random number  generator sup- 
plies an infinite sequence of n-bit strings. Certain proces- 
sor states are initial states, designated (id, initval), where 
id is a nonnegative integer and initval is either 0 or 1. 
The id element of an initial state is the processor 's name, 
or identification number. The initval element is the pro- 
cessor's initial value. There is an integer in each proces- 
sor's state, called its clock, which is 0 in all initial states. 
The state machine's transition function is applied to a 
state, an n-bit string, and a set of raw messages to pro- 
duce another  state and a set of raw messages containing 
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at most  one raw message per recipient. The transition 
function always increments clock by 1. 

Described informally, a processor at each step com- 
putes a new state and a set of raw messages to send, 
based on its current state, the set of raw messages just 
received, and an n-bit string from its random number  
generator. The processor keeps track of how many  steps 
it has taken with the clock variable. 

A protocol is a set of n processors, with identification 
numbers 0 through n -  1. A particular protocol is impli- 
cit in all the definitions in the remainder of Sect. 2. 

A configuration C consists of n states, one for each 
processor, and n sets of messages, one for each proces- 
sor's buffer. An initial configuration has all processors 
in initial states and all buffers equal to the empty set. 

An event is denoted (p, M, b), in which processor p 
receives the set of messages M (which can be empty) 
and the random bit string b. Such an event is a step 
ofp.  

An event e=(p ,  M, b) is applicable to configuration 
C if every message in M is an element of p's buffer in 
C. Let s and M'  be the state and set of raw messages 
resulting from applying p's transition function to the tri- 
ple consisting of p's state in C, b, and the raw messages 
extracted from M. The configuration resulting from ap- 
plying e to C, denoted e(C), is obtained from C by remov- 
ing all messages in M from p's buffer, changing p's state 
to s, and adding the message (m, i), for each m~M', to 
the recipient's buffer, where i is the value of p's clock 
in s. 

A schedule is a finite or infinite sequence of events. 
A finite schedule a = el e2... ek is applicable to configura- 
tion C if e~ is applicable to C, e 2 is applicable to el(C), 
etc. The resulting configuration is denoted a(C). An infi- 
nite schedule is applicable to C if every finite prefix of 
the schedule is applicable to C. 

Given configuration C1 and schedule a applicable 
to C~, we define the run R=run(C~, a) obtained from 
C1 and 0-, as follows. If o-=el e2 ... ek is finite, then R 
is the sequence ClelCzez . . .ekCk+~,  where Ci+~ 
=ei(Ci), l< i<k .  If a = e l  e2 ... is infinite, then R is the 
sequence C1 el C2 e2 - - - ,  where, for all i_> 1, Ci+ 1 =ei(Ci). 
Informally, a run is a schedule together with its associat- 
ed configurations. 

Processor p is nonfaulty in an infinite run or schedule 
if it takes an infinite number  of steps; otherwise it is 
faulty. An infinite run or schedule is failure-free if no 
processor is faulty in it. Since the interleaving of proces- 
sors'  steps in a run or schedule may be arbitrary, no 
particular degree of synchronization is necessarily 
achieved. Note that processors cannot  be designated as 
faulty or nonfaulty in a finite run or schedule. 

A message sent by processor p at event e in infinite 
run R is guaranteed if e is not the last step of p in R. 
An infinite run R is admissible if the first configuration 
is an initial configuration and all guaranteed messages 
sent to nonfaulty processors are eventually received. The 
notion of guaranteed messages is used to model the lack 
of atomic broadcast.  Since messages sent at a processor's 
last step do not have to be received, we effectively model 
a processor failing in the middle of a broadcast. An ad- 

missible run is t-admissible for 0 < t_< n, if at most  t pro- 
cessors are faulty in the run. 

Each processor's state set contains two disjoint sub- 
sets of decision states, I1o and I11, such that the transition 
function applied to a state in Y~ produces a state in 
Yv (i.e., once a processor enters a state in I10 or Y1 in 
a run, it stays in that set forever). A processor decides 
v in a run when it is in a state in Yr. A configuration 
C has decision value v if there is some processor whose 
state in C is an element of Y~. An infinite run is deciding 
if every nonfaulty processor decides. 

2.2 Timing constraints 

We fix a positive constant K >  1, which is used to define 
late messages. A message m from p to q is late in (finite 
or infinite) run R = C1 el C2 e2... if event es adds m to 
q's message buffer, event er removes m from q's message 
buffer, and there is some processor that takes more than 
K steps in the schedule es+l.. .e,  A run is on-time if 
it contains no late messages. Note that a message that 
is never delivered is not considered late. 

Ideally we would like a processor to decide in a con- 
stant expected number  of its own steps. Unfortunately, 
as we prove in Sect. 5, this is impossible, even if proces- 
sors run in lockstep synchrony and only a single fault 
is to be tolerated. Instead, we characterize the time per- 
formance of our protocol using the following definition. 
Given an infinite run, a processor is defined inductively 
to be in a particular asynchronous round (or round) as 
follows. Asynchronous round 1 for processor p consists 
of p's first K steps. Asynchronous round r, r >  1, for p 
begins with the first step that p takes after the end of 
p's round r - 1 .  It ends with the first step in which p 
has satisfied all of the following three conditions: p has 
taken at least K steps in round r, p has received every 
guaranteed message that was sent by a processor q in 
q's round r - 1 ,  and in the remainder of the infinite run 
there are no steps in which p receives a message that 
was sent by a processor q in q's round r - 1 .  (Note that 
the last two conditions make sure that no round lasts 
infinitely long due to p's waiting for a non-guaranteed 
message that never arrives.) 

This definition uses two criteria for ending a round, 
the number  of processor steps taken and the collection 
of messages received. These criteria seem natural in our 
timing model, in which processors can take actions de- 
pending on the receipt of messages, as well as on time- 
outs. 

A processor cannot  compute its current asynchro- 
nous round; the definition is for our use as ommiscient 
observers as we analyze protocols. We require a round 
to last at least K steps to prevent a round from collapsing 
to nothing if no messages are sent in the previous round. 
If processors take steps in round-robin order, and receive 
and send messages only at the beginning of a round, 
and if each message sent at the sender's i th step is received 
at the recipient's (i + K) th step (for all i), then this defini- 
tion is essentially the same as the synchronous round 
definition of Dwork  and Skeen [6]. 



91 

2.3 Safety conditions 

The following definition restricts what must happen if 
a processor decides, but does not require any processor 
to decide. A protocol is a transaction commit protocol 
if for every admissible run R: 

�9 Agreement Condition: Every configuration has at most 
one decision value. 
�9 Abort Validity Condition: If the initial value of any 
processor is 0, then no configuration has decision 
value 1. 
�9 Commit Validity Condition: If the initial value of all 
processors is 1 and R is failure-free and on-time, then 
no configuration has decision value 0. 

Since these three conditions must hold for any ad- 
missible run, regardless of how many processors are 
faulty, our definition of transaction commit  protocol  in- 
corporates the graceful degradation property:  processors 
may  block but will never produce the "wrong"  answer. 

The definitions in Subsect. 2.1 allow each processor 
to receive an unbounded number  of messages at each 
step. This assumption is not essential to our work, but 
to exclude uninteresting protocols, we must require that 
each processor be able to receive at least n messages 
at each step. Otherwise, processors could swamp the 
message system, causing messages to become late, not 
because the message system misbehaves, but because the 
ability of the processors to handle all the incoming mes- 
sage traffic is inadequate 3. For  instance, the protocol 
"cause the run to be not on-time by flooding the message 
system and then abor t "  is not of much practical interest. 

2.4 Adversary 

The adversary can be considered a scheduler: it decides 
which processor takes a step next and which messages 
are received. In the introduction we gave an informal 
description of the adversary. This subsection formalizes 
the notion. 

The message pattern of finite run R = C 1 el ... eg Ck+ 1, 
where ei = (Pi, Mi, bi) for all 1 < i < k, is the sequence of 
triples (p~, El,  P~)... (Pk, Eg, Pk), where Pi is the set of pro- 
cessors to which messages were sent by event e~, and 
Ei is a set of integers indexing the events in the run 
that sent the messages, M~, received in e~. The point 
of making this definition is to isolate the pattern of mes- 
sage sending and receiving while hiding the contents of 
the messages. 

3 For an example of swamping, consider the following. Suppose 
each processor can send n messages per step but only receive n -  1. 
Consider the protocol: At each step, broadcast a message; at step 
1, decide 0. We now show that no infinite failure-free run is on-time. 
Let R be an infinite failure-free run. After Kn(n 1)+n events, 
(Kn(n-1)+n)n messages have been sent, and at most 
(Kn(n-1)+n) (n--l) have been received. So there are at least 
Kn(n--1)+n outstanding messages. By the pigeonhole principle, 
some processor p has at least K(n 1)+1 outstanding messages 
(to be received). It will take p at least K + 1 steps to receive all 
those messages, by which time the run will no longer be on-time 

An adversary is a function that takes a message pat- 
tern (Pl, El,  PO... (Pk, Ek, Pk) and returns a processor p, 
that will take step k + 1, and a set of at most  n messages 
sent during the first k events whose receipt is delayed 
until the k + 1 ~t event. This set of messages is represented 
by a set E of integers, l<_lEl<_n, such that for all 
i~E, p~Pi. 

Let f f  be the collection of all n-tuples of infinite se- 
quences of n-bit strings. Each element of Y is an n-tuple 
(Xo, ..., X,- l) ,  where for all p, xp models the sequence 
of random strings that could be returned by processor 
p's random number  generator in p's steps in some infinite 
run. 

A run is uniquely determined by an adversary A, 
an initial configuration I, and an element F of Y .  Denote 
this run by run(A, I, F). The construction of 
run(A, I, F)=C1 el C2 e2 ... is inductive. Let C I = I .  
Suppose the run up to configuration Ci has been con- 
structed. Let p and E be the result of A acting on the 
message pattern of run C~ e l . . .  Ci. Then e~ consists of 
the processor p, the messages sent to p in all the events 
indexed by E, and the next unused bit string in the se- 
quence for p in F. Event e~ is applicable to C~ by the 
definition of an adversary. We define Ci+l to be ei(Ci). 
Since the adversary is a total function, run(A, I, F) is 
an infinite run, and thus at least one processor is non- 
faulty. 

If the adversary were not restricted in any way, it 
could cause all processors (but one) to fail or no messages 
to be delivered, and no protocol would be possible. We 
limit the power of the adversary in the following reason- 
able way. We define a t-admissible adversary, for 0 _< t _< n, 
to be an adversary such that for all initial configurations 
I and all F in i f ,  run(A, I, F) is t-admissible. 

For  predicate P defined on runs, let P r [ P ]  be the 
probabili ty of the event { F e Y :  run(A, I, F) satisfies P}, 
for a fixed adversary A and initial configuration I. 

The expected value of any complexity measure is de- 
fined as follows. Let T be a random variable that, for 
a given run, is the value of the complexity measure of 
interest for that run. For  a fixed admissible adversary 
A and initial configuration I, let the expected value of 
T, taken over all F in ~ ,  be denoted E(TA, I). Define 
the expected value for the protocol  for a given value 
of t, E(T, t), to be maXA, I{E(TA, I) }, where A is any t- 
admissible adversary and I is any initial configuration. 

2.5 Liveness condition 

Given admissible run R and integer r, let DONE(R, r) 
be the predicate that every nonfaulty processor decides 
by its asynchronous round r in R. A protocol  is t-non- 
blocking if for any t-admissible adversary A and any ini- 
tial configuration I, 

lim Pr[DONE(run(A, I, F), r)] = 1. 

The t-nonblocking property means that the probabil-  
ity of all the nonfaulty processors having decided goes 
to 1 as the number  of rounds increases without bound. 
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3 The randomized commit protocol 

For all of this section we assume a fixed t > 0 with n > 2 t. 
Subsection 3.1 contains the code for our t-nonblocking 
transaction commit protocol, preceded by an informal 
description. In Subsect. 3.2 we prove that our protocol 
is a transaction commit protocol, i.e., it satisfies the safety 
conditions. In Subsect. 3.3 we prove an eventual termina- 
tion property which is used in Subsect. 3.4 to show that 
our protocol is t-nonblocking. Subsection 3.5 contains 
the time analysis, in which we show that our protocol 
decides in a constant expected number of asynchronous 
rounds. 

3.1 The protocol 

In this subsection we present our randomized transac- 
tion commit protocol by describing, for each processor 
p, the states and transition function of p. We begin with 
an informal description. 

Our protocol consists of a few preliminary message 
exchanges followed by a modification of the agreement 
protocol of Ben-Or [1]. The two purposes of the prelimi- 
nary message exchanges are to resolve the differences 
between the input/output  relations of the transaction 
commit and agreement problems (e.g., to ensure that if 
any vote is initially 0, then all the inputs to the agreement 
"subrout ine"  are 0) and for the coordinator to distribute 
n random bits to all the processors. 

The original protocol of Ben-Or [1] proceeds in 
stages, with each processor using one random bit at each 
stage. The protocol is sure to terminate once a stage 
is reached in which each processor's random bit is equal 
to a particular value (chosen for that stage by the advers- 
ary). Obviously, if each processor's random bit in a stage 
is independent of every other processor's random bit for 
that stage, the expected number of stages until termina- 
tion is exponential in the number of processors. In our 
protocol, the coordinator distributes n random bits to 
be used in the first n stages, one bit per stage. Thus 
all the processors will share the same random bit in 
each of the first n stages. The probability that none of 
the n common bits has the required value for its stage 
is exponentially small, causing the expected number of 
stages until termination to be constant. 

We now describe the two parts of our protocol in 
more detail. 

Throughout  the protocol each processor keeps a vote 
indicating what it currently wants to do with the transac- 
tion. The processor with id 0 is the coordinator; at its 
first step, it chooses n random bits and distributes them 
to the other processors, the participants, by broadcasting 
a coins message containing the bits. (Throughout this 
paper we use "broadcas t"  to mean send to all proces- 
sors.) If a participant receives no message at its first step 
(which only happens if the participant unilaterally initi- 
ates the protocol), it sends a request message to the coor- 
dinator (to try to jog it awake); if no reply is received 
within 2K steps, the participant sets its vote to 0 and 
decides 0. If a participant either receives a message at 

its first step or receives a timely reply to its request mes- 
sage, it extracts the n bits and broadcasts them in a 
coins message, to indicate that it is participating in the 
protocol. If all processors are nonfaulty and the run is 
on-time, then each processor receives a coins message 
from everyone within 2K steps after broadcasting one. 
If a processor does not receive these messages, it sets 
its vote to 0 and decides 0. In either event, each processor 
then broadcasts its vote. If a processor does not receive 
n votes for 1 within an additional 2K of its steps, it 
sets its vote to 0, but remains undecided. 

The rest of the protocol proceeds in stages (as in 
Ben-Or [1]), numbered from 1 up without bound. In 
stage s, each processor p broadcasts its vote in a stage 
(s, 1) message and waits to receive n - t  stage (s, 1) mes- 
sages. If p receives at least n -  t stage (s, 1) messages with 
the same value v~{0, 1), then p broadcasts v in a stage 
(s, 2) message; otherwise p broadcasts " ? "  in a stage (s, 2) 
message. The purpose of the first part of stage s is to 
ensure that it is never the case that some processor 
broadcasts 0 in a stage (s, 2) message and another proces- 
sor broadcasts 1 in a stage (s, 2) message. In the second 
part of stage s, processor p waits to receive n - t  stage 
(s, 2) messages. If p receives a stage (s, 2) message with 
value w{0 ,  1}, then p sets its vote to v; otherwise, p 
sets its vote to a random bit, either the #h random bit 
from the coins message if s_<n, or else a locally-deter- 
mined random bit. If p receives at least n -  t stage (s, 2) 
messages for value w{0 ,  I}, then p decides v. 

Processor p uses the following constants and vari- 
ables. Constants, in addition to p itself, are n, t, and K 
as defined above. Variables are: 

�9 clockv: nonnegative integer; initially 0. 
�9 stagep: values are "asleep", "request",  "coins",  
"vote",  (s, 1) and (s, 2) for all s>  1; initially "asleep". 
�9 timerp: nonnegative integer or oo ; initially oo. 
�9 coinsp: n-bit string or nil; initially nil. 
�9 votep: boolean; initially p's initial value. 
�9 decider: boolean or nil; initially nil. 
�9 receivedp: set of raw messages; initially empty. 

The text of each raw message consists of either a 
possible value for a stage v variable, or a triple containing 
a possible value for a stage v variable, an element of 
{0, 1, ?}, and an n-bit string. 

Below we describe p's transition function, acting on 
state q of p, set M of raw messages, and n-bit string 
b. The state of p returned by the transition function is 
obtained from q in accordance with the following pseu- 
docode. The set of raw messages returned by the transi- 
tion function is that indicated by the send statements 
executed in the pseudocode. The statement " i f  expression 
then body elseif expression then body ... elseif expression 
then body endif" is a multiway branch. 

Protocol 1: 

/* increment clock and save received raw messages */ 

clockp:=clockp+l 
receivedp:=receivedvuM 



/* coordinator  initiates protocol  
by distributing n random bits */ 

if stage.="asleep " and p is the coordinator  then 
coins. := b 
stage. :=" coins" 
timer. ,=clock. + 2 K 
send (stage., "?" ,  coins.) to all processors 

/* non-coordinator  wakes up and requests 
that coordinator  initiate */ 

elseif stage. = " a s l e e p "  and p is not the coordinator  
and M = 0 then 

stage.:=" request" 
timer..'= clock. + 2 K 
send (stage.) to the coordinator  

/* non-coordinator  receives coins before t imeout */ 

elseif (stage. = " a s l e e p "  and p is not the coordinator  
and M :# O) or (stagep = " r e q u e s t "  and clockp 
<_ timer, and M :# O) then 

coinsp'.=n-bit string from any raw message in M 
stagep :=" coins" 
timer. := clock. + 2 K 
send (stage., "?" ,  coins.) to all processors 

/* non-coordinator  times out while waiting 
to receive coins */ 

elseif stage. = " r e q u e s t "  and clock. 
= timer, and M = 0 then 

vote. :=0 
decidep :=0 

/* distributing votes */ 

. Is . i f  stagep="coins" and (clock.= timer, or n coins 
messages are in received.) then 

stage. :=" vote"  
timerp ,=clockp+ 2 K  
if fewer than n coins messages are in received, then 

votep:=O 
decide.:=O 

endif 
send (stage., vote., coins.) to all processors 

/* completing stage 0 */ 

elseif stage. = " v o t e "  and (clock.= timer, or n vote 
messages are in receivedp) then 

stagep:=(1.1) 
if fewer than n vote messages 

for 1 are in received, then 
vOtep:=O 

endif 
send (stagep, vote., coinsr) to all processors 

/* finishing first part  of stage s */ 

elseif stage. = (s, 1) and at least n -  t stage (s, 1) 
message are in received, then 

stage. :=(s, 2) 
if there is w{O, 1} such that at least n - t  stage 
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(s, 1) messages in received, have value v then 
send (stage., v, coins.) to all processors 

else 
send (stage., " ? "  coins.) to all processors 

endif 

/* finishing second part  of stage s */ 

elseif stage. = (s, 2) and at least n - t  stage (s, 2) 
messages are in received, then 

stagep,=(s+ 1, 1) 
if there is re{0, 1} such that a stage (s, 2) message 

in received, has value v then 
votep,=v /* in Lemma 4 we show that v is 

unique */ 
if at least n -  t stage (s, 2) messages 
in received, have value v then 

decide. :=v 
endif 

else 
if s < n then vote. :=coins. Is] 

else votep:=the first bit of b endif 
endif 
send (stage., vote., coins.) t o  all processors 

endif 

3.2 Safety conditions 

This subsection culminates in Theorem 8, which asserts 
that Protocol 1 is a transaction commit  protocol. 

In run R, processor p is said to be in stage s, for 
s_> 1, if stage. = (s, 1) or (s, 2). We say p completes stage 
s_>0 i fp  ever sets stage, to (s+ 1, 1) in R. 

Lemma 1. In any admissible run, if for some p vote. = 0 
at any time before p broadcasts its vote message, then 
every stage (1, 1) message has value O. 

Proof Since vote. is never set to 1 before stage 1, no 
processor ever receives a vote message with value 1 from 
p. Thus no processor broadcasts a stage (1, 1) message 
with value 1. [] 

Lemma 2. In any admissible run, if for all pvo t ep =  1 
initially, and the run is failure-free and on-time, then every 
processor broadcasts a stage (1, 1) message with value 1. 

Proof First we show that each processor p broadcasts  
a vote message with value 1. Suppose either p is the 
coordinator  or p receives a message at its first step. Then 
p broadcasts  a coins message at its first step. By time 
K on p's clock, each processor receives p's coins message 
and broadcasts  its own coins message (if it has not al- 
ready done so). By time 2 K  on p's clock, p receives n 
coins messages. Thus p broadcasts a vote message with 
value 1. 

Now suppose p is not the coordinator  and does not 
receive any messages at its first step. It sends a request 
message to the coordinator,  which is received by time 
K on p's clock. The coordinator  then broadcasts  a coins 
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message, if it has not already done so, and thus p receives 
some message containing the coins (not necessarily from 
the coordinator) at time TI<_2K on p's clock. Then p 
broadcasts  a coins message at time T1; by time T 1 + K 
on p's clock, each processor receives p's coins message 
and broadcasts  its own coins message (if it has not al- 
ready done so). By time T 1 + 2 K  on p's clock p receives 
n coins messages. Thus p broadcasts a vote message with 
value 1. 

Now we show that every processor p receives n vote 
messages within 2 K  of its clock ticks after it broadcasts 
its vote. Processor p broadcasts its vote as soon as it 
receives its n th coins message. Suppose its clock reads 
T2 then. Since the run is on-time, every other processor 
receives its n th coins message, and broadcasts its vote, 
by the time p's clock reads T2+K. Thus p receives 
all n vote messages by the time its clock reads Tz+ 
2K. Then p broadcasts  its stage (1,1) message with 
value 1. [] 

Lemma 3. In any admissible run, for all s>_ 1, if every 
stage (s, 1) message has value v~{0, 1} then 
(1) every stage (s, 2) message has value v; 
(2) every stage (s+ 1, 1) message has value v; and 
(3) any processor p that completes stage s sets decidep 
to v at the end of stage s. 

Proof Part 1 is obvious from the code. Parts 2 and 3 
follow from part  1 and the code. []  

For  any s >_ 1, we call a stage (s, 2) message with value 
re{0, 1} a stage s S-message ("S" for "set"), because 
the receipt of such a message can cause a processor to 
set its vote to v (if this message is among the first n - t  
stage (s, 2) messages received by the processor). 

Lemma 4. In any admissible run, for any f ixed s >_ 1, every 
stage s S-message has the same value. 

Proof Fix s >  1. In order to send a stage s S-message 
with value v, a processor must receive at least n - t  stage 
(s, 1) messages with value v. Since no processor broad- 
casts conflicting messages, at most  t processors can 
broadcast  a stage (s, 1) message with value w =~ v. Thus, 
no processor receives more than t stage (s, 1) messages 
with value w. Since n>2t ,  t is less than n - t ,  and no 
processor sends a stage s S-message with value w. [ ]  

Lemma 5. In any admissible run, for all s>_ 1 and all 
processors p, if p sets decidep to v in stage s, then all 
stage (s+ 1, 1) messages have value v. 

Proof Suppose p sets decidep to v in stage s. Then p 
receives at least n - t  stage s S-messages for v. Let Sp 
be the set of processors that send stage s S-messages 
for v. Let q be any processor that completes stage s. 
Then q receives at least n - t  stage (s, 2) messages. Since 
n > 2 t, at least one of these n - t  messages received by 
q is from a processor in Sp. Since no processor broad- 
casts conflicting messages, q receives at least one stage 
s S-message for v. By Lemma  4, q receives no stage s 

S-message for any w :# v. Therefore q's stage (s + 1, 1) mes- 
sage has value v. [] 

Lemma 6. In any admissible run, for all processors p and 
q (not necessarily distinct) if p sets decidep to v at some 
point in the run, and q sets decideq to w at another point 
in the run, then v = w. 

Proof Without  loss of generality, assume that the desig- 
nated point for p does not come after the designated 
point for q. There are three cases. 

Case 1. Processor p sets decidep to v before complet- 
ing stage 0, and q sets decideq to w before completing 
stage 0. By the code, v = 0 = w. 

Case 2. Processor p sets decidep to v before complet- 
ing stage 0, and q sets decideq to w at the end of stage 
s, for some s >_ 1. By the code, v = 0. By Lemma 1, every 
stage (1, 1) message has value 0. By part  2 of Lemma 3 
and induction, every stage (s, 1) message has value v. 
By part  3 of Lemma 3, w = v. 

Case 3. Processor p sets decidep to v at the end of 
stage r, for some r > l ,  and q sets decideq to w at the 
end of stage s, for some s>_ 1. By our choice of p and 
q, r_< s. There are two subcases. 

Case 3a. If r = s ,  then p receives at least n - t  stage 
r S-messages for v and q receives at least n - t  stage 
r S-messages for w. By Lemma 4, v = w. 

Case 3b. Suppose r < s .  By Lemma5 ,  all stage 
( r+  1, 1) messages have value v. By part 2 of Lemma 3 
and induction, all stage (s, 1) messages have value v. By 
part  3 of Lemma 3, w=v.  [] 

Lemma 7. In any admissible run, decidep changes value 
at most once, for every processor p. 

Proof By Lemma 6. []  

Let p's decision states I1o and I11 be states with 
decidep=O and decidep= 1 respectively; Lemma 7 shows 
that once p enters a state in Y~, v~{0, 1}, it stays in 
that set forever. Thus we can say p decides v when p 
sets decidep to v for the first time in a run. 

Theorem 8. Protocol 1 is a transaction commit protocol. 

Proof By Lemma 7 and inspection, Protocol 1 is actually 
a protocol, according to our definition. It remains to 
show that it is a transaction commit  protocol. 

Let R be a t-admissible run. The agreement condition 
is satisfied by Lemma 6. 

Next we show the abort  validity condition. Suppose 
some processor begins with initial value 0. By the code, 
any processor that decides before completing stage 0 
decides 0. By Lemma 1 and part  3 of Lemlna 3, any pro- 
cessor that completes stage 1 and has not already de- 
cided, decides 0 at the end of stage 1. 

Finally, we show the commit  validity condition. Sup- 
pose R is failure-free and on-time, and all processors 
begin with 1. Then every processor completes stage 1. 
By Lemma 2 and part  3 of Lemma 3, every processor 
decides 1 at the end of stage 1. []  
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By our definition of transaction commit protocol, the 
agreement, abort validity, and commit validity condi- 
tions are true even for runs in which more than t proces- 
sors fail. This is the graceful degradation property exhib- 
ited by our protocol. 

3.3 Eventual termination 

The analysis in this subsection shows that the probability 
that all processors that complete stage s, decide by stage 
s, approaches 1 as s approaches infinity. Recall that 
probabilities are taken over the random information (i.e., 
the sample space is ~ ) ,  holding the adversary and initial 
configuration fixed. 

For  the following definitions, fix adversary A, initial 
configurat ion/ ,  and F and F' in ~ .  Let R=run(A,  I, F) 
and R ' =  run(A, I, F'). 

Define F(p, k) to be the k th element in the sequence 
for p in F. 

Define coins(F) to be F(0, 1) (i.e., the coordinator 's 
first n-bit string). It is easy to see that if coinsv is ever 
nonnil in R, then it equals coins(F), for all p. We denote 
the s th element of coins(F) by coins(F) [s]. 

For  processor p and s > 1, define index(R, p, s) to be 
the total number of steps taken by p in the run from 
the beginning until p completes stage s in R. If p does 
not complete stage s, then index(R, p, s) is undefined. 
Thus index(R, p, s) is also the index into the sequence 
for p in F of the bit string used to determine the value 
of vote v in stage s, in case s > n and p receives no stage 
s S-message. 

The next definition maps a bit to each processor and 
each stage s > n  in a run, such that each stage gets a 
"new"  bit, i.e. a bit independent of the bit assigned to 
any other stage. This mapping is consistent with the 
mapping implemented in the protocol for those cases 
where a processor uses a random bit. Let random(R, p, s), 
for processor p and s>n,  be defined as follows. (1) If 
p completes stage s in R, then random(R, p, s) is the first 
bit of F(p, k), where k=index(R,  p, s). (2) If p does not 
complete stage s in R, then random(R, p, s) is the second 
bit of F(p, s+ 1) (i.e., a safe default). 

For  0_< s__ n, define F and F' to be (A, I, s)-equal if 
coins(F) [i] =coins(F) [i] for all i, 1 <iNs .  For  s>n,  de- 
fine F and F' to be (A, I, s)-equal if F and F' are (A, I, n)- 
equal, and for every i, n + 1_<iN s, and every processor 
p, random(R, p, s)=random(R', p, s). Note that for a fixed 
A, I, and s, (A, I, s)-equality is an equivalence relation 
on Y.  

In the following three definitions, s _> 1. 
Define v(R, s) to be the value of a stage s S-message 

sent in run R. If no stage s S-message is sent in R, then 
let v(R, s)=0. By Lemma 4, v(R, s) is well-defined. 

Define MATCH(R, S) to be the predicate that if s_<n, 
then eoins(F)[s]=v(R,s),  and if s>n,  then ran- 
dom(R, p, s)=v(R,  s) for all p. 

Define DEC~DE(R, S) to be the predicate that each pro- 
cessor that completes stage s has decided by the end 
of stage s (or earlier) in R. 

The next lemma characterizes two aspects of runs 
that are unchanged once an adversary and initial config- 
uration are fixed. 

Lemma 9. Let A be an adversary, I an initial configura- 
tion, and F and F' e ~ .  Let R =run(A, I, F)=C1 el C2 ... 
and R '=run(A,  I, F')=C'I e'l C'2 .... 
(1) For all i>_ 1, the message pattern of C1 el ... Ci is the 
same as the message pattern of C' 1 e'l ... CI. 
(2) For all processors p and all s>_l, index(R, p, s)=in- 
dex (R', p, s). 

Proof. (Part 1). The structure of the protocol is such that 
the random information does not affect which processors 
send messages to which other processor it only affects 
the values of the local variables and the message con- 
tents. But this is the very information not available to 
the adversaries under consideration. Thus, for a fixed 
adversary and initial configuration, the sequence of pro- 
cessor steps and the message delays are the same, regard- 
less of the random information. 

(Part 2). This follows from part 1 of this lemma. [] 

The next lemma states that the value of a stage s + 1 
S-message only depends on the random information 
available through stage s, once an adversary and initial 
configuration are fixed. 

Lemma 10. Let R=run(A,  I, F) and R '=run(A,  I, F') for 
adversary A, initial configuration I, and F and F' in ~ .  
I f  F and F' are (A,I,s)-equal, then v ( R , s + l ) =  
v(R', s + l), for any s>O. 

Proof. By Lemma 9, the message patterns for R and R' 
are the same. Since F and F' are (A, I, s)-equal, the ran- 
dom information that affects the local variables and mes- 
sage contents in R and R' up through stage s is the 
same in F and F'. Thus, the values of corresponding 
processors' variables, and the contents of corresponding 
messages sent up through stage s are the same in R 
and R'. The random information used in a processor's 
stage s+  1 is not used until the end of that stage, so 
the same messages are sent in each processor's stage 
s+  1 in R and R', even though the stage s +  1 random 
information might be different in F and F'. [2] 

The next lemma states a simple relationship between 
MATCH and DECIDE. 

Lemma 11. Let R=run(A,  I, F) for adversary A, initial 
configuration I, and F e ~ .  For all s>  1, MATCH(R, S) im- 
plies DECIDE(R, S + 1). 

Proof. Fix s_> 1. At the end of stage s, each processor 
sets its vote to be either the value received in a stage 
s S-message or its random value for that stage. 
MATCH(R, S) means that every processor's random value 
for stage s is the same as the value sent in any stage 
s S-message. If MATCH(R, S) is true, then processors set 
their votes to the same value at the end of stage s, imply- 
ing that all stage (s + 1, 1) messages have the same value 
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v~{0,1}. By pa r t3  of Lemma3,  DECIDE(R, s+  I) is 
true. [~ 

The following technical lemma concerns any equiva- 
lence class of ~-, where the equivalence is defined by 
(A, I, s)-equality. 

Lemma 12. Fix adversary A, initial configuration I, and 
s>O. Partition Y into equivalence classes according to 
the (A, I, s)-equal equivalence relation. Pick any class C. 
(1) MATCH(run(A, l, F), i)=MATCH(run(A, I, F'), i) for all 
i, 1 <_ i <<_ s, and any F and F' in C. 
(2) I f  s<n,  then Pr[MATCH(run(A, I, F), s+ I)[FeC] 
= 1/2; /f s>_n, then Pr[MATCH(run(A, I, F), s+ 1)[F~C] 
= 1/2". 

Proof (Part 1). If s=O, then the result is vacuously true. 
Suppose s>0 .  Choose any i, l_<i<s,  and any F and 
F' in C. Let R =run(A, I, F) and R'=run(A,  I, U). Since 
F and F' are (A, I , / - U - e q u a l ,  v(R, i)=v(R', i), by Lem- 
ma 10. Since F and F' are (A, I,i)-equal, coins(F)[i] 
=coins(F')[i] if i nn ,  and random(R, p, i)=random(R', 
p, i) for all p i f / >  n; thus MATCH(R, i)= MATCH(R', i). 

(Part 2). By Lemma 10, v(run(A, I, F), s+ 1) is the 
same for all FeC.  Call this value v. 

Suppose s <n. For F in C, MATCH(run(A, I, F), s+ 1) 
is true if and only if coins(F)[s+l]=v.  Recall that 
coins(F)[s+l] is equal to either 0 or 1. Pr[coins(F) 
[ s+  1] = 0 ] F e C ]  = 1/2, since C is the set of all elements 
of ~ that are (A, I, s)-equal. Thus Pr[MATCH(run 
(A, I, F), s+ 1)1VeC] = 1/2. 

Suppose s> n. For  F in C, MATCH(run(A, 1, F), s + l )  
is true if and only if random(run(A, I, F), p, s+ 1)=v for 
all p. Recall that random(run(A, I, F), p, s + l )  is equal 
to either 0 or l. 

Fix processor p. For  any F, the position of ran- 
dom(run(A, I, F), p, s + l )  in F depends on whether p 
completes stage s + l  in run(A, I ,F)  or not. By Lem- 
ma 9, either p completes stage s + l  in run(A, I, F) 
for all F in C, or p fails to complete stage s + l  in 
run(A, I, F) for all F in C. If p does not complete stage 
s + l ,  then random(run(A, I, F), p, s + l) is the se- 
cond bit of F(p, s+2),  obviously a fixed position for 
all F in C. If p does complete stage s + l ,  then 
random(run(A, I, F), p, s + l) is the first bit of F(p,k), 
where k=index(run(A, I, F), p, s+  1). By Lemma 9, k is 
the same for all F in C, so this is also a fixed position 
for all F in C. 

For  all distinct p and q and all F in C, the positions 
in F of random(run(A, I, F), p, s) and random(run(A, I, F), 
q, s) are distinct. 

For  any fixed p, Pr[random(run(A , I ,F) ,ps+l )  
= 0 ] F r  = 1/2, since C is defined by (A, I, s)-equality. 
Thus Pr[MATCH(run(A, I, F), s +  1)]FeC] = 1/2". []  

The next lemma is the key to the termination of the 
protocol, as well as the good time performance. It says 
that there is a high probability that the random informa- 
tion used to set votes matches the value in S-messages 
for the first n stages, and there is a smaller, but still 
positive probability for subsequent stages. 

Lemma 13. Fix adversary A and initial configuration I. 
Then, for all s >_ 1, 

Pr[MAYCn(run(A, I, F), s)] ={1/2  if s < , ;  
1/2" otherwise. 

Proof By part 2 of Lemma 12, since the lemma is true 
for every equivalence class of ~ ,  under the (A, I, s -  1)- 
equal relation. [] 

The next lemma provides a means of calculating the 
probability of certain compound events. These probabili- 
ties will be used in the proofs of Lemmas 15 and 19. 

Lemma 14. Fix adversary A, initial configuration I, and 
s> l. Let R=run(A,  I, F) for F e ~  and for all i, l <i<s ,  
let M~ be either MATCH(R, i) or ~ MATCH(R, i). Then 

Pr[M1 A ... AMs]=  f l  Pr[Mi] .  
i = 1  

Proof The proof is by induction on s. The base case 
(s= 1) is immediate. Suppose the result holds for s - 1 ;  
we show it for s. By the inductive hypothesis, it is suffi- 
cient to show P r [ M I A  ... A M s I = P r [ M 1 A  ... A 
M~_,] .Pr [Ms]. 

By the definition of conditional probability, 

P r [ M  1A ... A M s ] = P r [ M s [ M  1A ... AMs_l ]  

�9 Pr [M1A ... A M s - j .  

Thus it is enough to show that Pr[M~IM1A ... A 
Ms- 1] = Pr [Ms]. 

Let X be the set of all F e ~  such that 
M~ A ... AMs 1 is true, where R=run(A,  I, F). Partition 

into equivalence classes based on (A, I, s -  D-equality. 
If F is in X, and F and F' are (A, 1, s - l ) - equa l ,  then 
F' is also in X, by part 1 of Lemma 12. Thus X consists 
of some finite number of (A, I, s -  1)-equal equivalence 
classes; call them C1 . . . . .  C~. 

Define q as follows: if s<n,  let q = l / 2 ;  if s>n  and 
Ms=MATCH(R,s), let q=1/2" ;  and if s>n  and Ms 
=--3 MATCH(R, S), let q = 1 - 1/2". By Lemma 13, 
Pr [M~]=q.  It remains to show that Pr[M~IM1 
A ... A Ms-~] =q.  Because F e X  is the same event as 
M 1 A . . . A M s - x ,  we have that P r [ M ~ [ M ~ A . . . A  
Ms- 1] = P r  [M~I F~X] .  Now calculate that 

k 

Pr[M~[FeX]= ~ Pr[M~[FEC~].Pr[Fr 
i - 1  

k 

=q. ~ Pr[FeCi [FeX] ,  
i = 1  

by part 2 of Lemma 12 

=q.  [] 
The next lemma shows that the probability that all 

processors that complete stage s, decide by stage s, ap- 
proaches 1 as s approaches infinity. 

Lemma 15. For any adversary A and initial configuration I, 
lim Pr [DECIDE(run(A, I, F), s)] = 1. 

s --~ ao 



Proof Let R = run (A, I, F). First note that 

Pr [DECIDE(R, S)] 

> Pr [MATCH(R, 1) V ... V MATCH(R, s -- 1)]. 

The reason is that if MATCH(R, S') is true for some s', 1 < 
s'<_s--1, then by Lemma 11, DECIDE(R,s'+I) is true. 
Since s '+  1 _<s, DECIDE(R, S) is true. 

Pr [MATCH(R, 1) V ... V MATCH(R, S-- 1)] 

= 1 - -Pr  [ ~  MATCH(R, 1)/X ... /X --n MATCH(R, S-- 1)] 
S--I 

-- 1 - [ I  (1 - Pr [MATCH(R, i)]), by Lemma 14 
i=1 

> l _ ( l _ l / 2 n ) s  1, b y L e m m a  13. 

Since lim (1 -1/2n) ~- 1 = 0  we are done. [] 

3.4 Liveness condition 

Lemma 15 in the last subsection showed that our proto- 
col terminates in a bounded expected number of stages. 
Lemmas 16 and 17 in this subsection extend that result 
to rounds and are used to show the t-nonblocking prop- 
erty in Theorem 18. 

Lemma 16. In any admissible run, each processor that 
completes stage 0 without having decided is in at most 
asynchronous round 6. 

Proof Suppose p completes stage 0 without having de- 
cided. Then p obtains the n random bits in some message 
by its 2 K  th step, and broadcasts its coins message. At 
most 4K steps later, p completes stage 0. Since each 
asynchronous round lasts at least K steps, at most 
6 rounds elapse. [] 

The next lemma shows that each stage s_> 1 takes 
only a bounded number of asynchronous rounds. 

Lemma 17. In any admissible run, if each processor that 
completes stage s>_O is in at most asynchronous round 
r when it completes stage s, then each processor that com- 
pletes stage s + 1 is in at most asynchronous round r + 2 
when it completes stage s + 1. 

Proof Let p be any processor that broadcasts a stage 
(s + 1, 1) message. This happens when p completes stage 
s, so all stage (s+ 1, 1) messages are at most round r 
messages. 

Let p be any processor that broadcasts a stage 
(s + 1, 2) message. Processor p cannot finish round r + 1 
until it has received the last of the round r messages, 
including all the stage (s+ 1, 1) messages. Immediately 
after receiving the last of these (if not before), p broad- 
casts its stage (s + 1, 2) message, so all stage (s + 1, 2) mes- 
sages are at most round r + 1 messages. 

No processor p can finish round r + 2  until it has 
received the last of the round r +  1 messages, including 
all the stage (s + 1, 2) messages. Yet by the time p receives 
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all the stage (s+ 1, 2) messages, p has completed stage 
s + l .  []  

Theorem 18. Protocol 1 is t-nonblocking. 

Proof Pick any t-admissible run R. There are two cases. 
Case 1. All nonfaulty processors complete stage 0 in 

R. Since R is t-admissible, at most t processors fail in 
R, and thus every nonfaulty processor completes stage 
s, for all s _> 0. By Lemmas 16 and 17, DECIDE(R, S) implies 
DONE(R, 6 + 2S). Lemma 15 gives the result. 

Case 2. Some nonfaulty processor p does not com- 
plete stage 0 in R. By the code, p is stuck in its request 
stage. (If a processor ever enters its coins stage, then 
by 2 K  steps later it enters its vote stage and after at 
most another 2K steps it completes stage 0.) Thus p 
times out in its request stage after 2K steps, which is 
at most two rounds, and decides 0. Note that p never 
sends a coins message. 

Let q be any nonfaulty processor. If q does not com- 
plete stage 0, then the argument in the previous para- 
graph shows that q decides in at most two rounds. Sup- 
pose q does complete stage 0. Since p never sends a coins 
message, q never receives n coins messages, and thus 
q times out after at most 4 K  steps, which is at most 
four rounds, and decides 0. [] 

3.5 Time complexity 

First we show that the expected number of stages of 
Protocol 1 is less than 4. Then we show that the expected 
number of rounds is constant. Recall that expectation 
of complexity measures is defined at the end of Sub- 
sect. 2.4. 

Lemma 19. Let X be a random variable giving the least 
s such that DECIDE(R, S) is true. Then E(X,  t )<4.  

Proof Fix t-admissible adversary A and initial configura- 
tion I. Let R=run(A ,  I, F), for F in Y .  Let qs 
= Pr [-7 MATCH (R, s)]. Let Y be a random variable giving 
the least s such that MATCH(R, S) is true. By Lemma 11, 
X < Y + I .  

E(X,  t)<<_ 1 + E(Y, t) 

= 1 +  ~ P r [ Y > s ] ,  
s=O 

since Y is nonnegative integer valued 

= 2 + ~, Pr /~ -7 MATCH (R, i 
s = 1 I-i=1 

= 2 + ~  i Pr[-~MATCH(R,i)] , by Lemma 14 

= 2 +  s~1 

~ ( 0 1 ) (  -]~1 ) ~ ( f i  ) = 2 + qi + qi " qi �9 
s=l i i s=n+l \i=n+l / 



98 

We simplify using specific values for qi. For 1 < inn,  
qi= 1/2, and for i>n, qi= 1 - 1/2", by Lemma 13. 

1 1 ~ / 1 \ s - ,  
E(X, t)_<2 + s=IL ~-t-2n's:n+ eL tl--~nn) 

< 2 + 1 + 1 ,  �9 1 - - ~  
s=l 

1 (2"-  1) =3+2. 
<4. [] 

Theorem 20. In any t-admissible run, all nonfaulty proces- 
sors decide in a constant expected number of asynchronous 
rounds. 

Proof Let R = run(A, I, F) for some t-admissible advers- 
ary A, initial configuration I, and F ~ .  There are two 
cases. 

Case 1. All nonfaulty processors complete stage 0 in 
R. As in Case 1 of the proof of Theorem 18, every non- 
faulty processor completes stage s, for all s_>0, and 
DEODE(R,s) implies DONE(R, 6+2S). The expected 
number of stages is four, by Lemma 19. Therefore all 
nonfaulty processors decide in fourteen expected asyn- 
chronous rounds. 

Case 2. Some nonfaulty processor p does not com- 
plete stage 0 in R. The same argument as in Case 2 of 
the proof of Theorem 18 shows that every nonfaulty pro- 
cessor decides after at most four asynchronous 
rounds. [] 

The proof of the previous theorem shows that every 
nonfaulty processor decides the fate of the transaction 
in 14 expected rounds. Recall that expectation is defined 
with respect to the worst possible adversary, that is, the 
worst possible scheduling of processor steps and message 
delays. When the system is well-behaved, our protocol 
has better performance. In particular, if the coordinator 
initiates the protocol, the system is synchronous, and 
there are no late messages or failures, then all the proces- 
sors decide in 5 K steps, using 4 n 2 messages. 

4 Lower bound on number of processors 

The lower bounds proved in the next two sections hold 
even if processors run in lockstep synchrony and possess 
an atomic broadcast capability. In this section, we first 
give relevant details of this stronger model, and then 
show that the number of faults tolerated by our transac- 
tion commit protocol is optimal. 

A processor failure is represented by an explicit fail- 
ure step, denoted (p, L, b). After a failure step for p, p 
is in a distinguished failed state. Thus failures can be 
evidenced in finite runs. (Of course, processors cannot 
detect failures because message delivery is asynchro- 
nous.) A processor is faulty in a run if it takes a failure 
step, otherwise it is nonfaulty. 

Processors take steps in round-robin order, 0 through 
n -  1 ; a schedule of the form (0, M1, f l ) . . .  ( n -  1, Mn, fn) 
is a cycle. To enforce the round-robin behavior, each 
configuration has a turn component,  designating which 
processor's turn it is to take a step. An initial configura- 
tion has turn=O. In order for an event e=(p,  *, b) to 
be applicable to a configuration C, turn(C) must equal 
p, and if p is in the failed state in C, then e must be 
a failure step. After an event is applied, the resulting 
configuration's turn component is incremented by 1 (mo- 
dulo n). 

The notion of a guaranteed message is no longer 
needed, since atomic broadcast is allowed. 

From event e = (p, M, b) applied to configuration C, 
we compute the delay of message m in M (differently 
from before) as the number of the cycle in which the 
message is received minus the number of the cycle in 
which the message is sent. The number of the receiving 
cycle is obtained from C by looking at the clock v compo- 
nent of p's state. The number of the sending cycle is 
obtained from m, which consists of the "sending time" 
integer tagged onto the raw message; the sending time 
is the value of the sender's clock variable when m is 
sent, i.e., the sending cycle number. 

An infinite run R is admissible if the first configura- 
tion is an initial configuration, all messages sent to a 
nonfaulty processor are received, and all received mes- 
sages have delay at least 1. 

In this model, the adversary cannot schedule when 
processors take steps, but can only schedule when a pro- 
cessor fails and select the message delays. 

In this section we show that no protocol, even a 
randomized one, can solve the transaction commit prob- 
lem unless more than half the processors are nonfaulty. 
The intuition behind the proof is similar to that for the 
coordinated attack problem (first posed by Gray [9]; 
also analyzed by Halpern and Moses [10]). We partition 
the processors into two nonempty groups, each of size 
at most t. Given a run that decides 1 (in which all proces- 
sors begin with 1), we work backwards from the end 
of the run to the beginning, delaying messages between 
the two groups and showing that the resulting runs must 
still decide 1. Eventually we get a run in which no mes- 
sages between the groups are received, yet the processors 
decide 1. This situation leads to a contradiction, since 
one group could have started with 0's, in which case 
the decision should be 0. 

The actual construction of the runs is fairly involved, 
and is facilitated by the following definitions and lem- 
mas. 

Let state(p, C) be the state of processor p in configu- 
ration C, and buff(p, C) be the state of p's buffer in C. 
Given a schedule a and a subset S of the processors, 
define a[ S to be the subsequence of a consisting of exact- 
ly those events that are steps for processors in S. Also 
define kill(S, a) to be the schedule obtained from a by 
replacing every event (p , . ,  b) (where �9 can be M or •  
with (p, _L, b) whenever p is in S; similarly, define 
deafen(S, a) to be the schedule obtained from a by replac- 
ing every event (p, . ,  b) (where �9 can be M or •  with 
(p, 0, b) whenever p is in S. 



Lemma 21. Let 6 be a schedule applicable to configuration 
C and z be a schedule applicable to configuration D. Let 
S be a set of processors. I f  state(p, C)=state(p, D) for 
all processors p in S and if ~[ S = z l S, then for any proces- 
sor p in S, state(p, a(C))= state(p, z(O)). 

Proof. Use induction on the length of a IS, and the fact 
that the transition functions are deterministic, given 
states, messages, and random numbers. [] 

Given a partition of the set of processors P into two 
sets S and S', define an intergroup message (relative to 
S and S') to be a message sent from a processor in S 
to a processor in S' or vice versa. 

Lemma 22. Let S and S' be a partition of the set of 
processors, and let C and D be two configurations such 
that turn(C)=turn(D), and for all p in S, state(p, C)= 
state(p, D) and buff(p, C)c_buff (p, D). Let a be a schedule 
applicable to C in which any intergroup message that is 
received by p~S in 6 is in buff(p, C). Then 

(1) the schedule c~ = kill(S', o) is applicable to D; 

(2) if no processor in S' is in a failed state in D, then 
the schedule z = deafen(S', a) is applicable to D. 

Proof. We show part 2; part  1 is similar. We proceed 
by induction on the length I of o-. 

Basis. 1 = 1. Let o-= e and ~ = e'. If  e is an event for 
p in S', then p receives no messages in e'. This event 
is clearly applicable to D since p has not failed in D. 
I fe  is an event for p in S, then since z = a  and buff(p, C)c_ 
buff(p, D), the fact that a is applicable to C implies that 
z is applicable to D. 

Induction. l>  1. Suppose the lemma is true for all 
schedules of length l - 1  or shorter. We show it is true 
for all schedules of length I. Let o-= a'e be a schedule 
of length I. Since a'  has length l - 1 ,  by the inductive 
hypothesis z' =deafen(S', a') is applicable to D. We must 
show that e'= deafen(S', e) is applicable to z'(D)= E. If 
e is an event for p in S', then p receives no messages 
in e'. This event is clearly applicable to E since p has 
not failed in D and no subsequent steps are failure steps. 

Suppose e = (p, M, b) for p in S. Then e' = e. We must 
show that each m in M is in buff(p, E) in order to show 
that e' is applicable to E. Choose m in M and let q 
be the sender. 

If m is in buff(p, C), then m is in p's buffer in every 
configuration from C to a'(C). Since buff (p, C) c_ 
buff(p, D) and no message is removed from a buffer by 
z' that is not removed by a', m is still in buff(p, E). 

Suppose m is not in buff(p, C). Then by assumption 
on a, q is in S. Let a"g be the prefix of o-' such that 
(a"g) (C) is the first configuration in which m appears 
in p's buffer. Thus, q sends m as a result of event g in 
run(C, a'). Since q is in S, z"g is a prefix of z', where 
z"= deafen(S', a"). By the inductive hypothesis, z" is ap- 
plicable to D, so by Lemma21 ,  state(q,a"(C))= 
state(q, "c"(D)). By the inductive hypothesis, since the 
length of a "g  is less than l, g is applicable to z"(D). Since 
q's transition function is deterministic, m is also sent in 
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run(D, z') as a result of event g, and m is in p's buffer 
in E. [] 

The next theorem shows that there can be no non- 
blocking transaction commit  protocol if half or more 
of the processors can fail. 

Theorem 23. There is no t-nonblocking transaction commit 
protocol if n <_ 2 t. 

Proof. Suppose n _< 2 t and there is a t-nonblocking trans- 
action commit  protocol with processors 0 through n -  1. 
Let A = { 0  . . . . .  [ n / 2 J - 1 }  and B = { [ n / 2 J , . . . , n - 1 } .  
Each of A and B has at most  t elements (and at least 
one element, since n > 2). The first [n/2J events of a cycle 
form an A-semicycle (each processor in A takes a step); 
the remaining events of a cycle form a B-semicycle (each 
processor in B takes a step). An infinite schedule appli- 
cable to an initial configuration consists of alternating 
A- and B-semicycles. 

Let I l l  be the initial configuration in which all pro- 
cessors have initial value 1. Since the protocol  is a t- 
nonblocking transaction commit  protocol, given an ad- 
versary that kills no processors and delivers in cycle j + 1 
any message sent in cycle j (so every run is failure-free 
and on-time) there is at least one finite deciding run 
run(Il l  , c~) such that all processors have decided 1 in 
c~(Ill ). Let c~=nl ...ny where each ni is a semicycle. 

Claim. There exist y +  1 finite failure-free schedules 
51 through ey+l such that for each i, (1) e i=n l  . . .hi-1 7i, 
(2) cq is applicable to I 11, (3) all processors have decided 
1 in ~i(111), and (4) no intergroup message is received 
in 7i. 

Proof of Claim. Figures 1 and 2 illustrate the proof. 
We show the claim by descending induction on i. Let 
Ci----(To 1 . . .  7~i) (111)  for i_>0. 

Basis. i = y + 1. Letting c~y+ ~ = c~ (so that 7y + 1 is 
empty) proves the claim. 

Induction. i < y +  1. We assume the claim is true for 
i + 1 and show it for i. 

Assume ni is a B-semicycle, i.e., i is even. (We will 
indicate in parentheses the changes, other than switching 
" A "  and " B ' ,  that are necessary when n~ is an A-semicy- 
cle, i.e., when i is odd.) 

We construct 7~ in two steps; first we construct ill, 
after which all processors in A have decided, and then 
we construct //2, in which all processors in B decide. 
T h e n  ];i will be fll f12" 

Define fll to be deafen(B, niTi+ O. (See Fig. 1.) By 
part  2 of Lemma  22, fla is applicable to Ci-1. Since 

I11 = Co 
I l i -  1 , 

�9 " " [i2 ~ ( 
- A-s.c. 

[31 = dea fen  (B,1~i~i+ I) 

Fig. 1. Construction of fll 

F 

Tt i 

B-s.c. " Ci �9 �9 Cy = at(Z11) 
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//11A = rci ~ 1l A, Lemma 21 applies and each processor 
in A has the same state in / / I (C~_I )=F  as it does in 
(~i 7i+1) (Ci-1), so each decides 1 in F. No intergroup 
message is received in//1 because processors in B receive 
no messages in//1, and processors in A receive no inter- 
group messages in Tc i ~i+ 1 or in//1. 

Now we must give a schedule//2 that causes proces- 
sors in B to decide 1 without hearing from any proces- 
sors in A. (See Fig. 2.) The intuition is that processors 
in B must  be able to decide without hearing from proces- 
sors in A, because it is possible that  all the processors 
in A have died. By the agreement condition, the proces- 
sors in B must decide 1 also. The problem with applying 
this argument  is that there may be leftover messages 
sent by processors in A before the point at which the 
processors in B think they died, and thus processors 
in B could wait to receive these messages before deciding. 
Thus, we must show that processors in A might have 
died even earlier. 

Semicycle zq is part  of cycle number  [//2] = j  in ~i. 
Let D be the configuration in run(Ill, cq) immediately 
preceding the ( j - 1 )  't cycle of cq. If j =  1, then let D =111. 
Let r be the substring of ~ between I l l  and D. Let 
p be the substring of cq between D and C~_ 1. There are 
two possibilities for p. 

�9 If i=2 ,  then D=Il l  and P = ~ I .  Thus, p is an A-semi- 
cycle. 
�9 If i>  2, then D = C~ 4 and p = hi-  3 Tci- 2 7Yi- 1. Thus, 
p consists of all of cycle j -  1 and the first half of cycle 
j, i.e., p is an A-semicycle followed by a B-semicycle fol- 
lowed by another  A-semicycle. 

(If ni is an A-semicycle, i.e., if i is odd, then there 
are the following two possibilities for p. 

�9 I f i = l ,  then D=II1 and p is empty. 
�9 If i >  1, then D = Ci 3 and p = ~ 2 ~i 1- Thus, p con- 
sists of cycle j - 1 ,  i.e., p is an A-semicycle followed by 
a B-semicycle). 

Let p'=kill(A, p). Since no message is sent and re- 
ceived in the same cycle in c~ (and hence in p), any mes- 
sage received in p by a processor p in B from a processor 
in A is sent in run(Ill, z), i.e., prior to cycle j - - l ,  and 
is in buff(p, D). By part  1 of Lemma 22, p' is applicable 
to D. Since Pl B = p ' I B ,  L e m m a 2 1  implies that 
state(p, p'(D))=state(p, Ci_l) for all p in B. 

Consider the schedule//'1 = kill(A,//1). Since the pro- 
cessors in A are failed and the processors in B receive 
no messages, //', is obviously applicable to p'(D). Let 
E=fi'l(p'(D)). Since fi'llB=fillB and state(p,p'(D)) 
=state(p, Ci-1) for all p in B, Lemma 21 implies that 
state(p, E)=state(p, F) for all p in B. 

By the t-nonblocking property,  since IAl<t, there 
must exist a finite deciding run from E with schedule 
5. Suppose the decision value is v. Thus, all processors 
in B decide v in 5 (E). By choice of c~, all messages sent 
in run(Ill, r), i.e., before cycle j - 1 ,  are received by the 
end of cycle j -  1, i.e., by the end of p or earlier. Since 
p'IB=pIB, every processor in B receives in p'  all mes- 
sages sent to it in run(Ill, z), i.e., before cycle j -  1. Thus 
in 5, processors in B receive only messages sent in 

cycle j-1 
f - -  

A-s.c. I - - g  

p' = kilt (A,p) 

,1 

[3~ : kilt (A,131) 

cycle j 

B-s.c. I A-s.c. B-s.c. 
p Ci-1 ~ C i T[ i 

[31 : deaf en (g, rri'[i§ [ A 2i§ i 

F B*/-A 1 

~2= deafen(A,6) 

Fig. 2. Construction of/32 

run(D, P'//'x 5). Since all processors in A are dead in 
P'//'l 5, B receives no intergroup messages in 5. 

Let ~~2=deafen(A, 5). Pick p in B. From above, 
state(p, E)=state(p, F). Let m be any message in buff 
(p, E); m could only have been sent by a processor q 
in B in run(D, P'//'I), i.e., in cycle j - 1  or later. Lemma 21 
implies that q has the same state in corresponding config- 
urations in run(O, p'//'~) and run(D, P//1). Thus q sends 
the same messages in the two runs, and m is also in 
buff(p, F). Now we can apply part  2 of Lemma 22 to 
show that/ /2 is applicable to F. 

Since //2[B=5[B and state(p, F)=state(p, E) for all 
p in B, Lemma 21 implies that each processor p in B 
is in the same state in//2(F) as in 5(E). So each processor 
in B decides v in //2(F); by the agreement condition, 
v =  1, because processors in A have already decided 1 
in F. No intergroup message is received in //2 because 
none is received in 5. 

Let 7i=//1//2- We have shown that cq=~ 1 . . .~i-1 7i 
satisfies properties 1, 2, 3, and 4. End of Claim. 

Note that c~1 is a finite schedule in which no inter- 
group messages are received. Construct schedule cr 
=kill(A, c%). By part  1 of Lemma 22, 0- is applicable to 
111. Since 0-[B=el  [B, Lemma 21 implies that each pro- 
cessor in B has the same state in 0-(111) as it does in 
~1(111), and thus also decides 1 in 0-(111). 

Let 101 be the initial configuration in which all pro- 
cessors in A have initial value 0 and all processors in 
B have initial value 1. By part  1 of Lemma 22, 0- is appli- 
cable to I01. Since each processor in B begins with the 
same state in lol as in 111, by Lemma 21 each has the 
same state in o"(lol ) as it does in 0-(I10, and thus also 
decides 1 in a(Io0.  But this violates the abort  validity 
condition. []  

5 Lower bound on time 

One might imagine a transaction commit  protocol for 
our model such that each processor could decide in a 
constant number  of its own steps, at least in many runs. 
For  instance, in the protocol presented in Sect. 3, at most  
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6K steps are required for a processor to complete stage 
0 - a processor need not wait arbitrarily long for mes- 
sages since the existence of a late message means that 
the processor is allowed to abort. Yet in the subsequent 
stages, no advantage is taken of this flexibility, and pro- 
cessors wait potentially unbounded time for messages. 
Unfortunately, the intuition that it may be possible to 
use the detection of late messages in order to shorten 
the running time (as measured in processor steps) is in- 
correct. In fact, in this section we prove that no protocol 
can guarantee that each processor terminates in a con- 
stant expected number of its own steps, even if processors 
run in lockstep synchrony, and even if only one processor 
can fail. 

In particular, we show that for any constant B and 
any fixed protocol, there is a 1-admissible adversary and 
an initial configuration such that the expected number 
of cycles needed for all nonfaulty processors to decide 
is more than B. The proof is constructed as follows. We 
consider the initial configuration in which all processors 
begin with 1 and the adversary that kills no processors 
and delivers all messages with delay 1. If no run from 
this initial configuration with this adversary is deciding 
by cycle B, we are done. Suppose there is such a B-cycle 
run that is deciding. We find a point in this run that 
has the property there are some very long runs (with 
a different adversary) extending from this point that are 
not deciding. These runs are kept undeciding by delaying 
the delivery of all messages; they are so long that they 
cause the expected value to exceed B, when calculated 
with the appropriate initial configuration and adversary. 

Thus, we must solve two subproblems. First, we must 
find the appropriate point in the run from which the 
long runs branch off (cf. Lemma 24); second, we must 
show that the long runs extending from this point are 
undeciding (cf. Lemma 25). 

We need the following definitions in addition to the 
definitions and Lemmas 21 and 22 from Sect. 4. 

For  the remainder of this section, we fix an arbitrary 
1-nonblocking transaction commit protocol P. From 
now on, " run"  means a 1-admissible run of P, and "con- 
figuration" means a configuration reachable from some 
initial configuration of P by a 1-admissible run of P. 

If p is a processor, then schedule a is p-free if p only 
takes failure steps in a. 

A run is x-slow for some constant x if every message 
received in the run has delay at least x. Given a configu- 
ration C, a schedule a is x-slow relative to C if the run 
obtained by applying a to C is x-slow. 

A seed (for protocol P) is an n-tuple of sequences 
of n-bit strings, such that either each sequence is infinite 
or each sequence has the same number of elements. The 
length of a seed is the length of one sequence. If seed 
F has infinite length, then F is in Y .  There is a finite 
number of seeds of any finite length. 

A run is F-compatible, for seed F, if for all processors 
p and all i not exceeding the length of F, the random 
string that p receives in its i th step of the run is the 
same as the i th element of p's sequence in F. Given config- 
uration C, a schedule a is F-compatible relative to C 
if there is an initial configuration I and a schedule 

applicable to I such that v ( I )=C  and run(l, r~r) is F- 
compatible. 

Let V be a subset of {0, 1}, x an integer, and F a 
seed. Configuration C is (x, F, V)-valent if V is the set 
of decision values of all configurations that are reachable 
from C by an x-slow F-compatible run. 

For  the rest of this section, let I1 be the initial config- 
uration in which all processors have initial value 1. 

The next lemma shows that in any F-compatible run 
that decides 1, there exists a configuration from which 
some F-compatible, x-slow run decides 1, and from 
which some other F-compatible, x-slow run decides 0. 

Lemma 24. I f  run(I1, z) is a finite failure-free on-time 
deciding run that is F-compatible for finite seed F, then 
for any integer x > 0  there exists a configuration in 
run(I1, ~) that is (x, F, {0, 1})-valent. 

Proof Pick such a run run(I1, r) that is F-compatible, 
and fix x. (See Fig. 3; in the figure a v in a box below 
a configuration means that the configuration is 
(x, F, {v})-valent.) By the commit validity condition, 
~(I1)= C has decision value 1. Thus all runs starting at 
C, including x-slow F-compatible runs, have decision 
value 1, and hence C is (x, F, {1})-valent. 

Let Iol be the initial configuration in which some 
processor q has initial value 0 and the rest have initial 
value 1. Since the protocol is 1-nonblocking and satisfies 
the abort validity condition and since F is finite, there 
is a finite q-free x-slow F-compatible run run(Io 1, a) such 
that a(Iol ) has decision value 0, and by the agreement 
condition, ~r(I01 ) is (x, F, {0})-valent. 

By part 1 of Lemma 22, a is also applicable to 11. 
By Lemma 21, all processors except q have the same 
state in a(I i)  as in a(Io0,  and decide 0 in a(I1). Thus 
11 is either (x, F, {0})-valent or (x, F, {0, 1})-valent. If the 
latter is true, we are done, since 11 is the desired configu- 
ration. Suppose the former is true. 

Since F is finite, by the 1-nonblocking property no 
configuration in run(I1, ~) is (x, F, 0)-valent. The valen- 
cies of 11 and C imply that in run(Ii, ~) there must be 
an event e--(p, M, b) and two adjacent configurations 
Co and C1 with Cl=e(Co),  such that Co is either 
(x, F, {0})-valent or (x, F, {0, 1})-valent, and Cx is either 
(x, F, {1})-valent or (x, F, {0, 1})-valent. If either configu- 
ration is (x, F, {0, 1})-valent, we have found the desired 
configuration. Suppose neither is. 

Since the protocol is 1-nonblocking, F is finite, no 

e = (p,M,b) 
11 [o - Ci 
[] [] [] 

[] [] 

[] 

C = T(I I) 

[] 

Fig. 3. Demonstrating the existence of an (x, F, {0, 1})-valent con- 
figuration 
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processor has failed so far, and Co is (x, F, {0})-valent, 
there is a finite p-free x-slow F-compatible run run(Co, ~) 
in which the nonfaulty processors decide 0. Say 
c~= (p, • b') c(. (If F is long enough to extend past Co, 
then b'=b; otherwise, b' could differ from b.) It is easy 
to show that c( is applicable to C 1. Lemma 21 implies 
that all the processors except p have the same state in 
c~'(C~) as they do in e(Co). But since they decide 0 in 
c~(Co), they decide 0 in c((C O. Since ~' is F-compatible 
and x-slow relative to C~, this is a contradiction to the 
hypothesis that Ct is (x, F, {1})-valent. [] 

The next lemma shows that in a certain situation, 
processors must remain undecided as long as no mes- 
sages are received. (For seed F with finite length x, ad- 
versary A, and initial configuration I, let run(A, I, F) be 
the x-cycle run defined by the obvious analogy with the 
infinite length case in Subsect. 2.4.) 

Lemma 25. Choose any nonnegative integers I and x with 
x > I. Let A be the adversary that kills no processors, and 
that for the first l events delivers messages after delay 
1 and subsequently delivers messages after delay x. Let 
F be a seed of length x. I f  the configuration C following 
the l 'h event in run(A, I1, F) is (x, F, {0, 1})-valent, then 
the final configuration in run(A, I1, F) is (x, F, {0, 1})-va- 
lent. 

Proof Let run(A, 11, F)=run(I1, aa), where c~ consists of 
l events and C = e ( I  0 is (x, F, {0, 1})-valent. (See Fig. 4.) 
Assume in contradiction that a(C) is not (x, F, {0, 1})- 
valent. Since F is finite, by the 1-nonblocking property 
a(C) cannot be (x,F, 0)-valent. Assume a(C) is 
(x, F, {v})-valent for some v~{0, 1}. Then there is a con- 
figuration D in run(C, a) and some event e=(p, M, b) 
in a such that D is (x,F, {0, 1})-valent and e(D) is 
(x,F, {w})-valent for some we{0, 1}. M must be the 
empty set, since no messages are received in run(C, a). 
Suppose w = 0. (The argument is analogous if w = 1.) The 
only other event applicable to D that can be part of 
an x-slow F-compatible run is (p, L, b)= e', because all 
messages sent more than x cycles ago have delay 1 and 
have already been received, and because F is long 
enough to extend to e. 

Since D is (x, F, {0, 1})-valent, e'(D) must be either 
(x, F, (0, l})-valent or (x, F, {1})-valent. Thus there is 
some finite p-free x-slow F-compatible run from e'(D) 
that has decision value 1; let z be its schedule. It is easy 
to show that z is applicable to e(D); r is also x-slow 
and F-compatible relative to e(D), and all processors 
except p have the same state in ~(e(D)) as in z(e'(D)) 
(by Lemma 21). Thus all processors except p decide 1 
in z(e(D)), contradicting the valency of e(D). [] 

Given infinite run R, let T(R) be the cycle when the 
last nonfaulty processor decides. 

Theorem 26. For any constant B, there is a 1-admissible 
adversary A and an initial configuration I such that 
E(TA, t)~B. 

Proof Fix B. Let ~ be the set of all runs of the form 
run(A~, I1, F), where F is a seed of length B, and A s 

delay I e = {p, f~,b} 
11 - -- [ D - -  e(O) 

[]or[] [] 

1 
Fig. 4. Demonstrating that a(C) is (x, F, {0 ,l})-valent 

r 
[] 

is the adversary that kills no processors and delivers 
all messages with delay 1. Let [~]=j .  Thus, j is also 
the number of seeds of length B. 

Case t. No run in ~ is deciding. Let A=A1 and 
I=11. Then E(TA, I)>_B. 

Case 2. There is some run R in ~ that is deciding. 
Let ~g be the set of all configurations in run R, and 
let m=[~[.  Let 50 be the collection of all seeds with 
length jmB that extend the seed of R. Y is finite; in 
fact, [5Pl=z/j, where z is the total number of seeds of 
length j m B. 

We will associate each seed in 5 ~ with a configuration 
in ~. For each configuration in cg, we will associate a 
specific adversary. The associations will be made in such 
a way that all runs from a configuration in c~, using 
its particular adversary and any of the associated seeds, 
is undeciding. The desired adversary is the adversary 
for that configuration with the most seeds. The extreme 
length of these undeciding runs will cause the desired 
expected value to exceed B for this adversary. 

For each CeC~, define S(C) to be the set of all F e 5  p 
such that C is the first (jmB, F, {0, l})-valent configura- 
tion in R. By Lemma 24, at least one (]mB, F, {0, 1})- 
valent configuration exists in R; thus, each F e Y  is in 
S(C) for exactly one configuration C. 1 

Fix C to be a configuration in c6 with IS(C)t>_~ 

Such a configuration exists by the pigeonhole principle, 
1 

since Icgl--m. Thus, IS(C)[>_~m.z, where z is the total 

number of seeds of length jmB. 
Let l be the number of events that precede C in run 

R. Let A be the adversary that for the first l events de- 
livers messages after delay 1 and that subsequently de- 
livers messages after delayjmB. By Lemma 25, for every 
F in S(C), the final configuration of run(A, It, F) is 
(~roB, F, {0, 1})-valent. Thus, no processor has decided 
in that final configuration, and T(R')>jmB, for any infi- 
nite run R' that is an extension of run(A, I1, F). 

1 
Let I=I i .  By choice of C, at least __  of the seeds 

jm 
1 

of length jmB are in S(C). Thus, at least __  of all infinite 
jm 

seeds have a prefix in S(C). For any infinite seed F with 
a prefix in S(C), T(run(A, I, F))>jmB, by the argument 
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above. As a result, 

E(T~,;)>-~m'jmB=B. [] 

6 Summary 

In  summary ,  the pr incipal  con t r ibu t ions  of this paper  
are a realistic t iming model,  a method  for analyzing the 
time performance of protocols  in this model,  an  efficient 
faul t - tolerant  protocol  for the t ransac t ion  commit  prob-  
lem, and  lower bounds  showing that  the protocol  has 
opt imal  fault-tolerance,  and  that  no protocol  can guar-  
antee that  each processor terminates  in a b o u n d e d  ex- 
pected n u m b e r  of its own steps, even if processors run  
in lockstep synchrony  and  only one processor can fail. 
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