
Veri�cation ofAutomated Vehicle Protection Systems(extended abstract)H.B. Weinberg � Nancy Lynch y Norman Delisle zAbstract. We apply speci�cation and veri�cation techniques basedon the timed I/O automaton model of Lynch and Vaandrager to a casestudy in the area of automated transit. The case study models and veri�esselected safety properties for automated Personal Rapid Transit (PRT)systems such as PRT 2000TM, a system currently being developed atRaytheon. Due to their safety critical nature, PRT 2000TM and manyother automated transit systems divide the control architecture into oper-ation and protection subsystems. The operation system handles the normalcontrol of vehicles. The protection system maintains safety by monitoringand possibly taking infrequent but decisive action. In this work, we presentboth a high-level treatment of a generic protection system and more de-tailed examinations of protection systems that enforce speed limits andvehicle separation.1 IntroductionThis paper presents a case study in the application of formal methods fromcomputer science to the modeling and veri�cation of hybrid systems. Our group'swork is based on the Lynch-Vaandrager timed I/O automaton model [1] anduses a combination of several representation and veri�cation methods. Thisis the second in a series of case studies undertaken by our group that focuson automated transit systems. An overview of our methods, the series of casestudies, and our group's long term goals appears in this volume [2]. In theprocess of conducting these case studies, we extended the timed I/O automatonmodel to allow the precise description of continuous behavior. We call theseextensions the hybrid I/O automaton model; a complete formal de�nition of thismodel appears in this volume [3].Raytheon engineers are currently working on the design and development of anew PRT system called PRT 2000TM. This system uses 4-passenger vehicles that�hbw@theory.lcs.mit.edu. MIT Laboratory for Computer Science, Cambridge, MA 02139.Research supported an NSF Graduate Fellowship and the grants and contracts below.ylynch@theory.lcs.mit.edu. Research supported by NSF Grant 9225124-CCR, U.S. De-partment of Transportation Contract DTRS95G-0001-YR.8, AFOSR-ONR Contract F49620-94-1-0199, and ARPA Contracts N00014-92-J-4033 and F19628-95-C-0118.zNorman M Delisle@ccmail.ed.ray.com. Raytheon Company, 1001 Boston Post Road,Marlborough, MA 01752.

travel on an elevated guideway with Y-shaped diverges and merges. Passengerson this system board at stations and travel directly to their desired destinationstations without intermediate stops. Compared to conventional transit systems,a PRT system can provide shorter average trip times and shorter average waitingtimes with equivalent passenger throughput. These performance improvementsare achieved because the vehicles are separated on the guideway by only a fewseconds, instead of the minutes typical of a conventional transit system. Thevehicles are controlled by a distributed network of computers, which receive datafrom sensors on the vehicles and in the tracks. An important feature of the de-sign is its absolute safety requirements: for example, vehicles must never collideand they must never exceed designated maximum speed limits, regardless of thebehavior of the control software and hardware. These stringent design crite-ria have led to the complete separation of system functionality into two parallelcomponents: Automated Vehicle Operation (AVO) and Automated Vehicle Pro-tection (AVP). AVO is responsible for the normal control of the vehicles and canbe composed of complex software and hardware. AVP is responsible for emer-gency control of vehicles and is designed to be simple and reliable. In ordinaryoperation, AVP is not supposed to take any action { it merely monitors the be-havior of the vehicles, awaiting some potentially dangerous situation. However,AVP must monitor and react strongly enough to guarantee that, regardless ofthe behavior of AVO, basic safety is maintained. Note that this requirementincludes the possibility that AVO contains errors.The separation of operation and protection functions is a generally recog-nized engineering paradigm for the design of safety critical systems. In thetransportation area, this structure was initially used in the design of railroadsystems. Automatic safety systems were added to human-controlled railroadsystems to protect against human error and mechanical malfunctions. As rail-road and mass transit systems have evolved to become more automated, thisdivision of labor has been retained, in the form of Automatic Train Operationand Automatic Train Protection systems. This paradigm occurs in most existingautomated train systems, including the Washington Metro, the Miami PeopleMover, the O'Hare People Mover, the Detroit People Mover, and systems inToronto, Vancouver, and Jacksonville. The use of this split migrated to auto-mated vehicle systems with the pioneering Morgantown PRT system in the latesixties; this system has been in continuous active use for over 20 years with noserious accidents.Our goal in this paper is to formalize the desired safety properties of anAVP system such as the one being developed by Raytheon. Speci�cally, we haveexamined overspeed protection and collision protection on straight tracks andduring merges. These are by no means the only safety rules that the RaytheonAVP system enforces, but they are among the most complex. In each case, AVPreceives frequent sensor data and takes some actions when parameters are gettingtoo close to \bad values". Too close, in each case, means that it is possible thatit will actually (eventually) reach a bad value if no action is taken at the presenttime. We view the relationship between AVP and the rest of the system as2

adversarial | the AVP system must maintain safety despite Byzantine faultsin the rest of the system. Interesting modeling questions arise in deciding whatpowers the adversary has (it is certainly limited by the basic physics of motion,but what other limits are there?) and what control AVP can exert.In this paper, we present a preliminary treatment of these AVP functionsusing hybrid I/O automata. First, in Section 2, we give an informal problemstatement. Next, in Section 3, we present a high-level model of the adversarialrelationship between physical system and AVP. In Section 4, we derive a generictheorem about the correctness of a class of AVP systems. In the remainingsections, we specialize this general model to two examples of particular AVPfunctions: overspeed protection and safe separation enforcement. The correct-ness of each of the specializations is a corollary of the general correctness theoremof Section 3. The proof methods we employ are predominantly assertional, withoperational reasoning used in certain individual cases within inductive proofs,usually for describing the physics of the system. The inductive structure pro-vides a convenient framework for the proofs, while allowing the use of standardtypes of reasoning about continuous functions where it is convenient. In this ex-tended abstract we state only the �nal results and omit the intermediate lemmasand proofs.2 Informal Problem StatementA protection system is a subsystem that monitors the physical state for hazardsand averts mishaps. The problem can be viewed as a \game" between AVPand an adversary that controls the physical system. The game proceeds byturns | on each turn AVP receives sensor information, takes some action, andthe adversary chooses some evolution for the physical system. The game canbe made more complex by introducing delays and uncertainty into the turnsequence; however, in this paper we will consider only the simple turn sequencethat results from reliable, periodic, and timely communication. AVP cannotrely on the correct functioning of other computer systems, such as the AVOsystem. For this reason, AVO will not even �gure in our models; rather, wewill assume that AVP can be sure only that the system will not exceed itsinherent physical limitations and those speci�cally imposed by AVP itself. Inthe interest of making protection systems robust, designers keep them simple;instead of having complex control abilities, protection systems depend only onthe correct functioning of a few decisive emergency commands. We formalizethis notion of limited, simple emergency controls by de�ning the powers of AVPto be monotonically constraining.By \monotonic", we mean that the action AVP takes is irreversible. A typicalaction available to AVP is to activate an emergency brake; our monotonicityassumption means that, once engaged, the brake cannot be disengaged. Ofcourse, in a real system some method to reverse the action is necessary, buttypically this requires manual intervention and we do not model it in this paper.By \constraining", we mean that AVP commands do not enable some be-3

havior that was previously unavailable, but rather simply limit the possible be-haviors of the system. For example, if a vehicle can exert a certain braking forcein response to a command to brake, then it is reasonable to believe that it canachieve that force without the command. In terms of the game, the adversarycannot gain new abilities as the result of actions taken by AVP | in fact itusually loses them.3 Generic Physical SystemIn this section, we present an abstract model of a generic physical system. Themodel is abstract because it does not specify any particular properties for thephysical system, not even that there are vehicles or tracks. We also de�newhat it means for an AVP subsystem (AVPS) responsible for averting a givenmishap to be correct. This section is organized as follows: we introduce somenotation, present a formal hybrid I/O automaton (HIOA) description of thephysical system, and de�ne correctness for an AVPS.3.1 NotationLet P(S) denote the set of all subsets of an arbitrary set S. Given an automaton,we write s a�! s0 to mean that discrete action a in state s can lead to state s0in the automaton. Similarly, we say \s0 is reachable from s " and write s s0to mean that there exists an execution fragment of the automaton which beginsin s and ends in s0. If R is a predicate on states of an automaton, then we say\s0 is R-reachable from s" and write s R s0 to mean that s0 is reachable froms and R holds on all states in the execution fragment. For any f : A ! B, wede�ne extensions of f mapping P(A) ! B, and overload the symbol f so thatit refers to both functions. If f : A ! B and we write f � b for b 2 B, then fis the constant function whose value is b everywhere. If R is a predicate on thevaluations of some subset Q of the variables of an automaton, then we extendit to states s of the automaton via projection: f(s) if and only if f(sdQ). If s isa state of an automaton and x is a variable of that automaton, then s:x is thevalue of the variable in state s. If f is a function to states of an automaton, thenf:x is the projection of f onto the variable x. When de�ning the trajectory set ofan automaton we use the symbol w to quantify over all the possible trajectoriesand the symbol I for the domain of w. The trajectories of an automaton are allthe w what satisfy the conditions given in the trajectory set de�nition.3.2 Physical System AutomataThe physical system is modeled as three automata: GP (generic plant), sensor,and actuator.The GP Automaton: We do not de�ne GP explicitly but rather give a set ofproperties that it must satisfy. The restrictions onGP are of two types: we spec-ify GP's signature and give an axiom that GP must satisfy. Our speci�cation4

of the signature describes the relationship between GP and other components;the axiom formalizes the notion of constraint.The signature of an HIOA consists of its state variables and actions and apartition of them into three groups: input, output, and internal. GP has exactlyone input variable con (discussed below); it has no internal variables; and it mayhave arbitrary output variables, except that they must include the usual currenttime variable now. GP may have arbitrary input, output, and internal actions.We denote a single state of GP by p. Furthermore, P denotes a set of states; Pdenotes the set of all states. We use pdL to denote the projection of a state ofGP to its local state | in other words, the state minus the con variable.The input variable con models the current constraint set imposed on thephysical system by the protection system's actuators. The powers of the protec-tion system are modeled as a set of constraints, C. The variable con takes valuesover P(C).The GP must also satisfy the following axiom:Constraint Axiom For all p; q 2 P, if pdL = qdL and p:con � q:conthen:1. For all p0 2 P and for all discrete actions a, if p a�! p0 andp:con = p0:con, then there exists q0 2 P such that q a�! q0,p0dL = q0dL and q:con = q0:con.2. For all closed trajectories w : [0; t] ! P, if w(0) = p andw:con � p:con then there exists a trajectory y : [0; t] ! Psuch that y(0) = q, ydL = wdL, and y:con � q:con.The axiom says that if a local state is reachable in one step or trajectory undera certain constraint, then the same local state is reachable under any weakerconstraint. A consequence of this axiom is a similar condition involving multi-step executions instead of just single steps.The sensor and actuator automata: Due to space considerations we donot present these simple automata, but merely describe them informally. Thesensor automaton has all of GP's state variables as inputs. Fix a constant �.At time zero and every � time units thereafter, the sensor outputs this entirestate p through the discrete action snapshot(p).The actuator automaton has input actions constrain(C) for C � C andoutput variable con. The input actions model the sequence of constraints addedby the AVPS; these constraints accumulate in con via set union. This capturesthe \monotonic" part of monotonically constraining, i.e. the set of active con-straints never shrinks. Note that to compose multiple automata with constrainoutput actions, we will require a separate constrain(C)i action for each sourcewhere i varies over some index set of the sources. We omit the subscripts whenconvenient. 5

3.3 De�nition of AVPSWe de�ne an AVPS to be an automaton with no input or output variablesand exactly the following input and output actions: the set of input actions isfsnapshot(p) j p 2 Pg and the set of output actions is fconstrain(C)i j C �C and i 2 Ng where N is a �nite subset of N. The set N allows for an AVPS tobe composed of multiple automata that output the constrain action. An AVPSmay have arbitrary internal variables and internal actions. The composition oftwo compatible AVPSs yields an AVPS. We will usually ignore the subscriptingof the constrain actions and assume that subscripts are assigned in a way thatmakes the AVPSs we wish to compose compatible.We de�ne a notion of correctness for an AVPS. We characterize certain statesas \bad": these are the states that the AVPS is supposed to protect against. Wealso qualify (i.e. weaken) the claim of correctness of an AVPS by saying thatthe AVPS only protects against bad states when GP starts out in a certain setof local states and remains in a certain (possibly di�erent) set of local states.Let A be an AVPS; let bad, S, and R be predicates on the local state of GP;let ALL be the composition of GP, sensor, actuator, and A. We de�ne thatA averts bad in GP starting from S under invariant R, when no execution ofALL that begins in an S state and contains only R states leads to a bad state.If R or S is just \true" then we omit it.This de�nition of correctness leads to two useful theorems about the compo-sition of AVPSs. The �rst addresses independent AVPSs; the second, a one-waydependence among AVPSs.Theorem 3.1 If AVPSs A1 and A2 are compatible, A1 averts bad1 in GP start-ing from S1 under invariant R1, and A2 averts bad2 in GP starting from S2under invariant R2, then A1jjA2 averts bad1_bad2 in GP starting from S1^S2under invariant R1 ^R2.Theorem 3.2 If AVPSs A1 and A2 are compatible, A1 averts bad1 in GP start-ing from S1 under invariant R1, and A2 averts bad2 in GP starting from S2under invariant :bad1^R2, then A1jjA2 averts bad1_bad2 in GP starting fromS1 ^ S2 under invariant R1 ^R2.4 A Generic Protection System: protectorFix predicates bad and R on the local state ofGP. In Figure 1, we give an exam-ple AVPS called protector and below a predicate safe, such that protectoraverts bad in GP starting from safe under the invariant R. The protectorautomaton receives each snapshot and immediately responds with an appropri-ate constraint. The heart of protector is the pair of functions �C and futureand the predicate next-safe. These are de�ned as follows:�C : P! P, where C � C, de�ned by�C(p) = p0 where p0dL = pdL and p0:con = p:con [C.This function mimics the e�ect on GP of a constrain(C) action. We extend itto sets of states as follows: �C(P) = fp0jp 2 P and p0 = �C(p)g6

future : (R�0+1) �P! �, de�ned byfuture(t; p) � fp0j(p R p0 with con constant) ^ (p0:now� p:now � t)gThis function returns the set of states R-reachable from state p in t time withthe con input variable held constant. We extend the function to sets of states asfollows: future(t; P) = Sp2P future(t; p)The de�nition of next-safe requires some auxiliary functions:tick : P! �, de�ned by tick(p) � future(�; p)This function returns the set of states R-reachable from p in � time or less. If p isa state reported in a snapshot action, then this function returns the set of statesR-reachable from state p up to and including the time of the next snapshot. Weextend it to sets of states: tick(P) = Sp2P tick(p)panic : P! �, de�ned by panic(P) � future(1; �C(future(0; P)))This functions returns the set of all states R-reachable from state p if all con-straints are applied before any time passes. Note that the inner use of futureallows some discrete actions to occur before the full constraint set is applied. Weextend panic to sets of states: panic(P) = Sp2P panic(p)Given these auxiliary functions we de�ne the safe predicate which is necessaryboth for the de�nition of next-safe and as the restriction on the initial statesof GP. A safe state is one where if the protection system can act before anymore time passes, it can avoidR-reachable bad states. Because of the ConstraintAxiom, this is equivalent to saying that applying all the constraints before anymore time passes would avoid all R-reachable bad states for the rest of theevolution of the system.safe : P! bool, de�ned by safe(p) � :bad(panic(p))We extend safe to sets of states as follows: safe(P) � Vp2P safe(p)Finally, we de�ne the next-safe predicate. A next-safe state is one where, if theprotection system takes no action for � time, then the system will be safe fromnow up to and including that time. Usually we are examining the states thatare reported in a snapshot action, in which case a next-safe state is one where ifthe protection system takes no action until the time of the next snapshot, thenthe system will be safe from now up to and including that time. Every next-safestate is itself a safe state. A state which is safe but not next-safe is hazardous.next-safe : P! bool, de�ned by next-safe(p) � safe(tick(p))We extend next-safe to sets of states as follows:next-safe(P) � Vp2P next-safe(p)This completes the de�nition of protector.One can imagine a \trivial" AVPS that immediately applies the entire con-straint set. Such a controller would correctly avert bad states if the system startsin a safe state. However, we are interested in less restrictive controllers, i.e. con-trollers that send weaker constraint sets than the complete set when possible.An AVPS may �nd weaker constraint sets by testing whether a candidate set issu�cient to guarantee the safety of the system until the next snapshot. This ideais captured by the next-safe states: our protector AVPS identi�es hazardousstates and imposes any constraint that converts them to next-safe states. An\optimal" version would choose the weakest possible constraint.Due to space considerations we give only the �nal result:7

Figure 1 protector automaton descriptionActions: Input: snapshot(p), where p 2 POutput: constrain(C), where C � CVariables: Internal: send 2 P(C) [f none g, initially noneTransitions:snapshot(p)E�: send := C, where C � Csuch that next-safe(�C(future(0; p))) holds,if any exists; otherwise C = C. constrain(C)Pre: send = CE�: send := noneTrajectories:w:send � noneTheorem 4.1 AVPS protector averts bad in GP starting from safe underinvariant R.5 Example 1: OverspeedIn this section, we present a model of n vehicles on a single in�nite track and anAVPS that stops vehicles from exceeding a speed limit provided that they do notcollide. In an actual system, speed limits may vary from one region to another;in this section, we assume a single global speed limit. The model of the physicalsystem, called vehicles, conforms to the restrictions on the GP automaton ofSection 3. We de�ne an AVPS, called os-prot, which enforces the speed limiton all vehicles. This AVPS is the composition of n separate copies of anotherAVPS called os-prot-solo, one copy for each vehicle. Each os-prot-soloifor 1 � i � n implements the abstract protector automaton of Section 3 andenforces the speed limit for one vehicle.We describe in detail those aspects of the model which were only abstract inSection 3. These include: the bad states; the constraint set C; the unspeci�edvariables, trajectories, and discrete actions ofGP. The constraints model AVP'sability to order a vehicle or set of vehicles to \emergency brake"; the unspeci�edvariables model (among other things) the position, velocity, and acceleration ofeach vehicle; the trajectories model the motion of the vehicles, within physicalconstraints; there are internal discrete actions of the physical system that modelthe possibility that vehicles stop suddenly.To give an implementation of the AVPS, we will introduce closed form redef-initions of the predicates of Section 3. The predicates of Section 3 were de�nedin terms of the possible future states of GP; the analogous predicates in thissection will instead be de�ned in terms of the current state. The proof of cor-rectness relies on the fact that the new versions are conservative approximationsof the abstract versions. 8

5.1 Plant: vehiclesThere are n vehicles modeled in a single automaton called vehicles described inFigure 2. Each vehicle is modeled with three variables, xi, _xi, and �xi, for i where1 � i � n. These are the position, velocity, and acceleration of each vehicle.The acceleration of a vehicle is bounded above and below: �xi 2 [�cmin; �cmax],where �cmin < 0 < �cmax. Furthermore, when braking the vehicles have exactly�xi = �cbrake, where �cmin < �cbrake < 0. The di�erence between the minimumacceleration and the braking acceleration reects a conservative estimate of thee�ectiveness of the vehicles' braking systems. The velocity is also restrictedto be non-negative. The constraint set is C = f1; : : : ; ng. When i 2 con, thismeans that vehicle i is emergency braking. An internal action called brick-wallmodels the instantaneous stopping of a vehicle | as if it hit a brick wall.We must specify the bad states for the overspeed protector: these are thestates in which a vehicle exceeds the maximum velocity _cmax. More formally,the overspeed \bad" predicate is:overspeed : P! bool, de�ned by overspeed(p) � 9i p: _xi > _cmaxThis predicate is the instantiation of the bad predicate from the generic case. Itis extended to sets of states in a similar way to bad; a set of states is overspeedif any element of the set is overspeed.5.2 Protection System: os-prot-soloiWe can build an AVPS for overspeed protection from a single AVPS for eachvehicle. We de�ne the vehicle-wise \bad" predicate overspeed-soloi to be_xi > _cmax. To construct the corresponding single vehicle protection system, wede�ne \safe" and \next-safe" predicates that only test each vehicle separately.Figure 3 shows os-prot-soloi, an example protection system which main-tains :overspeed-soloi. It is a special case of protector of Section 4. For theautomaton de�nition to be complete we must give de�nitions for os-safe-soloiand os-next-safe-soloi which are analogous to safe and next-safe. Theyare extended to sets of states in the same manner as safe and next-safe.os-safe-soloi : P! bool, de�ned by os-safe-soloi(p) � :overspeed-soloi(p)os-next-safe-soloi : P! bool, de�ned by os-next-safe-soloi(p) �(_xi � _cmax � ��cmax)This completes the de�nition of os-prot-soloi. Let os-safe be the con-junction of os-next-safe-soloi for all i. Let os-prot be the compositionof os-prot-soloi for all i.Corollary 5.1 AVPS os-prot-soloi averts overspeed-soloi in vehiclesstarting from os-safe-soloi.This result can be proved by showing that the automata of this section area specialization of those of Section 3 and applying Theorem 4.1.Corollary 5.2 AVPS os-prot averts overspeed in vehicles starting fromos-safe.This result follows from Corollary 5.2 and Theorem 3.1.9

Figure 2 vehicles automaton descriptionActions: Internal: brick-wall(i) for all i 2 f1; : : : ; ngVariables: Output: xi; _xi; �xi 2R for all i 2 f1; : : : ; ngstoppedi, boolean, for all i 2 f1; : : : ; ng, all initially falseInput: con � f1; : : : ; ng, the dynamic-type is constant functionsTransitions:brick-wall(i)E�: stoppedi := true�xi := _xi := 0Trajectories:for all i 2 f1; : : : ; ngthe function w:�xi is integrablefor all t 2 I where t 6= 0w(t):stoppedi = w(0):stoppedi0 � w(t): _xiw(t): _xi = w(0): _xi + R t0 w(s):�xi dsw(t):xi = w(0):xi + R t0 w(s): _xi dsif w(t):stoppedi then w(t):�xi = 0else if i 62 con then w(t):�xi 2 [�cmin; �cmax]else if w(t): _xi = 0 then w(t):�xi = 0else w(t):�xi = �cbrakeFigure 3 os-prot-soloi automaton description (subscript i omitted)Actions: Input: snapshot(p), where p ranges over the states of vehiclesOutput: constrain(C) for C � CVariables: Internal: boolean send 2 P(C) [f none g, initially noneTransitions:snapshot(p)E�: if os-next-safe-solo(p) thensend := ;elsesend := fig constrain(c)Pre: send = cE�: send := noneTrajectories:w:send � none 10

6 Example 2: Safe Separation on a Single TrackThis section is similar to Section 5; instead of an overspeed protection sys-tem, here we model a collision protection system for the same physical system,vehicles. This AVPS can apply the same constraints and receives the samesnapshot information as that section's os-prot. However, the collision protec-tion system relies on the overspeed protection system. As in Section 5 the protec-tor of this section, called cl-prot, is an instantiation of the generic protectorfrom Section 3.The mishap we wish to avoid is that two vehicles collide. Each vehicle occu-pies some distance on the track given by the extent function:extent :R! P(R), de�ned by extent(x) = [x;x+ clen]It takes as an argument the current position of a vehicle and maps it to thesection of track occupied by the vehicle. The positive constant clen captures theminimum allowable separation between vehicles; this includes the length of thevehicle plus any desired extra margin speci�ed by the system designer. Now wede�ne the predicate collide which tests if the extents of two vehicles overlap.collide : P! bool, de�ned by collide(P) �9i 9j (i 6= j) ^ (extent(p:xi) \ extent(p:xj) 6= ;)Due to space considerations we do not present cl-prot, the collision pro-tector. The main ideas are captured in the de�nitions of the cl-safe andcl-next-safe predicates. To de�ne them we �rst introduce some useful nota-tion and �ve auxiliary functions. A con�guration X of a vehicle is a 4-tuple oftype R�R�bool�bool which represent respectively: position, velocity, whetherthe vehicle is stopped and whether the vehicle is braking. If X is a con�gurationthen X:x, X: _x, X:stopped, and X:brake refer respectively to the elements of thecon�guration. If p is a state of vehicles, we use p:Xi to denote the con�gurationof vehicle i.cl-stop-dist(_x) is the distance required to stop a vehicle with speed _x assuming �cbrakedeceleration.cl-fast-dist(X) is the maximum distance a vehicle with con�guration X can travelin � time units, assuming maximum acceleration and correct overspeed protec-tion.cl-fast-vel(X) is the maximum velocity achievable in � time (as in cl-fast-dist).cl-safe-dist(X) is the distance in front of a vehicle that the vehicle \owns"; thatis, the length of the vehicle plus the distance that it might travel even if brakedimmediately. If the ownerships of two vehicles overlap then the state is not safe.cl-next-safe-dist(X) is the distance in front of a vehicle that the vehicle \claims";that is, the length of the vehicles plus the distance that it might travel if leftunbraked for � time units and then braked. If the claims of two vehicles overlapthen the state is not next-safe.Formal de�nitions of these functions and of the cl-safe and cl-next-safepredicates appears in Table 1. A state is safe if there is no ownership overlap;a state is next-safe if there is no claim overlap. The strategy of cl-prot is tobrake the trailing vehicle when two vehicles have a claim overlap.We give only the �nal results: 11

Table 1 Functions used in the de�nition of cl-prot.cl-stop-dist(_x) = � _x22�cbrakecl-fast-dist(X) =8>>>>>><>>>>>>:0 if stopped_xt+ 12 �cbraket2;where t = min(�; � _x�cbrake) if :stopped and brake_xt+ 12 �cmaxt2 + _cmax(� � t);where t = min(�; _cmax� _x�cmax) otherwisecl-fast-vel(X) = 8><>:0 if stoppedmax(0; _x+ �(�cbrake)) if :stopped and brakemin(_cmax; _x+ �(�cmax)) otherwisecl-safe-dist(X) = clen + cl-stop-dist(_x)cl-next-safe-dist(X) = clen+cl-fast-dist(X)+ cl-stop-dist(cl-fast-vel(X))cl-safe(p) � 8i 8j i 6= j implies [xi; xi + cl-safe-dist(Xi)]and [xj; xj + cl-safe-dist(Xj)] are disjointcl-next-safe(p) � 8i 8j i 6= j implies [xi; xi + cl-next-safe-dist(Xi)]and [xj; xj + cl-next-safe-dist(Xj)] are disjointCorollary 6.1 AVPS cl-prot averts collide in vehicles starting fromcl-safe under invariant :overspeed.This follows from Theorem 4.1.Corollary 6.2 The composition of os-prot and cl-prot averts(overspeed_ collide) in vehicles starting from os-safe and cl-safe.This follows from Theorem 3.2 and Corollaries 5.2 and 6.1.7 Conclusions and Future WorkIn this work we have demonstrated how hybrid I/O automaton techniques canbe applied to the speci�cation and veri�cation of a very general automatedtransit problem. The speci�cation technique involves re�nement of an abstractmodel. The proof structure permits extensive reuse of reasoning. Compositional12

properties are exploited to yield a hierarchical decomposition of the protectionsystem that reects the dependencies among critical components.This treatment of protection systems is a preliminary case study. We wouldlike to examine less idealized cases, including cases where the communicationis unreliable and/or delayed and where vehicle sensor information is reportedasynchronously.The formalization presented in this paper has already had an inuence on thePRT system under development at Raytheon. In particular, the formalizationof next-safe exposed important safety criteria that led to practical methodsto handle latencies and uncertainties due to discrete sampling and scheduling ofthe protection system. For example, the formalization of the overspeed protectorrevealed that the maximum speed attainable by a vehicle is strictly greater thanthe minimumspeed which the protection system considers a hazard. This precisecharacterization of the overspeed protector is critical to the safe operation of thesystem, especially because other components of the system such as the collisionprotection system rely on guarantees made by the overspeed protection system.We believe the techniques developed in this paper complement more tradi-tional safety analysis. For example, safety engineers typically perform a fault-tree analysis to identify possible causes of each system hazard and related de-pendencies among system components. In our work, we use composition ofautomata to formalize these dependencies: to yield a speed limited system, wecompose the physical system with a set of overspeed protectors, one for eachvehicle | this formalizes the independence of overspeed protection for separatevehicles; conversely, the collision protection system controls the speed limitedsystem | this formalizes the dependence of collision protection on overspeedprotection. We believe a more comprehensive treatment in this style of all theprotection subsystems would as a by-product yield a signi�cant subtree of thefault-tree.This treatment of transit systems overall is a work in progress. Our goal is todevelop a general theoretical framework for specifying, verifying, and analyzingtransit systems.Acknowledgments: We thank Steve Spielman and Victor Luchangco for help-ful discussions and Ekaterina Dolginov for a careful reading of the manuscript.References[1] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { PartII: Timing-based systems. Technical Memo MIT/LCS/TM-487.c, Laboratory forComputer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,April 1995. To appear in Information and Computation.[2] Nancy Lynch. Modelling and veri�cation of automated transit systems, using timedautomata, invariants and simulations. This volume.[3] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg. Hybrid I/Oautomata. This volume. 13

