Verification of
Automated Vehicle Protection Systems
(extended abstract)

H.B. Weinberg * Nancy Lynch T Norman Delisle ¥

Abstract. We apply specification and verification techniques based
on the timed I/O automaton model of Lynch and Vaandrager to a case
study in the area of automated transit. The case study models and verifies
selected safety properties for automated Personal Rapid Transit (PRT)
systems such as PRT 2000™, a system currently being developed at
Raytheon. Due to their safety critical nature, PRT 2000™ and many
other automated transit systems divide the control architecture into oper-
ation and protectionsubsystems. The operation system handles the normal
control of vehicles. The protection system maintains safety by monitoring
and possibly taking infrequent but decisive action. In this work, we present
both a high-level treatment of a generic protection system and more de-
tailed examinations of protection systems that enforce speed limits and
vehicle separation.

1 Introduction

This paper presents a case study in the application of formal methods from
computer science to the modeling and verification of hybrid systems. Our group’s
work is based on the Lynch-Vaandrager timed I/0O automaton model [1] and
uses a combination of several representation and verification methods. This
is the second in a series of case studies undertaken by our group that focus
on automated transit systems. An overview of our methods, the series of case
studies, and our group’s long term goals appears in this volume [2]. In the
process of conducting these case studies, we extended the timed I/O automaton
model to allow the precise description of continuous behavior. We call these
extensions the hybrid I/0 automaton model; a complete formal definition of this
model appears in this volume [3].

Raytheon engineers are currently working on the design and development of a
new PRT system called PRT 2000™. This system uses 4-passenger vehicles that

*hbw@theory.lcs.mit.edu. MIT Laboratory for Computer Science, Cambridge, MA 02139.
Research supported an NSF Graduate Fellowship and the grants and contracts below.

flynch@theory.lcs.mit.edu. Research supported by NSF Grant 9225124-CCR, U.S. De-
partment of Transportation Contract DTRS95G-0001-YR.8, AFOSR-ONR Contract F49620-
94-1-0199, and ARPA Contracts N00014-92-J-4033 and F19628-95-C-0118.

{Norman M _Delisle@ccmail.ed.ray.com. Raytheon Company, 1001 Boston Post Road,
Marlborough, MA 01752.

travel on an elevated guideway with Y-shaped diverges and merges. Passengers
on this system board at stations and travel directly to their desired destination
stations without intermediate stops. Compared to conventional transit systems,
a PRT system can provide shorter average trip times and shorter average waiting
times with equivalent passenger throughput. These performance improvements
are achieved because the vehicles are separated on the guideway by only a few
seconds, instead of the minutes typical of a conventional transit system. The
vehicles are controlled by a distributed network of computers, which receive data
from sensors on the vehicles and in the tracks. An important feature of the de-
sign is its absolute safety requirements: for example, vehicles must never collide
and they must never exceed designated maximum speed limits, regardless of the
behavior of the control software and hardware. These stringent design crite-
ria have led to the complete separation of system functionality into two parallel
components: Automated Vehicle Operation (AVO) and Automated Vehicle Pro-
tection (AVP). AVO is responsible for the normal control of the vehicles and can
be composed of complex software and hardware. AVP is responsible for emer-
gency control of vehicles and is designed to be simple and reliable. In ordinary
operation, AVP is not supposed to take any action — it merely monitors the be-
havior of the vehicles, awaiting some potentially dangerous situation. However,
AVP must monitor and react strongly enough to guarantee that, regardless of
the behavior of AVO, basic safety is maintained. Note that this requirement
includes the possibility that AVO contains errors.

The separation of operation and protection functions is a generally recog-
nized engineering paradigm for the design of safety critical systems. In the
transportation area, this structure was initially used in the design of railroad
systems. Automatic safety systems were added to human-controlled railroad
systems to protect against human error and mechanical malfunctions. As rail-
road and mass transit systems have evolved to become more automated, this
division of labor has been retained, in the form of Automatic Train Operation
and Automatic Train Protection systems. This paradigm occurs in most existing
automated train systems, including the Washington Metro, the Miami People
Mover, the O’Hare People Mover, the Detroit People Mover, and systems in
Toronto, Vancouver, and Jacksonville. The use of this split migrated to auto-
mated vehicle systems with the pioneering Morgantown PRT system in the late
sixties; this system has been in continuous active use for over 20 years with no
serious accidents.

Our goal in this paper is to formalize the desired safety properties of an
AVP system such as the one being developed by Raytheon. Specifically, we have
examined overspeed protection and collision protection on straight tracks and
during merges. These are by no means the only safety rules that the Raytheon
AVP system enforces, but they are among the most complex. In each case, AVP
receives frequent sensor data and takes some actions when parameters are getting
too close to “bad values”. Too close, in each case, means that it is possible that
it will actually (eventually) reach a bad value if no action is taken at the present
time. We view the relationship between AVP and the rest of the system as

adversarial — the AVP system must maintain safety despite Byzantine faults
in the rest of the system. Interesting modeling questions arise in deciding what
powers the adversary has (it is certainly limited by the basic physics of motion,
but what other limits are there?) and what control AVP can exert.

In this paper, we present a preliminary treatment of these AVP functions
using hybrid I/O automata. First, in Section 2, we give an informal problem
statement. Next, in Section 3, we present a high-level model of the adversarial
relationship between physical system and AVP. In Section 4, we derive a generic
theorem about the correctness of a class of AVP systems. In the remaining
sections, we specialize this general model to two examples of particular AVP
functions: overspeed protection and safe separation enforcement. The correct-
ness of each of the specializations is a corollary of the general correctness theorem
of Section 3. The proof methods we employ are predominantly assertional, with
operational reasoning used in certain individual cases within inductive proofs,
usually for describing the physics of the system. The inductive structure pro-
vides a convenient framework for the proofs, while allowing the use of standard
types of reasoning about continuous functions where it is convenient. In this ex-
tended abstract we state only the final results and omit the intermediate lemmas
and proofs.

2 Informal Problem Statement

A protection system is a subsystem that monitors the physical state for hazards
and averts mishaps. The problem can be viewed as a “game” between AVP
and an adversary that controls the physical system. The game proceeds by
turns — on each turn AVP receives sensor information, takes some action, and
the adversary chooses some evolution for the physical system. The game can
be made more complex by introducing delays and uncertainty into the turn
sequence; however, in this paper we will consider only the simple turn sequence
that results from reliable; periodic, and timely communication. AVP cannot
rely on the correct functioning of other computer systems, such as the AVO
system. For this reason, AVO will not even figure in our models; rather, we
will assume that AVP can be sure only that the system will not exceed its
inherent physical limitations and those specifically imposed by AVP itself. In
the interest of making protection systems robust, designers keep them simple;
instead of having complex control abilities, protection systems depend only on
the correct functioning of a few decisive emergency commands. We formalize
this notion of limited, simple emergency controls by defining the powers of AVP
to be monotonically constraining.

By “monotonic”, we mean that the action AVP takes is irreversible. A typical
action available to AVP is to activate an emergency brake; our monotonicity
assumption means that, once engaged, the brake cannot be disengaged. Of
course, in a real system some method to reverse the action is necessary, but
typically this requires manual intervention and we do not model it in this paper.

By “constraining”, we mean that AVP commands do not enable some be-

havior that was previously unavailable, but rather simply limit the possible be-
haviors of the system. For example, if a vehicle can exert a certain braking force
in response to a command to brake, then it is reasonable to believe that i1t can
achieve that force without the command. In terms of the game, the adversary
cannot gain new abilities as the result of actions taken by AVP — in fact it
usually loses them.

3 Generic Physical System

In this section, we present an abstract model of a generic physical system. The
model 1s abstract because it does not specify any particular properties for the
physical system, not even that there are vehicles or tracks. We also define
what it means for an AVP subsystem (AVPS) responsible for averting a given
mishap to be correct. This section is organized as follows: we introduce some
notation, present a formal hybrid I/O automaton (HIOA) description of the
physical system, and define correctness for an AVPS.

3.1 Notation

Let P(S) denote the set of all subsets of an arbitrary set S. Given an automaton,
we write s = s’ to mean that discrete action « in state s can lead to state s’

” and write s ~= s’

in the automaton. Similarly, we say “s’ is reachable from s
to mean that there exists an execution fragment of the automaton which begins
in s and ends in s’. If R is a predicate on states of an automaton, then we say
“s’ is R-reachable from s” and write s ~»pg s to mean that s’ is reachable from
s and R holds on all states in the execution fragment. For any f: A — B, we
define extensions of f mapping P(A) — B, and overload the symbol f so that
it refers to both functions. If f: A — B and we write f = b for b € B, then f
is the constant function whose value is b everywhere. If R is a predicate on the
valuations of some subset @) of the variables of an automaton, then we extend
it to states s of the automaton via projection: f(s) if and only if f(s[@). If s is
a state of an automaton and x is a variable of that automaton, then s.x is the
value of the variable in state s. If f is a function to states of an automaton, then
f.x 1s the projection of f onto the variable z. When defining the trajectory set of
an automaton we use the symbol w to quantify over all the possible trajectories
and the symbol I for the domain of w. The trajectories of an automaton are all
the w what satisfy the conditions given in the trajectory set definition.

3.2 Physical System Automata

The physical system is modeled as three automata: GP (generic plant), SENSOR,
and ACTUATOR.

The GP Automaton: We do not define GP explicitly but rather give a set of
properties that it must satisfy. The restrictions on GP are of two types: we spec-
ify GP’s signature and give an axiom that GP must satisfy. Our specification

of the signature describes the relationship between GP and other components;
the axiom formalizes the notion of constraint.

The signature of an HIOA consists of its state variables and actions and a
partition of them into three groups: input, output, and internal. GP has exactly
one input variable con (discussed below); it has no internal variables; and it may
have arbitrary output variables, except that they must include the usual current
time variable now. GP may have arbitrary input, output, and internal actions.
We denote a single state of GP by p. Furthermore, P denotes a set of states; P
denotes the set of all states. We use p[L to denote the projection of a state of
GP to its local state — in other words, the state minus the con variable.

The input variable con models the current constraint set 1imposed on the
physical system by the protection system’s actuators. The powers of the protec-
tion system are modeled as a set of constraints, C. The variable con takes values
over P(C).

The GP must also satisfy the following axiom:

Constraint Axiom For all p,q € P, if p[L = q[L and p.con D q.con
then:

1. For all p’ € P and for all discrete actions a, if p—2+p’ and
p.con = p'.con, then there exists ¢’ € P such that ¢ -2 ¢’,
P'[L =¢'[L and q.con = ¢'.con.

2. For all closed trajectories w : [0,7] — P, if w(0) = p and
w.con = p.con then there exists a trajectory y : [0,¢] — P
such that y(0) = ¢, y[L = w[L, and y.con = ¢.con.

The axiom says that if a local state is reachable in one step or trajectory under
a certain constraint, then the same local state is reachable under any weaker
constraint. A consequence of this axiom is a similar condition involving multi-
step executions instead of just single steps.

The sENSOR and ACTUATOR automata: Due to space considerations we do
not present these simple automata, but merely describe them informally. The
SENSOR automaton has all of GP’s state variables as inputs. Fix a constant §.
At time zero and every é time units thereafter, the SENSOR outputs this entire
state p through the discrete action snapshot(p).

The ACTUATOR automaton has input actions constrain(C') for C' C € and
output variable con. The input actions model the sequence of constraints added
by the AVPS; these constraints accumulate in con via set union. This captures
the “monotonic” part of monotonically constraining, i.e. the set of active con-
straints never shrinks. Note that to compose multiple automata with constrain
output actions, we will require a separate constrain(C'); action for each source
where ¢ varies over some index set of the sources. We omit the subscripts when
convenient.

3.3 Definition of AVPS

We define an AVPS to be an automaton with no input or output variables
and exactly the following input and output actions: the set of input actions is
{snapshot(p) | p € P} and the set of output actions is {constrain(C); | C' C
Cand i€ N} where N is a finite subset of N. The set N allows for an AVPS to
be composed of multiple automata that output the constrain action. An AVPS
may have arbitrary internal variables and internal actions. The composition of
two compatible AVPSs yields an AVPS. We will usually ignore the subscripting
of the constrain actions and assume that subscripts are assigned in a way that
makes the AVPSs we wish to compose compatible.

We define a notion of correctness for an AVPS. We characterize certain states
as “bad”: these are the states that the AVPS is supposed to protect against. We
also qualify (i.e. weaken) the claim of correctness of an AVPS by saying that
the AVPS only protects against bad states when GP starts out in a certain set
of local states and remains in a certain (possibly different) set of local states.

Let A be an AVPS; let bad, S, and R be predicates on the local state of GP;
let ALL be the composition of GP, SENSOR, ACTUATOR, and A. We define that
A averts bad in GP starting from S under invariant R, when no execution of
ALL that begins in an S state and contains only R states leads to a bad state.
If R or S isjust “true” then we omit it.

This definition of correctness leads to two useful theorems about the compo-
sition of AVPSs. The first addresses independent AVPSs; the second, a one-way
dependence among AVPSs.

Theorem 3.1 If AVPSs A1 and As are compatible, A1 averts bad; in GP start-
g from S1 under invariant Ry, and As averts bads in GP starting from S
under invariant Rs, then Ay||As averts bady Vbady in GP starting from S; ASs
under invariant R1 N\ Ro.

Theorem 3.2 If AVPSs A1 and As are compatible, A1 averts bad; in GP start-
g from S1 under invariant Ry, and As averts bads in GP starting from S
under invariant —bad; A Ra, then A1||As averts bad; Vbads in GP starting from
S1 A Sy under tnvariant Ry A\ Ro.

4 A Generic Protection System: PROTECTOR

Fix predicates bad and R on the local state of GP. In Figure 1, we give an exam-
ple AVPS called PROTECTOR and below a predicate safe, such that PROTECTOR
averts bad in GP starting from safe under the invariant £. The PROTECTOR
automaton receives each snapshot and immediately responds with an appropri-
ate constraint. The heart of PROTECTOR is the pair of functions C' and future
and the predicate next-safe. These are defined as follows:
C : P — P, where C C C, defined by

C(p) = p’ where p'[L = p[L and p’.con = p.con U C.

This function mimics the effect on GP of a constrain(C) action. We extend it

to sets of states as follows: C(P) = {p'|p € P and p’ = C(p)}

future : (RZ° + c0) x P — TI, defined by
future(t, p) = {p'|(p ~r p’ with con constant) A (p'.now — p.now <)}
This function returns the set of states R-reachable from state p in ¢ time with
the con input variable held constant. We extend the function to sets of states as

follows: future(t, P) = UpeP future(t, p)

The definition of next-safe requires some auxiliary functions:

tick: P — II, defined by tick(p) = future(s, p)
This function returns the set of states R-reachable from pin 6 time or less. If p is
a state reported in a snapshot action, then this function returns the set of states
R-reachable from state p up to and including the time of the next snapshot. We
extend it to sets of states: tick(P) = J,cp tick(p)

panic: P — TI, defined by panic(P) = future(co, C(future(0, P)))
This functions returns the set of all states R-reachable from state p if all con-
straints are applied before any time passes. Note that the inner use of future
allows some discrete actions to occur before the full constraint set is applied. We
extend panic to sets of states: panic(P) = |J,cppanic(p)

Given these auxiliary functions we define the safe predicate which is necessary
both for the definition of next-safe and as the restriction on the initial states
of GP. A safe state is one where if the protection system can act before any
more time passes, it can avoid R-reachable bad states. Because of the Constraint
Axiom, this is equivalent to saying that applying all the constraints before any
more time passes would avoid all R-reachable bad states for the rest of the
evolution of the system.

safe : P — bool, defined by safe(p) = —bad(panic(p))
We extend safe to sets of states as follows: safe(P) = A, psafe(p)

Finally, we define the next-safe predicate. A next-safe state is one where, if the
protection system takes no action for é time, then the system will be safe from
now up to and including that time. Usually we are examining the states that
are reported in a snapshot action, in which case a next-safe state is one where if
the protection system takes no action until the time of the next snapshot, then
the system will be safe from now up to and including that time. Every next-safe
state 1s 1tself a safe state. A state which is safe but not next-safe is hazardous.

next-safe: P — bool, defined by next-safe(p) = safe(tick(p))
We extend next-safe to sets of states as follows:
next-safe(P) = A .pnext-safe(p)

This completes the definition of PROTECTOR.

One can imagine a “trivial” AVPS that immediately applies the entire con-
straint set. Such a controller would correctly avert bad states if the system starts
in a safe state. However, we are interested in less restrictive controllers, i.e. con-
trollers that send weaker constraint sets than the complete set when possible.
An AVPS may find weaker constraint sets by testing whether a candidate set is
sufficient to guarantee the safety of the system wuntil the next snapshot. This idea
is captured by the next-safe states: our PROTECTOR AVPS identifies hazardous
states and imposes any constraint that converts them to next-safe states. An
“optimal” version would choose the weakest possible constraint.

Due to space considerations we give only the final result:

Figure 1 PROTECTOR automaton description

Actions: Input: snapshot (p), where p € P
Output: constrain(C'), where C' C C
Variables: Internal: send € P(C) U{ none }, initially none
Transitions:
snapshot (p) constrain(()
Eff: send := C, where C C C Pre: send = C
such that next-safe(C(future(0,p))) holds, Eff: send := none

if any exists; otherwise C' = C.

Trajectories:
w.send = none

Theorem 4.1 AVPS PROTECTOR averts bad in GP starting from safe under
mvariant K.

5 Example 1: Overspeed

In this section, we present a model of n vehicles on a single infinite track and an
AVPS that stops vehicles from exceeding a speed limit provided that they do not
collide. In an actual system, speed limits may vary from one region to another;
in this section, we assume a single global speed limit. The model of the physical
system, called VEHICLES, conforms to the restrictions on the GP automaton of
Section 3. We define an AVPS, called 0s-PROT, which enforces the speed limit
on all vehicles. This AVPS is the composition of n separate copies of another
AVPS called 0s-PROT-S0LO, one copy for each vehicle. Each 0$-PROT-SOLO;
for 1 < ¢ < n implements the abstract PROTECTOR automaton of Section 3 and
enforces the speed limit for one vehicle.

We describe in detail those aspects of the model which were only abstract in
Section 3. These include: the bad states; the constraint set C'; the unspecified
variables; trajectories, and discrete actions of GP. The constraints model AVP’s
ability to order a vehicle or set of vehicles to “emergency brake”; the unspecified
variables model (among other things) the position, velocity, and acceleration of
each vehicle; the trajectories model the motion of the vehicles, within physical
constraints; there are internal discrete actions of the physical system that model
the possibility that vehicles stop suddenly.

To give an implementation of the AVPS, we will introduce closed form redef-
initions of the predicates of Section 3. The predicates of Section 3 were defined
in terms of the possible future states of GP; the analogous predicates in this
section will instead be defined in terms of the current state. The proof of cor-
rectness relies on the fact that the new versions are conservative approximations
of the abstract versions.

5.1 Plant: VEHICLES

There are n vehicles modeled in a single automaton called VEHICLES described in
Figure 2. Each vehicle is modeled with three variables, z;, ;, and &;, for ¢ where
1 < ¢ < n. These are the position, velocity, and acceleration of each vehicle.
The acceleration of a vehicle is bounded above and below: &; € [émin, Cmaz],
where ¢min < 0 < €mge- Furthermore, when braking the vehicles have exactly
Ti = Chrake, Where Cpin < Cprake < 0. The difference between the minimum
acceleration and the braking acceleration reflects a conservative estimate of the
effectiveness of the vehicles’ braking systems. The velocity is also restricted
to be non-negative. The constraint set is C = {1,... ,n}. When i € con, this
means that vehicle 7 is emergency braking. An internal action called brick-wall
models the instantaneous stopping of a vehicle — as if it hit a brick wall.

We must specify the bad states for the overspeed protector: these are the
states in which a vehicle exceeds the maximum velocity ¢,,4.. More formally,
the overspeed “bad” predicate 1is:
overspeed: P — bool, defined by overspeed(p) = Ji p.&i > Cmaa
This predicate is the instantiation of the bad predicate from the generic case. It
is extended to sets of states in a similar way to bad; a set of states is overspeed
if any element of the set is overspeed.

5.2 Protection System: 0S-PROT-SOLO;

We can build an AVPS for overspeed protection from a single AVPS for each
vehicle. We define the vehicle-wise “bad” predicate overspeed-solo; to be
Z; > Cmagr- Lo construct the corresponding single vehicle protection system, we
define “safe” and “next-safe” predicates that only test each vehicle separately.

Figure 3 shows 0s-PROT-S0LO;, an example protection system which main-
tains moverspeed-solo;. It is a special case of PROTECTOR of Section 4. For the
automaton definition to be complete we must give definitions for os-safe-solo;
and os-next-safe-solo; which are analogous to safe and next-safe. They
are extended to sets of states in the same manner as safe and next-safe.
os-safe-solo; : P — bool, defined by os-safe-solo;(p) = —overspeed-solo;(p)
os-next-safe-solo; : P — bool, defined by os-next-safe-solo;(p) =

(£i < émaz — 0¢max)

This completes the definition of 0s-PROT-s0L0O;. Let os-safe be the con-
junction of os-next-safe-solo; for all . Let 0S-PROT be the composition
of 0s-PROT-s0LO; for all ¢.

Corollary 5.1 AVPS 03-PROT-SOLO; averts overspeed—solo; in VEHICLES
starting from os—-safe-solo;.

This result can be proved by showing that the automata of this section are
a specialization of those of Section 3 and applying Theorem 4.1.

Corollary 5.2 AVPS 0S-PROT averts overspeed in VEHICLES starting from
os—safe.

This result follows from Corollary 5.2 and Theorem 3.1.

Figure 2 VEHICLES automaton description

Actions: Internal: brick-wall(s) for all 1 € {1,...,n}
Variables: Output: Ti, 85,5 ERforall s € {1,... ,n}
stopped;, boolean, for all ¢ € {1,...,n}, all initially false
Input: con C {1,...,n}, the dynamic-type is constant functions
Transitions:

brick-wall(s)
Eff: stopped; := true
l‘Z = l‘Z =0

Trajectories:
forall i € {1,...,n}

the function w.&; is integrable

for all ¢ € I where t #£ 0
w(t).stopped; = w(0).stopped;
0< w(t)xz
w(t).d; = w(0).£; + fot w(s).&; ds
w(t).z; = w(0).z; + fot w(s).&; ds
if w(t).stopped; then w(t).&; =0
else if 1 & con then w(t).Z; € [Emin, max)

else if w(t).4; = 0 then w(t).dé; =0
else w(t).£; = Corake

Figure 3 05-PROT-50LO; automaton description (subscript ¢ omitted)

Actions: Input: snapshot (p), where p ranges over the states of VEHICLES
Output: constrain(C) for C CC
Variables: Internal: boolean send € P(C)U { none }, initially nomne
Transitions:
snapshot (p) constrain(c)
Eff: if os-next-safe-solo(p) then Pre: send = ¢
send := 0 Eff: send := none
else
send = {i}
Trajectories:

w.send = none

10

6 Example 2: Safe Separation on a Single Track

This section is similar to Section 5; instead of an overspeed protection sys-
tem, here we model a collision protection system for the same physical system,
VEHICLES. This AVPS can apply the same constraints and receives the same
snapshot information as that section’s 0s-PROT. However, the collision protec-
tion system relies on the overspeed protection system. Asin Section b the protec-
tor of this section, called CL-PROT, is an instantiation of the generic PROTECTOR
from Section 3.

The mishap we wish to avoid is that two vehicles collide. Each vehicle occu-
pies some distance on the track given by the extent function:

extent : R — P(R), defined by extent(z) = [z, + cien]

It takes as an argument the current position of a vehicle and maps it to the
section of track occupied by the vehicle. The positive constant ¢j.,, captures the
minimum allowable separation between vehicles; this includes the length of the
vehicle plus any desired extra margin specified by the system designer. Now we
define the predicate collide which tests if the extents of two vehicles overlap.

collide: P — bool, defined by collide(P) =
i3y (i # J) A (extent(p.z;) N extent(p.z;) # @)

Due to space considerations we do not present CL-PROT, the collision pro-
tector. The main ideas are captured in the definitions of the cl-safe and
cl-next-safe predicates. To define them we first introduce some useful nota-
tion and five auxiliary functions. A configuration X of a vehicle 1s a 4-tuple of
type R x R x bool x bool which represent respectively: position, velocity, whether
the vehicle is stopped and whether the vehicle is braking. If X is a configuration
then X.z, X.x, X.stopped, and X.brake refer respectively to the elements of the
configuration. If p is a state of VEHICLES, we use p.X; to denote the configuration
of vehicle i.

cl-stop-dist(#) is the distance required to stop a vehicle with speed & assuming éspake
deceleration.

cl-fast-dist(X) is the maximum distance a vehicle with configuration X can travel
in § time units, assuming maximum acceleration and correct overspeed protec-
tion.

cl-fast-vel(X) is the maximum velocity achievable in é time (as in cl-fast-dist).

cl-safe-dist(X) is the distance in front of a vehicle that the vehicle “owns”; that
is, the length of the vehicle plus the distance that it might travel even if braked
immediately. If the ownerships of two vehicles overlap then the state is not safe.

cl-next-safe-dist(X) is the distance in front of a vehicle that the vehicle “claims”;
that is, the length of the vehicles plus the distance that it might travel if left
unbraked for 6 time units and then braked. If the claims of two vehicles overlap
then the state is not next-safe.

Formal definitions of these functions and of the cl-safe and cl-next-safe
predicates appears in Table 1. A state is safe if there 1s no ownership overlap;
a state is next-safe if there is no claim overlap. The strategy of CL-PROT is to
brake the trailing vehicle when two vehicles have a claim overlap.

We give only the final results:

11

Table 1 Functions used in the definition of CL-PROT.

cl-stop-dist(d) = ——
2Cbmke
0 if stopped
ot + %ébmket2,
cl-fast-dist(X) = where ¢ = min(9, cb_mk) if —stopped and brake

CEt + %émamt2 + C.rna.r((S - t),

where ¢ = min(9, %) otherwise
0 if stopped
cl-fast-vel(X) = < max(0, % + 8(Cprake)) if —stopped and brake
min(émaz, & + 0(émar)) otherwise

cl-safe-dist(X) = cjen + cl-stop-dist(z)

cl-next-safe-dist(X) = cien+cl-fast-dist(X)
+ cl-stop-dist(cl-fast-vel(X))

cl-safe(p) = Vi Vj 1 # j implies [¢;, x; + cl-safe-dist(X;)]
and [z, z; + cl-safe-dist(X;)] are disjoint

cl-next-safe(p) = Vi Vj ¢ # jimplies [z;, z; + cl-next-safe-dist(X;)]
and [z, ¢; + cl-next-safe-dist(X;)] are disjoint

Corollary 6.1 AVPS CL-PROT averts collide in VEHICLES starting from
cl-safe under invariant —overspeed.

This follows from Theorem 4.1.

Corollary 6.2 The composition of 0S-PROT and CL-PROT averts
(overspeed V collide) in VEHICLES starting from os-safe and cl-safe.

This follows from Theorem 3.2 and Corollaries 5.2 and 6.1.

7 Conclusions and Future Work

In this work we have demonstrated how hybrid I/O automaton techniques can
be applied to the specification and verification of a very general automated
transit problem. The specification technique involves refinement of an abstract
model. The proof structure permits extensive reuse of reasoning. Compositional

12

properties are exploited to yield a hierarchical decomposition of the protection
system that reflects the dependencies among critical components.

This treatment of protection systems is a preliminary case study. We would
like to examine less idealized cases, including cases where the communication
is unreliable and/or delayed and where vehicle sensor information is reported
asynchronously.

The formalization presented in this paper has already had an influence on the
PRT system under development at Raytheon. In particular, the formalization
of next-safe exposed important safety criteria that led to practical methods
to handle latencies and uncertainties due to discrete sampling and scheduling of
the protection system. For example, the formalization of the overspeed protector
revealed that the maximum speed attainable by a vehicle is strictly greater than
the minimum speed which the protection system considers a hazard. This precise
characterization of the overspeed protector is critical to the safe operation of the
system, especially because other components of the system such as the collision
protection system rely on guarantees made by the overspeed protection system.

We believe the techniques developed in this paper complement more tradi-
tional safety analysis. For example, safety engineers typically perform a fault-
tree analysis to identify possible causes of each system hazard and related de-
pendencies among system components. In our work, we use composition of
automata to formalize these dependencies: to yield a speed limited system, we
compose the physical system with a set of overspeed protectors, one for each
vehicle — this formalizes the independence of overspeed protection for separate
vehicles; conversely, the collision protection system controls the speed limited
system — this formalizes the dependence of collision protection on overspeed
protection. We believe a more comprehensive treatment in this style of all the
protection subsystems would as a by-product yield a significant subtree of the
fault-tree.

This treatment of transit systems overall is a work in progress. Our goal is to
develop a general theoretical framework for specifying, verifying, and analyzing
transit systems.

Acknowledgments: We thank Steve Spielman and Victor Luchangco for help-
ful discussions and Ekaterina Dolginov for a careful reading of the manuscript.

References

[1] Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part
IT: Timing-based systems. Technical Memo MIT/LCS/TM-487.c, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
April 1995. To appear in Information and Computation.

[2] Nancy Lynch. Modelling and verification of automated transit systems, using timed
automata, invariants and simulations. This volume.

[3] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg. Hybrid I/O

automata. This volume.

13

