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Summary and future works
• Our work links computational insights, normative models and neural real-

ization together in decision-making under various forms of uncertainty.
• In the future, we would like to combine the population dynamic approach to

create a comprehensible mechanistic model in a more data-driven manner.

Motivation
• Animals flexibly select actions that maximize future rewards despite facing

uncertainty in sensory inputs, action-outcome associations or contexts.
• The computational and circuit mechanisms underlying the representation,

estimation and computational role of uncertainty are poorly understood.
• Animal experiments indicate that the thalamocortical-basal ganglia loop

represents different forms of uncertainty.
• Normative models excel at providing insights on computational roles of un-

certainty, but they cannot be directly related to neural mechanisms.
• A gap exists between what we know about the neural representation of

uncertainty and the computational functions uncertainty serves in cognition.

A mechanistic neural model

Task

Approximation to normative models
• It is usually difficult to understand a mechanistic model on a computational

level due to its complexity.
• To overcome this, we mathematically approximate our mechanistic model

to a novel normative model and analyze its functions and performance.
Theorem 1. If we choose the sparsity K, initial corticostriatal weight
{V̂ ct/bg

(a) }a∈[A], the learning rate {η(t)}t∈[T ] appropriately, then the regret
of the normative model after T trials in a static A-AFC task is at most
C
√

AT log(AT ) for some constant C.

It has been shown that no algorithm can achieve regret smaller than
Θ(

√
AT ) [9], so our normative model has near-optimal performance.

Theorem 2. After PFC-MD synapses learn the contextual generative model
P (at, rt|c), our PFC-MD circuit approximates to a multiple change points gen-
eralization of CUSUM algorithm, an algorithm that is known to detect single
environmental changes optimally [10].

Our PFC-MD circuit approximates a normative model that can detect
sequential environmental changes optimally.

Experimental results

Our mechanistic model performs efficient exploration in a variety of
static environments compared to Thompson sampling.

Our model learns how to more flexibly switch its behaviors in dynamic
environments compared to other widely used algorithms.


