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Conclusion
• Our work links neural mechanisms, normative models and cog-

nitive (dys)functions together in a single framework.
• Our CogLink network approximates a normative model that de-

tects environmental changes optimally.
• Our SZ model shows idiosyncratic behaviors observed in pa-

tients, including slow switching and elevated win-switch rates.
• Both MD activity and the normative model shows SZ model has

a strong prior on environmental volatility (potentially paranoia).
• PFC-MD connectivity in SZ model cannot learn the proper en-

vironmental model, potentially contributing to delusion.
• By injecting the current in MD, the rescue model not only res-

cues the behaviors but also reinstates proper PFC-MD learning
in environmental models.

Introduction
• Genetic constitutes a significant risk in Schizophrenia (SZ)

[1] and computational modeling has shown deficits in belief-
updating processes as a key aspect of the disorder [2].

• However, the intricate mechanisms bridging these genetic risk
factors and belief updating deficits remain poorly understood.

• Our model, CogLinks, capable of linking mechanisms with nor-
mative behaviors, offers an avenue to study such connections.

• CogLinks model prefrontal cortex (PFC) and mediodorsal tha-
lamus (MD) which not only involve in belief-updating processes
but also show altered functional couplings in patients [3].

• We consider a probability reversal task in which patients show
slow switching upon reversal and elevated win-switch rate
(choosing an alternative action after receiving rewards) [4].

A mechanistic neural model
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PFC-MD connections learn the contextual environmen-
tal model through Hebbian plasticity and infer the con-
text in MD via recurrent dynamics. MD then contex-
tually modulates cortical activity [5] and plasticity
[6] through interneurons, in which VIP neurons amplify
context-relevant cortical connectivity while PV neurons
suppress context-irrelevant information.

Schizophrenia model and rescue model
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We consider a model
with hyperactivation of
striatal D2 receptors
(D2Rs) because most
SZ patients show ele-
vated striatal D2Rs ex-
pression [7]. Since
the abundance of D2Rs
increases the inhibition
from BG to thalamus, we
model SZ by reducing
the excitability of MD
to mimic strong BG in-
hibition. To rescue the
model, we inject a small
current in MD.
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Approximation to normative model
• It is usually difficult to understand a mechanistic model on a

computational level due to its complexity.
• To overcome this, we mathematically approximate our mecha-

nistic model to a novel normative model and analyze its func-
tions and performance.

Theorem 1. After PFC-MD synapses learn the contextual gen-
erative model P (at, rt|c), our PFC-MD circuit approximates to a
multiple change points generalization of CUSUM algorithm, an
algorithm that is known to detect single environmental changes
optimally [10].

Our PFC-MD circuit approximates a normative model that
detects sequential environmental changes optimally.
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• Our SZ model has much lower accuracy with high variance
compared to the normal model.

• It also shows slow switching upon reversal and elevated win-
switch rates, consistent with the behavioral findings in patients.

• Our rescue model rescues the behaviors, consistent with the
MD activation experiment on SZ-related mouse model [8].

MD activity tunes to contexts and
contextually modulates PFC-MD plasticity
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Neural signatures of SZ/rescue models
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We first investigate the MD activity and the normative model:
• The normative model of SZ model has a much lower threshold.
• This shows that SZ model has a strong prior on environmental

volatility and therefore much higher win-switch rates.
Theorem 2. The threshold of the normative theory of the SZ
model is TSZ = 2βd2

1−βd2
|⟨Ipfc/md

1 − Ipfc/md
2 ⟩| ≈ 0.64 ≪ 4 = Tnormal,

much smaller than the threshold of the normal model. Further-
more, the corresponding normative model is a leaky integrator,
further strengthening the prior on environmental volatility.

Both MD activity and the corresponding normative model
show SZ model has a strong prior on environmental
volatility, potentially contributing to paranoia.

We then examine PFC-MD connectivity and plasticity:
• Indeed, compared to the normal model, SZ model struggles to

learn the correct contextual model of the environments.
• The improper learning happens because of the abnormally low

learning rate, potentially due to low MD excitability.
• By injecting the current into MD, the rescue model reinstates

the proper learning of the environmental model.

The PFC-MD connections in SZ model are unable to learn
proper environmental model, potentially contributing to
delusion. By injecting current in MD, the rescue model
recovers the proper learning of contextual model.


