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ABSTRACT

Animal brains evolved to optimize behavior in dynamic environments, flexibly selecting actions that7

maximize future rewards in different contexts. A large body of experimental work indicates that such8

optimization changes the wiring of neural circuits, appropriately mapping environmental input onto9

behavioral outputs. A major unsolved scientific question is how optimal wiring adjustments, which must10

target the connections responsible for rewards, can be accomplished when the relation between sensory11

inputs, action taken, environmental context with rewards is ambiguous. The credit assignment problem12

can be categorized into context-independent structural credit assignment and context-dependent13

continual learning. In this perspective, we survey prior approaches to these two problems and advance14

the notion that the brain’s specialized neural architectures provide efficient solutions. Within this15

framework, the thalamus with its cortical and basal ganglia interactions serves as a systems-level solution16

to credit assignment. Specifically, we propose that thalamocortical interaction is the locus of17

meta-learning where the thalamus provides cortical control functions that parametrize the cortical activity18

association space. By selecting among these control functions, the basal ganglia hierarchically guide19

thalamocortical plasticity across two timescales to enable meta-learning. The faster timescale establishes20
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contextual associations to enable behavioral flexibility while the slower one enables generalization to21

new contexts.22

AUTHOR SUMMARY

Deep learning has shown great promise over the last decades allowing artificial neural networks to solve23

difficult tasks. The key to success is the optimization process by which task errors are translated to24

connectivity patterns. A major unsolved question is how the brain optimally adjusts the wiring of neural25

circuits to minimize task error analogously. In our perspective, we advance the notion that the brain’s26

specialized architecture is part of the solution and spell out a path towards its theoretical, computational27

and experimental testing. Specifically, we propose the interaction between the cortex, thalamus and basal28

ganglia induces plasticity in two timescales to enable flexible behaviors. The faster timescale establishes29

contextual associations to enable behavioral flexibility while the slower one enables generalization to30

new contexts.31

INTRODUCTION

Learning to flexibly choose appropriate actions in uncertain environments is a hallmark of32

intelligence Miller and Cohen (2001); Niv (2009); Thorndike (2017). When animals explore unfamiliar33

environments, they tend to reinforce actions that lead to unexpected rewards. A common notion in34

contemporary neuroscience is that such behavioral reinforcement emerges from changes in synaptic35

connectivity, where synapses that contribute to the unexpected reward are strengthened Abbott and36

Nelson (2000); Bliss and Lomo (1973); Dayan and Abbott (2005); Hebb (2002); Whittington and Bogacz37

(2019). A prominent model for connecting synaptic to behavioral reinforcement is dopaminergic38

innervation of basal ganglia (BG), where dopamine (DA) carries the reward prediction error (RPE)39

signals to guide synaptic learning Bamford, Wightman, and Sulzer (2018); Bayer and Glimcher (2005);40

Montague, Dayan, and Sejnowski (1996); Schultz, Dayan, and Montague (1997). This circuit motif is41

thought to implement a basic form of the reinforcement learning (RL) algorithm Houk, Davis, and Beiser42

(1994); Morris, Nevet, Arkadir, Vaadia, and Bergman (2006); Roesch, Calu, and Schoenbaum (2007);43

Suri and Schultz (1999); R. Sutton and Barto (2018); R. S. Sutton and Barto (1990); Wickens and Kotter44
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(1994), which has had much success in explaining simple Pavlovian and instrumental45

conditioning Ikemoto and Panksepp (1999); Niv (2009); R. Sutton and Barto (2018); R. S. Sutton and46

Barto (1990). However, it is unclear how this circuit can reinforce the appropriate connections in47

complex natural environments where animals need to dynamically map sensory inputs to different action48

in a context-dependent way. If one naively credits all synapses with the RPE signals, the learning will be49

highly inefficient since different cues, contexts and actions contribute to the RPE signals differently. To50

properly credit the cues, context and actions that lead to unexpected reward is a challenging problem,51

known as the credit assignment problem Lillicrap, Santoro, Marris, Akerman, and Hinton (2020);52

Minsky (1961); Rumelhart, Hinton, and Williams (1986); Whittington and Bogacz (2019).53

One can roughly categorize the credit assignment into context-independent structural credit54

assignment and context-dependent continual learning. In structural credit assignment, animals may55

make decisions in a multi-cue environment and should be able to credit those cues that contribute to the56

rewarding outcome. Similarly, if actions are being chosen based on internal decision variables, then the57

underlying activity states must also be reinforced. In such cases, neurons that are selective to external58

cues or internal latent variables need to adjust their downstream connectivity based on its contribution of59

their downstream targets to the RPE. This is a challenging computation to implement because, for60

upstream neurons, the RPE will be dependent on downstream neurons that are several connections away.61

For example, a sensory neuron needs to know the action chosen in the motor cortex to selectively credit62

the sensory synapses that contribute to the action. In continual learning, animals not only need to63

appropriately credit the sensory cues and actions that lead to the reward but also need to credit the64

sensorimotor combination in the right context to retain the behaviors learned from different contexts and65

even to generalize to novel contexts. Therefore, animals can continually learn and generalize across66

different contexts while retaining behaviors in familiar contexts. For example, when one is in the United67

States, one learns to first look left before crossing the street, whereas, in the United Kingdom, one learns68

to look right instead. However, after spending time in the UK, someone from the US should not unlearn69

the behavior of looking left first when they return home because their brain ought to properly assign the70

credit to a different context. Furthermore, once one learns how to cross the street in the US, it is much71

easier to learn how to cross the street in the UK because the brain flexibly generalize behaviors across72

contexts.73

–3–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Thalamocortical contribution to flexible learning in neural systems

Authors: M. B. Wang and M. M. Halassa

In this perspective, we will first go over common approaches from machine learning to tackle these74

two credit assignment problems. In doing so, we highlight the challenge in their efficient implementation75

within biological neural circuits. We also highlight some recent proposals that advance the notion of76

specialized neural hardware that approximate more general solutions for credit assignment Fiete and77

Seung (2006); Ketz, Morkonda, and O’Reilly (2013); Kornfeld et al. (2020); Kusmierz, Isomura, and78

Toyoizumi (2017); Lillicrap, Cownden, Tweed, and Akerman (2016); Liu, Smith, Mihalas, Shea-Brown,79

and Sümbül (2020); O’Reilly (1996); O’Reilly, Russin, Zolfaghar, and Rohrlich (2021); Richards and80

Lillicrap (2019); Roelfsema and Holtmaat (2018); Roelfsema and van Ooyen (2005); Sacramento,81

Ponte Costa, Bengio, and Senn (2018); Schiess, Urbanczik, and Senn (2016); Zenke and Ganguli (2018).82

Along these lines, we propose an efficient systems-level solution involving the thalamus and its83

interaction with the cortex and BG for these two credit assignment problems.84

COMMON MACHINE LEARNING APPROACHES TO CREDIT ASSIGNMENT

One solution to structural credit assignment in machine learning is backpropagation Rumelhart et al.85

(1986). Backpropagation recursively computes the vector-valued error signal for synapses based on their86

contribution to the error signal. There is much empirical success of backpropagation in surpassing human87

performance in supervised learning such as image recognition He, Zhang, Ren, and Sun (2016);88

Krizhevsky, Sutskever, and Hinton (2012) and reinforcement learning such as playing the game of Go89

and Atari Mnih et al. (2015); Schrittwieser et al. (2020); Silver et al. (2016, 2017). Additionally,90

comparing artificial networks trained with backpropagation to neural responses from the ventral visual91

stream of non-human primates shows comparable internal representations Cadieu et al. (2014); Yamins et92

al. (2014). Despite its empirical success in superhuman level performance and matching the internal93

representation of actual brains, backpropagation may not be straightforward to implement in biological94

neural circuits as we explain below.95

In its most basic form, backpropagation requires symmetric connections between neurons (forward

and backward connections). Mathematically, we can write down the backpropagation in Equation 1:

δWi ∝
∂E

∂Wi

= eif(ai−1)
⊤ (1)
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where

ei = W⊤
i+1ei+1 ◦ f ′(ai),

E is the total error, ei is the vector error at layer i, Wi is the synaptic weight connecting layer i− 1 to96

layer i and f is the nonlinearity. Intuitively, this is saying that the change of synaptic weight Wi is97

computed by a Hebbian learning rule between backpropagation error ei and activity from last layer98

f(ai−1) while the backpropagation error is computed by backpropagating the error in the next layer99

through symmetric feedback weights W⊤
i+1. Importantly, in this algorithm, error signals do not alter the100

activity of neurons in the preceding layers and instead operate independently from the feedforward101

activity. However, such arrangement is not observed in the brain; symmetric connections across neurons102

are not a universal feature of circuit organization, and biological neurons may encode both feedforward103

inputs and errors through changes in spike output (changes in activity) Crick (1989); Richards and104

Lillicrap (2019). Therefore, it is hard to imagine how the basic form of backpropagation (symmetry and105

error/activity separation) is physically implemented in the brain.106

Furthermore, while an animal can continually learn to behave across different contexts, artificial neural107

networks trained by backpropagation struggle to learn and remember different tasks in different contexts:108

a problem known as catastrophic forgetting French (1999); Kemker, McClure, Abitino, Hayes, and109

Kanan (2018); Kumaran, Hassabis, and McClelland (2016); McCloskey and Cohen (1989); Parisi,110

Kemker, Part, Kanan, and Wermter (2019). Specifically, this problem occurs when the tasks are trained111

sequentially because the weights optimized for former tasks will be modified to fit the later tasks. One of112

the common solutions is to interleave the tasks from different contexts to jointly optimize performance113

across contexts by using an episodic memory system and replay mechanism Kumaran et al. (2016);114

McClelland, McNaughton, and O’Reilly (1995). This approach has received empirical success in115

artificial neural networks including learning to play many Atari game Mnih et al. (2015); Schrittwieser et116

al. (2020). However, since one needs to store past training data in memory to replay during learning, this117

approach demands a high computational overhead and can be is inefficient as the number of the contexts118

increases. On the other hand, humans and animals acquire diverse sensorimotor skills in different119

contexts throughout their life span: a feat that cannot be solely explained by memory120

replay M. M. Murray, Lewkowicz, Amedi, and Wallace (2016); Parisi et al. (2019); Power and Schlaggar121
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(2017); Zenke, Gerstner, and Ganguli (2017). Therefore, biological neural circuits are likely to employ122

other solutions to continual learning in addition to memory replay.123

Therefore, to solve these two credit assignment problems in the brain, one needs to seek different124

solutions. One of the pitfalls of backpropagation is that it is a general algorithm that works on any125

architecture. However, actual brains are collections of specialized hardware put together in a specialized126

way. It can be conceived that through clever coordination between different cell types and different127

circuits, the brains can solve the credit assignment problem by leveraging its specialized architectures.128

Along this line of ideas, many investigators have proposed cellular Fiete and Seung (2006); Kornfeld et129

al. (2020); Kusmierz et al. (2017); Liu et al. (2020); Richards and Lillicrap (2019); Sacramento et al.130

(2018); Schiess et al. (2016) and circuit level mechanisms Lillicrap et al. (2016); O’Reilly (1996);131

Roelfsema and Holtmaat (2018); Roelfsema and van Ooyen (2005) to assign credit appropriately. In this132

perspective, we would like to advance the notion that the specialized hardware arrangement also happens133

at the system level and propose that the thalamus and its interaction with basal ganglia (BG) and the134

cortex serve as a system-level solution for these three types of credit assignment.135

A PROPOSAL: THALAMOCORTICAL-BASAL GANGLIA INTERACTIONS ENABLE

META-LEARNING TO SOLVE CREDIT ASSIGNMENT.

To motivate the notion of thalamocortical-basal ganglia interactions being a potential solution for credit139

assignment, we will start with a brief introduction. The cortex, thalamus and basal ganglia are the three140

major components of the mammalian forebrain – the part of the brain to which high level cognitive141

capacities are attributed to Alexander, DeLong, and Strick (1986); Badre, Kayser, and D’Esposito (2010);142

Cox and Witten (2019); Makino, Hwang, Hedrick, and Komiyama (2016); Miller (2000); Miller and143

Cohen (2001); Niv (2009); Seo, Lee, and Averbeck (2012); Wolff and Vann (2019). Each of these144

components has its specialized internal architectures; the cortex is dominated by excitatory neurons with145

extensive lateral connectivity profiles Fuster (1997); Rakic (2009); Singer, Sejnowski, and Rakic (2019),146

the thalamus is grossly divided into different nuclei harboring mostly excitatory neurons devoid of lateral147

connections Harris et al. (2019); Jones (1985); Sherman and Guillery (2005), and the basal ganglia are a148

series of inhibitory structures driven by excitatory inputs from the cortex and thalamus Gerfen and Bolam149

(2010); Lanciego, Luquin, and Obeso (2012); Nambu (2011) (Figure 1). A popular view within system150
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Figure 1. Distinct architectures of cortex, thalamus and basal ganglia Cortex is largely composed of excitatory neurons with extensive recurrent connec-

tivity. Thalamus consists of mostly excitatory neurons without lateral connections. Basal ganglia consist of mostly inhibitory neurons driven by cortical and

thalamic inputs, and the corticostriatal plasticity is modulated by dopamine.

136

137

138

neuroscience stipulates that BG and the cortex underwent different learning paradigms where BG is151

involved in reinforcement learning while the cortex is involved in unsupervised learning Doya (1999,152

2000). Specifically, the input structure of the basal ganglia known as the striatum is thought to be where153

reward gated plasticity takes place to implement reinforcement learning Bamford et al. (2018); Cox and154

Witten (2019); Hikosaka, Kim, Yasuda, and Yamamoto (2014); Kornfeld et al. (2020); Niv (2009); Perrin155

and Venance (2019). One such evidence is the high temporal precision of DA activity in the striatum. To156

accurately attribute the action that leads to positive RPE, DA is released into the relevant corticostriatal157

synapses. However, DA needs to disappear quickly to prevent the next stimulus-response combination158

from being reinforced. In the striatum, this elimination process is carried out by dopamine active159

transporter (DAT) to maintain a high temporal resolution of DA activity on a timescale of around160

100ms-1s to support reinforcement learning Cass and Gerhardt (1995); Ciliax et al. (1995); Garris and161

Wightman (1994). In contrast, although the cortex also has dopaminergic innervation, cortical DAT162

expression is low and therefore DA levels may change at a timescale that is too slow to support163
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reinforcement learning Cass and Gerhardt (1995); Garris and Wightman (1994); Lapish, Kroener,164

Durstewitz, Lavin, and Seamans (2007); Seamans and Robbins (2010) but instead support other165

processes related to learning Badre et al. (2010); Miller and Cohen (2001). In fact, ample evidence166

indicates that cortical structures undergo Hebbian-like long term potentiation (LTP) and long term167

depression (LTD) Cooke and Bear (2010); Feldman (2009); Kirkwood, Rioult, and Bear (1996).168

However, despite the unsupervised nature of these processes, cortical representations are task-relevant169

and include appropriate sensorimotor mappings that lead to rewards Allen et al. (2017); Donahue and Lee170

(2015); Enel, Wallis, and Rich (2020); Jacobs and Moghaddam (2020); Petersen (2019); Tsutsui,171

Hosokawa, Yamada, and Iijima (2016). How could this arise from an unsupervised process? One172

possible explanation is that basal ganglia activate the appropriate cortical neurons during behaviors and173

the cortical network collectively consolidates high reward sensorimotor mappings via Hebbian-like174

learning Andalman and Fee (2009); Ashby, Ennis, and Spiering (2007); Hélie, Ell, and Ashby (2015);175

Tesileanu, Olveczky, and Balasubramanian (2017); Warren, Tumer, Charlesworth, and Brainard (2011).176

Previous computational accounts of this process have emphasized a consolidation function for the cortex177

in this process, which naively would beg the question of why duplicate a process that seems to function178

well in the basal ganglia and perhaps include a lot of details of the associated experience?179

The answer to this question is the core of our proposal. We propose that the learning process is not a180

duplication, but instead that the reinforcement process in the basal ganglia selects thalamic control181

functions that subsequently activate cortical associations to allow flexible mappings across different182

contexts (Figure 2).183

To understand this proposition, we need to take a closer look at the involvement of these distinct188

network elements in task learning. Learning in basal ganglia happens in corticostriatal synapses where189

the basic form of reinforcement learning is implemented. Specifically, the coactivation of sensory and190

motor cortical inputs generates eligibility traces in corticostriatal synapses that get captured by the191

presence or absence of DA Fee and Goldberg (2011); Fiete, Fee, and Seung (2007); Kornfeld et al.192

(2020). This RL algorithm is fast at acquiring simple associations but slow at generalization to other193

behaviors. On the other hand, the cortical plasticity operates in a much slower timescale but seems to194

allow flexible behaviors and fast generalization Kim, Johnson, Cilles, and Gold (2011); Mante, Sussillo,195

Shenoy, and Newsome (2013); Miller (2000); Miller and Cohen (2001). How does the cortex exhibit196
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Figure 2. Two views of learning in the cortex A. One possible view is that the Hebbian cortical plasticity consolidates the sensorimotor mapping from

BG to learn a stimulus-action mapping at = f(st). B. We propose that thalamocortical systems perform meta-learning by consolidating the teaching signals

from BG to learn a context-dependent mapping at = fc(st) where the context c is computed by past stimulus history and represented by different thalamic

activities.

184

185

186

187

slow synaptic plasticity and flexible behaviors at the same time? An explanatory framework is197

meta-learning Botvinick et al. (2019); Wang et al. (2018), where the flexibility arises from network198

dynamics and the generalization emerges from slow synaptic plasticity across different contexts. In other199

words, synaptic plasticity stores a higher-order association between contexts and sensorimotor200

associations while the network dynamics switches between different sensorimotor associations based on201

this higher order association. However, properly arbitrating between synaptic plasticity and network202

dynamics to store such higher order association is a nontrivial task Sohn, Meirhaeghe, Rajalingham, and203

Jazayeri (2021). We propose that the thalamocortical system learns these dynamics, where the thalamus204

provides control nodes that parametrize the cortical activity association space. Basal ganglia inputs to the205

thalamus learn to select between these different control nodes directly implementing the interface206

between weight adjustment and dynamical controls. Our proposal rests on the following three specific207

points.208

First, building on a line of the literature that shows diverse thalamocortical interaction in sensory,209

cognitive and motor cortex, we propose that thalamic output may be described as control functions over210

cortical computations. These control functions can be purely in the sensory domain like attentional211
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filtering, in the cognitive domain like manipulating working memory or in the motor domain like212

preparation for movement Bolkan et al. (2017); W. Guo, Clause, Barth-Maron, and Polley (2017);213

Z. V. Guo et al. (2017); Mukherjee et al. (2020); Rikhye, Gilra, and Halassa (2018); Saalmann and214

Kastner (2015); Schmitt et al. (2017); Tanaka (2007); Wimmer et al. (2015); Zhou, Schafer, and215

Desimone (2016). These functions directly relate thalamic activity patterns to different cortical dynamical216

regimes and thus offer a way to establish higher order association between context and sensorimotor217

mapping within the thalamocortical pathways. Second, based on previous studies on direct and indirect218

BG pathways that influence most cortical regions Hunnicutt et al. (2016); Jiang and Kim (2018);219

Nakajima, Schmitt, and Halassa (2019); Peters, Fabre, Steinmetz, Harris, and Carandini (2021), we220

propose that BG hierarchically selects these thalamic control functions to influence activities of the cortex221

toward rewarding behavioral outcomes. Lastly, we propose that thalamocortical structure consolidate the222

selection of BG through a two timescales Hebbian learning process to enable meta-learning. Specifically,223

the faster corticothalamic plasticity learns the higher order association that enables flexible contextual224

switching with different thalamic patterns Marton, Seifikar, Luongo, Lee, and Sohal (2018); Rikhye et al.225

(2018) while the slower cortical plasticity learns the shared representations that allow generalization to226

new behaviors. Below, we will go over the supporting literature that leads us to this proposal.227

MORE GENERAL ROLES OF THALAMOCORTICAL INTERACTION AND BASAL

GANGLIA

Classical literature has emphasized the role of the thalamus in transmitting sensory inputs to the cortex.228

This is because some of the better studied thalamic pathways are those connected to sensors on one end229

and primary cortical areas on another Hubel and Wiesel (1961); Lien and Scanziani (2018); Reinagel,230

Godwin, Sherman, and Koch (1999); Sherman and Spear (1982); Usrey, Alonso, and Reid (2000). From231

that perspective, thalamic neurons being devoid of lateral connection transmit their inputs (e.g. from the232

retina in the case of the lateral geniculate nucleus (LGN)) to the primary sensory cortex (V1 in this same233

example case) and the input transformation (center-surround to oriented edges) occurs within the234

cortex Hoffmann, Stone, and Sherman (1972); Hubel and Wiesel (1962); Lien and Scanziani (2018);235

Usrey et al. (2000). In many cases, these formulations of thalamic “relay” have generalized to how motor236

and cognitive thalamocortical interactions may be operating. However, in contrast to the classical relay237
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view of the thalamus, more recent studies have shown diverse thalamic functions in sensory, cognitive238

and motor processing Bolkan et al. (2017); W. Guo et al. (2017); Z. V. Guo et al. (2017); Rikhye et al.239

(2018); Saalmann and Kastner (2015); Schmitt et al. (2017); Tanaka (2007); Wimmer et al. (2015); Zhou240

et al. (2016). For example in mice, sensory thalamocortical transmission can be adjusted based on241

PFC-dependent, top-down biasing signals transmitted through non-classical basal ganglia pathways242

involving the thalamic reticular nucleus (TRN) Nakajima et al. (2019); Phillips, Kambi, and Saalmann243

(2016); Wimmer et al. (2015). Interestingly, these task-relevant PFC signals themselves require long244

range interactions with the associative mediodorsal (MD) thalamus to be initiated, maintained and245

flexibly switched Rikhye et al. (2018); Schmitt et al. (2017); Wimmer et al. (2015). One can also observe246

nontrivial control functions in the motor thalamus. Motor preparatory activities in the anterior motor247

cortex (ALM) show persistent activities that predicted future actions. Interestingly, the motor thalamus248

also shows similar preparatory activities that predict future actions and by optogenetically manipulate the249

motor thalamus activities, the persistent activities in ALM quickly diminished Z. V. Guo et al. (2017).250

Recently, Mukherjee, Lam, Wimmer, and Halassa (2021) discovers two cell types within MD thalamus251

differentially modulates the cortical evidence accumulation dynamics depending on if the evidences are252

conflicting or sparse to boost signal-to-noise ratio in decision making. Based on the above studies, we253

propose that the thalamus provides a set of control functions to the cortex. Specifically, cortical254

computations may be flexibly switched to different dynamical modes by activating a particular thalamic255

output that corresponds to that mode.256

On the other hand, the selective role of BG in motor and cognitive control also has dominated the257

literature because thalamocortical-basal ganglia interaction is the most well studied in frontal258

systems Cox and Witten (2019); Makino et al. (2016); McNab and Klingberg (2008); Monchi, Petrides,259

Strafella, Worsley, and Doyon (2006); Seo et al. (2012). However, classical and contemporary studies260

have recognized that all cortical areas, including primary sensory areas project to the striatum Hunnicutt261

et al. (2016); Jiang and Kim (2018); Peters et al. (2021). Similarly, the basal ganglia can project to the262

more sensory parts of the thalamus through lesser-studied pathways to influence the sensory263

cortex Hunnicutt et al. (2016); Nakajima et al. (2019); Peters et al. (2021). Specifically, a non-classical264

BG pathway projects to TRN which in turn modulates the activities of LGN to influence sensory265

thalamocortical transmission Nakajima et al. (2019). On the other hand, it has also been argued that BG266
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are involved in gating working memory McNab and Klingberg (2008); Voytek and Knight (2010). This267

shows that BG has a much more general role than classical action and action strategy selection.268

Therefore, combining with our proposals on thalamic control functions, we propose that BG269

hierarchically selects different thalamic control functions to influence all cortical areas in different270

contexts through reinforcement learning.271

Furthermore, there are series of the work that indicates the role of BG to guide plasticity in272

thalamocortical structures Andalman and Fee (2009); Fiete et al. (2007); Hélie et al. (2015); Mehaffey273

and Doupe (2015); Tesileanu et al. (2017). In particular, there is evidence that BG is critical for the initial274

learning and less involved in the automatic behaviors once the behaviors are learned across different275

species. In zebra finches, the lesion of BG in adult zebra finch has little effects on song production, but276

the lesion of BG in juvenile zebra finch prevents the bird from learning the song Fee and Goldberg277

(2011); Scharff and Nottebohm (1991); Sohrabji, Nordeen, and Nordeen (1990). Similar patterns can be278

observed in people with Parkinson’s disease. Parkinson’s patients who have a reduction of DA and279

striatal defects have troubles in solving procedural learning tasks but can produce automatic behaviors280

normally Asmus, Huber, Gasser, and Schöls (2008); Soliveri, Brown, Jahanshahi, Caraceni, and Marsden281

(1997); Thomas-Ollivier et al. (1999). This behavioral evidence suggests that thalamocortical structures282

consolidate the learning from BG as the behaviors become more automatic. Furthermore, on the synaptic283

level, a songbird learning circuit also demonstrates this cortical consolidation motif Mehaffey and Doupe284

(2015); Tesileanu et al. (2017). In a zebra finch, the premotor nucleus HVC (a proper name) projects to285

the motor nucleus robust nucleus of the arcopallium (RA) to produce the song. On the other hand, RA286

also receives BG nucleus Area X mediated inputs from the lateral nucleus of the medial nidopallium287

(LMAN). The latter pathway is believed to be a locus of reinforcement learning in the songbird circuit.288

By burst stimulating both input pathways in different time lags, one can discover that HVC-RA and289

LMAN-RA underwent opposite plasticity Mehaffey and Doupe (2015). This suggests that the learning is290

gradually transferred from LMAN-RA to HVC-RA pathway Fee and Goldberg (2011); Mehaffey and291

Doupe (2015); Tesileanu et al. (2017). This indicates a general role of BG as the trainer for cortical292

plasticity.293
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THE THALAMOCORTICAL STRUCTURE CONSOLIDATES THE BG SELECTIONS ON

THALAMIC CONTROL FUNCTIONS IN DIFFERENT TIMESCALES TO ENABLE

META-LEARNING.

In this section, in addition to BG’s role as the trainer for cortical plasticity, we further propose that BG is294

the trainer in two different timescales for thalamocortical structures to enable meta-learning. The faster295

timescale trainer trains the corticothalamic connections to select the appropriate thalamic control296

functions in different contexts while the slower timescale trainer trains the cortical connections to form a297

task-relevant and generalizable representation.298

From the songbird example, we see how thalamocortical structures can consolidate simple associations299

learned through the basal ganglia. To enable meta-learning, we propose that this general network300

consolidation motif operates over two different timescales within thalamocortical-basal ganglia301

interactions (Figure 3). First, combining the idea of thalamic outputs as control functions over cortical302

network activity patterns and the basal ganglia selecting such functions, we frame learning in basal303

ganglia as a process that connects contextual associations (higher order) with the appropriate dynamical304

control that maximizes reward at the sensorimotor level (lower order). Under this framing,305

corticothalamic plasticity consolidates the higher order association within a fast timescale. This allows306

flexible switching between different thalamic control functions in different contexts. On the other hand,307

the cortical plasticity consolidates the sensorimotor association over a slow timescale to allow shared308

representation that can generalize across different contexts. As the thalamocortical structures learn the309

higher order association, the behaviors become less BG-dependent and the network is able to switch310

between different thalamic control functions to induce different sensorimotor mappings in different311

contexts. By having two learning timescales, animals can conceivably both adapt quickly in changing312

environments with fast learning of corticothalamic connections while maintaining the important313

information across the environment in the cortical connections. One should note that this separation of314

timescales is independent from different timescales across cortex Gao, van den Brink, Pfeffer, and Voytek315

(2020); J. D. Murray et al. (2014). While different timescales across cortex allows animals to process316

information differentially, the separation of corticothalmic and cortical plasticity allows the317

thalamocortcal system to learn the higher contextual association to modulate cortical dynamics flexibly.318

–13–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Thalamocortical contribution to flexible learning in neural systems

Authors: M. B. Wang and M. M. Halassa

Figure 3. Two timescales learning in thalamocortical structures We propose that one can learn the thalamocortical structure to enable meta-learning by

applying the general network motif in two different timescales. First, one can learn the corticothalamic connections by applying the motif on the blue loop with

a faster timescale. This allows the network to consolidate flexible switching behaviors. Second, one can learn the cortical connections by applying the motif

on the orange loop in a slower timescale. This allows cortical neurons to develop a task-relevant shared representation that can generalize across contexts.

319

320

321

322

Some anatomical observations support this idea. The thalamostriatal neurons has a more modulatory323

role to the cortical dynamics in a diffusive projection while thalamocortical neurons has a more driver324

role to the cortical dynamic in a topographically restricted dense projection Sherman and Guillery (2005).325

This indicates that thalamostriatal neurons might serve as the role of control functions in the faster326

consolidation loop with the feedback to striatum to conduct credit assignment. On the other hand,327

thalamocortical neurons might be more involved in the slower consolidation loop with the feedback to328

striatum coming from the cortex to train the common cortical representation across contexts.329

In summary, this two timescales network consolidation scheme provides a general way for BG to guide330

plasticity in the thalamocortical architecture to enable meta-learning and thus solves structural credit331

assignment as a special case. Along these lines, experimental evidence supports the notion that when332

faced with multi-sensory inputs, the BG can selectively disinhibit a modality-specific subnetwork of the333

thalamic reticular nucleus (TRN) to filter out the sensory inputs that are not relevant to the behavior334

outcomes and thus solve the structural credit assignment problem.335
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In the discussion above, we discuss our proposal under a general formulation of thalamic control336

functions. In the next section, we will specify other thalamic control functions suggested by recent337

studies and observe how they can solve continual learning under this framework as well.338

THE THALAMUS SELECTIVELY AMPLIFIES FUNCTIONAL CORTICAL CONNECTIVITY

AS A SOLUTION TO CONTINUAL LEARNING AND CATASTROPHIC FORGETTING.

One of the pitfalls of the artificial neural network is catastrophic forgetting. If one trains an artificial339

neural network on a sequence of tasks, the performance on the older task will quickly deteriorate as the340

network learns the new task French (1999); Kemker et al. (2018); Kumaran et al. (2016); McCloskey and341

Cohen (1989); Parisi et al. (2019). On the other hand, the brain can achieve continual learning, the ability342

to learn different tasks in different contexts without catastrophic forgetting and even generalize the343

performance to novel context Lewkowicz (2014); M. M. Murray et al. (2016); Power and Schlaggar344

(2017); Zenke, Gerstner, and Ganguli (2017). There are three main approaches in machine learning in345

dealing with catastrophic forgetting. First, one can use the regularization method to mostly update the346

weights that are less important to the prior tasks Fernando et al. (2017); Jung, Ju, Jung, and Kim (2018);347

Kirkpatrick et al. (2017); Li and Hoiem (2018); Maltoni and Lomonaco (2019); Zenke, Poole, and348

Ganguli (2017). This idea is inspired by experimental and theoretical studies on how synaptic information349

is selectively protected in the brain Benna and Fusi (2016); Cichon and Gan (2015); Fusi, Drew, and350

Abbott (2005); Hayashi-Takagi et al. (2015); Yang, Pan, and Gan (2009). However, it is unclear how to351

biologically compute the importance of each synapse to prior tasks nor how to do global regularization352

locally. Second, one can also use a dynamic architecture in which the network expands the architecture353

by allocating a subnetwork to train with the new information while preserving old information Cortes,354

Gonzalvo, Kuznetsov, Mohri, and Yang (2017); Draelos et al. (2017); Rusu et al. (2016); Xiao, Zhang,355

Yang, Peng, and Zhang (2014). However, this type of method is not scalable since the number of neurons356

needs to scale linearly with the number of the task. Lastly, one can use a memory buffer to replay past357

tasks to avoid catastrophic forgetting by interleaving the experience of the past tasks with the experience358

of the present task Kemker and Kanan (2018); Kumaran et al. (2016); McClelland et al. (1995); Shin,359

Lee, Kim, and Kim (2017). However, this type of method cannot be the sole solution as the memory360

buffer needs to scale linearly with the number of the tasks and potentially the number of the trials.361
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Figure 4. A thalamocortical architecture with interaction with BG for continual learning During task execution, BG selects thalamic neurons that

amplify the relevant cortical subnetwork. This protects other parts of the network that are important for another context from being overwritten. When the

other task comes, BG selects other thalamic neurons and since the synapses are protected from the last task, animals can freely switch from different tasks

without forgetting the previous tasks. Furthermore, as the corticothalamic synapses learn how to select the right thalamic neurons in a different context (blue

dash line), task execution can become less BG dependent.

362

363

364

365

366

We propose that the thalamus provides another way to solve continual learning and catastrophic367

forgetting via selectively amplifying parts of the cortical connections in different contexts (Figure 4).368

Specifically, we propose that a population of thalamic neurons topographically amplify the connectivity369

of cortical subnetworks as their control functions. During a behavioral task, BG selects subsets of the370

thalamus which selectively amplify the connectivity of cortical subnetworks. Because of the371

reinforcement learning in BG, the subnetwork that is the most relevant to the current task will be more372

preferentially activated and updated. By selecting only the relevant subnetwork to activate in one context,373
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the thalamus protects other subnetworks which can have useful information in another context from being374

overwritten. The corticothalamic structures can then consolidate these BG-guided flexible switching375

behaviors via our proposed network motif and the switching becomes less BG-dependent. Furthermore,376

our proposed solution has implications on generalization as well. Different tasks can have principles in377

common that can be transferred. For example, although the rules of chess and Go are very different,378

players in both games all need to predict what the other players are going to do and counterattack based379

on the prediction. Since BG selects the subnetwork at each hierarchy that is most relevant to the current380

tasks, in addition to selecting different subnetworks to prevent catastrophic forgetting, BG can also select381

subnetworks that are beneficial to both tasks as well to achieve generalization. Therefore, the cortex can382

develop a modular hierarchical representation of the world that can be easily generalized.383

The idea of protecting relevant information from the past tasks to be overwritten has been applied384

before computationally and has decent success in combating catastrophic forgetting in deep learning385

Kirkpatrick et al. (2017). Experimentally, we also have found thalamic neurons selectively amplify the386

cortical connectivity to solve the continual learning problem. In a task where the mice need to switch387

between different sets of task cues that guided the attention to the visual or auditory target, the388

performance of the mice does not deteriorate much after switching to the original context which is an389

indication of continual learning Rikhye et al. (2018). Electrophysiological recording of PFC and390

mediodorsal thalamic nucleus (MD) neurons, we discovered that PFC neurons preferentially code for the391

rule of the attention while MD neurons preferentially code for the contexts of different sets of the cues.392

Thalamic neurons that encode the task-relevant context translate this neural representation into the393

amplification of cortical activity patterns associated with that context (despite the fact that cortical394

neurons themselves only encode the context implicitly). These experimental observations are consistent395

with our proposed solution: by incorporating the thalamic population that can selectively amplify396

connectivity of cortical subnetworks, the thalamus and its interaction with cortex and BG solve the397

continual learning problem and prevent catastrophic forgetting.398

CONCLUSION

In summary, in contrast to the traditional relay view of the thalamus, we propose that thalamocortical399

interaction is the locus of meta-learning where the thalamus provides cortical control functions, such as400
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sensory filtering, working memory gating or motor preparation, that parametrize the cortical activity401

association space. Furthermore, we propose a two timescale learning consolidation framework where BG402

hierarchically selects these thalamic control functions to enable meta-learning, solving the credit403

assignment problem. The faster plasticity learns contextual associations to enable rapid behavioral404

flexibility while the slower plasticity establishes cortical representation that generalizes. By considering405

the recent observation of the thalamus selectively amplifying functional cortical connectivity, the406

thalamocortical-basal ganglia network is able to flexibly learn context-dependent association without407

catastrophic forgetting while generalizing to the new contexts. This modular account of the408

thalamocortical interaction may seem to be in contrast with the recent proposed dynamical perspectives409

Barack and Krakauer (2021) on thalamocortical interaction in which the thalamus shapes and constrains410

the cortical attractor landscapes Shine (2021). We would like to argue that both the modular and411

dynamical perspectives are compatible with our proposal. The crux of the perspectives is that the412

thalamus provides control functions that parametrize cortical dynamics and these control functions can be413

of modular nature or of dynamical nature depending on their specific input-output connectivity. Flexible414

behaviors can be induced either by selecting the control functions that amplify the appropriate cortical415

subnetworks or those that adjust the cortical dynamics to the appropriate regimes.416

417
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