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Introduction
Animals and humans navigate complex spaces—both
physical and conceptual—using internal cognitive
maps, thought to be encoded as neural manifolds [1].
However, how the brain represents and navigates
manifolds with complex geometry remains unclear.

We propose that neural circuits approximate these
manifolds by stitching together piecewise linear
patches, known as simplicial complexes (SCs). A
local feedback control mechanism enables naviga-
tion within a single patch, while a global hierarchi-
cal planning system computes efficient paths be-
tween patches, supporting flexible navigation.

Navigation on simplicial complexes
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An n-simplicial complex (SC) S is a collection
Σ of m-simplexes, where m ≤ n, glued together
in such a way that the intersection of any two
simplexes is also a simplex.

Given a basis Γσ ∈ Rdim(σ)×dim(σ)

for each simplex σ ∈ Σ, the action
dynamics on the SC are described
as: τeẋ =

∑
σ∈Σ 1x∈σ,σ=AΓ

(σ)a1:dim(σ),
where a : Rn×R and A : Σ×R repre-
sent the time-varying actions and the
simplex to act on.

The objective of navigation is to find actions
(A(x, xg), a(x, xg)) such that, for a given goal
xg ∈ S, x converges to xg efficiently.

Learning to represent a simplex attractor
Consider an n-simplex ∆n

with action basis Γ and a
linear input function f(x) =
W e/sx+ be/s.

State neurons ys represent the simplex. It receives
inputs from motor neurons ym and its dynamic is:

τnẏs = −ys +
[
W sys +Wm/sym + bs

]
+
.

We can prove the following theorem:

Let W s = −(bs − b̂e/s)(b̂e/s)† + W e/s(W e/s)†,
Wm/s = τn

τe
W e/sΓ, and a = ym. Here, b̂e/s =

(I −W e/s(W e/s)†)be/s. Then, the dynamics of ys

corresponds to the pushforward of dynamics
of the simplex f(∆n). When ym = 0, ys in par-
ticular forms an attractor of the simplex f(∆n).
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To learn W s, we show that the following learning rule
can exponentially converge to the desired attrac-
tor weight: τwẆ s = −es(ee/s)⊤ + ee/s(ee/s)⊤ − κW s

where es, ee/s is the eligibility trace of ys, f(x).

Navigation on a simplex via control
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Motor neurons ym receive inputs from both state neu-
rons ys and goal neurons yg and their connections
can be learned such that ym = τe(W

e/sΓ)†(yg − ys).
In this case, the dynamics of simplex follow τeẋ =
τe(xg − x), driving x exponentially fast toward xg.

Stitching simplex together to form SC
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• Given the recurrent weights W s
1 ,W

s
2 for two sim-

plexes, if they share neurons with coincident con-
nections, we can form an union weight W s

1∪2.
• If the mutual inhibition between simplexes are

large, then one can stitch them together
• We represent a torus by stitching triangles together.

The persistent topology of the neural data reveals
one connected component (H0), two loops (H1),
and one void (H2), capturing toroidal topology.

Planning to navigate across simplex
For planning, we treat the
simplicial complex as a hy-
pergraph, where each ver-
tex represents a simplex,
and an edge exists if two sim-
plexes share a vertex

High-level logic of the circuit:
• State neurons yS: receive input from SC at-

tractors and indicate the current vertex.
• Goal neurons yG: computes the shortest path

so that yG
i = γdist(i,G) via recurrent dynamics.

• Next-step neurons yN: receive inputs from yG

and parent vertexes in yS and select the closest
neighboring vertex to the goal via WTA.

• Action neurons yA: integrate yN, yS to select
the action leading to the next vertex in yN.
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Dynamics to compute the shortest path
To compute the shortest path, the goal neurons learn
the adjacency matrix of G(S) as its weight WG, re-
ceive one-hot goal inputs IG and evolve as follows:

∀i ∈ G(S), τnẏ
G
i = −yG

i + γmax
{
WG

ijy
G
j , I

G
i

}
It can be proved that the dynamic con-
verges to yG

i = γdist(i,G), analogous
to Dijkstra’s algorithm. However, it is
unclear if a neuron can compute WTA
on synaptic inputs. Therefore, we con-
sider the following approximation where
uij = exp

(
αWG

ijy
G
j

)
, uI

i = exp (αIi):

∀i ∈ G(S), τnẏ
G
i = −yG

i +
γ

α
log

(∑
uij + uI

i + 1
)

Here, uij is dendritic supralinear activation and log(1+
x)/α is somatic nonlinearity. When α is large, the
neuron approximates WTA on synaptic inputs.

Hierarchical graph navigation via BTSP

In large graphs, γdist(i,G) ≈ 0 for distant nodes,
making next-step WTA selection unreliable.
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To combat this, we introduce
behavioral timescale plasticity
(BTSP) [2] to learn hierarchical
graphs and sub-goals, where
W SSi is feedforward weights from
layer i, ui+1 the synaptic input to
layer i + 1, and ei the eligibility
trace of layer i.

τwW
SSi = (2−W SSi) · ui+1e

⊤
i −W SSi · ui+1e

⊤
i

The circuit then functions as follows: the higher-
level goal neurons help select the higher-level next-
step, which serves as an input to lower-level
goal neurons to establish intermediate sub-goals.
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