A General Framework for Analyzing Stochastic Dynamics in Learning Algorithms

Chi-Ning Chou* Mien Brabeeba Wang† Tiancheng Yu‡

June 12, 2020

Abstract

We present a general framework for analyzing high-probability bounds for stochastic dynamics in learning algorithms. Our framework composes standard techniques such as a stopping time, a martingale concentration and a closed-form solution to give a streamlined three-step recipe with a general and flexible principle to implement it. To demonstrate the power and the flexibility of our framework, we apply the framework on three very different learning problems: stochastic gradient descent for strongly convex functions, streaming principal component analysis and linear bandit with stochastic gradient descent updates. We improve the state of the art bounds on all three dynamics.

1 Introduction

Iterative methods are widely used in machine learning and stochastic optimization where they naturally induce stochastic processes of objective functions. For example, when an optimization algorithm uses stochastic gradient descent (SGD) updates, the loss function forms a stochastic process. Therefore, to study the performance of a learning algorithm, it usually suffices to understand the behavior of the corresponding stochastic process.

There have been many successes in providing theoretical guarantees for various learning algorithms. However, as the learning algorithms nowadays become increasingly complicated, it is more and more challenging to perform clean and tight theoretical analysis. Moreover, due to the lack of general principles for analysis, the existing theoretical studies are usually tailored to specific learning dynamics and hence are unlikely to extend to other problems.

Specifically, a main difficulty of the analysis lies in the non-linearity from an iterative method which convolutes the underlying drifting process with the noise from the stochasticity.1 This creates a circular entanglement: the improvement of the drifting term requires bounds for the noise term while the latter also depends on the historical bounds of the former. Therefore, to enable a tight analysis, it is crucial to have good control of the local moment information about the process at each time step to bound the noise. However, previous analysis usually either only looks at the expectation and loses important local information (e.g., [CLSH19, QDC19, YWH19, ZSJ+19]) or directly applies concentration analysis to bound the past process step-by-step which can cause overcomplication (e.g., [AZL17, AZLS19, RR19, ZCZG18]).

We propose an analysis framework with an attempt to address these challenges. In response to the lack of a general principle, the framework provides a streamlined recipe to implement the analysis. Moreover, the

*School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported by NSF awards CCF 1565264 and CNS 1618026. Email: chiningshouchou@harvard.edu.
†MIT CSAIL, Cambridge, Massachusetts, USA. Supported by NSF Awards CCF-1810758, CCF-0939370, CCF-1461559 and Akamai Presidential Fellowship. Email: brabeeba@mit.edu.
‡MIT LIDS, Cambridge, Massachusetts, USA. Supported by NSF BIGDATA grant 1741341. Email: yutc@mit.edu.

1For example, consider $x_t = x_{t-1}^2 + n_t$ where n_t is the noise. Although n_t does not explicitly convolute with x_t, after unfolding the recursion, we observe $x_t = x_{t-2}^4 + 2n_{t-1}x_{t-2}^2 + \cdots$ and $n_{t-1}x_{t-2}^2$ is entangled.
framework is flexible to analyze distinct dynamics as well as to provide rooms to accommodate specialized
techniques. To disassemble the tangled dynamic, the recipe provides a three-step solution. In step one, the
framework uses a closed-form solution from a linearization and a stopping time technique to tightly track the
local moment information of the noise term without dealing with the entanglement from the drifting process.
In step two, the framework disentangles the dynamic in a local interval by simultaneously bounding the noise
and showing the local improvement of the stochastic process. Specifically, we use a martingale concentration
on the stopped noise and summarize the improvement analysis into two easily verifiable conditions. In step
three, the framework uses a flexible interval analysis to connect the local improvement back to the global
improvement. We leave the details in Section 2.

Examples of implementing the framework. To show the power and the flexibility of our framework, we
consider three different learning dynamics with increasing difficulties. We improve the state-of-the-art
bound and match the information-theoretic lower bound for all three problems up to logarithmic factors. In
the following, ϵ and δ stands for the error and the failure probability.

We start with a well-known textbook learning algorithm: stochastic gradient descent (SGD) algorithm for
strongly convex functions. We first give an expository proof that matches the state-of-the-art $O(\epsilon^{-1}(\log \delta^{-1} + \log \log \epsilon^{-1}))$ convergence rate [HK14, RSS12]. To show the flexibility of the framework, we use a more
optimized interval analysis to achieve $O(\epsilon^{-1}(\log \delta^{-1} + \log \log \log \epsilon^{-1}))$ convergence rate. See Section 3 for
details.

Next, we move on to a classic dynamic with a non-convex structure: the streaming principle com-
ponent analysis (PCA) problem. We provide a simple proof for the local convergence setting and get
$O(\epsilon^{-1}(\log \delta^{-1} + \log \log \epsilon^{-1}))$ convergence rate while the previous state-of-the-art analysis [AZL17] gets
$O(\epsilon^{-1}(\log \delta^{-1} + \log^3 \epsilon^{-1}))$. See Section 4 for details.\footnote{There are other standard guarantees such as global convergence, gap-free convergence, exponential convergence etc. [AZL17] obtains \log^3 in their bound in the global gap-free setting. Using their analysis techniques on the local convergence would get \log^3 in the bound.}

Finally, we consider a problem with active dynamic where the updates are adaptive and dependant on the
whole history: solving stochastic linear bandit with SGD update [JBNW17, KPM15]. This problem is not
only useful for designing scalable bandit algorithms but also serves as an important intermediate step towards
analyzing the Q-learning algorithm in linear parameterized Markov decision processes (MDPs) [JAZBJ18,
JYWJ19]. We analyze an algorithm where previous technique cannot analyze and improve the state-of-the-
art regret from $O(n(T \log^2(T) \log(T/\delta))^{1/2})$ in [JBNW17] to $O(n(T \log^2(T) \log(1/\delta))^{1/2})$. See Section 5 for
details.

Related work. We focus on analyzing stochastic processes in learning algorithms which broadly appear in
theoretical machine learning [Moi18, Set09, SB18], optimization theory [BBV04, Haz19, SSBD14], statistical
learning theory [HTF09], etc. There have been many beautiful results providing theoretical analysis on a
wide range of important learning problems, e.g., principal component analysis [AZL17], non-negative matrix
factorization [AGKM16, LS99, Vav10], topic models [AGH+13, AGM12], matrix completion [Har14, JNS13],
tensor decomposition [AGH+14, GHJY15], neural networks [AZLS18, DZPS18, JGH18], etc. However, the
lack of a unifying framework often makes the progress in analyzing frontier learning dynamics slow and
sub-optimal. This paper attempts to propose a general framework for the future studies in new and complex
learning dynamics.

The technical ingredients in the framework are standard, simple, and inspired by both the stochastic
approximation theory [KY97] and a recent analysis for streaming PCA [CW19]. For example, the stopping
time technique or the martingale concentration have been widely applied in many other analysis [AZL17,
RSS12]. We emphasize that it is the composition of these tools that makes our framework powerful and
flexible, and the main contribution of this paper is to propose a general and streamlined recipe that future
analysis of new and complex learning algorithms can easily adopt.
2 General Framework

In the theoretical analysis of a learning algorithm, one usually identifies an objective function to evaluate how well the algorithm performs. When using an iterative method, the dynamic of the objective function can be characterized by a stochastic process. We use \{X_t\} to denote the stochastic process of interest and the goal is to find a function \(T(\epsilon, \delta)\) such that for every \(\epsilon, \delta > 0\), we have

\[
\Pr[X_{T(\epsilon, \delta)} > \epsilon] < \delta.
\]

For example, we would hope to prove \(T(\epsilon, \delta) = \tilde{O}(\epsilon^{-1} \log \delta^{-1})\) for SGD and PCA.

Prologue: Continuous analysis. It is not often obvious on how to analyze a discrete stochastic process directly. A general principle inspired by stochastic approximation theory [KY97] is to first understand the behaviors of the continuous analog, which is the limiting process by taking the learning rate to 0. The guidance from the continuous dynamic can usually be very insightful and point to a good way to analyze the discrete stochastic process. See Appendix B for more discussion.

2.1 Step 1: Linearization and moment analysis

Guided by the continuous analysis, we investigate the local behavior of \(\{X_t\}\) by approximating it with a well-studied dynamic. Specifically, in this paper we focus on linearizing \(\{X_t\}\) as follows.

\[
X_t \leq H_t \cdot X_{t-1} + N_t, \quad \forall t \in \mathbb{N}
\]

where \(H_t > 0\) is a multiplicative factor and \(N_t\) is a minor term depending on both \(X_{t-1}\) and the stochasticity at the \(t^{th}\) step. Next, by unfolding the recursion\(^3\), we have

\[
X_t \leq D_t \cdot (X_{T_0} + M_t) , \quad \forall 0 \leq T_0 < t \in \mathbb{N}
\]

(2.1)

where \(D_t = \prod_{t'=T_0+1}^{t} H_{t'}\) is the drifting factor and \(M_t = \sum_{t'=T_0+1}^{t} D_{t'}^{-1} \cdot N_{t'}\). Note that \(\{M_t\}\) is adaptive: it does not depend on the future. Intuitively, \(D_t \cdot X_{T_0}\) is the drifting term that dominates the dynamic and \(D_1 \cdot M_1\) is the minor term coming from the linearization and discretization.

Observe that if \(M_t\) is small compared to \(X_{T_0}\), then the drifting term will govern the dynamic. To achieve tighter analysis, we use a stopping time technique to keep track of the local information on where \(\{X_t\}\) is. Hence, using the moment information of the stopped process of \(\{M_t\}\), we are able to apply martingale concentration inequality and show that the (stopped) minor term is dominated by the drifting term. We call the collection of such moment bounds a moment profile for \(\{X_t\}\).

Definition 2.2 (Moment profile). Let \(\{X_t\}\) be a stochastic process described in Equation 2.1 for some \(\{M_t\}\). Let \(\Lambda > 0\), \(\tau\) be the stopping time for the event \(\{X_t \geq \Lambda\}\), \(\{M_{t \wedge \tau}\}\) be the stopped process of \(\{M_t\}\), and let \(\{\mathcal{F}_t\}\) be a filtration of \(\{X_t\}\).\(^6\) The functions \((B, \mu, \sigma^2)\) form a moment profile for \(\{X_t\}\) and \(\Lambda\) if the following hold for every \(t \geq 1\).

- *(Bounded difference)* \(|M_{t \wedge \tau} - M_{(t-1) \wedge \tau}| \leq B(t, \Lambda)\) almost surely.
- *(Conditional expectation)* \(\mathbb{E}[M_{t \wedge \tau} - M_{(t-1) \wedge \tau} | \mathcal{F}_{t-1}] \leq \mu(t, \Lambda)\).
- *(Conditional variance)* \(\text{Var}[M_{t \wedge \tau} - M_{(t-1) \wedge \tau} | \mathcal{F}_{t-1}] \leq \sigma^2(t, \Lambda)\).

If we started from \(T_0 \in \mathbb{N}\) instead, then the moment profile is denoted as \((B_{T_0}, \mu_{T_0}, \sigma^2_{T_0})\).

\(^3\)See Definition A.8 for other common notions of high-probability convergence this framework can achieve.

\(^4\)Another way to present convergence result is to find a function \(\epsilon(T, \delta)\) such that \(\Pr[X_T > \epsilon(T, \delta)] < \delta\) for all \(T \in \mathbb{N}\) and \(\delta > 0\). For example, we would hope to prove \(\epsilon(T, \delta) = \tilde{O}((T \log \delta^{-1})^{1/2})\) for the linear bandit problem. For simplicity, in Section 2 we focus on the guarantee of finding \(T(\epsilon, \delta)\).

\(^5\)This is also known as the ODE trick in [CW19].

\(^6\)See Appendix A for background in martingale and stopping time.
Treating \(\Lambda \) as a free parameter *isolates* the moment calculation from the potentially complicated global dynamic. Also, the choice of stopping time \(\tau \) could be more general and provides additional room for specialized techniques. See Appendix A for backgrounds in the related math tools. Finally, note that the moment profile is for the stopped process of the minor term. In step two, we will *pull-out* the stopping time to recover the concentration on the original minor term.

User manual. It is convenient to think of the stopped martingale difference \(M_{t \wedge \tau} - M_{(t-1) \wedge \tau} \) simply as \(1_{\{X_{t-1} < \Lambda\}} \cdot (M_t - M_{t-1}) \). Namely, to calculate the moment profile, one express the three moment quantities of \(M_t - M_{t-1} \) as a function of \(\Lambda \) conditioning on the event \(\{X_{t-1} < \Lambda\}\).

2.2 Step 2: Improvement analysis

In this step, given \(A_0, A_1 > 0 \), the goal is to find \(T_1 \in \mathbb{N} \) as small as possible such that given \(X_0 \leq A_0 \), we have \(X_{T_1} \leq A_1 \) with high probability.\(^7\) We call this an improvement analysis. To show the improvement of \(\{X_t\} \), according to Equation 2.1 it suffices to show that the minor term \(M_t \) is small. However, directly invoking martingale concentration inequality with a moment profile only ensures the *stopped process* of the minor term being small. Nevertheless, we can extend to the original minor term if the parameters satisfied certain *pull-out conditions* [CW19]. Meanwhile, we also need to make sure the improvement from drifting term \(D_t \) is as expected. The following proposition crystallizes these intuitions into inequalities that can be easily verified.

Proposition 2.3 (*Improvement analysis*). Let \(\{X_t\} \) be a stochastic process described in Equation 2.1 for some \(\{D_t\} \) and \(\{M_t\} \). Let \(\Lambda > 0 \), \(\tau \) be the stopping time for the event \(\{X_t > \Lambda\} \), and \((B, \mu, \sigma^2)\) be a moment profile for \(\{X_t\} \) and \(\Lambda \). For every \(T_1 \in \mathbb{N} \) and \(\delta' > 0 \), let

\[
\Delta = \Delta(B, \mu, \sigma^2, \Lambda, T_1, \delta')
\]

be the deviation from a concentration inequality\(^8\) such that \(\Pr[\max_{1 \leq t \leq T_1} M_{t \wedge \tau} > \Delta] < \delta' \).

If we have

- (Improvement condition) \(D_{T_1} \cdot (A_0 + \Delta) \leq A_1 \) and
- (Pull-out condition) \(D_t \cdot (A_0 + \Delta) \leq \Lambda \) for every \(1 \leq t \leq T_1 \).

Then we have

\[
\Pr[\exists t \in [T_1], \ X_t > D_t \cdot (A_0 + \Delta) \mid X_0 \leq A_0] < \delta'.
\]

In particular, the above implies \(\Pr[X_{T_1} > A_1 \mid X_0 \leq A_0] < \delta'. \) Also, the proposition can naturally extend to starting from \(T_0 \in \mathbb{N} \) instead of 0.

User manual. Given a moment profile, use your favorite martingale concentration inequality and calculate \(\Delta \) as a function of \(\Lambda \). We will instantiate the improvement analysis with various settings of the free parameters \(T_0, T_1, A_0, A_1, \Lambda \) and verify the two inequalities in the next step.

2.3 Step 3: Interval analysis

Directly applying the improvement analysis usually would not give a tight convergence rate because the magnitude of the moment quantities could vary a lot at different stages of a stochastic process. Thus, one has to utilize the *local information on where the process is* to achieve tighter analysis.

To approach optimal convergence rate, we systematically execute an *interval analysis* by tracking the stochastic process \(\{X_t\} \) locally. We design a sequence \(a_0, a_1, \ldots, a_T > 0 \) such that \(a_t = \epsilon \) and aim to design a

\(^7\)Note that in the linear bandit problem, the goal would be to find \(T_1 > T_0 \) as large as possible.

\(^8\)For example, \(\Delta = \sqrt{2 \sum_{t'=T_0+1}^{T_1} B_{t_0}^2(t', \Lambda) \log(1/\delta') + \sum_{t'=T_0+1}^{T_1} w_{t_0}^2(t', \Lambda)} \) if we used Azuma’s inequality. See Appendix B and [CL06] for more examples.
sequence \(0 = t_0 < t_1 < \cdots < t_T\) such that for each \(i\) if the process started from \(X_{t_{i-1}} \leq a_{i-1}\), then \(X_{t_i} \leq a_i\) with high probability according to Proposition 2.3. Intuitively, the value of \(X_t\), as well as the three moment quantities, are expected not to change by too much within an interval \([t_{i-1}, t_i]\). Thus, one can hope to get a nearly tight characterization of the dynamic through the improvement analysis.

In general, the above interval analysis can be very flexible because it is easy to try different speeds of convergence, different settings of the learning rate, etc., while the cumbersome moment calculation and concentration analysis had been isolated in the previous step. Also, there is a principle way to design sequences that satisfy both the improvement condition and the pull-out condition as elaborated in Appendix B. Since the final analysis differs across different problems, it would be more illuminating to see concrete examples in the following sections.

User manual. The above high-level idea can be implemented by designing length \(\ell\) (or \(\ell+1\)) sequences \(\{t_i\},\{a_i\},\{A_i\},\{\delta_i\}\) with \(a_i = \epsilon\) and invoke Proposition 2.3 with \((T_0 = t_{i-1}, T_1 = t_i, A_0 = a_{i-1}, A_1 = a_i, \delta' = \delta_i)\) for each \(i = 1,2, \ldots, \ell\). As a consequence, this amounts to checking the two conditions in Proposition 2.3 by verifying these sequences satisfying certain inequalities and then we have \(Pr[X_{t_1} > a_i | X_{t_{i-1}} \leq a_{i-1}] < \delta_i\).

As for the boundary case, we pick \(a_0\) properly such that \(Pr[X_{t_0} > a_0] < \delta_0\). Note that by the chain rule for conditional expectation and let \(T(\epsilon, \delta) = t_T\), we achieve the goal \(Pr[X_{T(\epsilon, \delta)} > \epsilon] < \sum_i \delta_i = \delta\).

3 SGD for Strongly Convex Functions

We pick stochastic gradient descent (SGD) for strongly convex functions as the first example because it is one of the simplest and most well-known methods in learning problems. To let the reader have more familiarity with the framework, we provide an expository proof that matches the state-of-the-art analysis on \(1/t\) learning rate. To demonstrate the flexibility of the framework, we further improve the bound via a more optimized interval analysis.

We briefly set up the problem and defer the details to Appendix C. The goal is to minimize a \(\lambda\)-strongly convex function \(F\) with a \(G\)-bounded gradient oracle using the following update rule

\[
\mathbf{w}_t = \mathbf{w}_{t-1} - \eta_t \hat{\mathbf{g}}_t,
\]

where \(\eta_t\) is the learning rate, \(\hat{\mathbf{g}}_t\) is the response from the gradient oracle with \(\mathbb{E}[\hat{\mathbf{g}}_t]\) being the gradient of \(\mathbf{w}_{t-1}\). Also, \(\|\hat{\mathbf{g}}_t\| \leq G\) almost surely. Since \(F\) is \(\lambda\)-strongly convex, there exists a unique \(\mathbf{w}^*\) that attains the minimum value of \(F\). The potential function is naturally defined as

\[
X_t := \|\mathbf{w}_t - \mathbf{w}^*\|^2.
\] (3.1)

Previously, the best high-probability bound is \(O(G^2(\log(1/\delta)) + \log \log(G/\epsilon \lambda))\epsilon^{-1}\lambda^{-2}\) where \(\epsilon\) is the error and \(\delta\) is the failure probability [HK14, RSS12]. We apply our framework and prove the following theorem that first matches previous bounds using learning rate \(\eta_t = 1/(\lambda t)\) and then improve the bound to \(O(G^2(\log(1/\delta)) + \log \log(G/\epsilon \lambda))\epsilon^{-1}\lambda^{-2}\) using a different learning rate. Note that this partially answers the open question of [HK14] on whether the high-probability bound can be improved.

Theorem 3.2 (Convergence of SGD for strongly convex functions). Consider the above setting, for every \(\epsilon, \delta > 0\), we have \(\|\mathbf{w}_T - \mathbf{w}^*\|^2 \leq \epsilon\) with probability at least \(1 - \delta\)

- if \(\eta_t = 1/(\lambda t)\) and for some \(T = O\left(G^2(\log(1/\delta) + \log \log(G/\epsilon \lambda)) \epsilon^{-2}\right)\);
- if \(\eta_t\) is chosen properly and for some \(T = O\left(G^2(\log(1/\delta) + \log \log(G/\epsilon \lambda)) \epsilon^{-2}\right)\).

Remark. We implement a more optimized interval analysis to prove the second item and actually provides a stronger convergence guarantee for the first item. See Appendix C for details.
3.1 Step 1: Linearization and moment analysis

For every \(t \in \mathbb{N} \), let us first linearize \(X_t := \| w_t - w^* \|^2 \) in the standard way as follows.

\[
X_t \leq (1 - 2\eta_t \lambda) X_{t-1} + N_t
\]

where the explicit formula of \(N_t \) and the derivation of the linearization can be found in Appendix C. Next, the following lemma provides a moment profile for \(\{X_t\} \).

Lemma 3.3 (Moment profile for SGD). Consider the setting in Theorem 3.2 with learning rate \(\eta_t = 1/(\lambda t) \). For every \(100 < T_0 < T_1 \in \mathbb{N}, \Lambda > 0 \), the following functions \((B_{T_0}, \mu_{T_0}, \sigma^2_{T_0}) \) form a moment profile for \(\{X_t\}, \Lambda \), and \(T_0 \).

\[
B_{T_0}(t, \Lambda) = \frac{13G^2 t}{\lambda^2 T_0^2}, \mu_{T_0}(t, \Lambda) = \frac{2G^2}{\lambda^2 T_0^2}, \text{ and } \sigma^2_{T_0}(t, \Lambda) = \frac{G^2 t^2}{\lambda^2 T_0^2} \left(73\Lambda + \frac{3G^2}{\lambda^2 t^2} \right).
\]

3.2 Step 2: Improvement analysis

We apply Proposition 2.3 using the moment profile of \(\{X_t\} \) in Lemma 3.3 and get the following.

Lemma 3.4 (Improvement analysis for SGD). Let \(\{X_t\} \) be the stochastic process described in Equation 3.1, \(100 \leq T_0 < T_1 \in \mathbb{N}, \Lambda > 0 \), and \((B_{T_0}, \mu_{T_0}, \sigma^2_{T_0}) \) be a moment profile for \(\{X_t\}, T_0, \text{ and } \Lambda \) from Lemma 3.3. Then for every \(A_0 > A_1 > 0 \) and \(\delta' > 0 \), let

\[
\Delta = \frac{G^2 T_1 \log \frac{1}{\delta'}}{\lambda^2 T_0^2} \left(\frac{300 T_1 \Lambda^2}{G^2 \log \frac{1}{\delta'}} + 60 \right).
\]

Suppose that we have \(A_0 + \Delta \leq \Lambda \) and \(\frac{T_2^2}{T_1} \cdot \Lambda \leq A_1 \). Then, \(\Pr[X_{T_1} > A_1 | X_{T_0} \leq A_0] < \delta' \).

3.3 Step 3: Interval analysis

In this step, we aim to design two sequences \(\{t_i\} \) and \(\{a_i\} \) of length \(\ell + 1 \). At the \(i \)-th interval, we apply Lemma 3.4 with \(T_0 = t_{i-1}, T_1 = t_i, A_0 = a_{i-1}, A_1 = a_i, \text{ and } \delta' = \delta/\ell \). By solving the \(\Delta_i \) in \(a_{i-1} + \Delta_i \leq \Lambda_i \) and plugging it into \(\frac{T_{i-1}^2}{T_i} \cdot \Lambda_i \leq a_i \), it suffices to set the interval satisfying

\[
a_i \geq \frac{t_{i-1}^2}{t_i^2} a_{i-1} + \frac{300 a_{i-1} G^2 \log \frac{1}{\delta'}}{\lambda^2 t_i} + \frac{500 G^2 \log \frac{1}{\delta'}}{\lambda^2 t_i}.
\]

Observe that since we would like to set \(a_i \) as small as possible, the third term suggests that we should set \(a_i = O\left(\frac{G^2 \log(1/\delta')}{\lambda \ell t_i} \right) \). To be precise, let \(\ell = \lfloor \log \frac{20}{\delta'} \rfloor, t_0 = 0, t_1 = 100, a_0 = \frac{5000 G^2 \log(1/\delta')}{\lambda^2 t_1}, t_i = 2t_{i-1}, a_{i-1} = \frac{5000 G^2 \log \frac{1}{\delta'}}{\lambda^2 t_{i-1}}, \text{ and } \Lambda_i = 2a_{i-1}, \forall i = 2, 3, \ldots, \ell \).

Let \(T = t_i \). Observed that due to the choice of the parameters we have \(a_\ell \leq \epsilon \). Now, for each \(i = 1, 2, \ldots, \ell \), we invoke Lemma 3.4 with \(A_0 = a_{i-1}, A_1 = a_i, T_0 = t_{i-1}, \text{ and } T_1 = t_i \). It is easy to verify \(a_{i-1} + \Delta_i \leq \Lambda_i \) and \(\frac{T_{i-1}^2}{T_i} \cdot \Lambda_i \leq a_i \). Hence, \(\Pr[X_T > \epsilon | X_{t_i} \leq a_i] < \delta \). Also, by the strong convexity, we have \(X_{t_i} \leq 4G^2/\lambda^2 \leq a_1 \). Therefore, we have \(\Pr[X_T > \epsilon] < \delta \).
4 Local Convergence for Streaming k-PCA

Next, we increase the difficulty of the problem by considering a classic non-convex optimization problem in machine learning: the streaming/online principal component analysis (PCA). Let D be a distribution over the unit sphere in \mathbb{R}^n and $\Sigma = \mathbb{E}_{x \sim D}[xx^\top]$ be its covariance matrix. Given a sequence of i.i.d. samples x_1, \ldots, x_T from D, the goal of streaming k-PCA is to output a vector that is close to the top k eigenspace of Σ using $O(nk)$ space where $k \in [n]$. Denote $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ as the eigenvalues of Σ. We analyze the classic Oja’s algorithm [Oja82] with the following update rule.

$$W_t = (1 - \eta_t x_t x_t^\top)W_{t-1}, \quad \forall t \geq 1$$

where $W_0 \in \mathbb{R}^{n \times k}$ is the initialization matrix and η_t is the learning rate at time t. To measure how well W_t converges to the top k eigenspace, it is standard to use the following objective function [AZL17].

$$X_t = \|Z^TW_t(V^TW_t)^{-1}\|_F^2$$

(4.1)

where V (resp. Z) is an orthogonal basis for the Σ’s eigenspace corresponds to eigenvalues $\lambda_1, \ldots, \lambda_k$ (resp. $\lambda_{k+1}, \ldots, \lambda_n$). The goal is to show that X_t converges to 0. See Appendix D for details.

There is a line of works [AZL17, DSOR15, JJK+16, LWLZ18, Sha16] studying the above dynamic. For simplicity, we focus on the local convergence setting and without loss of generality assume $X_0 \leq 1$. We use our framework to improve the state-of-the-art convergence rate from $O(\log(\log(1/\delta)) \leq \epsilon)$ in [AZL17] to $O(\log(\log(\epsilon)) \leq \epsilon)$ in [AZL17] to $O(\log(\log(\epsilon)) \leq \epsilon)$ in [AZL17].

Theorem 4.2 (Local convergence for streaming k-PCA). Consider the above setting, then for every $\epsilon > 0$ and $\delta \in (0, 1)$, there exists a setting of learning rate and $T = O(\frac{\log(\log(1/\epsilon)/\delta)}{\epsilon \text{gap}})$ such that

$$\Pr[\|Z^TW_T(V^TW_T)^{-1}\|_F^2 > \epsilon] < \delta.$$**

Remark. There are many other guarantees for streaming PCA such as global convergence [AZL17, Sha16], gap-free convergence [AZL17], and exponential convergence [Tan19]. Since the focus of this paper is introducing the framework, we leave the analysis for these settings as future work.

4.1 Step 1: Linearization and moment analysis

For every $t \in \mathbb{N}$, let us first linearize $X_t := \|Z^TW_t(V^TW_t)^{-1}\|_F^2$ as follows.

$$X_t = (1 - 2\eta_t \text{gap})X_{t-1} + N_t$$

where the explicit formula of N_t and the derivation of the linearization can be found in Appendix D. The following lemma provides a moment profile for $\{X_t\}$.

Lemma 4.3 (Moment profile for k-PCA). Consider the setting in Theorem 4.2 with learning rate $\eta_t = \eta = \gamma/(2\text{gap})$ for some $\gamma \in (0, 1)$. For every $1 \leq T_0 + 1 \leq t \in \mathbb{N}$ and $0 < \Lambda \leq 1$, the following functions $(B_{T_0}, \mu_{T_0}, \sigma^2_{T_0})$ form a moment profile for $\{X_t\}$, Λ, and T_0.

$$B_{T_0}(t, \Lambda) = \frac{40\eta}{(1 - \gamma)^{t - T_0}}, \mu_{T_0}(t, \Lambda) = \frac{56\eta^2 \Lambda}{(1 - \gamma)^{t - T_0}}, \text{ and } \sigma^2_{T_0}(t, \Lambda) = \frac{\eta^2 \Lambda}{(1 - \gamma)^{2(t - T_0)}}.$$**

4.2 Step 2: Improvement analysis

We apply Proposition 2.3 using the moment profile of $\{X_t\}$ in Lemma 4.3 and get the following.

Lemma 4.4 (Improvement analysis for k-PCA). Let $\{X_t\}$ be the stochastic process described in Equation D.1. For every $0 < A_1 < A_0$, $0 < \delta', \Lambda \leq 1$, and $1 \leq T_0 < T_1 \in \mathbb{N}$, let

$$\Delta = \frac{\gamma \Lambda \log \frac{1}{\delta'}}{\text{gap}^2(1 - \gamma)^{T_1 - T_0}} \left(\frac{568 \text{gap}^2 \Lambda}{\gamma \Lambda \log \frac{1}{\delta'}} + \sqrt{\frac{128 \text{gap}^2}{\gamma \Lambda \log \frac{1}{\delta'}}} + 94 \right).$$

Suppose that $A_0 + \Delta \leq \Lambda$ and $(1 - \gamma)^{T_1 - T_0} \Lambda \leq A_1$, then $\Pr[X_{T_1} > A_1 \mid X_{T_0} \leq A_0] < \delta'.$
4.3 Step 3: Interval analysis

In this step, we aim to design two sequences \(\{t_i\} \) and \(\{a_i\} \) of length \(\ell + 1 \). At the \(i \)th interval, we invoke Lemma 4.4 with \(T_0 = t_i - 1 \), \(T_1 = t_i \), \(A_0 = a_{i-1} \), and \(A_1 = a_i \). Specifically, let \(\ell = \lceil \log(1/\epsilon) \rceil \). Let \(\delta' = \delta/\ell \), \(t_0 = 0, a_0 = 1 \). For each \(i = 1, \ldots, \ell \), let

\[
 a_i = 2^{-i}, \quad \gamma_i = \frac{a_{i-1}\text{gap}^2}{80000\lambda \log \frac{1}{3\delta}}, \quad t_i = t_{i-1} + \left\lfloor \frac{-2}{\log\left(1 - \gamma_i\right)} \right\rfloor, \quad A_i = 2a_{i-1}.
\]

Let \(T = t_\ell \). Observed that due to the choice of the parameters we have \(a_i \leq \epsilon \) and \(1/5 \leq (1 - \gamma_i)^{t_i - t_{i-1}} \leq 1/4 \). Now, for each \(i = 1, 2, \ldots, \ell \), we invoke Lemma 4.4 with \(A_0 = a_{i-1} \), \(A_1 = a_i \), \(T_0 = t_i - 1 \), \(T_1 = t_i \), and \(\delta' = \delta/\ell \). It is easy to verify that \(a_{i-1} + \Delta_i \leq A \) and \((1 - \gamma)^{t_i - t_{i-1}} \leq a_i \). By Lemma 4.4 and union bounding over \(\ell \) intervals, we have \(\Pr[X_T > \epsilon] < \delta \). By expanding the definition of \(T \) with geometric series, we have

\[
 T = O(\frac{1}{\text{gap}} \log\left(\frac{1/\delta}{\epsilon}\right)).
\]

5 Solving Linear Bandit with SGD Updates

Finally, we move on to show that our framework is also useful in active learning where the sampling is adaptive. We consider the "model-free" approach, i.e., update the estimation of the unknown parameter via SGD instead of solving the linear regression directly. The idea of using an SGD update appeared in [KPM15], but their design of upper confidence bound (UCB) is heuristic, and no regret bound is provided. [JBNW17] develops an online-to-confidence-set algorithm to achieve \(O(n(T \log^2(T) \log(T/\delta))^{1/2}) \) regret up to iterated log-factors. They use an online Newton step predictor as a sub-routine to get rid of the dependence on historical data. In contrast, we do not need any sub-routine and update the parameter directly. As a result, we both simplify the procedure and improve the regret bound. We briefly set up the problem as follows and defer the details to Appendix E.

In stochastic linear bandit, there is an unknown parameter \(\theta_\star \in B(0, L) \subseteq \mathbb{R}^n \) and at each time step \(t \) the agent is presented with a decision set \(D_t \subseteq B(0, L) \subseteq \mathbb{R}^n \), where \(L, \lambda \) are known. The agent chooses an action \(x_t \in D_t \) and subsequently, the agent observe the reward \(y_t = \theta_\star^T x_t + \epsilon_t \) where \(|\epsilon_t| \leq 1 \) and \(\mathbb{E}[\epsilon_t|x_{1:t-1}] = 0 \). We make the bounded assumption of noise term only to simplify the presentation and the sub-Gaussian case can be handled by our framework similarly. The full protocol and algorithm is described below in Algorithm 1.

Algorithm 1 LinUCB-SGD

1. **Parameters:** \(\lambda > 0 \), \(\eta = \lambda/L^2 \), \(\beta_t = 288 \max\left\{ L_\star^2 \lambda, \frac{n\lambda}{T^2} \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta}\right\} \).
2. **Initialize:** \(\theta_0 \leftarrow 0, V_0 \leftarrow \lambda I \)
3. **for** round \(t = 1, \ldots, T \) **do**
4. \(B_t \leftarrow \{ \theta : \|\theta - \theta_\star\|_{V_{t-1}} \leq \sqrt{\beta_t} \} \).
5. Choose \(x_t = \arg\min_{x \in D_t} \langle x, \theta \rangle \).
6. Observe the reward \(y_t = \langle x_t, \theta_\star \rangle + \epsilon_t \).
7. \(\theta_t \leftarrow \theta_{t-1} + A_t \left(y_t - \theta_{t-1}^T x_t \right) x_t \) where \(A_t = \eta V_{t-1}^{-1} \).
8. \(V_t \leftarrow V_{t-1} + \eta x_t x_t^T \).

Comparing with the standard LinUCB approach [AYPS11, DHK08], we use an SGD approach to update the estimation \(\theta_t \) of \(\theta_\star \) with a matrix learning rate \(A_t \) specified in Algorithm 1 instead of computing the linear regression directly (as in standard analysis). The challenge of the SGD case is that now we need to analyze a stochastic process as follows

\[
 \theta_t - \theta_\star = (I - A_t x_t x_t^T)(\theta_{t-1} - \theta_\star) + \epsilon_t A_t x_t.
\]
The goal is to minimize the regret at time T, defined by $R_T = \sum_{t=1}^{T}(x^*_t - x_t, \theta^*_t)$, where x^*_t is the optimal action at time t. By following the standard approach in [AYPS11], it suffices to bound the dynamic of $X_t = \|\theta_t - \theta^*\|_{V_t}$. Specifically we have the following main theorem.

Theorem 5.1 (Regret bound for linear bandit with SGD updates). Setting parameters as in Algorithm 1, for any $\lambda, L, L_\star > 0, T \in \mathbb{N}$, we have

$$\Pr \left[\exists t \in [T], X_t > 288 \max \left\{ L^2_\star \lambda, \frac{n \lambda}{L^2} \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\} \right] < \delta.$$

In particular, with probability at least $1 - \delta$, we have

$$R_T \leq 34\sqrt{2nT \max \left\{ L^2_\star L^2, n \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\} \log \left(1 + \frac{T}{n} \right)}.$$

5.1 Step 1: Linearization and moment analysis

For every $t \in \mathbb{N}$, let us first linearize $X_t := \|\theta_t - \theta^*\|_{V_t}$ as follows.

$$X_t \leq X_{t-1} + N_t$$ \hspace{1cm} (5.2)

where the explicit formula of N_t and the derivation of the linearization can be found in Appendix E. The following lemma provides a moment profile for $\{X_t\}$.

Lemma 5.3 (Moment profile for linear bandit with SGD updates). Consider the setting in Theorem 5.1. For notational convenience, let $v_t = \|x_t\|_{V_{t-1}}$. For every $1 \leq T_0 + 1 \leq t \in \mathbb{N}$ and $\Lambda > 0$, the following functions ($B_{t_0}, \mu_{t_0}, \sigma^2_{t_0}$) form a moment profile for $\{X_t\}, \Lambda,$ and T_0.

$$B_{t_0}(t, \Lambda) = 3\eta t \sqrt{\Lambda} + 2\eta^2 v_t^2, \mu_{t_0}(t, \Lambda) = 2\eta^2 v_t^2, \text{ and } \sigma^2_{t_0}(t, \Lambda) = 8\eta^2 \Lambda + 8\eta^4 v_t^4.$$

5.2 Step 2: Improvement analysis

We apply Proposition 2.3 using the moment profile of $\{X_t\}$ in Lemma 5.3 and get the following.

Lemma 5.4 (Improvement analysis for linear bandit with SGD updates). Consider the setting in Theorem 5.1. For every $A_1 > A_0 > 0, \delta' > 0, \Lambda > 0$, and $1 \leq T_0 < T_1 \in \mathbb{N}$, let

$$\Delta = \sqrt{144\eta n \log \left(1 + \frac{\eta T_1 L^2}{n \lambda} \right) \Lambda \log \frac{1}{\delta'} + 16\eta n \log \left(1 + \frac{\eta T_1 L^2}{n \lambda} \right) \sqrt{\log \frac{1}{\delta'}}}.$$

Suppose, $A_0 + \Delta \leq \Lambda$ and $\Lambda \leq A_1$, then $\Pr \left[\max_{T_0+1 \leq t \leq T_1} X_t > A_1 \mid X_{T_0} \leq A_0 \right] < \delta'$.

5.3 Step 3: Interval analysis

In general, we design multiple intervals in this step to achieve tighter analysis. In this example, this step is surprisingly easy because it suffices to set $\ell = 1, t_0 = 0, t_1 = T, a_0 = \|\theta^*\|_{V_0}$ and $a_1 = \Lambda_1 = 288 \max \left\{ L^2_\star \lambda, \frac{\eta}{T_0} \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\}$. Now, for $i = 1$, we invoke Lemma 5.4 with $A_0 = a_0, A_1 = a_1, T_0 = 0, T_1 = T$, and $\delta' = \delta$. It is easy to verify $A_0 + \Delta \leq \Lambda_1$ and $\Lambda_1 \leq A_1$. By Lemma 5.4, this implies that

$$\Pr \left[\exists t \in [T], X_t > 288 \max \left\{ L^2_\star \lambda, \frac{n \lambda}{L^2} \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\} \right] < \delta.$$

Acknowledgement We thank Kai-Min Chung for useful discussion in the early stage of this work and thank Boaz Barak for helpful comments on a draft of this paper.
References

Appendix

- Appendix A provides sufficient tools and backgrounds for the techniques used in this paper.
- Appendix B provides an in-depth discussion on the framework.
- Appendix C provides the details on the example of SGD for strongly convex functions.
- Appendix D provides the details on the example of local convergence of k-PCA.
- Appendix E provides the details on the example of linear bandit with SGD updates.

A. Tools and Preliminaries

A.1. Martingale, stopped process, and concentration inequality

Stochastic process is a central tool in this paper. In this subsection, we will introduce preliminary mathematical background related to stochastic process. Interested readers can find detailed exposition in standard text such as [LG16]. Let us start with the definition on adapted random process.

Definition A.1 (Adapted random process). Let \(\{X_t\}_{t \in \mathbb{N}_0} \) be a sequence of random variables and \(\{\mathcal{F}_t\}_{t \in \mathbb{N}_0} \) be a filtration. We say \(\{X_t\}_{t \in \mathbb{N}_0} \) is an adapted random process with respect to \(\{\mathcal{F}_t\}_{t \in \mathbb{N}_0} \) if for each \(t \in \mathbb{N}_0 \), the \(\sigma \)-algebra generated by \(X_0, X_1, \ldots, X_t \) is contained in \(\mathcal{F}_t \).

In most of the situation, we use \(\mathcal{F}_t \) to denote the natural filtration of \(\{X_t\}_{t \in \mathbb{N}_0} \), namely, \(\mathcal{F}_t \) is defined as the \(\sigma \)-algebra generated by \(X_0, X_1, \ldots, X_t \). One of the most common adapted processes is the martingale.

Definition A.2 (Martingale). Let \(\{M_t\}_{t \in \mathbb{N}_0} \) be a sequence of random variables and let \(\{\mathcal{F}_t\}_{t \in \mathbb{N}_0} \) be its natural filtration. We say \(\{M_t\}_{t \in \mathbb{N}_0} \) is a martingale if for each \(t \in \mathbb{N} \), \(\mathbb{E}[M_{t+1} | \mathcal{F}_t] = M_t \).

Note that for any adapted random process \(\{X_t\}_{t \in \mathbb{N}_0} \), one can always turn it into a martingale by defining \(M_0 = X_0 \) and for any \(t \in \mathbb{N} \), let \(M_t = X_t - \mathbb{E}[X_t | \mathcal{F}_{t-1}] \). When the bounded difference and moments of a martingale can be bounded almost surely, we can apply any of the martingale concentration inequality in [CL06]. Furthermore, all the martingale inequality in [CL06] can be strengthened into the maximal form to avoid union bound by using Doob’s maximal inequality [LG16] instead of Markov’s inequality. For example, a small modification of the classical Freedman’s inequality gives the following lemma.

Lemma A.3 (A martingale concentration inequality). Let \(\{M_t\}_{t \in \mathbb{N}_0} \) be an adapted stochastic process. Let \(T_0 < T \in \mathbb{N}_0 \) and \(B, \sigma, \mu \geq 0 \) be some constants for all \(t \in [T] \). Suppose for each \(t = T_0 + 1, 2, \ldots, T \), \(M_t - M_{t-1} \leq B \) almost surely, \(\text{Var}[M_t | \mathcal{F}_{t-1}] \leq \sigma^2 t, \) and \(\mathbb{E}[M_t - M_{t-1} | \mathcal{F}_{t-1}] \leq \mu_t \), then for every \(\delta \in (0, 1) \) we have

\[
\Pr \left[\exists T_0 + 1 \leq t \leq T, \; M_t - M_0 \geq 2 \max \left\{ \left\lfloor \frac{T}{T_0 + 1} \right\rfloor \sigma \log \frac{1}{\delta}, 2B \log \frac{1}{\delta} \right\} + \sum_{t'=T_0+1}^{T} \mu_{t'} \right] < \delta.
\]

However, in general, it is difficult to obtain a good bound on the bounded difference and the moments of a stochastic process. One powerful technique to deal with this issue is using the stopping time defined as follows.

Definition A.4 (Stopping time). Let \(\{X_t\}_{t \in \mathbb{N}_0} \) be an adapted process associated with filtration \(\{\mathcal{F}_t\}_{t \in \mathbb{N}_0} \). An integer-valued random variable \(\tau \) is a stopping time for \(\{X_t\}_{t \in \mathbb{N}_0} \) if for all \(t \in \mathbb{N} \), \(\{\tau = t\} \in \mathcal{F}_t \).

Let \(\{M_t\}_{t \in \mathbb{N}_0} \) be an adapted process, the most common stopping time for \(\{M_t\}_{t \in \mathbb{N}_0} \) is of the following form. For any \(a \in \mathbb{R} \), let

\[
\tau := \min \{t \mid M_t > a\}.
\]

Namely, \(\tau \) is the first time when the martingale becomes at least \(a \). For convenience, in the rest of the paper, we would define stopping time of this form by saying “\(\tau \) is the stopping time for the event \(\{M_t > a\} \).”
Given an adapted process \(\{M_t\}_{t \in \mathbb{N}_{\geq 0}} \) and a stopping time \(\tau \), it is then natural to consider the corresponding stopped process \(\{M_{t \wedge \tau}\}_{t \in \mathbb{N}_{\geq 0}} \) where \(t \wedge \tau = \min\{t, \tau\} \) is also a random variable. An useful and powerful fact here is that the stopped process of a martingale is also a martingale. Also, notice that we have
\[
M_{t \wedge \tau} - M_{(t-1) \wedge \tau} = 1_{\tau \geq t} (M_t - M_{t-1}).
\]
Therefore, by considering a stopping time for the event \(\{M_t > \Lambda\} \), we form a small bounded difference and moments for the stopped process in the moment profile (see Definition 2.2) and therefore can obtain a concentration on the stopped process. For example, if we apply Lemma A.3 on the stopped process, we have
\[
\Pr \left[\exists 1 \leq t \leq T, \ M_{t \wedge \tau} - M_0 \geq 2 \max \left\{ \sum_{t'=1}^{T_1} \sigma_{t'} \log \frac{1}{\delta}, 2B \log \frac{1}{\delta} \right\} + \sum_{t'=1}^{T_1} \mu_{t'} \right] < \delta.
\]

A.2 The pull-out lemma

In the end of the previous subsection, we see how to apply concentration inequality on the stopped process. To extend the concentration to the original process, the pull-out lemma [CW19] provides a sufficient condition to remove the stopping time without paying any extra factor. Here we restate the lemma and give a whole proof for the completeness of presentation.

Lemma A.5 (The Pull-out lemma [CW19]). Let \(\{M_t\}_{t \in \mathbb{N}_{\geq 0}} \) be an adapted stochastic process and \(\tau \) be a stopping time. Let \(\{M^*_t\}_{t \in \mathbb{N}_{\geq 0}} \) be the maximal process of \(\{M_t\}_{t \in \mathbb{N}_{\geq 0}} \) where \(M_t^* = \max_{1 \leq t' \leq t} M_t \). For any \(t \in \mathbb{N}, \Delta \in \mathbb{R}, \) and \(\delta \in (0, 1) \), suppose

1. \(\Pr[M^*_{t \wedge \tau} > \Delta] < \delta \) and
2. For any \(1 \leq t' < t \), \(\Pr[\tau \geq t' + 1 \mid M^*_{t'} \leq \Delta] = 1 \).

Then, we have
\[
\Pr[M_t^* > \Delta] < \delta.
\]

For the completeness of the presentation, we provide a proof for the pull-out lemma as follows.

Proof of Lemma A.5. The main idea is to use an auxiliary stopping time \(\xi \) for the event \(\{M^*_{t \wedge \tau} > \Delta\} \). First, we would like to show that if \(\tau \) stopped before time \(t \), then \(\xi \) must stop no later than \(\tau \) too. For the sake of contradiction, assume \(\tau < t \) but \(\xi > \tau \). Then we know from the definition of \(\xi \) that \(M_t^* \leq \Delta \) because \(\xi > \tau \).

From the second condition of the lemma statement, we have \(\tau \geq \tau + 1 \) which is a contradiction. Thus, we have \(\Pr[\tau < t, \ \xi > \tau] = 0 \).

Next, consider the following decomposition of the error probability \(\Pr[M_t^* > \Delta] \).
\[
\Pr[M_t^* > \Delta] = \Pr[M_t^* > \Delta, \ \tau \geq t] + \Pr[M_t^* > \Delta, \ \tau < t, \ \xi \leq \tau] \\
+ \Pr[M_t^* > \Delta, \ \tau < t, \ \xi > \tau] \\
= \Pr[M_t^* > \Delta, \ \tau \geq t] + \Pr[M_t^* > \Delta, \ \tau < t, \ \xi \leq \tau]
\]
where \(\Pr[M_t^*, \ \tau < t, \ \xi > \tau] = 0 \) as explained in the previous paragraph. Now, observe that when \(\tau \geq t \), we have \(t = t \wedge \tau \). Also, if \(\xi \leq t < \tau \) then \(M_t^*, M_{t \wedge \tau}^* > \Delta \) according to the definition of \(\xi \). Namely, we can turn the process into stopped process in the above equation as follows.
\[
\Pr[M_t^* > \Delta, \ \tau \geq t] + \Pr[M_t^* > \Delta, \ \tau < t, \ \xi \leq \tau] \\
\leq \Pr[M_t^*, \ \tau < t] < \delta
\]
where the last inequality is due to the first condition in the lemma statement. Thus, we have \(\Pr[M_t^* > \Delta] < \delta \) as desired. \(\square \)
A.3 Matrix norms and inequalities

As many common potential functions are defined as the norm of certain matrix, here we provide some common matrix norms and inequalities that will be useful.

Definition A.6 (Matrix norms). Let \(A \in \mathbb{R}^{n \times m} \).

- The Frobenius norm of \(A \) is defined as
 \[
 \|A\|_F := \sqrt{\text{tr}(A^\top A)}.
 \]

- The operator norm of \(A \) is defined as
 \[
 \|A\| := \sup_{x \in \mathbb{R}^n \setminus \{0^n\}} \frac{\|Ax\|_2}{\|x\|_2}.
 \]

- The Schatten \(p \) norm of \(A \) for some \(p \geq 1 \) is defined as
 \[
 \|A\|_p := \text{tr}(|A|^p)^{1/p}
 \]
 where \(|A| := \sqrt{A^\top A} \).

- The matrix inner product of \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^m \) is defined as
 \[
 (x, y)_A := x^\top A y.
 \]

 When \(A \) is a square matrix, the \(A \)-norm of \(x \) is defined as
 \[
 \|x\|_A := \sqrt{(x, x)_A}.
 \]

Note that \(\|A\|_F = \|A\|_2 \) and \(\|A\|_p^p = \sum_{i=1}^{n \wedge m} \sigma_i(A)^p \) where \(\sigma_1(A) \geq \cdots \geq \sigma_n(A) \geq 0 \) are the singular values of \(A \). Therefore, we have \(\|AA^\top\|_1 = \|A\|_2^2 \) and \(\|A\|_\infty = \|A\| \).

Lemma A.7 (Matrix inequalities). Let \(A \in \mathbb{R}^{n \times m} \) and \(B \in \mathbb{R}^{m \times k} \).

- \(\|AB\|_F \leq \|A\|_F \|B\|_F \).
- \(\|A\| \leq \|A\|_F \leq \sqrt{m} \|A\|_2 \).
- (Matrix Cauchy-Schwarz inequality): \(|\text{tr}(AB)| \leq \|A\|_F \|B\|_F \).
- (Matrix Hölder inequality): \(|\text{tr}(AB)| \leq \|A\|_p \|B\|_q \) for every \(p, q \geq 1 \) such that \(1/p + 1/q = 1 \).
- (Matrix AM-GM inequality): \(2\text{tr}(AB) \leq \text{tr}(A^\top A) + \text{tr}(B^\top B) = \|A\|_2^2 + \|B\|_2^2 \).

A.4 Convergence guarantees

Here we define four common notions of high-probability convergence with increasing generality.

Definition A.8 (Convergence guarantees). Let \(\{X_t\}_{t \in \mathbb{N}_{\geq 0}} \) be a stochastic process with learning rate \(\{\eta_t\}_{t \in \mathbb{N}_{\geq 0}} \). There are four types of high-probability bounds of interest as follows. Let \(\delta > 0 \) be the failure probability.

- (Weak non-uniform bound) There exists a function \(T(\epsilon, \delta) \) such that for any \(\epsilon > 0 \), there exists a learning rate \(\{\eta_t\}_{t \in \mathbb{N}_{\geq 0}} \) such that we have \(\Pr[X_T(\epsilon, \delta) > \epsilon] < \delta \).

- (Strong non-uniform bound) There exists a learning rate \(\{\eta_t\}_{t \in \mathbb{N}_{\geq 0}} \) and a function \(T(\epsilon, \delta) \) such that for any \(\epsilon > 0 \), we have \(\Pr[X_T(\epsilon, \delta) > \epsilon] < \delta \).
• **(Weak uniform bound)** There exists a learning rate \(\{ \eta_t \}_{t \in \mathbb{N} \geq 0} \) and a function \(\epsilon(t, T, \delta) \) such that for any \(T \in \mathbb{N} \) large enough, we have \(\Pr[\exists t \in [T], X_t > \epsilon(t, T, \delta)] < \delta \).

• **(Strong uniform bound)** There exists a learning rate \(\{ \eta_t \}_{t \in \mathbb{N} \geq 0} \) and a function \(\epsilon(t, \delta) \) such that for any \(T \in \mathbb{N} \) large enough, we have \(\Pr[\exists t \in [T], X_t > \epsilon(t, \delta)] < \delta \).

For example, we obtain weak non-uniform bound in Section C.3.2, obtain strong uniform bound in Section C.3.1 and Section D.3, and obtain weak uniform bound in Section E.3.

B Details on the framework

In this section, we elaborate on the framework and provide complete proofs for the lemmas and propositions in the main article.

B.1 Why non-linearity in the dynamic creates entanglement?

In this subsection, we talk about how non-linearity in the stochastic updates can create the entanglement between the noise and the process. Consider the following general update rule

\[X_t = f(X_{t-1}, N_t). \]

By doing Taylor expansion on \(f \), we have

\[X_t = a_0(N_t) + a_1(N_t)X_{t-1} + a_2(N_t)X_{t-1}^2 + \cdots. \]

For \(f \) to be nonlinear, either for \(i \geq 1 \), \(a_i(N_t) \) is not a constant or for \(i > 1 \), \(a_i(N_t) \neq 0 \). If \(a_i(N_t) \) is not constant, then the update rule is entangled already by looking at \(a_i(N_t)X_{t-1}^i \). So it suffices to assume that only \(a_0(N_t) \) depends on \(N_t \). Now if \(i > 1 \) and \(a_i(N_t) \neq 0 \), we can unfold the expression one more step and get

\[a_iX_{t-1}^i = a_i(a_0(N_{t-1}) + a_1(N_{t-1})X_{t-2} + a_2(N_{t-1})X_{t-2}^2 + \cdots)^i = ia_0(N_{t-1})(a_1X_{t-2})^i + \cdots. \]

We can see that \(a_0(N_{t-1}) \) and \(X_{t-2} \) are entangled together.

B.2 Continuous analysis

In this subsection, we talk about how continuous analysis can serve as a guide on how to analyze the discrete dynamic. This subsection is not needed for the use of the framework, so the reader is welcome to skip it for the first time reading through this paper. The continuous analysis helps us in three ways:

1. **Determine the intrinsic behaviors of the dynamic.**
2. **Give us a guide on how to analyze the dynamic.**
3. **Help us to write down a closed-form solution of the dynamic that is adapted.**

Determine the intrinsic behaviors of the dynamic. One important thing to do is to understand the intrinsic behaviors of the dynamic first. For example, if at the continuous limit, the system is chaotic, it is probably useless to analyze further since we can’t hope the discrete dynamic to be any better than chaos. Therefore, one natural way to study the stochastic system is to consider its continuous limit and then study the corresponding random dynamical system to characterize different fixed points, saddle points, limit cycles, etc. Only by fully understanding the continuous counterpart, we can cope with the intrinsic behaviors of the dynamic in the discrete setting. This leads us to our second point.
Give us a guide on how to analyze the dynamic. By looking at the continuous system as a random dynamical system, we can obtain a strategy to analyze the dynamic. For example, even without the noise, it is not obvious how to analyze

\[X_t = X_{t-1} + \eta X_{t-1}(1 - X_{t-1}). \]

However, at the continuous limit, this gives us

\[dX_t = X_{t-1}(1 - X_{t-1})dt \]

which has a stable fixed point at 1 and an unstable fixed point at 0. This suggests that around 0, we should linearize at 0

\[X_t = (1 + \eta(1 - X_{t-1}))X_{t-1}. \]

On the other hand, when the dynamic gets closer to 1, we should linearize at 1,

\[X_t - 1 = (1 - \eta X_{t-1})(X_{t-1} - 1). \]

We recommend [CW19] for a detailed discussion on related ideas.

Help us to write down a closed-form solution of the dynamic that is adapted. In a stochastic differential equation, we solve the dynamic by writing it down as a stochastic integral. This suggests that to solve a stochastic difference equation, we should write it as a linear combination of the noise. This is how Equation 2.1 appears. Recall that given a linear dynamic

\[X_t = H_t \cdot X_{t-1} + N_t, \]

Equation 2.1 gives us

\[X_t = \prod_{i=1}^{t} H_i \left(X_0 + \sum_{i=1}^{t} \frac{N_i}{\prod_{j=1}^{i} H_j} \right). \]

Comparing with the continuous counterpart, we have

\[\frac{dX(t)}{dt} = H(t)X(t) + N(t) \]

and

\[X(t) = e^{H(t)} \left(X(0) + \int_{0}^{t} e^{-H(s)} N(s) ds \right) \]

which we can see the correspondence easily. Furthermore, some readers might argue that Equation 2.1 is simply an unrolling recursion to write down a closed-form solution, but we claim that it is a very special closed-form solution in which the summation of the noise term is adapted.

Notice that \(\sum_{i=1}^{t} \prod_{j=1}^{i} H_j^{-1} N_i \) in Equation 2.1 does not depend on the future event. This is naturally true because it is the discrete counterpart of a stochastic integral. However, if we write the closed-form solution as

\[X_t = \prod_{i=1}^{t} H_i X_0 + \sum_{i=1}^{t} \prod_{j=i+1}^{t} H_j N_i, \]

the process \(\sum_{i=1}^{t} \prod_{j=i+1}^{t} H_j N_i \) is no longer adapted and hence we are not able to apply martingale concentration technique. In the situation where we need to write down closed form solution not from a linear approximation, translating how the continuous counterpart writes down the stochastic integral will help us to write down a closed form solution with adapted noise.
B.3 Linearization and moment analysis

In this section, we provide the proof of unfolding the recursion, a.k.a., the ODE trick in [CW19].

Lemma B.1. Let \(\{X_i\}_{t \geq N \geq 0}, \{N_t\}_{t \in \mathbb{N}}, \) and \(\{H_t\}_{t \in \mathbb{N}} \) be sequences of random variables with the following dynamic

\[
X_t \leq H_t \cdot X_{t-1} + N_t
\] (B.2)

for all \(t \in \mathbb{N} \). Then for all \(T_0, t \in \mathbb{N} \geq 0 \) such that \(T_0 < t \), we have

\[
X_t \leq D_t \cdot (X_{T_0} + M_t)
\]

where \(D_t = \prod_{t' = T_0+1}^t H_{t'} \) and \(M_t = \sum_{t' = T_0+1}^t D_{t'}^{-1} \cdot N_{t'} \).

Proof of Lemma B.1. For each \(T_0 + 1 \leq t' \leq t \), dividing Equation B.2 with \(D_{t'} \) on both sides, we have

\[
\frac{X_{t'}}{D_{t'}} = \frac{X_{t'-1}}{D_{t'-1}} + \frac{N_{t'}}{D_{t'}}.
\]

We get the desiring expression by telescoping the above equation from \(t' = T_0 + 1 \) to \(t \).

\(\square \)

B.4 Improvement analysis

Let us restate the main proposition of the improvement analysis as follows.

Proposition 2.3 (Improvement analysis). Let \(\{X_t\} \) be a stochastic process described in Equation 2.1 for some \(\{D_t\} \) and \(\{M_t\} \). Let \(\Lambda > 0, \tau \) be the stopping time for the event \(\{X_t > \Lambda\} \), and \((B, \mu, \sigma^2) \) be a moment profile for \(\{X_t\} \) and \(\Lambda \). For every \(T_1 \in \mathbb{N} \) and \(\delta' > 0 \), let

\[
\Delta = \Delta(B, \mu, \sigma^2, \Lambda, T_1, \delta')
\]

be the deviation from a concentration inequality\(^9\) such that \(\Pr[\max_{1 \leq t \leq T_1} M_{t \wedge T} > \Delta] < \delta' \).

If we have

- (Improvement condition) \(D_{T_1} \cdot (A_0 + \Delta) \leq A_1 \) and
- (Pull-out condition) \(D_t \cdot (A_0 + \Delta) \leq \Lambda \) for every \(1 \leq t \leq T_1 \).

Then we have

\[
\Pr[\exists t \in [T_1], \ X_t > D_t \cdot (A_0 + \Delta) \ | \ X_0 \leq A_0] < \delta'.
\]

In particular, the above implies \(\Pr[X_{T_1} > A_1 \mid X_0 \leq A_0] < \delta'. \) Also, the proposition can naturally extend to starting from \(T_0 \in \mathbb{N} \) instead of 0.

Proof of Proposition 2.3. We would like to apply the pull-out lemma, i.e., Lemma A.5, on \(\{M_{t \wedge \tau}\}_{t \in \mathbb{N}} \) and thus have to verify the following two conditions. First, note that \(\{M_{t \wedge \tau}\}_{t \in \mathbb{N}} \) forms a martingale. Thus, due to the martingale concentration inequality and the choice of \(\Delta \), we have

\[
\Pr\left[\max_{1 \leq t \leq T_1} M_{t \wedge \tau} > \Delta\right] < \delta'
\]

and thus we satisfy the first condition of the pull-out lemma. Next, for every \(1 \leq t \leq T_1 \), suppose \(\max_{1 \leq t' \leq t} M_{t'} \leq \Delta \), then we have the following from the recursion formula (see Equation 2.1).

\[
X_t = D_t \cdot (X_0 + M_t) \leq D_t \cdot (A_0 + \Delta) \leq \Lambda
\]

\(^9\)For example, \(\Delta = \sqrt[2]{2 \sum_{t'=T_0+1}^{T_1} B_{T_0}^* (t', \Lambda) \log(1/\delta')} + \sum_{t'=T_0+1}^{T_1} \mu_{T_0} (t', \Lambda) \) if we used Azuma’s inequality. See Appendix B and [CL06] for more examples.
where the last inequality is from the pull-out condition in the proposition statement. Thus, by the choice of \(\tau \), we have
\[
\Pr \left[\tau > t \left| \max_{1 \leq t' \leq t} M_{t'} \leq \Delta \right. \right] = 1.
\]
The above two satisfy the second condition of the pull-out lemma as desired. As a result, by the pull-out lemma (see Lemma A.5), we have pulled out the stopping time as follows.
\[
\Pr \left[\max_{1 \leq t \leq T_1} M_t > \Delta \right] < \delta'.
\]
Finally, by the recursion formula, we have
\[
\Pr \left[\exists t \in [T_1], X_t > D_t \cdot (A_0 + \Delta) \mid X_0 \leq A_0 \right] < \delta'.
\]
In particular, by combining with the improvement condition in the proposition statement, we have
\[
\Pr[X_{T_1} > A_1 \mid X_0 \leq A_0] < \delta'
\]
as desired.

\[\square\]

B.5 Interval analysis

In the improvement analysis, \(i.e., \) Proposition 2.3, we get the improvement guarantee \(\Pr[X_{T_1} > A_1 \mid X_0 \leq A_0] < \delta' \) as long as the two conditions are satisfied. Recall that we start from \(X_0 \) and want to see how small \(X_T \) could be with high probability. As the first try, we can invoke Proposition 2.3 by setting \(T_0 = 0, T_1 = T \), and \(A_0 = X_0 \) then see what is the smallest \(A_1 \) we can get. Nevertheless, such analysis in general would not be tight because it does not use the local information.

To fully leverage the improvement analysis, we perform an interval analysis by designing sequences \(\{a_i\}, \{t_i\}, \{\delta_i\} \) of length \(\ell \) (or \(\ell + 1 \)) such that we invoke Proposition 2.3 by setting \(T_0 = t_{i-1}, T_1 = t_i, A_0 = a_{i-1}, A_1 = a_i \), and \(\delta' = \delta_i \) for each \(i = 1, 2, \ldots, \ell \). Namely, in the \(i \)th interval, we would like to show \(\Pr[X_{t_i} > A_i \mid X_{t_{i-1}} \leq A_{i-1}] < \delta_i \) and thus by union bound we would have \(\Pr[X_{t_\ell} > A_{\ell} \mid X_{t_0} \leq A_0] < \sum_i \delta_i \).

Note that with the general recipe as above, in principle one can get the tightest bound by solving the following optimization problem.

\[
\begin{align*}
\text{minimize} & \quad a_{\ell} \\
\text{subject to} & \quad a_i \geq \prod_{t=t_{i-1}+1}^{t_i} H_t \cdot (a_{i-1} + \Delta_i), \quad \forall i = 1, 2, \ldots, \ell \\
& \quad a_{i-1} + \Delta_i \leq \Lambda_i, \quad \forall i = 1, 2, \ldots, \ell \\
& \quad \Pr[X_0 > a_0] < \delta_0 \\
& \quad \sum_i \delta_i \leq \delta \\
& \quad 0 = t_0 < t_1 < \cdots < t_\ell = T.
\end{align*}
\]

However, in general the above optimization problem might be complicated to solve optimally by hands. Thus, we provide some common ways to set the intervals as a principle to implement interval analysis.

How to set \(\{a_i\} \). For simplicity, let us focus on the setting where the goal is moving from \(X_0 \) to \(\epsilon \) where \(X_0 \gg \epsilon > 0 \). Namely, \(a_0 = X_0 \) and \(a_\ell = \epsilon \). The principle here can be easily adapted to other settings. We provide three common ways of setting \(\{a_i\} \): the **greedy improvement**, the **multiplicative improvement**, and the **polynomial improvement**. See Table 1 for a summary.
<table>
<thead>
<tr>
<th>Type</th>
<th>({a_i})</th>
<th># intervals</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy</td>
<td>Pick (a_i) as small as possible</td>
<td>Problem-dependent</td>
<td>Section E.3</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>(a_i = \frac{2^{i-1}}{2} = 2^{-i} \cdot X_0)</td>
<td>(\lceil \log \frac{X_0}{\epsilon} \rceil)</td>
<td>Section C.3.1 & Section D.3</td>
</tr>
<tr>
<td>Polynomial</td>
<td>(a_i = \frac{c}{4} \cdot \left(\frac{4X_0}{c} \right)^{\frac{i}{2}}) = (\frac{c}{4} \cdot \left(\frac{4X_0}{c} \right)^{\frac{i}{2}})</td>
<td>(\left\lceil \frac{\log \log \frac{X_0}{\epsilon}}{\log \frac{X_0}{\epsilon}} \right\rceil)</td>
<td>Section C.3.2</td>
</tr>
</tbody>
</table>

Table 1: Three common ways of setting \(\{a_i\} \) in an interval analysis. We specify how to pick \(a_i \) according to \(a_{i-1} \) in the second column and calculate the number of intervals in the third column. Note that the constants used here are arbitrarily chosen and can be further optimized during the implementation. For concrete examples, see the fourth column.

How to set \(\{\delta_i\} \). In general, a handy way to set \(\{\delta_i\} \) is setting \(\delta_i = \delta/(2i^2) \). First, note that \(\sum \delta_i \leq \delta \) as desired. Second, in high probability bound, we usually get \(\log \frac{1}{\delta_i} \) dependency from the martingale concentration. In such case, we have \(\log \frac{1}{\delta_i} \leq 2 \log i + 1 \) where \(\log \frac{1}{\delta} \) is essential from concentration and \(\log i \) is the cost of union bound. See Section C.3 and Section D.3 for concrete examples.

C Details on SGD for Strongly Convex Functions

Let \(F \) be a convex function over some convex domain \(\mathcal{W} \) equipped with norm \(\| \cdot \| \). There is a \(G \)-bounded stochastic gradient oracle where on input \(\mathbf{w} \), it returns a random \(\hat{\mathbf{g}} \) such that \(\mathbb{E}[\hat{\mathbf{g}}] \) is the gradient of \(F \) at \(\mathbf{w} \) and \(\|\hat{\mathbf{g}}\|^2 \leq G^2 \) almost surely for some constant \(G > 0 \). The goal is to minimize \(F \) over \(\mathcal{W} \) with the help of this stochastic gradient oracle. The stochastic gradient descent (SGD) algorithm maintains a vector \(\mathbf{w}_t \) at time \(t \) as follows.

Algorithm 2 SGD for strongly convex function

Input: Time parameter \(T \in \mathbb{N} \) and step size parameters \(\{\eta_t\}_{t \in \mathbb{N}} \).

1. Initialize \(\mathbf{w}_0 \in \mathcal{W} \).
2. for \(t = 1, \ldots, T \) do
3. Query the stochastic gradient oracle of \(F \) at \(\mathbf{w}_{t-1} \) and get \(\hat{\mathbf{g}}_t \).
4. Let \(\mathbf{w}_t = \text{Proj}_{\mathcal{W}}(\mathbf{w}_{t-1} - \eta_t \hat{\mathbf{g}}_t) \) where \(\text{Proj}_{\mathcal{W}} \) is an orthogonal projection operator for \(\mathcal{W} \).

Output: \(\mathbf{w}_T \).

We say \(F \) is \(\lambda \)-strongly convex for some \(\lambda > 0 \) if for all \(\mathbf{w}, \mathbf{w}' \in \mathcal{W} \) and any subgradient \(\mathbf{g} \) at \(\mathbf{w} \),

\[
F(\mathbf{w}') \geq F(\mathbf{w}) + \mathbf{g}^\top (\mathbf{w}' - \mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}' - \mathbf{w}\|^2.
\]

Due to the strong convexity, there exists a unique minimizer \(\mathbf{w}^* \in \mathcal{W} \) of \(F \). Thus, the potential function is defined as \(X_t = \|\mathbf{w}_t - \mathbf{w}^*\|^2 \). Note that due to the strong convexity again, we have

\[
G\|\mathbf{w} - \mathbf{w}^*\| \geq \|\mathbf{g}\| \cdot \|\mathbf{w} - \mathbf{w}^*\| \geq (\mathbf{g}, \mathbf{w} - \mathbf{w}^*) \geq \frac{\lambda}{2} \|\mathbf{w} - \mathbf{w}^*\|^2
\]

where \(\mathbf{g} \) is the gradient of \(\mathbf{w} \). By dividing \(\frac{2}{\lambda} \|\mathbf{w} - \mathbf{w}^*\| \) and square both side, we have for every \(t \in \mathbb{N} \)

\[
X_t \leq \frac{4G^2}{\lambda^2}
\]

almost surely. The goal is to prove the following theorem, which is a formal version of Theorem 3.2.
Theorem C.1 (Convergence of SGD for strongly convex functions). Let F be a λ-strongly convex function over some convex domain. An SGD algorithm with gradient bounded by $G > 0$ almost surely has the following convergence rate. For every $\delta \in (0, 1)$,

- if $\eta_t = 1/(\lambda t)$, we have the following strong uniform convergence
 \[
 \Pr \left[\exists t \in \mathbb{N}, \ X_t > \frac{10000G^2(\log \frac{1}{\delta} + 2\log \log (t + 2))}{\lambda^2 t} \right] < \delta ;
 \]

- there exists a deterministic η_t such that for every $\epsilon \in (0, 1)$, there exists $T \leq \frac{14500G^2(\frac{1}{\epsilon} + 2\log \log \log \frac{G}{\epsilon})}{\epsilon \lambda^2}$ such that
 \[
 \Pr \left[X_T > \epsilon \right] < \delta .
 \]

Comparison. For the learning rate $\eta_t = 1/(\lambda t)$, we match the state-of-the-art $O(G^2(\log \delta + \log \log t))$ convergence rate. Specifically, [HK14] shows the strong non-uniform convergence and [RSS12] shows the weak uniform convergence while Theorem C.1 gives the strong uniform convergence (see Definition A.8 for the definitions of these convergence guarantees). In addition, Theorem C.1 further gives the first convergence rate that breaks the log log t barrier to $O(G^2(\log \delta + \log \log \log t))$ and partially answers the open problem in [HK14]. Note that information-theoretically the convergence rate is at least $\Omega(\frac{G^2 \log \delta}{\lambda^2 t})$.

Section structure. In the rest of this section, we provide the linearization and moment analysis in Section C.1, the improvement analysis in Section C.2, and the interval analysis in Section C.3.

C.1 Linearization and moment analysis

Let us start with the linearization for X_t. For every $0 \leq T_0 < T_1$, we rewrite the dynamic as follows.

\[
X_t = ||w_t - w^*||^2 = ||\text{Proj}_W(w_{t-1} - \eta_t \hat{g}_t) - w^*||^2 \leq ||w_{t-1} - \eta_t \hat{g}_t - w^*||^2 \\
= ||w_{t-1} - w^*||^2 - 2\eta_t \hat{g}_T^T(w_{t-1} - w^*) + \eta_t^2 ||\hat{g}_t||^2 \\
= (1 - 2\eta_t \lambda) X_{t-1} + 2\eta_t (\lambda X_{t-1} - \hat{g}_T^T(w_{t-1} - w^*)) + \eta_t^2 ||\hat{g}_t||^2 .
\]

Let

\[M_t = \sum_{t'=T_0+1}^{t} \frac{2\eta_t(\lambda X_{t'-1} - \hat{g}_{t'}^T(w_{t'-1} - w^*)) + \eta_t^2 ||\hat{g}_{t'}||^2}{\prod_{t'=T_0+1}^{t}(1-2\eta_t \lambda)} \]

for all $T_0 + 1 \leq t \leq T_1$. We can unfold the recursion and get the following.

\[
X_t = \prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)(X_{T_0} + M_t) .
\]

Lemma C.2 (Moment profile for SGD). Consider the setting in Theorem C.1. Let $\Lambda > 0$ and τ is the stopping time for the event $\{X_t > \Lambda\}$. For every $T_0 + 1 \leq t \leq T$, the following moment functions $(B_{T_0}, \mu_{T_0}, \sigma^2_{T_0})$ form a moment profile for $\{X_t\}$, Λ, and T_0.

- **(Bounded difference)** $|M_{t\wedge \tau} - M_{(t-1)\wedge \tau}| \leq B(t, \Lambda) = \eta_t \cdot \frac{12G\Lambda + \eta_t G^2}{\prod_{t'=T_0+1}^{t}(1-2\eta_t \lambda)}$ almost surely.

- **(Conditional expectation)** $E[M_{t\wedge \tau} - M_{(t-1)\wedge \tau} | \mathcal{F}_{t-1}] \leq \mu(t, \Lambda) = \eta_t^2 \cdot \frac{2G^2}{\prod_{t'=T_0+1}^{t}(1-2\eta_t \lambda)} .

- **(Conditional variance)** $\text{Var}[M_{t\wedge \tau} - M_{(t-1)\wedge \tau} | \mathcal{F}_{t-1}] \leq \sigma^2(t, \Lambda) = \eta_t^2 \cdot \frac{72G^2\Lambda + 2\eta_t^2 G^4}{\prod_{t'=T_0+1}^{t}(1-2\eta_t \lambda)^2}$.
Specifically,

- if $\eta_t = 1/(\lambda t)$ and $T_0 \geq 73$, we can pick

$$B_{t_0}(t, \Lambda) = \frac{13G^2 t}{\lambda^2 T_0^2}, \mu_{t_0}(t, \Lambda) = \frac{2G^2}{\lambda^2 T_0^2}, \text{ and } \sigma^2_{t_0}(t, \Lambda) = \frac{G^2 \lambda^2}{\lambda^2 T_0^2} \left(73\Lambda + 3G^2/\lambda^2 t^2\right).$$

- if $\eta_t = \eta = \gamma/(2\lambda)$ for some $\gamma > 0$,

$$B_{t_0}(t, \Lambda) = \frac{G^2\gamma \cdot (6 + \frac{\gamma}{2})}{\lambda^2(1 - \gamma)^{t - T_0}}, \mu_{t_0}(t, \Lambda) = \frac{G^2\gamma^2}{4\lambda^2(1 - \gamma)^{t - T_0}}, \text{ and } \sigma^2_{t_0}(t, \Lambda) = \frac{G^2\gamma^2 \cdot (18\Lambda + \frac{G^2\gamma^2}{8\lambda^2})}{\lambda^2(1 - \gamma)^{2(t - T_0)}}.$$

Proof of Lemma C.2. For bounded difference, we have

$$|M_{(t \wedge \tau) \setminus (t - 1) \wedge \tau}| = \left|1_{t \geq t_0} \frac{2\eta_t \left(\lambda X_{t-1} - \hat{g}_{t-1}^\top (w_{t-1} - w^*)\right) + \eta_t^2 \|\hat{g}_t\|^2}{\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)}\right|.$$

By Cauchy-Schwarz inequality and the fact that $\|\hat{g}_t\| \leq G$, we have

$$\leq 1_{t \geq t_0} \eta_t \cdot \frac{2\lambda X_{t-1} + 2G\sqrt{X_{t-1}} + \eta_t G^2}{\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)}.$$

Because $X_t \leq \frac{4G^2}{\lambda^2 t}$, we have

$$\leq \frac{12G^2/\lambda + \eta_t G^2}{\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)}. \quad (C.3)$$

For the conditional expectation, notice that $\mathbb{E}[\hat{g}_t^\top (w_{t-1} - w^*) \mid F_{t-1}] \geq \lambda X_{t-1}$ due to strong convexity and $\|\hat{g}_t\| \leq G$ due to G-boundedness, we have

$$\mathbb{E} \left[M_{t \wedge \tau} - M_{(t - 1) \wedge \tau} \mid F_{t-1}\right] \leq \eta_t^2 \cdot \frac{G^2}{\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)}.$$

For the conditional variance, we have by Equation C.3 and the definition of τ,

$$\text{Var} \left[M_{t \wedge \tau} - M_{(t - 1) \wedge \tau} \mid F_{t-1}\right] \leq 1_{t \geq t_0} \cdot (M_t - M_{t-1})^2 \leq \eta_t^2 \cdot \frac{72G^2 \Lambda + 2\eta^2 G^4}{\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda)^2}.$$

Notice that for $T_0 \geq 73$

$$\prod_{t'=T_0+1}^{t} (1 - 2\eta_t \lambda) = T_0(T_0 - 1) \geq \frac{72T_0^2}{73t^2}. \quad (C.4)$$

Now plug the specific learning rate back, we obtain the bound in the lemma statement. \qed

C.2 Improvement analysis

Lemma C.5. Let $\{X_t\}$ be the stochastic process described in Equation 3.1, $1 \leq T_0 < T_1 \in \mathbb{N}$, $\Lambda > 0$, and $(B_{t_0}, \mu_{t_0}, \sigma^2_{t_0})$ be a moment profile for $\{X_t\}$, T_0, and Λ from Lemma C.2.

- If $\eta_t = 1/\lambda t$, then for every $A_0 > A_1 > 0$, $\delta' > 0$, $\Lambda > 0$, and $73 \leq T_0 < T_1 \in \mathbb{N}$, let

$$\Delta = \frac{G^2 T_1 \log \frac{1}{\delta'}}{\lambda^2 T_0^2} \left(\sqrt{\frac{292T_1 \lambda^2}{G^2 \log \frac{1}{\delta'}}} + 58\right).$$
Suppose that we have \(A_0 + \Delta < \Lambda \) and \(\frac{T_0(T_0 - 1)}{T(T - 1)} \Lambda < A_1 \). Then,

\[
\Pr \left[\exists T_0 + 1 \leq t \leq T_1, X_t > \frac{T_0(T_0 - 1)}{t(t - 1)} \cdot \Lambda \left| X_{T_0} < A_0 \right. \right] < \delta'.
\]

In particular, the above implies \(\Pr[X_{T_1} > A_1 \mid X_{T_0} \leq A_0] \leq \delta' \).

- If \(\eta_t = \gamma/(2\lambda) \) for some \(\gamma > 0 \), then for every \(A_0 > A_1 > 0, \delta' > 0, \Lambda > 0, \) and \(1 \leq T_0 < T_1 \in \mathbb{N} \), let
 \[
 \Delta = \frac{G^2 \gamma \log \frac{1}{\delta'}}{\lambda^2(1 - \gamma)^{T_1 - T_0}} \left(\sqrt{\frac{72\Lambda \lambda^2}{G^2 \gamma \log \frac{1}{\delta'}}} + 27 \right).
 \]

Suppose that we have \(A_0 + \Delta < \Lambda \) and \((1 - \gamma)^{T_1 - T_0} \Lambda < A_1 \). Then,

\[
\Pr \left[\exists T_0 + 1 \leq t \leq T_1, X_t > (1 - \gamma)^{T_1 - T_0} \Lambda \left| X_{T_0} < A_0 \right. \right] < \delta'.
\]

In particular, the above implies \(\Pr[X_{T_1} > A_1 \mid X_{T_0} \leq A_0] \leq \delta' \).

Proof of Lemma C.5.

- \((\eta_t = 1/\lambda t)\) Given the moment profile for \(\{X_t\} \) in Lemma C.2, we apply Proposition 2.3 and get the following deviation using Lemma A.3.

\[
2 \max \left\{ \sum_{t = T_0 + 1}^{T_1} \frac{\sigma^2_{T_0}(t', \Lambda)}{\lambda^2 T_0} \log \frac{1}{\delta'}, \sum_{t = T_0 + 1}^{T_1} B_{T_0}(t', \Lambda) \log \frac{1}{\delta'} \right\} + \sum_{t = T_0 + 1}^{T_1} \mu_{T_0}(t', \Lambda)
\]

\[
= \max \left\{ 2 \sum_{t = T_0 + 1}^{T_1} \frac{G^2 t^2}{\lambda^2 T_0} \left(73\Lambda + \frac{3G^2}{\lambda^2 t^2} \right) \log \frac{1}{\delta'}, \sum_{t = T_0 + 1}^{T_1} \frac{G^2 t^2}{\lambda^2 T_0} \log \frac{1}{\delta'} \right\}
\]

\[
\leq \sqrt{\frac{292G^2 T_1^3 \Lambda}{\lambda^2 T_0^4} \log \frac{1}{\delta'} + \frac{G^2}{\lambda^2 T_0^2} \left(\frac{12 \log \frac{1}{\delta'}}{\lambda^2 T_0^2} + 52 \frac{G^2 T_1}{\lambda^2 T_0} \log \frac{1}{\delta'} + \frac{2G^2 T_1}{\lambda^2 T_0} \right)}
\]

\[
\leq \frac{G^2 T_1 \log \frac{1}{\delta'}}{\lambda^2 T_0^2} \left(\sqrt{\frac{292T_1 \Lambda^2}{G^2 \log \frac{1}{\delta'}} + 58} \right) = \Delta.
\]

Next, by Proposition 2.3 we get the desiring improvement inequalities.

- \((\eta_t = \gamma/(2\lambda))\) Due to the choice of learning rate, we have

\[
\sum_{t = T_0 + 1}^{T_1} \prod_{t = T_0 + 1}^{t} \frac{1}{(1 - 2\eta_t \lambda)} = \frac{(1 - \gamma)^{T_1 - T_0} - 1}{\gamma}.
\]

Given the moment profile for \(\{X_t\} \) in Lemma C.2, we apply Proposition 2.3 and get the following deviation
using Lemma A.3.

\[
2 \max \left\{ \frac{1}{2} \sum_{t'=T_0+1}^{T_1} \sigma_{T_0}(t', \Lambda) \log \frac{1}{\delta'}, 2 \max_{T_0+1 \leq t' \leq T_1} B_{T_0}(t', \Lambda) \log \frac{1}{\delta'} \right\} + \sum_{t'=T_0+1}^{T_1} \mu_{T_0}(t', \Lambda)
\]

\[
= \max \left\{ 2 \sum_{t'=T_0+1}^{T_1} \frac{G^2 \gamma^2 (18 \Lambda + \frac{G^2 \gamma^2}{8 \lambda^2}) \log \frac{1}{\delta'}}{\lambda^2 (1-\gamma)^{2(t'-T_0)}} + 25G^2 \gamma \log \frac{1}{\delta'}, \frac{G^2 \gamma}{4 \lambda^2 (1-\gamma)^{T_1-T_0}} \right\} + \sum_{t'=T_0+1}^{T_1} \frac{G^2 \gamma^2}{4 \lambda^2 (1-\gamma)^{t'-T_0}}
\]

\[
\leq \sqrt{\frac{72G^2 \gamma \Lambda \log \frac{1}{\delta'}}{\lambda^2 (1-\gamma)^{2(T_1-T_0)}}} + \frac{G^2 \gamma \sqrt{\gamma \log \frac{1}{\delta'}}}{\lambda^2 (1-\gamma)^{T_1-T_0}} + 25G^2 \gamma \log \frac{1}{\delta'} + \frac{G^2 \gamma}{4 \lambda^2 (1-\gamma)^{T_1-T_0}} \leq \frac{G^2 \gamma \log \frac{1}{\delta'}}{\lambda^2 (1-\gamma)^{T_1-T_0}} \left(\sqrt{\frac{72 \Lambda \lambda^2}{G^2 \gamma \log \frac{1}{\delta'}}} + 27 \right) = \Delta.
\]

Next, by Proposition 2.3 we get the desiring improvement inequalities. \qed

C.3 Interval analysis

C.3.1 Learning rate $\eta_t = \frac{1}{\lambda t}$

As a warm up, here we first improve the state of art weak uniform convergence bound for SGD with $\eta_t = \frac{1}{\lambda t}$ to strong uniform convergence bound. See Definition A.8 for the formal definitions of the convergence guarantees.

Proof of item 1 in Theorem C.1 when $\eta_t = 1/\lambda t$. Let $\ell = \infty$ and let

\[t_0 = 0, \ t_1 = 73, \ t_i = 2t_{i-1}, \ \forall i \geq 2. \]

For $i \geq 1$, let

\[\delta_i = \frac{\delta}{2t^2}, \ a_0 = \frac{5000G^2 \log \frac{1}{\delta_i}}{\lambda^2 t_1}, \ a_i = \frac{5000G^2 \log \frac{1}{\delta_i}}{\lambda^2 t_i}, \ \text{and} \ \Lambda_i = 2a_{i-1}. \]

Now, for each $i \in \mathbb{N}$, we invoke Lemma C.5 with $A_0 = a_{i-1}, \ A_1 = a_i, \ T_0 = t_{i-1}, \ T_1 = t_i, \ \text{and} \ \delta' = \delta_i$. Let us verify the two conditions. First, we verify the pull out condition as follows.

\[a_{i-1} + \Delta_i = a_{i-1} + \frac{G^2 t_i \log \frac{1}{\delta_i}}{\lambda^2 t_i} \sqrt{\frac{292t_{i-1}A_i \lambda^2}{G^2 \log \frac{1}{\delta_i}}} + 58 \]

\[= a_{i-1} + 2 \sqrt{\frac{292 \cdot 5000 \cdot 4a_{i-1}}{5000}} + \frac{58a_{i-1}}{5000} < 2a_{i-1} < \Lambda_i. \]

Next, we verify the improvement condition $\prod_{t_{i-1}+1}^{t_i} (1 - 2\eta_t\lambda)(a_{i-1} + \Delta_i) < a_i$ as follows.

\[\frac{t_{i-1}(t_i - t_{i-1})}{t_i(t_i - 1)} \cdot 2a_{i-1} < \frac{2a_{i-1}}{4} = a_i. \]

As $\Lambda_i \leq \frac{10000G^2(\log(1/\delta) + \log \log 2t^2)}{\lambda^2 t}$ for every $t_{i-1} + 1 \leq t \leq t_i$ and $\log \log 2t^2 \leq 2\log \log (t+2)$, by Lemma C.5, this implies that

\[\Pr \left[\exists t_{i-1} + 1 \leq t \leq t_i, \ X_t > \frac{10000G^2(\log \frac{1}{\delta} + 2\log \log (t+2))}{\lambda^2 t} \ \bigg| \ X_{t_{i-1}} \leq a_{i-1} \right] < \delta_i. \]
Also, since $X_t \leq \frac{4\epsilon^2}{\lambda}$ for all $t \leq t_1$ and $\sum_{i=1}^{\infty} \delta_i \leq \delta$, by union bound we have
\[\Pr \left[\exists t \in \mathbb{N}, \ X_t > \frac{10000G^2 \left(\log \frac{1}{\delta} + 2 \log \log(t + 2) \right)}{\lambda^2t} \right] < \delta. \]

\[\Box \]

C.3.2 Learning rate $\eta = \gamma/(2\lambda)$

The goal of this subsubsection is to prove the second item of Theorem C.1. In order to improve to the log log log region, we need to improve polynomially at each interval. This is specified in the following lemma.

Lemma C.6 (Moving from a to $a \left(\frac{\epsilon}{4a}\right)^{\frac{1}{4}}$ when $a \geq \epsilon$). Let $\{X_t\}$ be the stochastic process described in Equation 3.1 with learning rate $\eta = \gamma/(2\lambda)$ and $\delta^\prime > 0$. Let $a \geq \epsilon, T_0, T_1 \in \mathbb{N}, \gamma \in (0, 1)$. If
\[T_1 - T_0 = \left| \frac{\log((\frac{1}{4a})^{\frac{1}{4}}/2)}{\log(1 - \gamma)} \right|, \ \gamma = \frac{\lambda^2 \epsilon^{\frac{1}{4}} a^{\frac{1}{4}} \log \frac{4a}{\epsilon}}{4608G^2 \log \frac{1}{\delta^\prime}} \]

then we have
\[\Pr \left[\exists T_0 + 1 \leq t \leq T_1, \ X_t > 2(1 - \gamma)^{\gamma}a, \ X_{T_1} > a \left(\frac{\epsilon}{4a}\right)^{\frac{1}{4}} \mid X_{T_0} \leq a \right] < \delta'. \]

Proof of Lemma C.6. Let $\Lambda = 2a$ and invoke Lemma C.5. First, we verify the pullout condition as follows.
\[a + \frac{G^2 \gamma \log \frac{1}{\delta^\prime}}{\lambda^2(1 - \gamma)^{T_1 - T_0}} \left(\sqrt{\frac{72\lambda^2}{G^2 \gamma \log \frac{1}{\delta^\prime}}} + 27 \right) = a + \sqrt{\frac{72 \cdot 2 \cdot \epsilon^{\frac{1}{4}} a^{\frac{1}{4}} \log \frac{4a}{\epsilon}}{4608 \cdot (1 - \gamma)^{2(T_1 - T_0)}}} + \frac{27 \cdot \epsilon^{\frac{1}{4}} a^{\frac{1}{4}} \log \frac{4a}{\epsilon}}{4608 \cdot (1 - \gamma)^{T_1 - T_0}} \]

Due to the choice of γ, T_1, T_0, we have $2 \cdot (4a)^{\frac{1}{4}} \epsilon^{\frac{1}{4}} \leq (1 - \gamma)^{-(T_1 - T_0)} \leq 4 \cdot (4a)^{\frac{1}{4}} \epsilon^{\frac{1}{4}}$.
\[\leq a + \frac{(4a)^{\frac{1}{4}} \cdot 72 \cdot 2 \cdot \epsilon^{\frac{1}{4}} a^{\frac{1}{4}} \log \frac{4a}{\epsilon}}{4608 \cdot \epsilon^{\frac{1}{4}}} + \frac{(4a)^{\frac{1}{4}} \cdot 27 \cdot \epsilon^{\frac{1}{4}} a^{\frac{1}{4}} \log \frac{4a}{\epsilon}}{4608 \cdot \epsilon^{\frac{1}{4}}} \]

Because $a \geq \epsilon$, we have $\frac{1}{4} \log \frac{4a}{\epsilon} \leq \left(\frac{4a}{\epsilon}\right)^{\frac{1}{4}}$ and $\frac{1}{4} \log \frac{4a}{\epsilon} \leq \left(\frac{4a}{\epsilon}\right)^{\frac{1}{4}}$ so the inequality becomes
\[\leq a + \sqrt{\frac{a^2}{2}} + \frac{a}{20} < 2a = \Lambda. \]

Next, we verify the improvement condition as follows.
\[(1 - \gamma)^{T_1 - T_0} \Lambda \leq \frac{(4a)^{\frac{1}{4}}}{2} - 2a = a \left(\frac{\epsilon}{4a}\right)^{\frac{1}{4}}. \]

Therefore by Lemma C.5, we have
\[\Pr \left[\exists T_0 + 1 \leq t \leq T_1, \ X_t > 2(1 - \gamma)^{\gamma}a, \ X_{T_1} > a \left(\frac{\epsilon}{4a}\right)^{\frac{1}{4}} \mid X_{T_0} \leq a \right] < \delta'. \]

\[\Box \]
Now we describe how to set the intervals properly in each region using the improvement analysis instantiated in Lemma C.6. Let \(\epsilon, \delta \in (0, 1) \), \(a_0 = \frac{4G^2}{X^2} \) and \(t_0 = 0 \). For the \(i \)th interval,

\[
a_i = a_{i-1} \left(\frac{\epsilon}{4a_{i-1}} \right)^{\frac{1}{4}}, \quad \gamma_i = \frac{\lambda^2 \epsilon^{\frac{3}{2}} a_{i-1} \frac{1}{4} \log \frac{4a_{i-1}}{\epsilon}}{4608G^2 \log \frac{2\lambda}{\epsilon}}, \quad t_i = t_{i-1} + \left[\log \left(\frac{4 a_{i-1}}{\epsilon} \right)^{\frac{1}{4}} / 2 \right] / \log(1 - \gamma_i).
\]

Now we set the learning rate of the algorithm. Given \(t \), there is an \(i \) such that \(t_{i-1} < t \leq t_i \). Let \(\eta_t = \gamma_i / 2\lambda \). Now we are ready to prove the main theorem.

Proof of item 2 in Theorem C.1 when using \(\eta_t \) specified above. By Lemma C.6 and union bound, we have

\[
\Pr[\exists i \in \mathbb{N}, X_{t_i} > a_i] < \sum_{i=1}^{\infty} \frac{\delta}{2^{i^2}} < \delta.
\]

Now it remains to determine at which interval \(i, a_i \leq \epsilon \) and the length of \(t_i \). We can rewrite the recursive relation as

\[
a_i = a_{i-1} \left(\frac{\epsilon}{4} \right)^{\frac{1}{4}}.
\]

By multiplying \(\frac{1}{4} \) at both side, we have

\[
a_i \left(\frac{\epsilon}{4} \right)^{-1} = \left(a_{i-1} \left(\frac{\epsilon}{4} \right)^{-1} \right)^{\frac{1}{4}}.
\]

This implies that

\[
a_i \left(\frac{\epsilon}{4} \right)^{-1} = \left(a_0 \left(\frac{\epsilon}{4} \right)^{-1} \right)^{\left(\frac{1}{4} \right)^i} = \left(\frac{16G^2}{\epsilon \lambda^2} \right)^{\left(\frac{1}{4} \right)^i}.
\]

Therefore when \(\ell = \left\lceil \frac{\log(\log \frac{16G^2}{\epsilon \lambda^2})}{\log \frac{1}{4}} \right\rceil \), we have \(4 \geq \left(\frac{16G^2}{\epsilon \lambda^2} \right)^{\left(\frac{1}{4} \right)^i} \geq 4^{3/4} \) and thus

\[
a_\ell = \left(\frac{16G^2}{\epsilon \lambda^2} \right)^{\left(\frac{1}{4} \right)^\ell} \cdot \frac{\epsilon}{4} \leq 4 \cdot \frac{\epsilon}{4} = \epsilon.
\]

Let \(T = t_\ell \). The algorithm will output \(X_T \). Finally, we aim to show \(T = O\left(\frac{G^2(\log(\frac{1}{4a_1}) + \log \log \log \frac{G}{\epsilon \lambda^2})}{\epsilon \lambda^2} \right) \).

\[
T = \sum_{i=1}^{\ell} \left\lceil \log \left(\frac{\epsilon}{4a_{i-1}} \right)^{\frac{1}{4}} / 2 \right\rceil / \log(1 - \gamma_i) \leq \sum_{i=1}^{\ell} 1 + 2 \log \frac{4a_{i-1}}{\epsilon \gamma_i} \leq \sum_{i=1}^{\ell} 1 + \frac{4608G^2 \log \frac{2\lambda}{\epsilon}}{2 \lambda^2 e^2 a_{i-1}^{\frac{3}{4}}} \leq \frac{3260G^2 \log \frac{2\lambda}{\epsilon}}{e \lambda^2} \sum_{i=1}^{\ell} \left(\frac{\epsilon}{4a_{i-1}} \right)^{\frac{1}{4}}.
\]

By Equation C.7, we have

\[
\leq \frac{3260G^2 \log \frac{2\lambda}{\epsilon}}{e \lambda^2} \sum_{i=1}^{\ell} \left(\frac{1}{(16G^2/\epsilon \lambda^2)} \right)^{\frac{1}{4}}.
\]
By the choice of ℓ, we have $(16G^2/\epsilon^2)^{\frac{3}{4}} \geq 4^{\frac{3}{4}} \geq 1.29$ and thus
\[
\left(\frac{16G^2}{\epsilon^2}\right)^{\frac{1}{4}} \left(\frac{16G^2}{\epsilon^2}\right)^{(4/3)^{\ell-1}} \geq 1.29(4/3)^{\ell-1}
\]
for all $0 \leq i \leq \ell$. That is, by flipping the order of the summation, we have
\[
T \leq \frac{3260G^2 \log \frac{2\ell^2}{\delta}}{\epsilon \lambda^2} \sum_{i=1}^{\ell} \left(\frac{1}{1.29}\right)^{(4/3)^{i-1}}.
\]
Since for $i > 7$, $(4/3)^{i-1} \geq i - 1$, we have
\[
\leq \frac{3260G^2 \log \frac{2\ell^2}{\delta}}{\epsilon \lambda^2} \left(\sum_{i=1}^{7} \left(\frac{1}{1.29}\right)^{(4/3)^{i-1}} + \sum_{i=8}^{\ell} \left(\frac{1}{1.29}\right)^{i-1}\right)
\leq \frac{14500G^2 \log \frac{2\ell^2}{\delta}}{\epsilon \lambda^2}.
\]
We also have
\[
\log(2\ell^2) = 1 + 2 \log \left[\frac{\log(\log(16G^2/\epsilon^2)/2)}{\log \frac{4}{\delta}}\right] \leq 10 + 2 \log \log \log \frac{G}{\epsilon \lambda}.
\]
So in total we have
\[
T \leq \frac{14500G^2 (\log \frac{1}{\delta} + 2 \log \log \log \frac{G}{\epsilon \lambda} + 10)}{\epsilon \lambda^2}.\]

\section{Details on k-PCA}

Let \mathcal{D} be a distribution over the unit sphere in \mathbb{R}^n and $\Sigma = \mathbb{E}_{x \sim \mathcal{D}}[xx^\top]$ be its covariance matrix. Given a sequence of i.i.d. samples x_1, \ldots, x_T from \mathcal{D}, the goal of streaming k-PCA is to output a k dimensional subspace that is close to the top k eigenspace of A using $O(\text{nk})$ space a given $1 \leq k \leq n$.

We analyze the following Oja’s algorithm \cite{Oja82} which maintains a matrix $W_t \in \mathbb{R}^{n \times k}$ at time t.

\begin{algorithm}
\caption{Oja’s algorithm for streaming k-PCA}
\textbf{Input:} Time parameter $T \in \mathbb{N}$, learning rate $\{\eta_t\}_{t \in \mathbb{N}}$, initial matrix $W_0 \in \mathbb{R}^{n \times k}$, and sequence of $x_1, \ldots, x_T \sim \mathcal{D}$.
\begin{algorithmic}
\STATE 1: \textbf{for} $t = 1, \ldots, T$ \textbf{do}
\STATE 2: \quad Let $W_t = (1 - \eta_t x_t x_t^\top)W_{t-1}$.
\end{algorithmic}
\textbf{Output:} $QR(W_t)$, an orthonormal basis of the column space of W_t.
\end{algorithm}

To measure how well W_t converges to the top k eigenspace, it is standard to use the following objective function.
\[
X_t = \|Z^\top QR(W_t)\|_F^2 = \|Z^\top W_t (V^\top W_t)^{-1}\|_F^2,
\]
where $QR(\cdot)$ stands for the QR decomposition and V (resp. Z) is an orthogonal basis for the eigenspace corresponds to eigenvalues $\lambda_1, \ldots, \lambda_k$ (resp. $\lambda_{k+1}, \ldots, \lambda_n$). Denote $\Sigma = \mathbb{E}_{x \sim \mathcal{D}}[xx^\top]$, $\Sigma_{\leq k} = V \text{diag}(\lambda_1, \ldots, \lambda_k) V^\top$, and $\Sigma_{> k} = Z \text{diag}(\lambda_{k+1}, \ldots, \lambda_n) Z^\top$. The goal is to show that X_t converges to 0 efficiently.

There are two common convergence guarantees for k-PCA. The \textit{local convergence} which starts from a good initialization such that $X_0 \leq 1$ and the \textit{global convergence} where W_0 is randomly chosen. On the other
hand, it is also common to consider the following two eigengap settings: the *gap-dependent setting* which assumes $\text{gap} = \lambda_k - \lambda_{k+1} > 0$ and the *gap-free setting* where the goal is showing that W_t is close to the top eigenspace corresponds to eigenvalue $\geq \lambda_k - \rho$ for some parameter $\rho > 0$. In this paper, since the goal is to demonstrate the power of the proposed framework, we focus on the simplest non-trivial setting: the local convergence for gap-dependent k-PCA. Specifically, we apply the framework and prove the following theorem.

Theorem D.2 (Local convergence for gap-dependent streaming k-PCA). *Let D be a distribution over the unit sphere in \mathbb{R}^n, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ be the eigenvalues of its covariance matrix, and let W_t be the output of the Oja’s algorithm at time $t \in \mathbb{N}$. Let $\lambda = \lambda_1 + \cdots + \lambda_k$ and $\text{gap} = \lambda_k - \lambda_{k+1}$. For every $\delta \in (0, 1)$, there exists a setting of the learning rate such that we have the following strong uniform convergence.*

$$\Pr \left[\exists t \in \mathbb{N}, \|Z^TW_t(V^TW_t)^{-1}\|^2_p > \frac{30000\lambda(\log \frac{1}{\delta} + 2\log \log(t + 2))}{\text{gap}^2t} \right] < \delta.$$

Comparison. The convergence rate of the Oja’s algorithm is a well-studied problem [AZL17, DSOR15, Sha16]. For the gap-dependent local convergence, the previous state-of-the-art analysis [AZL17] gives $O(\lambda(\log \delta^{-1} + \log \log t))$ convergence rate while in Theorem D.2 we improve to $O(\lambda(\log \delta^{-1} + \log \log t))$. Note that there is an information-theoretic lower bound $\Omega(\frac{k\lambda_k}{\text{gap}^2})$. See [AZL17] for more comparisons with other previous works as well as other settings.

Section structure. In the rest of this section, we provide the linearization and moment analysis in Section D.1, the improvement analysis in Section D.2, and the interval analysis in Section D.3.

D.1 Moment analysis

Here we provide the details on the moment analysis. The linearization is summarized in Lemma D.3 and the moment profile is given in Lemma D.8. The proof of this step looks relatively lengthy because the objective function X_t has an inverse term $(V^TW_t)^{-1}$. Conceptually, the proofs are straightforward by properly rearranging the terms and applying matrix inequalities (see Lemma A.7).

Lemma D.3 (Linearization for k-PCA). *For any $t \in \mathbb{N}$, we have

$$X_t \leq (1 - 2\eta_\text{gap})X_{t-1} + N_t$$

with

$$N_t = 2\eta_\lambda \cdot (-\text{tr}(Y^TW_{t-1}Y_{t-1}B_t) + \text{E}[\text{tr}(Y^TW_{t-1}Y_{t-1}B_t)] + \text{tr}(Y^TW_{t-1}C_t) - \text{E}[\text{tr}(Y^TW_{t-1}C_t)])
\quad + \frac{2\eta_\lambda^2a_t}{1 + \eta_\lambda a_t} \cdot (\text{tr}(Y^TW_{t-1}Y_{t-1}B_t) - \text{tr}(Y^TW_{t-1}C_t)) + \frac{2\eta_\lambda^2}{(1 + \eta_\lambda a_t)^2} \cdot (\|Y_{t-1}B_t\|^2_p + \|C_t\|^2_p)$$

where

$$Y_t = Z^TW_t(V^TW_t)^{-1}, \quad a_t = x_t^TW_{t-1}(V^TW_{t-1})^{-1}V^Tx_t, \quad B_t = V^TX_{t-1}(V^TW_{t-1})^{-1}, \quad C_t = Z^TX_{t-1}(V^TW_{t-1})^{-1}.$$

Proof of Lemma D.3. First by Sherman-Morrison formula, we have

$$(V^TW_t)^{-1} = (V^TW_{t-1})^{-1} - \frac{\eta_\lambda}{1 + \eta_\lambda a_t}(V^TW_{t-1})^{-1}B_t.$$

Now we have

$$Y_t = Z^TW_{t-1}(V^TW_t)^{-1} + \eta_\lambda Z^TX_{t-1}(V^TW_{t-1})^{-1}
\quad = Y_{t-1} - \frac{\eta_\lambda}{1 + \eta_\lambda a_t}Y_{t-1}B_t + \eta_\lambda C_t - \frac{\eta_\lambda^2}{1 + \eta_\lambda a_t}C_tB_t.$$

28
Because $C_tB_t = a_tC_t$, we have
\[
Y_{t-1} - \frac{\eta_t}{1 + \eta_ta_t} Y_{t-1}B_t + \left(\eta_t - \frac{\eta_t^2a_t}{1 + \eta_ta_t} \right) C_t
= Y_{t-1} - \frac{\eta_t}{1 + \eta_ta_t} Y_{t-1}B_t + \eta_t \frac{1}{1 + \eta_ta_t} C_t.
\] (D.4)

Next, expand the square of the Frobenius norm of Equation D.4 as follows.
\[
\|Y_t\|_F^2 = \text{tr}(Y_t^TY_t) = \text{tr}(Y_{t-1}^TY_{t-1}) - \frac{2\eta_t}{1 + \eta_ta_t} \cdot (\text{tr}(Y_{t-1}^TY_{t-1}B_t) + \text{tr}(Y_{t-1}^TC_t)) + \frac{\eta_t^2}{(1 + \eta_ta_t)^2} \cdot (\|Y_{t-1}B_t\|_F^2 - 2\text{tr}(Y_{t-1}^TC_tB_t) + \|C_t\|_F^2).
\]

By AM-GM inequality for matrix (see Lemma A.7), we have
\[
\leq \text{tr}(Y_{t-1}^TY_{t-1}) - \frac{2\eta_t}{1 + \eta_ta_t} \cdot (\text{tr}(Y_{t-1}^TY_{t-1}B_t) + \text{tr}(Y_{t-1}^TC_t)) + \frac{2\eta_t^2}{(1 + \eta_ta_t)^2} \cdot (\|Y_{t-1}B_t\|_F^2 + \|C_t\|_F^2).
\] (D.5)

Plus and minus $2\eta_t \cdot (\text{tr}(C_t^TY_{t-1}) - \text{tr}(Y_{t-1}^TY_{t-1}B_t))$, we have
\[
\leq \text{tr}(Y_{t-1}^TY_{t-1}) - 2\eta_t \cdot (\text{tr}(Y_{t-1}^TY_{t-1}B_t) - \text{tr}(Y_{t-1}^TC_t)) + \frac{2\eta_t^2}{(1 + \eta_ta_t)^2} \cdot (\|Y_{t-1}B_t\|_F^2 + \|C_t\|_F^2).
\] (D.5)

Finally, let us calculate the expectation of the second term as follows. Recall that $E_{x \sim \mathcal{D}}[xx^\top] = \Sigma$ is the covariance matrix.
\[
E[\text{tr}(Y_{t-1}^TY_{t-1}B_t)|F_{t-1}] = \text{tr}(Y_{t-1}^TY_{t-1}V^\top \Sigma W_{t-1}(V^\top W_{t-1})^{-1})
= \text{tr}(Y_{t-1}^TY_{t-1}\Sigma_{\leq k} V^\top W_{t-1}(V^\top W_{t-1})^{-1})
= \text{tr}(Y_{t-1}^TY_{t-1}\Sigma_{\leq k}) \geq \lambda_k \text{tr}(Y_{t-1}^TY_{t-1})
\] (D.6)

and
\[
E[\text{tr}(Y_{t-1}^TC_t)|F_{t-1}] = \text{tr}(Y_{t-1}^TZ^\top \Sigma W_{t-1}(V^\top W_{t-1})^{-1})
= \text{tr}(Y_{t-1}^T\Sigma_{> k} Z^\top W_{t-1}(V^\top W_{t-1})^{-1})
= \text{tr}(Y_{t-1}^T\Sigma_{> k} Y_{t-1}) \leq \lambda_{k+1} \text{tr}(Y_{t-1}^TY_{t-1}).
\] (D.7)

Combining Equation D.5, Equation D.6, and Equation D.7, as $X_t = \|Y_t\|_F^2$, we have
\[
X_t \leq (1 - 2\eta_t \text{gap}) \cdot X_{t-1} + N_t
\]
as desired. \(\square\)

Given the linearization in Lemma D.3, we let $M_t = \sum_{t'=T_0+1}^{\tau} \prod_{t'=T_0+1}^{\tau-1} (1 - 2\eta_t \text{gap})^{-1} N_t$, so that $X_t = \prod_{t'=T_0+1}^{\tau} (1 - 2\eta_t \text{gap}) \cdot (X_{T_0} + M_t)$. The following lemma provides the moment profile for $\{X_t\}$ under this linearization.

Lemma D.8 (Moment profile for k-PCA). Consider the setting in Theorem D.2 with learning rate $\eta_t = \eta = \gamma/(2\text{gap})$ for some $\gamma > 0$. Let $0 < \Lambda \leq 1$ and τ is the stopping time for the event $\{X_t > \Lambda\}$. For every $T_0 + 1 \leq t \leq T$, the following following functions $(B_{T_0}, \mu_{T_0}, \sigma_{T_0}^2)$ form a moment profile for $\{X_t\}$, Λ, and T_0. 29
• (Bounded difference) $|M_{t∧τ} - M_{(t-1)∧τ}| \leq B_{T_0}(t, Λ) = η_t \cdot \frac{40}{(1-γ)^{t-T_0}}$.

• (Conditional expectation) $|E[M_{t∧τ} - M_{(t-1)∧τ} | F_{t-1}]| \leq μ_{T_0}(t, Λ) = η_t^2 λ \cdot \frac{56}{(1-γ)^{t-T_0}}$.

• (Conditional variance) $|\text{Var}(M_{t∧τ} - M_{(t-1)∧τ} | F_{t-1})| \leq σ_{T_0}^2(t, Λ) = η_t^2 λ \cdot \frac{1136λ + 512η_t^2}{(1-γ)^{2(t-T_0)}}$.

Proof of Lemma D.8. Let us start with three useful facts we are going to heavily apply throughout the proof. First, $I = VV^T + ZZ^T$ because V and Z form an orthonormal eigenbasis for the covariance matrix. Second, the following show that $1_{r≥t}a_t$ is small almost surely.

$$|1_{r≥t}a_t| = |1_{r≥t}x_t^T(VV^T + ZZ^T)W_{t-1}(V^TW_{t-1})^{-1}V^Tx_t| \leq \|V^Tx_t\|^2_2 + |1_{r≥t}x_t^TZY_{t-1}V^Tx_t|.$$

Because $\|x_t\|_2 = 1$, we have

$$\leq 1 + \|1_{r≥t}Y_{t-1}\|_F \leq 2.$$

Third, let $A_t = x_t^TW_{t-1}(V^TW_{t-1})^{-1}$. We have

$$\|1_{r≥t}x_t^TA_{t-1}\|_2 = \|1_{r≥t}x_t^T(VV^T + ZZ^T)A_{t-1}\|_2 \leq \|x_t^TV\|_2 + \|1_{r≥t}x_t^TZX_{t-1}\|_2 \leq 1 + \|1_{r≥t}X_{t-1}\|_F < 2.$$

(D.9)

Thus, as $η_t \leq 1/4$, we have

$$1_{r≥t} \frac{2η_t^2 a_t}{1 + η_t a_t} \leq 8η_t^2$$

and

$$1_{r≥t} \frac{2η_t^2}{(1 + η_t a_t)^2} \leq 8η_t^2.$$

• (Bounded difference) First, observe that $\|1_{r≥t}B_t\|_F$ and $\|1_{r≥t}C_t\|_F$ are small almost surely. Concretely, by Cauchy-Schwarz inequality and the fact that B_t, C_t are rank 1 matrix, we have

$$\|1_{r≥t}B_t\|_F = \|1_{r≥t}B_t\|_2 = \|V^Tx_t\|_2 \|x_t^TA_{t-1}\|_2 \leq 2,$$

$$\|1_{r≥t}C_t\|_F = \|1_{r≥t}C_t\|_2 = \|Z^Tx_t\|_2 \|x_t^TA_{t-1}\|_2 \leq 2.$$

Thus, by matrix Cauchy-Schwarz inequality (see Lemma A.7), we have

$$|1_{r≥t}\text{tr}(Y_{t-1}^TC_t)| \leq \|1_{r≥t}Y_{t-1}\|_F \cdot \|1_{r≥t}C_t\|_F \leq 2\sqrt{Λ}.$$

By matrix Holder’s inequality (see Lemma A.7), the fact that $\|AA^T\|_1 = \|A\|^2_2, \|A\|_∞ = \|A\|$ and for rank 1 matrix $\|AA^T\| = \|A\|^2 = \|A\|^2_2$, we have

$$|1_{r≥t}\text{tr}(Y_{t-1}^TY_{t-1}B_t)| \leq 1_{r≥t}|Y_{t-1}^TY_{t-1}|_2|B_t|_∞ = 1_{r≥t}|Y_{t-1}|_2^2 |B_t|_F \leq 2λ,$$

and

$$|1_{r≥t}Y_{t-1}B_t|_F \leq 1_{r≥t}|Y_{t-1}Y_{t-1}^T|_2 |B_tB_t^T|_∞ \leq 1_{r≥t}|Y_{t-1}|_2^2 |B_t|_F^2 \leq 4Λ.$$

Therefore, for $T = 0, T_0$, and $\|\cdot\|_F$, we have

$$|M_{t∧τ} - M_{(t-1)∧τ}| = \frac{|1_{r≥t}N_t|}{(1-γ)^{t-T_0}} \leq η_t \cdot \frac{20λ + 12\sqrt{Λ} + 32η_t}{(1-γ)^{t-T_0}} \leq \frac{40η_t}{(1-γ)^{t-T_0}}.$$

30
(Conditional expectation) By reusing the inequalities in the calculation of bounded difference, we have
\[
\left| \mathbb{E}_t \left[\frac{2\eta_t^2 a_t}{1+\eta_t a_t} \cdot \text{tr}(Y_{t-1}^T Y_{t-1} B_t) + \frac{2\eta_t^2}{(1+\eta_t a_t)^2} \cdot \left(\|Y_{t-1} B_t\|_F^2 + \|C_t\|_F^2 \right) \mid \mathcal{F}_{t-1} \right] \right| \\
\leq \eta_t^2 \lambda \cdot \left(4\mathbb{E}_t \left[\|1_{\tau \geq t} a_t B_t\|_F^2 \mid \mathcal{F}_{t-1} \right] + 8\mathbb{E}_t \left[\|1_{\tau \geq t} B_t\|_F^2 \mid \mathcal{F}_{t-1} \right] + 8\mathbb{E}_t \left[\|1_{\tau \geq t} C_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \right)
\]
Note that \(a_t^2 = \text{tr}(B_t^T B_t)\) and thus \(|a_t| = \|B_t\|_F\). Namely, \(\|a_t B_t\|_F = \|B_t\|_F^2\). Also, by matrix inequalities (see Lemma A.7), we have
\[
\mathbb{E}_t \left[\|1_{\tau \geq t} B_t\|_F^2 \mid \mathcal{F}_{t-1} \right] = \mathbb{E}_t \left[\|x_t A_{t-1}\|_F^2 \|V^T x_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \\
\leq 2\mathbb{E}_t \left[\|V^T x_t\|_F^2 \mid \mathcal{F}_{t-1} \right] = 2\lambda
\]
and
\[
\mathbb{E}_t \left[\|1_{\tau \geq t} C_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq \mathbb{E}_t \left[\|x_t A_{t-1}\|_F^2 \mid \mathcal{F}_{t-1} \right] \\
\leq \mathbb{E}_t \left[\|x_t A_{t-1}\|_F^2 \mid \mathcal{F}_{t-1} \right] = \mathbb{E}_t \left[\text{tr}(A_{t-1}^T \Sigma A_{t-1}) \right] \\
= \text{tr}(A_{t-1}^T \Sigma \Xi_{t-1} A_{t-1}) + \mathbb{E}_t \left[\text{tr}(A_{t-1}^T \Sigma A_{t-1}) \right] \\
= \lambda + 1_{\tau \geq t} \lambda_{k+1} X_{t-1} \leq 2\lambda
\]
As for the \(\text{tr}(Y_{t-1}^T C_t)\) term, use the identity \(I = VV^T + ZZ^T\), we have
\[
|\text{tr}(Y_{t-1}^T C_t)| = |\text{tr}(Y_{t-1}^T Z^T x_t x_t^T W_{t-1} (V^T W_{t-1})^{-1})| \\
= |\text{tr}(Y_{t-1}^T Z^T x_t x_t^T (VV^T + ZZ^T) W_{t-1} (V^T W_{t-1})^{-1})| \\
\leq |\text{tr}(Y_{t-1}^T Z^T x_t x_t^T V)| + |\text{tr}(Y_{t-1}^T Z^T x_t x_t^T Z Y_{t-1})|.
\]
By the matrix AM-GM inequality, we have
\[
\leq \frac{1}{2} \|V^T x_t\|_F^2 + \frac{3}{2} \text{tr}(Y_{t-1}^T Z^T x_t x_t^T Z Y_{t-1})
\]
Thus,
\[
\mathbb{E}_t \left[1_{\tau \geq t} \frac{2\eta_t^2 a_t}{1+\eta_t a_t} \text{tr}(Y_{t-1}^T C_t) \mid \mathcal{F}_{t-1} \right] \leq 1_{\tau \geq t} 4\eta_t^2 \cdot \mathbb{E}_t \left[\|V^T x_t\|_F^2 + 3\text{tr}(Y_{t-1}^T Z^T x_t x_t^T Z Y_{t-1}) \mid \mathcal{F}_{t-1} \right] \\
\leq 1_{\tau \geq t} 4\eta_t^2 \cdot (\lambda + 3\lambda_{k+1} X_{t-1}) \\
\leq 4\eta_t^2 \cdot (\lambda + 3\lambda_{k+1} \Lambda).
\]
To sum up, we have
\[
\mathbb{E}_t \left[M_{t \wedge t} - M_{(t-1) \wedge t} \mid \mathcal{F}_{t-1} \right] = \frac{\mathbb{E}_t \left[1_{\tau \geq t} N_t \mid \mathcal{F}_{t-1} \right]}{(1-\gamma)^{t-t_0}} \leq \eta_t^2 \lambda \cdot \frac{52\lambda + 4}{(1-\gamma)^t-t_0} \leq \eta_t^2 \lambda \cdot \frac{56}{(1-\gamma)^t-t_0}.
\]
(Conditional variance) Let us start with a rough estimation as follows.
\[
\text{Var} \left[1_{\tau \geq t} N_t \mid \mathcal{F}_{t-1} \right] \leq \eta_t^2 1_{\tau \geq t} \cdot \mathbb{E}_t \left[216\text{tr}(Y_{t-1}^T Y_{t-1} B_t)^2 + 216\text{tr}(Y_{t-1}^T C_t)^2 \mid \mathcal{F}_{t-1} \right] \\
+ \eta_t^2 1_{\tau \geq t} \cdot \mathbb{E}_t \left[256\eta_t^4 \|Y_{t-1} B_t\|_F^2 + 256\eta_t^4 \|C_t\|_F^2 \mid \mathcal{F}_{t-1} \right].
\]
By reusing the previous calculation, we have
\[
\mathbb{E}_t \left[1_{\tau \geq t} \text{tr}(Y_{t-1}^T Y_{t-1} B_t)^2 \mid \mathcal{F}_{t-1} \right] \leq \mathbb{E}_t \left[1_{\tau \geq t} \|B_t\|_F^2 \|Y_{t-1}\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq 2\lambda^2,
\]
\[
\mathbb{E}_t \left[1_{\tau \geq t} \text{tr}(Y_{t-1}^T C_t)^2 \mid \mathcal{F}_{t-1} \right] \leq \mathbb{E}_t \left[1_{\tau \geq t} \|Y_{t-1}\|_F^2 \|C_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq 2\lambda,
\]
\[
\mathbb{E}_t \left[1_{\tau \geq t} \|Y_{t-1} B_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq \mathbb{E}_t \left[1_{\tau \geq t} \|B_t\|_F^2 \|Y_{t-1}\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq 2\lambda, \text{ and}
\]
\[
\mathbb{E}_t \left[1_{\tau \geq t} \|C_t\|_F^2 \mid \mathcal{F}_{t-1} \right] \leq 2\lambda.
\]
31
Thus, we have
\[
\text{Var}[|M_{t\wedge \tau} - M_{(t-1)\wedge \tau}| \mid \mathcal{F}_{t-1}] = \frac{\text{Var}[|1_{\tau > t} N_t| \mid \mathcal{F}_{t-1}]}{(1 - \gamma)^{2(t - T_0)}} \leq \eta_t^2 \lambda \cdot \frac{512\Lambda^2 + 624\Lambda + 512\eta_t^2}{(1 - \gamma)^{2(t - T_0)}} \leq \eta_t^2 \lambda \cdot \frac{1136\Lambda + 512\eta_t^2}{(1 - \gamma)^{2(t - T_0)}}.
\]

\[\square\]

D.2 Improvement analysis

Lemma D.10 (Improvement analysis for k-PCA). Let $\{X_t\}$ be the stochastic process described in Equation D.1. For every $A_0, A_1 > 0$, $\delta' > 0$, $0 < \Lambda \leq 1$, and $1 \leq T_0 < T_1 \in \mathbb{N}$, let
\[
\Delta = \gamma \lambda \log \frac{1}{\delta'} \left(\sqrt{\frac{568\text{gap}^2\Lambda}{\gamma \lambda \log \frac{1}{\delta'}}} + \sqrt{\frac{128\text{gap}}{\gamma \lambda \log \frac{1}{\delta'}}} + 94 \right).
\]
Suppose that we have $A_0 + \Delta < \Lambda$ and $(1 - \gamma)^{T_1 - T_0} \Lambda < A_1$. Then,
\[
\Pr\left[\exists T_0 + 1 \leq t \leq T_1, X_t > (1 - \gamma)^{t - T_0} \Lambda \mid X_{T_0} \leq A_0 \right] < \delta'.
\]
In particular, the above implies $\Pr[X_{T_1} > A_1 \mid X_{T_0} \leq A_0] \leq \delta'$.

Proof of Lemma D.10. Given the moment profile $(\mu_{T_0}, \sigma^2_{T_0})$ in Lemma D.8, we apply Proposition 2.3 and get the following bound for the deviation.
\[
2 \max \left\{ \sum_{t = T_0 + 1}^{T_1} \sigma^2_{T_0}(t, \Lambda) \log \frac{1}{\delta'}, 2 \max_{T_0 + 1 \leq \ell \leq T_1} \sum_{t' = T_0 + 1}^{T_0} \sigma^2_{T_0}(t', \Lambda) \right\} + \sum_{t' = T_0 + 1}^{T_1} \mu_{T_0}(t, \Lambda)
\]
\[
= \max \left\{ 2 \sum_{t = T_0 + 1}^{T_1} \eta_t^2 \Lambda \frac{1136\Lambda + 512\eta_t^2}{(1 - \gamma)^{2(t - T_0)}} \log \frac{1}{\delta'}, \eta_t \frac{160}{(1 - \gamma)^{T_1 - T_0}} \log \frac{1}{\delta'} \right\} + \sum_{t = T_0 + 1}^{T_1} \eta_t^2 \Lambda \frac{56}{(1 - \gamma)^{t - T_0}}.
\]
By geometric series, we have
\[
\leq 2 \sqrt{\eta_t^2 \Lambda \frac{1136\Lambda + 512\eta_t^2}{(1 - \gamma)^{2(t - T_0)}} \log \frac{1}{\delta'} + \eta_t \frac{160}{(1 - \gamma)^{T_1 - T_0}} \log \frac{1}{\delta'} + \eta_t^2 \Lambda \frac{56}{(1 - \gamma)^{T_1 - T_0}}}
\]
Since $\eta_t = \gamma / (2\text{gap}) \leq \frac{1}{2}$ and $\Lambda \leq 1$, we have
\[
\leq 2 \sqrt{\frac{\gamma \lambda \frac{142\Lambda + 32\gamma / \text{gap}}{\text{gap}(1 - \gamma)^{2(T_1 - T_0)}} \log \frac{1}{\delta'} + \frac{80\gamma}{\text{gap}(1 - \gamma)^{T_1 - T_0}} \log \frac{1}{\delta'} + \frac{414}{\text{gap}(1 - \gamma)^{T_1 - T_0}}}
\]
Next, by Proposition 2.3 we get the desiring improvement inequalities. \[\square\]
D.3 Interval analysis

Finally, we perform an interval analysis and complete the proof of Theorem D.2.

Proof of Theorem D.2. Let \(\ell = \infty \) and let \(t_0 = 0, a_0 = 1 \). For each \(i \geq 1 \), let

\[
\delta_i = \frac{\delta}{2^{i+1}}, \quad a_i = 2^{-i}, \quad \gamma_i = \frac{a_i \text{gap}^2}{29500 \lambda \log \frac{1}{\delta_i}}, \quad t_i = t_{i-1} + \left\lfloor \frac{-2}{\log(1 - \gamma_i)} \right\rfloor, \quad \Lambda_i = 2a_{i-1},
\]

and \(\eta_i = \gamma_i/2\text{gap} \) for every \(t_{i-1} + 1 \leq t \leq t_i \). Let \(T = t_\ell \). Observed that due to the choice of the parameters we have \(a_\ell \leq \epsilon \) and \(1/5 \leq (1 - \gamma_i)^{t_{i-1} - t_i} \leq 1/4 \). Now, for each \(i = 1, 2, \ldots, \ell \), we invoke Lemma D.10 with \(A_0 = a_{i-1}, A_1 = a_i, T_0 = t_{i-1}, T_1 = t_i \), and \(\delta' = \delta_i \). Let us verify the two conditions. First, we verify the pull out condition as follows.

\[
a_{i-1} + \Delta_i = a_{i-1} + \frac{\gamma_i \lambda \log \frac{1}{\delta_i}}{\text{gap}^2 (1 - \gamma_i)^{t_i - t_{i-1}}} \left(\sqrt{\frac{568\text{gap}^2 A_i}{\gamma_i \lambda \log \frac{1}{\delta_i}}} + \sqrt{\frac{128\text{gap}^2}{\lambda \log \frac{1}{\delta_i}}} + 94 \right)
\leq a_{i-1} + \frac{5a_{i-1}}{29500} \left(\sqrt{1126 \times 29500} + \sqrt{128 + 94} \right)
< 2a_{i-1} < \Lambda_i.
\]

For the improvement condition, we have

\[
(1 - \gamma)^{t_i - t_{i-1}} \cdot 2a_{i-1} < \frac{2a_{i-1}}{4} = a_i.
\]

By Lemma D.10 and union bounding over the intervals, we have

\[
\Pr[\exists i \in \mathbb{N}, t_{i-1} + 1 \leq t \leq t_i \text{ s.t. } X_t > \Lambda_i] < \sum_{i=1}^{\infty} \delta_i \leq \delta.
\]

To have an explicit upper bound for the convergence rate, note that

\[
\left\lfloor \frac{-2}{\log(1 - \gamma_i)} \right\rfloor \leq 1 + \frac{2}{\gamma_i} = \frac{60000 \lambda (\log \frac{1}{\delta_i} + \log 2i^2 + i^2)}{\text{gap}^2}.
\]

So \(t_i \leq \frac{60000 \lambda (\log \frac{1}{\delta_i} + \log 2i^2 + i^2)}{\text{gap}^2} \). Now, for every \(t \in \mathbb{N} \), let \(i = \left\lfloor \log \frac{t \text{gap}^2}{120000 \lambda (\log \frac{1}{\delta_i} + 2 \log \log(t + 2))} \right\rfloor \). We have \(t \geq t_{i-1} \). We also have \(\Lambda_i = 2a_{i-1} = 2^{-i-2} \leq \frac{30000 \lambda (\log \frac{1}{\delta_i} + 2 \log \log(t + 2))}{\text{gap}^2 t} \). Finally, the following strong uniform convergence holds.

\[
\Pr \left[\exists t \in \mathbb{N}, X_t > \frac{30000 \lambda (\log \frac{1}{\delta_i} + 2 \log \log(t + 2))}{\text{gap}^2 t} \right] < \delta.
\]

\[\square \]

E Details on Solving Linear Bandit with SGD Updates

In this subsection, we study linear bandit with SGD dynamic. In stochastic linear bandit, there is a true parameter \(\theta_* \in B(0, L) \subseteq \mathbb{R}^n \) and at each time step \(t \) the agent is presented with a decision set \(D_t \subseteq B(0, L) \subseteq \mathbb{R}^n \). The agent chooses an action \(x_t \in D_t \) and subsequently, the agent observe the reward

\[
y_t = \theta_*^\top x_t + \epsilon_t,
\]

where \(|\epsilon_t| \leq 1 \) and \(\mathbb{E}[\epsilon_t|x_{1:t}, \epsilon_{1:t-1}] = 0 \). We make the bounded assumption of noise term only to simplify the presentation and the sub-Gaussian case can be handled by our framework similarly. The full protocol and algorithm is described in Algorithm 1.
By expanding the SGD update, we have the following dynamics.
\[\theta_t - \theta_* = (I - A_t x_t x_t^\top)(\theta_{t-1} - \theta_*) + \epsilon_t A_t x_t. \]

The goal is to minimized the regret at time \(T \), defined by \(R_T = \sum_{t=1}^T (x_t^* - x_t)^\top \theta_* \), where \(x_t^* \) is the optimal action at time \(t \). The regret of Algorithm 1 is bounded by the following.

Theorem E.1. Setting parameters as in Algorithm 1, with probability \(1 - \delta \), for any \(\lambda > 0 \), \(L > 0 \), \(L_* > 0 \),
\[R_T \leq 34 \sqrt{2nT \max \left\{ L_*^2 L^2, n \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\} \log \left(1 + \frac{T}{n} \right)}. \]

In particular, we have \(R_T = O(n \sqrt{T \log^2 T \log(1/\delta)}) \).

In order to obtain the above regret bound, we follow the standard approach in [AYPS11] and study the dynamic of \(X_t = \|\theta_t - \theta_*\|_{V_t}^2 \) using our framework. Specifically, we will obtain the following theorem.

Theorem E.2. Setting parameters as in Algorithm 1, for any \(\lambda > 0 \), \(L > 0 \), \(L_* > 0 \), \(T > 0 \), we have
\[\Pr[\exists t \in [T], X_t > 288 \max \left\{ L_*^2 \lambda, \frac{n \lambda}{L^2} \log \left(1 + \frac{T}{n} \right) \log \frac{1}{\delta} \right\}] < \delta. \]

Comparison. Linear bandit is a well-studied problem via the standard LinUCB approach [AYPS11, DHK08]. However, the standard approaches reuses historical data and therefore it is difficult for it to be scalable. In this work, we analyze the SGD version of LinUCB. The idea of using an SGD update appeared in [KPM15], but their design of upper confidence bound (UCB) is heuristic, and no regret bound is provided. [JBNW17] develops an online-to-confidence-set algorithm to achieve \(O(n (T \log^2 (T) \log (T/\delta))^{1/2}) \) regret up to iterated log-factors. They use an online Newton step predictor as a sub-routine to get rid of the dependence on historical data. In contrast, we do not need any sub-routine and update the parameter directly and our regret bound is \(O(n (T \log^2 T \log (1/\delta))^{1/2}) \) which matches the lower bound \(O(n T^{1/2}) \) up to logarithmic factors. As a result, we both simplify the procedure and improve the regret bound for linear bandit with SGD updates.

Section structure. In the rest of this section, we provide the linearization and moment analysis in Section E.1, the improvement analysis in Section E.2, and the interval analysis in Section E.3.

E.1 Linearization and moment analysis
We would like to apply our framework on the quantity \(X_t = \|\theta_t - \theta_*\|_{V_t}^2 \). We have the following lemma on linearization.

Lemma E.3 (Linearization and moment analysis for linear bandit with SGD updates). Consider the setting in Theorem E.2. Let \(\eta \leq \frac{1}{2\lambda} \). For all \(t \in \mathbb{N} \), we have
\[X_t \leq X_{t-1} + N_t \]
where
\[N_t = 2\eta \epsilon_t (\theta_{t-1} - \theta_*)^\top x_t - 2\eta^2 \epsilon_t (\theta_{t-1} - \theta_*)^\top x_t \|x_t\|_{V_t-1}^4 + 2\eta^2 \epsilon_t^2 \|x_t\|^2_{V_t-1}. \]

For \(\Lambda > 0 \), let \(\tau \) is the stopping time for the event \(\{X_t > \Lambda\} \). For every \(T_0 + 1 \leq t \leq T \), the following following functions \((B_{T_0}, \mu_{T_0}, \sigma_{T_0}^2) \) form a moment profile for \(\{X_t\} \), \(\Lambda \), and \(T_0 \).

- (Bounded difference) \(|X_{t+1} - X_t| \leq B_{T_0}(t, \Lambda) = 3 \eta \|x_t\|_{V_{t-1}} \sqrt{\Lambda} + 2 \eta^2 \|x_t\|^2_{V_{t-1}} \).

34
For the first term, we have

\[(I - Ax_t x_t^T)(\theta_{t-1} - \theta_*)_V = \| (I - Ax_t x_t^T)(\theta_{t-1} - \theta_*)_V + 2\epsilon_t Ax_t x_t^T(\theta_{t-1} - \theta_*)_V + \epsilon_t^2 \| A_t x_t \|^2_{V_{t-1}}. \]

For the second term we have

\[
2((I - Ax_t x_t^T)(\theta_{t-1} - \theta_*), \epsilon_t Ax_t)_V = 2(\theta_t - \theta_*, \epsilon_t Ax_t)_V - 2\langle A_t x_t x_t^T(\theta_{t-1} - \theta_*), \epsilon_t Ax_t \rangle_V
\]

\[
= 2\epsilon_t (\theta_{t-1} - \theta_*)^T x_t + 2\eta^2 \epsilon_t (\theta_{t-1} - \theta_*)^T x_t \cdot \| x_t \|^2_{V_{t-1}} - 2\eta^2 \epsilon_t (\theta_{t-1} - \theta_*)^T x_t \cdot \| x_t \|^2_{V_{t-1}}
\]

So in total we have

\[X_t \leq X_{t-1} + N_t \]

where

\[N_t = 2\eta^2 \epsilon_t (\theta_{t-1} - \theta_*)^T x_t - 2\eta^3 \epsilon_t (\theta_{t-1} - \theta_*)^T x_t \cdot \| x_t \|^2_{V_{t-1}} + 2\epsilon_t^2 \eta^2 \| x_t \|^2_{V_{t-1}}. \]

In particular,

\[\| \theta_t - \theta_* \|^2_{V_t} \leq \| \theta_0 - \theta_* \|^2_0 + \sum_{i=1}^t N_i. \]

For the bounded difference by \(\eta \| x_t \|^2_{V_{t-1}} \leq \frac{1}{2} \) and Cauchy-Schwarz inequality we have

\[|1_{r \geq t} N_t | \leq 3\eta \| x_t \|_{V_{t-1}} \sqrt{\Lambda} + 2\eta^2 \| x_t \|^2_{V_{t-1}}. \]

For the conditional expectation, we have

\[|\mathbb{E} [1_{r \geq t} N_t] | \leq 2\eta^2 \| x_t \|^2_{V_{t-1}}. \]

For the conditional variance, we have

\[|\text{Var} [1_{r \geq t} N_t] | \leq 18\eta^2 \| x_t \|^2_{V_{t-1}} \Lambda + 8\eta^4 \| x_t \|^4_{V_{t-1}}. \]
E.2 Improvement analysis

Notice that we need to bound $\|x_t\|_{V_{t-1}}^2$. So we begin with the following helper lemma.

Lemma E.4. We have

$$\log \left(\frac{\det(V_t)}{\det(V_0)} \right) \leq \sum_{i=1}^{t} \eta \|x_i\|_{V_{i-1}}^2 \leq 2 \log \left(\frac{\det(V_t)}{\det(V_0)} \right) \leq 2 n \log \left(1 + \frac{\eta L^2}{n \lambda} \right).$$

Proof of Lemma E.4. By definition of V_t,

$$\det(V_t) = \det(V_{t-1} + \eta x_t x_t^\top) = \det(V_{t-1}) \det(I + \eta V_{t-1}^{-1/2} x_t (V_{t-1}^{-1/2} x_t)^\top) = \det(V_{t-1}) (1 + \eta \|x_t\|_{V_{t-1}}^2).$$

Unfolding the recursion we have

$$\det(V_t) = \det(V_0) \prod_{i=1}^{t} (1 + \eta \|x_i\|_{V_{i-1}}^2).$$

We then obtain

$$\log \left(\frac{\det(V_t)}{\det(V_0)} \right) = \sum_{i=1}^{t} \log(1 + \eta \|x_i\|_{V_{i-1}}^2) \leq \sum_{i=1}^{t} \eta \|x_i\|_{V_{i-1}}^2,$$

and

$$\sum_{i=1}^{t} \eta \|x_i\|_{V_{i-1}}^2 \leq 2 \log(1 + \eta \|x_t\|_{V_{t-1}}^2) = 2 \log \left(\frac{\det(V_t)}{\det(V_0)} \right).$$

The last step is to bound the determinant $\det(V_t)$ by

$$\log \frac{\det(V_t)}{\det(V_0)} \leq \log \left(\frac{\text{trace}(V_t)/n}{\lambda} \right)^n \leq \log \left(\frac{\eta L^2 + n \lambda}{n \lambda} \right)^n = n \log \left(1 + \frac{\eta L^2}{n \lambda} \right)$$

where (i) is by AM-GM inequality and (ii) is by the definition of V_t. \hfill \Box

Now we can bound the deviation induced by the noise.

Lemma E.5 (Improvement analysis for linear bandit with SGD updates). Consider the setting in Theorem E.2. For every $A_0 > A_1 > 0$, $\delta' > 0$, $\Lambda > 0$, and $1 \leq T_0 < T_1 \in \mathbb{N}$, let

$$\Delta = \sqrt{144 n \log \left(1 + \frac{\eta T_1 L^2}{n \lambda} \right) A \log \frac{1}{\delta'} + 16 n \log \left(1 + \frac{\eta T_1 L^2}{n \lambda} \right) \sqrt{\log \frac{1}{\delta'}}}.$$

Suppose that we have $A_0 + \Delta < \Lambda$ and $\Lambda < A_1$. Then,

$$\Pr \left[\max_{T_0 + 1 \leq t \leq T_1} X_t > \Lambda \mid X_{T_0} \leq A_0 \right] < \delta'.$$

In particular, the above implies $\Pr[X_{T_1} > A_0 \mid X_{T_0} \leq a] \leq \delta'$.

36
Proof of Lemma E.5. Given the moment profile \((B_{t_0}, \mu_{t_0}, \sigma^2_{t_0})\) in Lemma E.3, we apply a martingale concentration inequality (see Theorem 6.2 in [CL06]) to obtain the deviation of \(\sum_{t=t_0}^{T_t} N_t\) as follows.

\[
\sqrt{\sum_{t=t_0+1}^{T_t} 2\sigma^2_{t_0}(t, \Lambda) \log \frac{1}{\delta'} + 2B^2_{t_0}(t, \Lambda) \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} \mu_{t_0}(t, \Lambda)} \\
\leq \sqrt{\sum_{t=t_0+1}^{T_t} \left(72\eta^2 ||x_t||^2_{V_{t-1}} \Lambda + 32\eta^4 ||x_t||^4_{V_{t-1}} \right) \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} \mu_{t_0}(t, \Lambda)} \\
\leq \sqrt{\sum_{t=t_0+1}^{T_t} 72\eta^2 ||x_t||^2_{V_{t-1}} \Lambda \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} 32\eta^4 ||x_t||^4_{V_{t-1}} \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} \mu_{t_0}(t, \Lambda)} \\
\leq \sqrt{\sum_{t=t_0+1}^{T_t} 72\eta^2 ||x_t||^2_{V_{t-1}} \Lambda \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} 6\eta^2 ||x_t||^2_{V_{t-1}} \log \frac{1}{\delta'} + \sum_{t=t_0+1}^{T_t} \mu_{t_0}(t, \Lambda)}.
\]

By Lemma E.4, we have

\[
\leq \sqrt{144\eta n \log \left(1 + \frac{\eta T_t L^2}{n \lambda}\right) \Lambda \log \frac{1}{\delta'} + 16\eta n \log \left(1 + \frac{\eta T_t L^2}{n \lambda}\right) \sqrt{\log \frac{1}{\delta'}}.
\]

We get what we want from Proposition 2.3. \(\square\)

E.3 Interval Analysis

Now we are ready to prove Theorem E.2

Proof of Theorem E.2. Let \(t_0 = 0, t_1 = T, a_0 = \|\theta_*\|^2_{V_{t_0}}\) and

\[
a_1 = \Lambda = 288 \max \left\{ L^2_\lambda, \frac{n\lambda}{L^2} \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta} \right\}
\]

by plugging \(\eta = \frac{\Lambda}{2T}\). Now, we invoke Lemma E.5 with \(A_0 = a_0, A_1 = a_1, T_0 = 0, T_1 = T,\) and \(\delta' = \delta\). Let us verify the two conditions. First, we verify the pull out condition. We have

\[
a_0 + \Delta \leq L^*_\lambda + \sqrt{\frac{144\eta n}{L^2} \log \left(1 + \frac{T}{n}\right) \Lambda \log \frac{1}{\delta'} + 16\eta n \log \left(1 + \frac{T}{n}\right) \sqrt{\log \frac{1}{\delta'}}}
\]

\[
= \frac{\Lambda}{288} + \frac{\Lambda}{\sqrt{2}} + \frac{16\Lambda}{288} < \Lambda.
\]

For the improvement condition, we have \(\Lambda_1 \leq a_1\) trivially. By Lemma E.5 this implies that

\[
\Pr \left[\exists t \in [T], X_t > 288 \max \left\{ L^2_\lambda, \frac{n\lambda}{L^2} \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta} \right\} \right] < \delta.
\]

\(\square\)

Finally we prove the regret bound.

Proof of Theorem E.1. To prove the regret bound, by setting

\[
\beta_t = 288 \max \left\{ L^2_\lambda, \frac{n\lambda}{L^2} \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta} \right\},
\]

37
Theorem E.2 can guarantee with probability $1 - \delta$, $\theta_* \in B_t$. As a result, defining $\tilde{\theta}_t = \arg\min_{\theta \in B_t} \langle x, \theta \rangle$, $\langle x_t^*, \theta_* \rangle \leq \langle x_t, \tilde{\theta}_t \rangle$. Therefore,

$$\langle x_t^* - x_t, \theta_* \rangle \leq \|x_t\|_{V_{i-1}} \|\tilde{\theta}_t - \theta_*\|_{V_{i-1}} \leq 2\|x_t\|_{V_{i-1}} \sqrt{\beta_t}.$$

Taking the sum,

$$R_T \leq \sum_{i=1}^{T} 2\sqrt{\beta_t} \|x_i\|_{V_{i-1}}.$$

By Cauchy-Schwarz inequality, we have

$$\leq 34 \sqrt{288 T \max \left\{ L^2 \lambda, \frac{n \lambda}{L^2} \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta}\right\}} \sqrt{\sum_{i=1}^{T} \|x_i\|^2_{V_{i-1}}}$$

$$(i) \leq 34 \sqrt{2n T \max \left\{ L^2 L^2, n \log \left(1 + \frac{T}{n}\right) \log \frac{1}{\delta}\right\}} \sqrt{2n \log \left(1 + \frac{T}{n}\right)}$$

where (i) is by Lemma E.4.