Downloaded 04/24/20 to 173.48.63.192. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. © 1988 Society for Industrial and Applied Mathematics
Vol. 17, No. 4, August 1988 004

LOCALITY, COMMUNICATION, AND INTERCONNECT LENGTH
IN MULTICOMPUTERS*
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Abstract. We derive a lower bound on the average interconnect (edge) length in d-dimensional embed-
dings of arbitrary graphs, expressed in terms of diameter and symmetry. It is optimal for all graph topologies
we have examined, including complete graph, star, binary n-cube, cube-connected cycles, complete binary
tree, and mesh with wraparound (e.g., torus, ring). The lower bound is technology independent, and shows
that many interconnection topologies of today’s multicomputers do not scale well in the physical world
(d =3). The new proof technique is simple, geometrical, and works for wires with zero volume, e.g., for
optical (fibre) or photonic (fibreless, laser) communication networks. Apparently, while getting rid of the
“vyon Neumann” bottleneck in the shift from sequential to nonsequential computation, a new communication
bottleneck arises because of the interplay between locality of computation, communication, and the number
of dimensions of physical space. As a consequence, realistic models for nonsequential computation should
charge extra for communication, in terms of time and space.
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1. The tyranny of physical space. In many areas of the theory of parallel computa-
tion we meet graph-structured computational models. These models encourage the
design of parallel algorithms where the cost of communication is largely ignored. Yet
it is well known that the cost of computation—in both time and space—vanishes with
respect to the cost of communication in parallel or distributed computing. As multipro-
cessor systems with really large numbers of processors start to be constructed, this
effect becomes more and more apparent. Thinking Machines Corporation of Cam-
bridge, Massachusetts, has just marketed the “Connection Machine,” a massive multi-
processor parallel computer. The prototype contains microscopically fine-grained pro-
cessor/memory cells, 65,536 'of them, each with 4,096 bits of memory and a simple
arithmetical unit. The communication network connecting the processors is packet-
switched and based on the binary 16-cube. (A binary n-cube network consists of 2"
nodes, each node identified by an n-bit name, and an edge between nodes which differ
in a single bit.) This is implemented by packing a cluster of 16 processors and one
router circuit on a single chip. The 4,096 routers (in casu chips) are connected by
24,576 bidirectional wires in the pattern of the binary 12-cube. The last chapter of [3],
“New Computer Architectures and their Relationship to Physics or, Why Computer
Science is No Good,” expresses the dissatisfaction of the designers with traditional
computer science, ‘“which abstracts the wire away into a costless and volumeless
idealized connection. [The] old models do not impose a locality of connection, even
though the real world does.. . . In classical computation the wire is not even considered.
In current engineering it may be the most important thing.”” Here we shall argue that,
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while getting rid of the so-called “von Neumann” bottleneck,' in the shift from serial
to nonserial computing, we run into a new communication bottleneck due to the
three-dimensionality of physical space.

Models of parallel computation that allow processors to randomly access a large
shared memory, such as PRAMs, or rapidly access a large number of processors, such
as NC computations, can provide new insights in the inherent parallelizability of
algorithms to solve certain problems.’ For instance, in the form of distributing copies
of the entire problem instance, or pieces of the problem instance, among an exponential
number of processors in a linear number of steps (i.e., the number of steps in the
longest causal chain is linear). Or, as in NC, among a polynomial number of processors
in a polylogarithmic number of steps. This sometimes leads to the obscure thought
that VLSI technology opens the way to implement tree machines which solve NP-
complete problems in linear time. Now, the way a problem instance can be divided
and partial answers put together may give genuine insight into its parallelizability.
However, it cannot give a reduction from an asymptotic exponential time best algorithm
in the sequential case to an asymptotic polynomial time algorithm in any parallel case.
At least, if by “time” we mean time. This is a folklore fact dictated by the Laws of
Nature. Namely, if the parallel algorithm uses 2" processing elements, regardless of
whether the computational model assumes bounded fan-in and fan-out or not, it cannot
run in time polynomial in n, because physical space has us in its tyranny. Namely, if
we use 2" processing elements of, say, unit size each, then the tightest they can be
packed is in a three-dimensional sphere of volume N =2". Assuming that the units
have no “funny” shapes, e.g., are spherical themselves, no unit in the enveloping sphere
can be closer to all other units than a distance of radius R (Fig. 1),

3N\
(1.1) R=(2:T‘) .

FiG. 1

! When the operations of a computation are executed serially in a single Central Processing Unit (CPU),
each one entails a “fetch data from memory to CPU; execute operation in CPU; store data in memory”
cycle. The cost of this cycle, and therefore of the total computation, is dominated by the cost of the memory
accesses which are essentially operation-independent. This is called the “von Neumann” bottleneck, after
the brilliant Hungarian mathematician John von Neumann.

2 For example, in [10] it is demonstrated that any program that requires T steps on a CRCW PRAM
with n processors and m shared variables (m polynomial in n) can be simulated by a bounded degree
network of n processors such as the Ultracomputer [7] that runs in deterministic “time” O(T(log n)?
log log n) steps.
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Unless there is a major advance in physics, it is impossible to transport signals over
2%" (a > 0) distance in polynomial p(n) time. In fact, the assumption of the bounded
speed of light says that the lower time bound on any computation using 2" processing
elements is Q(2"?) outright. Or, for the case of NC computations which use n®
processors, a >0, the lower bound on the computation time is Q(n*/*).? Science fiction
buffs may want to keep open the option of embedding circuits in hyper dimensions.
Counter to intuition, this does not help—at least, not all the way (see the Appendix).
The situation is worse than it appears. At present, many popular multicomputer
architectures are based on highly symmetric communication networks with small
diameter. Like all networks with small diameter, such networks will suffer from the
communication bottleneck above, i.e., they necessarily contain some long interconnects
(embedded edges). However, the desirable fast permutation properties of symmetric
networks do not come free, since they require that the average of all interconnects is
long. (Note that “embedded edge,” “wire,” and ‘“‘interconnect” are used synony-
mously.) This brings us to the main topic of this paper, the analysis of the amount of
wire required. To prevent arguments that the results have little practical importance
because they hold only asymptotically, or because processors are huge and wires thin,
we calculate precisely without hidden constants* and assume that wires have length
but no volume and can pass through everything. The key Theorem 2 in the next section
gives a lower bound on the average edge length for arbitrary graphs that is arguably
optimal.

Let us illustrate the novel approach with a popular architecture, say the binary
n-cube. Recall that this is the network with N =2" nodes, each of which is identified
by an n-bit name. There is a two-way communication link between two nodes if their
identifiers differ by a single bit. The network is represented by an undirected graph
C=(V,E), with V the set of nodes and E< VXV the set of edges, each edge
corresponding with a communication link. There are n2"~' edges in C. Let C be
embedded in three-dimensional Euclidean space, each node as a sphere with unit
volume. The distance between two nodes is the Euclidean distance between their
centers. Let x be any node of C. There are at most 2"/8 nodes within Euclidean
distance R/2 of x, with R as in (1.1). Then, there are =7-2"/8 nodes at Euclidean
distance =R/2 from x (Fig. 2). Construct a spanning tree T, in C of depth n with
node x as the root. Since the binary n-cube has diameter n, such a shallow tree exists.
There are N nodes in T,, and N —1 paths from root x to another node in T,. Let P
be such a path, and let | P| be the number of edges in P. Then |P|= n. Let length(P)
denote the Euclidean length of the embedding of P. Since 7/8th of all nodes are at
Euclidean distance at least R/2 of root x, the average of length(P) satisfies

7R
(N=1)"" Y length(P)z=—.
PeT, 16
The average Euclidean length of an embedded edge in a path P is bounded below as
follows:

(1.2) (N-D' Y (lPl_1 ¥ length(e))%lg.

PeT, 16n

3 It is sometimes argued that this effect is significant for large values of n only, and therefore can safely
be ignored. However, in the theory of computation many results are of asymptotic nature, i.e., they hold
only for large values of n, so the effect is especially relevant there.

4 is used sometimes to simplify notation. The constant of proportionality can be reconstructed easily
in all cases, and is never very small.
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FIG. 2. At most 1/8th of all nodes in the large sphere are also contained in the small sphere centered on x.

This does not give a lower bound on the average Euclidean length of an edge, the
average taken over all edges in T,. To see this, note that if the edges incident with x
have Euclidean length 7R/16, then the average edge length in each path from the root
x to a node in T, is Z7R/16n, even if all edges not incident with x have length 0.
However, the average edge length in the tree is dominated by the many short edges
near the leaves, rather than the few long edges near the root. In contrast, in the case
of the binary n-cube, because of its symmetry, if we squeeze a subset of nodes together
to decrease local edge length, then other nodes are pushed farther apart increasing
edge length again. We can make this intuition precise.

LeMMA 1. The average Euclidean length of the edges in the three-space embedding
of C is at least TR/(16n).

Proof. Denote a node a in C by an n-bit string a,a, - - - a,, and an edge (aq, b)
between nodes a and b differing in the kth bit by

(@ QG Wy ** Ay @y WD)y -+ ay)

where @ denotes modulo 2 addition. Since C is an undirected graph, an edge e = (a, b)
has two representations, namely (a, b) and (b, a). Consider the set A of automorphisms
a,; of C consisting of

(1) modulo 2 addition of a binary n-vector v to the node representation, followed
by

(2) a cyclic rotation over distance j.
Formally, let v=v,0,* - - v,, with v,=0, 1 (1=i=n), and let j be an integer 1=j=n.
Then a,;: V-V is defined by

ayj(a)=bjy - bbb

with b;=a;®v; forall i, 1=si=n.

Consider the spanning trees «(7,) isomorphic to T,, a« € A. The argument used
to obtain (1.2) implies that for each a in A separately, in each path a(P) from root
a(x) to a node in a(T,), the average of length(a(e)) over all edges a(e) in a(P) is
at least 7R/16n. Averaging (1.2) additionally over all a in A, the same lower bound
applies:

(1.3) (Nlog N)™" ¥ |:(N—1)”1 Y (|P|" ZP length (a(e))>]>_7_8_

acA PET, T 16n
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Now fix a particular edge e in T,. We sum length (a(e)) over all @ in A, and
show that this sum equals twice the total edge length. Together with (1.3), this will
yield the desired result. For each edge f in C there are a,, a,€ A, a, # «,, such that
a,(e)=as(e)=f, and for all a € A—{a,, a,}, a(e)#f. (For e=(a,b) and f=(c, d)
we have a,(a)=c¢, a,(b)=d, and a,(a)=d, a,(b)=c.) Therefore, for each ec E,

Y. length (a(e))=2 Y, length (f).
feE

acA

Then, for any path P in C,
(1.4) Y ¥ length (a(e))=2|P| ¥ length (f).
feE

ecP acA
Rearranging the summation order of (1.3), and substituting (1.4), yields the lemma. 0O

2. Interconnect length in Euclidean space. Deriving the total required wire length
for embeddings of networks in Euclidean space, I will not make any assumptions
about the volume of a wire of unit length, or the way they are embedded in space.
Compare this with previous VLSI-related arguments (see e.g., [9]) which are the only
other ones on this issue known to me. It is consistent with our results that wires have
zero volume, and that infinitely many wires pass through a unit area. Concretely, the
problem is posed as follows. Let G =(V, E) be a finite undirected graph, without loops
or multiple edges, embedded in Euclidean d-space. (For the physical space in which
we put our computers, d =3.) Let each embedded node have unit volume. For con-
venience of the argument, each node is embedded as a sphere, and is represented by
the single point in the center. The distance between a pair of nodes is the Euclidean
distance between the points representing them. The length of the embedding of an
edge between two nodes is the distance between the nodes. How large does the average
edge length need to be?

Theorem 2 expresses a lower bound on this quantity for any graph, in terms of
certain symmetries and diameter. The new argument is based on graph automorphism,
graph topology, and Euclidean metric. For each graph topology I have examined, the
resulting lower bound turned out to be sharp. This includes the binary n-cube,
cube-connected cycles (CCC), complete graph, star, complete binary tree, and meshes
with wraparound such as ring and torus. It could be that the lower bound is optimal
in general. All mentioned graphs, except the cube-connected cycles and tree, exhibit
a type of symmetry called edge-symmetry. Because of the significance of this class of
graphs, in Corollary 4 we set off a lower bound on the average interconnect length for
edge-symmetric graphs in general.

2.1. Lower bound based on symmetry and diameter. What symmetry of a graph
yields large edge length? Not that of the complete binary tree. There the diameter is
small, yet the average Euclidean length of an embedded edge is O(1). This is borne
out by the familiar H-tree layout [9], where the average edge length is less than 3 or
4. The symmetry property we are after is “‘edge-symmetry.” We recall the definitions
from [2]. Let G =(V, E) be a simple undirected graph, and let I' be the automorphism
group of G. Two edges e, =(u,, v;) and e,=(u,, v,) of G are similar if there is an
automorphism vy of G such that y({u,, v,}) ={u,, v,}. We consider only connected
graphs. The relation “‘similar” is an equivalence relation, and partitions E into non-
empty equivalence classes, called orbits, E,, - - -, E,,.. We say that I" acts transitively
oneach E;, i=1, -, m. A graph is edge-symmetric if every pair of edges are similar
(m =1). The following property of orbits is obvious.



Downloaded 04/24/20 to 173.48.63.192. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

664 PAUL M. B. VITANYI

Property. For each pair of edges e,, e,€ E;, the set {yel': y(e,) = e,} has |[|/|E|
elements, i=1,---,m. (Hint: Let 0e E; and I'y={yel: yv(0)=0}. For e, f€E,
define y, el by y.(e)=f Fix e and f arbitrarily. Then y e y,0l'oyo, if and only if
Yeo ¥vor €15.)

We need the following notions. Let D <0 be the diameter of G. If x and y are
nodes, then d(x, y) denotes the number of edges in a shortest path between them. For
i=1, -+, m, define d;(x, y) as follows. If (x, y) is an edge in E; then d;(x, y) =1, and
if (x, y) is an edge not in E; then d;(x, y) = 0. Let II be the set of shortest paths between
x and y. If x and y are not incident with the same edge, then di(x,y)=
' Ypey Xoop di(e). Clearly,

(2.1) di(x,y)+--+d,(x,y)=d(x,y)=D.

Denote | V| by N. The ith orbit frequency is

5= N2 » di(x, )’)’
x,yeV d(xa J’)

i=1,---,m. Finally, define the orbit skew coefficient of G as M=
min {|E;|/|E|: 1= i= m}. Consider a d-space embedding of G, with embedded nodes,
distance between nodes, and edge length as above. Let R be the radius of a d-space
sphere with volume N, e.g., (1.1) for d =3. We are now ready to state the main result.
Just in case the reader does not notice, (i) is the most general form.

THEOREM 2. Let graph G be embedded in d-space with the parameters above, and
let C=(24—-1)/2¢%'3

(i) Let I,-=|E,-|"Ze€Ei I(e) be the average length of the edges in orbit E;, i=

1,---,m Then, ¥ _,_, L=Y .., 8,=CRD "

(ii) Letl=|E|™'Y, . l(e) be the average length of an edge in E. Then, 1= CRMD™".

Proof. Without loss of generality, we give the proof for the physically relevant
case d =3. If x and y are nodes, let I(x, y) be the Euclidean distance between x and
y in three-space. For i =1, - - -, m, define [;(x, y) as follows. If (x, y) is an edge in E,,
then I(x, y)=1(x, y), and if (x, y) is an edge not in E,, then [(x, y) =0. If x and y are
not incident with the same edge, then I(x, y) =|II|' Y, , Y., li(e), with IT as above.
By the triangle inequality,

(2~2) l(x’ y)éll(x’ )’)"" : ‘+lm(X,}’)-

Consider Fig. 2 again. Let x be any node of G. There are at most N/8 nodes
within distance R/2 of x, with R given by (1.1). Therefore, there are =7 N/8 nodes
at distance =R/2 from x, for N large enough. Thus, the sum of all I(x, y), taken over
all node pairs x, y, satisfies

2
(2.3) XEV I(x,y)= 71:2[ .
Using (2.1) and (2.2), we obtain from (2.3),
moL(xy) I(x,y) _7RN’
xyevio1d(x,y) xyevd(x,y) 16D ’

(2.4)

* This constant C can be improved. For d =3, C =7/16 is the value of ¢(1 — ¢*) for ¢ =2"". This function
reaches its optimum value (3/4)27%? for ¢ =2"%3. By refining the argument we can improve the constant
to 3. Namely, to obtain (2.3), sum (¢, ¢ +dc]R8(x, y) with 8(x, y) =1if cR <I(x, y) and 8(x, y) = 0 otherwise,
with ¢ ranging from 0 to 1, for each pair of nodes x, y. This replaces C =7/16 in (2.3) by C = j'(l, (1-c*)dec=2.
Similarly, in two dimensions we can improve C from 3/8 to 2/3.
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Now fix a particular edge e in some E;. We average I(y(e)) over all y in I'. By the
property above, there are precisely |I'|/|E;| distinct automorphisms in I’ that map edge
e onto edge f, for each pair e, fe E;. Therefore, the sum of I(y(e)) over all y in T
equals precisely |T'|/|E;| times the sum of the lengths of all edges in E;. Formally,
T ¥ I(y(e))=|E|" X I(f) foreachecE, i=1,---,m,
yel’

feE;

and therefore, for all x, ye V,
(2.5) ™ ZI_ L(y(x), y(») =|E| "di(x, y) fZ I(f) fori=1,---,m
Ye JEE;
We now finish the argument. Averaging (2.4) additionally over all y in I', leaves the
lower bound invariant:

- m Li(y(x), y(»)) _ TRN?
(2.6) 'y x v
yel xyev i=1 d(y(x), y(»)) 16D
By rearranging the summation order in (2.6), and substitution of (2.5), we obtain

- di(x, y) ) 7RN?
E, I(e)= .
igl x,)éV d(x, | l e:LE ()= 16D

That is, Y,_,-,, 8 =7R/(16D). Since §;=1, i=1, -+, m, this proves (i). For the
average edge length [, this yields I=) _._ (|El/|E)i=M Y, _,_, L, which proves
(). O

Example 1. Binary n-cube. LetI be an automorphism group of the binary n-cube,
e.g., A in the proof of Lemma 1. Let N =2". The orbit of each edge under I" is E.
Substituting R, D, m=1, and d =3 in Theorem 2(i) proves Lemma 1. Denote by L
the total edge length ¥, I(f) in the three-space embedding of C. Then

7RN

2.7 L=z——-.
(2.7) 2

Recapitulating, the sum total of the lengths of the edges is Q(N*?), and the average
length of an edge is Q(N'*log™" N). (In two dimensions we obtain in a similar way
Q(N*?) and Q(N'?log™" N), respectively.)

Example 2. Cube-connected cycles. The binary n-cube has the drawback of
unbounded node degree. Therefore, in the fixed-degree version of it, each node is
replaced by a cycle of n trivalent nodes [9]; whence the name cube-connected cycles
or CCC. If N =n2", then the CCC version, say CCC=(V, E), of the binary n-cube
has N nodes, 3N/2 edges, and diameter D <2.5n.

CoroLLARY 3. The average Euclidean length of edges in a three-space embedding
of CCC is at least TR/(120n).

Proof. Denote a node a by an n-bit string with one marked bit, a=

a; - a_,a;a;., - a,. There is an edge (a,b) between nodes a=
a,: - a;_,aa;. - a,andb=a,---a;_ b, A * - a,,ifeitheri=j+1(mod n), a;, = b,
and a; = b; (edges in cycles), or i =j and a; # b; (edges between cycles). Consider the
set A of automorphisms «,;, with v=uv, - v, a binary n-vector and j an integer

1=j =n, such that
a, (a4 @Gai, - a,) =bjy o byby - by,

with b, =a,®@v; and b, =a, D v, for k#i, l=k=n. Clearly, A is a subgroup of the
automorphism group of CCC. The similarity relation induced by A partitions E in
two orbits: the set of cycle edges and the set of noncycle edges. Since there are N/2
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noncycle edges, N cycle edges, and 3N /2 edges altogether, the orbit skew coefficient
M is . Substitution of R, D, M, and d =3 in Theorem 2(ii) yields the corollary. 0O

That is, the total edge length is Q(N*>log™" N) and the average edge length is
Q(N'"*log™" N). (In two dimensions Q(N**log™" N) and Q(N"?*log™" N), respec-
tively.) Similar lower bounds are expected to hold for other fast permutation networks
like the butterfly, shuffle-exchange, and de Bruijn graphs.

Example 3. Edge-symmetric graphs. Recall that a graph G=(V, E) is edge-
symmetric if each edge is mapped to every other edge by an automorphism in I'. We
set off this case especially, since it covers an important class of graphs. (It includes
the binary n-cube but excludes CCC.) Let |V|= N and D <0 be the diameter of G.
Substituting R, m =1, and d =3 in Theorem 2(i) we obtain the following.

COROLLARY 4. The average Euclidean length of edges in a three-space embedding
of an edge-symmetric graph is at least TR/(16D).

For the complete graph K, this results in an average wire length of =7R/16.
That is, the average wire length is Q(N'/?), and the total wire length is Q(N"/?).

For the complete bigraph K, _, (the star graph on N nodes) we obtain an average
wire length of =Z7R/32. That is, the average wire length is Q(N'/?), and the total wire
length is Q(N*3).

For an N-node §-dimensional mesh with wraparound (e.g., a ring for 6 =1, and
a torus for 8§ =2; for a formal definition see Appendix), this results in an average wire
length of =7R/(88N"/?). That is, the average wire length is Q(6 ' N©®7>?®) and the
total wire length is Q(N“>7373%),

To give some indication of the scope of Corollary 4, we note that every edge-
symmetric graph with no isolated nodes is node-symmetric or bipartite, by a theorem
attributed to Elayne Dauber [2], and that every Cayley graph is symmetric [1]. (A
graph is symmetric if it is both node-symmetric and edge-symmetric. A graph is
node-symmetric if for each pair of nodes there is an automorphism that maps one to
the other.)

Example 4. Complete binary tree. The complete binary tree T,, on N —1 nodes
(N =2") has n—1 orbits E,, - -, E,_,. Here E; is the set of edges at level i of the
tree, with E, is the set of edges incident with the leaves, and E,_, is the set of edges
incident with the root. Let I; and ! be as in Theorem 2 with m = n—1. Then |E;|=2""",
i=1,--+,n—1, the orbit skew coefficient M =2/(2"—2), and we conclude from
Theorem 2(ii) that I is Q(N **log™' N) for d =3. This is consistent with the known
fact I is O(1). However, we obtain significantly stronger bounds using the more general
part (i) of Theorem 2. In fact, we can show that one-space embeddings of complete
binary trees with o(log N) average edge length are impossible.®

COROLLARY 5. The average Euclidean length of edges in a d-space embedding of a
complete binary tree is Q(1) for d =2, 3, and Q(log N) for d =1.

Proof. Consider d-space embeddings of T,, d €{1, 2,3} and n> 1. By Theorem 2,

n—1
(2.8) Y 81,=CRD™".
i=1

Cram. §;=(n—-1)"", fori=1,---,n—1.

Proof of claim. The proof is by induction on n. Denote by &!"’ the ith orbit
frequency of T,, the complete binary tree with 2"—1 nodes. Note that T,.,
consists of two copies of T, with the roots attached to a root node that is in neither

¢ Using Z:';l I;= CRD™" instead of (2.8), also yields I is Q(1) for d =2, 3, but only [/ is Q(log log N)
for d =1.
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of them. Set 8’=0 for i=j. For n=2 the claim holds trivially. Assume the claim
holds for n = 2. Then we prove it holds for n+ 1, as follows. We obtain (2"*' —1)?8{"*"
by dividing ¥ .., di(x, y)/d(x, y) in two parts: with both nodes x, y in the same T,
subtree and with nodes x, y in different subtrees. The first subsum equals 2(2" —1)?6{".
To obtain the second subsum, we sum d;(x, y)/d(x, y) with x and y ranging over the
consecutive levels of different T,-subtrees (so the shortest path between x and y
contains the root of T,.,). This yields the following recurrences, foreachi=1,---,n
(with 8" =0):

n k=1

(2n+1 —1)265'”—”:2(2" _l)ZBSn)_i_ Z 2j z -
j=0  k=n—it1 k+j

Evaluating the double sum for i = n, and substituting 8{” = (n—1)"", we find after due
computation, 8" ""=n""'. O
Substitution of |E;|, |E|, m in the expression for I in Theorem 2 gives

n—1 .
2.9) I=2"-2)""Y 2"

i=1
Substitute in (2.8) the values of C, R (depending on d) and D=2(n—-1). Next,
substitute (n —1) ' for 8, and multiply both sides with n — 1. Use the resulting expression
to substitute in (2.9), after rearranging the summation, as follows:

n-—1 n—j n—1 n—1 X
l=(2"—2)“‘( Y 27y I+ Y l,.)e9<2‘““‘/‘“" b} 2““‘/"”).
j i=1 i=1

Ji=1 Jj=1
Therefore, for d =2, 3, we obtain I is (1). However, for d =1, l is Q(log N). 0O

2.2. Optimality conjecture. There is evidence that the lower bound of Theorem 2
is optimal. Namely, it is within a constant multiplicative factor of an upper bound for
several example graphs of various diameters. Consider only three-dimensional
Euclidean embeddings, and recall the assumption that wires have length but no volume,
and can pass through nodes. For the complete graph K, with diameter 1, the lower
bound on the average wire length is 7R/16, while 2R is a trivial upper bound. For
the star graph on N nodes the bounds are 7R/32 and 2R, respectively. The upper
bound on the total wire length to embed the binary n-cube requires more work. Let
N=2"

The construction is straightforward. For convenience we assume now that each
node is embedded as a three-space cube of volume 1. Recursively, embed the binary
n-cube in a cube of three-dimensional Euclidean space with sides of length S,. Use
eight copies of binary (n —3)-cubes embedded in Euclidean S, ;% S,_;Xx S,_; cubes,
with S,_;=S,/2. Place the eight small cubes into the large cube by fitting each small
cube into an octant of the large cube. First connect the copies pairwise along the first
coordinate to form four binary (n—2) cubes. Connect these four pairwise along the
second coordinate to form two binary (n — 1) cubes, which in turn are connected along
the third coordinate into one binary n-cube. This requires no more than 4 - 2"~ wires
of length at most v3/2 - S,,, another 2 - 2""> wires of length at most 3S,/2 and 2"
wires of length at most v/3 - S,. Assume S;=1 and n—1 is a multiple of 3. Since
S,=28,_;, we have S,=2"""3 The total wire length L(n) required to embed the
binary n-cube is

L(n)=2"""(v/3/2+3/2++/3)S,+8L(n-3)
(n—-1)/3

; 241'. 2n—-1—3i(m+3/2+\/§)'

A
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Substitute i = —j+(n —1)/3 and round off the bracketed sum to 5 to obtain
(n—4)/3
L(n)<5-2%""V3 vy 27
Jj=0
Summing the infinite series Y;_,27 yields an upper bound L(n) <4N*’. Together
with Lemma 1, the optimum of the average interconnect length for the binary n-cube
is in between 7R/16n and 8N/ n.

For the cube-connected cycles with N = n2" nodes, we derive an upper bound by
the same argument. Squeeze the n nodes of each cycle in a three-space cube of volume
n in the obvious way. This takes, say, about L, <n2" total interconnect length for the
cycle edges. Recall that each such cycle corresponds to a particular node of the binary
n-cube above. Apply the same construction as for the binary n-cube with S, =n"">.
Then obtain L,<4-2*"3n'/? total interconnect length for the edges between cycles.
Together with Corollary 3, we obtain that the optimum of the average interconnect
length for the cube-connected cycles is in between 7R/120n and 8N'*/(3n)+2/3.
For 8-dimensional meshes with wraparound, with =1, 2, 3 and diameter 2 '8N a
lower bound of (1) follows from Corollary 4, and the upper bound is O(1) by the
obvious embedding. Note that 6 =1 is the ring and 8 =2 is the torus. For the complete
binary tree, for d =2, 3, the H-tree construction gives an average edge length O(1)
[9], matching the (1) lower bound. In the one-dimensional case, the obvious embed-
ding gives O(log N) average edge length, matching the lower bound Q(log N) of
Corollary 5.

2.3. Robustness. Theorem 2 is robust in the sense that if G'=(V’, E’) is a subgraph
of G=(V, E), and the theorem holds for either one of them, then a related lower
bound holds for the other. Essentially, this results from the relation between the orbit
frequencies of G, G'. Let us look at some examples, with d =3.

Let a graph G have the binary n-cube C as a subgraph and N =2". Let G have
N'=8N nodes and at most N'log N’ edges. The lower bound on the total wire length
L(G) of a three-space embedding of G follows trivially from L(G)= L(C), with
L(C)=7RN/32 the total wire length of the binary n-cube. Therefore, expressing the
lower bounds in N’ and radius R’ of a sphere with volume N'yields L(G)=7R'N'/512,
and the average edge length of G is at least 7R'/(512 log N').

Let the binary n-cube C have a subgraph G with n2" "' —2""° edges. The lower
bound on the total wire length L(G) of a three-space embedding of G follows from
the observation that each deleted edge of C has length at most twice the diameter R
of (1.1). That is, L(G)= L(C)—2""*R with L(C) as above. Note that G has N'=
2" —(2"7%/n) nodes. Therefore, expressing the lower bounds in N’ and radius R’ of
a sphere with volume N’ yields L(G)=5RN/32=5R'N’'/32, and the average edge
length of G is at least 5SR/16n~5R’'/(16 log N').

3. Interconnect length and volume. An effect that becomes increasingly important
at the present time is that most space in the device executing the computation is taken
up by the wires. Under very conservative estimates that the unit length of a wire has
a volume which is a constant fraction of that of a component it connects, we can see
above that in three-dimensional layouts for binary n-cubes, the volume of the N =2"
components performing the actual computation operations is an asymptotic fastly
vanishing fraction of the volume of the wires needed for communication:

volume computing components
P g p c O(N—1/3)

volume communication wires
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If we charge a constant fraction of the unit volume for a unit wire length and add
the volume of the wires to the volume of the nodes, then the volume necessary to
embed the binary n-cube is Q(N*?). However, this lower bound ignores the fact that
the added volume of the wires pushes the nodes further apart, thus necessitating longer
wires again. How far does this go? A rigorous analysis is complicated and is not
important here. The following intuitive argument indicates well enough what we can
expect. Denote the volume taken by the nodes as V, and the volume taken by the
wires as V,,. The total volume taken by the embedding of the cube is V,=V,+ V,,.
The total wire length required to lay out a binary n-cube as a function of the volume
taken by the embedding is, substituting V,=47R>/3 in (2.7),

L= 1N ()"
)= .

Since lim,,. V,/V,, - 0, assuming unit wire length of unit volume, we set L(V,)~ V,.
This results in a better estimate of Q(N>*'?) for the volume needed to embed the binary
n-cube. When we want to investigate an upper bound to embed the binary n-cube
under the current assumption, we have a problem with the unbounded degree of unit
volume nodes. There is no room for the wires to come together at a node. For
comparison, therefore, consider the fixed-degree version of the binary n-cube, the CCC
(see above), with N = n2" trivalent nodes and 3N /2 edges. The same argument yields
Q(N*?1og™*? N) for the volume required to embed CCC with unit volume per unit
length wire. It is known, that every small degree N-vertex graph, e.g., CCC, can be
laid out in a three-dimensional grid with volume O(N®'?) using a unit volume per
unit wire length assumption [5]. This neatly matches the lower bound.

Because of current limitations to layered VLSI technology, previous investigations
have focused on embeddings of graphs in two-space (with unit length wires of unit
volume). We observe that the above analysis for two dimensions leads to Q(N?) and
Q(N?log™ N) volumes for the binary n-cube and the cube-connected cycles, respec-
tively. These lower bounds have been obtained before, using bisection-width arguments
and are known to be optimal [9]. It can be even worse, namely, in [6], [12] it is shown
that we cannot always assume that a unit length of wire has O(1) volume (for instance,
if we want to drive the signals to very high speed on chip).

4. Conclusion. In contrast to other investigations, my goal here was to derive hard
lower bounds on the total wire length independent of the ratio between the volume of
a unit length wire and the volume of a processing element. Clearly this is desirable,
since this ratio changes with different technologies and granularity of computing
components. The arguments we have developed are purely geometrical, apply to any
graph, and give optimal lower bounds in all cases we have examined.

Such technology-independent, but huge, lower bounds are a theoretical prelude
to many wiring problems currently starting to plague computer designers and chip
designers alike. Formerly, a wire had magical properties of transmitting data “instantly”
from one place to another (or better, to many other places). A wire did not take room,
did not dissipate heat, and did not cost anything—at least, not enough to worry about.
This was the situation when the number of wires was low, somewhere in the hundreds.
Current designs use many millions of wires (on chip), or possibly billions of wires (on
wafers). In a computation of parallel nature, most of the time seems to be spent on
communication—transporting signals over wires. Thus, thinking that the von Neumann
bottleneck has been conquered by nonsequential computation, we are unaware that a
non von Neumann communication bottleneck looms large. The following innominate
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quote covers this matter admirably:

Without me they fly they think;
But when they fly I am the wings.

It is clear that these communication mishaps will influence the architecture and
the algorithms to be designed for the massive multiprocessors of the future, just like
existing algorithms influenced (or were inspired by) the novel architectures of today.
What is needed, therefore, are realistic formal models for nonsequential computation.
In particular, we need to formulate the appropriate cost measures for multicomputer
computations. Such costs must account for the communication overhead in (physical)
time due to the computer aggregates used in the computation and the overhead in
space due to the topology of those aggregates. That is beyond the scope of this paper.

Mesh-connected architectures may be the ultimate solution for interconnecting
the extremely large (in numbers) computer complexes of the future. Mesh architectures
have desirable properties of scalability, modular extensibility, and uniformity, when
embedded in physical space. These notions are generally used in a very loose fashion,
and with a great deal of intuition, so I do not try to define them here. Circuits with
lower bound f(N), f(N)— o for N -0, on the average interconnect length do not
scale well. (N is the number of nodes.) Namely, composing a larger such circuit from
smaller ones, the average wire length needs to increase. Thus, embeddings of such
circuits are not uniformly modular extensible. This positive dependency of the intercon-
nect length on the number of nodes to be connected we call nonscalability.

Nonscalability. No edge-symmetric graph on N nodes with a diameter o(N'?)
is scalable (i.e., uniformly modular extensible) when embedded in physical space.

Tomorrow, optical communication will be used in multicomputers, either wireless
by means of lasers/infrared light or by using virtually unlimited bandwidth optical
fiber orintegrated waveguides [8]. In the current jargon: we can obtain three-dimensional
mesh interconnect structures by stacking wafer circuit boards and providing optical
interconnections vertically between wafers over the entire wafer in addition to planar
connections. This may use hybrid mounting of optical components, combined with
integrated optical waveguides and lenses on a large area silicon wafer-scale integrated
(WSI) electronic circuit combining electronic and photonic functions [4]. However, it
is unlikely that any clever scheme or technology will free us from practical communica-
tion problems forever. Even though Nature is not malicious, she is subtle.

Appendix A. What happens with embeddings in higher-dimensional spaces? Lest
the reader conclude that I indulge in the same avoidance of reality that I decry in
others, [ have delegated this digression to the Appendix. These mathematical curiosities
have no more bearing on realistic formal models for multicomputers than space warps
have on the theory of propulsion of space vehicles.

A.1. Communication and interconnect length in higher dimensions. Assume that a
node (processor) has unit volume, say spherical, in any number d of dimensions we
care to consider. This is in order to obtain comparable reasoning to the physical
relevant case of three dimensions. Our intuition about higher-dimensional Euclidean
geometry turns out to be quite unreliable. The Euclidean volume V, of a d-dimensional
sphere of radius R, is

. (Iztl)dﬂ.d/2

V"“r(1+d/2)’
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with I' the gamma function providing a natural generalization of the factorial function.
With radius 1 this gives, for dimensions d =1, 2, - - -, the volumes 2, 3.14, 4.18, 4.93,
5.26, 4.72, 4.06, - - - . The volume of the unit radius sphere comes to a maximum for
d =5 and falls off rather rapidly toward zero as d approaches infinity. On the other
hand, d can be chosen to minimize the radius of a d-dimensional sphere of volume
N. However, even with the optimal d (a function of N) the radius is Q(log"? N).
Namely, setting V, = N and d =2k, we have

t 2k_(7T(R2k)2)k
N= (F) (Rax) “'"'_ki_-

By Stirling’s approximation,

k
Ry ~ o (NV27k)"*.
o

Observe that the lower bound in Theorem 2(i) is therefore Q(N'/?- d'/2D™"). Differen-
tiating, we find that R,, reaches its minimum R%}" for

k~1log N,

where log denotes the natural logarithm. Therefore, with N'/'°¢8N = ¢, and (27k)"/* |1

for k>0, we obtain
. log N
RE"~ 22
w

We may think that it is the unfortunate accident of having a physical space of only
three dimensions that makes it hard to embed edge-symmetric graphs with small
diameter. However, this is not the case. By this analysis and Theorem 2, to embed
edge-symmetric graphs of diameter o(log"/?> N) requires the average length of an
embedded edge to rise unbounded with N, independent of the number of dimensions.
As another curiosity, the average edge length of the complete binary tree in d >1
dimensions is not O(1), but turns out to be Q(d'/?). That is, in higher dimensions the
H-tree construction increasingly loses efficiency.

A.2. Meshes in higher dimensions. Let N =n® n a positive integer. Define a
8-dimensional mesh with wraparound as a set of nodes (i, - - -, i5), ;=0,- -+, N'/* =1
(1=j=9). Node (i, ', i5) is connected by an edge with node (j,, - -, js), if they
are equal in all coordinates except one where they differ by 1 mod N'/°.

Again assume that a node (processor) has unit volume in any number d of
dimensions we care to consider. For d-dimensional embeddings of N-node, §-
dimensional meshes with wraparound we have an average interconnect length
=(2-1)R,/(296N"?). This lower bound is a small positive constant for d = & and
d is small (this is necessary because of the curious behavior of the ratio between
volume and radius in higher dimensions). Since the lower bound can be matched by
an upper bound, such meshes are feasible architectures for large N. However, since
the average Euclidean interconnect length exceeds

5 NG/ ds /i
2me’
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it rises unbounded with N for 6§ >d. (It also rises unbounded with d for fixed N
and 8.)
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