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Abstract 

Queues, stacks (pushdown stores), and tapes are storage models which have direct applications in 
compiler design and the general design of algorithms. Whereas stacks (pushdown store or last-in-first- 
out storage) have been thoroughly investigated and are well understood, this is much less the case for 
queues (first-in-first-out storage). In this paper we present a comprehensive study comparing queues to 
stacks and tapes. We address off-line machines with a one-way input. In particular, 1 queue and 1 tape 

(or stack) are not comparable: 

(1) Simulating 1 stack (and hence 1 tape) by 1 queue requires f~(n4/3/logn) time in both the deter- 
ministic and the nondeterministic cases. 

(2) Simulating 1 queue by 1 tape requires ta(n 2) time in the deterministic case, and ~'2(n4/3/Iogn ) in 

the nondeterministie case; 

We further compare the relative power between different numbers of queues: 

(3) Nondeterministically simulating 2 queues (or 2 tapes) by 1 queue requires f2(n 2/(log2n loglogn)) 
time and deterministically simulating 2 queues (or 2 tapes) by 1 queue requires ~(n  2) time. The 

second bound is tight. The first is almost tight. 

(4) We also obtain the simulation results for queues: 2 nondeterministic queues (or 3 pushdown stores) 
can simulate k queues in linear time. One queue can simulate k queues in quadratic time. 

1. Introduction 

It has been known for over twenty years that all multitape Turing machines can be simulated on- 
line by 2-tape Turing machines in time O (nlogn) [HS2], and by 1-tape Turing machines in time O (n 2) 
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the U.S. Army Research Office under Contracts DAAG29-79-C-0155 and DAAG29-84-K-0058, and by the National Science 
Foundation under Grant 832391 -A01 -DCR. 
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[FIU]. Since then, many other models of computation have been introduced and compared. (See [Aa, 
DGPR, HS1, HS2, HU, LS, PSS, Pa, Vi2].) In addition to different storage mechanisms, real-time, on- 
line and off-line machines have been studied. An on-line machine is expected to give an answer after 
reading each prefix of the input. In this paper, we consider the off-line machines, where an answer is 
given only once the whole input has been read. We also use the one-way input convention, where the 
machine has a one-way input, a finite control and access to some storage. 

The relative power of stacks and tapes is more or less welt known. For example, for the nondeter- 
ministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks = k stacks = k tapes, where A <B 
means that B can simulate A in linear time, while A cannot simulate B in linear time. In most of the 
cases, close lower and upper bounds are known for the simulation [Ma, Lil ,  Vil, LV, Li2]. 

In this paper, we give a complete characterization of (off-line) queue machines. The main theorems 
show that one queue machines are not comparable to one stack or one tape machines, both deterministi- 

cally and nondeterministically. We also compare the relative power of machines having different 
number of queues. We use Kolmogorov complexity techniques [Ko, Ch, So] to prove the theorems, 
together with some new techniques to enable us to deal with queues. The Kolmogorov complexity of a 
string x, K (x), is the length of the shortest program printing the string x. By a simple counting argu- 

ment, we know that there are strings x of each length such that K ( x ) >  Ix]. These swings are called 
incompressible or K-random. 

In section 2, we introduce the jamming lemma which is used in further proofs. In section 3, we 
show that deterministically simulating a queue by a tape takes quadratic time (infinitely often). (For the 
lower bound on the simulation time of 1 queue by 1 tape in the nondeterministic case, see [Li3, LV].) In 
section 4, we have a lower bound for nondeterministically simulating a stack by a queue. In section 5, 

we present lower and upper bounds for simulating k queues by 2 queues or 2 queues by one queue. 

2. The Jamming Lemma 

In this section, we are concerned with one-tape and one-queue off-line TM's where the Turing 
machine has one 1-way input tape in addition to one work tape or one queue, each with one head. We 
will call the input tape head h 1 and work tape head or queue head h 2- We say that a poll occurs hen the 

head h 1 moves one cell. At any time t ,  hi( t  ) denotes the position of head h i on its tape. 

In the following lower bound proofs, the input will be separated into blocks. We wi/1 observe the 
behavior of the machine as the head polls the successive cells in a block. Although the definitions and 
the Jamming Lemma are stated with respect to one-tape TM's for simplicity, they also apply to one- 

queue machines where the work tape is replaced by a queue. 

Definition 2.1: Let x i be a block of input, and R be a tape segment on the storage tape. We say that 

M maps x i into R if h 2 never leaves tape segment R while h 1 is reading x i. We say M maps x i onto 

R if h 2 traverses the entire tape segment R without leaving R while h 1 reads x i. [] 

Definition 2.2: A crossing sequence (c.s.) associated with the boundary between two contiguous 

work tape cells is a sequence of ID's of the form (M (t),h l(t )), where M (t) is the state of the machine at 

time t, for each time t when the machine crosses that boundary. [] 

We prove an intuitively straightforward lemma for one-tape machines with one-way input. The 
lemma states that M cannot poll too many input symbols, with h 2 located on a given small tape segment 

bordered by short c.s.'s, without losing some information. Formally: 
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Jamming  Lemma.  Let the input string start with x#  = x lX2 • • • xk# , with the x i 's blocks o f  equal 

length C.  Let  R be a segment o f  M '  s storage tape and let I be an integer such that M maps each block 

xil . . . . .  xit (of the xi'  s ) into tape segment R .  The contents o f  the storage tape of  M ,  at time t# when 

hl(t#) = Ix#1 and h l ( t # - l )  = Ixl ,  can be reconstructed by using only the blocks x j l "  "xjk ~ which 

remain from x 1 " " "xk after deleting blocks x i~ . . . . .  xi: the final contents o f  R ,  the two final c.s.' s on the 

left and right boundaries o f  R , a description of  M and a description o f  this discussion. 

Remark 2.3: If we want to give a description of a sequence of different strings of variable length, 
we use self-delimiting strings, adding O (logn) bits for each string of length n .  

Remark  2.4: Roughly speaking, if the number of missing bits )",J=llXljl is greater than the 

number of added description bits then the Jamming Lemma implies that either x=x I " ' ' x k  is not 

incompressible or some information about x has been lost. 

Proof of the Jamming Lemma.  Let the two positions at the left boundary and the fight boundary 
of R be 1R and r R , respectively. We now simulate M. Put the blocks xj  of xj ~ • • • xjk ~ in their correct 

positions on the input tape (as indicated by the h 1 values in the left and fight c.s.'s). Run M with h 2 

staying to the left of R.  Whenever h 2 reaches point IR, the left boundary of R,  we interrupt M and 

check whether the current ID matches the next ID,  say ID i, in the c.s. at l R. Subsequently, using IDi+ 1, 

we skip the input up to and including h l(ti+l), adjust the state of M to M(ti+l), and continue running 

M. After we have finished left of R,  we do the same thing fight of R.  At the end we have determined 
the appropriate contents of M ' s  tape, apart from the contents of R,  at t# (i.e., the time when h 1 reaches 

#). Inscribing R with its final contents from the reconstruction description gives us M ' s  storage tape 
contents at time t#. Notice that although there are many unknown x i 's, they are never polled since h 1 

skips over them because h 2 never goes into R.  [] 

Remark  2.5: If M is nondeterministic, then we need to rephrase "contents of storage tape" by 

"legal contents of storage tape", which simply means that some computation path for the same input 
would create this storage tape contents. 

3. Lower bound for simulating one queue by one tape 

We present a tight lower time bound for deterministic simulation of one queue by one off-line tape 
with one-way input. ~ o r  a lower bound for the nondeterministic case, see [LV] or ~ i3] . )  

Remark.  Only in this section 3, g ( n ) e f ~ f f ( n ) )  means "there is a positive constant 8 such that 
g (n)>Sf (n) infinitely often". Everywhere else the results hold for the stronger variant of f2: "there 

exist a positive constant 8 and a positive integer n 0 such that g (n)>Sf (n) for all n >n 0"- 

Let <~-ef~ mean 'is a prefix of.' Let Z={O,1}x{O,l,O,l,e}, where e denotes the empty string, and 

consider the words over Y~ of the form 

(a 1,b 1)(a2,b2) " • " (an,b n) 

such that for all i ,  l<i  <n,  

ai~ {0,1} and bi~ {0,1,0,1,e} 

b 1 b 2" '"  bi <-prefix d 1 b ld2 b 2 " "  dibi • 

where for any pair ( a ,b )e  Z we define d by 

(3.1) 

d =a i f b  = e  

d = E i f b  ¢ e .  
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Remark .  Words of this form constitute the witness language Lq below, which is real-time accept- 

able by a queue but which requires ~(n  2) time for acceptance by a tape. Think of the sequence 

a la2 - - .  a n as the n-length sequence of  bits to be stored consecutively in the queue, and the sequence 

b l b 2 " - . b  n, of length m (m~n),  as the sequence of  bits which are consecutively unstored from the 

queue. (Note, that while a i d e  for all i ,  it is possible that bi=E for some i (l~/~.n). That is, (ai,bi) 

specifies that e be unstored.) For technical reasons in the proof below, we have to complicate this 

scheme. All of  the prefix of  a i a 2" " " an which has been stored in the queue previously, needs to remain 

stored in the queue forever. Nonetheless, to force the queue to operate correctly we need to be able to 

unstore it. To combine both requirements, each pair (ai,bi)  causes the queue not only to store a i and to 

unstore b i (possibly e), but also to store b i anew. Below we show that the scheme of barred and 

unbarred a i ' s  , related to whether or not the associated 'unstore' b i ' s  are 13 or not, makes it possible to 

retrieve the complete sequence of a i ' s ,  in the order they have been stored originally, from the queue 

contents at each instant. 

The witness  language Lq consists of all words satisfying (3.1). To aid intuition, we can view Lq as 

the language accepted by a queue Q as follows: 

• Initially, Q is empty. 

• F o r a l l i > l ,  input  c o m m a n d  '(ai ,bi) '  t o Q  is interpreted by Q as ' i f  b i=e then append ai to the rear 

e lse  append if/ to the rear; delete b i up front; append b i to the rear.' (Here 

'actionl;action2;action3' denotes the sequential execution of actionl, action2 and action3.) 

• A word ( a x ,b l )  " "  (an,bn) is accepted if the sequence of  successive front items deleted in the 

actual computation by Q on this input is the sequence b 1 . . . . .  b n. All other words are rejected. 

The properties of  words of  form (3.1) we need in the sequel are expressed in the following three lem- 

mas. 

L e m m a  3.1: F o r  a w o r d  o f  the f o r m  (3.1), I d l b  l d 2 b 2 "  • "d ib  i t - I b lb2" " "bi I = i f o r  all i ,  

1 <i ~ n .  

Proof: Obvious. [] 

L e m m a  3.2: F o r  a w o r d  o f  the f o r m  (3.1) w e  can reconstruct  a la2 • • • a n f r o m  the n - length suffix 

o f  d l b  ld2b2 - ' -  dnb  n. 

Proof:  Let the n -length suffix be x i x 2" " "xn with x i ~ {0,1,0,1} ( 1 <i <n ). By (3.1) one of the fol- 
m - -  

lowing two cases must hold (note that the combination xn_lE {0,1} a n d x n ~  {0,1} is impossible): 

(a) Assume Xn,Xn_l~{O,1}. Then an--x n and bn=e by (3.1). Consequently, x l x 2 " " x n _  1 is the 

(n-1)-length suffix Ofd lb  ld262 • "" dn_lbn_ 1 by (3.1). 

(b) Assume Xn_le{O,1}.  Then an=Xn_ 1 and bn=x n by (3.1). Consequently, XnX l X 2 " " x n _ 2  is ' the 

(n-1)-length suffix of  d l b  1d262 " ' "  dn_lbn_ t by (3.1). (Because b n is the last unstored  symbol 

which has been appended to the rear of  the queue, it is the last symbol to have been unstored from 

the front of the queue. Therefore, to restore the queue contents just before (an,bn) is processed, we 

delete suffix anb n f romx lX2 • • " x n and prefix the remaining string with bn.) 

Iterating this reasoning n times we recover all of  a la 2" " " an" This proves the lemma. [] 

L e m m a  3.3: F o r  a w o r d  o f  the f o r m  (3.1) wi th  I b 1 " "" bn [ = m  , we  can recons truc t  a la2 • • " a,n/2 

f r o m  b l " " bn. 

Proof:  Let 

b l b 2 .  . . bn =XlX2. . .Xm,  xi~{O,l ,O,1 } (l.g/_q,m). 
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By (3.1) we have d 1 = x  1. 

(a) If  x1~(0,1 } then a l=x  1 and bl=e. Consequently, x z ' " x , n  is the (m-l ) - length  prefix of 

d2b2" " dnb n by (3.1). 

(b) If  x l~{0 ,1  } then El=X 1 and bl=x 2. Consequently, x 3 "  "x m is the (m-2)-length prefix of 

d2b2 " " dnb n by (3.1). 

Iterating this reasoning m/2 times we recover all of  a la2  - " • aml 2. This proves the lemma. [] 

Theorem 3.2. It requires f l(n 2) time to deterministically simulate one queue by one off-line tape 

with one-way input. 

Proof. (I). Assume, by way of contradiction, that an off-line deterministic 1-tape machine M with 
one-way input accepts Lq in time T(n )~ f2(n 2). We derive a contradiction by showing that then some 

incompressible string has too short a description. Without loss of generality, it can be assumed that M 
has a semi-infinite storage tape [0,00) on which it writes only O's and l ' s ,  The positions at time t are 
denoted by hl ( t  ) and h2(t ). By t i we denote the time when the i th  input command is polled, i.e., 

h l(ti)=i and h l( t i-1)=i-1.  Fix a constant C and the word length n as large as needed to derive the 

desired contradictions below and such that the formulas in the sequel are meaningful. Below we show 
that T (m)>m 2/C 4, for some m ,  4~n IC ~an ~n,  which contradicts the assumption and proves the theorem. 

First, choose an incompressible string x ~ {0,1}* of length n .  We consider the behavior of M on a 

fixed input prefix. This can be any string z such that X = X l X 2 "  "x n, Y---YLY2"" "Yn and 

z=(x l , y l ) (x2 ,Y2) . . .  (xn,Yn), for some y such that z satisfies (3.1). Therefore, zELq.  If  many polls 

occur while the head h 2 is in some small area, then we can show that x is not incompressible (Case 1). 

Otherwise, we choose particular yi's, among the possibilities which remain under this constraint, so as 

to suit the argument in Case 2 below. 

Case I (Jammed). Fix an integer m such that "~n/C ~rn<n (any such integer m will do) and con- 

sider the m -length prefix z (m) of z. By (3. I), if  z is in Lq then so is each prefix of z, so in particular 

z (m)¢Lq.  Assume, by way of contradiction, that in the accepting computation on z (m) at least 2ta lc  

polls occur, with h 2 on a particular (m /C )-length tape segment R = [a, a +m IC). Consider the two tape 

segments R t and R r of length I R I/4 left and fight of R. Choose positions Pt in Rt and Pr in R r with the 
shortest c.s.'s in their respective tape segments. These c.s.'s must both be shorter than m / C  2, for ff the 
shortest c.s. in either tape segment is longer than m / C  2 then M uses T (m)~,n 2/4C3 time, which is a 

contradiction. (If 0<,7 <m/4C then set I Rl I =a ,  so that RtRR r c[0,o.). Choose pt--O and note that the 

length of the associated c.s. can be set to 0.) We show that a short program can be constructed which 

accepts only x.  Let the bits o fx  1 " " "xm polled with h 2 outside tape segment [Pt,Pr], concatenated in 

the order in which they occur in x ,  form a string u.  

As explained below, we can construct a program to check if a string x ' ¢  {0,1}* equals x,  using as 
a description the values of n ,  m,  C, a ,  the locations ofpl  andPr , the two c.s.'s atpt andPr, the self- 

delimiting version of u ,  the bits Xm+ 1 • "" x n, the final contents of [Pt,Pr] at time tin+l, the state of M at 

time tin+ 1 and h2(tra+l ). 

This description of x requires no more than n - - ~  bits, for sufficiently large C and n .  However, 

this contradicts the incompressibility ofx since K(x)>n and m >4-nn/C. 

To check whether a string x" equals x ,  check Ix ' l=n andx'm+ 1 • • • X'n=Xm+ 1 " " "Xn. By the Jam- 
ming Lemma (using the above information as related to M ' s  processing of the input) reconstruct the 

contents of M ' s  storage tape at time tin+ 1, after processing z (m)=(x I,Y 1)" " " (xm,Ym)" Simulate M from 

time tin+ 1 onwards on an input suffix 
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(O,y,,,+1)(O,yra+2) " " " (O,y 2.) (3.2) 

with lYre+lYre+2 " " "Y2m I =rn, and such that M accepts for the chosen Yi'S (m+l<i<2m). It is easy to 

see from (3.1), that there is such a suffix (3.2) for which M accepts if X'l x ' 2 .  "" x m=X 1 x 2"" "Xm" In 

that case x '=x,  and by (3.1) and Lemma 3.1, Ym+lYm+2""Y2m equals the m-length suffix of 

x lY  1 " " "XmYm" By Lemma 3.2, we can retrieve x lX2 • • • x m from this suffix. Suppose, there is a x ' # x  

such that 
• • • • • . r • 

z ( m ) = ( x  1,Y 1)( x 2,Y 2) - - (x  m,Y m) (3.3) 

matches the description above, and z '(m ) drives M into the same configuration at time t" m + l  of M ' s  

(m+l)th poll in its computation, as the configuration into which z (m) drives M at time tin+ 1. Conse- 

quently, the concatenation of 0 .3)  and (3.2) is also accepted by M. Note, that x '  differs from x only in 
the first m bits, in particular in those bits polled with h 2 positioned in tape segment [pt#~r]. We can cut 

and paste the computations based on z ' (m)  inside [PI,Pr ] and based on z (m) outside [Pl,Pr], and still 

have M accept. The 'cut and paste' computation is accepting up to the (m+l)th poll because both com- 
putations satisfy the description above, and afterwards because the two computations are identical from 
the (m+l)st  poll onwards. Let the resulting string composed in the obvious way from x i • • 'x,n and 

• t x ' l " " x  m be ~(m)- - -~ l ' "X  m with ~iE{Xi ,X i} ( l ~ / ~ r n ) .  Above we saw that we can retrieve 

x lx2" • "x,n from Y,,,+I " "" Yz-n, by Lemma 3.1 and Lemma 3.2. However, this contradicts the accep- 

tance by M of the cut and paste computation based on z (m) and z '(m ), because that entails the retrieval 

of X(m) ~x  lX2 "-" Xra from yra+l " '"  Y2,n by (3.1), Lemma 3.1 and Lemma 3.2. 

Case 2 (Not jammed). Let n '  be any integer such that 4--nn /C ~n'<n. Let z (n') be the n'-length 
prefix of an n-length input z. By (3.1), if z ~ Lq then z (n')~ Lq. Assume, by way of contradiction, that 

in the accepting computation of M on z(n ')  at most 2n'/C polls occur with h 2 on any particular 

(n'/C)-length tape segment R = [ a , a +  n'/C). 

We now define the particular input z we need. Let x=x ix 2" " "xn be as in Case 1. Determine the Yi'S 

(1 ~ . ~  ) in input z = (x 1,Y 1)'" " (xn,Yn) as follows. 

(1) Let M start its computation with y l=e. So first (x 1,Y 1) is polled. 

(2) Let M continue its computation and suppose we have determined (x 1,Y 1 )  " " ' (Xi-l ,Yi-1) and M 

polls for the i th time. Let t i be the time at which M polls (x i ,Yi )" If h 2(ti)~ [0,n/4) then yi=e, else 

Yi ge .  In the latter case Yi is be determined uniquely from (x I,Y 1)" " " (Xi-l ,Yi-1) by using the rela- 

tion y lY 2" ' "  Yi <prefix ~ IY 1 " "  Xi-lYi-1, that is, using (3. I) and the fact that y l=e by (1). 

We now fix a particular value m as determined by M ' s  computation on z. 

(a) By contradictory assumption (with n "--n), we have that <n/2 polls occur on [0,n/4) and _>n/2 polls 

occur on [n/2,~). 

(b) Since T (n)d~ f2(n 2), we have h 2(ti)~ [0,n/4), for all i ( l<i  <4n-n ). 

Let l ( t )  and r( t )  be the number of polls for (xi,Yi)'s, with h2(ti)~ [0,n/4) and h2(ti)~ [n/4,~,) (l<-ti<t), 

respectively. By (a) and (b) there is an integer m such that l ( t )>r(t) ,  for l<t<t m, l(tm)=r(tm) and 

4-nn/C_~n Sn. This m is the break even length where the number of polls left and right of position hi4 

on the tape is equal for the first time. 

Claim 1. As a consequence of this definition of m and (1) and (2), it follows that 

r (tm)= I Y 1" " "Ym I =m/2 for input prefix 

z(m ) = (x 1,Y 1 ) " "  (xm,Ym)" 
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Since each prefix of z satisfies (3.1), we can retrieve x l ' " x m j  4 from prefix Y l ' "  "Yrn of 

£ lY 1"'" xrnYrn by Lemma 3.3. 

Claim 2. By definition, all Yi'S in Y] "" "Yrn, which are different from e, are polled on [hi4:,,). 

Since 1 (trn/4)>r (tra/4), at most m/8 of the x i's in x 1 " "" Xm/4 are polled on [n/4,**). 

In the computation on the m-length prefix z (m) of z, choose the point p with the shortest c.s. in 
[n/4 - m /C ,  n/4). This c.s. is shorter than m/C 2; otherwise, the running time T (m)>m 21C 3, which is a 

contradiction. 

As explained below, we can construct a program to check if a string x'~{O,1}* equals x ,  using as 
a description the values of n ,  m,  the position of p ,  the c.s. at p ,  the string u of concatenated bits of 

X 1 " " " X m l 4 ,  polled with h 2 on [p,,~) and the string x ( m / 4 ) + l  " " " X n -  

m 

This description o fx  requires no more than n - -~-  bits, for sufficiently large C and n.  However, 

this contradicts the incompressibility ofx since K (x)>n and m >_'~n/C. 
p • ~ . .  

To check whether a string x" equals x,  check Ix" I=n and x (m/4)+l " " "X n--X(m/4)+l "X n. Let 
u '  be the result of deleting the bits in x '  in the same positions as the ones used to obtain u from x. 
These positions are determined by the crossing sequence at p .  Check u '=u .  If the test is negative then 
x '  ~ x ,  else x" can only differ from x on positions where x I " " "xm/4's bits are polled with h 2 on [0,p ). 

Run M on z ' (m),  that is, the input constructed according to (1), (2), using the m-length prefix 

X'l x '2" " "x ',n of a candidate x ". Whenever h 2 crosses p we interrupt M and check if the current ID in 

the computation is consistent with the corresponding ID in the c.s. at p .  

By construction everything matches up to the end of processing input z ' (m),  and M accepts, if 

x '=x. Assume that x '  ~x  matches the description as well. Therefore, x "1x'2" " "x ~m14 ~" X 1 x 2"" "Xm/4 

and Xti=X i for all i (mt4+l<i~.n). Let the input z '(m),  based on x ' l x ' 2 "  "x'm and constructed 

according to (1),(2), be 

z (m) = (x 1,Y 17( x 2,Y 2 ) " "  (x m,Y , . ) -  

Let the input based on x ix z" " "x,n, constructed according to (1), (2), be 

z (m ) = (x l,Y l)(x 2,Y 2) " " (Xm,Ym) . 

By assumption, x '  and x differ only on the first m/4 bits, and then only on the bits that are polled left of 

p .  Let the final accepting position of h 2 for M ' s  computation on z (m) be right of p .  (If it is left of p 

interchange z and z" below.) Cut and paste the computations on z (m)  and z ' (m)  such that M runs on 

input z '(m ) with h 2 left of position p ,  and M runs on input z (m) with h 2 right of position p .  Let ~(m) 

be the input composed in this way from z ' (m)  and z(m).  By construction, the computation on ~(m) is 

also an accepting computation of M. Consequently, ~(m) satisfies (3.1). Then, 

~(m) = (a 1,b 1)(a2,b2) • • • (am,bra) 

with (ai ,bi)  is either (xi,Yi) or (x "i,Y ti) ( i~ i  ~ ) .  Because both z(m ) and z '(m ) match the description, 

(x'i,y 'i) is polled fight of position p if and only if (x i,yi) is polled right of position p for all i ,  1 _<i ~ 'n.  

Therefore, yi=E if  and only if y ' i -~  if and only if (xi,y i) is polled left of position p if and only if 

(X ' i ,Y ' i )  is polled left of position p for all i ,  l<i  ~,n. Consequently, the sequences of 'unstored' sym- 

bols unequal e in the computations on z (m), z'(m ) and ~(m ) are equal, that is, 

blb2"  " brn =YlY2" " Ym 0.4)  

By assumption, (xi,yi) and (xVi,Yi) are polled left o f p  and x i ~ x  i" for some i ,  l<i~'nl4, Therefore, 

since ai=x 'i if the i th poll occurs left of p ,  and ai=x i if  the i th poll occurs right of p ( 1 5  ~-n/4), in 
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M ' s  computation on ~(m), we have a l a2  ' ' '  ara:4~x lX2 " " " Xm/4. Because x l x2  " " Xm/4 is retrieved 

from y 1 " "  Ym by Claim 1, we retrieve x ix2" " • Xm/4 from b lb2" " • bra as well, by (3.4), using Lemma 

3.3. However, for ~(m) to satisfy (3.1), we have to retrieve a la2 - - -  am/4 from b lb2 . - -  b m, by virtue 

of the construction of ~(m) and Claim 1. Consequently, b l b 2 " . . b  m is not a prefix of 

d lb l d2b  2 " "  dmbm as required by (3.1). Hence, ~(m) does not satisfy (3.1), which is a contradiction. 

Since m>J-nn/C, Cases 1 and 2 complete the proof of T ( n ) e  t2(n2). 

(II). With the description of Lq we have already indicated how a queue recognizes this language in 

real-time. 

The theorem follows from (I) and ClI). [] 

4. Lower bound for simulating one pushdown by one queue. 

In this section, we show that it takes at least f l(n 4:3/logn) time for a one-way input one queue non- 
deterministic machine to recognize the language {w#w R :w e {0,1}*}. 

Because this language can be recognized in linear time by a deterministic pushdown automaton, 
we can conclude that it takes at least t2(n4:3/logn) time for a one queue nondeterministic machine to 

simulate a deterministic pushdown automaton. 

The intuition behind the proof is that while the queue machine reads w,  it has to store all the infor- 
mation in some sequential way on the queue. To compare this information with w R , the machine will 

have to go through the queue too many times. 

Let h 1 be the read-only head on the one-way input tape. We can view the queue as a tape with two 

heads h 2 and h a. The head h 2 is a read-only, one-way head on the queue. The head h 3 is a write-only, 

one-way head on the queue. Each time something is put on the queue, h 3 writes and each time some- 

thing is read from the queue, h 2 reads. 

Theorem 4.1: A one-way input one queue nondeterministic machine takes t ime  in ~2(n 4:3/logn) to 
accept the language {w#w R :w e {0,1}* }. 

Proof: Leading to a contradiction, we suppose that there is an algorithm to accept L in time T ( n )  

which is not in ~2(n4:3/logn). 

L e t  h i ( t )  denote the position of head i at time t on its respective tape. At time t, the length of the 

queue is h 3 ( t ) -h  2(t ), and the content of the tape between h 2(t) and h 3 (t) is called the actual  queue .  

Let x be an incompressible string. We separate x into blocks: x = x o x  i x2"  " "xm. Each block x i 

for 1<i Srn is separated into p subblocks: xi---XilXi2Xi3" " " X ~ .  For the proof of the theorem, we take 
m = n  1:3 and p=n2:3 /k  l logn,  where k i is an appropriately chosen constant. Let lx l=n  and I xo l=n /2 .  

Each subblock will have the same length, c logn. We look at any computation of  the machine on input 

x#x  g . 

Claim 4.2: If n/2<__h l(t)<3n/2, then the length of the queue at time t is at least n/2-1ogn. 

Proof: We know that K ( x o ) > n / 2 - k  2 for some constant k 2. The result follows because x 0 can be 

described by the content of the queue, the state of the machine and h l(t). [] 

Claim 4.3: Let t j  be the time step when the input head enters the block x j .  For at least half of the 

blocks Xy, we have that h2(t j+l)<ha(t j ) .  

Proof: Otherwise the algorithm takes time t2(n 4:3/logn). 1"3 

The machine needs to remember what it reads on the input and code it in some way on the queue. 
This notion will be captured by the influence relation defined below. What is written on the queue can 
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be a coding of the input and of the rear of the queue. If h2(tj+l)<h3(tj), then we have the nice property 

that a whole block from the input has to be coded sequentially on the queue, since the reading head on 
the queue doesn't reach where the coding has started. Let's call the blocks which satisfy this last claim 

the valid blocks. 

Now, we define the influence relation. Let C l , C 2 , . " c  p be the cells on the input tape. Let 

d l , d 2 , . . ,  dq be the cells on the queue. We say that a cell dj is directly influenced by a cell c i if 

hl(t)=i at the time t when h 3 writes on dj. Similarly, a cell dj is directly influenced by a cell d i if 

h2(t)=i at the time t when h 3 writes on dj. 

The influence relation is the transitive closure of the direct influence relation. We say that c i (or 

dl) influences dj if there is a chain of direct influences from c i to dp A block of cells influences a cell 

if and only if at least one of the cells in the block influences it. 

The influence relation will allow us to talk about where the information can be stored on the queue. 

Notice that during the computation, the content of a cell may still be dependent on some other input cell 
even if that input cell has no influence on it, due to the finite control of the machine. This minor prob- 

lem will not cause any trouble. 

Claim 4A: For any block xj such that h2(tj+l)<h3(tj), we have that each cell in xj influences a 

disjoint set of cells on the queue. Moreover, the regions influenced by these cells form an ordered 
sequence of regions on the actual queue at any later time. [] 

Now we look at what happens when the input head h 1 reads the second part of the input. Let tj" 
denote the time when the head h 1 enters the block xjR corresponding to xj. 

Claim 4.5: There is at least one valid block xj such that h2(tj_l")<h3(tj'). (Remember that Xj_l "R 
follows xj'R.) 

Proof: Otherwise the algorithm takes time fi(n 4:Sflogn). [] 

In the following two claims, we mention cycles and crossing sequences. A cycle is any span of 
time from time t to time t '  such that h2(t ')=h3(t ). The crossing sequence associated with the border 

between cell d i and cell di+ 1 is the list of states of the machine when any head goes from cell d i to cell 

di+ 1. Because the tape is in fact a queue, the crossing sequence will have length 2. 

Each block influences a series of regions on the tape, one for each cycle of the queue. The cross- 
ing sequence around a list of regions is the concatenation of the crossing sequences under the border of 

each region. 

Claim 4.6: Throughout r cycles, starting at time to', the actual queue always has length at least 

n 2/3-(r+k4)logn, for some constant k 4. 

Proof: Let x i be the block provided by claim 4.5. Let x" be the string x where x i has be~n deleted. 

Because the regions influenced by the xij are ordered on the actual queue, and the regions influenced by 

the xij R are in reverse order, there is only one contiguous region which can be influenced by both a sub- 

block xq and its corresponding subblock xij R. We call this region the overlapping region. 

At any time after to', the string x can be totally described by x ' ,  the index of x i, the actual queue, 

the crossing sequences around the overlapping region and the content of the regions that were overlap- 

ping at each cycle. [] 

Claim 4.7: The machine makes fl(n Z~flogn) cycles after t 0'. 

Proof: The string x can be described by x ' ,  the index of x i, the crossing sequence around the over- 

lapping region and the content of the regions that were overlapping at each cycle. At each cycle, this 
information is of length O (logn), so it takes n 2/3/logn cycles to gather enough information. (At the 
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end, we don't need the actual queue, so r has to be large to compensate.) [] 

By the last two claims, the machine takes time in ~(n413/logn). [] 

5. Simulating more queues by less queues 

In this section we study the power of queue machines with different number of queues. We first 
show that 2 queues are as good as k queues in the nondeterministic case. This motivates our research 

concerning a small number of queues. We also show that 1 queue can simulate k queues in quadratic 
time, deterministically or nondeterministically. We will provide tight, and almost tight, lower bounds 

for our simulations mentioned above. 

5.1. Upper bounds 

Theorem 5.1: Two pushdown stores can simulate one queue in linear time, both for deterministic 
and nondeterministic machines. 

Proof: Let P be a two pushdown store machine with 2 pushdown stores pdl,pd2. To simulate a 
queue, every time the a symbol is pushed into the queue, P pushes the same symbol into pd 1. If a sym- 
bol is taken from the queue, then P pops a (the same) symbol from pd2 if pd2 is not empty. If pd2 is 
empty then P first unloads the entire contents of pd 1 into pd2 and then pops the top symbol from pd2. 
At the end of the input, P accepts fff the 1 queue machine accepts. 

Theorem 5.2: Two queues can nondeterministically simulate k queues for any fixed k in linear 

time. 

Proof: This is actually the same technique Book and Greibach [BG] used to prove the same 
theorem for tapes. The 2 queue machine guesses the computation of the k-queue machine computation 
and put this guess on 1 queue. Then use the other queue to simulate the computation of each of the k 
queues of the simulated machine and check its correctness against the guess on the first queue. We refer 
the reader to [BG] for the details. (This simulation takes O (kn) time. But it can be improved to real 
time using the methods developed in [BG].) [] 

Theorem 5.3:3 pushdown stores can nondeterministically simulate k queues in linear time. 

Proof: Combine ideas from the above 2 theorems. I.e., guess the computation of the k queue 
machine, and put the guess into one pushdown store. Save this guess also to another pushdown store 

(but put a marker on the top). Then simulate a queue and check the correctness of the guess. (The simu- 
lation needs 2 pushdowns, one of the pushdowns has the guessed computation saved on the bottom.) 

After simulating one queue, retrieve the guessed content and again put it into 2 pushdowns. Repeat this 

process for each queue. [] 

Notice that a strange phenomenon occurs here. When we have 1 queue and 1 pushdown store, 1 
queue is better in the sense that 1 queue can accept all the r.e. languages but 1 pushdown cannot. How- 
ever, when we have more pushdown stores, more pushdown stores seems to be better than queues 

because they are more efficient. 

Theorem 5.4: One queue can simulate k queues in quadratic time, both deterministically and non- 

deterministically. 

Proof: Here, use some basic simulation schemes. [] 

This also relates to a interesting problem of whether "2 heads (on one tape) are better than 2 tapes 
(each with one single head)". Vitafiyi [Vi3] showed that 2 tapes cannot simulate a queue in real time if 

one of the tape has only o (n) cells to use. Our result here shows that 2 pushdowns can simulate a queue 
in linear time. It would be interesting to know whether this can be done in real time. The question of 



229 

how to simulate k deterministic queues by 2 queues (like the Hennie Steams simulation in the tape case 

[HS2]) remains open. 

5.2. Lower bounds 

We now prove optimal lower bounds for above simulations. We define the language L :  

1 1 . . .  b~# L = { a  & bob 1 

b2Z, 3~,2z, 2z, 3z, 2 . . g 2 z .  3z, 2 . . . b  2 b 3 b 2 
0 u 0 t " l U 2 V l U 3  " u 2 i u i  u 2 i + l  k-1 (k-l)/2 k 

b41.3 ~.4~.4~.3 ~.4 . b4  b3b4  . . . b 4 _ l b 3 b  4 0U(k+l)/2L'lt'2t'(k+3)/2u3 " " 21rood(k+1) i (21+1)rood(k+1) 

n& a 

I bi I = bi 2 = hi3 = bi 4 for i = 0 . . . . .  k for any odd k } 

The length of  each bJ is a fixed constant C.  The superscripts of b i 's  are used only to facilitate later 

discussions. L can be considered as a modified version of a language used in [Ma]. We have added a 

string a on the both ends. The purpose of  a is to prevent the queue from shrinking since if we choose a 

to be a long random string then before the second a is read the size of  the queue has to be larger than 

I a [. We have to prevent the queue from shrinking because otherwise the crossing sequence argument 

would not work. In order to prove the lower bounds for queues new techniques, in addition to those 

used in [Ma,LV], are required. 

Theorem 5.5: Simulating two deterministic queues by one nondeterministic queue requires 
f2(n 2/log2n loglogn ) time. 

Proof: We will show that L defined above requires f2(n 2/log2n log10gn ) time on a one-queue non- 

deterministic machine (always with an extra 1-way input tape). Since L can obviously be accepted by a 

two-queue deterministic machine in linear time, the theorem will follow. 

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in 

o (n 2/10g2n 10glogn ) time. Only for the notational convenience, we think the queue of M as a circular 
tape with just one queue head, which combines the push head and the pop head. The head moves clock- 

wise uniformly. The circular tape can augment (insert a tape square) or shrink (delete a tape square) at 

constant cost in order to mimic a queue. We call it Queue and write I Queue (t)  1 to denote its length at 

time t.  Name the input head h 1 and the queue head h 2. Initially the Queue is a point, a degenerated 

ring. 

Choose a large n and a C > 101M I +10 so that all the subsequent formulas make sense. Choose an 

incompressible string X~{0,1}  2~. Let X=X'X" where tx'l=lX"l. Equally divide X"  into 

k +l=n/Cloglogn parts, X"=XoX 2 • • " xk, each Cloglogn long. Consider a word w e L  where a=X' and 

b/=x i for 1_<j<__5 and 0_<i _~. Fix a shortest accepting path, P ,  of M on w. 

Consider only the path P .  Let ta be the time when h i reaches the first &,  t'a be the time h 1 

reaches the second &,  and t# be the time when h 1 reaches #. 

Claim 1. I Queue (t~) I >n/2. 

Proof.  If not, we can conclude that K ( X ) <  IXl as follows. For every Y such that IYl=lXI, let 

Y=a'YO'" "Yk. Replace the last a after the & sign in w by a ' .  Using the (short) description of  the 

queue, start to simulate M from time t~. By a standard argument, Y=X iff  M accepts. Therefore 

K(X)<  IXI, a contradiction. [] 

By a similar argument as in Claim 1, we derive Claim 2. 
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Claim 2. I Queue (t ) l >n /2 for every t t ~ t < f ~ .  []  

Claim 3. The crossing sequence from time t~ to f t  is shorter than n 
C t°log2n loglog n" 

Proof. Follows directly from Claim 2. f'l 

If the Queue cells which are scanned or created by h2, while h 1 is scanning b/, are in 

Q ={q 1 ,""  ,qu}, then we say that b~ is mapped into Q. Notice that b,J is at first mapped into a set, Q, of 

consecutive sequence of ceils. But, different from a regular Turing machine tape, Q may become 
disconnected because other queue squares can be inserted later. We say that b j is sequentially mapped 
if, while h I scans b/, h 2 did not scan any Queue cell twice (leave and re-enter), that is, h 2 did not make 
a round trip on Queue. We say that by is majorly mapped into Q if b L is sequentially mapped, and there 

Ib/I 
are two substrings, u and v, of b/which are mapped into Q and I u l + l  v I -> 2 - I .  

Remark. According to above definition, a b /can  be majorly mapped into two disjoint sets. 

Claim 4. At time t#, Queue can be cut into two segments, S 1 and S 2, such that 

(1) S lnS  2=~ and S1uS ~-Queue ; 

(2) k/4 bil's, say bill, ' ' '  ,b,l,,, are majorly mapped into $1, and k/4 bil's, say bl, ,  " . .  b .1 ' Jkl+'  a r e  

majorly mapped into S 2. { b i l l ,  " " " , b i ~ , 4 } f ' ~ { b / , ,  " " , b  l j , ,J  - 

(3) ISxl, IS21 >n/C2; 

Proof. In our proof only properties (1) and (2) are used, (3) is stated for the sake of completeness. 
We will only give proofs of (1) and (2). The proof of (3) is very similar to the last part of this proof and 
we leave the proof of (3) to the interested readers. 

99k 
First we show that - ~  bi 1 are sequentially mapped. By Claim 2, for t$~<t<t'x,, we always have 

[ Queue (t) [ >n/2. Therefore, if after time t& more than k / 100 b il's are not sequentially mapped, then 
on each of them M must spend at least n/2 time to go around the Queue. Altogether M would be 
spending ~(n2/loglog n ) time, a contradiction. Hence at least 99k/100 bids are sequentially mapped. 

Now we can easily choose two points p ,q on Queue to cut Queue into two parts S 1 and S 2 such 

that (1) and (2) in the claim are true. [] 

From now on, we will always consider the Queue to be partitioned as S 1 and S 2- The sizes of S 1 

and S 2 may increase or decrease. If anything is inserted in the intersection point of S 1 and S 2 then it 

does not matter in which set we place the inserted Queue cell. 

The next claim is a simple generalization of a theorem proved by Maass in [M] (Theorem 3.1). The 
proof of this claim is a simple reworking of the proof in [M]. 

Claim 5. Let S be a sequence of numbers from {0 . . . . .  k -1  }, where k =2 t for some 1. Assume that 
every number b a {0 . . . . .  k - l }  is somewhere in S adjacent to the number 2b(modk) and 
2b(modk)+l .  Then for every partition of {0 . . . . .  k - l }  into two sets G and R such that S=G~)R and 
l G I, I R I > k/4 there are at least k/(c log k) (for some fixed c) elements of G that occur somewhere in S 

adjacent to a number fromR. [] 

A k /~og  k upper bound corresponding to the lower bound in this lemma is contained in [Li]. A 
more general, but weaker, upper bound can be found in [KI]. Notice that any sequence S in L satisfies 

the requirements in Claim 5. 

Claim 6. At time f,~, the bi's between # and the second & are mapped into Queue in the follow- 

ing way: either 
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(1) aset,  S ~ , o f k / c l o g k  bj 's ,  which belong to {b ) :  " " ,b 1A,,}, are mapped into S 1; or 

. b  I (2) a set, if2, o f k / c l o g k  b i's, which belong to {bil~, • • , i~,4}, are mapped into S 2. 

Where c < < C  is a small constant as used in Claim 5. 
k 

Proof.  By Claim 3 we can assume that from time t# to time t '~,  h2 made less than 
C 210g k 

2k b/ ' s  can be mapped into round trips on Queue. Therefore by the nature of the queue, only C21og k 

2k 
both S 1 and S 2. Also since h 2 can alternate between S 1 and $2 less than C-~ogk times, we complete 

the proof by applying Claim 5. [] 

Without Ioss of generality, assume that (1) of Claim 6 is true. 

Claim 7. Let ten d be the time M ends. Either 

. , < n and the crossing sequence from (a) There exists a tame t &~0<tend such that I Queue (to) I < c--i-~Iog n -  _ 

:& to t 0 is shorter than n , or 
C l°logn loglogn 

n 
(b) From time t '~ to time ten d the length of the crossing sequence is shorter than 

C l°logn loglogn " 
n 2 

..... ) time, a contradiction. [] Proof.  If  (a) and (b) are both false, then M spends ~ (  log2n loglogn 

By Claim 3 the crossing sequence is shorter than n before time t',~. Record this 
C t°log2n loglogn 

crossing sequence. For every j , k ,  if  b~eS- 1, then bj I is majorly mapped into S 2. Let u j , v j  be the sub- 

strings of bj I such that 

(i) lu j l+lvj l>-  -1  and 

(ii) Uj,Vj are mapped into S 2. 

n 
Let Suv={uj,vj I b f~  S'I for some k > 1 }. Notice that u, v~eS. (luj I+lvj I) > 3C logn" 

Now we describe a program which reconstructs X with less than IX I information. Consider every 

Y such that I Y I = l X ] and Y = a y o" " "Yk for some y o" " "Yk" 

(1) Check if Y is the same as X at positions other than those places occupied by ul,vtE Suv. 

(2) If (1) is true, then construct the input, w r ,  as before except with x i replaced by Yi for i =0,1, - • - ,k. 

(3) Run M following path P up to time t&. 

(4) We distinguish between two cases according to Claim 7. 

Case 1. (b) of Claim 7 is true. Record the crossing sequence from f& to ten d. Continue to run M 

from t'& to ten d such that h 2 never goes into S 2. Whenever h 2 reaches the border of  S 2 it matches 

the current ID with the crossing sequence. If they match M jumps overS 2 and, using the next ID 

on the other side of S 2 to start from, $M$ continues until time ten d .  

Case 2. (a) of Claim 7 is true. Record the crossing sequence from time t '~ to time t o and the 

contents o fS  2 at time t 0. Simulate M ,  with h 2 staying outside of S 2, from time f ~  to time t o simi- 

lar to Case 1. At time t 0, M puts the (short) contents of S 2 in the position of S 2 and then finishes 

the computation in the normal way. 
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(5) By the end M accepts iff Y=X. Notice that since M is nondeterministic, by "accept" we mean that 
there is an accepting path. 

Now the information we used in this program is only the following. 

(1) X - Suv, plus the information to describe the relative locations of bj E S 1 in X and the relative loca- 
tions of uj,vnnj in bj ~ S 1. Using the coding method described in the previous part of the paper, 

this would require at most 

n + n n 
IXl 2clogn ~ ~°(1-~gn)' 

~ -c  logn 

where the second term is for the ut,v t in Suv, the third term is for the information to describe the relative 
positions of bj~ ffl, and the last term is for the information needed to describe the relative positions of 

u t,v t in each b l 

(2) Description of the crossing sequence, of length less than n , around S 2. Again by the 
C 91ogn loglogn 

method used in previous part of this paper, this requires at most 

n bits. 
C 81ogn loglogn 

(3) Description of the contents of S 1 at time t o when (a) of Claim 6 is true. But 

[ Queue (to) 1< C l°7ogn" 

(4) Extra O (log n ) bits to describe the program discussed above. 

The total is less than IX I. Therefore K (X)< IX I, a contradiction. [] 

Corollary. Simulating two deterministic tapes by one nondeterministic queue requires 
f2(n 2/logen loglogn). 

Proof. Since L can also be accepted by a two tape Turing machine in linear time. [] 

Theorem 5.6: It requires f2(n 2) time to simulate two deterministic queues by one deterministic 

queue. 

Proof Idea. Define a language L 1 as follows. (Below, a ,x i,yi ¢ {0,1}* .) 

L 1 = {a & XlSX2$ ""$xk#Yl$  "'" $yt#(li~,lJl)(llz, tJ2)...(li',l L) & al 

Xp=yq & (p =il+...+i t, q =jl+...+jt) & l<_t.~s } .  

L 1 can be accepted by a two queue deterministic machine in linear time. But using the techniques 

in Theorem 1 and in the proof of one deterministic Turing machine tape requiring square time for this 
language (See [LV]), it can be shown that L 1 requires f2(n 2) for a one queue deterministic machine. We 

omit the proof. [] 

Remark. The above lower bounds are similar to the case of one tape vs two tapes [Ma,LV]. How- 
ever, the proofs require special techniques to handle the queues. Still we do not have a lower bound as 
good as in the nondeterministic tape case [LV,GKS]. We feel that some improvement should be possi- 

ble. 



233 

References 

[Aa] Aanderaa, S.O., "On k-tape versus (k-1)-tape real-time computation," in Complexity of Computation, ed. 
R.M. Karp, SIAM-AMS Proceedings, vol. 7, pp. 75-96, American Math. Society, Providence, R.I., 1974. 

[BGW] 
Book, R., S. Greibach, and B. Wegbreit, "Time- and tape-bound Turing acceptors and AFL's," J. Computer 
and System Sciences, vol. 4, pp. 606-621, 1970. 

[Ch] Chaitin, G.J., "Algorithmic Information Theory," IBMJ. Res. Dev., vol. 21, pp. 350-359, 1977. 

[DGPR] 
Duffs, P., Z. Galil, W. Paul, and R. Reischuk, "Two nonlinear lower bounds for on-line computations," 
Information and Control, vol. 60, pp. 1-11, 1984. 

[GKS]Galil, Z., R. Kannan, E. Szemeredi, "On nontrivial separators for k-page graphs and simulations by non- 
deterministic one-tape Turing machines," in Proceedings 18th Annual ACM Symposium on Theory of 
Computing, 1986. 

[HS 1 ]Hartmanis, J. and R.E. Steams, "On the computational complexity of algorithms," Trans. Amer. Math. Sot.. 
vol. 117, pp. 285-306, 1969. 

[HS2]Hennie, F.C. and R.E. Stearns, "Two tape simulation of multitape Turing machines," J. Ass. Comp. Mach., 
vol. 4, pp. 533-546, 1966. 

[HU] Hoperoft, LE. and LD. Ullman, Formal Languages and their Relations to Automata, Addison-Wesley, 
1969. 

[K1] Klawe, M., "Limitations on explicit construction of expanding graphs," SIAM J. Comp., vol. 13, no. 4, pp. 
156-166, 1984. 

[Ko] Kolmogorov, A.N., "Three approaches to the quantitative definition of information," Problems in Informa- 
tion Transmission, vol. 1, no. 1, pp. 1-7, 1965. 

[Lil] Li, M., "Simulating two pushdowns by one tape in O(n**1.5 (log n)**0.5) time," 26th Annual IEEE Sym- 
posium on the Foundations of Computer Science, 1985. 

[Li2] Li, M., "Lower Bounds in Computational Complexity," Ph.D. Thesis, Report TR-85-663, Computer Science 
Department, Cornell University, march 1985. 

[Li3] Li, M., "Lower bounds by Kolmogorov-complexity", 12th ICALP, Lecture Notes in Computer Science, 194, 
pp. 383-393, 1985. 

[LV] Li, M. and P.M.B. Vitanyi, "Tape versus queue and stacks: The lower bounds," Submitted for publication. 

[LS] Leong, B.L. and J.I. Seiferas, "New real-time simulations of mul- tihead tape units," J. Ass. Comp. Mach., 
vol. 28, pp. 166-180, 1981. 

[Ma] Maass, W., "Combinatorial lower bound arguments for deterministic and nondeterministic Turing 
machines," Trans. Amer. Math. Soc., 292,2, pp. 675-693, 1985. (Preliminary Version "Quadratic lower 
bounds for deterministic and nondeterministic one-tape Turing machines," pp 401-408 in Proceedings 16th 
ACM Symposium on Theory of Computing, 1984.) 

[PSSIPaul, W.J., J.L Seiferas, and J. Simon, "An information theoretic approach to time bounds for on-line com- 
putation," J. Computer andSystem Sciences, vol. 23, pp. 108-126, 1981. 

[Pal Paul, W.J., "On-line simulation of k+l tapes by k tapes requires nonlinear time," Information and Control, 
pp. 1-8, t982. 

[So] Solomonov, R., Information and Control, vol. 7, pp. 1-22, 1964. 

[Vil]Vitfinyi, P.M.B., "One queue or two pnshdown stores take square time on a one-head tape unit," Computer 
Science Technical Report CS-R8406, CWI, Amsterdam, March 1984. 

[Vi2] Vitfinyi, P.M.B., "An N**1.618 lower bound on the time to simulate one queue or two pushdown stores by 
one tape," Information Processing Letters, vol. 21, pp. 147-152, 1985. 

[Vi3]Vithnyi, P.M.B., "On two-tape real-time computation and queues," J. Computer and System Sciences, vol. 
29, pp. 303-311, 1984. 


