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Distributed Match-Making t 

Sape J. Mullender 2 and Paul M. B. Vit~inyi 2'3 

Abstract. In many distributed computing environments, processes are concurrently executed by 
nodes in a store-and-forward communication network. Distributed control issues as diverse as name 
server, mutual exclusion, and replicated data management involve making matches between such 
processes. We propose a formal problem called "distributed match-making" as the generic paradigm. 
Algorithms for distributed match-making are developed and the complexity is investigated in terms 
of messages and in terms of storage needed. Lower bounds on the complexity of distributed 
match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for 
particular network topologies. 

Key Words. Locating objects, Locating services, Mutual exclusion, Replicated data management, 
Distributed algorithms, Computational complexity, Store-and-forward computer networks, Network 
topology. 

1. Introduction. A distributed system consists of  computers (nodes) connected 
by a communicat ion network. Each node can communicate with each other node 
through the network. There is no other communicat ion between nodes. Distributed 
computat ion entails the concurrent execution of more than one process, each 
process being identified with the execution of a program on a computing node. 
Communicat ion networks come in two types: broadcast  networks and store-and- 
forward networks. In a broadcast  network a message by the sender is broadcasted 
and received by all nodes, including the addressee. In such networks the communi- 
cation medium is usually suited for this, like ether for radio. An example is 
Ethernet. Here we are interested in the latter type, store-and-forward networks, 
where a message is routed from node to node to its destination. Such networks 
occur in the form of wide-area networks like Arpa net, but also as the communica- 
tion network of a single multicomputer.  The necessary coordination of the separate 
processes in various ways constitutes distributed control. We focus on a common 
aspect of  seemingly unrelated issues in this area, such as name server, mutual 
exclusion, and replicated data management.  This aspect is formalized below as 
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the paradigm "distributed match-making." Roughly speaking, the problem con- 
sists in associating with each node v in the network two sets of network nodes, 
P(v) and Q(v), such that the intersection P(v) c~ Q(v') for each ordered node 
pair (v, v') is nonempty. We want to minimize the average of IP(v)l +lQ(v')l ,  the 
average taken over all pairs (v, v'). This average is related to the amount of 
communication (number of  messages) involved in implementations of the dis- 
tributed control issues mentioned. We also associate with each node v in the 
network a set S(v) = {v': v ~ P(v')}. Then IS(v) I represents the amount of storage 
needed in node v. We want to minimize the average storage, or worst-case storage, 
over all nodes in the network as well. 

As the most important contribution of this paper we regard the insight that 
there is a common core in many hitherto unconnected distributed control issues, 
and the subsequent isolation and formalization of this core in the form of the 
distributed match-making paradigm. Previously, for instance in name servers in 
distributed operating systems, only ad hoc solutions were proposed. Lack of  any 
theoretical foundation necessarily entailed that comparisons of  the relative merit 
of  different solutions could only be conducted on a haphazard basis. The second 
contribution we make is to analyse the formal problem, develop appropriate cost 
measures, and establish optimal lower bounds and tradeoffs on the communica- 
tion and storage complexity. The analysis leads to a natural quantification of the 
distributedness of a match-making algorithm. Our complexity results hold for 
the full range from centralized via hierarchical to totally distributed algorithms 
for match-making. For instance, if all nodes play a symmetric role in a match- 
making strategy, then, for any n-node network, the two nodes making a match 
need to use at least 2~/-~ messages. The third contribution entails optimal, or 
nearly optimal, match-making algorithms for many different network topologies, 
including Manhattan networks, binary n-cubes, and hierarchical networks. For 
instance, we exhibit 2v/-ff message algorithms for node-symmetric match-making 
in Manhattan networks, binary n-cubes, and other networks. The fourth contribu- 
tion consists in detailed suggestions for further research in this area, and how to 
relax the conditions to obtain better scalability of our algorithms. (For a million- 
node network, 2000 messages to make a match between a pair of nodes(is too 
much.) The paper is organized as follows. In Section 2 we give the formal 
statement of the problem and analyze its complexity. Section 3 contains short 
outlines of the practical notions of name server, mutual exclusion, and replicated 
data management, and the relation with distributed match-making. It also contains 
references to related research. The reader who wants to know what match-making 
is good for, can proceed there first. This section also serves to further enhance 
Section 4 which gives simple algorithms for distributed match-making in networks 
with various topologies. Finally, in Section 5, we give some open-ended sugges- 
tions for methods which are unavoidably more messy than the deterministic 
ones analyzed, but which may better serve practical needs. These methods 
involve hashing and randomness. In this initial approach to the problem we 
assume that the systems are failure free. While this makes the problem more 
pure and easier to access, obviously extensions involving failures will enhance 
applicability. 
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2. The Problem. If U is a set, then I U[ denotes the number of elements, and 
2 u denotes the set of all subsets of U. Given a set of elements U = {1, 2 , . . . ,  n} 
and total functions 

P, Q: U---) 2 v, 

such that [P(i) c~ Q(j)[ = 1 for all i,j, 1 <- i,j < - n. 

QUESTION 1. Find a lower bound on the average of [P(i)I+]Q(j)[, the average 
taken over all ordered pairs ( i , j )~  U 2. Investigate this lower bound when [P(i)[ 
and IQ(J)I can be chosen freely, and when either one of [P(i)] or ]Q(J)] has a 
prescribed value. 

QUESTION 2. If S(i) = {j: i ~ P(j)},  then find tradeoffs between the lower bound 
of Question 1, and the average number of elements (or worst-case number of 
elements) in S(i),  the average taken over all i in U. 

If the elements of P(i) and Q(j) are randomly chosen, then the probability 
for any one element of U to be an element of V(i) (or Q(j)) is IV(i)l/n (or 
I Q(j)l/n). If  P(i) and Q(j) are chosen independently, then the probability for 
any one element of U to be an element in both V(i) and Q(j) is IP(i)] [Q(j)]/n z. 
Since there are n elements in U, the expected size of P(i) ~ Q(j) is given by 

E(IP(i) n Q(J)I) = 
IP(i)] [Q(J)I 

Therefore, to expect precisely one element in P(i) c~ Q(j), we must have ]P(i) I + 
IQ(J)I >- 2x/-n. The above analysis holds for each ordered pair (i,j) of elements 
of U, since all nodes are interchangeable. Consequently, the minimal average 
value of IP(i)I+IQ(j) [ over all ordered pairs (i,j) in U 2 is 2~/-ff. 

By deliberate choice of  the sets P(i) and Q(j), as opposed to random choice, 
the result may improve in two ways: 

(1) The intersection of P(i) and Q(j) with certainty contains one element, as 
opposed to one element expected. 

(2) [P(1)[ +[Q(J)I < 2~/-n suffices, for selected pairs, or even on the average. 

Option (2) is suggested by the fact that the elements of U need not be treated 
as symmetric. For instance, with one distinguished element in U we can get by 
with IP(i) I + [Q(j)[ = 2 on the average (see below and Example 3 in the Appendix). 

2.1. Complexity. Denote the singleton set P(i)c~Q(j) by rij, and call rij the 
rendezvous element. (For convenience, identify a singleton set with the element 
it contains.) 

DEFINITION. The n x n matrix, R, with entries rid (1-< i,j<_ n)is the rendezvous 
matrix (Figure 1). Note that 

(M1) G ri,j~ P(i) and G r,,jc Q(j). 
j ~ l  i=1  
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Fig. 1. Rendezvous matrix. 

By choice of  P( i ) ' s  and Q( j ) ' s  we can always replace the inclusions in (M1) by 
equalities. We also say that R represents a match-making strategy between each 
ordered pair (i,j) of nodes in U. The interpretation is that i sends messages to 
all elements in P(i), and j sends messages to all elements in Q( j ) ,  to effect a 
match of the ordered pair  (i,j) at rid. In many applications we can assume that 
a node needs to send no messages to itself, which corresponds to empty elements 
r;,i on the main diagonal. This gives minor changes in the results below. For 
simplicity we do not make this assumption. Examples of  rendezvous matrices for 
different strategies, ranging from centralized via hierarchical to distributed, are 
given in the Appendix. The reader may find it useful to look at the examples 
before continuing. 

2.1.1. Lower Bound. The number of messages m(i,j) involved in the match- 
making instance associated with (i, j )  is 

(M2) m(i,j) = IP(i)r + IQ(J)I- 

In Example 7 in the Appendix we see that, for different pairs (i , j) ,  the number  
of  messages m(i,j) for a match-making instance can, in a single rendezvous 
matrix, range all the way from a minimum of 2 to a maximum of 2n. We can 
determine the quality and complexity of a match-making strategy by the minimum 
of  m(i,j), or the maximum of m(i,j). But the most significant measure appears 
to be the average of m(i,j), for i,j ranging from 1 to n. 

DEFINITION. The average number  of  messages m of a match-making strategy 
(as determined by the rendezvous matrix R) is 

(M3) 
1 

m=-~ ~ ~ m(i,j). 
i=1 j = l  
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We call m the communication complexity of  R. We denote by re(n) the optimal 
communication complexity, i.e., re(n) equals the minimum value of m associated 
with R, where R ranges over all n x n rendezvous matrices. 

Generalizing the examples in the Appendix, we see that Examples 1 and 2 
have m = n + 1, and Example 3 has m = 2. Thus, the method in Example 3 is 
more efficient. However, it is centralized. The method of Examples 1 and 2 is 
less efficient but is distributed. The symmetric method of Example 4 (m = 2x/n) 
is more efficient than that of  Examples 1 and 2 and in some sense as distributed. 
Distributed methods are preferable since they can tolerate failures and distribute 
the message load better than centralized ones. A question is how to express 
the tradeoit between communication efficiency and distributedness of these 
algorithms? It appears that communication efficiency is intimately tied up with 
the frequencies with which the respective nodes occur in the rendezvous matrix. 

Define the frequency k~ of i in R as the number of  times element i occurs as 
an entry in R, i.e., bow often i is used as rendezvous for an ordered pair (j, k) 
of elements (1 --- i, j, k -< n). Clearly, 

(M4) ~ ki = n 2. 
i=1 

We call the n-tuple ( k ~ , . . . ,  k~) the distribution vector of  R, and we consider 
it as a measure for the distributedness of strategy R. Looking at two extremes we 
see that this makes sense. If  there is an i such that ki = n 2 and kj = 0 for j ~ i, 
1 -< i, j <- n, then the strategy is centralized (Example 3 with m = 2). If  ki = n for 
all i, 1-< i -  < n, then we call the strategy distributed (Examples 1 and 2 with 
m = n + 1, and Examples 4 and 8 with m = 2v/-ff). Intuitively, the statistical vari- 
ation of the ki's measures the distributedness of a strategy in a single figure. We 
derive a lower bound (Proposition 2) on m(n) expressed in terms of the ki's. We 
show that this lower bound is optimal for distribution vectors ( n , . . . ,  n) and 
( 0 , . . . ,  0, n 2, 0 , . . . ,  0) by exhibiting strategies R which achieve it. We conjecture 
that the lower bound is optimal for all distribution vectors. To prove Proposition 
2, it is useful to proceed by way of Proposition 1. Not only is Proposition 1 
combinatorially more interesting than Proposition 2, which is an easy corollary, 
but it also quantifies the optimal tradeott between the sizes of the P-sets and the 
Q-sets. It has already been useful elsewhere in analysing many-dimensional and 
weighted versions of distributed match-making in [11]. 

P R O P O S I T I O N  1.  

(M5) 

Consider the rendezvous matrix R as defined above. Then, 

~ ]P(i)I[Q(j)I > - ~ 4 ~  . 
i = l j = l  i=1 

PROOF. The sum above is minimized if, for each element i of  U, all entries of 
i in R occur in a v ~  • ~ rectangle. We make this intuition precise as follows. 
First observe that while P and Q determine the number of distinct entries of 



372 -s. J. Mullender and P. M. B. Vit~inyi 

i e U in each row and column,  it is more  convenient  to consider  the number  o f  
different rows and columns in which each element i o f  U occurs. Let r~ [q ]  be 
the number  o f  different nodes in row i [co lumn i] (1 - i--- n). Then 

Let R~ be the number  o f  different rows containing node  i, and let C~ be the 
number  o f  different columns containing node  i (1 -< i-< n). Let p~,j = 1 if node i 
occurs in row j and else p~,: = O, and let Yij = 1 if node  i occurs in co lumn j and 
else y~j=O(l<-i , j<-n).  Then, 

(2) 
j = l  j = l  i=1 i=1 

j = l  j = l  i=1 i=1 

The closest the occurrences o f  a part icular  element o f  U can be packed in the 
matrix is as a rectangle. This gives rise to the inequali ty 

(3) RiCi >- ki 

for all i (1 -< i -< n). We only need one other  inequality. Using the fact that  the 
square o f  a difference must  be nonnegative,  

kjR 2 - 2 ~ R , R j  + k,R 2 = (v / -~ jR, -  v/-~/Rj) 2 

>-0 

for all i,j (1 -< i,j <- n), we immediately obtain 

kjRi kiRj 
R i '+ - -~ i  >- 2x/k, kj, 

from which it follows that  

(4) 
i = l  j = l  i = l j = |  
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This gives us the required result, since 

~ ]P(i)I[O(j)[ > - ~ ~ r,c s (by (MI) and (I)) 
i = l  j = l  i=1  j = l  

~ r ~  cj 
i=1  j = l  

which yields the proposition. 

P R O P O S I T I O N  2 .  

R, ~ Cj (by (2)) 
i=1  j ~ l  

>- ~ R, ~ k~Rf' (by (3)) 
i=1  j = l  

( )' ~ ~ (by (4)), 
i=1  

[] 

2- 
ni~l 

PROOF. Define everything as in the proof of Proposition 1. Use the fact that 
the square of a difference is nonnegative to derive 

i ~ l  i=1  i , j = l  

Assume, by way of contradiction, that the proposition is false, that is, 

( 6 )  n2m(n) = ~ ~ (rid-Cj)=rl ~ (ri+ci) 
i=1  j = l  i ~ l  

= n  ri+ ci <2n x/~/. 
i 1 i=1  i=1  

Divide both sides of inequality (6) by n, and square the results. Substitute for 
the sum of squares in the resulting left-hand side, using (5), and divide by 4. 
Then we are left with 

i=1  i=1  i 1 

which contradicts Proposition 1. [] 
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It is not difficult to see that Propositions 1 and 2 hold mutatis mutandis for 
nonsquare matrices R. For totally distributed strategies they specialize to: 

COROLLARY. Let  R be a rendezvous matrix such that kl = k2 . . . . .  k, = n. 
Then 

~ ]P( i ) l lQ( j ) l>-n  3 and m-----2x/-ff. 
i = l  j = l  

The second inequality is the same lower bound we saw in the probabilistic 
analysis. Note that in the latter case the elements were also symmetric in the 
sense of  being interchangeable. Singling out one element gives centralized match- 
making as follows: 

COROLLARY. Let  R be a rendezvous matrix such that k2 = k 3  . . . . .  kn = 0 and 
k~ = n 2, that is, 1 is the central element. Then 

~ IP( i ) l lQ( j ) I>-n  2 and m>-2.  
i=1 j ~ l  

REMARK. The constraints (M1)-(M5) and Proposition 1 give a tradeoff between 
the P( i ) ' s  and Q(j ) ' s ,  which is much stronger than the one implied by Proposition 
2. We can illustrate this by a simple example. I f  P( i )  = p and Q(i) = q for 1 -< i -< n, 
then by Proposition 1 we have pq >- n. I f  we set p = nl/4, then it follows that 
q>- n 3/4, which gives p + q > -  n3/4+nl/4. Proposition 2 gives, for p =  n 1/4 only 
q -> 2n 1/2 _ n 1/4, while p + q > 2n 1/2 does not change. As suggested by this example, 
w e  can use the tradeoff in Proposition 1 to adjust distributed match-making 
strategies so as to minimize the weighted overall number  of  messages. For instance, 
in many applications as in Section 3, we are actually interested in minimizing m 
with (M2) replaced by (M2'): 

(M2') m ( i , j )  = ]P(i)] + '~i.j[ Q(J)I. 

This question is treated in [11]. 

2.1.2. Upper Bound. The lower bounds can be matched b y  upper  bounds,  
modulo integer round-off. For example, 

PROPOSITION 3. Let  U = { 1 , . . . ,  n} be as above. 

(i) I f  n is a square integer, then there exist functions P, Q as required, with 
distribution vector ( n . . . .  , n ) , such that, f o r  all 1 <- i, j <- n, I P(i)II Q ( j ) I  = n and 
[P(i)[ + IQ(J)[ = 2~/-n- 

(ii) There exist funct ions P, Q as required, with distribution vector 
(O, . . . ,O ,  n 2 , 0 , . . . , O ) ,  such that, for  all 1-<i, j ' ~ n ,  [ P ( i ) [ I Q ( j ) [ = I  and 
IP(i)[ +[Q(J)I  = 2. 
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PROOF. (i) Arrange the rendezvous matrix R as a checker board consisting of 
x/-ff • ~ squares, of n entries each. Each square contains n copies of  a single 
element of U, a different one for each square; see Example 4 in the Appendix. 

(ii) By Example 3 in the Appendix. [] 

There is a way to scale up any solution so that it becomes asymptotically 
distributed and optimal. 

PROPOSITION 4. Let R be the rendezvous matrix for  an n element set U. Let ki 
(1 <- i < - n) be the multiplicity o f  element i in R, and let m be associated with R. We 
can lift this match-making strategy to a 4n-element set by constructing a 4n x 4n 
rendezvous matrix R '  with k j=4kjmod~ as the multiplicity o f  element j in R '  
(1 -<j---4n) and the associated communication complexity m'  = 2m. (That  is, iterat- 
ing this process, the associated communication complexity as a function o f  the number 
N o f  nodes is (m/x/-ff)x/'N.) 

PROOF. Replace each entry ri, j of R by a 2 x 2 submatrix consisting of four 
copies of ri, j. The resulting 2 n x 2 n  matrix is M. Let Ri ( i = 1 , 2 , 3 , 4 )  be 
four, pairwise element disjoint, isomorphic copies of M. Consider the 4n x 4n 
matrix R': 

The number of distinct elements in R' is 16 times that in R and k~=4kjrnodn 
(1 - - j  -< 4n). It is easy to see that the (2i rood 2n)th column [row] of  R' contains 
twice as many distinct elements as the (i mod n)th column [row] of R (1 <- i -< 2n). 
Therefore, the average match-making cost associated with R' is m ' =  2m. [] 

2.2. Storage-Communication Tradeoff. The examples suggest a tradeoff between 
storage and average number of messages. Let R be a rendezvous matrix over a 
set U = { 1 , . . . ,  n}. Define the storage set associated with each i e  U as S ( i ) =  
{j: i c P ( j ) , l < - i , j < - n } ,  and IS(i)I is the storage complexity of i. Let s =  
max{IS(/)l: i~ U} denote the worst-case storage needed in strategy R. Let m be 
the communication complexity of R. 

PROPOSITION 5. For a rendezvous matrix R over an n-element set we have 
s ( m - 1 ) > _ n .  

PROOF. Let the number v of rendezvous elements in R be 

v = I{k: k c P( i )  c~ Q ( j ) ,  1 ~ i,j, k <- n}l. 
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Form a graph, with 2n+v nodes called a(1) , . . . ,a(n) ,  b(1) , . . . ,b(n) ,  
r ( 1 ) , . . . ,  r(v). Think of the a(i) as the arguments of  P, the b(i) as the arguments 
of  Q, and the r(i) as the rendezvous elements. Whenever j is the rendezvous 
element P(i)c~ Q(k),  put an edge from a(i) to r(j) and an edge from r(j) to 
b(k). Let d(j) be the number  of  edges from a nodes to r( j) ,  and let e(j) be the 
number  of  edges from b nodes to r(j). Clearly, m equals ( d ( 1 ) + . . . + d ( v ) +  
e ( 1 )+ .  �9 . + e ( v ) ) / n ,  since d ( 1 ) + .  �9 . + d ( v ) + e ( 1 ) + .  �9 . + e ( v )  is the sum of the 
IP(i)[ 's and the IQ(i)l 's. By definition s = m a x { d ( j ) :  1-<j-< v}. Thus each r(j) 
has at most s edges to a nodes. We know that for any i and k there is some j 
such that r(j) is adjacent to both a(i) and b(k). Call such a triple (i, k,j) a good 
triple. Now there are at least n 2 good triples. On the other hand, it is obvious 
that for a n y j  there are at most d(j)e(j)  good triples wi th j  as the last entry. Thus, 

and 

yield 

d(1)+...+d(v)+e(1)+...+e(v) 
m - -  

s ( e ( 1 ) + .  �9 �9 + e ( v ) ) > - e ( 1 ) d ( 1 ) + .  �9 . + e ( v ) d ( v ) > -  n 2, 

d ( 1 ) + . "  .+d(v)>-n 

sm>_n4 
s ( d ( 1 ) + - . . - I - d ( v ) )  

n 

>-n+ s. [] 

Obviously, the graph we constructed is not necessary for the proof  but it helps 
in visualizing what is going on. In centralized match-making as in Example 1 we 
have m = 2 and therefore s -> n. For broadcasting in Examples 1 and 2 we have 
m -- n + 1, and therefore s -> 1. For a distributed method like Example 4, we have 
m = 2x/if, and therefore s > x/n/2. 

Another indication of storage requirements is the average storage. The average 
storage S,ve for a particular strategy is 

s.~= = -  IS(i)[ = -  [P(i)[. 
n i=1  n i=1  

Therefore, it follows straightaway from Proposition 1 that 

P R O P O S I T I O N  6 .  Let everything be as above. Then 

Sav e ~ 

n ~ [Q(i)] n ~ (m-IP(i)D 
i ~ l  i=1  



Distributed Match-Making 377 

3. Three Distributed Control Issues. Below we give three distributed control 
issues exhibiting match-making features. These are name server, mutual exclusion, 
and replicated data management. Since some form of  distributed match-making 
is required in all of  them, algorithms for these problems are subject to the 
limitations analyzed in the previous section. We assume throughout that we are 
dealing with a set of computers connected by a network. The network is a 
communication graph G = ( U, E),  where U is the set of nodes (computers) and 
E is the set of edges. Each edge represents a two-way noninterfering communica- 
tion channel between the nodes it connects. Nodes communicate only by messages 
and do not share memory. The underlying communications network G is error- 
free, and supports the message transfers in which the delivery time may vary but 
messages between two nodes are delivered in the order sent. We will identify the 
idealized distributed match-making subproblems below by exhibiting P and Q 
functions. In each case it will turn out that there is a requirement P(i)  n Q( j )  ~ f~ 
for each pair ( i , j )  of nodes in U 2. To obtain the lower bounds in the previous 
section, without loss of  generality we used a minimal requirement IP(i) n Q (j)[ = 1. 

3.1. Name Server. In the object model of  software design, the system deals with 
abstract objects, each of which has some set of  abstract operations that can be 
performed on it. At the user level, the basic system primitive is performing an 
operation on an object, rather than such things as establishing connections, 
sending and receiving messages, and closing connections [14]. For example, a 
typical object is the file, with operations to read and write portions of it. A major 
advantage of  the object or abstract data type model is that the semantics are 
inherently location independent,  and therefore convenient for multicomputer 
systems. The concept of  performing an operation on an object does not require 
the user to be aware of where objects are located or how the communication is 
actually implemented. This property gives the system the possibility of moving 
objects around to position them close to where they are frequently used. It is 
convenient to implement the object model in terms of clients (users) who send 
messages to services [21]. Each service is handled by one or more server processes 
that accept messages from clients, carry out the required work, and send back 
replies. A process can be a client, a server, or both. A specific service may be 
offered by one or by more than one server process. In the latter case we assume 
that all server processes that belong to one service are equivalent: a client sees 
the same result, regardless of  which server process carries out its request. 

A process resides in a network node. Each node has an address and we assume 
that, given an address, the network is capable of routing a message to the node 
at that address. Before a client can send a request to a server which provides the 
desired service, the client has to locate that server. Each service is identified by 
a name. A client asks the system for a particular service by its name. The 
mechanism that translates the name of a service into a location or address in the 
network is called a name server. Thus, the name server offers yet another service 
in the system, be it the primus inter pares. A centralized name server must reside 
at a well-known address which does not change and is known to all processes. 
(Clearly, the name server cannot be used to locate itself. You cannot call the 
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telephone directory assistance server to obtain the number  of  telephone directory 
assistance if you do not know it.) When the host of  a centralized name server 
crashes, the entire network crashes. A centralized name server also requires an 
excessive amount  of  storage at the host site, and causes message overload (hot 
spot) in the host 's neighborhood. These disadvantages can be overcome by 
distributing the name server. One way to distribute the name server is to have 
clients broadcast  for services with "where are you"  messages. This solution is 
more robust than the centralized one. But in large store-and-forward networks, 
where messages are forwarded from node to node to their destination, broadcast- 
ing costs ~t least as many message as there are nodes in the network. 

I f  processes never move, then the name for a service can encode the address 
whete an appropriate  server resides. We assume that processes are mobile, but 
we make the simplifying assumption that during a locate of  a server by a client, 
the process/processor  allocation does not change. Let h(p) be the current address 
of process p ' s  host. Since processes may migrate, die, or be created, h(p) can 
change, become empty or nonempty. Locate of  services by the processes is 
achieved by the following procedure. Each server s selects a set P(s) of nodes 
and posts at these nodes the availability of  the service it offers and the address 
h(s) where it resides. (Each node in P(s) stores this information in its individual 
cache.) When a client c wants to request a service it selects a set Q(c) of nodes 
and queries each node in Q(c) for the required service. When P(s) n Q(c) is not 
empty the node (or any node) in P(s) n Q(c) will be able to return a message 
to c stating the address h(s) at which the service is available (recall that this 
information is already stored in the caches of  all the nodes in P(s)). For example, 
a centralized name server corresponds to 

P(s) ={x}, Q(c) ={x} 

for all servers s and clients c with h(s),  h(c)~ U, and a fixed x ~  U (Example 3 
in the Appendix).  As another  example, broadcasting corresponds to 

e ( s )  --- {h(s)},  O(c )  = U 

for all servers s and clients c with h(s), h(c)~ U (Example 1 in the Appendix).  
In the formal set-up, we restricted ourselves to methods where the sets P(s) and 
Q(c) depend on the respective hosts h(s) and h(c) only. It therefore makes more 
sense to talk about P(h(s)) and Q(h(c)) instead of P(s) and Q(c). The relation 
with match-making is now established. 

The research reported in this paper  started from design considerations of  the 
name server in the Amoeba  operating system [22]. In an early version of this 
paper  [16], the focus was only on algorithms for a distributed name server in 
computer  systems with mobile processes. Essentially the Manhattan topology 
method (see later) has been used before in the torus-shaped Stony Brook Micro- 
computer  Network [8]. In [6] the name server is implemented by broadcasting. 
In the Cosmic Cube processes run on fixed processors [19]. Other system designers 
have chosen for mobile processes, but use the crash-vulnerable solution of a 



Distributed Match-Making 379 

centralized name server [17]. A detailed proposal  for a hierarchical name server 
is contained in [13]. Methods which maintain a tree of  forwarding addresses in 
the network, for each mobile process, have been used in [18] and analyzed [7]. 

3.2. Mutual Exclusion. Another application of the match-making paradigm is 
distributed mutual exclusion. Suppose processes can compete for a single resource 
in the system, but this resource can be granted to only one of them at a time. An 
example is a printer which can be accessed by several processes from different 
hosts. The problem consists in designing a protocol which ensures that only one 
process is granted access to the resource at a time, while satisfying certain 
"niceness" conditions such as absence of deadlock. This problem was originally 
formulated by Dijkstra [4]. The assumption of the availability of  mutual exclusion 
underlies much of the work in concurrency. For a thorough treatment see [12]. 
Assume that each network node can issue a mutual exclusion request at an 
arbitrary time. In order to arbitrate the requests, any pair of  two requests must 
be known to one of the arbitrators. Since these arbitrators must reside in network 
nodes, any pair of  two requests originating from different nodes must reach a 
common node. Assume that each node i must obtain a permission from each 
member  of  a subset S(i) of U before it can proceed to enter its critical section. 
Then for each pair ( i , j ) c  U 2 we must have S(i)c~ S ( j ) ~  0 so that the node in 
the intersection can serve as arbitrator. The complexity of a distributed mutual 
exclusion strategy is the average number  of  messages involved in a mutual 
exclusion request from a node i, with the average taken over all nodes. In [15] 
the situation is analyzed where each node in the network serves as arbitrator 
equally often, that is, J UI times. The actual algorithm presented uses at most 
5 �9 JS(i)J messages, where for some K, JS(i)I=K for all i, i~ U. It is clear that 
at least 2K messages are required: K messages to query a set S(i),  and K answers 
from every member  of  S(i) to i. The overhead of  3K messages arises from 
additional locking and unlocking protocols to guarantee mutual exclusion, 
absence of  deadlock, and so on. Here we may view a strategy for distributed 
mutual exclusion as a mapping  

S: U o 2  u 

and view it as a restricted case of  match-making for which the symmetry condition 
P(i)  = Q(i) ( = S(i))  holds for all i c U. One way to achieve this symmetry is to 
let the functions P, Q be as in the original definition, and set S(i) = P(i)  ~ Q(i) 
for all i, i c U. In [15] the particular match-making algorithm for the projective 
plane topology is investigated, see also Section 4. 

3.3. Replicated Data Management. We describe a variant originating from [1] 
and [24]. This is related to replication methods as in [9] and [10]. Contrary to 
the latter references, we assume that the system is failure free. A replicated object 
is implemented by a collection of versions of the object. Here, let the replicated 
object be a variable which is shared by several users. The operations are reads 
and writes. A read returns the variable's current value, and a write assigns a new 
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value to the variable. Reads and writes by different users are allowed to occur 
concurrently, but we do not allow concurrent operations by different users to 
wait for one another. Our objective is to manage the shared variable such that 
it appears atomic. Atomicity means that each operation execution can be thought 
to happen in an indivisible instant of  time, a different instant for each operation, 
such that the reads and writes are totally ordered. This ordering should be internal 
consistent in the sense that each read returns the value assigned by the last write 
that precedes it in the order. To have external consistency, the time instant the 
operation appears  to take place must be within the actual duration of the operation 
execution. We implement an atomic shared variable by maintaining several 
versions of  it. Each version can be written by each user out of  an associated set 
of  writers, and read by each user out of  an associated set of  readers. Call the 
operations on the versions subreads and subwrites. Each read or write by a user 
comprises many subreads and subwrites. Each version resides at a user. We 
assume that the subreads and subwrites to a version are executed atomically, i.e., 
that a version is itself an atomic shared variable. Our goal is to implement an 
atomic variable, which is shared by a set of  users, using atomic variables which 
are shared by subsets of users only. Below we give a family of  algorithms which 
reduces the problem to match-making. 

A quorum T(u) for an operation by user u on the shared variable, is a set of  
versions whose cooperation is sufficient to execute that operation. It is convenient 
to divide the quorum in an initial quorum Q(u) and afinal quorum P(u). Each 
version has an attached version number to identify the order in which the versions 
were created. A version number  is a pair (t, u), where t is a nonnegative integer 
and u a user identifier. Let the user identifiers be 1 through n if there are n users. 

To read the variable, a user, say v, reads the versions from its initial quorum 
Q(v),  and determines the version with the lexicographic greatest version number, 
say (t, u). Let this version contain value M. Then v writes value M together with 
version number  (t, u) to the versions in its final quorum P(v). (Note that u may 
be unequal v.) The value returned by v is M. 

To write value N to the shared variable, a user, say u, first reads the version 
numbers of  its initial quorum Q(u). It de(ermines the greatest first coordinate of  
the version numbers, say t. Then u writes value N together with new version 
number  ( t +  1, u), to the versions in its final quorum P(u) .  

For the method to implement an atomic shared variable, quorums are subject 
to the following constraint: each final quorum must intersect each initial quorum, 
i.e., P(u) ~ Q(v) ~ 0 for each ordered pair (u, v) of  users in U 2. The proof  of  
correctness of  this algorithm is by no means simple and is outside the scope of  
this paper. (It is essentially given in [1] and [24].) The important issue here is 
that we have established yet another case of  match-making as follows. Without 
loss of  generality assume P(i)n Q(j)= {vi.j}, for each pair ( i , j)  of  users in U. 
Let the entry ri, j in the ith row and j th  column of  the rendezvous matrix be the 
user node where version v~,j resides. 

EXAMPLE. Let there be n users which can read  and write an atomic shared 
variable, as above. I f  each user occurs with the same frequency in the rendezvous 
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matrix, then the average number of messages between users to read or write the 
shared variable is >-2x/-~, by Proposition 2. A strategy achieving an average of 
2x/-n messages to read or write the shared variable is implemented by Example 
4. That is, each node hosts a version which is itself an atomic shared variable, 
and which can be written by x/-ff writers and read by ~ readers. 

4. Match-Making Algorithms. The topology of a network G = ( U, E)  in Section 
3 determines the overhead in message passes needed for routing a message to its 
destination. For complete networks, the number of message passes for match- 
making between node i and node j equals the number of messages m(i,j). If the 
subgraph induced by the sets P(i), Q(j) (1 -< i,j <- n) is connected, and i ~ P(i) 
and j ~ Q( j ) ,  and we broadcast the messages over spanning trees in these sub- 
graphs, then the number of message passes equals the number of messages m(i,j). 
Otherwise, there is an overhead of message passes for routing messages from 
node i to P(i), and from node j to Q(j). For this reason, in a ring network, no 
match-making algorithm can do significantly better than broadcasting (i.e., the 
average number of message passes involved in matching a pair of nodes is f l(n)) .  

4.1. General Networks. Let G = ( U , E )  be an arbitrary network. We assume 
that each node has a table containing the names of all other nodes, together with 
the minimum cost to reach them, and the neighbor at which the minimum cost 
path starts. It is not difficult to give a construction to cover every connected graph 
with O(x/-ff) connected subgraphs of < - ~  nodes each. The subgraphs cannot 
always be chosen pairwise disjoint as is shown by the counterexample of an 
n-node star graph with n - 1 nodes of degree 1 and 1 node of degree n - 1. If 
the original graph has node degree bounded by a constant, then the covering 
subgraphs can be constructed pairwise disjoint (Proposition 7). Either way, label 
the nodes in each subgraph 1 through x/-n. If the subgraph has less than x/-ff 
nodes, then use up the excess numbers by labeling some nodes more than once. 

Fig. 2 

Then the shortest path between each pair of  nodes labeled i in two adjacent 
connected subgraphs is not longer than 2x/-~. Let there be k s O(x/~) subgraphs 
Gj, l<-j<-k. Denote a node labeled i in a subgraph Gj by (i , j) ,  1 <- i-<,,/n and 
1 < j -<  k. Let P((i,j)) consist of  all nodes labeled i in Gi, 1 -< I < - k. To access all 
nodes in P((i,j)) from the original node takes O(x/n) messages but O(n) message 
passes. Size O(x/n) suffices for the cache of each node. Let Q((i,j)) equal the 
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set of all nodes in Gj. To access all these nodes in Q((i,j)) from (i , j) ,  takes at 
most x/'ff messages (or message passes along a spanning tree of  Gj). 

The algorithm has communication complexity O(x/-n) messages, but cannot 
guarantee a better upper bound than O(n) message passes. However, for applica- 
tion to the name server, we can make the assumption that clients need to locate 
services usually far more frequently than servers need to post their whereabouts. 
Then this scheme is fairly optimal in message passes too. 

If  for some reason we want the connected subgraphs to be pairwise disjoint, 
then this is not always possible. However, 

PROPOSITION 7. Let G be a connected graph with a spanning tree of bounded 
node degree. Then O can be divided in O(x/n) disjoint connected subgraphs, 
containing O(x/n ) nodes each. 

PROOF. Consider a rooted spanning tree T (of G) with node degree - c ,  c a 
constant. Let v be a node farthest from the root with ->d descendants. By the 
bounded degree of T it follows that v has <-cd ~ O(d) descendants. Take v and 
its subtree from the tree as the first connected subgraph of  O(d) nodes. Repeat 
the procedure on the remainder of  T. As long as - d nodes remain we can separate 
off another cluster of O(d)  nodes. The final remainder can be attached to the 
preceding cluster. Therefore, we obtain a division of G in O(n/d) 
disjoint connected subgraphs of O(d)  nodes each. Setting d =x/-n yields the 
proposition. [] 

If we settle for the subgraphs having diameter O(v/-n), as opposed to number 
of nodes O(x/-n), then we can use a result due to [5]. 

PROPOSITION 8. Each connected graph of n nodes can be divided into O(xfff) 
connected subgraphs of diameter O(x/-n ) each. 

PROOF. Consider a rooted spanning tree T of  the original graph (3. Choose d 
and divide T in layers of  d levels each. Take the subtrees rooted at level id (i >- O) 
which reach to level ( i+  1 ) d - 1 .  If a subtree does not reach to that level (has 
depth < d )  then attach it to the subtree just above it. (Thus, resulting subtrees 
may have up to 2d - 1 levels.) The set of  such subtrees induces a covering of the 
original graph by pairwise disjoint connected subgraphs of diameter -<4d and 
each ->d nodes (separate argument for top part). This yields O(n/d)  subgraphs 
of  diameter O(d) and yields the mentioned result for d = v/n. [] 

4.2. Manhattan Networks. The network G = (U, E)  is laid out as a p x q rec- 
tangular grid of nodes, U--{(i ,  j ) :  1-< i-< p, 1-<j-< q} and there is an edge in E 
between (i,j) and (i',j') if  either [ i -  i' I = 1 or IJ-J'l = 1, but not both. P((i,j)) = 
{(i, k): 1 - < k -  <q}  is the set of nodes in row i and Q((i,j))={(k,j): 1-<k<-p} is 
the set of nodes in column j. Caches are of  size O(q) and the number of  messages 
(=message  passes) for each match-making instance is O(p+q).  For p = q  we 
have m = 2v/-ff and caches of  size x/n. For the 3 x 3 network shown in Figure 3, 
the corresponding 9 x 9 rendezvous matrix is given as Example 8 in the Appendix. 
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Fig .  3 

Wrap-around versions of  the method can also be used in cylindrical networks or 
torus-shaped networks. It is, in fact, the method used in the torus-shaped Stony 
Brook Microcomputer  Network [8]. In the obvious generalization to d- 
dimensional meshes the method takes 2 n  ( d - l ) / d  message passes. However, at the 
cost of  shifting the load of  being a r e n d e z v o u s  node from the interior of  the mesh 
to the surface we can improve matters. Take as an example a name server in a 
three-dimensional mesh. A server at (xs, ys, zs) sends its advertisement by a 
shortest path parallel to the x axis to the surface and next circumnavigates the 
surface of the mesh in the plane z = zs. The client at (xc, yc, zc) sends its query 
along a shortest path parallel with the y axis to the surface and next circumnavi- 
gates the surface in the plane x = x~ .  T h e  r e n d e z v o u s  nodes are the two nodes 
on the mesh surface which are incident on the intersection line of  the planes 
z = zs, x = xc. I f  the mesh has n nodes, n 1 /3  to a side, then this method takes 
9 n  1/3 message passes in the worst case to make a match. 

4.3 .  M u l t i d i m e n s i o n a l  C u b e s .  A binary d-cube is a network G = (U, E)  such 
that the nodes have addresses of  d bits and edges connect nodes of  which the 
addresses differ in a single bit, n = I UI = 2 d and [El = d 2  d-1 .  Assume that d is 
even. (An obvious modification works for d is odd.) Let node s have address 
S i s  2 �9 . . s d : 

P ( s ) =  { a l a 2  " �9 �9 aa/2Sd/2+l " " " Sd: a l ,  . . . , a a / 2 ~  {O, 1}}, 

Q ( s )  = { s i s  2 " " �9 S d / 2 a d / 2 +  1 �9 " "  aa:  a d / 2 + l , . . . ,  a d  e { 0 ,  1}} .  

For each pair (s, c) e { 1 , . . . ,  n} 2, the r e n d e z v o u s  node is given by 

P ( s )  ~ Q (  c)  = { e l c 2 . .  �9 Cd/2Sd/2+l " "" Sd}. 

The number  r e ( s ,  c )  of  messages is the same for each pair (s, c) of  nodes, and 
therefore m = m ( s ,  c) = IP(s)l + IQ(c)l-- 24-ff. 
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m(s, c) equals the number of  message passes along spanning trees in the two 
binary d /2-cubes  induced by P(s) and Q(c), respectively. The nodes need ~f'n-size 
caches. Variants of  the algorithm are obtained by splitting the corner address 
used in the algorithm not in the middle but in pieces of ed and ( 1 -  e)d bits. 
See Example 6. For instance, in the case of  the name server we may want to 
adapt the method to take advantage of the relative immobility of  servers, to get 
a lower average. Excessive clogging at the intermediate nodes may be prevented 
by sending messages to a random address first, to be forwarded to their true 
destination second [23]. 

4.4. Fast Permutation Networks. For various reasons I2] fast permutation net- 
works like the Cube-Connected Cycles (CCC) network are important interconnec- 
tion patterns. An algorithm similar to that of the d-dimensional cube yields, 
appropriately tuned, for an n-node CCC network, m c O(x/n log n) and caches 
of  size x/-n/log n. 

4.5. Projective Plane Topology. The projective plane PG(2, k) has n = k 2 q- k + 1 
points and equally many lines. Each line consists of k + 1 points and k + 1 lines 
pass through each point. Each pair of lines has exactly one point in common. 
For each node s, P(s) and Q(s) comprise all nodes on an arbitrary line incident 
on its host node. The common node of two lines is the rendezvous node. Since 
the nodes are symmetric, it is easy to see that 

m = IP(s)l + I Q(s)l = 2(k + 1) ~ 2v~.  

This combination of topology and algorithm is resistant to failures of lines, 
provided no point has all lines passing through it removed. The average necessary 
cache size is x/~; but the price we have to pay for the fault tolerance of this 
method is expressed in the worst-case cache size n. 

4.6. Hierarchical Networks. Local-area networks are often connected, by gate- 
way nodes, to wide-area networks, which, in turn, may also be interconnected. 4 
Consider a tree T of  k levels, with the root at level k. A node of T at level i 
consists of  a level i network. A level i network consists of ni nodes, called 
gateways, connecting ni level i - 1 networks, for each 1 -< i -< k. A level 0 network 

4 Service naming preferably should be resolved in a way which is machine- independent  and network- 
address-independent .  Consequently,  ways will have to be found to locate services in very large 
networks of  hierarchical structure. There, the node symmetric 2x/~ solutions to the locate problem 
are not acceptable any more. Fortunately, in network hierarchies, it can be expected that local t r a~c  
is most frequent: most  message passing between communicat ing entities is intrahost communicat ion 
(e.g., memory management) ;  o f  the remaining interhost communicat ion,  most will be confined to a 
local-area network (e.g., temporary file s tore/swap service), and so on, up the network hierarchy 
(e.g., mail). For locate algorithms these statistics for the locality of  communicat ion can be used to 
advantage. When a client initiates a locate operation, the system first does a local locate at the lowest 
level of  the network hierarchy (e.g., inside the client host). If this fails, a locate is carried out at the 
next level of  the hierarchy, and this goes on until the top level is reached. 
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is a node. The obvious strategy for match-making puts the rendezvous node for 
a pair of nodes in the least common ancestor network of the two. Suppose we 
use a 2x/-n-~ strategy, as described in the previous sections, in each level i network, 
1 <- i <- k. Let s be a node in a level j network Gj, 1 -<j -< k. Let Gi+l . . . .  , Gk be 
the chain of networks between Gj and the root network Gk. We define P(s) and 
Q(s) inductively. Base: if Gj = ( Uj, Ej), s ~ Uj, then P(s) n Uj and Q(s) c~ Uj are 
chosen such that it takes an average of 2v/-~j messages to make a match between 
a pair of nodes in Gj. Induction: if s '~ Uj+~ is the gateway node through which 
Gj is connected in its ancestor network Gj+I = ( Uj+I, Ej+~), then 

P(s) ~ Uj+, = P(s ' )  c~ Uj+,, 

Q(s) c~ Uj+l = Q(s') n U~+l. 

k 
This gives m E O(~i= ~ x/-~) for a hierarchical network with a total of n = I]~=x ni 

nodes. Assume for simplicity that ni = a, 1 - i - k. Then the total number of nodes 
in the network is n = a k, and m ~ O(kx/-'d). Therefore, 

m ~ O(kn'/2k). 

Having the number k of  levels in the hierarchy depend on n, the minimum value 

m ~ O(log n) 

is reached for k = �89 log n. This message complexity is much better than f~(x/-ff), 
but the cache size toward the top of the hierarchy increases rapidly. Essentially, 
the cache of  a node may need to hold as many entries as there are nodes in the 
subtree it dominates. 

5. Conclusion and Further Research. This paper reports on initial investigations 
in a new theoretical problem area. We have isolated and formalized the problem 
of "distributed match-making" as a new paradigm in distributed control. The 
complexity analysis gives theoretical limitations to the efficiency of solutions for 
many practical problems in the area. The exhibited algorithms, which are optimal 
or nearly optimal, may serve as guidelines for feasibility and design of applied 
algorithms. Below we indicate a few avenues for further research in match-making, 
like probabilistic algorithms, hashing, and fault-tolerance. "Lighthouse Locate" 
actually preceded everything else in this paper. 

5.1. Lighthouse Locate. We give a probabilistic method for the name server. 
We imagine the processors as discrete coordinate points in the two-dimensional 
Euclidean plane grid spanned by (e, 0) and (0, e). The number of servers satisfying 
a particular port in  an n-element region of the grid has expected value sn for 
some fixed constant s > 0. 
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SERVER'S ALGORITHM. Each server sends out a random direction beam of 
length 1 every unit of time. Each trail left by such a beam disappears instantly 
at the end of  d time units. That is, a node discards an address posted by a 
server after d time units. Assume that the time for a message to run through 
a path of length 1 is so small in relation to d that the trail appears and disappears 
instantaneously. 

CLIENT'S ALGORITHM. TO locate a server, the client beams a request in a random 
direction at regular intervals. Originally, the length of the beam is /(1)--1 and 
the intervals are 6(1). After each unsuccessful trial, the client increases its effort 
by doubling the length of the inquiry beam and the intervals between them. Thus, 
the ith trial has 6 (0  = l(i) =2  i-1, i_> 1. 

With the clients strategy governed by the integer sequence 012 �9 �9 �9 of  exponents, 
we may spend exponentially longer lasting trials with exponentially longer beams, 
while missing a server which was nearby all the time, or has migrated to a nearby 
location. A better strategy is to prevent this by an evenhanded treatment of 
locations far and near, independent of which interval o f  consecutive trials we 
consider. To obtain this we govern the length of  the client's locate beam (and 
its duration) by integer sequence 51 in [20]: 

010201030102010401020103010201050102.... 

This sequence has an interesting property: for each i >-0, each uninterrupted 
subsequence of  length 2 i§ contains precisely one integer i. Let d(i) be the digit 
in position i, and let, in the ith trial, 6 (0  = l(i) = 2 d(;). Then in each subsequence 
of  2 d§ trials there are 2 d--~ trials with beams of length U (0-<j-< d). This "binary 
carry schedule" can be conveniently maintained by a binary counter. A binary 
counter is initialized with 0. In each step, it is incremented by 1. Digit d(i) 
equals the position of  the most significant bit which needs to be changed in the 
ith step. 

5.2. Hash Locate and Beyond. Let us consider the name server again. Let, in a 
given network, G = (U, E),  the set of ports (i.e., types of services available), be 
II. In Hash Locate we construct hash functions that map service names onto 
network addresses. That is, 

P , Q : I I - ~ 2  t: and P = Q .  

This technique is very efficient. Each server s posts its (service, address) at the 
node(s) P(cr), if 7r is the service offered by s, and a client in need for a service 
r queries the node(s) in Q(Tr). Clients and servers need only use one network 
node each in every match-making. (Clearly, the rendezvous matrix must be 
interpreted differently in this setting.) Provided the hash function is well chosen, 
it distributes the burden of  the locate work over the network. It suffers from the 
drawback that, if nodes are added to the network, the hash function must be 
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changed to incorporate these nodes in the set of potential rendezvous nodes. 
Moreover, if all rendezvous nodes for a particular service crash then this takes 
out completely that particular service from the entire network. If  the service is 
indispensable, the entire network crashes. In this sense Hash Locate is far more 
vulnerable to node crashes than the more distributed versions of our old method. 
Example 3 may also be viewed as a borderline example of Hash Locate. Examples 
4-6 are not Hash Locate methods, since Hash Locate cannot be distributed in 
this genuine sense. 

Two obvious approaches can make Hash Locate more robust for node crashes. 
First, the hash function can map a service name onto many different network 
addresses for added reliability. Second, when the rendezvous node for a particular 
service is down, rehashing can come up with another network address to act as 
a backup rendezvous node. It then becomes necessary that services regularly poll 
their rendezvous nodes to see if they are still alive. 

We can define the functions P and Q using both addresses and ports. This 
generalizes both Hash Locate and the method in the previous sections: 

P, Q: U x II--> 2 v. 

If  we are dealing with a very large network, where it is advantageous to have 
servers and clients look for nearby matches, we can hash a service onto nodes 
in neighborhoods. A neighborhood can be a local network, but also the network 
connecting the local networks, and so on. Therefore, such functions can be used 
to implement the idea of  certain services being local and others being more global, 
thus balancing the processing load more evenly over the hosts at each level of 
the network hierarchy. 

5.3. Robustness, Fault-Tolerance, and Efficiency. In computer networks, and 
also in multiprocessor systems, the communication algorithms must be able to 
cope with faulty processors, crashed processors, broken communication links, 
reconfigured network topology and similar issues. Centralized match-making 
(Example 3) is very efficient, but if the linchpin host crashes then match-making 
is impossible between any pair of nodes. It is one of the advantages of  truly 
distributed algorithms that they may continue in the presence of faults. Below 
we distinguish two distinct criteria for robustness, apart from the problem of 
how, or whether it is still possible, to route the match-making messages to their 
destinations in the surviving subnetwork: 

(i) Match-making should be distributed in the sense that node crashes do not 
take out the general facility of match-making in the surviving network (or 
as little as possible). This rules out a centralized match-maker, but the 
distributed Examples 1, 2, 4, 5, and 6 satisfy this requirement in various 
degrees. It is lack of  robustness according to this criterion that makes the 
efficient Hash Locate so fragile. 

(ii) The match-maker should be redundant in the sense that a bounded number 
of node crashes cannot prevent individual node pairs from the capability of 
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. For all a, b, c e {0, 1}, P(abc)  = {axylx ,  y ~ {0, 1}} and 

000 001 010 011 100 101 

000 
001 
010 
011 
100 
101 
110 
111 

000 001 010 011 000 001 
000 001 010 011 000 001 
000 001 010 011 000 001 
000 001 010 011 000 001 
100 101 110 111 100 101 
100 101 110 111 100 101 
100 101 110 111 100 101 
100 101 110 111 100 101 

Q(abc)  = {xbclx  e {0, 1}}. 

110 111 

010 011 
010 011 
010 011 
010 011 
110 111 
110 111 
110 111 
110 111 

7. Variant with m (4, 1) = 

1 
2 
3 
4 
5 1 
6 1 
7 1 
8 1 
9 1 

8. Manhat tan:  m = 2v/-ff and 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 and m(3,9) =2n.  

1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 7 
1 2 3 1 2 3 1 2 8 
1 2 3 4 5 6 7 8 9 
1 1 1 1 1 1 1 1 1 

5 6 4 5 6 4 5 2 
5 6 4 5 6 4 5 3 
8 9 7 8 9 7 8 4 
8 9 7 8 9 7 8 5 
8 9 7 8 9 7 8 6 

S = Sav e = ~/-n. 

2 3 4 5 6 7 8 9 

1 2 3 1 2 3 1 2 3 
i 2 3  1 2 3  1 2 3  
1 2 3 1 2 3 1 2 3 
4 5 6 4 5 6 4 5 6 
4 5 6 4 5 6 4 5 6 
4 5 6 4 5 6 4 5 6 
7 8 9 7 8 9 7 8 9 
7 8 9 7 8 9 7 8 9 
7 8 9 7 8 9 7 8 9 
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