
Algorithmica (1988) 3:367-391 Algorithmica
1988 Springer-Verlag New York Inc.

Distributed Match-Making t

Sape J. Mullender 2 and Paul M. B. Vit~inyi 2'3

Abstract. In many distributed computing environments, processes are concurrently executed by
nodes in a store-and-forward communication network. Distributed control issues as diverse as name
server, mutual exclusion, and replicated data management involve making matches between such
processes. We propose a formal problem called "distributed match-making" as the generic paradigm.
Algorithms for distributed match-making are developed and the complexity is investigated in terms
of messages and in terms of storage needed. Lower bounds on the complexity of distributed
match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for
particular network topologies.

Key Words. Locating objects, Locating services, Mutual exclusion, Replicated data management,
Distributed algorithms, Computational complexity, Store-and-forward computer networks, Network
topology.

1. Introduction. A distributed system consists of computers (nodes) connected
by a communicat ion network. Each node can communicate with each other node
through the network. There is no other communicat ion between nodes. Distributed
computat ion entails the concurrent execution of more than one process, each
process being identified with the execution of a program on a computing node.
Communicat ion networks come in two types: broadcast networks and store-and-
forward networks. In a broadcast network a message by the sender is broadcasted
and received by all nodes, including the addressee. In such networks the communi-
cation medium is usually suited for this, like ether for radio. An example is
Ethernet. Here we are interested in the latter type, store-and-forward networks,
where a message is routed from node to node to its destination. Such networks
occur in the form of wide-area networks like Arpa net, but also as the communica-
tion network of a single multicomputer. The necessary coordination of the separate
processes in various ways constitutes distributed control. We focus on a common
aspect of seemingly unrelated issues in this area, such as name server, mutual
exclusion, and replicated data management. This aspect is formalized below as

1 The work of the second author was supported in part by the Office of Naval Research under Contract
N00014-85-K-0168, by the Office of Army Research under Contract DAAG29-84-K-0058, by the
National Science Foundation under Grant DCR-83-02391, and by the Defence Advanced Research
Projects Agency (DARPA) under Contract N00014-83-K-0125. Current address of both authors:
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
2 Centrum voor Wiskunde en lnformatica, Amsterdam, The Netherlands.
3 Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachu-
setts, USA.

Received August 12, 1986; revised November 13, 1987. Communicated by Jeffrey Scott Vitter.

368 s.J. Mullender and P. M. B. Vit~nyi

the paradigm "distributed match-making." Roughly speaking, the problem con-
sists in associating with each node v in the network two sets of network nodes,
P(v) and Q(v), such that the intersection P(v) c~ Q(v') for each ordered node
pair (v, v') is nonempty. We want to minimize the average of IP(v)l +lQ(v')l , the
average taken over all pairs (v, v'). This average is related to the amount of
communication (number of messages) involved in implementations of the dis-
tributed control issues mentioned. We also associate with each node v in the
network a set S(v) = {v': v ~ P(v')}. Then IS(v) I represents the amount of storage
needed in node v. We want to minimize the average storage, or worst-case storage,
over all nodes in the network as well.

As the most important contribution of this paper we regard the insight that
there is a common core in many hitherto unconnected distributed control issues,
and the subsequent isolation and formalization of this core in the form of the
distributed match-making paradigm. Previously, for instance in name servers in
distributed operating systems, only ad hoc solutions were proposed. Lack of any
theoretical foundation necessarily entailed that comparisons of the relative merit
of different solutions could only be conducted on a haphazard basis. The second
contribution we make is to analyse the formal problem, develop appropriate cost
measures, and establish optimal lower bounds and tradeoffs on the communica-
tion and storage complexity. The analysis leads to a natural quantification of the
distributedness of a match-making algorithm. Our complexity results hold for
the full range from centralized via hierarchical to totally distributed algorithms
for match-making. For instance, if all nodes play a symmetric role in a match-
making strategy, then, for any n-node network, the two nodes making a match
need to use at least 2~/-~ messages. The third contribution entails optimal, or
nearly optimal, match-making algorithms for many different network topologies,
including Manhattan networks, binary n-cubes, and hierarchical networks. For
instance, we exhibit 2v/-ff message algorithms for node-symmetric match-making
in Manhattan networks, binary n-cubes, and other networks. The fourth contribu-
tion consists in detailed suggestions for further research in this area, and how to
relax the conditions to obtain better scalability of our algorithms. (For a million-
node network, 2000 messages to make a match between a pair of nodes(is too
much.) The paper is organized as follows. In Section 2 we give the formal
statement of the problem and analyze its complexity. Section 3 contains short
outlines of the practical notions of name server, mutual exclusion, and replicated
data management, and the relation with distributed match-making. It also contains
references to related research. The reader who wants to know what match-making
is good for, can proceed there first. This section also serves to further enhance
Section 4 which gives simple algorithms for distributed match-making in networks
with various topologies. Finally, in Section 5, we give some open-ended sugges-
tions for methods which are unavoidably more messy than the deterministic
ones analyzed, but which may better serve practical needs. These methods
involve hashing and randomness. In this initial approach to the problem we
assume that the systems are failure free. While this makes the problem more
pure and easier to access, obviously extensions involving failures will enhance
applicability.

Distributed Match-Making 369

2. The Problem. If U is a set, then I U[denotes the number of elements, and
2 u denotes the set of all subsets of U. Given a set of elements U = {1, 2 , . . . , n}
and total functions

P, Q: U---) 2 v,

such that [P(i) c~ Q(j)[= 1 for all i,j, 1 <- i,j < - n.

QUESTION 1. Find a lower bound on the average of [P(i)I+]Q(j)[, the average
taken over all ordered pairs (i , j)~ U 2. Investigate this lower bound when [P(i)[
and IQ(J)I can be chosen freely, and when either one of [P(i)] or]Q(J)] has a
prescribed value.

QUESTION 2. If S(i) = {j: i ~ P(j)}, then find tradeoffs between the lower bound
of Question 1, and the average number of elements (or worst-case number of
elements) in S(i), the average taken over all i in U.

If the elements of P(i) and Q(j) are randomly chosen, then the probability
for any one element of U to be an element of V(i) (or Q(j)) is IV(i)l/n (or
I Q(j)l/n). If P(i) and Q(j) are chosen independently, then the probability for
any one element of U to be an element in both V(i) and Q(j) is IP(i)] [Q(j)]/n z.
Since there are n elements in U, the expected size of P(i) ~ Q(j) is given by

E(IP(i) n Q(J)I) =
IP(i)] [Q(J)I

Therefore, to expect precisely one element in P(i) c~ Q(j), we must have]P(i) I +
IQ(J)I >- 2x/-n. The above analysis holds for each ordered pair (i,j) of elements
of U, since all nodes are interchangeable. Consequently, the minimal average
value of IP(i)I+IQ(j) [over all ordered pairs (i,j) in U 2 is 2~/-ff.

By deliberate choice of the sets P(i) and Q(j), as opposed to random choice,
the result may improve in two ways:

(1) The intersection of P(i) and Q(j) with certainty contains one element, as
opposed to one element expected.

(2) [P(1)[+[Q(J)I < 2~/-n suffices, for selected pairs, or even on the average.

Option (2) is suggested by the fact that the elements of U need not be treated
as symmetric. For instance, with one distinguished element in U we can get by
with IP(i) I + [Q(j)[= 2 on the average (see below and Example 3 in the Appendix).

2.1. Complexity. Denote the singleton set P(i)c~Q(j) by rij, and call rij the
rendezvous element. (For convenience, identify a singleton set with the element
it contains.)

DEFINITION. The n x n matrix, R, with entries rid (1-< i,j<_ n)is the rendezvous
matrix (Figure 1). Note that

(M1) G ri,j~ P(i) and G r,,jc Q(j).
j ~ l i=1

370 S.J. Mullender and P. M. B. Vit~inyi

1 2 " " j " " n

r i d

r2,1

rn,I

r 1,2

P rl 4

F I,n

G .n

Fig. 1. Rendezvous matrix.

By choice of P(i) ' s and Q(j) ' s we can always replace the inclusions in (M1) by
equalities. We also say that R represents a match-making strategy between each
ordered pair (i,j) of nodes in U. The interpretation is that i sends messages to
all elements in P(i), and j sends messages to all elements in Q(j) , to effect a
match of the ordered pair (i,j) at rid. In many applications we can assume that
a node needs to send no messages to itself, which corresponds to empty elements
r;,i on the main diagonal. This gives minor changes in the results below. For
simplicity we do not make this assumption. Examples of rendezvous matrices for
different strategies, ranging from centralized via hierarchical to distributed, are
given in the Appendix. The reader may find it useful to look at the examples
before continuing.

2.1.1. Lower Bound. The number of messages m(i,j) involved in the match-
making instance associated with (i, j) is

(M2) m(i,j) = IP(i)r + IQ(J)I-

In Example 7 in the Appendix we see that, for different pairs (i , j) , the number
of messages m(i,j) for a match-making instance can, in a single rendezvous
matrix, range all the way from a minimum of 2 to a maximum of 2n. We can
determine the quality and complexity of a match-making strategy by the minimum
of m(i,j), or the maximum of m(i,j). But the most significant measure appears
to be the average of m(i,j), for i,j ranging from 1 to n.

DEFINITION. The average number of messages m of a match-making strategy
(as determined by the rendezvous matrix R) is

(M3)
1

m=-~ ~ ~ m(i,j).
i=1 j = l

Distributed Match-Making 371

We call m the communication complexity of R. We denote by re(n) the optimal
communication complexity, i.e., re(n) equals the minimum value of m associated
with R, where R ranges over all n x n rendezvous matrices.

Generalizing the examples in the Appendix, we see that Examples 1 and 2
have m = n + 1, and Example 3 has m = 2. Thus, the method in Example 3 is
more efficient. However, it is centralized. The method of Examples 1 and 2 is
less efficient but is distributed. The symmetric method of Example 4 (m = 2x/n)
is more efficient than that of Examples 1 and 2 and in some sense as distributed.
Distributed methods are preferable since they can tolerate failures and distribute
the message load better than centralized ones. A question is how to express
the tradeoit between communication efficiency and distributedness of these
algorithms? It appears that communication efficiency is intimately tied up with
the frequencies with which the respective nodes occur in the rendezvous matrix.

Define the frequency k~ of i in R as the number of times element i occurs as
an entry in R, i.e., bow often i is used as rendezvous for an ordered pair (j, k)
of elements (1 --- i, j, k -< n). Clearly,

(M4) ~ ki = n 2.
i=1

We call the n-tuple (k ~ , . . . , k~) the distribution vector of R, and we consider
it as a measure for the distributedness of strategy R. Looking at two extremes we
see that this makes sense. If there is an i such that ki = n 2 and kj = 0 for j ~ i,
1 -< i, j <- n, then the strategy is centralized (Example 3 with m = 2). If ki = n for
all i, 1-< i - < n, then we call the strategy distributed (Examples 1 and 2 with
m = n + 1, and Examples 4 and 8 with m = 2v/-ff). Intuitively, the statistical vari-
ation of the ki's measures the distributedness of a strategy in a single figure. We
derive a lower bound (Proposition 2) on m(n) expressed in terms of the ki's. We
show that this lower bound is optimal for distribution vectors (n , . . . , n) and
(0 , . . . , 0, n 2, 0 , . . . , 0) by exhibiting strategies R which achieve it. We conjecture
that the lower bound is optimal for all distribution vectors. To prove Proposition
2, it is useful to proceed by way of Proposition 1. Not only is Proposition 1
combinatorially more interesting than Proposition 2, which is an easy corollary,
but it also quantifies the optimal tradeott between the sizes of the P-sets and the
Q-sets. It has already been useful elsewhere in analysing many-dimensional and
weighted versions of distributed match-making in [11].

P R O P O S I T I O N 1.

(M5)

Consider the rendezvous matrix R as defined above. Then,

~]P(i)I[Q(j)I > - ~ 4 ~ .
i = l j = l i=1

PROOF. The sum above is minimized if, for each element i of U, all entries of
i in R occur in a v ~ • ~ rectangle. We make this intuition precise as follows.
First observe that while P and Q determine the number of distinct entries of

372 -s. J. Mullender and P. M. B. Vit~inyi

i e U in each row and column, it is more convenient to consider the number o f
different rows and columns in which each element i o f U occurs. Let r~ [q] be
the number o f different nodes in row i [co lumn i] (1 - i--- n). Then

Let R~ be the number o f different rows containing node i, and let C~ be the
number o f different columns containing node i (1 -< i-< n). Let p~,j = 1 if node i
occurs in row j and else p~,: = O, and let Yij = 1 if node i occurs in co lumn j and
else y~j=O(l<-i , j<-n). Then,

(2)
j = l j = l i=1 i=1

j = l j = l i=1 i=1

The closest the occurrences o f a part icular element o f U can be packed in the
matrix is as a rectangle. This gives rise to the inequali ty

(3) RiCi >- ki

for all i (1 -< i -< n). We only need one other inequality. Using the fact that the
square o f a difference must be nonnegative,

kjR 2 - 2 ~ R , R j + k,R 2 = (v / -~ jR, - v/-~/Rj) 2

>-0

for all i,j (1 -< i,j <- n), we immediately obtain

kjRi kiRj
R i '+ - -~ i >- 2x/k, kj,

from which it follows that

(4)
i = l j = l i = l j = |

Distributed Match-Making 373

This gives us the required result, since

~]P(i)I[O(j)[> - ~ ~ r,c s (by (MI) and (I))
i = l j = l i=1 j = l

~ r ~ cj
i=1 j = l

which yields the proposition.

P R O P O S I T I O N 2 .

R, ~ Cj (by (2))
i=1 j ~ l

>- ~ R, ~ k~Rf' (by (3))
i=1 j = l

()' ~ ~ (by (4)),
i=1

[]

2-
ni~l

PROOF. Define everything as in the proof of Proposition 1. Use the fact that
the square of a difference is nonnegative to derive

i ~ l i=1 i , j = l

Assume, by way of contradiction, that the proposition is false, that is,

(6) n2m(n) = ~ ~ (rid-Cj)=rl ~ (ri+ci)
i=1 j = l i ~ l

= n ri+ ci <2n x/~/.
i 1 i=1 i=1

Divide both sides of inequality (6) by n, and square the results. Substitute for
the sum of squares in the resulting left-hand side, using (5), and divide by 4.
Then we are left with

i=1 i=1 i 1

which contradicts Proposition 1. []

374 S.J. Mullender and P. M. B. Vit~inyi

It is not difficult to see that Propositions 1 and 2 hold mutatis mutandis for
nonsquare matrices R. For totally distributed strategies they specialize to:

COROLLARY. Let R be a rendezvous matrix such that kl = k2 k, = n.
Then

~]P(i) l lQ(j) l>-n 3 and m-----2x/-ff.
i = l j = l

The second inequality is the same lower bound we saw in the probabilistic
analysis. Note that in the latter case the elements were also symmetric in the
sense of being interchangeable. Singling out one element gives centralized match-
making as follows:

COROLLARY. Let R be a rendezvous matrix such that k2 = k 3 kn = 0 and
k~ = n 2, that is, 1 is the central element. Then

~ IP(i) l lQ(j) I>-n 2 and m>-2.
i=1 j ~ l

REMARK. The constraints (M1)-(M5) and Proposition 1 give a tradeoff between
the P(i) ' s and Q(j) ' s , which is much stronger than the one implied by Proposition
2. We can illustrate this by a simple example. I f P(i) = p and Q(i) = q for 1 -< i -< n,
then by Proposition 1 we have pq >- n. I f we set p = nl/4, then it follows that
q>- n 3/4, which gives p + q > - n3/4+nl/4. Proposition 2 gives, for p = n 1/4 only
q -> 2n 1/2 _ n 1/4, while p + q > 2n 1/2 does not change. As suggested by this example,
w e can use the tradeoff in Proposition 1 to adjust distributed match-making
strategies so as to minimize the weighted overall number of messages. For instance,
in many applications as in Section 3, we are actually interested in minimizing m
with (M2) replaced by (M2'):

(M2') m (i , j) =]P(i)] + '~i.j[Q(J)I.

This question is treated in [11].

2.1.2. Upper Bound. The lower bounds can be matched b y upper bounds,
modulo integer round-off. For example,

PROPOSITION 3. Let U = { 1 , . . . , n} be as above.

(i) I f n is a square integer, then there exist functions P, Q as required, with
distribution vector (n , n) , such that, f o r all 1 <- i, j <- n, I P(i)II Q (j) I = n and
[P(i)[+ IQ(J)[= 2~/-n-

(ii) There exist funct ions P, Q as required, with distribution vector
(O, . . . ,O , n 2 , 0 , . . . , O) , such that, for all 1-<i, j ' ~ n , [P (i) [I Q (j) [= I and
IP(i)[+[Q(J)I = 2.

Distributed Match-Making 375

PROOF. (i) Arrange the rendezvous matrix R as a checker board consisting of
x/-ff • ~ squares, of n entries each. Each square contains n copies of a single
element of U, a different one for each square; see Example 4 in the Appendix.

(ii) By Example 3 in the Appendix. []

There is a way to scale up any solution so that it becomes asymptotically
distributed and optimal.

PROPOSITION 4. Let R be the rendezvous matrix for an n element set U. Let ki
(1 <- i < - n) be the multiplicity o f element i in R, and let m be associated with R. We
can lift this match-making strategy to a 4n-element set by constructing a 4n x 4n
rendezvous matrix R ' with k j=4kjmod~ as the multiplicity o f element j in R '
(1 -<j---4n) and the associated communication complexity m' = 2m. (That is, iterat-
ing this process, the associated communication complexity as a function o f the number
N o f nodes is (m/x/-ff)x/'N.)

PROOF. Replace each entry ri, j of R by a 2 x 2 submatrix consisting of four
copies of ri, j. The resulting 2 n x 2 n matrix is M. Let Ri (i = 1 , 2 , 3 , 4) be
four, pairwise element disjoint, isomorphic copies of M. Consider the 4n x 4n
matrix R':

The number of distinct elements in R' is 16 times that in R and k~=4kjrnodn
(1 - - j -< 4n). It is easy to see that the (2i rood 2n)th column [row] of R' contains
twice as many distinct elements as the (i mod n)th column [row] of R (1 <- i -< 2n).
Therefore, the average match-making cost associated with R' is m ' = 2m. []

2.2. Storage-Communication Tradeoff. The examples suggest a tradeoff between
storage and average number of messages. Let R be a rendezvous matrix over a
set U = { 1 , . . . , n}. Define the storage set associated with each i e U as S (i) =
{j: i c P (j) , l < - i , j < - n } , and IS(i)I is the storage complexity of i. Let s =
max{IS(/)l: i~ U} denote the worst-case storage needed in strategy R. Let m be
the communication complexity of R.

PROPOSITION 5. For a rendezvous matrix R over an n-element set we have
s (m - 1) > _ n .

PROOF. Let the number v of rendezvous elements in R be

v = I{k: k c P(i) c~ Q (j) , 1 ~ i,j, k <- n}l.

376 S.J. Mullender and P. M. B. Vit~inyi

Form a graph, with 2n+v nodes called a(1) , . . . ,a(n) , b(1) , . . . ,b(n) ,
r (1) , . . . , r(v). Think of the a(i) as the arguments of P, the b(i) as the arguments
of Q, and the r(i) as the rendezvous elements. Whenever j is the rendezvous
element P(i)c~ Q(k), put an edge from a(i) to r(j) and an edge from r(j) to
b(k). Let d(j) be the number of edges from a nodes to r(j) , and let e(j) be the
number of edges from b nodes to r(j). Clearly, m equals (d (1) + . . . + d (v) +
e (1)+ . �9 . + e (v)) / n , since d (1) + . �9 . + d (v) + e (1) + . �9 . + e (v) is the sum of the
IP(i)['s and the IQ(i)l 's. By definition s = m a x { d (j) : 1-<j-< v}. Thus each r(j)
has at most s edges to a nodes. We know that for any i and k there is some j
such that r(j) is adjacent to both a(i) and b(k). Call such a triple (i, k,j) a good
triple. Now there are at least n 2 good triples. On the other hand, it is obvious
that for a n y j there are at most d(j)e(j) good triples wi th j as the last entry. Thus,

and

yield

d(1)+...+d(v)+e(1)+...+e(v)
m - -

s (e (1) + . �9 �9 + e (v)) > - e (1) d (1) + . �9 . + e (v) d (v) > - n 2,

d (1) + . " .+d(v)>-n

sm>_n4
s (d (1) + - . . - I - d (v))

n

>-n+ s. []

Obviously, the graph we constructed is not necessary for the proof but it helps
in visualizing what is going on. In centralized match-making as in Example 1 we
have m = 2 and therefore s -> n. For broadcasting in Examples 1 and 2 we have
m -- n + 1, and therefore s -> 1. For a distributed method like Example 4, we have
m = 2x/if, and therefore s > x/n/2.

Another indication of storage requirements is the average storage. The average
storage S,ve for a particular strategy is

s.~= = - IS(i)[= - [P(i)[.
n i=1 n i=1

Therefore, it follows straightaway from Proposition 1 that

P R O P O S I T I O N 6 . Let everything be as above. Then

Sav e ~

n ~ [Q(i)] n ~ (m-IP(i)D
i ~ l i=1

Distributed Match-Making 377

3. Three Distributed Control Issues. Below we give three distributed control
issues exhibiting match-making features. These are name server, mutual exclusion,
and replicated data management. Since some form of distributed match-making
is required in all of them, algorithms for these problems are subject to the
limitations analyzed in the previous section. We assume throughout that we are
dealing with a set of computers connected by a network. The network is a
communication graph G = (U, E), where U is the set of nodes (computers) and
E is the set of edges. Each edge represents a two-way noninterfering communica-
tion channel between the nodes it connects. Nodes communicate only by messages
and do not share memory. The underlying communications network G is error-
free, and supports the message transfers in which the delivery time may vary but
messages between two nodes are delivered in the order sent. We will identify the
idealized distributed match-making subproblems below by exhibiting P and Q
functions. In each case it will turn out that there is a requirement P(i) n Q(j) ~ f~
for each pair (i , j) of nodes in U 2. To obtain the lower bounds in the previous
section, without loss of generality we used a minimal requirement IP(i) n Q (j)[= 1.

3.1. Name Server. In the object model of software design, the system deals with
abstract objects, each of which has some set of abstract operations that can be
performed on it. At the user level, the basic system primitive is performing an
operation on an object, rather than such things as establishing connections,
sending and receiving messages, and closing connections [14]. For example, a
typical object is the file, with operations to read and write portions of it. A major
advantage of the object or abstract data type model is that the semantics are
inherently location independent, and therefore convenient for multicomputer
systems. The concept of performing an operation on an object does not require
the user to be aware of where objects are located or how the communication is
actually implemented. This property gives the system the possibility of moving
objects around to position them close to where they are frequently used. It is
convenient to implement the object model in terms of clients (users) who send
messages to services [21]. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. A process can be a client, a server, or both. A specific service may be
offered by one or by more than one server process. In the latter case we assume
that all server processes that belong to one service are equivalent: a client sees
the same result, regardless of which server process carries out its request.

A process resides in a network node. Each node has an address and we assume
that, given an address, the network is capable of routing a message to the node
at that address. Before a client can send a request to a server which provides the
desired service, the client has to locate that server. Each service is identified by
a name. A client asks the system for a particular service by its name. The
mechanism that translates the name of a service into a location or address in the
network is called a name server. Thus, the name server offers yet another service
in the system, be it the primus inter pares. A centralized name server must reside
at a well-known address which does not change and is known to all processes.
(Clearly, the name server cannot be used to locate itself. You cannot call the

378 S.J. Mullender and P. M. B. Vitfinyi

telephone directory assistance server to obtain the number of telephone directory
assistance if you do not know it.) When the host of a centralized name server
crashes, the entire network crashes. A centralized name server also requires an
excessive amount of storage at the host site, and causes message overload (hot
spot) in the host 's neighborhood. These disadvantages can be overcome by
distributing the name server. One way to distribute the name server is to have
clients broadcast for services with "where are you" messages. This solution is
more robust than the centralized one. But in large store-and-forward networks,
where messages are forwarded from node to node to their destination, broadcast-
ing costs ~t least as many message as there are nodes in the network.

I f processes never move, then the name for a service can encode the address
whete an appropriate server resides. We assume that processes are mobile, but
we make the simplifying assumption that during a locate of a server by a client,
the process/processor allocation does not change. Let h(p) be the current address
of process p ' s host. Since processes may migrate, die, or be created, h(p) can
change, become empty or nonempty. Locate of services by the processes is
achieved by the following procedure. Each server s selects a set P(s) of nodes
and posts at these nodes the availability of the service it offers and the address
h(s) where it resides. (Each node in P(s) stores this information in its individual
cache.) When a client c wants to request a service it selects a set Q(c) of nodes
and queries each node in Q(c) for the required service. When P(s) n Q(c) is not
empty the node (or any node) in P(s) n Q(c) will be able to return a message
to c stating the address h(s) at which the service is available (recall that this
information is already stored in the caches of all the nodes in P(s)). For example,
a centralized name server corresponds to

P(s) ={x}, Q(c) ={x}

for all servers s and clients c with h(s), h(c)~ U, and a fixed x ~ U (Example 3
in the Appendix). As another example, broadcasting corresponds to

e (s) --- {h(s)}, O(c) = U

for all servers s and clients c with h(s), h(c)~ U (Example 1 in the Appendix).
In the formal set-up, we restricted ourselves to methods where the sets P(s) and
Q(c) depend on the respective hosts h(s) and h(c) only. It therefore makes more
sense to talk about P(h(s)) and Q(h(c)) instead of P(s) and Q(c). The relation
with match-making is now established.

The research reported in this paper started from design considerations of the
name server in the Amoeba operating system [22]. In an early version of this
paper [16], the focus was only on algorithms for a distributed name server in
computer systems with mobile processes. Essentially the Manhattan topology
method (see later) has been used before in the torus-shaped Stony Brook Micro-
computer Network [8]. In [6] the name server is implemented by broadcasting.
In the Cosmic Cube processes run on fixed processors [19]. Other system designers
have chosen for mobile processes, but use the crash-vulnerable solution of a

Distributed Match-Making 379

centralized name server [17]. A detailed proposal for a hierarchical name server
is contained in [13]. Methods which maintain a tree of forwarding addresses in
the network, for each mobile process, have been used in [18] and analyzed [7].

3.2. Mutual Exclusion. Another application of the match-making paradigm is
distributed mutual exclusion. Suppose processes can compete for a single resource
in the system, but this resource can be granted to only one of them at a time. An
example is a printer which can be accessed by several processes from different
hosts. The problem consists in designing a protocol which ensures that only one
process is granted access to the resource at a time, while satisfying certain
"niceness" conditions such as absence of deadlock. This problem was originally
formulated by Dijkstra [4]. The assumption of the availability of mutual exclusion
underlies much of the work in concurrency. For a thorough treatment see [12].
Assume that each network node can issue a mutual exclusion request at an
arbitrary time. In order to arbitrate the requests, any pair of two requests must
be known to one of the arbitrators. Since these arbitrators must reside in network
nodes, any pair of two requests originating from different nodes must reach a
common node. Assume that each node i must obtain a permission from each
member of a subset S(i) of U before it can proceed to enter its critical section.
Then for each pair (i , j) c U 2 we must have S(i)c~ S (j) ~ 0 so that the node in
the intersection can serve as arbitrator. The complexity of a distributed mutual
exclusion strategy is the average number of messages involved in a mutual
exclusion request from a node i, with the average taken over all nodes. In [15]
the situation is analyzed where each node in the network serves as arbitrator
equally often, that is, J UI times. The actual algorithm presented uses at most
5 �9 JS(i)J messages, where for some K, JS(i)I=K for all i, i~ U. It is clear that
at least 2K messages are required: K messages to query a set S(i), and K answers
from every member of S(i) to i. The overhead of 3K messages arises from
additional locking and unlocking protocols to guarantee mutual exclusion,
absence of deadlock, and so on. Here we may view a strategy for distributed
mutual exclusion as a mapping

S: U o 2 u

and view it as a restricted case of match-making for which the symmetry condition
P(i) = Q(i) (= S(i)) holds for all i c U. One way to achieve this symmetry is to
let the functions P, Q be as in the original definition, and set S(i) = P(i) ~ Q(i)
for all i, i c U. In [15] the particular match-making algorithm for the projective
plane topology is investigated, see also Section 4.

3.3. Replicated Data Management. We describe a variant originating from [1]
and [24]. This is related to replication methods as in [9] and [10]. Contrary to
the latter references, we assume that the system is failure free. A replicated object
is implemented by a collection of versions of the object. Here, let the replicated
object be a variable which is shared by several users. The operations are reads
and writes. A read returns the variable's current value, and a write assigns a new

380 s.J. Mullender and P. M. B. Vitfinyi

value to the variable. Reads and writes by different users are allowed to occur
concurrently, but we do not allow concurrent operations by different users to
wait for one another. Our objective is to manage the shared variable such that
it appears atomic. Atomicity means that each operation execution can be thought
to happen in an indivisible instant of time, a different instant for each operation,
such that the reads and writes are totally ordered. This ordering should be internal
consistent in the sense that each read returns the value assigned by the last write
that precedes it in the order. To have external consistency, the time instant the
operation appears to take place must be within the actual duration of the operation
execution. We implement an atomic shared variable by maintaining several
versions of it. Each version can be written by each user out of an associated set
of writers, and read by each user out of an associated set of readers. Call the
operations on the versions subreads and subwrites. Each read or write by a user
comprises many subreads and subwrites. Each version resides at a user. We
assume that the subreads and subwrites to a version are executed atomically, i.e.,
that a version is itself an atomic shared variable. Our goal is to implement an
atomic variable, which is shared by a set of users, using atomic variables which
are shared by subsets of users only. Below we give a family of algorithms which
reduces the problem to match-making.

A quorum T(u) for an operation by user u on the shared variable, is a set of
versions whose cooperation is sufficient to execute that operation. It is convenient
to divide the quorum in an initial quorum Q(u) and afinal quorum P(u). Each
version has an attached version number to identify the order in which the versions
were created. A version number is a pair (t, u), where t is a nonnegative integer
and u a user identifier. Let the user identifiers be 1 through n if there are n users.

To read the variable, a user, say v, reads the versions from its initial quorum
Q(v), and determines the version with the lexicographic greatest version number,
say (t, u). Let this version contain value M. Then v writes value M together with
version number (t, u) to the versions in its final quorum P(v). (Note that u may
be unequal v.) The value returned by v is M.

To write value N to the shared variable, a user, say u, first reads the version
numbers of its initial quorum Q(u). It de(ermines the greatest first coordinate of
the version numbers, say t. Then u writes value N together with new version
number (t + 1, u), to the versions in its final quorum P(u) .

For the method to implement an atomic shared variable, quorums are subject
to the following constraint: each final quorum must intersect each initial quorum,
i.e., P(u) ~ Q(v) ~ 0 for each ordered pair (u, v) of users in U 2. The proof of
correctness of this algorithm is by no means simple and is outside the scope of
this paper. (It is essentially given in [1] and [24].) The important issue here is
that we have established yet another case of match-making as follows. Without
loss of generality assume P(i)n Q(j)= {vi.j}, for each pair (i , j) of users in U.
Let the entry ri, j in the ith row and j th column of the rendezvous matrix be the
user node where version v~,j resides.

EXAMPLE. Let there be n users which can read and write an atomic shared
variable, as above. I f each user occurs with the same frequency in the rendezvous

Distributed Match-Making 381

matrix, then the average number of messages between users to read or write the
shared variable is >-2x/-~, by Proposition 2. A strategy achieving an average of
2x/-n messages to read or write the shared variable is implemented by Example
4. That is, each node hosts a version which is itself an atomic shared variable,
and which can be written by x/-ff writers and read by ~ readers.

4. Match-Making Algorithms. The topology of a network G = (U, E) in Section
3 determines the overhead in message passes needed for routing a message to its
destination. For complete networks, the number of message passes for match-
making between node i and node j equals the number of messages m(i,j). If the
subgraph induced by the sets P(i), Q(j) (1 -< i,j <- n) is connected, and i ~ P(i)
and j ~ Q(j) , and we broadcast the messages over spanning trees in these sub-
graphs, then the number of message passes equals the number of messages m(i,j).
Otherwise, there is an overhead of message passes for routing messages from
node i to P(i), and from node j to Q(j). For this reason, in a ring network, no
match-making algorithm can do significantly better than broadcasting (i.e., the
average number of message passes involved in matching a pair of nodes is f l(n)) .

4.1. General Networks. Let G = (U , E) be an arbitrary network. We assume
that each node has a table containing the names of all other nodes, together with
the minimum cost to reach them, and the neighbor at which the minimum cost
path starts. It is not difficult to give a construction to cover every connected graph
with O(x/-ff) connected subgraphs of < - ~ nodes each. The subgraphs cannot
always be chosen pairwise disjoint as is shown by the counterexample of an
n-node star graph with n - 1 nodes of degree 1 and 1 node of degree n - 1. If
the original graph has node degree bounded by a constant, then the covering
subgraphs can be constructed pairwise disjoint (Proposition 7). Either way, label
the nodes in each subgraph 1 through x/-n. If the subgraph has less than x/-ff
nodes, then use up the excess numbers by labeling some nodes more than once.

Fig. 2

Then the shortest path between each pair of nodes labeled i in two adjacent
connected subgraphs is not longer than 2x/-~. Let there be k s O(x/~) subgraphs
Gj, l<-j<-k. Denote a node labeled i in a subgraph Gj by (i , j) , 1 <- i-<,,/n and
1 < j -< k. Let P((i,j)) consist of all nodes labeled i in Gi, 1 -< I < - k. To access all
nodes in P((i,j)) from the original node takes O(x/n) messages but O(n) message
passes. Size O(x/n) suffices for the cache of each node. Let Q((i,j)) equal the

382 S.J. Mullender and P. M. B. Vithnyi

set of all nodes in Gj. To access all these nodes in Q((i,j)) from (i , j) , takes at
most x/'ff messages (or message passes along a spanning tree of Gj).

The algorithm has communication complexity O(x/-n) messages, but cannot
guarantee a better upper bound than O(n) message passes. However, for applica-
tion to the name server, we can make the assumption that clients need to locate
services usually far more frequently than servers need to post their whereabouts.
Then this scheme is fairly optimal in message passes too.

If for some reason we want the connected subgraphs to be pairwise disjoint,
then this is not always possible. However,

PROPOSITION 7. Let G be a connected graph with a spanning tree of bounded
node degree. Then O can be divided in O(x/n) disjoint connected subgraphs,
containing O(x/n) nodes each.

PROOF. Consider a rooted spanning tree T (of G) with node degree - c , c a
constant. Let v be a node farthest from the root with ->d descendants. By the
bounded degree of T it follows that v has <-cd ~ O(d) descendants. Take v and
its subtree from the tree as the first connected subgraph of O(d) nodes. Repeat
the procedure on the remainder of T. As long as - d nodes remain we can separate
off another cluster of O(d) nodes. The final remainder can be attached to the
preceding cluster. Therefore, we obtain a division of G in O(n/d)
disjoint connected subgraphs of O(d) nodes each. Setting d =x/-n yields the
proposition. []

If we settle for the subgraphs having diameter O(v/-n), as opposed to number
of nodes O(x/-n), then we can use a result due to [5].

PROPOSITION 8. Each connected graph of n nodes can be divided into O(xfff)
connected subgraphs of diameter O(x/-n) each.

PROOF. Consider a rooted spanning tree T of the original graph (3. Choose d
and divide T in layers of d levels each. Take the subtrees rooted at level id (i >- O)
which reach to level (i+ 1) d - 1 . If a subtree does not reach to that level (has
depth < d) then attach it to the subtree just above it. (Thus, resulting subtrees
may have up to 2d - 1 levels.) The set of such subtrees induces a covering of the
original graph by pairwise disjoint connected subgraphs of diameter -<4d and
each ->d nodes (separate argument for top part). This yields O(n/d) subgraphs
of diameter O(d) and yields the mentioned result for d = v/n. []

4.2. Manhattan Networks. The network G = (U, E) is laid out as a p x q rec-
tangular grid of nodes, U--{(i , j) : 1-< i-< p, 1-<j-< q} and there is an edge in E
between (i,j) and (i',j') if either [i - i' I = 1 or IJ-J'l = 1, but not both. P((i,j)) =
{(i, k): 1 - < k - <q} is the set of nodes in row i and Q((i,j))={(k,j): 1-<k<-p} is
the set of nodes in column j. Caches are of size O(q) and the number of messages
(=message passes) for each match-making instance is O(p+q). For p = q we
have m = 2v/-ff and caches of size x/n. For the 3 x 3 network shown in Figure 3,
the corresponding 9 x 9 rendezvous matrix is given as Example 8 in the Appendix.

D i s t r i b u t e d M a t c h - M a k i n g 383

, [6

Fig . 3

Wrap-around versions of the method can also be used in cylindrical networks or
torus-shaped networks. It is, in fact, the method used in the torus-shaped Stony
Brook Microcomputer Network [8]. In the obvious generalization to d-
dimensional meshes the method takes 2 n (d - l) / d message passes. However, at the
cost of shifting the load of being a r e n d e z v o u s node from the interior of the mesh
to the surface we can improve matters. Take as an example a name server in a
three-dimensional mesh. A server at (xs, ys, zs) sends its advertisement by a
shortest path parallel to the x axis to the surface and next circumnavigates the
surface of the mesh in the plane z = zs. The client at (xc, yc, zc) sends its query
along a shortest path parallel with the y axis to the surface and next circumnavi-
gates the surface in the plane x = x~ . T h e r e n d e z v o u s nodes are the two nodes
on the mesh surface which are incident on the intersection line of the planes
z = zs, x = xc. I f the mesh has n nodes, n 1 /3 to a side, then this method takes
9 n 1/3 message passes in the worst case to make a match.

4.3 . M u l t i d i m e n s i o n a l C u b e s . A binary d-cube is a network G = (U, E) such
that the nodes have addresses of d bits and edges connect nodes of which the
addresses differ in a single bit, n = I UI = 2 d and [El = d 2 d-1 . Assume that d is
even. (An obvious modification works for d is odd.) Let node s have address
S i s 2 �9 . . s d :

P (s) = { a l a 2 " �9 �9 aa/2Sd/2+l " " " Sd: a l , . . . , a a / 2 ~ {O, 1}},

Q (s) = { s i s 2 " " �9 S d / 2 a d / 2 + 1 �9 " " aa: a d / 2 + l , . . . , a d e { 0 , 1}} .

For each pair (s, c) e { 1 , . . . , n} 2, the r e n d e z v o u s node is given by

P (s) ~ Q (c) = { e l c 2 . . �9 Cd/2Sd/2+l " "" Sd}.

The number r e (s , c) of messages is the same for each pair (s, c) of nodes, and
therefore m = m (s , c) = IP(s)l + IQ(c)l-- 24-ff.

384 S.J . Mullender and P. M. B. Vit~nyi

m(s, c) equals the number of message passes along spanning trees in the two
binary d /2-cubes induced by P(s) and Q(c), respectively. The nodes need ~f'n-size
caches. Variants of the algorithm are obtained by splitting the corner address
used in the algorithm not in the middle but in pieces of ed and (1 - e)d bits.
See Example 6. For instance, in the case of the name server we may want to
adapt the method to take advantage of the relative immobility of servers, to get
a lower average. Excessive clogging at the intermediate nodes may be prevented
by sending messages to a random address first, to be forwarded to their true
destination second [23].

4.4. Fast Permutation Networks. For various reasons I2] fast permutation net-
works like the Cube-Connected Cycles (CCC) network are important interconnec-
tion patterns. An algorithm similar to that of the d-dimensional cube yields,
appropriately tuned, for an n-node CCC network, m c O(x/n log n) and caches
of size x/-n/log n.

4.5. Projective Plane Topology. The projective plane PG(2, k) has n = k 2 q- k + 1
points and equally many lines. Each line consists of k + 1 points and k + 1 lines
pass through each point. Each pair of lines has exactly one point in common.
For each node s, P(s) and Q(s) comprise all nodes on an arbitrary line incident
on its host node. The common node of two lines is the rendezvous node. Since
the nodes are symmetric, it is easy to see that

m = IP(s)l + I Q(s)l = 2(k + 1) ~ 2v~.

This combination of topology and algorithm is resistant to failures of lines,
provided no point has all lines passing through it removed. The average necessary
cache size is x/~; but the price we have to pay for the fault tolerance of this
method is expressed in the worst-case cache size n.

4.6. Hierarchical Networks. Local-area networks are often connected, by gate-
way nodes, to wide-area networks, which, in turn, may also be interconnected. 4
Consider a tree T of k levels, with the root at level k. A node of T at level i
consists of a level i network. A level i network consists of ni nodes, called
gateways, connecting ni level i - 1 networks, for each 1 -< i -< k. A level 0 network

4 Service naming preferably should be resolved in a way which is machine- independent and network-
address-independent . Consequently, ways will have to be found to locate services in very large
networks of hierarchical structure. There, the node symmetric 2x/~ solutions to the locate problem
are not acceptable any more. Fortunately, in network hierarchies, it can be expected that local t r a~c
is most frequent: most message passing between communicat ing entities is intrahost communicat ion
(e.g., memory management) ; o f the remaining interhost communicat ion, most will be confined to a
local-area network (e.g., temporary file s tore/swap service), and so on, up the network hierarchy
(e.g., mail). For locate algorithms these statistics for the locality of communicat ion can be used to
advantage. When a client initiates a locate operation, the system first does a local locate at the lowest
level of the network hierarchy (e.g., inside the client host). If this fails, a locate is carried out at the
next level of the hierarchy, and this goes on until the top level is reached.

Distributed Match-Making 385

is a node. The obvious strategy for match-making puts the rendezvous node for
a pair of nodes in the least common ancestor network of the two. Suppose we
use a 2x/-n-~ strategy, as described in the previous sections, in each level i network,
1 <- i <- k. Let s be a node in a level j network Gj, 1 -<j -< k. Let Gi+l , Gk be
the chain of networks between Gj and the root network Gk. We define P(s) and
Q(s) inductively. Base: if Gj = (Uj, Ej), s ~ Uj, then P(s) n Uj and Q(s) c~ Uj are
chosen such that it takes an average of 2v/-~j messages to make a match between
a pair of nodes in Gj. Induction: if s '~ Uj+~ is the gateway node through which
Gj is connected in its ancestor network Gj+I = (Uj+I, Ej+~), then

P(s) ~ Uj+, = P(s ') c~ Uj+,,

Q(s) c~ Uj+l = Q(s') n U~+l.

k
This gives m E O(~i= ~ x/-~) for a hierarchical network with a total of n = I]~=x ni

nodes. Assume for simplicity that ni = a, 1 - i - k. Then the total number of nodes
in the network is n = a k, and m ~ O(kx/-'d). Therefore,

m ~ O(kn'/2k).

Having the number k of levels in the hierarchy depend on n, the minimum value

m ~ O(log n)

is reached for k = �89 log n. This message complexity is much better than f~(x/-ff),
but the cache size toward the top of the hierarchy increases rapidly. Essentially,
the cache of a node may need to hold as many entries as there are nodes in the
subtree it dominates.

5. Conclusion and Further Research. This paper reports on initial investigations
in a new theoretical problem area. We have isolated and formalized the problem
of "distributed match-making" as a new paradigm in distributed control. The
complexity analysis gives theoretical limitations to the efficiency of solutions for
many practical problems in the area. The exhibited algorithms, which are optimal
or nearly optimal, may serve as guidelines for feasibility and design of applied
algorithms. Below we indicate a few avenues for further research in match-making,
like probabilistic algorithms, hashing, and fault-tolerance. "Lighthouse Locate"
actually preceded everything else in this paper.

5.1. Lighthouse Locate. We give a probabilistic method for the name server.
We imagine the processors as discrete coordinate points in the two-dimensional
Euclidean plane grid spanned by (e, 0) and (0, e). The number of servers satisfying
a particular port in an n-element region of the grid has expected value sn for
some fixed constant s > 0.

386 s.J. Mullender and P. M. B. Viuinyi

SERVER'S ALGORITHM. Each server sends out a random direction beam of
length 1 every unit of time. Each trail left by such a beam disappears instantly
at the end of d time units. That is, a node discards an address posted by a
server after d time units. Assume that the time for a message to run through
a path of length 1 is so small in relation to d that the trail appears and disappears
instantaneously.

CLIENT'S ALGORITHM. TO locate a server, the client beams a request in a random
direction at regular intervals. Originally, the length of the beam is /(1)--1 and
the intervals are 6(1). After each unsuccessful trial, the client increases its effort
by doubling the length of the inquiry beam and the intervals between them. Thus,
the ith trial has 6 (0 = l(i) =2 i-1, i_> 1.

With the clients strategy governed by the integer sequence 012 �9 �9 �9 of exponents,
we may spend exponentially longer lasting trials with exponentially longer beams,
while missing a server which was nearby all the time, or has migrated to a nearby
location. A better strategy is to prevent this by an evenhanded treatment of
locations far and near, independent of which interval o f consecutive trials we
consider. To obtain this we govern the length of the client's locate beam (and
its duration) by integer sequence 51 in [20]:

010201030102010401020103010201050102....

This sequence has an interesting property: for each i >-0, each uninterrupted
subsequence of length 2 i§ contains precisely one integer i. Let d(i) be the digit
in position i, and let, in the ith trial, 6 (0 = l(i) = 2 d(;). Then in each subsequence
of 2 d§ trials there are 2 d--~ trials with beams of length U (0-<j-< d). This "binary
carry schedule" can be conveniently maintained by a binary counter. A binary
counter is initialized with 0. In each step, it is incremented by 1. Digit d(i)
equals the position of the most significant bit which needs to be changed in the
ith step.

5.2. Hash Locate and Beyond. Let us consider the name server again. Let, in a
given network, G = (U, E), the set of ports (i.e., types of services available), be
II. In Hash Locate we construct hash functions that map service names onto
network addresses. That is,

P , Q : I I - ~ 2 t: and P = Q .

This technique is very efficient. Each server s posts its (service, address) at the
node(s) P(cr), if 7r is the service offered by s, and a client in need for a service
r queries the node(s) in Q(Tr). Clients and servers need only use one network
node each in every match-making. (Clearly, the rendezvous matrix must be
interpreted differently in this setting.) Provided the hash function is well chosen,
it distributes the burden of the locate work over the network. It suffers from the
drawback that, if nodes are added to the network, the hash function must be

Distributed Match-Making 387

changed to incorporate these nodes in the set of potential rendezvous nodes.
Moreover, if all rendezvous nodes for a particular service crash then this takes
out completely that particular service from the entire network. If the service is
indispensable, the entire network crashes. In this sense Hash Locate is far more
vulnerable to node crashes than the more distributed versions of our old method.
Example 3 may also be viewed as a borderline example of Hash Locate. Examples
4-6 are not Hash Locate methods, since Hash Locate cannot be distributed in
this genuine sense.

Two obvious approaches can make Hash Locate more robust for node crashes.
First, the hash function can map a service name onto many different network
addresses for added reliability. Second, when the rendezvous node for a particular
service is down, rehashing can come up with another network address to act as
a backup rendezvous node. It then becomes necessary that services regularly poll
their rendezvous nodes to see if they are still alive.

We can define the functions P and Q using both addresses and ports. This
generalizes both Hash Locate and the method in the previous sections:

P, Q: U x II--> 2 v.

If we are dealing with a very large network, where it is advantageous to have
servers and clients look for nearby matches, we can hash a service onto nodes
in neighborhoods. A neighborhood can be a local network, but also the network
connecting the local networks, and so on. Therefore, such functions can be used
to implement the idea of certain services being local and others being more global,
thus balancing the processing load more evenly over the hosts at each level of
the network hierarchy.

5.3. Robustness, Fault-Tolerance, and Efficiency. In computer networks, and
also in multiprocessor systems, the communication algorithms must be able to
cope with faulty processors, crashed processors, broken communication links,
reconfigured network topology and similar issues. Centralized match-making
(Example 3) is very efficient, but if the linchpin host crashes then match-making
is impossible between any pair of nodes. It is one of the advantages of truly
distributed algorithms that they may continue in the presence of faults. Below
we distinguish two distinct criteria for robustness, apart from the problem of
how, or whether it is still possible, to route the match-making messages to their
destinations in the surviving subnetwork:

(i) Match-making should be distributed in the sense that node crashes do not
take out the general facility of match-making in the surviving network (or
as little as possible). This rules out a centralized match-maker, but the
distributed Examples 1, 2, 4, 5, and 6 satisfy this requirement in various
degrees. It is lack of robustness according to this criterion that makes the
efficient Hash Locate so fragile.

(ii) The match-maker should be redundant in the sense that a bounded number
of node crashes cannot prevent individual node pairs from the capability of

'-.
.1

.~
 II § e~
 H

t~

~
a

r~

~
1

7
6

II -t-

II

e~
 II

N
~

o
 ~
"

0 N
~

 ~
.

o
~

. o

~g
"

g~

0
~

o

o

~
~

I:
=

,~
.

~

o

IV

o

o
'
"

~

~

o

~.
~

~'
-

~

~
g =

g

~D

N

r~

c
~

q
~

 A

A

Q
O

~

o
 A

O
0

~
~

 II II H

o
o

 H II

~D

Q
O

390 S.J. Mullender and P. M. B. Vit~inyi

. For all a, b, c e {0, 1}, P(abc) = {axylx , y ~ {0, 1}} and

000 001 010 011 100 101

000
001
010
011
100
101
110
111

000 001 010 011 000 001
000 001 010 011 000 001
000 001 010 011 000 001
000 001 010 011 000 001
100 101 110 111 100 101
100 101 110 111 100 101
100 101 110 111 100 101
100 101 110 111 100 101

Q(abc) = {xbclx e {0, 1}}.

110 111

010 011
010 011
010 011
010 011
110 111
110 111
110 111
110 111

7. Variant with m (4, 1) =

1
2
3
4
5 1
6 1
7 1
8 1
9 1

8. Manhat tan: m = 2v/-ff and

1

1
2
3
4
5
6
7
8
9

2 and m(3,9) =2n.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 7
1 2 3 1 2 3 1 2 8
1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1

5 6 4 5 6 4 5 2
5 6 4 5 6 4 5 3
8 9 7 8 9 7 8 4
8 9 7 8 9 7 8 5
8 9 7 8 9 7 8 6

S = Sav e = ~/-n.

2 3 4 5 6 7 8 9

1 2 3 1 2 3 1 2 3
i 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
4 5 6 4 5 6 4 5 6
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
7 8 9 7 8 9 7 8 9
7 8 9 7 8 9 7 8 9

References

[1] Awerbuch, B., L. M. Kirousis, E. Kranakis, and P. M. B. Vit~inyi, On proving register atomicity,
Technical Report CS-R8707, Centrum voor Wiskunde en Informatica, Amsterdam (May, 1987).

[2] Broomel, G. and J. R. Heath, Classification categories and historical development of circuit
switching topologies, ACM Computing Surveys 15, pp. 95-133 (1983).

[3] Dalai, Y. K. and R. Metcalfe, Reverse path forwarding of broadcast packets, Communications
of the Association for Computing Machinery 21, pp. 1040-1048 (1978).

Distributed Match-Making 391

[4] Dijkstra, E. W., Solution to a problem in concurrent programming control, Communications
of the Association for Computing Machinery 8, p. 567 (1965).

[5] Erdrs, P., L. Gerrncser, and A. Matr, Problems of graph theory concerning optimal design,
in Colloquia Mathematica Societatis Jdnos Bolyai 4, ed. P. ErdSs, North-Holland, Amsterdam
(1970), pp. 317-325.

[6] Farber, D. J. and K. C. Larson, The system architecture of the distributed system--the
communication system, Proceedings of the Polytechnic Institute of Brooklyn Symposium on
Computer Networks (April, 1972).

[7] Fowler, R. J., The complexity of forwarding address protocols for decentralized object finding,
Proceedings of the 5th ACM Symposium on Principles of Distributed Computing (1986), pp.
108-120�9

[8] Gelernter, D. and A. J. Bernstein, Distributed communication via a global buffer, Proceedings
of the 11th ACM Symposium on Principles of Distributed Computing (1982), pp. 10-18.

[9] Gifford, D. K., Weighted voting for replicated data, Proceedings of the 7th ACM Symposium
on Operating Systems Principles (1979).

[10] Gifford, D. K., Information storage in a decentralized computer system, Technical Report
CSL-81-8, Xerox Corporation (March, 1983).

[11] Kranakis, E. and P. M. B. Vitfinyi, Distributed control in computer networks and cross-sections
of colored multidimensional bodies, Technical Report MIT/LCS/TM-304, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA (March, 1986).

[12] Lamport, L., The mutual exclusion problem, Parts I and II, Journal of the Association for
Computing Machinery 33, pp. 313-326, 327-348 (1986).

[13] Lampson, B. W., Designing a global nameservice, Proceedings of the 5th ACM Symposium on
Principles of Distributed Computing (1986), pp. 1-10.

[14] Liskov, B. and S. Zilles, Programming with abstract data types, SIGPLAN Notices 9, pp. 50-59
(1974).

[15] Maekawa, M., A N**l /2 algorithm for mutual exclusion in decentralized systems, ACM
Transactions on Computer Systems 3, pp. 145-159 (1985).

[16] Mullender, S. J. and P. M. B. Vit~inyi, Distributed match-making for processes in computer
networks, Proceedings of the 4th Annual ACM Symposium on Principles of Distributed Computing
(1985), pp. 261-271. (Reprinted in Operating System Review, 1986.)

[17] Needham, R. M. and A. J. Herbert, The Cambridge Distributed Computer System, Addison-
Wesley, Reading, MA (1982).

[18] Powell, M. L. and B. P. Miller, Process migration in DEMOS/MP, Proceedings of the 9th ACM
Symposium on Operating Systems Principles (1983), pp. 110-119.

[19] Seitz, Ch. L., The cosmic cube, Communications of the Association for Computing Machinery
28, pp. 22-33 (1985).

[20] Sloane, N. J. A., A Handbook of Integer Sequences, Academic Press, New York (1973).
[21] Tanenbaum, A. S. and S. J. Mullender, An overview of the Amoeba distributed operating

system, Operating System Review 15, pp. 51-64 (1981).
[22] Mullender, S. J. and A. S. Tanenbaum, The design of a capability-based distributed operating

system, The Computer Journal 29, pp. 289-300 (1986).
[23] Valiant, L. G., A scheme for fast parallel communication, SIAM Journal on Computing 11, pp.

350-361 (1982)�9
[24] Vitanyi, P. M. B. and B. Awerbuch, Atomic shared register access by asynchronous hardware,

Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science (1986).

