
Nonsequent ia l Computat ion and Laws of N a t u r e

Paul M.B. Vit~nyi

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts
and

Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

ABSTRACT

Traditionally, computational complexity theory deals with sequential computations. In the computational
models the underlying physics is hardly accounted for. This attitude has persisted in common models for parallel
computations. Wrongly, as we shall argue, since the laws of physics intrude forcefully when we want to obtain
realistic estimates of the performance of parallel or distributed algorithms. First, we shall explain why it is reason-
able to abstract away from the physical details in sequential computations. Second, we show why certain common
approaches in the theory of parallel complexity do not give useful information about the actual complexity of the
parallel computation. Third, we give some examples of the interplay between physical considerations and actual
complexity of distributed computations.

1. I n t r o d u c t i o n

The earliest electronic computing engines arose

as a byproduct of the Manhattan Project in

World War II. Broadly speaking, their purpose

was to compute numerical solutions to second

order partial differential equations arising in

connection with the design of the atomic bomb.

The machines consisted of primitive logical and

memory components like electromagnetic relays

and mercury delay lines, which where wired up

so as to have the complex perform the desired

computation. The architecture reflected the

type of algorithm to be performed, i.e., the solu-

tion of the mentioned equations by numerical

grid methods. Such algorithms suggest parallel

or pipelined execution, and that is exactly the

type of architecture of those first computers
[Goldstine1972]. Only at the present time, in the

middle eighties, have we come full circle and see

This work was supported in part by the Office of N~
val Research under Contract N00014-85-K-0168, by
the Office of Army Research under Contract
DAAG29-84-K-0058, by the National Science Founda~
tion under Grant DCR~88-02091, and by the Defense
Advanced Research Projects Agency (DARPA) under
Grant N00014-83-K-0125.

such special purpose architectures again in the

pipelined and systolic algorithms frozen in the

silicon hardware of chips. Once more, the shift

is away from sequential thinking in the form of

line-by-line programs of imperative or other

nature, and to representing algorithms in struc-

tures of space and time.

After the Manhattan Project had been

fulfilled, computer designers quickly progressed

to the idea of automating all types of computa-

tional tasks. Rather than stooping to the chore

of rewiring a new complex for every new task

which came along, the idea arose of letting the

computer take over that job as well. Thus, the

idea of a general purpose computer entered the

scene. It so happened that mathematicians like

H.H. Goldstine, J. yon Neumann and A.W.
Burks were well aware of A.M. Turing's brilliant
1936 paper [Turing1936] in which he described

an architecture for just such a hypothetical

machine:

"Computing is normally done by writing cer-
tain symbols on paper. We may suppose this paper
to be divided into squares like a child's arithmetic
book. In elementary arithmetic the two-dimensional

109

character of the paper is sometimes used. But such
use is always avoidable, and I think that it will be
agreed that the two-dimensional character of paper is
no essential of computation. I assume then that the
computation is carried out on one-dimensional paper,
i.e., on a tape divided into squares. I also suppose
that the number of symbols which may be printed is
finite."

"The behaviour of the [human] computer at
any moment is determined by the symbols he is
observing, and his ~state of mind' at that moment.
We may suppose that there is a bound B to the
number of symbols or squares which the computer
can observe at one moment. If he wishes to observe
more, he must use successive observations. We will
also suppose that the number of states of mind which
need be taken into account is finite."

"We suppose [above] that the computation is
carried out on a tape; but we avoid introducing the
"state of mind" by considering a more physical and
definitive counterpart of it. It is always possible for
the computer to break off from his work, to go away
and forget all about it, and later to come back and
go on with it. If he does this he must leave a note of
instructions (written in some standard form) explain-
ing how the work is to be continued. This no~e is the
counterpart of "the state of mind." We will suppose
that the computer works in such a desultory manner
that he never does more than one step and write the
next note. Thus the state of progre~ of the computa-
tion at any stage is completely determined by the
note of instructions and the symbols on the tape.
That is, the state of the system may be described by
a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we
suppose not to appear elsewhere) and then by the
note of instructions. This expression may be called
the %tare formula." We know that the state formula
at any given stage is determined by the state forraula
before the last step was made, and we assume that
the relation of these two formulae is expressible in
the functional calculus. In other words, we assume
that there is an axiom A which expresses the rules
governing the behaviour of the computer, in terms of
the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we
can construct a machine to write down the successive
state formulae, and hence to compute the required
number."

Grasping the implied archi tectural concept,

and improving it according to the leeway pro-
vided by physical law, Burks, Goldstine and yon

Neumann in 1946 wrote a memorandum
[Burks1946] which shaped the archi tecture of

electronic computers for the next forty years.

This memorandum was preceded by the famous

'Firs t Draf t ' [Neumann19451, where we can

clearly dist inguish the serial mode of operat ion

of the modern computer , i.e., one instruct ion at

a t ime is inspected and then executed. This is in

sharp dist inction to the parallel operat ion of the

earlier ENIAC computer in which many th ings

where simultaneously being performed. To

abandon all parallelism was not thought of as

de t r imenta l to performance, since the potential

speed of the electronic techniques was judged to

be fast enough. Compla inan ts about the 'yon

Neumann ' bott leneck (explained below),

inherent in the stored program sequential com-

puter as we know it, should realize t ha t the con-
ceptual advantage of this scheme is wha t made

possible the giant s t r ides of progress: if cars had

become so much cheaper as comput ing power

has, a car would cost less than 1 dollar.

Tur ing ' s analysis of the process of compu-

tat ion as the sequential execution of a sequence

of operat ions is so natural , tha t it seems as if

Euclid in designing one of the earliest known

algori thms (for comput ing the greatest common

divisor) mus t have had such an architecture in

mind. Now it so happens, tha t in sequential

computa t ion we can ignore many physical

details of the underlying computer sys tem in

analysing the computa t ional complexity of some

program. Each operat ion essentially consists of

a sequence of "fe tch from memory ," "execute

operation on one or more operands in the Cen-

tral Processing Un i t " and "s tore in memory ."

The C P U operat ions can be thought of - when

viewed from sufficient distance - as essentially

finite a u t o m a t a t ransi t ions which t ransform

input obtained by a bounded number of "fetch

from memo r y " operat ions (say 2) into ou tpu t in

the form of "s tore in memo r y " operat ions (say

1). In the usual setup, a memory register has a

fixed length (say 48 bits) and both the memory

accesses and C P U operat ions take a fixed t ime

(say, at most X) . Therefore, a sequence of n

operat ions takes in between nX and 4nX time.
Forget t ing about the X and the small constants

like 4, i t is usual to say tha t n operations take
n ' t ime. ' Note, here ' t ime ' means number of

110

steps. Similarly, it is assumed tha t all objects

manipulated fit in a single memory location.
Moreover, t ha t each object is ' random accessi-

ble,' tha t is, each object can be accessed as fast
as any other. This is referred to as the 'uni t

cost measure.'

This scheme is sometimes refined to take

into account tha t some items being manipulated

do not fit in a 48 bit register - as for instance
the 123rd Mersenne prime. It is then customary

to charge the cost of manipulating the item as

being linear in its length, both in terms of

storage and in terms of time for execution of an
operation. This is referred to as the ' logarithmic

cost measure.' It is clear, t ha t this time cost

measure is only a lower bound, since the actual

operations performed on the items when they
are chopped up, often requires more than time

linear in the length of the items. For instance,
while logarithmic cost may be reasonable for

addition, it is not reasonable for multiplication.

A further refinement may be made for

objects not held in ' random access' memory, but

on disk or mass storage devices such as tapes.
There an operation on a~a object may involve

swapping pieces of the object back and forth

from disk to random access memory, thus incur-

ring a time overhead which may be orders of
magnitudes greater than the time spent on

manipulating in the CPU and random access
memory. Think about the sorting or merging of

huge data files. The logarithmic cost measure

tries to take such an overhead into account by

charging as the cost of a memory access also the
length of the memory address. As in the case of

the registers, this can be only a very crude
lower bound on the actual cost. We thus distin-
guish a memory hierarchy, where the access

times of objects stored at different levels differs

orders of magnitudes.

While the physical aspects of computing
devices can thus be fairly well accounted for,
the basic unit of time a transaction takes does
not vary too wildly within each level we have
distinguished. It is therefore more or less
justified to forget about the details and talk
only about the number of operations at each
level of the memory hierarchy. As we will see, in

the reatra of nonsequential computation reality

can not be ignored to such an extent.

Since in current computers the time of a

basic operation in the CPU is generally far
lower than tha t of memory accesses, most com-
putations are memory bound, i.e., the time

spent in accessing various levels in the memory

hierarchy completely dominates the computa-

tion time. This is popularly called the 'yon Neu-
mann ' bottleneck. Are the prospects any

brighter in the coming era of nonsequential

computation?

2. Space

In many areas of the theory of parallel compu-

tation we meet tree structured devices or com-

putations.

(1). For instance, 'parallel random access
machines (PRAM's) ' can at each point in
their computation spawn a couple of

offspring PRAM's to perform some sub-
computations. Broadly speaking, we can

therefore imagine the computation as a
binary tree of processors. The ' t ime' the
computation takes is then linearly related

to the depth of the tree.

(2). In [Mead1980] this idea is translated into
terms of 'very large integrated circuits.' In
Chapter 8 the authors show a bold picture

of a complete binary tree, and explain tha t
such a tree with processors in each node, is
capable of solving NP-complete problems

like the 'traveling salesman problem' in

linear time. This, on the grounds that the
processor at the root can send a copy of

the problem instance to each of the leaves,
and each of the leaves can try one candi-

date solution. A simple scheme can
guarantee tha t each leaf tries a different

solution, each solution is tried by some
leaf, and all answers are percolated
upwards to the root. If positive answers
win over negative ones in the fan in, the
answer the root receives is a solution if
there is one and 'no solution' if there is

none.

111

(3). One of the currently flourishing parts of

the theory of parallel computation is 'NC-
computation.' A problem is in 'Nick's

Class' if it can be solved in polylogarithmie
'time' using a polynomial number of pro-
cessors. Here, ' t ime' means the length of
the longest chain of causally related steps.

All of the above models may say something
about the parallelizability of algorithms for cer-
tain problems. This often takes the form of dis-
tributing copies of the entire problem instance,
or pieces of the problem instance, among an
exponential number of processors in a linear
number of steps. Or, as in NC, among a polyno-
mial number of processors in a polylogarithmie
number of steps. The way a problem instance
can be divided mad partial answers put together
may give genuine insight into its paralletizabil-
ity. However, it can n o t give a reduction from
an asymptotic exponential time best algorithm
in the sequential case to an asymptotic polyno-
mial time algorithm in a n y parallel case. At
least, if by ' t ime' we mean time. This can be
seen easily as follows. If the parallel algorithm
uses 2 n processing elements, regardless of
whether the computational model assumes
bounded fan-in and fan-out or not, it can not
run in time polynomial in n , because p h y s i c a l

s p a c e has us in its tyranny. Viz., if we use 2 n

processing elements of, say, unit size each, then
the tightest they can be packed is in a 3-
dimensional sphere of volume 2 n . No unit in

the sphere can be closer to all other units than a
distance of radius R ,

1/3

Modulo a major advance in physics, it is impos-

sible to transport signals over 2 an (a>0) dis-
tance in polynomial p (n) time. In fact, the
assumption of the bounded speed of light sug-

gests that the lower time bound on a n y compu-
tation using 2" processing elements is f~(2 ~/s)
outright. Or, for the case of NC computations
which use n ~ processors, a > 0 , the lower bound
on the computation time is ~2(n a/3).

The situation is worse than it appears on
the face of it. Consider an architecture such as
the binary n-cube. This is the network in
which the nodes are identified by n-bit names,
and there is a communication edge between two
nodes if their identifiers differ in a single bit.
Call this graph C = (V , E) . Let C be embedded
in 3-dimensional Euclidean space~ and let each
node have unit volume. Let x be any node of
C. There are at most 2n/8 nodes within
Euclidean distance R / 2 of x, where R is
as above. Then, there are > 7 - 2 " / 8 nodes at
Euclidean distance > R / 2 from x. Construct a
spanning tree T z o f . C of depth ~ n with

node x as the root. The average Euclidean

length of a path from the root in Tz is
> T R / 1 6 , and therefore the average Euclidean
length of an embedded edge in a path from the
root in T~ is > _ T R / 1 6 n . This does not give a

lower bound on the average Euclidean length of
an edge in T z . However, using the symmetry of

the binary n-cube we can establish that the
average Euclidean length of the edges in the 3-
space embedding of C is >_7R/ t6n . We can
prove this as follows. (The hasty reader may
skip the proof by proceeding to the second
column on the next page:)

P r o o f . Denote a node a in C by a n - b i t
string a l a 2 • . . a n , and an edge (a ,b) between
nodes a and b differing in the i th bit by:

A

a ~ a 1 • . . a i _ l a i a i + 1 • • . a n

This means that an edge has two representa-
tions. Now we can express a set I of iso-
morphic mappings of C to itself by (1) a cyclic
permutation of the representation of nodes and
edges, followed by (2) complementation of the
bits of the representations in a given pattern.
I.e., the isomorphism (j , c l c 2 - . . c n) E I maps

112

the above edge a to

b = b#+ I - ' - bi_lbibi+1'' ' b n b l ' - " bj

with bi=a i if e l = 0 and bi--~a ~ (--~ comple-

ment ai) if el = I .

Consider the ensemble S of spanning trees
of C, each tree isomorphic with T x above, con-

sisting of the n2 n trees i (T~) to which Tz is
mapped by the n2 n distinct isomorphisms i in
I . For each edge e in Tz and each edge e t of

C there are two distinct isomorphisms i 1 and

i s in I such that i l(e)~i~(e)-~e ~ . The aver-
age Euclidean length of a path from the root in
each tree I(T~)ES (iEI) is >_7R116, so the

average Euclidean length of a path from the
root taken over all trees i (Tz)ES (i e I) is
> T R / 1 6 as well. Let the Euclidean length of an
edge e in the 3-space embedding of C be l(e) .
Then, for each edge e of Tz:

~lCiCe)) = 2 E l (e)
iEl eEE

That is, each edge in the embedded C occurs
twice as the same edge of the canonical tree T z

in the form of the corresponding isomorphic
edge in some tree in S . Therefore, the average
Euclidean length of the edges in trees in S,
which correspond to a single particular edge of
T~, equals the average Euclidean length of an

edge in E . Let P be a p a t h from the root in

T~ consisting of I P l < n edges. Then, the
average sum of the Euclidean lengths of the
edges in a path i (P) from the root in all trees
i (Tx) (iEI) equals I P I times the average

Euclidean edge length in E :

~ Z l (i (e)) = 2 1 e ! E l (e)
~ EP/EI ~EE

Consequently, the average Euclidean edge
length in E equals the average Euclidean length
of an edge in a path P from the root in a tree
in S , and is therefore >_7R/16n :

E E t (i (e))
El(e) E ,eei~I
,CE VeT, n2 n IPI
n 2 n -1 211

> 7 R
16n

Since there are n 2 n / 2 edges in the binary
n-cube, this sums up to an amazing total wire
length ~eeEl (e)needed in the Euclidean 3-

dimensional embedding of C of

2" 7R
E l (e) > - -
e eE 32

. . 1 / 3

> 1 4-~-- } '7'2 (4n/3)~

Many network topologies are afflicted with
this problem: n-dimensional cube networks, fast
Fourier networks, butterfly networks, shuffle-
exchange networks, cube-connected cycles net-
works, and so on. In fact, the arguments seem
to hold for networks with a small diameter
which satisfy certain symmetry requirements.
An example of a network with small diameter
which is not symmetric in this sense is the tree.
The fact that 7/8th of all paths from the root
in a complete tree would have Euclidean length
> R / 2 in a 3-space embedding do not imply
that the average Euclidean length of an embed-
ded edge of the tree is larger than a constant.
This is borne out by the familiar H-tree layout
~Mead1980] where the average edge length is less
than 3 or 4. However, in the recently investi-

gated 'fat tree' architectures the wire length will
dominate again. In a complete binary fat tree of
depth n and root at level 0, a node at level i +1
is connected to a node at level i by a 'bundle'
of 2 n-i edges. Then, trivially, the average
Euclidean length of an edge in a path from the
root equals the average Euclidean length of an
edge in the fat tree, leading to the result above.

Note. Deriving the result about the total
necessary wire length for embedding the binary
n-cube, we did not make any assumptions
about the volume of a wire of unit length~ or
the way they are embedded in space, as is usual
[Ullman1984]. It is consistent with the derived
results that wires have zero volume, and that
infinitely many wires can pass through a unit
2-dimensional area. Such assumptions invalidate
the arguments used elsewhere. In contrast with
other investigations, the goal here is to derive
lower bounds on the total wire length irrespec-
tive of the ratio between the volume of a unit
length wire and the volume of a processing ele-

113

merit. The lower bound on the total wire length

above is independent of this ratio, which

changes with different technologies or granular-

ity of computing components.

Iterating the above reasoning, but now
adding the volume of the wires to the volume of

the nodes, the greatest lower bound on the
volume necessary to embed the binary n-cube

converges to a particular solution in between a
total volume of ~(24n/s) and a total volume of,

say, 0(22n) if we charge a constant fraction of
the unit volume for a unit wire length. The
lower bound ft(24n/s) ignores the fact that the

added volume of the wires pushes the nodes

further apart, thus necessitating longer wires
again. The O(2 zn) upper bound, holds under

the assumption that wires of all lengths have
the same volume per unit length (not more than
a constant fraction of the unit volume of a
node). In a later section I show that the latter
assumption cannot always be made.

These surprising facts are a theoretical
prelude to many wiring problems currently

starting to plague computer designers and chip
designers alike. Formerly, a wire had magical

properties of transmitting data 'instantly' from

one place to another (or better, to many other
places). A wire did not take room, did not dissi-
pate heat, and did not cost anything- at least,

not enough to worry about. This was the situa-

tion when the number of wires was low, some-

where in the hundreds. Current designs use

many millions of wires (on chip), or possibly bil-

lions of wires (on wafers). In a computation of
parallel nature, most of the time seems to be

spent on communication - transporting signals
over wires. Thus, thinking that the yon Neu-

mann bottleneck has been conquered by nonse-
quential computation, we are unaware that the

Non-yon Neumann bottleneck is still waiting.

The following innominate quote covers this
matter admirably:

"Without me they fly they think; But when
they fly I am the wings."

Another effect which becomes increasingly
important is that most of the room in the dev-
ice executing the computation is taken up by
the wires. Under very conservative estimates

that the unit length of a wire has a volume
which is a constant fraction of that of a com-
ponent it connects, we can see above that in 3-
dimensional layouts for binary n-cubes, or for
the other fast permutation networks~ the
volume of the 2 n components performing the
actual computation operations is an asymptotic
lastly vanishing fraction of the volume of the
wires needed for communication:

volume computing components
volume communication wires E 0 (2 -n/3)

Today it seems that a partial solution to
this problem can be found in optical communi-
cation, either wireless by means of
lasers/infrared light or by using virtually unlim-
ited bandwidth glass fiber. But beware, even
while Nature is not malicious, she is subtle.

3. Time

It is useful to distinguish between distributed
computation and distributed control. Whereas
the former is concerned with the distributed
solution of problems for which there also exist

sequential algorithms, the latter is concerned

with problems which make no sense in terms of
sequential computation. Examples of the
former are parallel algorithms for matrix multi-

plication, fast Fourier transform, shortest path,

matching. Examples of the latter are methods

for mutual exclusion and nameserver [Mul-

lender1985], distributed spanning tree, clock

synchronization algorithms, Byzantine agree-
ment, leader election, symmetry breaking. In
distributed control the notion of time plays an
all-important role.

As large multiprocessor systems communi-
cating by message passing start to be actually
constructed, and on a geographically grande~
scale very large computer networks, synchroni-
zation problems connected with the operation of
such complexes are bound to become acute.
Another problem which gets crucial for very
large computer complexes is the number of mes-
sage passes. Without efficient congestion con-
trol the system will be swamped by communica-
tion messages effectively blocking throughput.

114

To fix thoughts, the networks we consider

are point-to-point (store-and-forward) communi-

cation networks described by an undirected
communication graph, with the set of nodes
representing the processors of the network, and

the set of links representing bidirectional nonin-
terfering communication channels between

them. No common memory is shared by the

node-processors. Each node processes messages

received from its neighbors, performs local com-
putat ions on messages and sends messages to

neighbors. All these actions take a finite time.

All messages have a finite length according to
the finite amount of information they carry.
Each message sent by a node to its neighbor

arrives there in a finite time. A message pass
consists of the sending of a message from one

node to one of its direct neighbors. In order to

make the cost measure meaningful, when we

express the complexity of some algorithm in the
number of message passes, we want to exclude

unrealistically long messages. One choice is to
allow messages of size (9(log n), where n is the

number of nodes in the network. The time
complexity of a distributed algorithm should

obviously be the size of the interval between the

beginning and the end of the algorithm. As yet

there seems to be no completely satisfactory
general method to compute this cost construc-

tively, given the algorithm, for the many types

of distributed algorithms which are known.

However, this is only one of many problems

associated with the concept of time in distri-

buted systems.

Here we focus on problems resulting from

lack of synchronization. These can be dealt

with using 'partially ordered' time, as in [Lam-
port1978], or by constructing algorithms that

can deal with unlimited asynchrony. The latter
algorithms can surely deal with any environ-
ment in which there is knowledge about proces-
sor speed and message delivery time. Unlimited

asynchronous models have been thoroughly
investigated, as have purely synchronous

models. Physical systems are usually somewhere
in between: they are neither purely synchronous
nor unlimited asynchronous. It is therefore an
interesting exercise to develop algorithms that

do not use knowledge about the relative pro-

gress of time in the system, yet perform superior

under realistic conditions about time. The
usual logically t ime-independent algorithms do
not assume anything about the rate at which

time flows in different locations. This is unneces-
sarily harsh with respect to many problems aris-
ing in the real world. Clock drift in systems

happens with a certain smoothness, since abrupt

changes are rare in nature. It seems to be
worthwhile to investigate robust algorithms

such that :

• the algorithms remain correct and ter-
minate under any behavior of time in the

system,

® using time, the algorithms are yet logically
time-independent, only their efficiency

depends on the behavior of time,

® with increasing synchronous well-behaved
time in the system the performance of the

algorithm improves ever faster,

• if the asynchrony of the system is known
then the algorithm performs as well as in

the synchronous case,

• under practical assumptions about clock

speeds these algorithms use less message
passes than is possible by any other known

methods for the problems they solve in

asynchronous systems,

e the limitation on unlimited asynchrony

such algorithms require is but a minor one

which is generally satisfied and which we

term "Archimedean asynchronicity".

Now, in asynchronous distributed systems

each processor has its own clock. Although these
clocks may not be synchronized, and the clocks
may not indicate the same time, there should be

some proportion between the clock rates. Tha t
is, if an interval of time has passed on the clock
for processor A , a proportional period of time
has passed on the clock for processor B .

Definition. A distributed system is
Archimedean from time t 1 to time t 2 if the

ratio of the time intervals between the ticks of
the clocks of any pair of processors, and the
ratio between the communication delay between
any adjacent pair of processors and the time

115

interval between the ticks of the clock of any

processor, is bounded by a fixed integer during

the time interval from t 1 to t 2, (This ratio

need not be bounded a priori, nor need it be
known to the processors concerned.)

Tha t is, in asynchronous networks the
magnitudes of elapsed time should satisfy the
axiom of Archimedes. The axiom of Archimedes

holds for a set of magnitudes if, for any pair

a , b of such magnitudes, there is a multiple na

which exceeds b for some natural number n . It
is called Archimedes ' axiom* possibly due to an

application in obtaining large numbers in The

Sand-Reckoner.

We assume tha t the magnitudes of elapsed

time, as measured, for instance, by local clocks
amongst different processors or by the clock of

the same processor at different times, as well as
the magnitudes consisting of communication
delays between the sending and receiving of

messages, as measured, for instance, in absolute

physical time, all together considered as a set of
magnitudes of the same kind, satisfy the

Archimedean axiom. In physical reality it is
always possible to replace a magnitude of

elapsed time, of any clock or communication

delay, by a corresponding magnitude of elapsed
absolute physical time, thus obtaining magni-
tudes of the same kind. We assume a global

absolute time to calibrate the individual clocks;
using relative time by having the clocks send

messages to one another yields the same effect -
for the purposes at hand. If we do not restrict

ourselves, so to speak, to Archimedean distri-

buted systems, then the processors in the sys-

tem may not have any sense of time. Or, they

have clocks which keep purely subjective time,

so tha t the unit time span of each processor is
unrelated to tha t of another. Tha t is, the set of

* In Sphere and Cylinder and Quadrature of the Par-
abola Archimedes formulates the pc~tulats as fol-
lows. "The larger of two lines, areas or solids
exceeds the smaller in such a way that the
difference, added to itself, can exceed any given in-
dividual of the type to which the two mutually
compared magnitudes belong", The axiom ~ppears
earlier as Definition 4 in Book 5 of Euclid's Ele-
ment&

time units is non-Archimedean if the length of

every time unit is not less than a finite multiple

of tha t of any other in the absolute global time

scale. Or, the communication delays have no
finite ratio among themselves or with respect to

subjective processor clocks. As a consequence:
-Any process, pausing indefinitely long with

respect to the time-scale of the others, between
events like the receiving and passing of a mes-

sage, and also any unbounded communication

delay, effectively aborts activities such as an

election in progress. A process can never be sure
tha t it is the only one which considers itself
elected.
-Without physical t ime and clocks there is no

way to distinguish a failed process from one just
pausing between events.

-A user or a process can tell t ha t a system has
crashed only because he has been waiting too
long for a response.

Distributed systems in the sense of physi-

cally distributed computer networks communi-
cate by sending signed messages and setting

timers, or equivalent devices. If an acknowledge-

ment of safe receipt by the proper addressee is
not received by the sender before the timer goes

off, the sender sends out a new copy of the mes-
sage and sets a corresponding timer, This pro-

tess is repeated until either a proper ack-
nowledgement is received or the sender con-

cludes tha t the message cannot be communi-
cated due to failures. Thus, clocks and

timsouts are necessary at t r ibutes of real distri-

buted systems and non-Archimedean time in the

system is intolerable outright. Whereas unlim-
ited asynchrony would prevent a system from

functioning properly, pure synchrony in a sys-
tem cannot exist: the clocks of distinct proces-

sors drift apart in both indicated time and run-
ning speed and have to be resynchronized hy

algorithms running in Archimedean time as
defined above.

We may call this concept of algorithms
using physical time, inste~l of being oblivious to

physical time, one of time-driven algorithms.
The use of such algorithms would be in the area
of distributed control in synchronous or asyn-
chronous systems. Some problems necessarily

116

have time-driven algorithms, while the algo-
rithms for other problems may or may not be
time-driven. For example, in algorithms for
clock synchronization and distributed spanning
tree and distributed elections, the former are
time-driven by cause of their very subject
matter, while the latter may be time-driven by
design or not be time-driven at all. The pri-
mary goal of an investigation into the feasibility
of such algorithms in [Vit£nyi1984, Vit£nyi1985]
was to demonstrate the existence of competitive
time-driven algorithms with the desirable pro-
perties as mentioned. These algorithms where
superior in terms of message passes. More
significantly, they performed better than
allowed by known lower bounds on the number
of message passes required in asynchronous net-
works. Unfortunately, they where quite unrealis-
tic in terms of running time. Nonetheless, we
expect that genuinely more efficient algorithms
than the unlimited asynchronous ones exist, in

between the pure synchronous and unlimited

asynchronous ones.

4. Physics

Apart from space and time, nature intrudes

obstrusively in nonsequsntial computation in

the form of physics. We give an example from

the field of VLSI taken from [Vit~nyi1985 ~}.

In current chips, synchronization require-

ments slow down the computation to a clocked

switching time, which is in the order of the

delay in the longest wire. As the minimal

feature width continues to decrease into the

submicron range, this delay governs overall per-

formance more and more. In order to obtain

very high speed integration, one way to go is to
obtain a propagation delay logarithmic in the

length of the wire, as in [Mead1980]. Electronic

considerations show ~VIead1982] that all wires
then need to have the same ratio between width

and length, that is, the same aspect ratio. Below
we derive this fact, and show some of the conse-

quences.

4.1. E|ectronlcs

Analysis of signal propagation delay in wires on
chip requires different models in different cases:
transmission line, distributed RC and lumped
RC. However, the dominating factor on a
densely packed chip is that a wire is not alone,
but surrounded by other wires. This fact leads
to the following analysis
~/Iea~i1982, Vit~nyi1985 ~..].

The time it takes a minimum transistor to

drive a wire of length L, width W and thick-

hess H can be estimated as follows. The wire is

assumed to have distance D l to neighbouring

layers and Dw to other wires in the same layer.

If W e is the minimal width of a wire in the

current technology, then the minimal transistor,

consisting of a wire crossing, occupies area W0 ~ .

The total time T to drive a wire is approxi-

mated by:

r ~-~ (R, +Rw) Cw (I)

where Rt is the resistance of the minimum
transistor, R w the resistance of the wire and
Cw its capacitance.

Therefore, the total time T can be thought of
as the sum of the time T~ needed to drive a
zero resistance wire of capacitance Cw, and the
time R w C w needed to transport the appropri-
ate charge from a zero resistance source.
Roughly, T~ is the time needed to transport the
necessary charge through the bottleneck consist-
ing of the switch (the minimal transistor), and
R w C • is the time needed to distribute the
charge appropriately over the wire w. Since the
resistance of a wire is proportional to its length
and inversely proportional to its cross section
we have:

L
R~ = p~ W H (2)

117

where Pw is the resistivity of the considered
wire material. The capacitance of a wire is
inversely proportional to the distance of its
neighbouring wires and layers, and proportional
to the area of the side facing that neighbouring
layer or wire:

H+___W
Cw : 2 c w L (~ Dt) (3)

where e w is a proportional constant consisting
of the product of the permitivity of free space
and the dielectric constant of the insulating
material (usually SiO2). Thus,

L 2 H W Rw Ct~ : 2 p w ew --~-~(-~-w + ~ T) • (4)

This suggests a signal propagation time qua-
dratic in L. However, the resistance R¢ of the
minimum transistor dominates in (1) for the
magnitudes of L under consideration (smaller
than, say, 1 foot). We can decrease that term by
fitting a larger driver transistor to the wire.
This transistor, in its turn, must be driven by
the minimal transistor. Iterating this scheme, cf
[Mead1980], we obtain a sequence of transistors,
of which each next one is a factor o~ larger than
the preceding one. The final transistor in the
sequence should be large enough to drive the
wire in a sufficiently short time. (We can think
of this scheme as a sequence of switches where
each switch serves to switch the next larger
switch, and the largest switch in the sequence
controls the large channel through which the
charge is transported to the wire. Although the
time to actually pass the appropriate charge
from source to wire can be made smaller by
fitting a larger final driver transistor to the
sequence, there seems no way to get rid of the
time needed to switch all transistors in between
the smallest transistor and the largest one.) The
time to drive a driver with capacitance C 2 by a
driver with smaller capacitance C 1 is given by
[Mead1980}:

Ce
- - (s)
C1

where r is the time it takes a minimal transistor
to charge the gate of another minimal transis-
tor. If Cg is the capacitance of the minimal

transistor then for a ramp of r drivers:

C~
r =Ioga C, (6)

taking T~ = r ~a time to charge the wire if it
had no resistance. The capacitance of the
minimum transistor is given by

w g
c , = , , Do ' (T)

where D O is the thickness of the gate insulator
and q is the product of the permitivity of free
space and the dielectric constant of the gate
insulator. Thus we can drive a zero resistance
wire of capacitance C w through a sequence of r
drivers for fixed cr in time:

Cw
Te ~-~ cv r log a Ct (8)

From (1), (4) and (8) we obtain an expres-
sion for T=Td+CwR~,. In [Mead1982] it was
observed that by keeping the derivatives, with
respect to L , of the two terms T~ and C w Rw
balanced:

err ~ P w % L g W)
L ln~ - ~ (~ + D r (9)

T grows logarithmic in L. Viz., by assumption
of equality (10) we obtain:

In a e t W--'-"~ (Dw Dl + 1

According to (9) we obtain logarithmic signal
propagation delay by, all other things being
equal,

1 ~) = constant (10) L 2 (~ + H D t

rather than by just keeping L 2 proportional to
WH a,s in [Mead1982}. Keeping the interwire
distance proportional to the wire width, and the
interlayer distance proportional to the wire
height, we observe that if W, H and L are
kept in proportion a logarithmic propagation
delay is attained. (Note that we cannot reach
this effect by keeping the wire width the same
hut using very ~tall' wires or vice vema.) The
aspect ratio of a wire is the quotient of its width
and length. To obtain a logarithmic signal pro-

118

pagation delay we thus need the fixed constant
aspect ratio following from (9) and (I0) for all
wires in the layout. In designing such a high
speed layout we therefore need to install drivers
to drive the long wires and to design all wires
with a constant aspect ratio a >0. Therefore, a
wire of length L in such a layout has area aL ~.
The area taken by the driver is linear in the
length of the wire [Mead1982]: the minimal
transistor occupies area W02, the next driver

area ~Wo 2 , and so on for log~L terms for an

L-length wire. The total driver area for an L -
length wire becomes W02 (L-1) / (q - l) . This area

is required at the lowest silicon layer of the
chip; the long interconnect wires are executed in

the upper metal layers.

The effect of having all wires in the layout
with the same constant aspect ratio spells disas-
ter for circuits which necessarily have many
long wires. This holds for trees, but more so for
fast permutation networks. However, let us look
what happens for natural wire length distribu-

tions.

4.2. W i r e L e n g t h Dis t r ibu t ions

Let f : N --* N , connected with a VLSI layout,
be a wire length distribution function which
yields the number f (i) of wires of length i in

the design.

Every VLSI layout must have a constant
bounded fan-in and fan-out of wires for the

components (transistors). If the chip area is A ,
then a reasonable assumption is that the maxi-
mal wire length on a chip does not exceed

L max = X/~ • (11)

Consequently, the amount of wires in the layout

is given by

w i r e s = ~ f (i) . (12)
i= l

To achieve logarithmic propagation delay
we can estimate and bound the layout area
occupied by the fattened wires as follows. Let
C be the amount of area of the layout occupied
by non-wire components such as transistors.
Assuming that C is also the order of magnitude
of the number of basic components like transis*

tors or logic gates in the circuit we can reason
as follows. Since the wires only serve to connect
components we have C E 0 (# wires) in a con-
nected layout, The components are assumed to
have at most a limited t connections to attach
wires, which we suppose to account also for the
fan-in and fan-out of the interconnect wires.
Therefore C E f l (# wires) and consequently
(7 C O(# wires). Since we are primarily
interested in orders of magnitude in the sequel,
we are justified to use C interchangeably for
the amount of area occupied by the non-wire
components, the number of non-wire com-
ponents and the number of wires. The maximal
area occupied by the wires (and interwire dis-
tances) under (I0) is bounded by the available
area:

,fA-
f (i) a i 2~-~A-(7 , (13)

i~ l

where a is the constant quotient of width and
length (the aspect ratio) of the connect wires as
required by (10). Using a simple theoretical
argument and an experimental study of actual
layouts [Donat1981] develops the following wire
length distribution relationship:

f (i) = Lci-XJ (1 < i <nm~x) and (14)

f (i) ~-~0 (i > L m~x)

for a normalization constant c yet to be
chosen. Here L max is a constant related to the

size of the array (rectangular chip) and the ade-
quacy of the placement; and), is a constant
characteristic of the logic. Equation (14) is
derived using "Rent 's Rule" which states that
the average number of terminals per complex of
C elements (in units, modules, cards, gates etc.)
is tC p , where t is the number of connections
per individual element and p is the Rent con-
stunt characteristic of the logic complex. The
analysis goes by dividing a square array of cells
into 4 equal square arrays recursively down
until the individual areas are the individual ele-
ments of the original logic. On each level of the
recursion the number of connections crossing
boundary lines is determined using Rent's rule.
This shows that X ~ 3 - 2 p . In [Donat1981]
experimental results are given for some actual

119

layouts placed using a hierarchical placement
program: layouts for high-speed logic where p
was found to be 0.75 and a layout for a hand

calculator chip with p =0.59. Let furthermore
the network be connected, so the maximal
amount of area units C available to place the
components is not greater than the number of
wires plus 1.

Considering just the wire length distribu-
tion while leaving free the actual circuit topol-
ogy, placement and routing in the layouts,
attaining a logarithmic signal propagation delay
by changing constant wire width to constant
aspect ratio for all wires in a layout can carry a
surprisingly severe penalty. This follows
immediately from (11), (12), (13) and (14), and
is expressed by the theorem below. The (sim-
ple) analysis of this fact, and the proof of the
Theorem, are relegated to the Appendix.

T h e o r e m . Let the original layout area be
A and the original amount of wires in the layout
be C . For the wire length distribution

f (i) = [c i - l J for l < i < v ~ and f (i) ~ O
for i > v t ~ , the change from constant wire
width to wires with a constant aspect ratio has
the following effect.

(i) Keeping f and C the same, the area has
to increase from a to exp(~(vtA -")).

(ii) Keeping f and A the same, the number of
wires (c.q. components) has to decrease
from G to O(log C).

(iii) Keeping A and C the same, the wire
length distribution has to change to
f t (i) = [c ' i -(2+')3 for some small e > 0

O < i < v ~).
We observe that in ease (i) of the Theorem

the wires get so long that the logarithmic propa-
gation delay turns out to yield about the same
absolute time delay as in the original wires. In
ease (ii) of the Theorem matters are probably as
bad because the bit capacity of the chip has
been logarithmically reduced. Finally, in case
(iii) of the Theorem the subject circuit topology
may not have a layout with the required wire
length distribution.

It therefore appears that only circuits for
which there are layouts with wire length distri-

butions with relative large X, will profit from
this scheme for logarithmic signal propagation

delay.

_Acknowledgement.

Baruch Awerbuch, Evangetos Kranakis and Yoram
Moses read the draft and gave advice on presenta-
tion.

References

Burks1946.
Burks, A.W., H.H. Goldstine, and J. yon Neu-
mann, "Preliminary discussion of the logical
design of an electronic computing instrument,"
Report, Princeton Institute for Advanced
Study, June, 1946. (Second Edition, September
1947)

Goldstine1972.
Goldstine, H.H., Th~ Computer: from Pascal to

y o n Neumann, Princeton University Press,
Princeton, N.J., 1972.

Lamport1978.
Lamport, L., "Time, clocks, and the ordering of
events in a distributed system," Communiea-
tlone of the Assoc. Comp. Math., vol. 21, pp.
558-565, 1978.

Mead1980.
Mead, C. and L. Conway, Introduction to VLSI
Systems, Addisson-Wesley, Reading, Mass.,
1980.

Mullender1985.
Mnllender, S.J. and P.M.B. Vithnyi, "Distri-
buted match-making for processes in computer
networks," in Proeeediny8 4th Annnal ACM
Symposium on Principles of Distributed Com-
puting, pp. 261-271, 1985.

Neumann1945.
Neumann, J. yon, "First draft of a report on
the EDVAC," Draft Report, Moore School of
Electrical Engineering, University of Pennsyl-
vania, Philadelphia, May, 1945.

Turing1936.
Turing, A2vI., "On computable numbers with
an application to the Entscheidungspmblem,"
Proc. London Math. Sou, vol. 42, pp. 230-285,
1936. Correction, Ibid, 43 pp. 544-546 (1937).

Vithnyi1984.
Vit£nyi, P.M.B., "Distributed elections in an
Archimedean ring of processors," in Proceed-
ings 16th Annual ACM Symposium on Theory
of Computing, pp. 542-547, 1984.

120

Vitgnyi1985.
VitSmyi, P.M.B., "Time-driven algorithms for
distributed control," Report GS-R8510, Centre
for Mathematics and Computer Science,
Amsterdam, April, 1985.

Vit£nyi1985.~
Vit£nyi, P.M.B., "Area penalty for sublinear
signal propagation delay on chip," in Proceed-
ings ~6th Annual IEEE Symposium on Founda-
tions of Computer Science, 1985.

Mead1982.
Mead, C. and M. Rein, "Minimum propagation
delays in VLSI," IEEE J. on Solid State Cir-
cairn, vol. SC-17, pp. 773 - 775, 1982. Correc-
tion:]bid, 8C-19 (1984) 162.

Ullman1984.
Ullman, J.D., Computational Aspects of VLSI,
Computer Science Press, Roekville, Maryland,
1984.

Donat1981.
Donne, W.E., "Wire length distribution for
placement of computer logic," IBM J. Rcs.
Dsvclop., vol. 25, pp. 152 - 155, 1981.

Appendix
From (13) and (14) we can estimate the maximal
figure for the normalization constant c . For X#3:

(A -C)(3-)`) (15a)
~ ~ (A i~)/~_i) '

and for X~----3,

c ~ 2 (A - C) (15b)
a log A

Consequently, for Xs~l &) ,#3 by (12):

VA" (A - C)(3-)`) (A (1-x)IL_I~.. ,
C ~-" i = l ~ f (i) ~ a (1-),) (A(Z-x)/2-1) ,loa~

and for X~3,

C ~-. ~A-U)(A-i) (16b)
aA logA

For)`=1,

~T A - C
C ~ ~ f (i) ~ logA (16c)

(Note: for) ,<1 we obtain c <1, resulting in
f (i)~-,0 also for small i , and C a small constant.)

For comparison we give an analogous analysis
under the constant wire width assumption. Then
equations (11) - (12) stay the same but equation (13)
becomes

~rT
Ef(i)i ~ A - C . (17)

i = l

Thus, for f (i~_=[c i -XJ (l < i < v ~) and
f (i)~- - .O (i > ~ / A) and with A , C and c ~s
above we obtain the following relations. For X = l :

A - C (18)

c ~ .(A - c) l o g A
2 (~ 2 - - 1)

For X # l ~ x # 2 :

c ~ 12-X)(A-C} (19)
A (2-X)/2-1

~2-)`)(A - C)(A ~'- , /~-t)
C ~ (I_),)(A (v×)t2_l)

For X=2:

c ~ 2 (A - C) (~0)
log A

c ~ 2 (A - e) (, / T - I) ,
log A

(Note: for)`<0 we obtain c <:1.) For k > 0 we have
C E f ~ (v ~). Thus:

Proof of Theorem. Since we assume the cir-
cuit to be connected we have A > A - C > A / 2
in the various equations. We also assume A > > 1.

(i) Equate expression (18) for C with expression
(16c) for C , with A I substituted for A in the
latter. This yields log A t E f t (~).

(ii) Substitute C I for C in equation (18) and
express C t in terms of C by eliminating A
from the resulting equation and (16c).

(iii) Equate expression (18) for C with expression
(16a) for C (expressions (165) and (lSc) con-
tradict (18)). The terms (A-C) on both sides
cancel each other. Solving k yields
) , = 2 + e (A , a) > 2 with ~ (A,a) -~0 for
A---+oo and a constant. Every distribution
with exponent equal or larger than this X
suffices. ¢

