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ABSTRACT 

Traditionally, computational complexity theory deals with sequential computations. In the computational 
models the underlying physics is hardly accounted for. This attitude has persisted in common models for parallel 
computations. Wrongly, as we shall argue, since the laws of physics intrude forcefully when we want to obtain 
realistic estimates of the performance of parallel or distributed algorithms. First, we shall explain why it is reason- 
able to abstract away from the physical details in sequential computations. Second, we show why certain common 
approaches in the theory of parallel complexity do not give useful information about the actual complexity of the 
parallel computation. Third, we give some examples of the interplay between physical considerations and actual 
complexity of distributed computations. 

1. I n t r o d u c t i o n  

The earliest electronic computing engines arose 

as a byproduct of the Manhattan Project in 

World War II. Broadly speaking, their purpose 

was to compute numerical solutions to second 

order partial differential equations arising in 

connection with the design of the atomic bomb. 

The machines consisted of primitive logical and 

memory components like electromagnetic relays 

and mercury delay lines, which where wired up 

so as to have the complex perform the desired 

computation. The architecture reflected the 

type of algorithm to be performed, i.e., the solu- 

tion of the mentioned equations by numerical 

grid methods. Such algorithms suggest parallel 

or pipelined execution, and that  is exactly the 

type of architecture of those first computers 
[Goldstine1972]. Only at the present time, in the 

middle eighties, have we come full circle and see 
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such special purpose architectures again in the 

pipelined and systolic algorithms frozen in the 

silicon hardware of chips. Once more, the shift 

is away from sequential thinking in the form of 

line-by-line programs of imperative or other 

nature, and to representing algorithms in struc- 

tures of space and time. 

After the Manhattan Project had been 

fulfilled, computer designers quickly progressed 

to the idea of automating all types of computa- 

tional tasks. Rather than stooping to the chore 

of rewiring a new complex for every new task 

which came along, the idea arose of letting the 

computer take over that  job as well. Thus, the 

idea of a general purpose computer entered the 

scene. It so happened that  mathematicians like 

H.H. Goldstine, J. yon Neumann and A.W. 
Burks were well aware of A.M. Turing's brilliant 
1936 paper [Turing1936] in which he described 

an architecture for just such a hypothetical 

machine: 

"Computing is normally done by writing cer- 
tain symbols on paper. We may suppose this paper 
to be divided into squares like a child's arithmetic 
book. In elementary arithmetic the two-dimensional 
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character of the paper is sometimes used. But such 
use is always avoidable, and I think that it will be 
agreed that  the two-dimensional character of paper is 
no essential of computation. I assume then that  the 
computation is carried out on one-dimensional paper, 
i.e., on a tape divided into squares. I also suppose 
that the number of symbols which may be printed is 
finite." 

"The behaviour of the [human] computer at 
any moment is determined by the symbols he is 
observing, and his ~state of mind' at that moment. 
We may suppose that  there is a bound B to the 
number of symbols or squares which the computer 
can observe at one moment. If he wishes to observe 
more, he must use successive observations. We will 
also suppose that  the number of states of mind which 
need be taken into account is finite." 

"We suppose [above] that the computation is 
carried out on a tape; but we avoid introducing the 
"state of mind" by considering a more physical and 
definitive counterpart of it. It is always possible for 
the computer to break off from his work, to go away 
and forget all about it, and later to come back and 
go on with it. If he does this he must leave a note of 
instructions (written in some standard form) explain- 
ing how the work is to be continued. This no~e is the 
counterpart of "the state of mind." We will suppose 
that the computer works in such a desultory manner 
that  he never does more than one step and write the 
next note. Thus the state of progre~ of the computa- 
tion at any stage is completely determined by the 
note of instructions and the symbols on the tape. 
That is, the state of the system may be described by 
a single expression (sequence of symbols), consisting 
of the symbols on the tape followed by A (which we 
suppose not to appear elsewhere) and then by the 
note of instructions. This expression may be called 
the %tare formula." We know that the state formula 
at any given stage is determined by the state forraula 
before the last step was made, and we assume that 
the relation of these two formulae is expressible in 
the functional calculus. In other words, we assume 
that  there is an axiom A which expresses the rules 
governing the behaviour of the computer, in terms of 
the relation of the state formula at any stage to the 
state formula at the preceding stage. If this is so, we 
can construct a machine to write down the successive 
state formulae, and hence to compute the required 
number." 

Grasping the  implied archi tectural  concept,  

and improving it according to the leeway pro- 
vided by physical  law, Burks, Goldstine and yon 

Neumann in 1946 wrote  a memorandum 
[Burks1946] which shaped the archi tecture of 

electronic computers  for the  next  forty years. 

This  memorandum was preceded by the famous 

'Firs t  Draf t '  [Neumann19451, where we can 

clearly dist inguish the  serial mode of operat ion 

of the modern computer ,  i.e., one instruct ion at 

a t ime is inspected and then executed. This  is in 

sharp dist inction to the parallel operat ion of the 

earlier ENIAC computer  in which many th ings  

where simultaneously being performed.  To 

abandon all parallelism was not thought  of as 

de t r imenta l  to performance,  since the potential  

speed of the  electronic techniques was judged to 

be fast  enough. Compla inan ts  about  the 'yon 

Neumann '  bott leneck (explained below), 

inherent  in the stored program sequential  com- 

puter  as we know it, should realize t ha t  the con- 
ceptual  advantage  of this  scheme is wha t  made 

possible the giant s t r ides  of progress: if cars had 

become so much cheaper as comput ing power 

has, a car would cost less than  1 dollar. 

Tur ing ' s  analysis of the  process of compu- 

tat ion as the sequential  execution of a sequence 

of operat ions is so natural ,  tha t  it seems as if 

Euclid in designing one of the earliest known 

algori thms (for comput ing  the greatest  common 

divisor) mus t  have had such an architecture in 

mind. Now it so happens,  tha t  in sequential 

computa t ion  we can ignore many physical 

details of the underlying computer  sys tem in 

analysing the  computa t ional  complexity of some 

program. Each operat ion essentially consists of 

a sequence of "fe tch from memory ,"  "execute 

operation on one or more operands  in the Cen- 

tral Processing Un i t "  and "s tore  in memory ."  

The  C P U  operat ions can be thought  of - when 

viewed from sufficient distance - as essentially 

finite a u t o m a t a  t ransi t ions which t ransform 

input  obtained by a bounded number  of "fetch 

from memo r y "  operat ions  (say 2) into ou tpu t  in 

the form of "s tore  in memo r y "  operat ions (say 

1). In the usual setup,  a memory register has a 

fixed length (say 48 bits) and both  the memory 

accesses and C P U  operat ions  take a fixed t ime 

(say, at most  X ) .  Therefore,  a sequence of n 

operat ions takes in between nX and 4nX time. 
Forget t ing about  the  X and the small constants  

like 4, i t  is usual to  say tha t  n operations take 
n ' t ime. '  Note, here ' t ime '  means number  of 
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steps. Similarly, it is assumed tha t  all objects 

manipulated fit in a single memory location. 
Moreover, t ha t  each object is ' random accessi- 

ble,' tha t  is, each object can be accessed as fast 
as any other. This  is referred to as the 'uni t  

cost measure.' 

This scheme is sometimes refined to take 

into account tha t  some items being manipulated 

do not fit in a 48 bit  register - as for instance 
the 123rd Mersenne prime. It is then customary 

to charge the cost of manipulating the item as 

being linear in its length, both in terms of 

storage and in terms of time for execution of an 
operation. This  is referred to as the ' logarithmic 

cost measure.' It is clear, t ha t  this time cost 

measure is only a lower bound, since the actual 

operations performed on the items when they 
are chopped up, often requires more than time 

linear in the length of the items. For instance, 
while logarithmic cost may be reasonable for 

addition, it is not reasonable for multiplication. 

A further refinement may be made for 

objects not held in ' random access' memory, but  

on disk or mass storage devices such as tapes. 
There an operation on a~a object may involve 

swapping pieces of the object back and forth 

from disk to random access memory, thus  incur- 

ring a time overhead which may be orders of 
magnitudes greater than the time spent on 

manipulating in the CPU and random access 
memory. Think about the sorting or merging of 

huge data  files. The logarithmic cost measure 

tries to take such an overhead into account by 

charging as the cost of a memory access also the 
length of the memory address. As in the case of 

the registers, this can be only a very crude 
lower bound on the actual cost. We thus distin- 
guish a memory hierarchy, where the access 

times of objects stored at  different levels differs 

orders of magnitudes. 

While the physical aspects of computing 
devices can thus be fairly well accounted for, 
the basic unit  of time a transaction takes does 
not vary too wildly within each level we have 
distinguished. It is therefore more or less 
justified to forget about the details and talk 
only about the number  of operations at each 
level of the memory hierarchy. As we will see, in 

the reatra of nonsequential computation reality 

can not be ignored to such an extent. 

Since in current computers the time of a 

basic operation in the CPU is generally far 
lower than tha t  of memory accesses, most com- 
putations are memory bound, i.e., the time 

spent in accessing various levels in the memory 

hierarchy completely dominates the computa- 

tion time. This is popularly called the 'yon Neu- 
mann '  bottleneck. Are the prospects any 

brighter in the coming era of nonsequential 

computation? 

2. Space 

In many areas of the theory of parallel compu- 

tation we meet tree structured devices or com- 

putations. 

(1). For instance, 'parallel random access 
machines (PRAM's) '  can at each point in 
their computation spawn a couple of 

offspring PRAM's to perform some sub- 
computations. Broadly speaking, we can 

therefore imagine the computation as a 
binary tree of processors. The ' t ime'  the 
computation takes is then linearly related 

to the depth of the tree. 

(2). In [Mead1980] this idea is translated into 
terms of 'very large integrated circuits.' In 
Chapter  8 the authors show a bold picture 

of a complete binary tree, and explain tha t  
such a tree with processors in each node, is 
capable of solving NP-complete problems 

like the 'traveling salesman problem' in 

linear time. This, on the grounds that  the 
processor at  the root can send a copy of 

the problem instance to each of the leaves, 
and each of the leaves can try one candi- 

date solution. A simple scheme can 
guarantee tha t  each leaf tries a different 

solution, each solution is tried by some 
leaf, and all answers are percolated 
upwards to the root. If positive answers 
win over negative ones in the fan in, the 
answer the root receives is a solution if 
there is one and 'no solution' if there is 

none. 
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(3). One of the currently flourishing parts of 

the theory of parallel computation is 'NC- 
computation.' A problem is in 'Nick's 

Class' if it can be solved in polylogarithmie 
'time' using a polynomial number of pro- 
cessors. Here, ' t ime'  means the length of 
the longest chain of causally related steps. 

All of the above models may say something 
about the parallelizability of algorithms for cer- 
tain problems. This often takes the form of dis- 
tributing copies of the entire problem instance, 
or pieces of the problem instance, among an 
exponential number of processors in a linear 
number of steps. Or, as in NC, among a polyno- 
mial number of processors in a polylogarithmie 
number of steps. The way a problem instance 
can be divided mad partial answers put together 
may give genuine insight into its paralletizabil- 
ity. However, it can n o t  give a reduction from 
an asymptotic exponential time best algorithm 
in the sequential case to an asymptotic polyno- 
mial time algorithm in a n y  parallel case. At 
least, if by ' t ime' we mean time. This can be 
seen easily as follows. If the parallel algorithm 
uses 2 n processing elements, regardless of 
whether the computational model assumes 
bounded fan-in and fan-out or not, it can not 
run in time polynomial in n ,  because p h y s i c a l  

s p a c e  has us in its tyranny. Viz., if we use 2 n 

processing elements of, say, unit size each, then 
the tightest they can be packed is in a 3- 
dimensional sphere of volume 2 n . No unit in 

the sphere can be closer to all other units than a 
distance of radius R ,  

1/3 

Modulo a major advance in physics, it is impos- 

sible to transport signals over 2 an ( a>0)  dis- 
tance in polynomial p ( n )  time. In fact, the 
assumption of the bounded speed of light sug- 

gests that  the lower time bound on a n y  compu- 
tation using 2" processing elements is f~(2 ~/s) 
outright. Or, for the case of NC computations 
which use n ~ processors, a > 0 ,  the lower bound 
on the computation time is ~2(n a/3). 

The situation is worse than it appears on 
the face of it. Consider an architecture such as 
the binary n-cube. This is the network in 
which the nodes are identified by n-bit  names, 
and there is a communication edge between two 
nodes if their identifiers differ in a single bit. 
Call this graph C = ( V , E ) .  Let C be embedded 
in 3-dimensional Euclidean space~ and let each 
node have unit volume. Let x be any node of 
C.  There are at most 2n/8  nodes within 
Euclidean distance R / 2  of x, where R is 
as above. Then, there are > 7 - 2 " / 8  nodes at 
Euclidean distance > R / 2  from x.  Construct a 
spanning tree T z o f .  C of depth ~ n  with 

node x as the root. The average Euclidean 

length of a path from the root in Tz is 
> T R / 1 6 ,  and therefore the average Euclidean 
length of an embedded edge in a path from the 
root in T~ is > _ T R / 1 6 n .  This does not give a 

lower bound on the average Euclidean length of 
an edge in T z . However, using the symmetry of 

the binary n-cube we can establish that the 
average Euclidean length of the edges in the 3- 
space embedding of C is >_7R/ t6n .  We can 
prove this as follows. (The hasty reader may 
skip the proof by proceeding to the second 
column on the next page:) 

P r o o f .  Denote a node a in C by a n - b i t  
string a l a  2 • . . a n ,  and an edge ( a  ,b ) between 
nodes a and b differing in the i th bit by: 

A 

a ~ a 1 • . . a i _ l a  i a i +  1 • • . a n 

This means that an edge has two representa- 
tions. Now we can express a set I of iso- 
morphic mappings of C to itself by (1) a cyclic 
permutation of the representation of nodes and 
edges, followed by (2) complementation of the 
bits of the representations in a given pattern. 
I.e., the isomorphism ( j , c l c 2 - . .  c n ) E I  maps 
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the above edge a to 

b = b#+ I - ' -  bi_lbibi+1'' '  b n b l ' - "  bj 

with bi=a i if e l = 0  and bi--~a ~ (--~ comple- 

ment ai ) if el = I .  

Consider the ensemble S of spanning trees 
of C,  each tree isomorphic with T x above, con- 

sisting of the n2 n trees i (T~) to which Tz is 
mapped by the n2  n distinct isomorphisms i in 
I .  For each edge e in Tz and each edge e t of 

C there are two distinct isomorphisms i 1 and 

i s in I such that i l(e)~i~(e )-~e ~ . The aver- 
age Euclidean length of a path from the root in 
each tree I(T~)ES ( iEI)  is >_7R116, so the 

average Euclidean length of a path from the 
root taken over all trees i (Tz)ES ( i e I )  is 
> T R / 1 6  as well. Let the Euclidean length of an 
edge e in the 3-space embedding of C be l(e) .  
Then, for each edge e of Tz: 

~lCiCe)) = 2 E l ( e )  
iEl eEE 

That  is, each edge in the embedded C occurs 
twice as the same edge of the canonical tree T z 

in the form of the corresponding isomorphic 
edge in some tree in S .  Therefore, the average 
Euclidean length of the edges in trees in S,  
which correspond to a single particular edge of 
T~, equals the average Euclidean length of an 

edge in E .  Let P be a p a t h  from the root in 

T~ consisting of I P l < n  edges. Then, the 
average sum of the Euclidean lengths of the 
edges in a path i (P)  from the root in all trees 
i (Tx) ( iEI)  equals I P I times the average 

Euclidean edge length in E :  

~ Z l ( i ( e ) ) = 2 1 e  ! E l ( e )  
~ EP/EI  ~EE 

Consequently, the average Euclidean edge 
length in E equals the average Euclidean length 
of an edge in a path P from the root in a tree 
in S ,  and is therefore >_7R/16n : 

E E t ( i ( e ) )  
El(e)  E ,eei~I 
,CE VeT, n2  n IPI 
n 2 n -1 211 

> 7 R 
16n 

Since there are n 2 n / 2  edges in the binary 
n-cube, this sums up to an amazing total wire 
length ~eeEl (e )needed  in the Euclidean 3- 

dimensional embedding of C of 

2" 7R 
E l ( e )  > - -  
e eE 32 

. . 1 / 3  

> 1 4-~-- } '7'2 (4n/3)~ 

Many network topologies are afflicted with 
this problem: n-dimensional cube networks, fast 
Fourier networks, butterfly networks, shuffle- 
exchange networks, cube-connected cycles net- 
works, and so on. In fact, the arguments seem 
to hold for networks with a small diameter 
which satisfy certain symmetry requirements. 
An example of a network with small diameter 
which is not symmetric in this sense is the tree. 
The fact that 7/8th of all paths from the root 
in a complete tree would have Euclidean length 
> R / 2  in a 3-space embedding do not imply 
that the average Euclidean length of an embed- 
ded edge of the tree is larger than a constant. 
This is borne out by the familiar H-tree layout 
~Mead1980] where the average edge length is less 
than 3 or 4. However, in the recently investi- 

gated 'fat tree' architectures the wire length will 
dominate again. In a complete binary fat tree of 
depth n and root at level 0, a node at level i +1 
is connected to a node at level i by a 'bundle' 
of 2 n-i edges. Then, trivially, the average 
Euclidean length of an edge in a path from the 
root equals the average Euclidean length of an 
edge in the fat tree, leading to the result above. 

Note. Deriving the result about the total 
necessary wire length for embedding the binary 
n-cube, we did not make any assumptions 
about the volume of a wire of unit length~ or 
the way they are embedded in space, as is usual 
[Ullman1984]. It is consistent with the derived 
results that wires have zero volume, and that 
infinitely many wires can pass through a unit 
2-dimensional area. Such assumptions invalidate 
the arguments used elsewhere. In contrast with 
other investigations, the goal here is to derive 
lower bounds on the total wire length irrespec- 
tive of the ratio between the volume of a unit 
length wire and the volume of a processing ele- 
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merit. The lower bound on the total wire length 

above is independent of this ratio, which 

changes with different technologies or granular- 

ity of computing components. 

Iterating the above reasoning, but now 
adding the volume of the wires to the volume of 

the nodes, the greatest lower bound on the 
volume necessary to embed the binary n-cube 

converges to a particular solution in between a 
total volume of ~(24n/s) and a total volume of, 

say, 0(22n ) if we charge a constant fraction of 
the unit volume for a unit wire length. The 
lower bound ft(24n/s) ignores the fact that the 

added volume of the wires pushes the nodes 

further apart, thus necessitating longer wires 
again. The O(2 zn ) upper bound, holds under 

the assumption that wires of all lengths have 
the same volume per unit length (not more than 
a constant fraction of the unit volume of a 
node). In a later section I show that the latter 
assumption cannot always be made. 

These surprising facts are a theoretical 
prelude to many wiring problems currently 

starting to plague computer designers and chip 
designers alike. Formerly, a wire had magical 

properties of transmitting data 'instantly' from 

one place to another (or better, to many other 
places). A wire did not take room, did not dissi- 
pate heat, and did not cost anything- at least, 

not enough to worry about. This was the situa- 

tion when the number of wires was low, some- 

where in the hundreds. Current designs use 

many millions of wires (on chip), or possibly bil- 

lions of wires (on wafers). In a computation of 
parallel nature, most of the time seems to be 

spent on communication - transporting signals 
over wires. Thus, thinking that the yon Neu- 

mann bottleneck has been conquered by nonse- 
quential computation, we are unaware that the 

Non-yon Neumann bottleneck is still waiting. 

The following innominate quote covers this 
matter admirably: 

"Without me they fly they think; But when 
they fly I am the wings." 

Another effect which becomes increasingly 
important is that most of the room in the dev- 
ice executing the computation is taken up by 
the wires. Under very conservative estimates 

that the unit length of a wire has a volume 
which is a constant fraction of that of a com- 
ponent it connects, we can see above that in 3- 
dimensional layouts for binary n-cubes, or for 
the other fast permutation networks~ the 
volume of the 2 n components performing the 
actual computation operations is an asymptotic 
lastly vanishing fraction of the volume of the 
wires needed for communication: 

volume computing components 
volume communication wires E 0 (2 -n/3) 

Today it seems that a partial solution to 
this problem can be found in optical communi- 
cation, either wireless by means of 
lasers/infrared light or by using virtually unlim- 
ited bandwidth glass fiber. But beware, even 
while Nature is not malicious, she is subtle. 

3. Time 

It is useful to distinguish between distributed 
computation and distributed control. Whereas 
the former is concerned with the distributed 
solution of problems for which there also exist 

sequential algorithms, the latter is concerned 

with problems which make no sense in terms of 
sequential computation. Examples of the 
former are parallel algorithms for matrix multi- 

plication, fast Fourier transform, shortest path, 

matching. Examples of the latter are methods 

for mutual exclusion and nameserver [Mul- 

lender1985], distributed spanning tree, clock 

synchronization algorithms, Byzantine agree- 
ment, leader election, symmetry breaking. In 
distributed control the notion of time plays an 
all-important role. 

As large multiprocessor systems communi- 
cating by message passing start to be actually 
constructed, and on a geographically grande~ 
scale very large computer networks, synchroni- 
zation problems connected with the operation of 
such complexes are bound to become acute. 
Another problem which gets crucial for very 
large computer complexes is the number of mes- 
sage passes. Without efficient congestion con- 
trol the system will be swamped by communica- 
tion messages effectively blocking throughput. 
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To fix thoughts,  the networks we consider 

are point-to-point (store-and-forward) communi- 

cation networks described by an undirected 
communication graph, with the set of nodes 
representing the processors of the network, and 

the set of links representing bidirectional nonin- 
terfering communication channels between 

them. No common memory is shared by the 

node-processors. Each node processes messages 

received from its neighbors, performs local com- 
putat ions on messages and sends messages to 

neighbors. All these actions take a finite time. 

All messages have a finite length according to 
the finite amount  of information they carry. 
Each message sent by a node to its neighbor 

arrives there in a finite time. A message pass 
consists of the sending of a message from one 

node to one of its direct neighbors. In order to 

make the cost measure meaningful, when we 

express the complexity of some algorithm in the 
number  of message passes, we want to exclude 

unrealistically long messages. One choice is to 
allow messages of size (9(log n ), where n is the 

number  of nodes in the network. The time 
complexity of a distributed algorithm should 

obviously be the size of the interval between the 

beginning and the end of the algorithm. As yet 

there seems to be no completely satisfactory 
general method to compute this cost construc- 

tively, given the algorithm, for the many types 

of distributed algorithms which are known. 

However, this is only one of many problems 

associated with the concept of time in distri- 

buted systems. 

Here we focus on problems resulting from 

lack of synchronization. These can be dealt 

with using 'partially ordered' time, as in [Lam- 
port1978], or by constructing algorithms that  

can deal with unlimited asynchrony. The latter 
algorithms can surely deal with any environ- 
ment in which there is knowledge about  proces- 
sor speed and message delivery time. Unlimited 

asynchronous models have been thoroughly 
investigated, as have purely synchronous 

models. Physical systems are usually somewhere 
in between: they are neither purely synchronous 
nor unlimited asynchronous. It is therefore an 
interesting exercise to develop algorithms that  

do not use knowledge about the relative pro- 

gress of time in the system, yet perform superior 

under realistic conditions about time. The 
usual logically t ime-independent algorithms do 
not assume anything about the rate at which 

time flows in different locations. This is unneces- 
sarily harsh with respect to many problems aris- 
ing in the real world. Clock drift in systems 

happens with a certain smoothness, since abrupt  

changes are rare in nature. It  seems to be 
worthwhile to investigate robust algorithms 

such that :  

• the algorithms remain correct and ter- 
minate under any behavior of time in the 

system, 

® using time, the algorithms are yet logically 
time-independent, only their efficiency 

depends on the behavior of time, 

® with increasing synchronous well-behaved 
time in the system the performance of the 

algorithm improves ever faster, 

• if the asynchrony of the system is known 
then the algorithm performs as well as in 

the synchronous case, 

• under practical assumptions about  clock 

speeds these algorithms use less message 
passes than is possible by any other known 

methods for the problems they solve in 

asynchronous systems, 

e the limitation on unlimited asynchrony 

such algorithms require is but  a minor one 

which is generally satisfied and which we 

term "Archimedean asynchronicity". 

Now, in asynchronous distributed systems 

each processor has its own clock. Although these 
clocks may not  be synchronized, and the clocks 
may not indicate the same time, there should be 

some proportion between the clock rates. Tha t  
is, if an interval of time has passed on the clock 
for processor A ,  a proportional period of time 
has passed on the clock for processor B .  

Definition. A distributed system is 
Archimedean from time t 1 to time t 2 if the 

ratio of the time intervals between the ticks of 
the clocks of any pair of processors, and the 
ratio between the communication delay between 
any adjacent pair of processors and the time 
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interval between the ticks of the clock of any 

processor, is bounded by a fixed integer during 

the time interval from t 1 to t 2, (This ratio 

need not be bounded a priori, nor need it be 
known to the processors concerned.) 

Tha t  is, in asynchronous networks the 
magnitudes of elapsed time should satisfy the 
axiom of Archimedes. The axiom of Archimedes 

holds for a set of magnitudes if, for any pair 

a ,  b of such magnitudes, there is a multiple na 

which exceeds b for some natural  number n .  It 
is called Archimedes '  axiom* possibly due to an 

application in obtaining large numbers in The 

Sand-Reckoner. 

We assume tha t  the magnitudes of elapsed 

time, as measured, for instance, by local clocks 
amongst different processors or by the clock of 

the same processor at  different times, as well as 
the magnitudes consisting of communication 
delays between the sending and receiving of 

messages, as measured, for instance, in absolute 

physical time, all together considered as a set of 
magnitudes of the same kind, satisfy the 

Archimedean axiom. In physical reality it is 
always possible to replace a magnitude of 

elapsed time, of any clock or communication 

delay, by a corresponding magnitude of elapsed 
absolute physical time, thus  obtaining magni- 
tudes of the same kind. We assume a global 

absolute time to calibrate the individual clocks; 
using relative time by having the clocks send 

messages to one another yields the same effect - 
for the purposes at hand. If we do not restrict 

ourselves, so to speak, to Archimedean distri- 

buted systems, then the processors in the sys- 

tem may not  have any sense of time. Or, they 

have clocks which keep purely subjective time, 

so tha t  the unit  time span of each processor is 
unrelated to tha t  of another. Tha t  is, the set of 

* In Sphere and Cylinder and Quadrature of the Par- 
abola Archimedes formulates the pc~tulats as fol- 
lows. "The larger of two lines, areas or solids 
exceeds the smaller in such a way that the 
difference, added to itself, can exceed any given in- 
dividual of the type to which the two mutually 
compared magnitudes belong", The axiom ~ppears 
earlier as Definition 4 in Book 5 of Euclid's Ele- 
ment& 

time units is non-Archimedean if the length of 

every time unit  is not less than a finite multiple 

of tha t  of any other in the absolute global time 

scale. Or, the communication delays have no 
finite ratio among themselves or with respect to 

subjective processor clocks. As a consequence: 
-Any process, pausing indefinitely long with 

respect to the time-scale of the others, between 
events like the receiving and passing of a mes- 

sage, and also any unbounded communication 

delay, effectively aborts activities such as an 

election in progress. A process can never be sure 
tha t  it is the only one which considers itself 
elected. 
-Without  physical t ime and clocks there is no 

way to distinguish a failed process from one just  
pausing between events. 

-A user or a process can tell t ha t  a system has 
crashed only because he has been waiting too 
long for a response. 

Distributed systems in the sense of physi- 

cally distributed computer networks communi- 
cate by sending signed messages and setting 

timers, or equivalent devices. If an acknowledge- 

ment of safe receipt by the proper addressee is 
not received by the sender before the timer goes 

off, the sender sends out  a new copy of the mes- 
sage and sets a corresponding timer, This pro- 

tess is repeated until  either a proper ack- 
nowledgement is received or the sender con- 

cludes tha t  the message cannot be communi- 
cated due to failures. Thus, clocks and 

timsouts are necessary at t r ibutes of real distri- 

buted systems and non-Archimedean time in the 

system is intolerable outright.  Whereas unlim- 
ited asynchrony would prevent a system from 

functioning properly, pure synchrony in a sys- 
tem cannot exist: the clocks of distinct proces- 

sors drift apart  in both indicated time and run- 
ning speed and have to be resynchronized hy 

algorithms running in Archimedean time as 
defined above. 

We may call this concept of algorithms 
using physical time, inste~l  of being oblivious to 

physical time, one of time-driven algorithms. 
The use of such algorithms would be in the area 
of distributed control in synchronous or asyn- 
chronous systems. Some problems necessarily 
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have time-driven algorithms, while the algo- 
rithms for other problems may or may not be 
time-driven. For example, in algorithms for 
clock synchronization and distributed spanning 
tree and distributed elections, the former are 
time-driven by cause of their very subject 
matter, while the latter may be time-driven by 
design or not be time-driven at all. The pri- 
mary goal of an investigation into the feasibility 
of such algorithms in [Vit£nyi1984, Vit£nyi1985] 
was to demonstrate the existence of competitive 
time-driven algorithms with the desirable pro- 
perties as mentioned. These algorithms where 
superior in terms of message passes. More 
significantly, they performed better than 
allowed by known lower bounds on the number 
of message passes required in asynchronous net- 
works. Unfortunately, they where quite unrealis- 
tic in terms of running time. Nonetheless, we 
expect that genuinely more efficient algorithms 
than the unlimited asynchronous ones exist, in 

between the pure synchronous and unlimited 

asynchronous ones. 

4. Physics 

Apart from space and time, nature intrudes 

obstrusively in nonsequsntial computation in 

the form of physics. We give an example from 

the field of VLSI taken from [Vit~nyi1985 ~}. 

In current chips, synchronization require- 

ments slow down the computation to a clocked 

switching time, which is in the order of the 

delay in the longest wire. As the minimal 

feature width continues to decrease into the 

submicron range, this delay governs overall per- 

formance more and more. In order to obtain 

very high speed integration, one way to go is to 
obtain a propagation delay logarithmic in the 

length of the wire, as in [Mead1980]. Electronic 

considerations show ~VIead1982] that all wires 
then need to have the same ratio between width 

and length, that is, the same aspect ratio. Below 
we derive this fact, and show some of the conse- 

quences. 

4.1. E|ectronlcs 

Analysis of signal propagation delay in wires on 
chip requires different models in different cases: 
transmission line, distributed RC and lumped 
RC. However, the dominating factor on a 
densely packed chip is that a wire is not alone, 
but surrounded by other wires. This fact leads 
to the following analysis 
~/Iea~i1982, Vit~nyi1985 ~..]. 

The time it takes a minimum transistor to 

drive a wire of length L, width W and thick- 

hess H can be estimated as follows. The wire is 

assumed to have distance D l to neighbouring 

layers and Dw to other wires in the same layer. 

If W e is the minimal width of a wire in the 

current technology, then the minimal transistor, 

consisting of a wire crossing, occupies area W0 ~ . 

The total time T to drive a wire is approxi- 

mated by: 

r ~-~ (R, +Rw ) Cw (I) 

where Rt is the resistance of the minimum 
transistor, R w the resistance of the wire and 
Cw its capacitance. 

Therefore, the total time T can be thought of 
as the sum of the time T~ needed to drive a 
zero resistance wire of capacitance Cw, and the 
time R w C w needed to transport the appropri- 
ate charge from a zero resistance source. 
Roughly, T~ is the time needed to transport the 
necessary charge through the bottleneck consist- 
ing of the switch (the minimal transistor), and 
R w C  • is the time needed to distribute the 
charge appropriately over the wire w. Since the 
resistance of a wire is proportional to its length 
and inversely proportional to its cross section 
we have: 

L 
R~  = p~ W H  (2) 
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where Pw is the resistivity of the considered 
wire material. The capacitance of a wire is 
inversely proportional to the distance of its 
neighbouring wires and layers, and proportional 
to the area of the side facing that neighbouring 
layer or wire: 

H+___W 
Cw : 2 c w  L ( ~  Dt ) (3) 

where e w is a proportional constant consisting 
of the product of the permitivity of free space 
and the dielectric constant of the insulating 
material (usually SiO2). Thus, 

L 2 H W Rw Ct~ : 2 p w  ew --~-~(-~-w + ~ T )  • (4) 

This suggests a signal propagation time qua- 
dratic in L.  However, the resistance R¢ of the 
minimum transistor dominates in (1) for the 
magnitudes of L under consideration (smaller 
than, say, 1 foot). We can decrease that term by 
fitting a larger driver transistor to the wire. 
This transistor, in its turn, must be driven by 
the minimal transistor. Iterating this scheme, cf 
[Mead1980], we obtain a sequence of transistors, 
of which each next one is a factor o~ larger than 
the preceding one. The final transistor in the 
sequence should be large enough to drive the 
wire in a sufficiently short time. (We can think 
of this scheme as a sequence of switches where 
each switch serves to switch the next larger 
switch, and the largest switch in the sequence 
controls the large channel through which the 
charge is transported to the wire. Although the 
time to actually pass the appropriate charge 
from source to wire can be made smaller by 
fitting a larger final driver transistor to the 
sequence, there seems no way to get rid of the 
time needed to switch all transistors in between 
the smallest transistor and the largest one.) The 
time to drive a driver with capacitance C 2 by a 
driver with smaller capacitance C 1 is given by 
[Mead1980}: 

Ce 
- -  (s) 
C1 

where r is the time it takes a minimal transistor 
to charge the gate of another minimal transis- 
tor. If Cg is the capacitance of the minimal 

transistor then for a ramp of r drivers: 

C~ 
r =Ioga C, (6) 

taking T~ = r ~a time to charge the wire if it 
had no resistance. The capacitance of the 
minimum transistor is given by 

w g  
c ,  = , ,  Do  ' (T) 

where D O is the thickness of the gate insulator 
and q is the product of the permitivity of free 
space and the dielectric constant of the gate 
insulator. Thus we can drive a zero resistance 
wire of capacitance C w through a sequence of r 
drivers for fixed cr in time: 

Cw 
Te ~-~ cv r log a Ct (8) 

From (1), (4) and (8) we obtain an expres- 
sion for T=Td+CwR~,.  In [Mead1982] it was 
observed that by keeping the derivatives, with 
respect to L ,  of the two terms T~ and C w Rw 
balanced: 

err ~ P w  % L g W )  
L ln~ - ~  ( ~ + D r (9) 

T grows logarithmic in L.  Viz., by assumption 
of equality (10) we obtain: 

In a e t W--'-"~ ( Dw Dl + 1 

According to (9) we obtain logarithmic signal 
propagation delay by, all other things being 
equal, 

1 ~ )  = constant (10) L 2 ( ~  + H D t  

rather than by just keeping L 2 proportional to 
WH a,s in [Mead1982}. Keeping the interwire 
distance proportional to the wire width, and the 
interlayer distance proportional to the wire 
height, we observe that if W, H and L are 
kept in proportion a logarithmic propagation 
delay is attained. (Note that we cannot reach 
this effect by keeping the wire width the same 
hut using very ~tall' wires or vice vema.) The 
aspect ratio of a wire is the quotient of its width 
and length. To obtain a logarithmic signal pro- 
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pagation delay we thus need the fixed constant 
aspect ratio following from (9) and (I0) for all 
wires in the layout. In designing such a high 
speed layout we therefore need to install drivers 
to drive the long wires and to design all wires 
with a constant aspect ratio a >0.  Therefore, a 
wire of length L in such a layout has area aL ~. 
The area taken by the driver is linear in the 
length of the wire [Mead1982]: the minimal 
transistor occupies area W02, the next driver 

area ~Wo 2 , and so on for log~L terms for an 

L-length wire. The total driver area for an L -  
length wire becomes W02 (L-1) / (q - l ) .  This area 

is required at the lowest silicon layer of the 
chip; the long interconnect wires are executed in 

the upper metal layers. 

The effect of having all wires in the layout 
with the same constant aspect ratio spells disas- 
ter for circuits which necessarily have many 
long wires. This holds for trees, but more so for 
fast permutation networks. However, let us look 
what happens for natural wire length distribu- 

tions. 

4.2. W i r e  L e n g t h  Dis t r ibu t ions  

Let f : N --* N ,  connected with a VLSI layout, 
be a wire length distribution function which 
yields the number f ( i)  of wires of length i in 

the design. 

Every VLSI layout must have a constant 
bounded fan-in and fan-out of wires for the 

components (transistors). If the chip area is A ,  
then a reasonable assumption is that the maxi- 
mal wire length on a chip does not exceed 

L max = X/~ • (11) 

Consequently, the amount of wires in the layout 

is given by 

# w i r e s =  ~ f ( i )  . (12) 
i= l  

To achieve logarithmic propagation delay 
we can estimate and bound the layout area 
occupied by the fattened wires as follows. Let 
C be the amount of area of the layout occupied 
by non-wire components such as transistors. 
Assuming that C is also the order of magnitude 
of the number of basic components like transis* 

tors or logic gates in the circuit we can reason 
as follows. Since the wires only serve to connect 
components we have C E 0 ( #  wires) in a con- 
nected layout, The components are assumed to 
have at most a limited t connections to attach 
wires, which we suppose to account also for the 
fan-in and fan-out of the interconnect wires. 
Therefore C E f l (#  wires) and consequently 
(7 C O(#  wires). Since we are primarily 
interested in orders of magnitude in the sequel, 
we are justified to use C interchangeably for 
the amount of area occupied by the non-wire 
components, the number of non-wire com- 
ponents and the number of wires. The maximal 
area occupied by the wires (and interwire dis- 
tances) under (I0) is bounded by the available 
area: 

,fA- 
f ( i ) a i  2~-~A-(7 , (13) 

i~ l  

where a is the constant quotient of width and 
length (the aspect ratio) of the connect wires as 
required by (10). Using a simple theoretical 
argument and an experimental study of actual 
layouts [Donat1981] develops the following wire 
length distribution relationship: 

f ( i )  = Lci-XJ ( 1 < i  <nm~x) and (14) 

f ( i)  ~-~0 (i > L  m~x) 

for a normalization constant c yet to be 
chosen. Here L max is a constant related to the 

size of the array (rectangular chip) and the ade- 
quacy of the placement; and ), is a constant 
characteristic of the logic. Equation (14) is 
derived using "Rent 's  Rule" which states that 
the average number of terminals per complex of 
C elements (in units, modules, cards, gates etc.) 
is tC p , where t is the number of connections 
per individual element and p is the Rent con- 
stunt characteristic of the logic complex. The 
analysis goes by dividing a square array of cells 
into 4 equal square arrays recursively down 
until the individual areas are the individual ele- 
ments of the original logic. On each level of the 
recursion the number of connections crossing 
boundary lines is determined using Rent's rule. 
This shows that X ~ 3 - 2 p .  In [Donat1981] 
experimental results are given for some actual 
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layouts placed using a hierarchical placement 
program: layouts for high-speed logic where p 
was found to be 0.75 and a layout for a hand 

calculator chip with p =0.59. Let furthermore 
the network be connected, so the maximal 
amount of area units C available to place the 
components is not greater than the number of 
wires plus 1. 

Considering just the wire length distribu- 
tion while leaving free the actual circuit topol- 
ogy, placement and routing in the layouts, 
attaining a logarithmic signal propagation delay 
by changing constant wire width to constant 
aspect ratio for all wires in a layout can carry a 
surprisingly severe penalty. This follows 
immediately from (11), (12), (13) and (14), and 
is expressed by the theorem below. The (sim- 
ple) analysis of this fact, and the proof of the 
Theorem, are relegated to the Appendix. 

T h e o r e m .  Let the original layout area be 
A and the original amount of wires in the layout 
be C . For the wire length distribution 

f ( i ) = [ c i - l J  for l < i < v ~  and f ( i ) ~ O  
for i > v t ~ ,  the change from constant wire 
width to wires with a constant aspect ratio has 
the following effect. 

(i) Keeping f and C the same, the area has 
to increase from a to exp(~(vtA -" )). 

(ii) Keeping f and A the same, the number of 
wires (c.q. components) has to decrease 
from G to O(log C).  

(iii) Keeping A and C the same, the wire 
length distribution has to change to 
f t ( i)  = [ c '  i -(2+')3 for some small e > 0  

O < i < v ~  ). 
We observe that in ease (i) of the Theorem 

the wires get so long that  the logarithmic propa- 
gation delay turns out to yield about the same 
absolute time delay as in the original wires. In 
ease (ii) of the Theorem matters are probably as 
bad because the bit capacity of the chip has 
been logarithmically reduced. Finally, in case 
(iii) of the Theorem the subject circuit topology 
may not have a layout with the required wire 
length distribution. 

It therefore appears that only circuits for 
which there are layouts with wire length distri- 

butions with relative large X, will profit from 
this scheme for logarithmic signal propagation 

delay. 
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Appendix 
From (13) and (14) we can estimate the maximal 
figure for the normalization constant c .  For X#3: 

(A -C)(3-)`) (15a) 
~ ~ (A i~)/~_i) ' 

and for X~----3, 

c ~ 2 ( A - C )  (15b) 
a log A 

Consequently, for Xs~l & ) ,#3  by (12): 

VA" (A - C  )(3-)`) (A (1-x)IL_I~.. , 
C ~-" i = l ~ f ( i ) ~  a (1-),) (A(Z-x)/2-1) ,loa~ 

and for X~3, 

C ~-. ~A-U)(A-i) (16b) 
aA logA 

For )`=1, 

~T A - C  
C ~ ~ f ( i ) ~  logA (16c) 

(Note: for ) ,<1 we obtain c <1,  resulting in 
f (i)~-,0 also for small i ,  and C a small constant.) 

For comparison we give an analogous analysis 
under the constant wire width assumption. Then 
equations (11) - (12) stay the same but equation (13) 
becomes 

~rT 
Ef(i)i ~ A - C  . (17) 

i = l  

Thus, for f ( i~_=[c i -XJ  ( l < i < v ~ )  and 
f ( i )~- - .O ( i > ~ / A )  and with A ,  C and c ~s 
above we obtain the following relations. For X = l :  

A - C  (18) 

c ~ .(A - c ) l o g  A 
2 ( ~ 2 - - 1 )  

For X # l  ~ x # 2 :  

c ~ 12-X)(A-C} (19) 
A (2-X)/2-1 

~2-)`)(A - C  )(A ~'- , /~-t)  
C ~ (I_),)(A (v×)t2_l) 

For X=2: 

c ~ 2 ( A - C )  (~0) 
log A 

c ~ 2 ( A - e ) ( , / T - I ) ,  
log A 

(Note: for )`<0 we obtain c <:1.) For k > 0  we have 
C E f ~ ( v ~  ). Thus: 

Proof  of  Theorem. Since we assume the cir- 
cuit to be connected we have A > A - C  > A / 2  
in the various equations. We also assume A > >  1. 

(i) Equate expression (18) for C with expression 
(16c) for C ,  with A I substituted for A in the 
latter. This yields log A t E f t ( ~  ). 

(ii) Substitute C I for C in equation (18) and 
express C t in terms of C by eliminating A 
from the resulting equation and (16c). 

(iii) Equate expression (18) for C with expression 
(16a) for C (expressions (165) and (lSc) con- 
tradict (18)). The terms (A-C) on both sides 
cancel each other. Solving k yields 
) , = 2 + e ( A , a ) > 2  with ~ (A,a ) -~0  for 
A---+oo and a constant. Every distribution 
with exponent equal or larger than this X 
suffices. ¢ 


