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Abstract. We describe a method for transforming asynchronous network protocols 
into protocols that can sustain any transient fault, i.e., become self-stabilizing. We 
combine the known notion of local checking with a new notion of internal reset, and 
prove that given any self-stabilizing internal reset protocol, any locally-checkable 
protocol can be made self-stabilizing. Our proof is constructive in the sense that 
we provide explicit code. The method applies to many practical network problems, 
including spanning tree construction, topology update, and virtual circuit setup. 

1 Introduction 

A network protocol is called self-stabilizing (or stabilizing for short) if when started from 
an arbitrary state, it eventually exhibits the desired behavior. In the context of computer 
networks, a self-stabilizing system may have an initial state with arbitrary messages at the 
links and arbitrary corruption of the state variables at the nodes. The practical appeal of 
stabilizing protocols is that they are simpler (i.e., they avoid a slew of mechanisms to deal 
with a catalog of anticipated faults), and they are more robust (e.g., they can recover from 
transient faults such as memory corruption as well as common faults such as link and node 
crashes). 

Since the pioneering work of Dijkstra [t 1], the theory of self-stabilization has been 
extensively studied (e.g., [9, 16, 12, 2, 5]). While most of the work was directed at self- 
stabilization of specific tasks, some work was devoted to designing general algorithmic 
transformers that take a protocol as input, and produce as their output a self-stabifizing 
version of that protocol. These transformers typically exhibit trade-offs between their 
generality (i.e., the range of input protocols they can transform) and the efficiency of 
the resulting protocols. One such general transformation is given by Katz and Perry [16], 
where they show how to compile an arbitrary asynchronous protocol into a stabilizing 
equivalent. Briefly, the idea in [16] is that a leader node periodically takes "snapshots" of 
the global network state, and resets the system if some inconsistency is detected. We call 
this method global checking and correction. Due to its generality, this transformation is 
expensive in terms of space and communication; another drawback of this approach is that 
it requires an additional self-stabilizing mechanism that maintains routes that connect all 
nodes to some leader. 

Afek, Kutten and Yung [5] suggested that global inconsistency could sometimes be 
detected by checking the states of neighbors - -  i.e., by local means. Using the idea of 
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detecting faults locally and correcting them by a global operation, a stabilizing spanning-tree 
construction is developed in [5]. In [2], Arora and Gouda propose the use of distributed reset 
to maintain diffusing computations. Their reset protocol requires an underlyimg stabilizing 
spanning tree. 

The idea of local detection of faults is formalized in [6, 7, 28] under the name of 
local checking. In [6, 28], the class of locally correctable protocols is also defined; these are 
protocols that can reach "good" global states by means of local correction actions. In [6, 28], 
a transformer that uses local checking and local correction is described. The transformer of 
[6] is efficient, but it can be applied only to protocols that are both locally checkable and 
locally correctable. Unfortunately, many interesting network protocols can be shown to be 
locally checkable, but not locally correctable. 

In this paper, motivated on the one hand by the inefficiency of the transformer of  [16], 
and by the narrowness of the transformer of [6] on the other hand, we introduce a new 
algorithmic transformer that can be used to make a wide class of protocols self-stabilizing. 
The idea is to combine local checking and global correction: bad states are detected by 
local checking mechanism, a global correction action (called "reset") is used to recover 
from faults. We contend that local checking and global reset is the right balance in many 
practical situations. First, we argue that global detection mechanisms such as the self- 
stabilizing snapshot [16] incur unnecessary large overhead (in terms of time, space and 
communication) practically always, since networks are fairly failure-free. Local checking 
detects faults quickly, and it can be done, as we show in this paper, with only a small 
increase in communication cost. Secondly, as mentioned above, there are many protocols 
that are locally checkable but not locally correctable (e.g., spanning tree construction and 
topology update [27, 20, 21, 22]). In these cases we are forced to use other techniques - -  
e.g., reset. 

Even though resetting an entire network may seem drastic and inefficient, there is 
evidence that this is not the case. For instance, consider routing protocols. The stabilization 
time of our method (using the best reset protocols) is proportional to a cross-network latency, 
which is the time that takes for many protocols to compute their results anyhow, even after 
being started in a good state. Empirical results also support the claim that resets perform 
quite well in practice. Specifically, DEC SRC's AN-1 network [25] employs a variant of  
global reset for dealing with topology changes (by making a reset request whenever a 
link fails or comes up). 6 The AN-1 designers found that the protocol recovered from link 
failures very fast [23]. The reason is that usually the routing protocol only operates for a 
small fraction of the time at a node; the remaining processing is devoted to forwarding 
data. During a reset, however, no data forwarding is done; all processing and bandwidth is 
devoted to the reset. The moral from the AN-1 experience is that reset schemes work well 
for small sized networks; for larger networks, the same approach should work if the routing 
protocol is hierarchical [15] and each level is reset independently. 

The main result of this paper is a precise description and statement of the method of 
local checking and global reset. We provide formalization, analysis, and code. We believe 
that in doing so we contribute something that will help both theoreticians and practitioners. 
We remark that the ideas of local checking and global reset are not new; for instance, the 
stabilizing spanning tree protocol of  [5] uses local detection, and Arora and Gouda [2] use 

6 The AN-1 reset is performed using a version of Finn's unbounded counter protocol [14]. 
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reset to maintain diffusing computations. The contribution of this paper is in introducing 
a general transformer that can be used to stabilize any locally checkable protocol. The 
description of the trans.former entails a description of a local checking mechanism, detailed 
requirements that the reset protocol being used must meet, and a description of the way to 
construct the resulting self-stabilizing protocol. 

It is important to observe that the classical notion of reset [14, 1,6] is insufficient for our 
purposes. In these papers, the task is specified in terms of an external entity that triggers the 
reset: for example, the reset can be triggered by a change in the topology (e.g., link crash). 
The important point is that this specification formalizes a reset that is invoked regardless of 
the way it affects the system. Below, we call such resets external. Notice that an external 
reset is inadequate for a general transformer: in our method there is no external entity. 
We have a protocol, which is checked by the local checking mechanism, that can trigger 
the reset, which in turn changes the state of the protocol being checked. If while resetting 
inconsistent states of the original protocol are created, the local checking mechanism might 
invoke the reset again, resulting in an endless vicious cycle of reset invocations. Therefore, 
another notion of reset is required in this setting. One of the contributions in this paper is an 
appropriate specification of a stronger reset, hereafter called internal reset. Intuitively, the 
requirement in external reset that there are only finitely many reset invocations is replaced 
in internal reset by a specification that guarantees that when used properly, the reasons for 
invoking reset eventually disappear. 

Interestingly, some reset implementations [1, 6] are known to produce intermediate 
global inconsistencies [1, 28]. In this paper, however, we show that a certain "pairwise con- 
sistency" is sufficient; fortunately, it turns out that the above protocols (although designed 
as external resets) meet the requirements of internal reset. 

The remainder of the paper is organized as follows. We start, in Section 2, with an 
overview of the network model and the definition of stabilization used in this paper. In 
Section 3 we define the notion of local checkability (this is a straightforward formulation 
of the ideas in [5, 6]). In Section 4 we give a definition of the requirements of internal 
reset protocols. Then, in Section 5, we give our main result, that connects the known notion 
of local checkability with the new notion of internal reset. Namely, we present a theorem 
that says that any locally checkable protocol can be made self-stabilizing using any self- 
stabilizing reset protocol. We sketch a specific implementation of the local checking process, 
and outline a proof of correctness for the combined protocol (explicit code is omitted from 
this extended abstract.) Some applications of our main result are mentioned in Section 6. 

2 Model  

In this section we describe our network model. We first review briefly the underlying 
formal model of Input/Output Automata (see [17, 18] for full definitions), and establish the 
notation we use throughout this paper. We also formalize the notion of self-stabilization in 
this framework. In the second part of this section, we specify the network model we are 
dealing with in this paper. 

IO Automata, Stabilization, Time Complexity. An Input/Output Automaton (abbreviated 
IOA henceforth) is a state machine whose state transitions are given labels called actions. 
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There are three kinds of actions. The environment affects the automaton through input 
actions which must be responded to in any state. The automaton affects the environment 
through output actions; these actions are controlled by the automaton. Internal actions only 
change the state of the automaton without affecting the environment. Formally, an IOA 
.iV" is defined by a state set S(.M), an action set A(.Af), a signature G(.A/') (that classifies 
the action set into input, output, and internal actions), a transition relation I~(.M) C 
S(Af) • A(Af) • S(Af), and a non-empty set of initial states IOAf ) c_ S(Af). We omit 
the automaton's name when it is clear from the context. An action a is said to be enabled 
in state s if there exist s / E S such that (s, a, J )  E R. Input actions are always enabled. 
For an automaton Af and non-empty set L __C_ S(Af), we define A/'IL to be the automaton 
that is obtained from ~c by setting the initial states to be L. In this paper we often deal with 
uninitiatized IOA for which I = S and S is finite. IOAs communicate by means of  shared 
actions. More formally, IOAs can be composed (under certain compatibility conditions) to 
generate a composite state machine; an action which is output of one of the components 
and input of the other is performed simultaneously. 

When an IOA "runs" it produces an execution. Formally, an execution fragment is an 
alternating sequence of states and actions (So, al ,  s l , . . . ) ,  such that (ai, ai, Si+l) E R for 
all i _> 0. An execution fragment is fair if any internal or output action that is continuously 
enabled eventually occurs. 7 An execution is an execution fragment that begins with an 
initial state and is fair. A schedule is a subsequence of  an execution consisting only of the 
actions. A behavior is a subsequence of a schedule consisting only of its input and output 
actions. Each IOA generates a set of behaviors. An IOA A implements another IOA B if 
the behaviors of  A are a subset of the behaviors of B. For stabilization, we weaken this 
definition and require only that A eventually exhibit a behavior of B. Formally, we say that 
A stabilizes to B if every behavior/3 of A has a suffix which is a behavior of  B. Note that 
this definition (based on a definition by Nancy Lynch) is formulated in terms of external 
behavior, as opposed to a (somewhat circular) state-based definition. 

For time complexity, we use the timed IOA model of [18] (see [28] for formal details). 
Informally, we assume that every internal or output action that is continuously enabled 
occurs in 1 unit of time. We say that A stabilizes to B in time t if every behavior of A has a 
suffix that occurs within time t and is a behavior of B. The stabilization time from A to B 
is the smallest t such that A stabilizes to B in time t. For any automaton Af, define A/(x) 
to be identical to Af except that the time associated with each action is now x time units 
instead of 1 time unit. 

Network Model. For the remainder of this paper we fix an underlying network topology, 
modeled by a directed symmetric graph G = (17, E)  with unique node identifiers, s Each 
node v E V represents a processor, and each directed edge represents a unidirectional 
communication link. We denote the number of network nodes by n -= i V I, and the network 
diameter is denoted d = diam(G ). Each node and link is modeled by an IOA. Below, 
we describe verbally the links and node automata. Formal definitions are omitted from this 
abstract. 

7 The IOA model specifies fairness in terms of equivalence classes; here we assume each action is in 
a separate class. 

s A graph G = (V, E) is called symmetric if for all u, v E E we have that (u, v) C E implies 
(v, ~) e E. 
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In our model, links have bounded storage, i.e., only a bounded number of outstanding 
packets are stored on each link at any instant. The justification for this assumption is 
twofold: first, not much can be done with unbounded links in a stabilizing setting [13], and 
secondly, real links are inherently bounded anyway. In this paper we abstract this property 
by postulating that a link can store at any given instant at most one outstanding packet. 
Formally, a link from node u to node v is modeled as a queue Q~,v that can store at most one 
packet from some packet alphabet Z at any instant. The external interface to the link (see 
Figure 1) includes an input action SEND~,v (p) (interpreted as "send packet p from u"), an 
output action RECEWEu,v (P), (interpreted as "deliver packet p at v"), and an output action 
FREE~,v (interpreted as "the (u, v) link is currently free"). 9 ff a SEND~,v (p) Occurs when 
Qu,v = ~b, the effect is that Qu,~ = {p}; when Q,,,~ = {p}, RECEIVEu,~(p) is enabled, 
and when it is taken, its effect is to set Q~,v +-- 4; when Q~,v = ~b, FP, EE~,~ is enabled. If  
SEND~,v (P) occurs when Q~,,~ 7~ 4, there is no change of state (intuitively, the incoming 
packet is just dropped). We note that by our timing assumptions, a packet stored in a link 
will be delivered in one unit of time. 

Node u Node v 

Fig. 1. Schematic representation of a single link, connecting queued node automaton u to v. The link 
from v to u is symmetric and is not shown. 

A node automaton u has, for each neighbor v, output actions SENDu,v(p) to send 
packets to v, input actions RECEIV~,u(p) tO receive packets from v, and an input action 
FREE~,~ to obtain indications of the (u, v)-link state. In this paper, we use a special node 
automaton which we call a queued node automaton. A queued node automaton u has the 
following discipline for sending packets. It has a bounded output queue called queue[v] and 
a boolean flag free[v] for each neighbor v of u (see Figure 1). Whenever a F ~ , ,  action 
is received from the link at u, the free[v] flag is set. A SENDu,~ (p) action is only performed 
when p is the head of queue[v] and free[v] is set; its effect is to clear free[v]. 

Queued node automata allow us to easily superimpose a local checking process. The 
local checking process at each node needs access to the state of the node and also requires 
the sending of control packets. (The requirement of access to state rules out the possibility 
of formalizing the local checking process as a separate automaton). Queued node automata 
use a particular discipline for sending data packets on a link; this discipline makes it easy 
to multiplex data and control packets on each link. Any node automaton requires some 
discipline anyway to deal with bounded links. Thus the use of a particular discipline is not 
overly restrictive and makes it easy to add local checking. 

For the given graph G = (IS, E) ,  we define the automaton for G by the composition 

9 Our convention for action subscripts is that the first represents the sender and the second represents 
the receiver. 
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of node automata for each u E V and link automata for each edge (u, v) E E.  Our object 
of study in this paper, called hereafter network automaton for G, is an automaton for G in 
which all node automata are queued node automata. 

3 Local Checkability 

In this section we formalize the notion of local checkability. For the remainder of this 
section, fix a network automaton iV" for a given graph G -- (V, E) .  We start by defining 
the notion of subsystems. 

Definition 1. Let (u, v) E E.  The (u, v)-link subsystem of .Af is the composition of the 
automata for nodes u and v, and edges (u, v) and (v, u). 

For a state s E S(Af) and node u E V, let sIu denote the projection of s onto the 
node automaton of u; similarly, for (u, v) E E ,  let sI(u, v) denote s projected onto the 
automaton for link (u, v). When .Af is in state s, the (u, v) subsystem state is characterized 
by the 4-tuple (slu, s[(u, v), s[(v, u), sly). We now define the notions of predicates and 
local predicates. 

Definition 2. A predicate of A/" is a subset of the states of .Af. A local predicate Lu,v of 
Af, where (u, v) E E,  is a subset of the states of the (u, v) subsystem. A state 8 E S(Af) 
is said to satisfy a local predicate Lu,~ for (u, v) iff (sIu, sl(u , v), s](v, u), slv) E L~,~. 

We shall also use the following standard definition. 

Definition 3. A local predicate L~,o of.A/" is called stable if for all transitions (s, a, s ~) of  
Af, we have that if s satisfies L~,~ then so does s ~. 

We now arrive at our definition of local checkability. 

Definition 4. Let s = {L~,~} be a set of local predicates, and let H be any predicate of 
Air. A network automaton A/" is locally checkable for H using ~ if the following conditions 
hold. 

(l) For all states s E S(.N'), if s satisfies L~,v for all Lu,~ E/~, then s E H 
(2) There exists s E S(.Af) such that 8 satisfies Lu,~ for all L~,v E s 
(3) Each Lu,v E/~ is stable. 

Certainly the most intriguing condition in Definition 4 above is (3). This condition 
is introduced so that periodic verification of local predicates can still be useful for fault 
detection. More specifically, it is aimed to rule out the case of  an "evasive violation:" there 
are examples in which a (global) predicate can be expressed as a conjunction of local 
predicates, and such that under a certain schedule, whenever a local predicate is checked 
it turns out to be true; however, it may be the case that the global predicate never holds 
in this execution! Intuitively, the problem stems from the fact that a fault could "travel" 
through the network, escaping detection every time local predicates are verified. Imposing 
the stability condition guarantees that if a local predicate is known to hold, it will continue 
to hold through the rest of the execution. 
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Superficially, the stability requirement in Def. 4 may seem too strong a condition. We 
support our definition by the observation that many protocols, called locally extensible, can 
be made to have this property by means of a simple transformation. Informally, a protocol 
is said to be locally extensible if any correct state of any pair of overlapping subsystems 
can be extended to a globally correct state. Details can be found in [28]. 

4 Internal Reset 

In this section we give a specification for an internal reset protocol in terms of observable 
behaviors. Intuitively, the goal of any reset protocol is to provide, upon request, a consistent 
signal common to all nodes in the network. Tile time point corresponding to the signal can 
be used to locally restart the protocol that we wish to reset. An internal reset protocol has 
to satisfy additional conditions regarding its output before termination. The basic idea in 
the specification below is an analogy to a pair of nodes connected by a data link protocol. 
Essentially, an internal reset protocol generalizes the guarantees of a data link protocol [3] 
to the whole network. 1~ 

4.1 Interface of Reset Protocols 

We now define the interface of reset protocols (this interface is common to both external 
and internal resets). Let us start with some intuition. It is desired that a reset protocol be 
superimposed on any other network protocol, say P ,  which we think of as a "user" The 
reset may be invoked at any node, and its effect is to output signals at all the nodes in a 
consistent way. The notion of consistency is expressed in terms of the messages sent and 
received by the nodes. We therefore assume that the reset protocol has control over the 
messages sent and received by the user. 

Motivated by this consideration, we define the external interface for a reset protocol at 
some node u as shown in Figure 2. The request action allows a local user at a node to invoke 
the reset protocol, and the signal action is used by the reset to provide a consistent time point 
to the user. The reset protocol also regulates all message traffic of P to and from the node. 
To avoid confusion, we call the messages generated by, and destined for the application P 
messages. We assume that these messages are drawn from some alphabet Z.  In addition, 
reset modules can communicate among themselves; the messages that reset protocols send 
and receive (including those it relays to and from P)  are drawn from the links alphabet, 
which we denote by ~ a t ~  D ~ .  These message are called packets. Intuitively, messages 
output by users are relayed by the reset modules between network nodes using packets. 

Formally, a SENDMu,v(rn) action allows P at u to send a message to neighbor v, and 
a RECEWEMv,~,(rn) action allows the reset service to deliver a message rn from node v to 
the user at node u. The FREEMu,v" action indicates that the reset service is ready to accept 
another message from u to node v. Thus the external interface between a reset service and 
its P-users mimics the link interface (cf. Figure 1) with packets replaced by messages. The 
reset service at node u, however, offers two additional actions: an input action REQUESTs, 

lo Almost identical specifications are provided by virtual circuit protocols [26] and transport, protocols 
[27]. 
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User protocol P at node u I 

"%i 

~ ~ ~ 

I 

Reset module at node u ] 
I 

~ OQIID 

Fig. 2. Interface specification for reset service 

used to enable the user to request a reset, and an output action SIGNALu, that informs the 
user that a reset has been completed at that node. 

4.2 Behavior Specification for Reset Protocols 

We now specify the requirements of an internal reset protocol. (The main difference between 
this specification and external reset [6] is in the consistency requirement below.) Our 
specification is parametefized by the response time of the protocol, denoted R in the sequel. 
This is convenient because different reset protocols have different response times. 

Before describing the behaviors of reset, we impose a wellformedness condition on 
the behaviors of the user P .  Intuitively, we rule out cases where P injects messages when 
it is not sure that the link is free. Formally, a behavior is well-formed if between any two 
SENDMu,v events there is a FREEMu,v event. 

To specify the requirements of an internal reset protocol, we define properties we call 
timeliness, causality and consistency. An internal reset protocol is required to be timely, 
causal, and consistent. We define these properties below, 

Intuitively, a behavior is timely if, in the absence of reset requests, the reset protocol 
relays messages and "free" events to and from the node in constant time. Formally, we have 
the following definition. 

Definition5 (Timeliness). A behavior/3 is timely if for all (u, v) E E the following 
holds. 

(1) At any point in/3, either FREEMu,~ occurs within constant time, or else SIGNALu Or 
S1GNALv occur within O (R) time. 

(2) Every SENDM,~,v (m) event in/3 is followed by RECEIVEM~,v (m)  in constant time, 
or else SIGNALu or SIGNAl-, occur in O(R) time. 

Intuitively, a behavior is causal if reset signals are only caused by reset requests and 
reset requests result in reset signals. Formally, we have the following definition. 

Definition 6 (Causality). A behavior/3 is causal if the following holds. 
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(1) For any signal event there is some request event that occurs within the preceding 
O(R) time. 

(2) For any REQUEST u event, there is a SIGNALu event that occurs within the following 
O( R) time. 

(3) For any signal event, there are signal events that occur at all v E V within the 
preceding and following O(R)  time units. 

Note that condition (1) of the causality definition guarantees termination: if reset requests 
stop, all signal events will stop in O(R) time. 

The intuition for the property of consistency of behaviors is harder to capture. As 
mentioned above, we would like to extend guarantees made by data link protocols to 
networks. Fix a behavior/3. Our first step is to define correspondence between send and 
receive events: for any RECEIVEIvlu,v event ai, we define its corresponding send event aj to 
be the first SENDM u,v event before ai in/3, such that there is no other RECEIVEMu,v event 

between aj and ai. Next, we define the notion of signal intervals at a node u: these are 
the subsequences of i3 demarcated by SIGNALu events; if the number of SIGNAL u events is 
finite, then u'sfinal interval is the infinite interval that begins with the last SIGNALu event. 

For a given signal interval/u at a node u, we define, for each neighbor v of u, the 
sequence sv(lu) which consists of the messages u sends to v in [u, and the sequence 
rv (Iu), which consists of  the messages u recieves from v in [u. 

With these concepts, we arrive at the central definition of the mating relation among 
signal intervals. 

Definition 7. Given a behavior, let Eu denote the set of signal intervals at u E V, and let 
]7 denote the set of all signal intervals. A mating relation "~--~" is a reflexive, symmetric 
relation over 77 • E that satisfies the following conditions for any (u, v) E E.  

(1) If  RECEIVEMu,v (m) occurs in Iv and the corresponding SENDMu,v (m) event occurs 
in I~, then I~ +-+ Iv. 

(2) For all Iu E Eu, there exists at most one/'~ E Zv such that I~ +-+ I~,. 
(3) If Iv +-+ I,,, then ru (Iv) is a prefix of sv (I~).  
(4) Foral l lv  ~-+ Iu,Iv is finalifflu is final.If Iv andIu arefinal, thens~ (Iv) = rv(Lu). 
(5) If Lv +-+ I~ and Iv ~ +-+ I~u, then I~ precedes I '  v at v iff I~ precedes I'~ at u. 

Note that only final intervals enjoy a "full guarantee" in the sense that the sequence of 
messages received is equal to the sequence of messages transmitted. Mating non-final 
intervals are allowed to "lose" the tail of the sequence. 

We can now define the two flavors of consistency we consider. 

Definition 8 (Consistency). A behavior/3 is called weakly consistent if every RECEIVEM 
action in/3 has a corresponding send event, and there exists a mating relation over the set 
of signal intervals of/3. A behavior is called strongly consistent if the behavior is weakly 
consistent and, in addition, the mating relation is transitive. 

Note that even for weak consistency, there is a transitive mating relation between final 
signal intervals. Since the mating relation is symmetric and reflexive, transitivity allows us to 
partition final signal intervals into equivalence classes, so that intervals "communicate" only 
with intervals in the same class: this seems to be the essence of network synchronization. 
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To specify an internal reset, we might require that any well-formed behavior be timely, 
consistent, and causal. Unfortunately, it appears that no implementation can stabilize to this 
set of  behaviors! Messages stored in the initial state can result in executions in which all 
suffixes have some receive event that does not correspond to a send; this violates mating. 
Thus we settle for the following definition. 

Definition 9 (Internal Reset). A protocol ~ is a weak (strong) internal reset if any well- 
formed behavior of 7~ is a suffix of some timely, causal and weakly (resp., strongly) 
consistent behavior. 

We remark ~a t  one difficulty with this definition is the hardness of proving that an IOA 
stabilizes to behaviors that are suffixes of behaviors of a second IOA. 11 

We note that the stabilizing reset protocols of [16] and [2] appear to be strong internal 
resets. The protocol of Katz and Perry [16] requires a stable set of paths to a fixed leader, 
and it stabilizes in O(n  2) time. The protocol of Arora and Gouda [2] requires a stable 
directed spanning tree, and its stabilization time (given a tree) is O(d). The reset protocol 
of Awerbuch, Patt-Shamir and Varghese [6] is designed as an external reset, but in fact it 
also satisfies the requirements of  weak internal resets (see [28]). The stabilization time of 
[6] is O(n), but enjoys the advantage that it does not require precomputed structures. This 
can be used, for example, to get a stabilizing spanning tree protocol with O(n) stabilization 
time. Awerbuch and Ostrovsky [8] describe a modification of the protocol of [6] that reduces 
the space requirement to O(log* n), at the expense of increasing the stabilization time to 
O(n log 2 n). Lastly, we remark that Awerbuch et aL describe in [4] a stabilizing spanning 
tree protocol that stabilizes in O(d) time; it appears that that protocol can be combined 
with the reset protocol of [2] to yield an O(d) strong internal reset protocol. 

5 S e l f - S t a b i l i z a t i o n  b y  L o c a l  Checking and G l o b a l  R e s e t  

In this section we state and sketch a proof of our main result. Basically, it says that any 
protocol that is locally checkable for some global property, can be transformed into an 
equivalent protocol, that stabilizes to a variant of the protocol in which the desired property 
holds in its initial state. This transformation increases the time complexity of the original 
protocol as follows. First, the stabilization time of the resulting protocol is O(_R), where 
/i~ is the response time parameter of the internal reset protocol used (see Definition 6); and 
secondly, the behaviors of the transformed automaton are slowed down by a constant factor 
(due to the overhead of local checking). 

We start this section with a statement of the main theorem. 

Theorem 10. Let Af be any networkautomaton that is locally checkable for some predicate 
]7 using a set of local predicates ~.. Then there exists some constant c, and some uninitiaIized 
network automaton Af +, such that ~c+ stabilizes to the behaviors of N'(c) []7 in O( R ) 
time, where R is the response time of any stabilizing internal reset protocoL 

11 In [28], relevant properties of suffixes are extracted and used to prove that the reset protocol of [6] 
is a weak reset in the above sense. This approach works but is messy; we prefer here to concentrate 
on what is needed for global correction. 
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Due to lack of space, we do not give a full proof here; below, we describe the transfor- 
mation and outline its analysis. Details can be found in [28]. 

The transformation. Let 7~ be an automaton for internal reset. Our first step is to compose 
the node automata with 7~ (this requires us to first rename the packet sending actions of the 
node automata in Figure 1 to be message sending actions as in Figure 2). 

Next, recall that by the assumption of local checkability of H ,  there exists a set s = 
{ Lu,v } of local predicates for /7 .  We now add a periodic checking process to each (u, v) 
subsystem to check whether the local predicate L~,v holds. "lifts is implemented by having 
the lower ID node (say u) periodically initiate a snapshot of the (u, v) subsystem. This 
is a slight modification of the general Chandy-Lamport snapshot protocol [10]. More 
specifically, this is done as follows (see Figure 3). Node ~ sends a"SnapRequest" message, 
which is responded to by v with a "SnapResponse" message. When the response re'rives, 
the snapshot is composed at u, and is then checked to see if Lu,~, holds; if not, u makes a 
reset request to the internal reset protocol 7~. 

S i ~ n a t  u - 

l u  

S~gnat  u - 

- S i g ~ a t  v 

[v 

-81gw~, I  v 

Fig. 3. Correct Snapshots ~fter nodes u and v have each peo~ormed a signal event. Time increases 
downwards. 

I f  there are user messages to be sent, one user message is sent between every two 
invocations of the snapshot; this slows down the communication of the user by a constant 
factor. The snapshot is made stabilizing by numbering SnapRequest and SnapResponse 
packets with a 4-valued counter, and by retransmitting SnapRequests until a SnapResponse 
with matching counter is received. The counter is incremented mod 4 on every invocation. 
When a SIGNALu action is taken by the internal reset protocol, node u initializes the local 
state of A; to some prespecified initial state L, and in addition, initializes its snapshot 
variables) 2 

Finally, we rename messages to packets again since the transformation so far produces 

node automata that send messages, 

Sketch of  Analysis. First, the specific local checking process outlined above can be shown 
be stabilizing: in [28, 29] it is proven that after the fifth invocation, all snapshots produce 
accurate reports of the subsystem's state. We therefore have a correct local checking process, 
and we assume that we are given a correct internal reset protocol. The main difficulty in 

12 We choose the initial states L such that if slu = I~ for all nodes u and all links are empty in state 
s, then .s E/7.  The definition of local checkability implies the existence of such a state s. 
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proving that the transformation works is to show termination. We need to prove that in 
O(/~) time, the local checking process will stop making reset requests. We start by arguing 
that eventually, the SnapRequest and SnapResponse are matched correctly. Define an ISI 
(for Initialized Signal Interval) at node u to be a signal interval that starts with a SIGNALu 
event. In any behavior, all but possibly the first signal interval at a node are ISis. Suppose 
signal intervals keep recurring at node u. Then eventually any SnapResponse packet that 
crosses the (% u) link (see Figure 3) is sent in an ISI at v (say Iv), and is received in an ISI 
at u (say Iu). If this SnapResponse is accepted as a matching response, the mating property 
can be used to deduce that the corresponding SnapRequest was sent in I~, and received 
in lv : this follows from the fact that by the code, all snapshot variables and counters are 
initialized at the start of an ISI. 

Thus any snapshot that completes after this point will have been completely executed 
within an ISI at u and an ISI at v. But all communication between two ISis is exactly what 
might have occurred in some asynchronous execution of the (u, v) subsystem in which u 
is initialized at the start of Iu, v is initialized at the start of Iv and the two links are empty. 
In such an asynchronous execution, Lu,v holds at the start; also, because L~,v is stable, it 
will continue to hold regardless of any messages received from other subsystems that may 
still be "incorrect," and the snapshot will not detect a violation. Thus if signal intervals 
keep occurring, local checking (of the (u, v) subsystem and all other local subsystems) will 
stop making reset requests. Hence, the causality property of reset implies that there will be 
a final signal interval at all nodes, which corresponds to a behavior of N'. This argument 
completes the proof of Theorem 10. 

We remark that the proof hinges on two crucial points. First, it is important that 
each local predicate is stable: since a weak internal reset does not guarantee a transitive 
mating relation, it is possible for a subsystem to receive "inconsistent" messages from other 
adjacent subsystems during non-final intervals. The stability guarantees that such events 
will not trigger further inconsistencies. Note, however, that stability is required anyway in 
order to do local checking via snapshots: it is not an extra condition required for the global 
correction. 

The second crucial point is the mating relation for signal intervals; without it, a snapshot 
at u could span two signal intervals at v, if there is another SIGNALv event between the 
receipt of the SnapRequest and the sending of the SnapResponse. This in turn could lead to 
persistent incorrect snapshots and the possibility of non-termination. Pairwise consistency 
is enough because we have taken "local" to mean a pair of neighbors; it would be insufficient 
for more general notions of locality (e.g., 3 node subsystems). A careful argument is more 
involved: we defer it to the final paper. 

6 Conclusion 

The main result of this paper is Theorem 10, which shows how can locally checkable 
protocols be made stabilizing automatically, using local checking and an internal reset. We 
have used this result to rigorously prove the correcmess of a spanning tree protocol [28]. 
Our protocol computes the tree as a shortest paths tree rooted at the minimum ID node. This 
is the same idea used in the widely deployed IEEE 802.1 spanning tree protocol [21]. The 
main problem in the basic approach is that fictitious IDs may spoil the computation. The 
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802.1 protocol overcomes this problem by using timers. To get rid of fictitious IDs even 
in worst cases, the timeout periods are large always. By contrast, our protocol uses reset, 
and its stabilization time is proportional to actual network delays (which are in most cases 
significantly smaller the worst possible). In [28] we show that if the local predicates have 
a certain structure, then local checking can be done by having each node periodically send 
its state to its neighbors (without the need to implement local snapshots). The spanning tree 
algorithm has this structure and so the resultant protocol is quite simple. 

Another application is topology update. Many existing networks [19, 20] use sequence 
numbers to broadcast topology information to all nodes. If the counter being used ever gets 
to the maximum value, a large timeout is used for recovery. We propose that instead of these 
large timeouts, global reset can be used. Similarly, the AN-1 network [23] uses a simple 
"large counter" to reset the network after topology changes [14]. This simple reset is more 
efficient than the stabilizing reset protocols but is vulnerable to counter errors. The AN-1 
designers have suggested [24] that stabilizing reset could be used to reset the simple reset 
protocol when the local predicates of the simple reset protocol are violated. 

We believe that all of the above provides strong indications that the idea of self- 
stabilization by local checking and global reset is a viable practical technique, as well as a 
convenient theoretical tool. 
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