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Abstract 
Many important protocols in distributed computing have 
simple and elegant solutions if we allow the assumption 
of unbounded size registers. This assumption can be sim- 
ulated in pmctice using suficiently large but bounded reg- 
isters; however the resulting protocols are extremely vul- 
nerable to transient faults. In this paper we present a 
general methodology for the transformation of unbounded 
register protocols so that they can work with bounded reg- 
isters in a self-stabilizing fashion. The applicability of our 
method is demonstrated with two examples: spanning tree 
computation and topology update. 

1 Introduction 
The ability to count without bound is a useful tool 
in distributed computing. This approach, tradition- 
ally called “the unbounded registers model” [12] is 
the basis of many important techniques, such as time- 
stamps [7] and “logical time” [ 111. It is implicitly used 
in many communication and synchronization proto- 
cols. Several problems yield simple solutions when 
unbounded registers are permitted. However, the 
unbounded-registers approach suffers from the obvi- 
ous drawback that in real life, there is always is a 
bound on the number of bits that can be allocated to 
a register. The standard answer to this problem is to 
use a “sufficiently large” (e.g., 64 bit) counter, which 
is practically unbounded! 

This argument is sound, but it implicitly assumes 
that the system is initialized properly. If the regis- 
ters start working at  an unknown, arbitrary state, 
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then it may be the case that they hit the physically 
imposed bound of their value range. But in some 
networks, such initialization is hard to  achieve. Also, 
the effect of a faulty node can be catastrophic; see, 
for example, the fascinating story of the crash of the 
ARPANET [21]. It is highly desirable, more than 
ever, to have self-stabilizingsystems [6] -that is, sys- 
tems that start working correctly regardless of their 
initial state or any transient fault. When one requires 
self-stabilization, one must take a new hard look at  
the model of unbounded registers. At first glance, it 
appears that a protocol will break if a fault introduces 
a value which is at  the maximumfor the physical reg- 
ister. 

A common approach in practice to overcome such 
problems is to rely on approximately synchronized 
clocks at the nodes [17]. Each message is tagged with 
a timestamp, so that old counter values are eventu- 
ally discarded. This method suffers from two dis- 
advantages. First, the time limit needs to allow for 
the worst case propagation delay in the largest pos- 
sible network, and is therefore quite high. This slows 
down the stabilization even in cases where it could 
have been attained quickly. Second, the value of 
the global timeout depends on all the components of 
the network; this makes the resulting protocols non- 
modular: changing the speed of one link might re- 
quire changing the code at  all network nodes. 

In this paper, we describe a method by which 
unbounded-registers protocols can be efficiently 
adapted for use in a self-stabilizing fashion. The sta- 
bilization time of the resulting protocol is propor- 
tional to the actual end-to-end delay in a network, 
and not t o  a worst-case bound on the delay, which is 
typically much larger. Moreover, our scheme does not 
depend on global timing assumptions; rather, it de- 
pends only on time bounds on message delivery times 
over a single link and on message processing times at  
a single node. We demonstrate the applicability of 
our method with two example network protocols, a 
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spanning tree protocol and a topology update proto- 
col. Such protocols are commonly found in many real 
networks. 

This paper is organized as follows. In Section 2 we 
describe the general paradigm by which unbounded- 
registers protocols can be made self-stabilizing with 
only finite physical registers. In Section 3 we describe 
a spanning tree protocol in some detail, and in Section 
4 we briefly sketch the main ideas behind a topology 
update protocol. 

2 The General Paradigm 

Our paradigm has two parts. First, we add sufficient 
information to  the state of the processes so that a 
fault can be efficiently detected. Hitting the bound 
for some register is considered a fault. The next step 
is that whenever a fault (in the broad sense described 
above) is detected, the detecting process invokes a 
reset of the entire network. This imposes a predeter- 
mined initial state on the system (e.g., all counters 
set to 0, all buffers flushed etc.). When the reset 
completes, the system starts operating according to 
its original specification. 

At first, resetting an entire network seems dras- 
tic and inefficient. However, this technique has been 
implemented in the DEC SRC’s AN-1 network [16]. 
The AN-1 designers found that the protocol recov- 
ered from link failures very fast[20]. In traditional 
networks, the routing protocol only operates for a 
small fraction of the time; the remainder is devoted 
to forwarding data. During a reset, however, no data 
forwarding is done; all processing and bandwidth is 
devoted to routing. AN-1 showed that reset schemes 
work well for small sized nets; for larger networks, the 
same approach should work if the routing protocol is 
hierarchical [lo] and each level is reset independently. 

In our method, the key to efficient fault detection is 
a concept called local checkability which ensures that 
faults can be efficiently detected by only examining 
the states of neighboring nodes. In the simplest case, 
this can be done by periodically sending the state of 
each node to its neighbors, which can then check for 
violations of local predicates. The case of a counter 
reaching the maximum value is also considered to be 
a fault. The key to efficient correction is a tool called 
a self-stabilizing network reset protocol which can be 
invoked by any node (if it detects a fault locally), 
and be used to restore the network to a good state. 
The basis for our method is a theorem that states 
that all locally checkable protocols can be stabilized 
using a network reset protocol. We cannot present the 
theorem here for lack of space (see [25] for details). 

Instead we concentrate here on applications and only 
specify the properties required from a reset protocol. 

2.1 Local Checking 

The network topology is modeled by a symmetric, 
directed graph G = (V, E )  in which node identifiers 
(e.g., U ,  v E V )  are unique. (G is symmetric if (U, v) E 
E iff ( v , ~ )  E E.) Let n = IV( denote the number 
of network nodes and D the network diameter. We 
model the nodes and links of the network using state 
machines called Input/Output Automata (IOA) [13, 
151. The network protocol is the composition of the 
node and link automata. 

We now introduce the notion of local checkability. 
Roughly, a property is said to be local to a subgraph 
G‘ of the given network graph G if the truth of the 
property can be ascertained by examining only the 
components specified by GI. We will concentrate on 
link subsystems that consist of a pair of neighboring 
nodes U and v and the channels between them. It is 
possible to generalize our methods to arbitrary sub- 
systems. Assume that we are given a network pro- 
tocol N .  Formally, the (u ,v )  link subsystem of N 
consists of the nodes U ,  v ,  and the two directed links 
(u ,v )  and (v ,u )  connecting them. For any global 
state s of Af, we denote by s ( u  the state of U in s 
and by s ( (u ,  v) the state of link ( U ,  v). Thus when N 
is in state s, we can denote the state of the ( U ,  v) sub- 
system using the 4-tuple (slu, s ( ( ~ ,  v), s ( ( ~ ,  U), s\~). 

A predicate L of N is simply a subset of the states 
of N .  Let ( u , v )  be some edge in graph G of N .  
The next definition describes the key notion of local 
predicates. 

Definition 2.1 Let ( U ,  U) be a link in N .  W e  say  
that a predicate L is local for ( U ,  v) if L only involves 
variables that are p a d  of the state of the ( u , v )  sub- 
system. 

We shall denote in the sequel a local predicate for 
( U ,  U )  by L,, . An important property we use fre- 
quently is the concept of a closed predicate. Intu- 
itively, a property is closed if it remains true once 
it becomes true. Formally, a local predicate L,,” is 
closed if whenever L,,, holds in some state of s of the 
network, then it holds in any possible successor state 
of s. 

We can now explain the concept of local checka- 
bility. Suppose we wish a system N to satisfy some 
property P ,  e.g., “each node has a parent pointer so 
that the set of pointers define a spanning tree of the 
network.” Intuitively, we say that P is locally check- 
able in N if there exists a collection of local predicates 

6c.2.2 
777 



such that P holds if all the predicates in that collec- 
tion hold. The motivation for introducing this notion, 
of course, is performance: in a distributed system we 
can check all link subsystems in parallel in constant 
time. We formalize the intuitive notion of a local 
checkability in the following definition. 

Definition 2.2 Let N be a system, and let P be a 
property of N. W e  say that P is locally checkable in 
N if there ezists a collection L of local predicates, 
such that 

1.  If  at some state s, L,, holds for all L,, E C, 
then P holds in s. 

2. All LU,, E t are closed. 

The second item is important for implementation. 
It stems from the fact that in an asynchronous dis- 
tributed system it appears to be impossible to  check 
whether an arbitrary local predicate holds all the 
time. What we can do is to  “sample” the local subsys- 
tem periodically to  check if the local property holds. 
To illustrate this, consider a simple example. 

Suppose the network consists of three nodes U ,  v ,  
and w, and such that v is the neighbor of both U and 
w. Suppose the property L that we wish to check is 
the conjunction of two local predicates L,, and L,, . 
Suppose further that exactly one of the two predi- 
cates is always false (and therefore L never holds), 
but sometimes L,, holds, and in the other times L,, 
holds. It is possible that whenever we check the ( U ,  v )  
subsystem we find LU,, true, and whenever we check 
the ( v ,  w) subsystem we find L,,, true. In this case 
we may never detect the fact that L does not hold in 
this execution. We avoid this problem by requiring 
that L,,, and L,,, be closed. 

2.1.1 Implementation of Local Checking 

The simplest and most general way to do local check- 
ing is to have one of the endpoints (say U) of each 
( U ,  v )  subsystem periodically take a local snapshot [5] 
of the ( u , v )  subsystem. To do a snapshot, node U 

sends a snapshot request to  v and stops sending pro- 
tocol messages to v .  When v receives a request, it 
records its basic state (say s) and sends s in a re- 
sponse to  U. When U receives the response, it records 
its basic state (say r ) ,  and the state of the ( U ,  v )  sub- 
system is finally recorded as the combination of s, 
r ,  and empty channels. If this link subsystem state 
does not satisfy the local predicate, a reset request is 
made. 

The snapshot protocol may fail if requests and re- 
sponses are not properly matched. This can happen 
if there are spurious packets in the initial state of the 

system. However, this problem will eventually disap- 
pear if we wait T time units between invocations of 
the snapshot, where T is large enough for all “old” 
messages to have been delivered. 

In many applications, it  is sufficient to do checking 
of local predicates by having each node periodically 
send its relevant state to  all its neighbors. While 
this is less general than a local snapshot, it  works if 
each local predicate can be separated into two one- 
way predicates for each direction of the link: each 
one-way predicate refers to variables on the two nodes 
and only one of the two links. We will see an example 
below in Section 3 (details can be found in [25]). 

2.2 Reset: Specification and Imple- 
mentations 

The external interface for a reset protocol a t  any node 
U in the network is shown in Figure 1. We have the 
usual interfaces to send and receive packets between 
neighbors. In addition each node also has interfaces 
to send and receive messages on behalf of external 
users of the reset. Every message m is drawn from a 
message alphabet C Pdato; Pdata is the data packet 
alphabet used by the network. Intuitively, messages 
sent by users to the reset service are relayed between 
network nodes using packets. 

U s u  protocol Pat node U 

Reset module at node U 

Figure 1: Interface specification f o r  reset service 

Input action SENDM,,, (m) allows an external user 
at U to send a message to neighbor v .  Output ac- 
tion RECEIVEM,,,(m) allows the reset service to de- 
liver a message m from node v to the user at node 
U. The FREEM,,,, output action indicates that the 
reset service is ready to accept another message from 
U to node v .  Thus the external interface between 
a reset service and its users mimics the Data Link 
interface with packets replaced by messages. The re- 
set service at node U ,  however, offers two additional 
actions: an input action REQUEST,, and an output 
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action SIGNAL,,. The REQUEST,, action is used to re- 
quest a reset, and SIGNAL” action is used to  inform 
the user at node U that a reset has completed. We 
call any event of the form SIGNAL,, a signal event and 
any event of the form REQUEST,, a request event. 

2.3 Specifying Behaviors of a Reset 
Protocol 

We only consider behaviors in which the user of the 
reset protocol does not send a message unless it first 
receives a free notification. Formally, we consider 
only well formed behaviors, where a behavior is called 
well-formed if between any two SENDM,,,,(*) events 
there is a FREEM,,,, action. 

An ideal behavior of a reset protocol should be 
timely, consistent, and causal. Intuitively, a behavior 
is timely if, in the absence of reset requests, “free” 
events are delivered in constant time and sent mes- 
sages are delivered in constant time; it is consistent 
if there is some symmetrical mating relation between 
signal intervals at neighbors (details provided below); 
and it is causal if reset signals are only caused by re- 
set requests and reset requests result in reset signals. 
(Note that causality guarantees termination: if reset 
requests stop, all signal events will stop.) 

The most involved part of the reset specification 
is the specification of consistency. The specification 
of consistency allows a user to locally reset the user 
protocol at the instant a signal event is received. Sig- 
nal events at different nodes are, in general, received 
at different instants of time. However, consistency 
ensures that locally resetting the protocol a t  nodes 
(when a signal event is received) results in a good 
global state. To specify consistency, we use the no- 
tion of signal intervals, defined as follows. 

Given an execution of a reset protocol, the signal 
intervals at a given node are the execution fragments 
between signal events at that node. Thus the first 
signal interval at a node U is the time from the start 
of the execution to the first SIGNAL,, event at the 
node. Successive signal intervals are demarcated by 
SIGNAL,, events. If there is a last SIGNAL,, event in 
an execution, then the interval from the last SIGNAL,, 
event to the end of the execution is called a final 
interval. Note that each execution can be divided into 
disjoint signal intervals with respect to each node; of 
course, the signal intervals induced at different nodes 
in the same execution will be quite different. 

For weak consistency, we require a symmetric rela- 
tion (called a mating relation) between signal inter- 
vals at the two nodes such that (i) a signal interval 
mates with at most one other signal interval, and (ii) 
the sequence of messages received by a node in any 

interval a is a prefix of the sequence of messages sent 
(by the other node) in the interval p that is the mate 
of a. If a is a final interval, then p must be final 
too, and in this case wee require the two sequences 
to be identical. The last condition is that (iii) for 
any two distinct intervals at a node that have mates, 
the mate of the earlier interval precedes (at the other 
node) the mate of the other interval. A reset that 
satisfies a weak consistency relation is called a weak 
reset.’ 

For strong consistency we also require that the mat- 
ing relation be transitive. Note that even for weak 
resets, there is a transitive mating relation between 
final signal intervals a t  all nodes. Since the mating 
relation is symmetric, transitivity allows us to define 
equivalence classes of signal intervals (with at most 
one interval per node in each class): this seems to 
capture the essence of network synchronization. 

To specify a reset, we might require that any well- 
formed behavior be timely, consistent, and causal. 
Unfortunately, it appears that no reset implementa- 
tion can stabilize to this set of behaviors! Messages 
stored in the initial state can result in executions in 
which all suffixes have some receive event that does 
not correspond to a send; this violates mating. Thus 
we say that a protocol 72 is a weak reset if any well- 
formed behavior of 72 is a suffix of some timely, con- 
sistent and weakly causal behavior. Formal details 
can be found in [25]. We remark that for many appli- 
cations involving local checking, weak reset protocols 
suffice. 

The stabilization time of a reset protocol is the 
worst-case time before the reset protocol begins to 
behave correctly even after being started in an ar- 
bitrary state. The response time of a reset protocol 
is the worst-case time it takes for all signal events to 
disappear after the last request event (assuming there 
is a last reset request). When we describe a reset pro- 
tocol as being O(R), we mean that both stabilization 
and response times are O(R), where a time unit is 
an upper bound on the time to deliver one message 
across a link. 

Several implementations of stabilizing reset proto- 
cols exist. The O(D)  protocol of [l] and the O(n2)  
protocol of [9] appear to  be strong resets. Both re- 
quire the election of a leader and the time complexi- 
ties shown exclude the time to compute a leader. The 
reset protocol of [4] is a O(n)  weak reset. But it does 
not require computation of a leader and hence can be 
used to build an O(n) stabilizing spanning tree pro- 
tocol (see Section 3). In [3], O ( D )  reset protocol is 

‘Almost identical forms of synchronization are provided by 
Data Links [2], virtual circuit protocols ([22]) and transport 
protocols [23]. 
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described. 

3 Spanning Tree Protocol 

Spanning tree protocols are widely used, for example 
in networks containing bridges [18]. The basic idea in 
virtually all spanning tree algorithms is that  nodes re- 
port the smallest node ID seen so far (and the shortest 
distance to this smallest ID node) to  their neighbors. 
Each node then picks as its parent the neighbor that 
knows of the smallest ID. If more than one neighbor 
reports the smallest ID, the node picks from among 
these the neighbor that reports the smallest distance. 
If two neighbors report the same distance and root 
ID, then an arbitrary tiebreaker is used to select the 
parent. A node sets its estimate of the root ID to 
equal its parent’s root ID, and updates its distance 
from the root to be one plus the parent’s distance. 

However, in a dynamic network (and in a stabi- 
lizing setting), this approach encounters an obsta- 
cle known as “ghost roots.” This phenomenon oc- 
curs whenever the root crashes: its ID, which was 
the smallest in the system, is still the smallest from 
the point of view of nodes that do not know of its 
crash. Even in a static network, the same effect can 
be caused by initial errors that introduce a root ID 
lower than the ID of any network node. This ID can 
potentially remain forever in the system! 

The earliest stabilizing spanning tree protocol we 
know of is due to Perlman [18] and is the basis of 
the IEEE 802.1 spanning tree protocol. If an old root 
dies, the protocol must remove information about the 
old root from the network. In [18] this is done us- 
ing global timers. The root periodically broadcasts a 
“hello” message down the tree. If information about 
a root is not refreshed before a timer expires (whose 
pre-set time is proportional to the worst case end-to- 
end network delay) this information is flushed. While 
the protocol in [18] appears to be self-stabilizing, it 
requires global time-outs t o  recover from topological 
changes, the common failure mode. 

The Autonet approach [20] is to use a variant of 
Finn’s unbounded counter protocol [8] to reset the 
network after each topology change. Together with 
the spanning tree state, each node also keeps an 
epoch counter. Nodes detecting a topology change 
reset their state locally and increment the epoch 
counter. A node receiving a message with a larger 
epoch counter than its own resets its own state and 
processes the new message. Thus incrementing the 
counter forces a new version of the spanning tree 
protocol. The Autonet approach is faster than that 
of [18], but it does have a problem when the epoch 

counter reaches the maximum value because of some 
catastrophic fault. Thus existing approaches either 
rely on global timers or are not self-stabilizing. 

Our stabilizing spanning tree protocol is extremely 
similar t o  the two schemes we have described above. 
However, i t  uses a different mechanism (for detect- 
ing and recovering from states with ghost roots) that 
speeds up the stabilization time of the resulting pro- 
tocol. While we can apply our general method to the 
AN-1 technique (in which case the reset would reset 
the epoch counter), there is an even simpler technique 
that avoids counters altogether and is based on local 
checking and resets. 

The detection mechanism is based on the follow- 
ing observation. Consider an execution of the sim- 
ple spanning tree protocol that starts with a state 
in which all nodes are correctly initialized and there 
are no messages in transit on the links. Now focus 
on some node. Throughout the execution the node 
maintains a current estimate of the root ID, and an- 
other estimate for its distance from this alleged root. 
It can be shown that in the course of legal execu- 
tions, the node’s estimate of the root ID never goes 
up; also while such a root estimate is fixed, the dis- 
tance estimate never goes up. This property can be 
cast in the form of a local predicate for each link. 
If the predicate holds, then the algorithm will pro- 
duce a spanning tree. This immediately suggests the 
stabilizing algorithm: whenever the predicate is vi- 
olated, the node that detects the violation makes a 
reset request. In the execution that follows the last 
reset signal, all information will be correct. 

3.1 Spanning Tree Protocol Code 
We now describe the code for our locally checkable 
spanning tree protocol. After all local predicates 
hold, this protocol computes a spanning tree in time 
proportional to the diameter of the network. 

Our locally checkable spanning tree protocol is de- 
scribed in Figure 2. Each node U maintains a parent 
pointer parent,, current estimate of the root’s iden- 
tity P,, and a current distance estimate d,. We de- 
note by (P,, d,) the ordered pair at node U. We will 
use lexicographic ordering for 2-tuples and 3-tuples. 
For example, ( ~ , , d , )  < ( ~ , , d , )  means that either 
P, < r,, or that P, = P, and d, < d,. Similarly, 
(ru, d,,  parent,) < (P,, d,, parent,) means that that 
either ( ~ , , d , )  < (~,,d,),  or that ( ~ , , d , )  = ( p , , d , )  

and parent, < parent, .  Each node also maintains a 
copy (possibly outdated) of the root and distance es- 
timates of each its neighbors. Thus the estimates of 
neighbor v are stored at U in the variables r,[v] and 
du [VI. 
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We assume that we are given some bound N on the 
largest possible distance in the network. For com- 
pactness, we let both arrays have an entry for the 
node itself, in which the default values are “hard- 
wired”: thus ru[u] = U ,  and d,[u] = -1. Now a node 
always chooses its own estimate based on the mini- 
mum of the estimates of all its neighbors and its own 
default estimate. Node U chooses its own estimate of 
the root from this minimum estimate; U also chooses 
its own estimate of the distance as one plus the dis- 
tance from the minimum estimate. Thus if U itself is 
the smallest root, the distance U chooses for itself will 
be -1 + 1 = 0, which is as it  should be. Thus d,[u] is 
set to -1 simply as a sentinel value to avoid an extra 
case. 

Every node U periodically sends its own estimate of 
root and distance to all its neighbors using an “An- 
nounce” packet. The Announce packet is encoded as 
a tuple (Announce, r,  d). When a node U receives an 
Announce packet from U, U first checks whether the 
estimate in the packet is greater than the previous es- 
timate stored from v and the distance in the estimate 
is not already at the maximum possible value. If this 
is not the case, U stores the received estimate. If the 
the estimate in the packet is greater than the previ- 
ous estimate stored from U ,  then U sets requestbit, to 
remember to do a later reset request. If the distance 
in the estimate is already at the maximum possible 
value, then U ignores the estimate (accepting it would 
cause U’S distance estimate to overflow). Finally, U re- 
sets its sentinel values (in case they were corrupted) 
and updates its own estimate as the minimum of all 
neighbor estimates. 

A proof of the correctness of a modified version of 
this protocol can be found in [24]. The main idea 
is to write a set of local predicates and show that 
when these local predicates hold, there can be no 
ghost roots and the protocol computes a spanning 
tree in time proportional to the network diameter. 
The key local predicate states that the sequence of 
estimates sent from any node to a neighbor v are 
non-increasing. If there are ghost roots, they can- 
not persist indefinitely without causing some node to 
receive a greater estimate than its stored value and 
hence invoke a reset, which initializes the system cor- 
rectly. For this simple spanning tree protocol, it can 
be shown than any weak reset is sufficient. 

set containing all neighbors of U and U itself 
parent pointer, in nset,, 
distance estimate, in range O..N, n < N 
root estimate 
estimate of T, for v in nset,, 
estimate of d, for v in nset,, 
boolean, true if link to v is free 
boolean, remembers pending reset requests 

ictions 

?=EM,,, (*link says its free *) 
Effect: free,[v] .- .- TRUE 

;ENDM,,,,((Announce, I, d)) (*send to neighbor U*) 
Preconditions: 

r = r y a n d d = d y  
free,[u] = TRUE 

&e,[u] := FALSE 
Effect: 

<ECEIVEMu,,(Annornce, r, d )  (*receive estimate from w * )  
Effect: 
If (r, d )  5 (ru[u], d,[v]) then 

I f d < N  (*distance at max value ?*) 
(Tu[V], d,[v]) := (r, d )  
( r u [ ~ ] , d u [ ~ ] )  := ( U ,  -1) 

Else requestbit, := TRUE (*make reset request later*) 
(r,, d , ,  parent,) := 

min((r,[v],d,[v] + 1,  U) : v E nset,,, d,[v] < N }  

~EQUEST, (*request a reset*) 
Preconditions: requestbit,, = TRUE 
Effects: requestbit, = FALSE 

SIGNAL, (* receive a signal*) 
Effect: 

For all v # U E nset,, do 
(ru[v],du[v]) := (00,w) 

(Tu[U], &[U]) := (U,  -1) 
(tu, du,parent,,) := (U, 0, U) 

he , [v l  .- *-  FAXE 

Figure 2: Spanning tree protocol: code for a node U 

4 Topology Maintenance 

In the topology update problem, each network node 
ascertains the state of its neighboring links and re- 
ports this in a so-called Link State packet (LSP). The 
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problem is to broadcast the LSP of each source to  all 
the other nodes in the network. Once this problem 
is solved, each node has a complete map of the net- 
work, and can use this to compute useful information 
such as shortest path [14, 171 or deadlock free routes 
[20, 161. 

In intelligent flooding, used in the new ARPANET 
protocol [14] and improved by [17, 191, each source 
independently broadcasts its link state packet using 
a sequence number, and the highest sequence number 
is considered to be more recent. We describe the al- 
gorithm with respect to  a single source s. The over- 
all protocol consists of running several independent 
versions of the single source protocol, one for each 
network node. 

Whenever a node v receives an LSP from neigh- 
bor U and v has a stored LSP with greater se- 
quence number than U ,  then v sends its stored 
LSP back to U. If U’S LSP has smaller sequence 
number, v stores the LSP from U and sends its 
new LSP to all its neighbors. 

A local checking mechanism verifies periodically 
that the databases of every pair of neighboring 
nodes v and U are consistent. If inconsistency 
is detected, then the more recent information is 
propagated. 

If the source s receives an LSP with a sequence 
number N which is higher than the current se- 
quence number at s, then s changes its stored 
sequence number to  N + 1,  and broadcasts an- 
other LSP containing the new sequence number. 

With unbounded sequence numbers, even if the sys- 
tem starts with arbitrary sequence numbers, it will 
stabilize in time proportional to a cross-network de- 
lay. This is true since after a t  most one cross network 
delay time, the sequence number a t  the source will be 
the highest sequence number a t  the system; and when 
the source has the highest sequence number, then in 
one cross-network delay time, all nodes will have the 
updated data. 

However, due to the fact that the sequence number 
space is finite, this scheme is not self-stabilizing. In 
[14], for instance, the sequence number space is con- 
sidered to be cyclic. In a cyclic space it is possible 
to have three sequence numbers a,  b and c such that 
a > 6 > c > a. Thus, if a transient fault installs 
three updates with such sequence numbers, the net- 
work can loop forever among these updates. In [19], 
this problem is fixed by using a linear sequence num- 
ber space, and by waiting for a global timeout when 
the space is exhausted, in order to allow old updates 

to die out. The resulting protocol is self-stabilizing, 
but the recovery time is quite large because of the use 
of global timers. 

Our approach is very simple. Whenever the se- 
quence number reaches its bound at some node, this 
node makes a reset request. When a reset signal is 
received a t  a node other than the source, the node 
resets its sequence number to 0. When the source 
receives a signal, the source sets its sequence number 
to 1 and broadcasts its most recent LSP. 

The simplest approach is to  use a single reset 
that resets the information about all sources. If the 
counter is sufficiently large, the reset should happen 
sufficiently rarely so that the global disruption caused 
by such a reset is not a factor. It is also easy to have 
separate reset procedures for each source, but that 
requires separate state for each such reset protocol. 

The solution in [17] and [19] has one additional 
mechanism. Periodically, a t  intervals of some global 
timer (say every 10 minutes),e ven if the LSP infor- 
mation has not changed, the source increments the 
sequence number by one to produce a new LSP, and 
then broadcasts it to its neighbors. The purpose of 
this rule is twofold. First, it provides another level of 
defense against catastrophic faults as the source is pe- 
riodically rebroadcasting its LSP information. More 
importantly, it  is used to  get rid of obsolete informa- 
tion from nodes that have died. After waiting for say 
half an hour without getting a LSP from a source s, 
a node can discard the LSP from s as being useless. 
Thus this mechanism is used for garbage collection. 

We prefer to retain the garbage collection scheme 
because of its simplicity. However, with our modifica- 
tions, the t imer  that controls periodic retransmission 
of LSPs does not control the self-stabilization recove y 
t imes but only aflects the t ime t o  do garbage collec- 
tion. Thus this timer can be set to be a high enough 
value to cover the worst case end-to-end delay in the 
largest possible network (say 1 hour). If local check- 
ing is done in the order of seconds, and the actual 
delay through the network is also in the order of sec- 
onds, then the recovery time from arbitrary faults can 
be in the order of seconds. However, if a source s is 
removed from the network, it will take 1 hour before 
other nodes can reclaim the storage taken up by s’s 
LSP. 

5 Conclusion and Discussion 
Philosophically, our aim in this paper is to demon- 
strate that simplicity and robustness need not be sac- 
rificed in practical protocols. We argue that elegant 
unbounded-registers protocols can be used in a realis- 
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tic setting, without making them vulnerable to tran- 
sient faults. Many popular systems use either spe- 
cially tailored bounded-register protocols or rely on 
inefficient global timers. We described a method by 
which one can transform an unbounded-register pro- 
tocol (typically very simple) into a robust bounded- 
register protocol with practically the same behavior. 
Another example of the methodology of this paper 
is the design of a self-stabilizing network synchre 
nization protocol [3] which can be used to  convert 
synchronous protocols into stabilizing asynchronous 
equivalents. We first designed a stabilizing p r o b  
col that worked with unbounded counters, and then 
transformed it using a reset protocol. 

References 
A. Arora and M. G. Gouda. Distributed reset. In 
Proc. iOth Conf. on Foundations of Software Tech- 
nology and Theoretical Computer Science, pages 316- 
331. Spinger-Verlag (LNCS 472), 1990. 
B. Awerbuch and S. Even. Reliable broadcast proto- 
cols in unreliable networks. Networks, 16(4):381-396, 
Winter 1986. 
B. Awerbuch, S. Kutten, Y. Mansour, B. Patt- 
Shamir, and G. Varghese. Time optimal self- 
stabilizing synchronization. In Proc. 25th ACM 
Symp. on Theory of Computing, Oct. 1993. 
B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self- 
stabilization by local checking and correction. In 
Proc. 32nd IEEE Symp. on Foundations of Computer 
Science, Oct. 1991. 

K. M. Chandy and L. Lamport. Distributed snap  
shots: Determining global states of distributed sys- 
tems. ACM Trans. on Comput. Syst., 3(1):63-75, 
Feb. 1985. 

[ll] L. Lamport. Time, clocks, and the ordering of 
events in a distributed system. Comm. of the ACM, 

Distributed comput- 
ing. Chapter of Handbook on Theoretical Computer 
Science. Also, to be published as Technical Memo 
MIT/LCS/TM-384, Laboratory for Computer Sci- 
ence, Massachusetts Institute of Technology, Cam- 
bridg e, MA, 1989. 

[13] N. A. Lynch and M. R. Tuttle. An introduction to 
input/output automata. CWI Quarterly, 2(3):219- 
246, 1989. 

[14] J. McQuillan, I. Richer, and E. Rosen. The new 
routing algorithm for the arpanet. IEEE Trans. on 
Communications, COM-28(5):711-719, May 1980. 

[15] M. Merritt, F. Modugno, and M. Tuttle. Time con- 
strained automata. In CONCUR 91, pages 408-423, 
1991. 

[16] M.Schroeder, A.Birrell, M.Burrows, H.Murray, 
R.Needham, T.Rodeheffer, E.Sattenthwaite, and 
C.Thacker. Autonet: a high-speed, self-configuring 
local area network using point-to-point links. Tech- 
nical Report 59, Digital Systems Research Center, 
April 1990. 

[17] R. Perlman. Fault tolerant broadcast of routing in- 
formation. Computer Networks, Dec. 1983. 

(181 R. Perlman. An algorithm for distributed compu- 
tation of a spanning tree in an extended LAN. In 
Proceedings of the the 9th Data Communication Sym- 
posium, pages 44-53, Sept. 1985. 

[19] R. Perlman, G. Varghese, and A. Lauck. Reliable 
broadcast of information in a wide area network. US 
Patent 5,085,&28, Feb. 1992. 

[20] T. Rodeheffer and M. Schroeder. Automatic recon- 
figuration in the Autonet. Proceedings of the 14th 
Symposium on Operating Systems Principles, Nov 
1993. 

21(7):558-565, July 1978. 
[la] L. Lamport and N. Lynch. 

E. w. DiJkstra. 
tributed control. 
1974. view, July 1981. 

self stabfiation in spite of dis- 
Comm. of the ACM, 17:643-644, 

[21] E. C. Rosen. Vulnerabilities of network control pro- 
tocols: An example. Computer Communications Re- 

D. Dolev and N. Shavit. Bounded concurrent time 
stamps systems are constructible. In Proc. 21st ACM 
Symp. on Theory of Computing. ACM SIGACT, 
ACM, 1989. 
S. G. Finn. Resynch procedures and a fail-safe net- 
work protocol. IEEE Trans. on Commun., COM- 
27(6):840-845, June 1979. 
S. Katz and K. Perry. Self-stabilizing extensions 
for message-passing systems. In Proc. 10th ACM 
Symp. on Principles of Distributed Computing, Que- 
bec City, Canada, Aug. 1990. 
L. Kleinrock and F. Kamoun. Hierarchical routing 
for large networks; performance evaluation and opti- 
mization. Computer Networks, 1:155-174, 1977. 

[22] J. M. Spinelli. Reliable communication. Ph.d. the- 
sis, MIT, Lab. for Information and Decision Systems, 
Dec. 1988. 

[23] A. Tanenbaum. Computer Networks. Prentice Hall, 
2d.edition edition, 1989. 

[24] G. Varghese. Self-stabilization by counter flushing. 
To appear as a Washington University Technical Re- 
port, 1993. 

I251 G. Varghese. Self-stabilization by local checking and 
correction. Ph.D. Thesis MIT/LCS/TR-583, Mas- 
sachusetts Institute of Technology, 1993. 

6c.2.8 


