
Bounding the Unbounded
EXTENDED ABSTRACT

Baruch Awerbuch* Boaz Patt-Shamirt George Vargheset
Lab. for Computer Science

MIT MIT Washington University
Lab. for Computer Science Dept. of Computer Science

Abstract
Many important protocols in distributed computing have
simple and elegant solutions if we allow the assumption
of unbounded size registers. This assumption can be sim-
ulated in pmctice using suficiently large but bounded reg-
isters; however the resulting protocols are extremely vul-
nerable to transient faults. In this paper we present a
general methodology for the transformation of unbounded
register protocols so that they can work with bounded reg-
isters in a self-stabilizing fashion. The applicability of our
method is demonstrated with two examples: spanning tree
computation and topology update.

1 Introduction
The ability to count without bound is a useful tool
in distributed computing. This approach, tradition-
ally called “the unbounded registers model” [12] is
the basis of many important techniques, such as time-
stamps [7] and “logical time” [111. It is implicitly used
in many communication and synchronization proto-
cols. Several problems yield simple solutions when
unbounded registers are permitted. However, the
unbounded-registers approach suffers from the obvi-
ous drawback that in real life, there is always is a
bound on the number of bits that can be allocated to
a register. The standard answer to this problem is to
use a “sufficiently large” (e.g., 64 bit) counter, which
is practically unbounded!

This argument is sound, but it implicitly assumes
that the system is initialized properly. If the regis-
ters start working at an unknown, arbitrary state,

*Supported by Air Force Contract AFOSR F49620-92-J-
0125, NSF contract 9225124-CCR, DARPA contract N00014-
92-5-4033, and a special grant from IBM.

f Supported by Air Force Contract AFOSR F49620-92-J-
0125, ONR contract N00014-91-J-1046, NSF contracts CCR-
9114440 and 9225124, DARPA contracts N00014-92-5-1799
and NO0014-92-J-4033, and a special grant from IBM.

:Work done while at Lab for Computer Science, MIT.

then it may be the case that they hit the physically
imposed bound of their value range. But in some
networks, such initialization is hard to achieve. Also,
the effect of a faulty node can be catastrophic; see,
for example, the fascinating story of the crash of the
ARPANET [21]. It is highly desirable, more than
ever, to have self-stabilizingsystems [6] -that is, sys-
tems that start working correctly regardless of their
initial state or any transient fault. When one requires
self-stabilization, one must take a new hard look at
the model of unbounded registers. At first glance, it
appears that a protocol will break if a fault introduces
a value which is at the maximumfor the physical reg-
ister.

A common approach in practice to overcome such
problems is to rely on approximately synchronized
clocks at the nodes [17]. Each message is tagged with
a timestamp, so that old counter values are eventu-
ally discarded. This method suffers from two dis-
advantages. First, the time limit needs to allow for
the worst case propagation delay in the largest pos-
sible network, and is therefore quite high. This slows
down the stabilization even in cases where it could
have been attained quickly. Second, the value of
the global timeout depends on all the components of
the network; this makes the resulting protocols non-
modular: changing the speed of one link might re-
quire changing the code at all network nodes.

In this paper, we describe a method by which
unbounded-registers protocols can be efficiently
adapted for use in a self-stabilizing fashion. The sta-
bilization time of the resulting protocol is propor-
tional to the actual end-to-end delay in a network,
and not t o a worst-case bound on the delay, which is
typically much larger. Moreover, our scheme does not
depend on global timing assumptions; rather, it de-
pends only on time bounds on message delivery times
over a single link and on message processing times at
a single node. We demonstrate the applicability of
our method with two example network protocols, a

776
6c.2.1

0743-166W94 $3.00 0 1994 IEEE

spanning tree protocol and a topology update proto-
col. Such protocols are commonly found in many real
networks.

This paper is organized as follows. In Section 2 we
describe the general paradigm by which unbounded-
registers protocols can be made self-stabilizing with
only finite physical registers. In Section 3 we describe
a spanning tree protocol in some detail, and in Section
4 we briefly sketch the main ideas behind a topology
update protocol.

2 The General Paradigm

Our paradigm has two parts. First, we add sufficient
information to the state of the processes so that a
fault can be efficiently detected. Hitting the bound
for some register is considered a fault. The next step
is that whenever a fault (in the broad sense described
above) is detected, the detecting process invokes a
reset of the entire network. This imposes a predeter-
mined initial state on the system (e.g., all counters
set to 0, all buffers flushed etc.). When the reset
completes, the system starts operating according to
its original specification.

At first, resetting an entire network seems dras-
tic and inefficient. However, this technique has been
implemented in the DEC SRC’s AN-1 network [16].
The AN-1 designers found that the protocol recov-
ered from link failures very fast[20]. In traditional
networks, the routing protocol only operates for a
small fraction of the time; the remainder is devoted
to forwarding data. During a reset, however, no data
forwarding is done; all processing and bandwidth is
devoted to routing. AN-1 showed that reset schemes
work well for small sized nets; for larger networks, the
same approach should work if the routing protocol is
hierarchical [lo] and each level is reset independently.

In our method, the key to efficient fault detection is
a concept called local checkability which ensures that
faults can be efficiently detected by only examining
the states of neighboring nodes. In the simplest case,
this can be done by periodically sending the state of
each node to its neighbors, which can then check for
violations of local predicates. The case of a counter
reaching the maximum value is also considered to be
a fault. The key to efficient correction is a tool called
a self-stabilizing network reset protocol which can be
invoked by any node (if it detects a fault locally),
and be used to restore the network to a good state.
The basis for our method is a theorem that states
that all locally checkable protocols can be stabilized
using a network reset protocol. We cannot present the
theorem here for lack of space (see [25] for details).

Instead we concentrate here on applications and only
specify the properties required from a reset protocol.

2.1 Local Checking

The network topology is modeled by a symmetric,
directed graph G = (V, E) in which node identifiers
(e.g., U , v E V) are unique. (G is symmetric if (U, v) E
E iff (v , ~) E E.) Let n = IV(denote the number
of network nodes and D the network diameter. We
model the nodes and links of the network using state
machines called Input/Output Automata (IOA) [13,
151. The network protocol is the composition of the
node and link automata.

We now introduce the notion of local checkability.
Roughly, a property is said to be local to a subgraph
G‘ of the given network graph G if the truth of the
property can be ascertained by examining only the
components specified by GI. We will concentrate on
link subsystems that consist of a pair of neighboring
nodes U and v and the channels between them. It is
possible to generalize our methods to arbitrary sub-
systems. Assume that we are given a network pro-
tocol N . Formally, the (u ,v) link subsystem of N
consists of the nodes U , v , and the two directed links
(u ,v) and (v ,u) connecting them. For any global
state s of Af, we denote by s (u the state of U in s
and by s ((u , v) the state of link (U , v). Thus when N
is in state s, we can denote the state of the (U , v) sub-
system using the 4-tuple (slu, s ((~ , v), s ((~ , U), s\~).

A predicate L of N is simply a subset of the states
of N . Let (u , v) be some edge in graph G of N .
The next definition describes the key notion of local
predicates.

Definition 2.1 Let (U , U) be a link in N . W e say
that a predicate L is local for (U , v) if L only involves
variables that are p a d of the state of the (u , v) sub-
system.

We shall denote in the sequel a local predicate for
(U , U) by L,, . An important property we use fre-
quently is the concept of a closed predicate. Intu-
itively, a property is closed if it remains true once
it becomes true. Formally, a local predicate L,,” is
closed if whenever L,,, holds in some state of s of the
network, then it holds in any possible successor state
of s.

We can now explain the concept of local checka-
bility. Suppose we wish a system N to satisfy some
property P , e.g., “each node has a parent pointer so
that the set of pointers define a spanning tree of the
network.” Intuitively, we say that P is locally check-
able in N if there exists a collection of local predicates

6c.2.2
777

such that P holds if all the predicates in that collec-
tion hold. The motivation for introducing this notion,
of course, is performance: in a distributed system we
can check all link subsystems in parallel in constant
time. We formalize the intuitive notion of a local
checkability in the following definition.

Definition 2.2 Let N be a system, and let P be a
property of N. W e say that P is locally checkable in
N if there ezists a collection L of local predicates,
such that

1. If at some state s, L,, holds for all L,, E C,
then P holds in s.

2. All LU,, E t are closed.

The second item is important for implementation.
It stems from the fact that in an asynchronous dis-
tributed system it appears to be impossible to check
whether an arbitrary local predicate holds all the
time. What we can do is to “sample” the local subsys-
tem periodically to check if the local property holds.
To illustrate this, consider a simple example.

Suppose the network consists of three nodes U , v ,
and w, and such that v is the neighbor of both U and
w. Suppose the property L that we wish to check is
the conjunction of two local predicates L,, and L,, .
Suppose further that exactly one of the two predi-
cates is always false (and therefore L never holds),
but sometimes L,, holds, and in the other times L,,
holds. It is possible that whenever we check the (U , v)
subsystem we find LU,, true, and whenever we check
the (v , w) subsystem we find L,,, true. In this case
we may never detect the fact that L does not hold in
this execution. We avoid this problem by requiring
that L,,, and L,,, be closed.

2.1.1 Implementation of Local Checking

The simplest and most general way to do local check-
ing is to have one of the endpoints (say U) of each
(U , v) subsystem periodically take a local snapshot [5]
of the (u , v) subsystem. To do a snapshot, node U

sends a snapshot request to v and stops sending pro-
tocol messages to v . When v receives a request, it
records its basic state (say s) and sends s in a re-
sponse to U. When U receives the response, it records
its basic state (say r) , and the state of the (U , v) sub-
system is finally recorded as the combination of s,
r , and empty channels. If this link subsystem state
does not satisfy the local predicate, a reset request is
made.

The snapshot protocol may fail if requests and re-
sponses are not properly matched. This can happen
if there are spurious packets in the initial state of the

system. However, this problem will eventually disap-
pear if we wait T time units between invocations of
the snapshot, where T is large enough for all “old”
messages to have been delivered.

In many applications, it is sufficient to do checking
of local predicates by having each node periodically
send its relevant state to all its neighbors. While
this is less general than a local snapshot, it works if
each local predicate can be separated into two one-
way predicates for each direction of the link: each
one-way predicate refers to variables on the two nodes
and only one of the two links. We will see an example
below in Section 3 (details can be found in [25]).

2.2 Reset: Specification and Imple-
mentations

The external interface for a reset protocol a t any node
U in the network is shown in Figure 1. We have the
usual interfaces to send and receive packets between
neighbors. In addition each node also has interfaces
to send and receive messages on behalf of external
users of the reset. Every message m is drawn from a
message alphabet C Pdato; Pdata is the data packet
alphabet used by the network. Intuitively, messages
sent by users to the reset service are relayed between
network nodes using packets.

U s u protocol Pat node U

Reset module at node U

Figure 1: Interface specification f o r reset service

Input action SENDM,,, (m) allows an external user
at U to send a message to neighbor v . Output ac-
tion RECEIVEM,,,(m) allows the reset service to de-
liver a message m from node v to the user at node
U. The FREEM,,,, output action indicates that the
reset service is ready to accept another message from
U to node v . Thus the external interface between
a reset service and its users mimics the Data Link
interface with packets replaced by messages. The re-
set service at node U , however, offers two additional
actions: an input action REQUEST,, and an output

6c.2.3
778

action SIGNAL,,. The REQUEST,, action is used to re-
quest a reset, and SIGNAL” action is used to inform
the user at node U that a reset has completed. We
call any event of the form SIGNAL,, a signal event and
any event of the form REQUEST,, a request event.

2.3 Specifying Behaviors of a Reset
Protocol

We only consider behaviors in which the user of the
reset protocol does not send a message unless it first
receives a free notification. Formally, we consider
only well formed behaviors, where a behavior is called
well-formed if between any two SENDM,,,,(*) events
there is a FREEM,,,, action.

An ideal behavior of a reset protocol should be
timely, consistent, and causal. Intuitively, a behavior
is timely if, in the absence of reset requests, “free”
events are delivered in constant time and sent mes-
sages are delivered in constant time; it is consistent
if there is some symmetrical mating relation between
signal intervals at neighbors (details provided below);
and it is causal if reset signals are only caused by re-
set requests and reset requests result in reset signals.
(Note that causality guarantees termination: if reset
requests stop, all signal events will stop.)

The most involved part of the reset specification
is the specification of consistency. The specification
of consistency allows a user to locally reset the user
protocol at the instant a signal event is received. Sig-
nal events at different nodes are, in general, received
at different instants of time. However, consistency
ensures that locally resetting the protocol a t nodes
(when a signal event is received) results in a good
global state. To specify consistency, we use the no-
tion of signal intervals, defined as follows.

Given an execution of a reset protocol, the signal
intervals at a given node are the execution fragments
between signal events at that node. Thus the first
signal interval at a node U is the time from the start
of the execution to the first SIGNAL,, event at the
node. Successive signal intervals are demarcated by
SIGNAL,, events. If there is a last SIGNAL,, event in
an execution, then the interval from the last SIGNAL,,
event to the end of the execution is called a final
interval. Note that each execution can be divided into
disjoint signal intervals with respect to each node; of
course, the signal intervals induced at different nodes
in the same execution will be quite different.

For weak consistency, we require a symmetric rela-
tion (called a mating relation) between signal inter-
vals at the two nodes such that (i) a signal interval
mates with at most one other signal interval, and (ii)
the sequence of messages received by a node in any

interval a is a prefix of the sequence of messages sent
(by the other node) in the interval p that is the mate
of a. If a is a final interval, then p must be final
too, and in this case wee require the two sequences
to be identical. The last condition is that (iii) for
any two distinct intervals at a node that have mates,
the mate of the earlier interval precedes (at the other
node) the mate of the other interval. A reset that
satisfies a weak consistency relation is called a weak
reset.’

For strong consistency we also require that the mat-
ing relation be transitive. Note that even for weak
resets, there is a transitive mating relation between
final signal intervals a t all nodes. Since the mating
relation is symmetric, transitivity allows us to define
equivalence classes of signal intervals (with at most
one interval per node in each class): this seems to
capture the essence of network synchronization.

To specify a reset, we might require that any well-
formed behavior be timely, consistent, and causal.
Unfortunately, it appears that no reset implementa-
tion can stabilize to this set of behaviors! Messages
stored in the initial state can result in executions in
which all suffixes have some receive event that does
not correspond to a send; this violates mating. Thus
we say that a protocol 72 is a weak reset if any well-
formed behavior of 72 is a suffix of some timely, con-
sistent and weakly causal behavior. Formal details
can be found in [25]. We remark that for many appli-
cations involving local checking, weak reset protocols
suffice.

The stabilization time of a reset protocol is the
worst-case time before the reset protocol begins to
behave correctly even after being started in an ar-
bitrary state. The response time of a reset protocol
is the worst-case time it takes for all signal events to
disappear after the last request event (assuming there
is a last reset request). When we describe a reset pro-
tocol as being O(R), we mean that both stabilization
and response times are O(R), where a time unit is
an upper bound on the time to deliver one message
across a link.

Several implementations of stabilizing reset proto-
cols exist. The O(D) protocol of [l] and the O(n2)
protocol of [9] appear to be strong resets. Both re-
quire the election of a leader and the time complexi-
ties shown exclude the time to compute a leader. The
reset protocol of [4] is a O(n) weak reset. But it does
not require computation of a leader and hence can be
used to build an O(n) stabilizing spanning tree pro-
tocol (see Section 3). In [3], O (D) reset protocol is

‘Almost identical forms of synchronization are provided by
Data Links [2], virtual circuit protocols ([22]) and transport
protocols [23].

6c.2.4
779

described.

3 Spanning Tree Protocol

Spanning tree protocols are widely used, for example
in networks containing bridges [18]. The basic idea in
virtually all spanning tree algorithms is that nodes re-
port the smallest node ID seen so far (and the shortest
distance to this smallest ID node) to their neighbors.
Each node then picks as its parent the neighbor that
knows of the smallest ID. If more than one neighbor
reports the smallest ID, the node picks from among
these the neighbor that reports the smallest distance.
If two neighbors report the same distance and root
ID, then an arbitrary tiebreaker is used to select the
parent. A node sets its estimate of the root ID to
equal its parent’s root ID, and updates its distance
from the root to be one plus the parent’s distance.

However, in a dynamic network (and in a stabi-
lizing setting), this approach encounters an obsta-
cle known as “ghost roots.” This phenomenon oc-
curs whenever the root crashes: its ID, which was
the smallest in the system, is still the smallest from
the point of view of nodes that do not know of its
crash. Even in a static network, the same effect can
be caused by initial errors that introduce a root ID
lower than the ID of any network node. This ID can
potentially remain forever in the system!

The earliest stabilizing spanning tree protocol we
know of is due to Perlman [18] and is the basis of
the IEEE 802.1 spanning tree protocol. If an old root
dies, the protocol must remove information about the
old root from the network. In [18] this is done us-
ing global timers. The root periodically broadcasts a
“hello” message down the tree. If information about
a root is not refreshed before a timer expires (whose
pre-set time is proportional to the worst case end-to-
end network delay) this information is flushed. While
the protocol in [18] appears to be self-stabilizing, it
requires global time-outs t o recover from topological
changes, the common failure mode.

The Autonet approach [20] is to use a variant of
Finn’s unbounded counter protocol [8] to reset the
network after each topology change. Together with
the spanning tree state, each node also keeps an
epoch counter. Nodes detecting a topology change
reset their state locally and increment the epoch
counter. A node receiving a message with a larger
epoch counter than its own resets its own state and
processes the new message. Thus incrementing the
counter forces a new version of the spanning tree
protocol. The Autonet approach is faster than that
of [18], but it does have a problem when the epoch

counter reaches the maximum value because of some
catastrophic fault. Thus existing approaches either
rely on global timers or are not self-stabilizing.

Our stabilizing spanning tree protocol is extremely
similar t o the two schemes we have described above.
However, i t uses a different mechanism (for detect-
ing and recovering from states with ghost roots) that
speeds up the stabilization time of the resulting pro-
tocol. While we can apply our general method to the
AN-1 technique (in which case the reset would reset
the epoch counter), there is an even simpler technique
that avoids counters altogether and is based on local
checking and resets.

The detection mechanism is based on the follow-
ing observation. Consider an execution of the sim-
ple spanning tree protocol that starts with a state
in which all nodes are correctly initialized and there
are no messages in transit on the links. Now focus
on some node. Throughout the execution the node
maintains a current estimate of the root ID, and an-
other estimate for its distance from this alleged root.
It can be shown that in the course of legal execu-
tions, the node’s estimate of the root ID never goes
up; also while such a root estimate is fixed, the dis-
tance estimate never goes up. This property can be
cast in the form of a local predicate for each link.
If the predicate holds, then the algorithm will pro-
duce a spanning tree. This immediately suggests the
stabilizing algorithm: whenever the predicate is vi-
olated, the node that detects the violation makes a
reset request. In the execution that follows the last
reset signal, all information will be correct.

3.1 Spanning Tree Protocol Code
We now describe the code for our locally checkable
spanning tree protocol. After all local predicates
hold, this protocol computes a spanning tree in time
proportional to the diameter of the network.

Our locally checkable spanning tree protocol is de-
scribed in Figure 2. Each node U maintains a parent
pointer parent,, current estimate of the root’s iden-
tity P,, and a current distance estimate d,. We de-
note by (P,, d,) the ordered pair at node U. We will
use lexicographic ordering for 2-tuples and 3-tuples.
For example, (~ , , d ,) < (~ , , d ,) means that either
P, < r,, or that P, = P, and d, < d,. Similarly,
(ru, d,, parent,) < (P,, d,, parent,) means that that
either (~ , , d ,) < (~,,d,), or that (~ , , d ,) = (p , , d ,)

and parent, < parent, . Each node also maintains a
copy (possibly outdated) of the root and distance es-
timates of each its neighbors. Thus the estimates of
neighbor v are stored at U in the variables r,[v] and
du [VI.

6c.2.5
780

We assume that we are given some bound N on the
largest possible distance in the network. For com-
pactness, we let both arrays have an entry for the
node itself, in which the default values are “hard-
wired”: thus ru[u] = U , and d,[u] = -1. Now a node
always chooses its own estimate based on the mini-
mum of the estimates of all its neighbors and its own
default estimate. Node U chooses its own estimate of
the root from this minimum estimate; U also chooses
its own estimate of the distance as one plus the dis-
tance from the minimum estimate. Thus if U itself is
the smallest root, the distance U chooses for itself will
be -1 + 1 = 0, which is as it should be. Thus d,[u] is
set to -1 simply as a sentinel value to avoid an extra
case.

Every node U periodically sends its own estimate of
root and distance to all its neighbors using an “An-
nounce” packet. The Announce packet is encoded as
a tuple (Announce, r, d). When a node U receives an
Announce packet from U, U first checks whether the
estimate in the packet is greater than the previous es-
timate stored from v and the distance in the estimate
is not already at the maximum possible value. If this
is not the case, U stores the received estimate. If the
the estimate in the packet is greater than the previ-
ous estimate stored from U , then U sets requestbit, to
remember to do a later reset request. If the distance
in the estimate is already at the maximum possible
value, then U ignores the estimate (accepting it would
cause U’S distance estimate to overflow). Finally, U re-
sets its sentinel values (in case they were corrupted)
and updates its own estimate as the minimum of all
neighbor estimates.

A proof of the correctness of a modified version of
this protocol can be found in [24]. The main idea
is to write a set of local predicates and show that
when these local predicates hold, there can be no
ghost roots and the protocol computes a spanning
tree in time proportional to the network diameter.
The key local predicate states that the sequence of
estimates sent from any node to a neighbor v are
non-increasing. If there are ghost roots, they can-
not persist indefinitely without causing some node to
receive a greater estimate than its stored value and
hence invoke a reset, which initializes the system cor-
rectly. For this simple spanning tree protocol, it can
be shown than any weak reset is sufficient.

set containing all neighbors of U and U itself
parent pointer, in nset,,
distance estimate, in range O..N, n < N
root estimate
estimate of T, for v in nset,,
estimate of d, for v in nset,,
boolean, true if link to v is free
boolean, remembers pending reset requests

ictions

?=EM,,, (*link says its free *)
Effect: free,[v] .- .- TRUE

;ENDM,,,,((Announce, I, d)) (*send to neighbor U*)
Preconditions:

r = r y a n d d = d y
free,[u] = TRUE

&e,[u] := FALSE
Effect:

<ECEIVEMu,,(Annornce, r, d) (*receive estimate from w *)
Effect:
If (r, d) 5 (ru[u], d,[v]) then

I f d < N (*distance at max value ?*)
(Tu[V], d,[v]) := (r, d)
(r u [~] , d u [~]) := (U , -1)

Else requestbit, := TRUE (*make reset request later*)
(r,, d , , parent,) :=

min((r,[v],d,[v] + 1, U) : v E nset,,, d,[v] < N }

~EQUEST, (*request a reset*)
Preconditions: requestbit,, = TRUE
Effects: requestbit, = FALSE

SIGNAL, (* receive a signal*)
Effect:

For all v # U E nset,, do
(ru[v],du[v]) := (00,w)

(Tu[U], &[U]) := (U, -1)
(tu, du,parent,,) := (U, 0, U)

he , [v l .- *- FAXE

Figure 2: Spanning tree protocol: code for a node U

4 Topology Maintenance

In the topology update problem, each network node
ascertains the state of its neighboring links and re-
ports this in a so-called Link State packet (LSP). The

6c.2.6
781

problem is to broadcast the LSP of each source to all
the other nodes in the network. Once this problem
is solved, each node has a complete map of the net-
work, and can use this to compute useful information
such as shortest path [14, 171 or deadlock free routes
[20, 161.

In intelligent flooding, used in the new ARPANET
protocol [14] and improved by [17, 191, each source
independently broadcasts its link state packet using
a sequence number, and the highest sequence number
is considered to be more recent. We describe the al-
gorithm with respect to a single source s. The over-
all protocol consists of running several independent
versions of the single source protocol, one for each
network node.

Whenever a node v receives an LSP from neigh-
bor U and v has a stored LSP with greater se-
quence number than U , then v sends its stored
LSP back to U. If U’S LSP has smaller sequence
number, v stores the LSP from U and sends its
new LSP to all its neighbors.

A local checking mechanism verifies periodically
that the databases of every pair of neighboring
nodes v and U are consistent. If inconsistency
is detected, then the more recent information is
propagated.

If the source s receives an LSP with a sequence
number N which is higher than the current se-
quence number at s, then s changes its stored
sequence number to N + 1, and broadcasts an-
other LSP containing the new sequence number.

With unbounded sequence numbers, even if the sys-
tem starts with arbitrary sequence numbers, it will
stabilize in time proportional to a cross-network de-
lay. This is true since after a t most one cross network
delay time, the sequence number a t the source will be
the highest sequence number a t the system; and when
the source has the highest sequence number, then in
one cross-network delay time, all nodes will have the
updated data.

However, due to the fact that the sequence number
space is finite, this scheme is not self-stabilizing. In
[14], for instance, the sequence number space is con-
sidered to be cyclic. In a cyclic space it is possible
to have three sequence numbers a, b and c such that
a > 6 > c > a. Thus, if a transient fault installs
three updates with such sequence numbers, the net-
work can loop forever among these updates. In [19],
this problem is fixed by using a linear sequence num-
ber space, and by waiting for a global timeout when
the space is exhausted, in order to allow old updates

to die out. The resulting protocol is self-stabilizing,
but the recovery time is quite large because of the use
of global timers.

Our approach is very simple. Whenever the se-
quence number reaches its bound at some node, this
node makes a reset request. When a reset signal is
received a t a node other than the source, the node
resets its sequence number to 0. When the source
receives a signal, the source sets its sequence number
to 1 and broadcasts its most recent LSP.

The simplest approach is to use a single reset
that resets the information about all sources. If the
counter is sufficiently large, the reset should happen
sufficiently rarely so that the global disruption caused
by such a reset is not a factor. It is also easy to have
separate reset procedures for each source, but that
requires separate state for each such reset protocol.

The solution in [17] and [19] has one additional
mechanism. Periodically, a t intervals of some global
timer (say every 10 minutes),e ven if the LSP infor-
mation has not changed, the source increments the
sequence number by one to produce a new LSP, and
then broadcasts it to its neighbors. The purpose of
this rule is twofold. First, it provides another level of
defense against catastrophic faults as the source is pe-
riodically rebroadcasting its LSP information. More
importantly, it is used to get rid of obsolete informa-
tion from nodes that have died. After waiting for say
half an hour without getting a LSP from a source s,
a node can discard the LSP from s as being useless.
Thus this mechanism is used for garbage collection.

We prefer to retain the garbage collection scheme
because of its simplicity. However, with our modifica-
tions, the t imer that controls periodic retransmission
of LSPs does not control the self-stabilization recove y
t imes but only aflects the t ime t o do garbage collec-
tion. Thus this timer can be set to be a high enough
value to cover the worst case end-to-end delay in the
largest possible network (say 1 hour). If local check-
ing is done in the order of seconds, and the actual
delay through the network is also in the order of sec-
onds, then the recovery time from arbitrary faults can
be in the order of seconds. However, if a source s is
removed from the network, it will take 1 hour before
other nodes can reclaim the storage taken up by s’s
LSP.

5 Conclusion and Discussion
Philosophically, our aim in this paper is to demon-
strate that simplicity and robustness need not be sac-
rificed in practical protocols. We argue that elegant
unbounded-registers protocols can be used in a realis-

6c.2.7
782

tic setting, without making them vulnerable to tran-
sient faults. Many popular systems use either spe-
cially tailored bounded-register protocols or rely on
inefficient global timers. We described a method by
which one can transform an unbounded-register pro-
tocol (typically very simple) into a robust bounded-
register protocol with practically the same behavior.
Another example of the methodology of this paper
is the design of a self-stabilizing network synchre
nization protocol [3] which can be used to convert
synchronous protocols into stabilizing asynchronous
equivalents. We first designed a stabilizing p r o b
col that worked with unbounded counters, and then
transformed it using a reset protocol.

References
A. Arora and M. G. Gouda. Distributed reset. In
Proc. iOth Conf. on Foundations of Software Tech-
nology and Theoretical Computer Science, pages 316-
331. Spinger-Verlag (LNCS 472), 1990.
B. Awerbuch and S. Even. Reliable broadcast proto-
cols in unreliable networks. Networks, 16(4):381-396,
Winter 1986.
B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-
Shamir, and G. Varghese. Time optimal self-
stabilizing synchronization. In Proc. 25th ACM
Symp. on Theory of Computing, Oct. 1993.
B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-
stabilization by local checking and correction. In
Proc. 32nd IEEE Symp. on Foundations of Computer
Science, Oct. 1991.

K. M. Chandy and L. Lamport. Distributed snap
shots: Determining global states of distributed sys-
tems. ACM Trans. on Comput. Syst., 3(1):63-75,
Feb. 1985.

[ll] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. of the ACM,

Distributed comput-
ing. Chapter of Handbook on Theoretical Computer
Science. Also, to be published as Technical Memo
MIT/LCS/TM-384, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, Cam-
bridg e, MA, 1989.

[13] N. A. Lynch and M. R. Tuttle. An introduction to
input/output automata. CWI Quarterly, 2(3):219-
246, 1989.

[14] J. McQuillan, I. Richer, and E. Rosen. The new
routing algorithm for the arpanet. IEEE Trans. on
Communications, COM-28(5):711-719, May 1980.

[15] M. Merritt, F. Modugno, and M. Tuttle. Time con-
strained automata. In CONCUR 91, pages 408-423,
1991.

[16] M.Schroeder, A.Birrell, M.Burrows, H.Murray,
R.Needham, T.Rodeheffer, E.Sattenthwaite, and
C.Thacker. Autonet: a high-speed, self-configuring
local area network using point-to-point links. Tech-
nical Report 59, Digital Systems Research Center,
April 1990.

[17] R. Perlman. Fault tolerant broadcast of routing in-
formation. Computer Networks, Dec. 1983.

(181 R. Perlman. An algorithm for distributed compu-
tation of a spanning tree in an extended LAN. In
Proceedings of the the 9th Data Communication Sym-
posium, pages 44-53, Sept. 1985.

[19] R. Perlman, G. Varghese, and A. Lauck. Reliable
broadcast of information in a wide area network. US
Patent 5,085,&28, Feb. 1992.

[20] T. Rodeheffer and M. Schroeder. Automatic recon-
figuration in the Autonet. Proceedings of the 14th
Symposium on Operating Systems Principles, Nov
1993.

21(7):558-565, July 1978.
[la] L. Lamport and N. Lynch.

E. w. DiJkstra.
tributed control.
1974. view, July 1981.

self stabfiation in spite of dis-
Comm. of the ACM, 17:643-644,

[21] E. C. Rosen. Vulnerabilities of network control pro-
tocols: An example. Computer Communications Re-

D. Dolev and N. Shavit. Bounded concurrent time
stamps systems are constructible. In Proc. 21st ACM
Symp. on Theory of Computing. ACM SIGACT,
ACM, 1989.
S. G. Finn. Resynch procedures and a fail-safe net-
work protocol. IEEE Trans. on Commun., COM-
27(6):840-845, June 1979.
S. Katz and K. Perry. Self-stabilizing extensions
for message-passing systems. In Proc. 10th ACM
Symp. on Principles of Distributed Computing, Que-
bec City, Canada, Aug. 1990.
L. Kleinrock and F. Kamoun. Hierarchical routing
for large networks; performance evaluation and opti-
mization. Computer Networks, 1:155-174, 1977.

[22] J. M. Spinelli. Reliable communication. Ph.d. the-
sis, MIT, Lab. for Information and Decision Systems,
Dec. 1988.

[23] A. Tanenbaum. Computer Networks. Prentice Hall,
2d.edition edition, 1989.

[24] G. Varghese. Self-stabilization by counter flushing.
To appear as a Washington University Technical Re-
port, 1993.

I251 G. Varghese. Self-stabilization by local checking and
correction. Ph.D. Thesis MIT/LCS/TR-583, Mas-
sachusetts Institute of Technology, 1993.

6c.2.8

