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Abstract

We explore the notion of distributed program check-
ing as a means of making a distributed algorithm self-
stabilizing. We describe a compiler that converts a
deterministic synchronous protocol w for static net-
works into a self-stabilizing version of 7 for dynamic
networks. Let Ty be the time complexity of = and
let D be a bound on the diameter of the final network.
The compiled version of 7 stabilizes in time O(D+Tx)
and has the same space complexity as w. Our gen-
eral method achieves efficient results for many specific
non-interactive tasks. For instance, our solutions for
the shortest paths and spanning tree problems take
O(D) to stabilize, an improvement over the previous
best time of O(D?). We provide improved solutions
for many other problems including topology update,
minimum spanning trees, colorings, maximum flows,
and maximal independent sets.

Keywords: Fault-tolerance, Synchronous Compilers,
Self-stabilization, Distributed Checking

1 Introduction
Consider the following door closing protocol. A person

going through the door shuts the door when she leaves.
Correct behavior — especially important on a cold day
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— requires that the door be shut when not in use. If the
door is initially closed, then the door closing protocol
maintains correct behavior. If however, the door is ini-
tially open, or some user has made a mistake, then the
door can remain open forever. Thus the door closing
protocol is not self-stabilizing - i.e., it does not work
correctly when its initial state is incorrect. It is often
a good idea to make the door closing protocol self-
stabilizing by adding a spring that constantly restores
the door to the closed position.

A distributed network algorithm consists of a pro-
gram for each network node. Each program consists
of code as well as local state. The global state of the
algorithm consists of the local state of each node as
well as the messages on network links. We define a
catastrophic fault as a fault that arbitrarily corrupts
the global network state, but not the program code.

Self-stabilization formalizes the following intuitive
goal: despite a history of catastrophic failures, once
catastrophic failures stop, the system should stabilize
to correct behavior without manual intervention. Self-
stabilization is a reasonable and interesting model be-
cause:

Catastrophic faults occur: Code! can be pro-
tected by redundancy since it is never modified. How-
ever, state is constantly being updated. Thus it is hard
to infallibly protect state from memory corruption. It
is also hard to prevent a malfunctioning device from
sending out an incorrect message. A self-stabilizing
model subsumes most previous models of network
faults. For instance, catastrophic faults clearly go be-
yond well-studied fault models such as node and link
failures.

Manual intervention has a high cost: In a large
decentralized network, restoring the network manually
after a failure requires considerable coordination. Asin

! While input is often static (as in the case of node IDs), we
deal with changing input by requiring that such input be the
output of another self-stabilizing protocol. For example, the list
of neighboring nodes in a dynamic network can be supplied by
a self-stabilizing Data Link protocol.



the case of the AT&T network, the consequent network
shutdown has a large dollar cost.

These issues are illustrated by the crash of the origi-
nal ARPANET protocol ([Ros81] [Per83]). The design-
ers used a sequence number to distinguish newer topol-
ogy updates from older ones. Because the sequence
number was finite, they used a circular number space.
Hence, it is possible to have three sequence numbers
a,b, ¢ such that @ > b > ¢ > a. The protocol was care-
fully designed to never enter a state that contained
three such updates. Unfortunately, a malfunctioning
node injected three such updates into the network and
crashed. After this the network cycled continuously
between the three updates. It took days of detective
work [Ros81] before the problem was diagnosed. This
would have been unnecessary if the protocol had been
self-stabilizing.

Distributed program checking: An elegant the-
ory of self-testing and self-correcting, pioneered by
Blum [Blu], has been developed in the area of sequen-
tial and parallel computing. The closest work we know
of is the work on parallel checkers described in Ru-
binfeld’s thesis [Rub90]; however, that work uses the
PRAM model of computation while we use a network
model. Clearly, checking/correcting issues are related
to self-stabilization, since in order to return a (dis-
tributed) program to a legitimate state, one must first
detect an error, and then correct it.

One approach to check a distributed program [KP90]
is to collect all information at a single “leader”
node, thus reducing distributed checking to cen-
tralized checking. However, the best existing self-
stabilizing leader-election algorithm [AKY90] requires
time quadratic in the network diameter. Moreover, the
space and processing overhead at the “leader” node
grows with the size of network.

We will see in Section 2.3 that we can improve per-
formance by doing distributed program checking. The
major difficulty is to find self-stabilizing implemen-
tations of this paradigm. Both our implementations
(Sections 4 and 5) are in the form of compilers that
transform a synchronous protocol into a self-stabilizing
version for dynamic networks. In essence, we efficiently
transform a solution for the most restrictive model
(synchronous, static fault-free networks) to a solution
that works in a very permissive model (dynamic net-
works with catastrophic faults).

Model and Notation The communication network
is modeled as a graph G of node and channel processes.
Because we wish our protocols to work in dynamic net-
works where the graph topology can change, the notion
of an unchanging graph is misleading. Thus it is better
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to think of G as the network after all failures stop. Let
D be an upper bound on the diameter, E the number
of edges, and V the number of nodes in G.

Each network link delivers every message sent in
FIFO order to the the receiver. In [APV] it is shown
how to implement such a FIFO link in a self-stabilizing
fashion; unlike that paper we do not assume that the
channel can store at most one message. However, we
do assume the ability to do a snapshot and reset over
each link. These can be done in a self-stabilizing fash-
ion for instance by employing the solutions of [KP90}
over a single link.

A network protocol is a set of node programs, one for
each node. A global state of the protocol is the state
of all nodes as well the messages on links. For ran-
domized protocols, any supposedly random bits in the
initial state of a node can be arbitrarily corrupted and
hence non-random. However, subsequent coin-tosses
will produce truly random bits.

Non-interactive protocols form an important sub-
class of distributed algorithms. These are protocols
whose correctness can specified by a relation (the I/O
relation) between its input and output. For example,
if the protocol has to compute a spanning tree then
the output (the tree) should be a spanning tree of the
input (the graph G). 2

We say that a non-interactive distributed algorithm
is self-stabilizing if, when begun in an arbitrary initial
global state with input I, the protocol produces (after
finite time) an output O such that (I, 0) belongs to the
input output relation. In this paper we concentrate on
non-interactive algorithms.

Let 7 be an arbitrary (non-stabilizing) synchronous
protocol with time complexity T and space complex-
ity S». We introduce the notion of a checker. Suppose
that a synchronous protocol x is a checker for . If x is
given as input the input of 7 as well as what purports
to be the output of 7, x must detect (at some node) if
the purported output of 7 is incorrect. Any determin-
istic protocol 7 has a trivial checker that simply runs
« again.

2 Results
2.1 Complexity Measures

In any non-trivial network protoco! there must be some
node v whose output depends on the input at some
other node. If the protocol is self-stabilizing, it must
have executions in which messages are sent infinitely
often. If not, we could initialize the protocol such that

2By contrast, mutual exclusion is an interactive task be-
cause its correctness must be expressed in terms of sets of valid
behaviors.



no node is in a state in which message sending is en-
abled and v has the wrong output: the system will
remain in this deadlocked, incorrect state. Thus, even
if the protocol is non-interactive and has computed its
output, it must continue to send messages if it is to be
self-stabilizing. Thus we introduce a new complexity
measure called stabilization bandwidth.

Our measures are:

Stabilization Time: Starting from an arbitrary
initial global state, this is the worst case time the pro-
tocol takes to produce a correct output, assuming that
messages are delivered within unit time, and that pro-
cessing is infinitely fast.

Space: The worst case space used by a node pro-
gram.

Stabilization Bandwidth: For this measure, we
limit ourselves to self-stabilizing protocols that exe-
cute a distinct checking protocol x even after reaching
a legal state; the stabilization bandwidth is the worst
case message complexity per link of the checking pro-
tocol. Clearly the checking protocol must be executed
at least once every T time units — where T is the sta-
bilization time — even after the protocol has stabilized.
Hence this is really a bandwidth cost. For example,
the stabilization bandwidth of the protocol in [KP90]
is the worst case message complexity per link to do a
snapshot, which is Q(E + V).

2.2 Existing work

Self-stabilization was introduced by Dijkstra [Dij74].
Later work includes [BP89, GM90, KP90, DIM90,
1J90a] {1390b, AG90, AKY90). While many fundamen-
tal problems have been tackled there is a lack of general
methods. We know of only two general techniques:

o [KP90] shows how to stabilize distributed algo-
rithms by doing centralized checking at a leader.
Also [AKY90] described a self-stabilizing algo-
rithm for leader election that took time quadratic
in the number of network nodes. The combina-
tion of centralized checking and the need to elect
a leader reduce the performance of the compiler;
this is shown in the first row of Figure 1.

* [AKY90] suggests replacing global checking, by
doing local checking of neighboring nodes followed
by global correction; they apply their idea to the
problem of constructing a spanning tree. [APV]
takes the next natural step and shows how, in cer-
tain important cases, they can replace global cor-
rection by doing local correction of the state of a
node and its neighbors. They apply their tech-
nique to some important interactive tasks such
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Figure 1: Comparison of the complexity of our compilers
(Resynchronizer and Rollback) with existing ones.

as end-to-end message delivery and network re-
sets. By contrast, this paper concentrates on gen-
eral techniques for non-interactive tasks, for many
of which (e.g., Minimal Spanning Tree, Min Cost
Flows, etc.) no locally-correctable implementa-
tion is known.

2.3 Our results

In this paper, we ask the following question: Is there
a general technique to transform a large class of dis-
tributed algorithms into self-stabilizing versions that
work on dynamic networks? We answer this question
in the affirmative by introducing a method of stabiliz-
ing most solvable non-interactive tasks. Our solutions
are in the form of compilers that can compile syn-
chronous protocols into self-stabilizing versions that
have the same I/O relation when run on a dynamic
network. The performance of our compilers is summa-
rized in the last three rows of Figure 1

Our simplest compiler is the Rollback compiler that
takes a deterministic protocol r as input and produces
a self-stabilizing version of 7. Our main contribution
is a second compiler called a Resynchronizer. In its
simplest form, the Resynchronizer takes a determinis-
tic protocol 7 as input and produces a self-stabilizing
version of 7.

We can improve the performance of 7 in some cases
if we can show that there is a fast checker for 7. Let us
call x a fast checker if its time complexity T, = 0(1)
and its space is O(Sy). If w has a fast checker x , then
the the Resynchronizer produces a self-stabilizing ver-
sion of 7 that has the complexity measures summarized
in the fourth row of Figure 1. We will see in Section
7.1 that a number of important tasks have checkers
with Ty, = O(1). We will also see in Section 7.2 how
to use the Resynchronizer to compile randomized, syn-
chronous protocols.

Note that, when compared to the Resynchronizer,
the Rollback construction removes the additive factor



of D in the stabilization time but increases the space by
a factor of T,. Thus Rollback is useful only for “fast”
protocols that have Ty < D. The two compilers can be
used to efficiently stabilize most known non-interactive
tasks.

Some sample results obtained by applying the
Resynchronizer are as follows. For the problems of
computing a spanning tree and single source shortest
paths we achieve O(D) stabilization time and O(log V')
for the bandwidth and space measures. This is in
contrast to the previous best result (JAKY90]) that
achieves O(D?) stabilization time and does no better
in the other measures. For the problem of computing a
maximum flow [Gol85, GT88] we achieve O(V?) stabi-
lization time, which is as good as the time of the best
non-stabilizing synchronous protocol.

The Rollback compiler gives good results when ap-
plied to symmetry breaking problems such as the
problems of computing a Maximum Independent Set
[AGLP89], A+1 Coloring in sparse networks [GPS87],
and A? Coloring in general networks [Lin87]. For in-
stance, for A+1 Coloring in sparse networks we achieve
log* V for all three measures. Clearly this is much
better than the corresponding stabilizing protocol con-
structed using the [KP90] compiler. We will present a
more comprehensive list of results in the final paper.

3 Distributed Checking

A deterministic sequential algorithm can make itself
self-stabilizing by periodically saving its output and
running itself again; when it finishes it can check its
output. For sequential algorithms, this is ugly and
unnatural — after all, we want the computer to move
on and run other programs!

However, this paradigm is quite natural for dis-
tributed computing. Unlike in sequential computing
the output of a distributed algorithm is often used for
a long period, sometimes for a period of several days.
This is especially true if the output is used by a number
of other protocols. For instance, most commercial net-
works compute paths to route packets between nodes;
these paths are used by all 3 upper level protocols. For
the path computation protocol to be self-stabilizing it
must incur periodic bandwidth and computation. Be-
cause path computation is crucial, many networks (e.g.
[MRRS80]) * often check these paths periodically. A
small portion of the node processing and link band-
width is reserved for the overhead of self-stabilization.

3For example, by file transfer and mail.

4While the systems community has recognized the need for
self-stabilization in their protocols, their mechanisms are some-
what ad hoc and are not supported by proofs.
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Once we have accepted the inevitable periodic cost
of self-stabilization we can ask: why not run a checking
process to check the algorithm periodically? If the check
reveals a problem, we restart the main algorithm.

However, in a distributed system we have to coordi-
nate all the network nodes. For example, we need to
ensure that a node not move to a new phase (whether
it be checking or executing) before every other node
in the network has completed this phase. The main
difficulty is to implement this coordination in a self-
stabilizing fashion. We will describe two such imple-
mentations — the Rollback protocol in Section 4 and
the Resynchronizer in Section 5.

4 Rollback Compiler

There is a naive implementation of distributed check-
ing that requires a large amount of storage and band-
width and works only for deterministic protocols. In
the naive method, every node keeps a log of every state
transition it has taken to reach its current state. If each
node constantly sends its current log to all neighbors,
every node can check and correct every transition it has
made in the past. Since the inputs are always correct,
eventually all transitions are corrected. This method
works only because it is possible to check transitions
in a self-stabilizing fashion.

Clearly, for an arbitrary asynchronous protocol the
logs can grow very large. However, if the asynchronous
protocol is simulating an underlying synchronous pro-
tocol 7 then the size of the log can be reduced to the
time complexity Ty of . This idea is implemented
in the dynamic synchronizer of [AS88]. However, in
[AS88] the logs are only used to avoid unnecessary re-
computation after an input change, and hence are not
periodically checked. By adding the periodic checking
of logs, we obtain a Modified Dynamic Synchronizer
that we call Rollback.

The disadvantage of the Rollback method is that it
blows up the space utilization and periodic bandwidth
by a factor of T;;. This is not a problem for protocols
with small time complexity — i.e., those for which Ty &
D, where D is the diameter. Thus the naive method
leads to efficient solutions for such problems as coloring
and MIS. However, for protocols in which Ty > D,
Rollback is a poor choice.

5 Resynchronizer Compiler

In the previous section, we saw how Rollback did dis-
tributed checking by maintaining a log of its compu-
tation. Consider a deterministic protocol 7. Clearly,
we can avoid the need for a log if we could simply



re-execute 7. However, this constant re-execution re-
quires coordination among the network nodes which
must be implemented in a self-stabilizing fashion. In
general, Resynchronizer avoids a log by constantly re-
executing a checker x for #. Let us introduce the basic
idea by assuming that 7 is deterministic and that = is
its own checker. We return to separate checking later.

The Resynchronizer can be thought of as a self-
stabilizing version of a synchronizer [Awe85). Any syn-
chronous protocol can be simulated asynchronously by
using a pulse number at each network node. Let us call
a node synchronized if its pulse number differs by at
most 1 from any of its neighbors. In ordinary synchro-
nizers, every node is initially synchronized by setting
the pulse numbers of all nodes to 0. Thereafter, a node
increments its pulse number from p to p+ 1 only after
all its neighbors have reached pulse p, thereby main-
taining synchronization. If each node executes the cor-
responding step of the synchronous protocol at pulse
p just before incrementing to p + 1, then the asyn-
chronous protocol has the same I/O relation as the
underlying synchronous protocol.

Since a self-stabilizing synchronizer cannot rely on
correct initialization, we introduce a Resynch phase.
This phase will periodically ensure that all nodes in
the network are synchronized, after which we can
run the synchronizer protocol. Finally, we have a
Termination_Detection phase that ensures that each
node has finished executing the synchronous protocol.
‘We implement each phase using disjoint ranges of pulse
numbers.

Let us denote by T, the pulse number at which exe-
cution of the underlying synchronous protocol begins.
Let us denote by Pulse, the pulse number at node
u. When Pulse, € [0,7. — 1] we say that node u is
in the Resynch phase. This phase consists of dummy
pulses ~ i.e., there is no execution of the underlying
synchronous protocol. The objective of this phase is
as follows. Suppose that initially all nodes are started
in a “sufficiently early part” 3 of the Resynch phase.
Then in O(D) time some node will exit the Resynch
phase and all nodes will be synchronized. T}, is chosen
to be large enough to allow this objective to be met.
Roughly speaking, during this phase each node tries to
return to node synchronization with its neighbors by
lowering its pulse to catch up with slower neighbors.

When Pulse, € [T.,T. + T,] we say that node u
is in the Execute phase. In the Execute phase node u
simply executes the normal synchronizer algorithm de-
scribed earlier. It also implements the underlying syn-
chronous protocol, starting from initialization at pulse
T, followed by writing its output at pulse T, +T;. We

5this is made precise in the proof outline of Theorem 6.1
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denote by Maz = T, + T + D the maximum value of
Pulsey. When Pulse, € [T, +Tx+1, Maz] we say that
node u is in the Termination_Detection phase. Suppose
that all nodes are synchronized when some node exits
the Execute phase. Then the Termination_Detection
phase ensures that every node has had a chance to
correct its output before the pulse number of some
node wraps around to 0. If the nodes are synchronized
by this phase, a node need only wait D more dummy
pulses to make sure that all other nodes have reached
the Termination_Detection phase.

Once Pulse, reaches Maz, node u wraps around to
0, thus potentially destroying synchronization. How-
ever, we can show that within O(D) time after some
node reaches pulse 0, all nodes are in a “sufficiently
early” part of the Resynch phase. Hence we can rely
on the Resynch phase to restore synchronization as
before, and the cycle continues. Notice that all nodes
constantly re-execute the underlying synchronous pro-
tocol.

The Resynch phase is the heart of the compiler.
First, it must deal with arbitrary pulse numbers and
arbitrary messages on links in the initial state. Second,
it must cope with the fact that the pulse numbers are
finite and hence have to wrap around. Recall that one
of our motivations for studying self-stabilization was to
make real network protocols more fault-tolerant. Any
real counter implementation is bounded.

In our description and in the code below we only
describe the simplest form of Resynchronizer which
can be used to compile a deterministic protocol by re-
executing it. It is easy to extend these ideas slightly to
add a separate checking phase to the Resynchronizer.

5.1 Resynchronizer Code

We described how to reduce the problem of stabiliz-
ing the output of a synchronous protocol = to the
problem of building a self-stabilizing synchronizer that
constantly re-executes pulse numbers in the execute re-
gion. Thus when presenting the code, for simplicity we
ignore the details of executing ; instead we concen-
trate on the major task of synchronizing pulse num-
bers. To actually execute », we need to supplement
the code as follows:

o Additional state variables are added at every node
u to keep track of the state of  as well as the
last two messages received by u from every neigh-
bor. Any messages sent by the synchronous proto-
col are piggybacked on the corresponding PULSE
message.

e Whenever Pulse, reaches p and p is in the
Execute phase, the synchronous protocol 7 is ex-



ecuted at node u.

e Whenever Pulse, reaches T, +T, node u corrects
its output to be the output of 7.

The protocol is formally presented below in Figures
2, 3, 4 and 5. It uses the mechanisms developed in
the second dynamic synchronizer of [AS88]; however
the code in that paper does not have to deal with self-
stabilization and pulse numbers wrapping around.

Every node keeps the following variables. Pulse de-
scribes the number of the last pulse performed cor-
rectly. Parent points to a neighbor which caused the
most recent drop in the pulse number; the set of these
pointers forms a forest of directed trees, rooted at the
nodes which observed input changes. Each such tree
is called a drop tree.

Once a node reaches Pulse = Magz, it drops its
Pulse to 0, sets Parent to nil. Next, it executes proce-
dure BROADCAST-DROP. In that procedure the node
broadcasts a DROP(Pulse) message to each adjacent
neighbor v , setting Ack(v) := false. Once a node re-
ceives a DROP(p) message from neighbor v, it acts as
follows. If Pulse < p+ 1, then it sends back ACK(p+1)
message. Otherwise, it sets Pulse := p+1, and Parent
:= v, and executes procedure BROADCAST-DROP.

The meaning of the ACK message is that the subtree
of the drop tree rooted at that node has stopped grow-
ing. A node may send many DROP messages while it
is dropping; however the pulse numbers in those mes-
sages are strictly decreasing. Thus, ACK(p) messages
arriving at the node with p > Pulse correspond to
a previous DROP message. Once an acknowledgment
ACK(p) arrives from neighbor v, the node acts as fol-
lows. If p # Pulse, then this ACK is outdated and is
discarded. Otherwise, if p =Pulse, this is the ACK to
the latest DROP message sent by the node. In the lat-
ter case, the node sets Ack(v) := true and executes
procedure CONVERGE.

In procedure CONVERGE, the node checks whether
Ack(v) = true for each adjacent neighbor v. If so, the
node will send ACK(Pulse-1) message to its Parent.
Once the root of a drop tree detects that Ack(v) =
true for all neighbors v, it resumes normal synchronizer
operation.

For that purpose, it executes the procedure
BroaDcAsT-GrRow. In the procedure BROADCAST-
GRrow, the node sends a GROW message to all neighbors,
and sets Parent := nil, thus resuming normal synchro-
nizer operation.. Once a node receives a GROW message
from its Parent, it executes procedure BROADCAST-
Grow.
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6 Local Correction for the

Resynchronizer.

Clearly the code described in Figures 3 and 4 is not suf-
ficient to guarantee self-stabilization. For instance, if
in the initial state there are no messages in any channel
the code will deadlock. Normally, such illegal states of
a protocol are avoided by proper initialization. How-
ever, a self-stabilizing protocol cannot depend on ini-
tialization.

In place of initialization, the code uses an additional
mechanism, the method of local checking and correc-
tion [APV] to force the code into legal states. Briefly
the method is as follows. First, we describe the legal
states of the Resynchronizer as a conjunction of local
predicates. A local predicate Ly, is a predicate that
refers only to variables in Node u, Node v, or to the
channels between u and v. Once we list the local pred-
icates Ly,y for the Resynchronizer we can apply the
method of local correction described in [APV]. The
idea is that each node u periodically does a snapshot
of the subsystem consisting of node u, node v, and the
links between them. If the snapshot detects that Ly,
is false the link subsystem is reset to force Ly to be
true.

Next we must show that each such predicate is inde-
pendently stable — i.e., if L, , is true in some state s of
the Resynchronizer protocol (augmented with periodic
local checking and correction), then Ly 4 is true for all
states § that can follow s. It is not hard to see that
if the periodic checking is done every P units of time,
and all predicates L, , are independently stable then
the Resynchronizer code will reach a state in which all
its local predicates are true in O(P) time. The reader
is referred to [APV] for more details.

In order to apply the method of local checking we
need to specify two things. First, we need to specify
what procedure we invoke when we reset an edge at
a node. Secondly, we need to specify the predicates
Lyy. To reset an edge at a node we simply execute
the procedure RESET-EDGE shown in Figure 3.

Each Ly, can be written as a conjunction of a num-
ber of predicates that essentially describe the legal
states of the (u,v) subsystem consisting of node u,
node v and the channels between them. There is a
simple way to generate this list. First start the proto-
col in Figures 3 and 4 in the following “legal” initial
global state s. In s, for each pair of neighbors u,v:
Growing, = {rue,Pulse, = 1,Pulse,(u) = 0 and the
only message in the channel from u to v is a PULSE(1)
message. Now we write down predicates that describe
the possible states of the (u,v) subsystem in all possi-
ble global states that succeed the global state s.

Unfortunately the complete list of local predicates is



quite long, and is deferred to the final paper. Thus for
this abstract we only describe the predicates that are
crucial to the proof of Theorem 6.1. These are shown
in Figure 5. Note that we subscript code variables by
a node name to describe a variable stored at a node;
thus Pulse, denotes the value of variable Pulse at
node u. Also when we use Pulse,(v) we assume that
v € Adjacent,,.

Using these predicates we can prove the following
theorem:

Theorem 6.1 Suppose local predicates are checked
every P units of time, P = O(D), and ¢ T, = 10D+-50.
Consider any execution (beginning from an arbitrary
global state) in which there are no topology changes.
Then in O(D + T,) the output will be correct. As
before, the output is correct if its belongs to the I/O
relation of m on the final network.

Proof: The proof proceeds by proving the following
claims:

o The local predicates (including those listed in Fig-
ure 5) are independently stable.

e Within time 77 = O(D + Ty) time after an ex-
ecution of the protocol begins, some node u has
Pulse, = 0.

e Within time T = O(D) + Ty all nodes u have
Pulse, < 5D + 30.

o Within time T3 = T3+ O(D) some node u has has
Pulse, = T, and all nodes are synchronized.

o Within time Ty = T3 + O(T%) the output of every
node is correct.

7 Extensions

7.1 Better Synchronous Checkers for
Deterministic Protocols

If we check a deterministic protocol = by re-executing
7, we have to pay a high price (Ty) in stabilization
bandwidth. Suppose instead, we can find a checker x
for w that has T, = 1 - i.e., can check = in a single
pulse. Then after the execution phase we can add a
single check pulse number T;. When a node reaches
pulse T, it stays at Tt, executing the checking protocol
until it detects a problem; if it does detect a problem it
drops back to pulse 0. By avoiding multiple pulses for

8The constants have been chosen to allow a simple proof; no
attempt has been made to optimize the constants.
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Variables

Adjacent: the set of adjacent neighbors; this is maintained
by the Data Link.

Pulse: Highest pulse which was performed correctly until
now. Its domain is restricted to lie in {1..Maz}.

Pulse(v): Estimate of Pulse of neighbor v.. Its domain is
restricted to lie in {1.. Maz}.

Ack(v): Binary flag, indicating whether an ACK is expected
from neighbor v, maintained for all v € Adjacent.

Parent: The parent of a node in its current drop tree. Its
domain is restricted to be a node in Adjacent or the
special value nil which indicates that the node cur-
rently has no parent.

Figure 2: Declarations of variables used by Resynchronizer code.

checking, we remove the need for costly resynchroniza-
tion and termination detection in the checking phase.
The stabilization bandwidth drops to O(Sy).

There are a number of tasks that we can check in
a single pulse. These include the classical problems of
shortest paths, topology update, leader election, com-
puting a spanning tree, and computing a maximum
flow. Because the first four tasks are commonly used
in real networks, it is important to improve their sta-
bilization bandwidth.

We do so by using local checking. The idea of doing
local checking was introduced in [AKY90] for a specific
asynchronous spanning tree protocol. However, in our
case all we have to do is to check a synchronous pro-
tocol. Hence our checking procedures are very simple.

The key is the ability to check, in a single pulse, the
shortest cost distances from a given source to every
other node. Let s denote the source and D; denote
the distance node ¢ has recorded to s; let B; ; denote
the cost of a link from Node i to Node j, and N (i)
the set of neighbors of Node i. Then in a checking
pulse a) s checks that D, = 0 b) Nodes other than s
check that D; > 0 and D; = Minjeni)(D; + Bij).
It is quite simple to prove that if any of the distances
are wrong some node will detect this after checking.
By adding an extra distance label to the other tasks,
the other tasks can also be checked in one pulse, using
the same trick. We can do this, for instance, in leader
election by adding the distance to the leader, and in
maximum flow by adding the distance to the source in
the residual graph.

In general, given our application, the design of faster
checkers for synchronous protocols becomes an inter-
esting and practical problem. For instance, can we
check a minimum spanning tree in fewer pulses than it
would take to compute the tree from scratch while us-



Predicates
Dropping = true iff
Parent # nil and 3v: Ack(v) = true
Converging = true iff
Parent # nil and Vv € Adjacent: Ack(v) = true
Growing = true iff
Parent = nil and Vv € Adjacent: Ack(v) = true

Procedure NEw-PULSE
while Vv € Adjacent, Pulse(v) > Pulse —1 do
if Pulse < Max then
Pulse := Pulse + 1
for all v in Adjacent,
send PULSE(Pulse) to v
else Execute Procedure START-DROP

Procedure PARENT-SWITCH
if Parent # nil and Dropping then
send ACK(Pulse-1) to Parent

Procedure START-DROP
if Pulge # 0 then
Execute Procedure PARENT-SWITCH
Parent := nil
Pulse := 0
Execute Procedure BROADCAST-DROP

Procedure RESET-EDGE(v)
Pulse(v) := 0;
Ack(v) := true
if Pulze # 0 then
if Parent # v Execute Procedure PARENT-SWITCH
Pulse := 0
for all j € Adjacent,j # v
send DROP(Pulse) to j
Ack(j) = false
Parent := nil
Execute CONVERGE

Procedure BROADCAST-DROP
for all neighbors v € Adjacent
send DROP(Pulse) to v
Ack(v) := false
Execute CONVERGE

Procedure CONVERGE
if for all v € Adjacent, Ack(v) = true then
if Parent # nil then
send ACK(Pulse+1) to Parent
else Execute Procedure BROADCAST-GROW

Procedure BROADCAST-GROW
for all v € Adjacent
send GROW to v
Parent := nil
Execute Procedure NEW-PULSE

For PULSE(p) from neighbor v
Pulse(v) :=p
if growing then
Execute Procedure NEW-PULSE

For DROP(p) from neighbor v
Pulge(v) :=p
if p+1 > Pulse then
send ACK(p) to v
if growing then
Execute Procedure NEW-PULSE

else
Execute Procedure PARENT-SWITCH
Pulse := p+1

Parent :=v
Execute Procedure BROADCAST-DROP

For ACK(p) message from neighbor v
if p = Pulse and Ack(v) := false then
Ack(v) := true
Execute Procedure CONVERGE

For GROW message from node v
if v = Parent and Converging then
Execute Procedure BROADCAST-GROW

Figure 4: Resynchronizer Code

ing only small storage? There are a number of similar
open problems that arise from our work.

7.2 Randomized Protocols

We need a separate checker to compile a randomized
protocol. This is because re-executing the original pro-
tocol can lead to a different output, and cause the
checker to detect an error when there was none. Sav-
ing the original random bits in the state does not help
either as these bits could be corrupted (see Model sec-
tion). Further, this checker must be oblivious: it must
not depend on the correctness of the supposedly ran-
dom bits currently in the state. It appears that a self-
stabilizing algorithm that uses a randomized checker
needs an infinite supply of random bits since it cannot
rely on the old random bits at any stage.

A simple example of compiling a randomized pro-
tocol is furnished by the problem of electing a leader
in an anonymous network - i.e., a network in which
nodes do not have any unique IDs. 7 Clearly we need
randomization to break symmetry. To construct a self-
stabilizing protocol for this task, we demonstrate a
synchronous protocol for execution together with an

Figure 3: Predicates and Supporting Procedures for
Resynchronizer code.
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71f nodes have unique IDs we must assume that the IDs are
protected; dropping this assumption makes the system more
fault tolerant.



1. If Pulse, = z and Pulse,(u) < z then there is a
DROP(z) in the channel from u to v.

2. If there is a PULSE(z) or DROP(z) message in the chan-
nel from u to v, then z < Pulse,(u) + 2.

3. If Dropping, and Parent, = u then Pulse, < Pulse,.

4. If (Dropping, and Parent, u) OR (there is a
DROP(z) message in transit from u to v) OR (there
is an ACK(y) message in transit from v to u) then
Acky(v) = false.

5. Let £ = Pulsey. If Acku(v) = false then: either
(Dropping, and Parent, = u) OR (there is a DROP(z)
message in transit from u to v) OR (there is an ACK(z)
message in transit from v to u).

6. Let z = Pulse,. If Converging, and Parent, = u
then: either (Growing, = false and Pulse, < Pulse,)
OR (there is GROW message in transit from u to v) OR
(there is an ACK(z) message from v to u).

7. If Pulseu(v) Min;cpdjacentPulseu(s) and
Growing, then Pulse, = Pulse,(v) + 1.

8. Pulse, < Pulse,(v) +1.

9. If Growing, then Pulse,(v) < Pulse, + 1.

Figure 5: Local Predicates for Resynchronizer code that are
crucial to the proof of Theorem 6.1.

oblivious synchronous checker.

In the execution protocol, each node picks a random
ID uniformly and independently in a space of 1..X. In
the next D pulses, a node considers itself as the leader
ifit finds out that its ID is the largest in the network.
In the checking protocol, each node i that considers
itself a leader picks a new random value test; in the
space 1..X and broadcasts test; during the next D
pulses. At the end of D pulses, a node detects an error
if it has received either no test values or it has received
more than one test value. While both checking and
execution can fail, by picking X to be a polynomial
(of sufficiently high degree) in the number of nodes, we
can ensure that a correct output will be produced in
constant expected number of phases. Since each phase
takes O(D) the ezpected stabilization time is O(D).

A more efficient protocol for this purpose (that
works in time proportional to the actual diameter
as opposed to a bound on the diameter) is given in
[DIM91]. However, our solution seems to be simpler.

As in the case of deterministic protocols, check-
ing randomized synchronous protocols seems an in-
teresting research area. In general, the area of self-
stabilization and distributed checking of synchronous
protocols may provide a link between distributed com-
puting and two other branches of theoretical computer
science: parallel algorithms and sequential checking.

266

Summary and open problems

The main result of this paper, the Resynchronizer, is
a compiler that transforms any synchronous protocol
into a self-stabilizing version for dynamic asynchronous
networks. The transformation adds O(D) overhead
to the time complexity of the protocol, where D is a
bound on the diameter of the network after arbitrary
failures. Clearly D can be much larger than the actual
diameter of the final network. A natural open prob-
lem is to obtain a compiler whose time overhead only
depends on the actual diameter of the final network.
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