Self-Stabilization By Local Checking and Correction

EXTENDED ABSTRACT

Baruch Awerbuch*

Boaz Patt-Shamir!

George Vargheset

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

In this work we introduce the first self-stabilizing end-
to-end communication protocol, and the most effi-
cient known self-stabilizing network reset protocol.
We use a simple method of local checking and cor-
rection, by which distributed protocols can be made
self-stabilizing without the use of unbounded coun-
ters.

1 Introduction

Since the concept of self-stabilization was conceived
by Dijkstra [Dij74], it has attracted considerable at-
tention in the distributed computation area. Infor-
mally, a protocol is said to be self-stabilizing if its
specification does not require a certain “initial con-
figuration” to be imposed on the system to ensure
correct behavior of the protocol. Alternatively, a sys-
tem is called self-stabilizing if there is a subset of its
state set, called the set of “legitimate states”, such
that (i) every successor of a legitimate state is legit-
imate, and (ii) starting from any state, the system
eventually reaches a legitimate state.

Self-stabilizing protocols are appealing in two ways.

*Supported by Air Force Contract TNDGAFOSR-86-
0078, ARO contract DAALO03-86-K-0171, NSF contract
CCR8611442, and a special grant from IBM.

tSupported by ONR contract N00014-85-K-0168, by NSF
grants CCR-8915206, and by DARPA contracts N00014-89-J-
1988.

tSupported by DEC Graduate Education Program.

CH3062-7/91/0000/0268301.00 © 1991 IEEE

268

First, from a theoretical point of view, a self-
stabilizing protocol is “cleaner”, since the disturbing
need to specify an initial state is eliminated. Sec-
ondly, allowing a protocol to be initialized in an arbi-
trary state can be viewed as an abstraction of a strong
fault tolerance property, namely the ability to toler-
ate any transient error. In particular, a self stabiliz-
ing protocol can recover from memory corruption, a
property that none of the benign failure models (e.g.,
fail-stop, omission) can handle. The self-stabilization
model is especially appropriate for the case of “in-
frequent catastrophes”: every once in a (long) while
the system may crash, resulting in an arbitrary state.
A self-stabilizing protocol guarantees that eventually
the system will regain stability in some legitimate
state. Hence, relevant complexity parameters of a
self-stabilizing solution are stabilization time, and the
overhead in time/communication when the system is
operating in a “regular mode” (i.e., when all states
are legitimate), as compared to a “conventional” pro-
tocol solving the same problem.

In the self-stabilization model we distinguish be-
tween catastrophic faults that abstract arbitrary cor-
ruption of global state, and other restricted kinds of
anticipated faults. It is assumed that after the execu-
tion starts there are no further catastrophic faults,
but the anticipated faults may continue to occur.
In this paper we consider two models of anticipated
faults: dynamic networks, in which links can crash
and restart, but failure is detectable; and fail-stop
networks, in which links may crash without notifica-
tion.

In this work we present self-stabilizing protocols
for two major interactive tasks in distributed com-
puting: reset in dynamic networks, and end-fo-end
communication in fail-stop networks. Informally, the
reset problem [Fin79] is to design a reset service that
can be superimposed on any other distributed proto-
col. The reset may be invoked at any node, and its
effect is to output restart signal at all the nodes of

the system in a consistent way. The reset protocol
has to deal with links crashing and coming up, but
link failure is detectable. The end-to-end communi-
cation [AG88] is roughly described as follows: deliver
data items generated at a designated sender node to
a designated receiver node across an unreliable net-
work, without duplication, loss, or reordering. The
network topology is fixed, but links may fail forever
without notification.

To solve these two problems, we introduce a
method of converting a distributed protocol into a
self-stabilizing one. By applying this method, we ob-
tain the first self-stabilizing end-to-end communica-
tion protocol, and the best known self-stabilizing re-
set protocol.

Existing non-stabilizing solutions. In 1979,
Finn [Fin79] introduced the notion of metwork re-
set as a general paradigm to automatically extend a
fixed-network protocol to work in a dynamic network.
In Finn’s solution, the nodes run the fixed-network
protocol as long as the network does not appear to
change. Whenever a node detects a change of the
topology, it initiates a new version of the protocol.
Finn’s method to distinguish between old and new
versions is to append “instance identifier” (i.e., a run-
ning counter) to the messages. The number of bits in
the counter is large enough to avoid wrap-around.

As in the case of network reset, the main obstacle
in the end-to-end communication is how to distin-
guish between old and new packets, in order to dis-
card the former and forward the latter. This can be
easily accomplished by maintaining a counter at the
source, incrementing it for each new message sent,
and stamping each message with the counter value.
In this method each packet traverses each link at most
once; hence its complexity appears to be linear. How-
ever, using appropriately defined measures, the com-
plexity of this solution turns out to be unbounded.
This is because the counter value grows indefinitely
and cannot be bounded by a function of the network
size.

In [AAG87, Awe88] more complex “bounded-
counter” network reset protocols have been devel-
oped. Bounded-counter end-to-end protocols have
been developed in [AG88, AMS89, AGR91, AG91].
None of them is self-stabilizing. This issue is ad-
dressed by Lamport and Lynch in their survey of dis-
tributed computing [LL90]:

“...simply bounding the number of instance
identifiers is of little practical significance,
since practical bounds on an unbounded
number of identifiers are easy to find. For
example, with 64-bit identifiers, a system
that chooses ten per second and was started

269

at the beginning of the universe would not
run out of identifiers for several billion more
years. However, through a transient error,
a node might choose too large an identifier,
causing the system to run out of identifiers
billions of years too soon — perhaps within
a few seconds. A self-stabilizing algorithm
using a finite number of identifiers would be
quite useful, but we know of no such algo-
rithm.”

Related self-stabilizing protocols. Recently, an
extensive effort was directed toward finding efficient
self-stabilizing solutions for some of the basic tasks of
distributed computing. Afek and Brown [AB89] give
a self-stabilizing protocol for a perfect FIFO channel
built on top of physical channels that may lose mes-
sages. Their construction utilizes an aperiodic (or
random) number generator. This is no coincidence:
an impossibility result by Dolev, Israeli and Moran
[DIM91] shows that no self-stabilizing deterministic
finite-state machine can cope with physical channel
that is allowed to lose (and not even to permute) mes-
sages, if the channel capacity is unbounded. However,
if a bound on the physical channel capacity is known,
a finite-state self-stabilizing protocol is feasible.

Arora and Gouda [AG90] present a self-stabilizing
reset protocol, using a self-stabilizing spanning tree
of the network. For the spanning tree protocol, it is
assumed that processes have unique identifiers, and
that there is some a prioi bound K on the num-
ber of nodes in the network. The IDs and K can-
not be corrupted by transient errors. Instance iden-
tifiers are used to distinguish between old and new
messages. The stabilization time of this protocol is
O(K3®), where K is the non-volatile bound on the
number of nodes in the network.

In the innovative works by Katz and Perry [KP90],
and by Afek, Kutten and Yung [AKY90], general
schemes to extend distributed protocols to be self-
stabilizing are proposed. In [KP90], a fixed leader pe-
riodically takes snapshots (see [CL85]) of the system
and checks them. If a “bad” global state is detected,
a pre-determined global state is imposed on the sys-
tem by the snapshot mechanism. In order not to con-,
fuse old snapshots with fresh ones, a global counter is
maintained by the leader. Informally, this approach
can be summarized as global (i.e., centralized) check-
ing and global correction. In [AKY90], a new idea
is introduced. They suggest that the protocol should
maintain sufficient information at the nodes, so that
illegal states can be detected locally by some node
that can restart the algorithm. This approach can be
viewed as local checking with global correction (the
algorithm needs to be restarted in order to reach a

legal state). They use this idea in a self-stabilizing
spanning tree protocol that does not require counters.
They propose to implement a reset service using it,
and to combine it with the protocol of [KP90]. The
stabilization time of their protocol is O(V?2).

Results and organization of this paper. In
this work we take the next natural step: we focus on
protocols that are locally checkable, and locally cor-
rectable. Specifically, a protocol is said to be locally
correctable if the global state of the protocol can be
corrected to a legitimate global state merely by ap-
plying independent local actions, thereby exhibiting
fast stabilization.

In Section 2 we describe a method to make pro-
tocols self-stabilizing by periodic local checking and
correction. To implement such a mechanism, we as-
sume that we are given data links that can store at
most one outstanding packet at a time. On one hand,
since in the so-called “real world” the capacity of com-
munication channels is always bounded, such a data
link protocol is realistic. On the other hand, dealing
with unbounded capacity is doomed to result in infea-
sible infinite state machines [DIM91]. Therefore we
argue that this assumption is reasonable, and more-
over, by virtue of the results accomplished using this
viewpoint, it seems fruitful for practical applications.

We justify this assumption in Section 3, with ex-
plicit constructions of a self-stabilizing unit capacity
data links (UCDL). For physical channels whose ca-
pacity is bounded and may only lose packets, the
protocol of Afek and Brown [AB89] yields UCDL.
Adapting the strategy of [AGR91], we show how
to implement a self-stabilizing UCDL on top of a
dynamic network. Specifically, this is done in two
stages. First, using the method introduced in Sec-
tion 2, we show how to convert a dynamic network
into a self-stabilizing bounded capacity channel, i.e.,
a channel whose capacity is bounded, and which may
permute the packets. We then show how to imple-
ment a self-stabilizing UCDL over such a channel.
Combined together, these protocols constitute the
first self-stabilizing end-to-end communication proto-
col for dynamic networks.

In Section 4, we apply our method to the important
task of network reset. Based on [AAG8T], we present
a self-stabilizing reset protocol with O(1) stabiliza-
tion time. The protocol does not require unique IDs,
and its space overhead is logarithmic. The termina-
tion time of the reset protocol of [AAGS8T] is O(V).
Note that this protocol provides a powerful tool that
can be used by existing protocols to make them self-
stabilizing. For instance, when combined with any
linear time static spanning tree algorithm, it yields
O(V) self-stabilizing spanning tree construction.

270

The model. Our model of computation is a vari-
ant of the Input/Output Automata model, described
by Lynch and Tuttle [LT89].! For the time analysis
purposes we make the standard assumption that with
each action there is a certain time associated, such
that a message is delivered within one time unit. We
assume that executions start at time 0.

We recall that a bekavior of an automaton A is the
set of sequences of external (input/output) actions
generated by all the executions of A. A problem is
a set of behaviors; an automaton is said to solve a
problem II if its set of behaviors is a subset of II.
Usually, there is a set of instial states specified for
an automaton, and we consider only executions (and
behaviors generated by executions) starting in some
initial state. For a self-stabilizing automaton, how-
ever, the situation is different. We use the following
definition, due to N. Lynch [Lyn91]. An IO automa-
ton A is a self-stabilizing automaton solving problem
I, if for any fair behavior 8 of A (regardless of the
initial state), there exists a behavior 7 € II, such that
there is a sequence o which is a suffix of both # and
. Intuitively, this definition says that an automaton
is self-stabilizing if after some finite time, it behaves
correctly. The stabilization time of a behavior is ¢ if
after time ¢, the behavior is a suffix of a correct be-
havior. The stabilization time of an automaton is the
worst-case stabilization time of all its fair behaviors.

2 Local checking and correction

In this section we describe a method for the trans-
formation of some distributed protocols into self-
stabilizing protocols solving the same problem.

We begin with some standard definitions. Define
the global state of a network protocol to be the Carte-
sian product of the local states of the nodes and the
channels. Define legal global states to be the states,
starting from which, the external behavior of the pro-
tocol is a suffix of a correct behavior. Note that once
the protocol reaches a legal state, we can say that the
protocol has stabilized, in the sense that the global
state will remain legal.

We proceed by defining the notion of local check-
ability. For an edge e = (u,v), the e subsystem is
the 4-tuple that consists of the nodes u and v, and

the two anti-symmetric links connecting them. For

11n the IO Automata model, the input events are always
enabled. In order to avoid causality loops when composing
automata, an action is not allowed to be both input and output
action. For ease of presentation, we sometimes violate this
restriction, but it should be clear that no causality loops arise.

a state s, denote by [s]. the projection of s to the e
subsystem.

Definition 2.1 Let e be an edge. A predicate L is a
link predicate for e if [s)e = [5]. implies L(s) = L(3)
for any two global states s and 5.

We say that a network protocol is locally checkable
if its set of legal states can be expressed as a conjunc-
tion of link predicates.

Some protocols may be locally correctable, i.e., even
if each subsystem is corrected independently, the
global state will eventually be legal. In the rest of
this section we identify simple properties that imply
“local correctability”.

One straightforward condition for a locally check-
able protocol to be locally correctable, is that every
link predicate is stable: a stable predicate remains
true regardless of whether other link predicates are
true. We generalize the notion of stability to depen-
dent stability in the following definition.

Definition 2.2 let L;,...,L; and L be link predi-
cates. L is stable depending on Ly,...,Lg, if L A
AL_, Li hold in a state s implies that L holds in in
all possible successor states of s.

It is not hard to see that if this dependency relation
is acyclic then the protocol is locally correctable. In
other words, if each link subsystem is independently
corrected, then the entire system will stabilize in a
time proportional to the length of a maximum de-
pendency chain.

We now turn to the final obstacle, namely how to
locally check and correct each link subsystem. Our
strategy is to have each node periodically take snap-
shots [CL85)] of each of its incident links, and verify
whether the corresponding link predicate holds. If it
does not hold, the node resets the link subsystem to
a state in which the link predicate holds.

It may be interesting to compare this method with
[KP90] and [AKY90]. In [KP90], the strategy is to
take global snapshots and to reset the whole network
if an illegal state is detected. In [AKY90], the idea
is local detection of illegal states, complemented with
resetting the algorithm. Our method is limited to lo-
cally checkable and correctable protocols, but by do-
ing so we manage to avoid the inefficiencies incurred
by the need to make global operations.

It is worthwhile pointing out that self-stabilizing
snapshot and reset of links is easy to implement, es-
pecially when we assume that the links may contain
at most one outstanding message at a time (e.g., use
[KP90]). This assumption is justified in the next sec-
tion.

271

3 Unit capacity data links

In this section we consider the model of a unit capac-
ity data link (UCDL). We give a precise definition of
UCDL in the IOA language, and sketch how is it im-
plemented on top of physical channels by the protocol
of [AB89]. Then, in the main part of this section, we
follow the approach of [AGR91], and give a proto-
col for self-stabiling UCDL over a fail-stop network
in two parts. First, by applying the method outlined
in Section 2 to the protocol of [AGR91], we show
how to convert a fail-stop network into a bounded
capacity channel that may permute the packets but
not to lose them. (We remark that the method can
also be applied to the protocol of [AMS89), to yield
a bounded capacity channel.) We complete the con-
struction with a protocol that implements a unit ca-
pacity data link over such a channel, thus effectively
exhibiting a self-stabilizing end-to-end communica-
tion protocol.

Throughout, we use a standard terminology, and
call packets the internal information units exchanged
over the channel, as opposed to messages, which are
the information units that are transferred over the
data link.

We commence with the specification of unit capac-
ity data links. Let ¥ be a fixed message alphabet.
The external actions of a UCDL are Free (output
action), and for each m € X, Send(m) (input) and
Receive(m) (output). A UCDL has |X| + 1 states: a
distinguished Free state, and |Z| other states (Busy
states), each corresponding to a distinct symbol. In-
tuitively, the states describe the contents of the link.
In detail, the Free state corresponds to an “empty”
link, in which the Free action is enabled; when a
Send(m) occurs, the state changes to m. In a Busy
state m, Receive(m) is enabled, and Free is disabled.
Send events have no effect on a Busy state. When a
Receive(m) is taken, the state changes back to Free.

It is sometimes convenient to describe the behav-
jors of links as strings. Using regular expression oper-
ators, a behavior of UCDL can be broken to segments
of the form

Free* Send(m) Send(-)* Receive(m) ,

where m € ¥, and “.” denotes an arbitrary symbol
of Z.

A self-stabilizing UCDL attains this behavior after
some “stabilization time” has elapsed.

We now turn from abstraction to reality. A physi-
cal channel typically has finite capacity, and can only
lose (but not permute) packets. Afek and Brown
[AB89] use two such two anti-symmetric channels to
construct a UCDL. Basically, their scheme is that the

sender chooses a label for each message, and repeat-
edly transmits the message stamped by the current
label, to the receiver, until the receiver acknowledges
the current label. The link’s state is Free from the
time an acknowledgement is received until the next
Send event is input. By choosing a label sequence
with periodicity greater than the channel capacity,
this protocol is a self-stabilizing UCDL. The stabi-
lization time is proportional to the capacity of the
channel.

However, there are cases in which we want to con-
vert a network into a data link. Unfortunately, net-
works have the ability to store and permute packets.
In that case the method of [AB89] does not apply.

We consider the following setting, called the end-
to-end communication [AG88]. The network topology
is fixed, but links may crash forever without notifica-
tion (fail-stop network). There are two distinguished
nodes, called sender and receiver. The task is to de-
liver a sequence of messages from the sender to the
receiver without omission, duplication or reordering.
It is assumed that there is no permanent cut of failed
links between the sender and the receiver. In the re-
mainder of this section, we solve a stricter problem,
namely converting a fail-stop network into a UCDL.

Following [AGR91)], our solution consists of two
parts. We define an intermediate specification, the
bounded capacity channel. We first show how to con-
vert a fail-stop network into a self-stabilizing bounded
capacity channel, and then present a protocol that
converts such a channel into a self-stabilizing UCDL.

We start with a generalization of the UCDL, intro-
duced in [AGR91], the C-channel. The external ac-
tions of a C-channel are same as of a UCDL, namely
Free, Send and Receive. Intuitively, a C-channel can
store up to C packets and may deliver any of the
packets currently stored. Each state is associated
with a multiset of elements of ¥ whose size is at most
C. Send(m) changes the state by adding m to the
state-multiset, if the size state-multiset is less than
C. Receive(m) can be taken only if m is in the state-
multiset, and its effect is to subtract m from it. In
addition, a C-channel must guarantee that if no Send
actions are input, then eventually Free is taken, and
that in any execution fragment in which C + 1 Send
actions occurred in a Free state, at least one Receive
occurs.

We now show how to convert a fail-stop network
into a C-channel. Our strategy is to apply the
method of local correction to the end-to-end proto-
cols of [AMS89, AGR91]. These protocols, when cor-
rectly initialized, convert a fail-stop network into a
C-channel. We replace the need for initialization by
periodic local checking and correction.

272

Roughly speaking, in the protocols in [AMS89,
AGR91] each node maintains “piles” of bounded size,
in which arriving messages are stored. The pile of
the designated sender serves as the input queue; new
packets can enter the network only when this pile is
not full. Packets entering the designated receiver’s
piles are immediately output.

Here, we concentrate on the solution that is simpler
to prove, the Slide protocol [AGR91]. Informally, the
Slide protocol works as follows. Nodes other than the
sender and receiver have a pile of n slots associated
with each incoming link; each slot has a unique keight
whose range is [1..n]. The sender has only one pile
with one slot of height n, and at the receiver, all the
piles have only one slot of height 1. The action of the
algorithm is simple: each node continuously tries to
remove the highest packets in its piles and send them
to any slot of lesser height in any of its neighbors.
When the sender’s slot is empty, the Free action is
enabled.

Let us examine closely some link e = (u, v). Denote
by highest the highest occupied slot at the e-pile at
node v. In order that node u will know if it may
send a packet over e, u maintains a local estimate
of the maximal value of highest, called bound. In
[AGR91] this is done by simple bookkeeping: bound is
initialized to 1, and is incremented whenever u sends
a data message to v; whenever v removes a message
from its e-pile, it sends a “decrement” message to u.

Self-stabilizing code cannot depend on initial state.
However, it turns out that the role of initialization
can be summarized as follows. Let M denote the total
number of data messages on transit from u to v, plus
the number of “decrement” messages on transit from
v to u. Then the initialization makes the following
predicate true.

bound = highest + M + 1

It is easy to verify inductively that this predicate is
stable, by considering the effect of all possible actions.
Thus, assuming that the links are checked (and if nec-
essary, corrected by setting bound) every O(1) time
units, we have a C-channel with O(1) stabilization
time and C = O(V E) capacity.

The second part of the solution is implement-
ing a self-stabilizing UCDL over a self-stabilizing C-
channel. Let us first describe a simple variant of our
protocol, that can be viewed as a combination of the
majority scheme in [AGR91] and the alternating bit
protocol [BSW69]. The sender and the receiver main-
tain bits, called S_Bit and R_Bit, respectively. The
sender transmits each message in 3C + 1 copies, all
tagged by S_Bit, then negates the bit and proceeds
to the next message. The receiver maintains a list of

the last 3C + 1 packets received. When this list con-
tains 2C + 1 packets tagged by R_Bit, then a packet
that occurs at least C + 1 times is output (stripped
of its tag), and RBit is negated.

Note that replicating each message in 3C +1 copies
is a considerable overhead. In [AGR91], it is pro-
posed to use Rabin’s information dispersal algorithm
[Rab89) to reduce this overhead for “long” messages.
The idea is to send a large number of different packets
in a batch, thus amortizing the overhead needed to
eliminate the effect of old packets. We use a slightly
different scheme. Specifically, the strategy is as fol-
lows. Each packet is tagged by its position in the
batch. Notice that although old packets can be con-
fused with correct ones, when we send a batch of B
packets, the receiver (after reconstruction) is guar-
anteed to get at least B — 3C correct packets in
correct position (when reconstructing, we may have
at most C collisions of positions, each of which can
cause bad locationing of a correct packet). Hence,
by applying to every batch an error-correcting code
that tolerates up to 3C errors, we are done. If we
use BCH coding [MS78], each packet will contain
O(log C) bits, and the number of packets in a batch
will be B = O(ClogC). For messages whose size is
Q(ClogC), the amortized communication overhead
of this scheme is a constant.

The generalized protocol is given in Figure 1. The
full specification of the protocol depends on C and the
messages size. If the size of the messages is o(log C),
then the protocol is the simple variant described
above: B = 3C + 1, encode(m) produces a batch
of 3C + 1 copies of m, and decode, given a set of at
least 2C + 1 packets, outputs the packet which occurs
at least C'+ 1 times (if there is no such packet output
arbitrary value). In the second case, where the mes-
sages are “large”, B = O(ClogC); encode(m) is com-
puted by breaking m into subsequences of O(log C)
bits, applying BCH encoding, and then tagging the
packets by their position. Messages are reconstructed
by decode(P) as follows. First, the packets are posi-
tioned according to their position tags: in case of a
conflict, one of the packets is located in the claimed
position, and the others are located arbitrarily in the
unclaimed positions; empty locations are filled by
dummy packets. Finally, BCH decoding is applied
to the ordered batch, yielding the original message.

The sender uses an array S_Packet_Q of fixed size
B, and a counter Count that indicates the number of
packets pending to be sent. We denote by tag(q,b) a
q tagged by a bit b, and for a packet p whose tag is
b, we denote bit(p) = b. The sender also uses a bit
Free_C, to indicate the status of the C-channel. The
receiver uses the bit R_Bit, and a queue R_Packet Q

273

Sender Protocol

Whenever Send(m)
if Count = 0 then
S_Bit «— —S_Bit
S_Packet. — encode(m)
Count « B

Whenever Count > 0 and Free_C = TRUE
Send_packet(tag(S_Packet_Q[Count], S.Bit))
Count «— Count — 1
Free.C — FALSE

Whenever Count = 0
output Free

Whenever Free_packet
Free_C — TRUE

Receiver Protocol

Whenever Receive_packet(p)
update(R_Packet_Q,p)
P’ — {p' € R.Packet.q : bit(p') = RBit}
if |P'| > B—C then
output Receive(decode(P’))
R_Bit — -R.Bit

Figure 1: Message delivery over a C-channel

of size B to record the last B packets received from
the C-channel. The operation update(R_Packet.Q,p)
updates R_Packet.Q by removing the oldest packet
and inserting p. The “Free” input action (from the
C-channel) is denoted Free_packet, and the “Free”
output action (required by the specification of UCDL)
is denoted Free, and is enabled whenever sending the
previous batch over the C-channel is completed.

The protocol above features fast stabilization, as
stated in the theorem below. The proof of the theo-
rem is omitted.

Theorem 3.1 The protocol in Figure 1 is a self-
stabilizing UCDL. If the C-channel accepts B packets in
T time units, then the protocol stabilizes in O(T) time
units.

We remark that this result is complementary to the
elegant construction of [AB89], which cannot tolerate
reordering of the packets.

4 Network reset

In this section we define the reset problem, and ex-
hibit a self-stabilizing protocol that solves it. The
protocol is based on the protocol of [AAG87], aug-
mented by the method of local checking and correc-
tion presented in Section 2. In contrast to other so-
lutions, this protocol does not construct (or assume
the existence of) a self-stabilizing spanning tree, and
does not require the processes to have unique IDs.
Instead, the requesting node is used as the root of an
ad hoc tree that disappears when the reset signal is
output, and it is assumed that a process is able to
distinguish among its incident links.

The reset problem is defined as follows. We are
given a dynamic network, with a so-called user per
each node. We’ll sometimes identify the user with
its node. The user has input action Receive(m, e)
(meaning “m is received from e”), and output ac-
tion Send(m, e) (“send m over €”), where m is drawn
from some message alphabet ¥, and e is an incident
link. The user also has output action reset request
and input action resef signal. The problem is to de-
sign a protocol (“reset service”), such that after the
topological changes stop, if one of the nodes makes
a reset request and no node makes infinitely many
requests, then (i) in finite time all the nodes in the
connected component of a requesting node receive a
reset signal, (ii) no node receives infinitely many re-
set signals, and (iii) if e = (u, v) is a link in the final
topology, then the sequence of Send(m,e) input at
u after the last reset signal at u, is identical to the
sequence of Receive(m,e) output at v after the last
reset signal at v.

Intuitively, (i) and (ii) guarantee that every node
gets a last reset signal, and (iii) stipulates that the
last reset signal provides a consistent reference time-
point for the nodes.

In order that the consistency condition (iii) will be
satisfiable, it is assumed that all ¥-messages (from
the user to the network and vice-versa) are controlled
(i.e., buffered) by the reset protocol.

We consider the problem in a fail-safe network,
i.e., we assume that the link continuously informs the
nodes at both ends its operational state, by maintain-
ing a dedicated bit. Whenever a change in the state
of the link occurs (either “crash” or “recovery”), the
dedicated bit is updated and the appropriate action
is taken. We remark that although we model link
failure or recovery as a simultaneous action observed
at its endpoints, this simplifying assumption is not
essential for the correctness of our protocol.

Briefly, the reset protocol of [AAG87] works as
follows. In the so-called Ready mode, the protocol

274

relays, using buffers, Y-messages between the net-
work and the user. When a reset request is made at
some node, its mode is changed to Abort, it broad-
casts ABORT messages to all its neighbors, sets the
Ack_Pend bits to TRUE for all operational links, and
waits until all the neighboring nodes send back Ack.
If a node receives ABORT message while in Ready
mode, it marks the link from which the message ar-
rived as its Parent, broadcasts ABORT, and waits for
ACKs to be received from all its neighbors. If ABORT
message is received by a node not in a Ready mode,
ACK is sent back immediately. When a node receives
ACK it sets the corresponding Ack_Pend bit to FALSE.
The action of a node when it receives the last antic-
ipated Ack depends on the value of its Parent. If
Parent # NIL, its mode is changed to Converge, and
ACK is sent on Parent. If Parent = NIL, the mode is
changed to Ready, the node broadcasts READY mes-
sages, and outputs a reset signal. A node that gets a
READY message on its Parent link while in Converge
mode, changes its mode to Ready, makes its Parent
NIL, outputs a reset signal, and broadcasts READY.

While the mode is not Ready, X-messages input
by the user are discarded, and all ¥-messages from a
link e are queued on buffer[e]. When ABORT arrives
on link e, bufferfe] is flushed. While the mode is
Ready, X-messages from the user to the network are
put on the output queue, and X-messages in buffer
are forwarded to the user. The size of buffer depends
on the assumptions we make on the user. Here, we
assume that at most one X-message is sent without
getting a response, hence the size of buffer is 2.

We remark that the mode of a node is characterized
by the state of the other variables as follows.

Abort, if Je such that
Ack_Pend[e] = TRUE
_) Converge, if Parent # NIL and
mode(u) = Ve (Ack_Pend[e] = FALSE)
Ready, if Parent = NIL and

Ve (Ack_Pend[e] = FALSE)

The first step in making this protocol self-
stabilizing is to make it locally checkable. A clear
problem with the existing protocol is that it will dead-
lock if in the initial state some Parent edges form a
cycle. As in self-stabilizing spanning tree algorithms
[AKY90, AG90], we mend this flaw by maintaining
Distance variable at each node, such that a node’s
Distance is one greater than that of its Parent.
Specifically, Distance is initialized to 0 upon reset
request, and its accumulated value is appended to the
ABORT messages. However, since all we care about is
acyclicity, there is no need to update Distance when
a link goes down.

Next, we list all the link predicates that are neces-
sary to ensure correct operation of the Reset protocol.
Note that a significant advantage of our approach is
that all we have to do is to prove that all link pred-
icates eventually hold. Once we do that we can rely
on the correctness of the original protocol. It turns
out (perhaps surprisingly) that all the required link
predicates are independently stable.

Our last step is to specify how to locally cor-
rect links when a violation of the predicates is de-
tected. The main difficulty about designing a cor-
recting strategy is making it local, i.e., to ensure that
when we correct a link we do not affect the correctness
of other links. In the case of dynamic network the so-
lution is simple: we emulate a link failure. Since the
original protocol had to deal with link failures any-
way, it is clear that this method of correction does
not invalidate other links’ predicates. We observe
that this process of deliberately failing the links ter-
minates, since at most one such “correction failure”
is generated per link, by the fact that the predicates
are independently stable.

In order to be able to describe the protocol for-
mally, let us agree upon some notational conventions.
A subscript of a variable denotes at which node it re-
sides. The first and the last messages in a buffer B
are referred to as head(B) and tail(B), respectively.
For a node incident to d links, we assume that the
links are numbered 1 through d. A link (u,v) num-
bered e at u, is assumed to be numbered € at v. The
links are assumed to be UCDLs, and since a UCDL
is not always free to accept new messages, there is a
buffer of messages pending to be sent, called Queue.
The contents of a link e may be viewed as the top
element Queue[e], for the snapshot purposes.

The input actions are UP and DOWN (topologi-
cal changes), reset request, and Send(m,) (meaning
“send m over e”). The output actions are reset signal
and Receive(m, e) (“m received from e”).

The main code for a node is given in Figure 2. The
labels indicate action names. The code uses short-
hand specified in Figure 3. The module that deals
with ©-messages, and the periodical checking and cor-
rection is called “manager”, and its code appears in
Figure 4. The link invariants verified by the manager
are listed in Figure 5.

The correctness of the Reset protocol is stated in
the following theorem, whose proof is omitted.

Theorem 4.1 Let n be the number of nodes in the
network. Suppose that the links are self stabilizing
UCDLs with stabilization time C, and suppose that in-
variants are verified by the manager at least every P
time units. Then any execution of the Reset proto-

State
Ack_Pend: array of d bits
Parent: pointer, ranging over [1..dJU {NiL}

Distance: ranges over the non-negative integers
Up: set of operational incident links

(maintained by the links protocol)
Queune: array of d link buffers, each of size 3
Actions

Whenever reset request and mode(u) = Ready
Q: Propagate(NIL,0)

Whenever ABORT(dist) on link e
A: if mode(u) = Ready then
Propagate(e, dist)
else enqueue ACK in Queuele]

Whenever ACK on link e and Ack_Pend[e] = TRUE
Ack_Pend[e] « FALSE
K1: if mode(u) = Converge then
enqueue ACK in Quene[Parent]
K2: else if mode(u) = Ready then
output reset signal
for all ¢’ € Up do
enqueue READY in Quene[e’]

Whenever READY on link ¢ and Parent =e¢
R: if mode(u) = Converge then
Parent « NIL
output reset signal
for all edges ¢’ € Up do
enqueue READY in Queue[e’]

Whenever DOwN on link e
Quene,[e] — @
D1: if 3¢'(¢’ # ¢ and Ack Pend[e'] = TRUE) or
(e # Parent and Parent # NIL) then
if Parent = ¢ then
Parent «— NIL
if Ack.Pend[e] = TRUE then
Ack_Pend[e] < FALSE
if mode(u) = Converge then
enqueue ACK in Quene[Parent]
D2: else if mode(u) # Ready
Ack_Pend[e] — FALSE
Parent < NIL
output reset signal
for all ¢/ € Up do
enqueue READY in Queuele’]

Figure 2: Reset Protocol. Main code for node u, inci-
dent to d links.

Propagate(e, dist) =
Parent «— ¢
Distance « dist
for all edges ¢’ € Up do
Ack_Pend[e’] «— TRUE
enqueue ABORT(Distance + 1) on Queue[e’]

Figure 3: Reset Protocol. Shorthand for the code.

Manager state

Free L: array of d Boolean flags,
indicating the state of the links.
buffer: array of d buffers, each of size 2.

Manager actions

Whenever Send(m, e)
if mode(u) = Ready then
enqueue m in Queuele]

Whenever Queue[e] # # and Free_L[e] = TRUE
send head(Queuele]) over e
delete head(Queuele])
Free_L[e] — FALSE

Whenever Free from link e
Free_L[e] — TRUE

Whenever m € ¥ received from link e
enqueue m in buffer]e]

Whenever bufferfe] # § and mode(u) = Ready
output Receive(head(butter[e]),e)
delete head(bufter|e])

Whenever ABORT or DOWN on e:
buffer[e] — 0

Whenever Free_L[e] = TRUE for some link e:
initiate snapshot on link e
Free_L[e] «— FALSE

if any of the invariants does not hold
crash and recover link e

Whenever “snapshot completed” received from link e:

Figure 4: Reset Protocol. Manager code for a node

incident to d links.

276

A: Ack_Pend,fe] = TRUE iff
one of the following holds.
ABORT(Distance, + 1) € Queue,[e]
mode(v) = Abort and Parent, =€
ACK € Queus,[e]

B: At most one of the following hold.
ABoRT(Distance, + 1) € Queue,[e]
mode(v) = Abort, and Parent, =€
Ack € Queue, (€]

C: Parent, = e implies
mode(u) = Converge iff
one of the following holds.
ACK € Queue,|[e]
Ack_Pend,[e] = FALSE and
mode(v) # Ready
READY € Queue, [¢]

D: Parent, = e implies
at most one of the following holds.
ACK € Queue,[e]
Ack_Pend,[€] = FALSE and
mode(v) # Ready
READY € Queue,[¢]

R: tail(Queuey[e]) € {READY} U X implies
mode(u) = Ready

P: Parent, = e implies
one of the following holds.
Distance, = Distance, + 1
READY € Queue,[€]

E: e ¢ Up, implies all the following.
Ack_Pend,[e] = FALSE
Parent, # e
Queue,fe] = @
buffer,[e] = 0

Q: Queuele] is a subsequence of the following.
(ABORT, ACK)

(Ack, READY, ABORT)
(Ack, READY, m) meX
(READY, m, m') m,m' € T

Figure 5: Reset Protocol. Link invariants for link e =
(u,v). We denote € = (v, u).

[AKY90] Y. Afek, S. Kutten, and M. Yung. Memory-
efficient self-stabilization on general net-
works. In Proc. 4th Workshop on Dis-

col, regardless of the initial state, satisfies the following
properties.

1. In all states from time C + P onwards, all the in-

variants hold for all the links.

2. If the number of reset requests is finite, then

C + P + 3n time units after the last reset request,
mode(u) = Ready for all nodes u.

. Ifthere are no topological changes after time C+P,
and the last reset request occurs at timet > C +
P+3n, then by time+43n, a reset signal is output
at all the nodes of the connected component in
which the last reset request was made.

. Suppose no topological changes occurs after time
C + P, and that the last reset signals occur at
two adjacent nodes u and v after time C+P+3n.

[AMSS89]

[Awe88]

[BSW69]

tributed Algorithms, pages 15-28. Springer-
Verlag (LNCS 486), 1990.

B. Awerbuch, Y. Mansour, and N. Shavit.
End-to-end communication with polyno-
mial overhead. In Proc. 30th FOCS, 1989.

B. Awerbuch. On the effects of feedback in
dynamic network protocols. In Proc. 29th
FOCS, pages 231-245, October 1988.

K.A. Bartlett, R.A. Scantlebury, and P.T.
Wilkinson. A note on reliable full-duplex

transmission over half-duplex links. Comm.
of the ACM, 12:260-261, 1969.

Then the sequence Send(m, e) input by the user at [CL85] g:"s}i’ &:?K;ﬁfn{;iﬁaﬂﬁgﬁsg::zl ;?:_
u following the last reset signal at u, is identical to 'ap) g !
> - tributed systems. ACM Trans. on Comput.
the sequence of Receive(m,€) output to the user Syst., 3(1):63-75, February 1985
at v after the last reset signal at v. yst-s ’ ! y ’
[Dij74] E.W. Dijkstra. Self stabilizing systems in
Acknowledgments spite of distributed control. Comm. of the
ACM, 17:643-644, 1974.
The authors are grateful to Yehuda Afek, Peter Elias, .
Eli Gafni, Nancy Lynch, Yishay Mansour, Nir Shavit, [DIM91] S. Dolev, A. Israeli, a.nd S Moran. Resource
Mark Tuttle and Fritz Vaandrager for discussions Bounds for Self-Stabilizing Message driven
that were crucial to the success of this research. protocols. In Proc. 10th PODC, 1991.
[Fin79] S.G. Finn. Resynch procedures and a fail-
safe network protocol. IEEE Trans. on
References Commun., COM-27(6):840-845, June 1979.
[AAG87] Y. Afek, B. Awerbuch, and E. Gafni. Ap- [KP90] S. Katz and K.J. Perry. Self-stabilizing ex-
plying static network protocols to dynamic tensions for message-passing systems. In
networks. In Proc. 28th FOCS, 1987. Proc. 9th PODC, 1990.
[AB89] Y. Afek and G. Brown. Self-stabilization of [LL90] L. Lamport and N.A. Lynch. Handbook on
the alternating bit protocol. In Proceedings Theoretical Computer Science, chapter 18:
of the 8th IEEE Symposium on Reliable Distributed Computing, pages 1159-1199.
Distributed Systems, pages 80-83, 1989. North-Holland, 1990.
[AG88] Y. Afek and E. Gafni. End-to-end commu- [LT89] N.A. Lynch and M.R. Tuttle. An intro-
nication in unreliable networks. In Proc. duction to input/output automata. CWI
7th PODC, pages 131-148,1988. Quarterly, 2(3), September 1989.
[AG90] A. Arora and M.G. Gouda. Distributed re- [Lyn9l] N.A. Lynch. personal communication,
set. In Proc. 10th FSTTCS, pages 316-331. 1991.
Spinger-Verlag (LNCS 472), 1990. [MS78] F.J. MacWilliams and N.J.A. Sloane. The
: Theory of Error-Correcting Codes. North
[AG91] Y. Afek and E. Gafni. Bootstrap network
resynchronization. In Proc. 10th PODC, Holland Pub. Co., Amsterdam, 1978.
1991. [Rab89] M. Rabin. Efficient dispersal of informa-

tion for security, load balancing, and fault
tolerance. J. of the ACM, 36(3):335-348,
1989.

[AGR91] Y. Afek, E. Gafni, and A. Rosen. Slide - a
technique for communication in unreliable
networks. Unpublished manuscript, 1991.

271

