
Timeout Order Abstraction for Time-Parametric Verification of
Loosely Synchronized Real-Time Distributed Systems

Shinya Umeno and Nancy Lynch
CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

{umeno,lynch}@csail.mit.edu

Abstract— We present timeout order abstraction (TO-abstraction), a
technique to systematically abstract a given loosely synchronized
real-time distributed system (LSRTDS) into an untimed model. We
define the subclass of LSRTDS’s that we can apply TO-abstraction
using a syntax template that represents a restriction to Tempo,
the primary modeling language of TIOA [7]. The untimed model
obtained from the abstraction is a classical finite state machine, and
thus one can automatically verify temporal properties of the model
using a conventional model-checker. We prove the soundness of the
abstraction using simulation relation. From this result, we guarantee
that any untimed safety property of the untimed model also holds for
the original TIOA model.

We have applied TO-abstraction to a resource-sharing protocol
and the DHCP Failover protocol. We verified untimed abstractions
of them by bounded model-checking up to depth 20. We have also
experimented with effectiveness of bug-finding using our technique by
mutating particular parts of the original code. From this experiment,
we found a complex bad execution that would have been very difficult
to find by human or simulations.1

1. INTRODUCTION

Analyzing correctness of real-time distributed systems isa
challenging problem due to the combination of nondeterminism
from process interleaving and timing constraints in the system
executions. The class ofLoosely-synchronized real-time distributed
systems(LSRTDS’s) is an interesting subclass of real time dis-
tributed systems. In this subclass, the processes or modules in the
system are assumed to haveloose synchronization, that is, there
is an a priori known upper boundε on the skew between local
clocks in processes. Processes communicatetime data (timing-
related information such as time stamps) with each other, and
set their timeoutsusing time data. These timeouts are used to
constrain processes’ behavior in such a way that the processes
execute a certain designated action before or after other processes
execute another designated action. For example, the DHCP Failover
protocol [5], used for one of the two case studies in this paper, falls
into this subclass. Due to a general assumption about evolution of
local clock values and timeout setting using time data communica-
tion between processes, automatic exhaustive exploration(model-
checking) techniques for LSRTDS’s has not been studied thusfar
in the community, as far as we know. In particular, existing timed
and hybrid model-checkers cannot directly treat the subclass of
LSRTDS’s that we treat in this paper. We tackle in this paper the
verification problem for LSRTDS’s by providing a way of machine-
assisted automatic analysis for a particular subclass of LSRTDS’s.

We presenttimeout order abstraction (TO-abstraction), a tech-
nique to systematically abstract an LSRTDS into an untimed
model. We define the subclass of LSRTDS’s that we can apply

This research has been supported by the NSF Award CCF-0702670, the NSF
Award CNS-0614414, and the AFOSR/DOD CAP Funds.

1A supplemental information about this paper (such as more detailed explanation
of parts of the paper or proofs), and the code used for the casestudy can be obtained
from the URL cited as [11].

TO-abstraction using a syntax template that represents a restriction
to Tempo, the primary modeling language of TIOA [7]. The
TIOA framework has been used to model and verify (with hand
proofs) several real-time distributed systems and algorithms (for
example, [8], [9], [3], [4], [5], [14]). TO-abstraction enables the
user to conducttime-parametric verificationof a given TIOA
model described by the template in the sense that the local clock
skew boundε and the special timing-related constant that we
explain later are treated as parameters of the system, and therefore,
are not instantiated into concrete values. TO-abstractionperforms
a code-to-code conversion by which a model described using the
template is converted into ordinary (untimed) I/O automaton code.
The untimed model obtained by TO-abstraction is a finite-state
machine, and thus one can automatically verify (untimed) temporal
properties of the model using a conventional model-checker. We
prove a simulation relation from the original TIOA model to the
abstraction using the loose synchronization assumption described
earlier. From this result, we guarantee that any untimed safety
property of the untimed model also holds for the original TIOA
model. This soundness theorem works as ameta theoremfor the
template: the theorem applies to every system described by the
template.

The template can express interesting building blocks that pro-
cesses in the system can use to communicate time data and set
timeouts. For instance, a process can pick atime nonce, an arbitrary
value that represents some future time on its local clock. The
process sends the time nonce to other processes. By intelligently
setting timeouts using the time nonce, one group of processes can
time out after another group of processes have done so. A process
may update its timeout time or variables using a “max” operation
for pieces of time data. This max operation is typically usedto
conservatively update the estimate of other processes’ timeout
times. A process may check whether or not time data stored in
their state variables or time data received from other processes has
already “expired” (its local clock value already exceeds the value
of the time data).

Contributions: There are three main contributions in the pre-
sented work.

First, we provide an abstraction technique, timeout order abstrac-
tion (TO-abstraction), for formal verification of a specificsubclass
of LSRTDS’s, which have not been studied in the context of
automated formal verification. As far as we know, TO-abstraction
presented in this paper is the first technique that enables the user to
reduce a verification problem of a LSRTDS to a finite-state model-
checking problem. By conducting case studies, we have found
that TO-abstraction is useful not just for verification (developing
guarantees), but also for bug-finding. We have experimentedwith
“mutating” parts of the code for a case study of the technique,
and we found, by model-checking the abstracted model, a coun-
terexample that is complex and thus is arguably difficult to find by
human or simulations.

Second, the template presented in the paper provides protocol
designers with interesting building blocks for real-time protocols.
In particular, thetime-stamp-estimation trickthat we explain in
Section 2 gives the designers an interesting way of adding fault-
tolerance to their protocols. This special trick is used in [5] without
particularly mentioning its usefulness, intuition, or subtlety.2 We
make this special usage explicit by having it as one of the building
blocks that can be expressed by the template.

Third, we provide a case study on automatic verification of the
DHCP Failover (DHCP-F) protocol. The protocol has been studied
in [5] in the context of formal verification using manual (hand-
written) proofs, but no study on automatic analysis of the protocol
has been reported thus far. Our case study provides exhaustive
exploration of scenarios of DHCP-F up to the execution length
of 20 (20 discrete transitions, including sending and receiving
messages, of the system) for the configuration of two clientsand
two servers.

Related work: There are several techniques that have been de-
veloped thus far for a reduction from real-time system verification
to finite-state machine verification. The most famous technique is
arguably the triangular-automaton-construction technique for timed
automata, developed by Alur and Dill [1]. We have studied an
abstraction technique,event order abstraction, for parametric timed
verification by focusing on key event orders [10]. The class of
LSRTDS’s that we treat by TO-abstraction cannot be expressed
by such frameworks as Alur-Dill Timed Automata [1], Linear
Hybrid Automata [6], or Time-Interval Automata that we use in
[10]. This is mainly due to the fact that the loosely synchronized
assumption allows very general evolution of local clock values:
as long as the local clock value evolves increasingly and the
loosely synchronized assumption (theε skew bound among the
local clocks) are satisfied, the evolution can be arbitrary (and thus
can be non-linear). Therefore, we cannot directly benefit from the
existing verification techniques developed for these frameworks.
We consider this fact as one of the main reasons that LSRTDS’s
have not been studied intensively in the automatic verification
community.

The rest of this paper is organized as follows. Section 2 explains
how we have found the template for TO-abstraction, and why the
building blocks for time data communication expressed using the
template are interesting. We discuss the usage of building blocks
using small toy examples. In Section 3, we describe the settings
of a distributed real-time system that we assume and the restricted
syntax template for the TIOA programming language with which
the modules in the system must be described in order to use TO-
abstraction. Section 4 is devoted to presenting how we can abstract
a TIOA model described using the template defined in Section 3
into a finite-state untimed model. In Section 5, we briefly explain
how we can prove the soundness of TO-abstraction. In Section
6, we reports applications of TO-abstraction to a resource-sharing
protocol and the DHCP Failover protocol. We conclude in Section
7.

2. BACKGROUND

In this section, we explain how we found the template for TO-
abstraction, and why their building blocks for time data commu-

2The Internet-draft version of DHCP-F does not consider thistype of subtle
arguments about loosely synchronized clocks, and thus how long a leading server
has to wait to conservatively estimate time stamps other servers have picked is
not clearly stated. We contacted the first author of [5], and were informed that
this subtle special usage, which we will call the time-stamp-estimation trick, was
proposed by him, discussed by the authors of [5], and then adopted in the model
of DHCP-F used in [5].

nication are interesting. We discuss the usage of building blocks
using small toy examples.

We started this research by analyzing theDHCP Failover
protocol (DHCP-F), and trying to find common patterns that
satisfy both of the following properties: 1. The set of patterns
is general, and other existing real-time protocols may haveused
it already, or a protocol designer can use it for a future design;
and 2. Every protocol described by the set of patterns can be
systematically abstracted into an untimed model that can beverified
by a conventional model-checker. TheDHCP Failover protocol
(DHCP-F) [5] is an extension of theDynamic Host Configuration
Protocol (DHCP), which is widely deployed for communication
devices to automatically obtain an IP address on the Internet. A
DHCP server offers a client an IP address in the form of a “lease”
with an expiration time. DHCP-F supplements the ordinary DHCP
with stronger fault tolerance using multiple backup servers – when
the main server encounters a failure and becomes down, one ofthe
backup servers takes over the main server’s job. The main difficulty
of using such backup servers is to maintain the consistent view of
the lease periods of IP addresses across the main server and all
backup servers. The time-stamp-estimation trick that we explain
in Section 2 is used for this purpose.

We have found key building blocks of DHCP-F that other
protocols can use under the loose-synchronization assumption.
Processes in the protocol use the following two main ways of
setting timeouts.

1) The first way of setting a timeout uses atime nonce, a value
arbitrarily picked by a process.3 A typical use of a time nonce
is described in Protocol 1 in this section.

2) The second way uses atime stamp, plus a special fixed
constant waiting timeu. A time stamp is a value copied from
the current value of the local clock of a process. Timeout
setting using a time stamp andu can be considered a special
form of setting timeout using a time nonce. This special form
is used for processes to perform thetime-stamp-estimation
trick, used in Protocol 2.

In the rest of this section, we illustrate by examples how to use
the building blocks in the template, and how a designer can add
time data communication into his/her protocol in order to improve
the system throughput and fault-tolerance.

We consider the following common setting for the examples.
Two processesP1 and P2 share a resource, and they must not
access the resource at the same time. Their strategy is time-
sharing the resource by communicating with each other by sending
messages through channels. Two processes’ local clocks areloosely
synchronized, and the skew between them is strictly less than ε.
We assume that the values of their local clocks are monotonically
increasing. We assume that for this time-sharing,P1 first accesses
the resource and thenP2 andP1 alternately accesses the resource
in turns. At first, we assume that the channel is stable and thus
messages would not be lost and message contains would not
become broken.

Without using timing-related information, the processes can
use the following simple strategy: Each process sends a “done”
message to the other process when it finishes its job. When a
process receives a “done” message, it starts using the resource.
This simple protocol is inefficient in some cases because one
process cannot start the job until it receives the other process’s

3A time nonce in an actual low-level implementation may be computedusing,
for example, a complex optimization and/or adaptive algorithmor a randomized
algorithm. We just assume the most general (least restrictive)assumption: as long
as its value is larger than the current clock of the process that picks the time nonce,
it is a valid time nonce for our setting.

2

“done” message. If the message delay is relatively long compared
to the resource usage time interval, inefficiency becomes a real
problem. Processes can use time nonces to loosely synchronize
their behaviors, as Protocol 1 shows. Protocol 1 makes more
efficient use of the resource if the clock skew boundε is smaller
than the message delay.

Protocol 1: P1 picks the time until which it will use the
resource, as a time nonceTN1, and sends it toP2. P1 sets a
timeout atTN1 and starts using the resource. WhenP2 receives
TN1, it sets a timeout atTN1 + ε. The skew boundε is used
to most conservativelyestimate whenP1 times out,on P2’s local
clock. When P2 times out, it is guaranteed thatP1 has already
timed out. Therefore,P2 can immediatelyuse the resource.P2

picks another time nonceTN2, sets a timeout atTN2, and sends
TN2 to P1. Upon receipt ofTN2, P1 sets its timeout toTN2 + ε.
P1 andP2 repeat the same routine forever. �

Now we consider a different assumption for channels. Now the
channels are not stable, and contents of messages sent between
processes may become broken. When message contents become
broken inside the channel, processes can recognize that thecontents
are broken (for example, using a check-sum). Under the above
assumption, we cannot use Protocol 1 – if information ofTN1 sent
from P1 to P2 becomes broken, there is no wayP2 can estimate
whenP1 finishes its job. One (not so smart) option is going back
to “done” message communications.

Using a time stamp with a constant waiting time instead of an
arbitrarily time nonce resolves this situation. Suppose processes a
priori share the value of the constant waiting timeu, and the value
of u is fixed.

Protocol 2: P1 picks a time stampTS1, instead of an arbitrary
time nonce, and sets its timeout toTS1+u. Therefore,P1 uses the
resource foru time units (measured on its local clock).P1 sends
TS1 + u to P2. If the above message sent toP2 is not broken,P2

sets its timeout toTS1 + u + ε (the received time data plusε) as
in Protocol 1. If the message is broken,P2 sets its timeout to the
special valueclock2 +u+2ε, whereclock2 is the current value of
P2’s local clock. WhenP2 times out, it immediately starts using
the resource. It also picks a time stampTS2, sets its timeout to
TS2 + u, and sendsTS2 + u to P1. P1 and P2 repeat the same
routine forever. �

Time-Stamp-Estimation Trick : The timeout setting using
clock2+u+2ε in Protocol 2 is the special timeout setting, thetime-
stamp-estimationtrick that we have mentioned in the introduction.
We explain in the following why this value can be used to estimates
conservatively whenP1 times out. We can interpret the value
clock2 + u + 2ε as (clock2 + ε) + u + ε. If clock2 + ε is equal
to or greater thanTS1, thenP2 indeed succeeds in conservatively
estimatingP1’s timeout (if the message were not broken,P2 would
have set its timeout toTS1 +u+ ε). We consider in the following
the moment thatP2’s timeout is set toclock2 + u + 2ε. From
the loose synchronization assumption, the value ofclock2 + ε is
at least as large as the value ofclock1, the local clock ofP1.
BecauseP1’s clock value is monotonically increasing, the current
value ofclock1 is greater than the value ofTS1, which is copied
from the past value ofclock1. Therefore,clock2 + ε ≥ TS1, as
needed. The key to the above argument was that because of the
fact thatP2 received a (broken-content) message fromP1, P2 was
sure thatP1 had already picked time nonceTS1. The value of
clock2 + ε overestimatesany time stamp that has been picked thus
far in physical time, and a process can perform this estimationby
looking at just its local clock.

We can extend time-sharing problem to two groups of processes,
as we describe in the following Protocol 3.

Protocol 3: Two groups of processesΠ1 and Π2 share a re-
source, and any two processes in the different groups must not
use the resource at the same time. Processes inΠ1 first broadcast
their “TS + u” values to Π2, and processes inΠ2 wait until
the latest time among receivedTS + u values. Upon receipt
of every TS + u value, processes inΠ2 update an estimate
of the latest time using a ‘max’ operation:estimation :=
max(received TS u, estimation), and updates the timeout time
to estimation + ε. When a process receives a broken-content
message, it uses the time-stamp-estimation trick, by setting a
timeout atmax(clock+u+2ε, old timeout time). When a process
in Π2 has received messages from all processes inΠ1 and has timed
out, it can use the resource and broadcasts aTS + u value toΠ1.
Π1 andΠ2 repeat the same routine forever. We can in addition give
processes the choice of choosing their own “customized” resource-
sharing time, instead of the constant timeu: When broadcasting a
resource-sharing time to another group, a process may choose to
propose an arbitrary time using a time nonce, instead ofTS + u.
In this case, that process starts using the resource only after it
gets acknowledgments from all processes in the different group
(because the time-stamp-estimation trick cannot be used inthis
case). �

Protocol 3 above may exhibit subtle corner-case scenarios that
are difficult to verify by human or simulations. For example,
a processP∗ waiting for acknowledgments for its “customized”
request may receive another “customized” request from a process
in the different group, instead of an acknowledgment to its own re-
quest. This scenario can happen whenP∗’s sent message becomes
content-broken, and thusP∗ cannot receive acknowledgements
from all processes in the different group. Because of subtle
scenarios in Protocol 3 such as the one described above, the
implementer of the protocol will gain the benefit of automatic
analysis of the implemented protocol using TO-abstraction. We
use one possible implementation of the protocol as our first case
study in the paper.

3. SETTINGS AND TEMPLATE

In this section, we explain the settings of a distributed real-time
system that we assume and the syntax template that describesa
restricted subclass of the ordinary TIOA guarded-command-style
language. The basic idea of the template is to restrict use oftime
data and timeouts to a special form for which TO-abstractioncan
be applied. There is no restriction imposed for “untimed” part of
the language.

3.1. Processes and Modules

A system consists of a set of processes{Pi} and channels
between processes{Ci,j}.4 Processes in the system can be het-
erogeneous – a process can execute a different program from that
of another. For example, processes may be split into two groups,
Severs and Clients: Processes in Servers run the same program,
and processes in Clients run a program that is different fromthe
server, but is the same for all Clients. Processes communicate with
each other via channels. A channel has a first-in first-out (FIFO)
buffer in it to store process messages. The buffer size is bounded
(in order to conduct model-checking after the abstraction), and
a message sent to the channel when its buffer is full is simply
discarded. We assume that processes areloosely synchronized: for
any pair(Pi, Pj) of processes, the deviation between the values of

4In the full version of this paper [13], We actually give the user an option to use
additional mudules, environment and helper modules, to describe a more general
setting. Due to space limitation, we only talk about processes and channels in this
paper.

3

their local clocks,clocki andclockj , respectively, are bounded by
an a priori known amountε, as shown in the following inequality:
|clocki − clockj | < ε. We assume that theε bound is known to
every process as its parameter. We also assume that a constant
positive real valueu is known to every process as its parameter.
A TIOA that models a process in the system must have the fol-
lowing automation declaration: “AutomatonPi(ε, u: NonNegReal,
p: OtherDiscreteParameters)”. In the above declaration,p is a
parameter that contains non-timing-ralated information,such as
value initializations for “untimed variables”. We discussuntimed
and timed variables in Section 3.3.

The entire system is represented by composing processes and
channels in the sense of TIOA (an automata composition by syn-
chronizing output and input actions with the same name. See [7] for
more details). COMPOSITION below represents the composition.

S(ε, u, {initi}) =

(Πi∈Process IDsPi(ε, u, initi)) × (Πi,j∈Process IDsCi,j)
(COMPOSITION)

The set{initi} in S(ε, u, {initi}) represents a list of initialization
parameters for each processPi. Note that every process shares the
sameε andu after the composition (ε andu are parameters of the
entire systemS).

3.2. Action Signatures of ProcessPi

In this subsection, we present the form for the signatures
(interfaces) of actions for processPi. The system has output and
input actions for message communication between processes, such
as ‘send’ and ‘receive’. A ‘send’ action has the following signature:
sendi(j:ProcessID, M :UntimedMessage, χ:NonNegReal, κ:InteractionInst).
This action represents thatPi sends real-valued “time data”χ and
“untimed data”M to processPj . We will explain in Section 3.5
the form of time data allowed in the template. Untimed data is
an arbitrary value in a bounded domain. An interaction instance
κ is a special identifier of process interactions to distinguish
different set of interactions. A ‘receive’ action has the same
type of interface as a ‘send’, in order to match communications
between processes. A ‘broadcast’ action,bcasti, has a similar
interface assendi, but instead of a process IDj, it has a set of
process IDsJ that represents a subset of processes to which the
broadcast is performed. A process also has internal actionswhich
are performed without communicating outside of the world.

A timeout action ofPi is modeled as an output action,timeoutki ,
and has a very specific form for its precondition (the transition
guard) so that the timeout happens at the time the local clockof Pi

hits a specified timeout time. The actual form of the precondition
is described in Section 3.5.

To give the reader information about how templates are actually
used in a real example, we present the Tempo code for our
implementation of 3 that we use for one of the case studies. Due
to space limitation, we present in Figure 1 only parts of the code.
We explain some use of time data and timeout in this code.bcasti
of ‘CONST’ in Figure 1 usesclocki + u for its broadcasting time
data. It’s timeout time is set to the same value. Whereas,bcasti of
‘CUSTOM’ picks a new time nonce, and broadcasts it. It’s timed
variable proposing time nonce is set to this time nonce, but the
timeout is not set yet (since it has not obtained acknowledgments.
The timeout time is updated using the time-stamp-estimation trick
and a ‘max’ operation when a process receives a “BROKEN”
message.

—————————————————————————————————–
* timeout time is the only timeout variable tk

i
in this process.

* proposing time nonce is the only timed variable xk

i
in this process,

and stores a time nonce used for its own “customized” request.
—————————————————————————————————–
output bcasti(opponent group,

‘CONST’, ts u, ⊥)
pre ts u = clocki + u ∧

pc = crit ready
eff pc := crit;

timeout time := ts u;
timeout is set := true;

output bcasti(opponent group,
‘CUSTOM’, tn, κ)

pre tn = new time nonce() ∧
pc = crit ready ∧

κ = new interact inst()
eff pc := waiting for ack

proposing time nonce := tn

my interact inst := κ

input receivei(j, ‘BROKEN’, 0, ⊥)
eff if (pc = idle ∨

pc = waiting for timeout ∨
pc = sending ack) then
...

timeout time :=
max(timeout time,

clocki + u + 2ε);
timeout is set := true;

fi;

input receivei(j, ‘CUSTOM’, tn, κ)
eff if pc 6= crit then

waiting for msg[j] := false
%% resetting
proposing time nonce := 0;
ack rcvd list := ø;
if tn + ε > clocki then

pc := sending ack;
ack interact inst[j] := κ;
timeout time :=

max(timeout time, tn + ε);
timeout is set := true;
ack sending list :=

ack sending list ∪ j;
fi fi

output timeouti
pre clocki = timeout time ∧

timeout is set
eff timeout time := 0;

timeout is set := false;
if pc = crit then

pc := idle;
....

fi
——————————————————————————

Fig. 1. Parts of Tempo code for the resource sharing protocol,Protocol 3.

3.3. State Variables of ProcessPi

State variables in a TIOA that represents processPi are split into
the six groups shown in Table I. This explicit split of variables is
the core of why we can apply TO-abstraction to the template.

Group Name Variables Types of Variables

Timed variables {xk
i }

ℓi

k=1
NonNegReal

Timeout variables {tki }
ri

k=1
NonNegReal

Timeout setting Booleans {timeout is set
k
i }

ri

k=1
Boolean

Interaction Instance variables {wk
i }

qi

k=1
Integer

Untimed variables {vk
i }

mi

k=1
BoundedDomainki

Local clock variable clocki NonNegReal

TABLE I

STATE VARIABLES OF PROCESSPi

The first group consists of timed variables. These variablescan
store real-valued time data such as time nonces and time stamps
(plus u), or the result of a ‘max’ operation of multiple pieces
of time data. We will see the form of value assignments that
can be used for timed variable in Section 3.5. The second group
consists of timeout variables. These variables are specialvariables
to set a time when a timeout action must be performed. They can
store time data, possibly plus the slackε, and the result of the
time-stamp-estimation trick. The third group consists of timeout
setting Booleans. These are Boolean variables that are usedto
indicate whether or not the timeout fortimeoutki is set. The fourth
group consists of untimed variables. These variables can store
any bounded-size information other than time data. An untimed
variable can be, for example, a Boolean, a (bounded-size) counter,
or a finite set of process IDs to aggregate the information about
which processes have responded toPi’s message. The last group
consists of just one variable,clocki, which represents the local
clock of processPi. The value of this variable evolves over real
time. The actual evolution is defined by thetrajectory definition
discussed in Section 3.4.

4

3.4. Trajectory of ProcessPi

We insist that a TIOA model for processPi have the following
trajectory definition for evolution of the value of its localclock.
The definition describes that 1. A local clock is monotonically
increasing, and 2. When a local clock hits one oftki (a timeout
time) and the timeout fortki is set, the timeout action must be
performed before time elapses.
—————————————————————————————-
evolve: d(clocki) > 0
stop when: ∃k : clocki ≥ tk

i ∧ timeout is setk
i—————————————————————————————-

Note that the loose-synchronization assumption describedearlier
in this section cannot be described by the trajectory definition of
one process, but is used in the soundness theorem as an assumption.

3.5. Transitions of ProcessPi

In this subsection, we describe the template for transitions of
processPi. A transition is defined using its precondition (the guard)
and effects. We have templates for both preconditions and effects.
The template is defined formally using a BNF-like form. Due to
space limitation, we cannot list the entire template in the paper.
Instead, we explain important constructs in the template inthis
subsection. (See [13] for the entire template.)

Timed Expression Template: The templates for
TimeDataExpression, TimeoutExpression, and
TimeoutUpdateExpression shown in TimedExpression are
the most important templates in the entire template set. These
includes a time nonce picking (newtime nonce(), which computes
a value greater thanclocki, a future time), computation of a
time stamp plus the constantu (clocki + u), a ‘max’ operation,
timeout setting usingε, and the time-stamp-estimation trick
(clocki + u + 2ε). These expressions are used in templates for
process transitions explained later in this section. See Figure 1
and its explanation again to observe that timed expressionsin the
code can be expressed using these templates.

TimeDataExpression ::= new time nonce() | clocki + u |

x
k
i | χ |

max(TimeDataExpression,

T imeDataExpression)

TimeoutExpression ::= TimeDataExpression |

TimeDataExpression + ε |

clocki + u + 2ε |

max(clocki + u + 2ε,

T imeDataExpression + ε)

TimeoutUpdateExpression ::= TimeoutExpression |

max(tk
i , T imeoutExpression)

(TimedExpression)

Precondition of Timeout Actions: The precondition of timeout
action timeoutki must always have the following form:clocki =
tki ∧ timeout is setki . The above condition states that a timeout
action timeoutki is enabled when the local clock ofPi hits the
specified timeout timetki , and also the value oftimeout is setki
is true.

Precondition of ‘sendi’ and ‘bcasti’ Actions: Preconditions
for sendi(j,M, χ, κ) and bcasti(J,M,χ, κ) must include the
binding of the sending time dataχ in the following form: χ =
TimeDataExpression. Basically, a process can include any time

data (which can be expressed by the template) in its sending
messages.

Effects of Actions: The effects of an action are constructed by
simple assignments to variables and if statements that include
assignments or nested if statements.

The user can useexpiration checksin the branch condition of
if statements. These checks are in the form ofX ∼ clocki or
X + ε ∼ clocki, where∼ is either> or ≤, and X is eitherxk

i

or χ (χ is only for send, broadcast, and receive actions). Using
an expiration check, a process can, for example, check whether
received time data represents a future time, and thus can be validly
set the time data as a timeout time (receivei of ‘CUSTOM’ in
Figure 1 uses this check).

The values of untimed variables are assigned by arbitrary expres-
sions that only use untimed variables. The values of timed variables
are assigned by any form ofTimeDataExpression, defined in
TimedExpression.

A timeout is set and reset byTimeoutAssignment defined
in TIMEOUTASSIGN. TimeoutUpdateExpression is defined in
TimedExpression. We can see in TIMEOUTASSIGN that an assign-
ment to a timeout variabletki is always performed with a setting
to timeout is setki .

TimeoutAssignment ::= t
k
i := TimeoutUpdateExpression;

timeout is set
k
i := true; |

t
k
i := 0; timeout is set

k
i := false;

(TIMEOUTASSIGN)

4. TIMEOUT ORDER ABSTRACTION

Timeout order abstraction (TO-abstraction) enables the user to
abstract a TIOA model described using the template explained in
Section 3 into an untimed finite-state model. This abstraction is
performed as a code-to-code conversion from a model described
by the template into ordinary (untimed) I/O automata code. We
first explain the overview of this technique.

4.1. Intuition behind Timeout Order Abstraction

Our goal for TO-abstraction is to obtain an untimed model that
conservatively abstracts the original one. In order to obtain an
untimed model, we remove the local clocks of processes, and
maintain just the right amount of information that can retrieve
correct timeout orders in the original timed model. The key idea
is to not focus on real values of time nonces and time stamps,
but instead use identifiers (IDs) of them (labels in other words).
Identifiers are integers that distinguish different time nonces and
stamps. We explain in more detail how IDs can be used using toy
examples described in Section 2.

In Protocol 1, time nonces are used to synchronize processes
behavior. Processes control the ordering of timeouts usingthe
relative difference of their timeout times measured on their local
clocks: one processPi sets a timeout to a time nonceTNk, and
the otherPj sets it to TNk + ε. Information that is sufficient
to retrieve the fact thatPj times out afterPi has done so in
any possible scenario, is that both processes use the same time
nonceTNk, and Pi’s timeout is set by adding the “slack”ε to
the time nonce, butPi’s timeout is set solely by the time nonce.
To keep track of the above information, we can use the following
abstraction: Picks of real-valued time nonces are replacedby picks
of symbolic IDs of them. Thek-th picked time nonceTNk in an
execution of the original system is represented by ID (integer) k.
The timeout time forP1 set toTNk is symbolically represented

5

by a pair(k, false), and the timeout time forP2 set toTNk +ε is
symbolically represented by a pair(k, true) – the Boolean values
represent whether the slackε is added or not. Then, we remove the
local clocks of both processes. After this abstraction, even though
we cannot access to the information of local clock values (since
they are removed), we can carefully choose which timeoutsmust
not occurat the current state of the untimed model, by looking at
the symbolic representations: IfPi’s timeout is set to(k, false)
and Pj ’s timeout is set to(k, true), Pj ’s timeout must not be
performed, considering timeout orders that can possibly appear in
the original timed model. The above discussion is the basic idea
of time data abstraction and timeout order constraining, two of the
three techniques that we use in combination for TO-abstraction.

We can apply the above idea of maintaining information that
is sufficient to retrieve correct timeout orders to Protocol2 as
well. In this case, we use IDs of time stamps. Since processes
always addu to time stamps, we can just keep track of the ID
of a time stamp when the value computed from a time stamp
plus u (in the form of TSk + u) is communicated. We explain
how we treat the time-stamp-estimation trick in the abstraction
after we explain the abstraction for the max operation. In Protocol
3, processes use ‘max’ operations to conservatively updatethe
timeout estimates. To represent a ‘max’, we use a set of IDs. For
example,max(tn1, tn3, tn7) is represented by{1, 3, 7}. Now tn3

is considered asmax(tn3), and thus is represented by{3}. Timeout
settingmax(tn1, tn3)+ ε is represented by({1, 3}, true). We can
constrain timeout orders as follows: If for two sets of time nonce
IDs IDs1 and IDs2, IDs1 ⊇ IDs2 and two timeouts are set at
(IDs1, true) and(IDs2, false), respectively, then the timeout at
(IDs1, true) is disabled. This is becauseIDs1 represents a larger
value thanIDs2. When time nonces and time stamps are used in
the same protocol, we use two sets of integers (IDs) to represent
one time data:({1, 2}, {4}) representsmax(TN1, TN2, TS4 +u),
and({3}, {2}, true) represents a timeout set atmax(TN3, TS2 +
u) + ε. We do not allow a timeout update using a slack-added
timeout and non-slack timeout, since the updated timeout cannot be
represented symbolically.5 We add a run-time check of consistency
of timeout update in the abstraction, so that the abstractedmodel
conservatively approximates the original.

The time-stamp-estimation trick usingclocki + u + 2ε is ab-
stracted as
({}, picked ts id set, true), where picked ts id set is the set
of time stamp IDs that have been picked thus far in
the current execution.({}, picked ts id set, true) represents
max(picked ts set) + u + ε in the original model, where
picked ts set is the set of time stamps picked thus far. This reflects
the discussion for the time-stamp-estimation trick in Section 2 that
clocki + u + 2ε can be interpreted as(clocki + ε) + u + ε, and
clocki+ε over-approximates every time stamp that has been picked
in physical time.

4.2. Overview of Timeout Order Abstraction

We use three sub-techniques in combination for timeout oder
abstraction of a TIOA model described by the template explained
in Section 3. The three techniques are: 1. Time data abstraction, 2.
Timeout order constraining, and 3. Time data reuse and compres-
sion. The first two techniques are used to abstract the underlying
real-time system into an untimed, but infinite-state model.The third

5This restriction is not too restrictive because the user canuse two timeout
variables for a situation in which one processP1 is waiting for a timeout of another
processP2 (P1 uses a slack-added timeout in this case) and at the same time is
waited by a different processP3 (P1 uses a non-slack timeout, andP3 uses a
slack-added timeout).

technique is used to represent the infinite state space of theuntimed
abstraction using a finite one.

We first explain each technique briefly here, and will go into
more details in subsections of this section.

[Time Data Abstraction]:First, time data abstractionabstracts
away local clocks from a given TIOA model, and abstracts real-
valued time data in the system using symbolic representations, as
discussed in Section 4.1. In addition, all boolean conditions in the
original model that require a local clock value to determinetheir
truth-values are conservatively approximated.

[Timeout Order Constraining]:Using information from the sym-
bolically represented timeout time, we constrain the orderof
timeouts, as we discussed in Section 4.1.

[Time Data Reuse and Compression]:An execution of the untimed
model may require infinite number of new time nonce and/or time
stamp IDs because the length of a model execution is typically
infinite. Our basic strategy is toreuse a time stamp or a time
nonce that is once taken by some process but is no longer used
anywhere in the model.

4.3. Time Data Abstraction

By time data abstractionthat we describe in this section, the
user can abstract a TIOA model described using the template
discussed in Section 3 into an untimed infinite-state model.We
will consider how we can make this untimed model a finite-state
model in Section 4.5.

The basic idea of time data abstraction is to represent time
stamps and time nonces using positive integers that represent the
“identifiers” of time stamps and time nonces, as discussed inSec-
tion 4.1. The type of timed variables (which store time data)after
abstraction becomes:SymbolicTimeData = (set of Natural) ×
(set of Natural), where the first set represents time stamps and
the second represents time nonces. And the type of timeout
variables becomes:SymbolicTimeout = (set of Natural) ×
(set of Natural)×Boolean, where the last Boolean entry represents
whether or not the “slack” valueε is added to the timeout value.
For the above two typesSymbolicTimeData andSymbolicTimeout,
we define two functionsts set and tn set that get the first integer
set and the second integer set, respectively, from a given symbolic
representation of time data or a timeout value. We also use a
predicate (a Boolean function)slack added for SymbolicTimeout
to access to the third entry (a Boolean value) ofSymbolicTimeout.

To use symbolic representation of time data discussed above,
time data abstraction conducts the following five processes.

1) Over-approximating the preconditions of timeout actions,
2) Symbolically representing of time stamps and time nonces

using IDs,
3) Abstracting expiration checks, and
4) Abstracting the time-stamp-estimation trick,clocki+u+2ε,

and
5) Removing the local clock and the trajectory definition.
The transformation is formally defined as a function (a code-to-

code conversion) from the TIOA syntax template defined in Section
3 to the ordinary I/O automata syntax. Due to space limitation, we
cannot present the definition of this function in this paper,but
the definition is described in [13]. In the following, we explain
important parts of the abstraction.

Over-approximating the Preconditions of Timeout Actions:
The precondition of every timeout action, which has the form
clocki = tki ∧ timeout is setki , is over-approximated by replacing
it with timeout is setki .

6

Symbolically Representing Time Stamps and Time Nonces:
We treat time nonce IDs using a global variablepicked tn id set
of positive integer type.picked tn id set represents the set of
time nonce IDs picked thus far. Now newtime nonce() function
gives the smallest ID not inpicked tn id set. We perform book-
keeping for time stamp IDs similarly usingpicked ts id set. Every
appearance ofclocki + u is replaced by newtime stampID(),
which gives the smallest ID not inpicked ts id set.

Abstraction of Expiration Checks: Expiration checks of the
form clocki > x + ε is abstracted using the same logic as we
use to determine the order of timeouts, explained in Section4.4.
Informally, if there is a timeout set aty and the value ofy is at
mostx, thenclocki > x + ε will not hold, considering the loose-
synchronization assumption. If we cannot infer the truth value of
the expiration check, then the abstraction uses a non-deterministic
choice for the result of the expiration check.

Expiration checks of the formclocki > x is approximated
using a special list, called the expired time-data list, which stores
time nonce and time stamp IDs picked thus far that are “strongly
expired” – expired onall local clocks. Whether a time nonce/stamp
ID IDk is strongly expired is deduced from either of the following
two facts: 1. A timeout is performed atTD + ε, and symbolic
time dataTD containsIDk; 2. A non-deterministic choice for
clocki > x + ε results in evaluating the inequality to be true,
andx includesIDk. Using the expired list, we can infer the truth
value of clocki > x in the following case: if all IDs inx are
strongly expired, thenclocki > x must be true. If we cannot infer
the truth value of the expiration check, then the abstraction uses a
non-deterministic choice.

Rule for the time-stamp-estimation trick: As we discussed in
Section 4.1, the time-stamp-estimation trick usingclocki + u + 2ε

is abstractly represented by
({}, picked ts id set, true).

Removing the local clock and the trajectory definition:After
the untiming abstraction conducted above, the definition ofthe
transitions of the untimed system does not use local clocksclocki

at all. Thus, we can safely remove local clock variables and the
trajectory definition.

4.4. Timeout Order Constraining

The untimed model after time data abstraction looses the con-
trol over timeout orders in the original timed model because
the abstraction removes local clocks of processes. Therefore, we
need to put the correct timeout orders back into the untimed
model by constraining timeout orders using the informationfrom
symbolically represented timeout time. To constrain timeout order,
we allow the abstract scheduler that resolves non-determinism in
the untimed model to disable specific timeouts. The scheduler
determines the next action to be performed from the set of all
enabled actions in the current state. Whether a specific action is
enabled or not is normally determined solely by its precondition.
In addition to each precondition of actions, for timeout actions,
the scheduler looks at symbolically represented timeout time to
decide whether a particular timeout action is enabled or not. Con-
sidering the loose synchronization assumption, if a timeout action
timeoutik is set to a time larger than the time for another timeout
timeout

j
ℓ by more thanε, then timeoutik occurs aftertimeout

j
ℓ

has done so. By rephrasing the above statement in symbolic
representations, we obtain the following. Timeout actiontimeoutik
of a processi is disabled (even whentimeout is setki is true)
when the following condition holds:∃t

j
ℓ ∈ Timeout variablesj :

(j 6= i) ∧ (tn set(tjℓ) ⊆ tn set(tik)) ∧ (ts set(tjℓ) ⊆ ts set(tik)) ∧
¬slack added(tjℓ) ∧ slack added(tik).

4.5. Time Data Reuse and Compression

The length of an execution of an untimed model obtained from
time data abstraction can be infinite. This implies that an execution
may require infinite number of new time nonces or time stamps.
The simplest strategy that we can follow to reduce the necessary
number of time nonces and time stamps is toreusea time stamp or
a time nonce once taken by some process but no longer used in any
time data in the model. This reuse would not change the behavior
of the untimed model (in terms of its traces) since a time nonce
or a time stamp is symbolically represented by its IDs, and for
the untimed model, these IDs have no more information than just
distinguishing an ID from another. In addition, we sometimes6 need
a more elaborate technique that we calltime data compressionin
order to effectively express multiple time nonces (or stamps) by one
symbolic time nonce (or stamp). Please see [13] for more details
of time data compression. This reuse and compression techniques
do not completely exclude the possibility that the resulting model
still needs an infinite number of time nonces or time stamps.
However, by incorporating the monitor for availability of time
nonces and time stamps, we can use the following strategy: we
first bound the number of time nonces and time stamps that may
used in the model, and when model-checking it, we also monitor
the availability of time nonces and time stamps. If we obtaina
counterexample for the availability, we increase the size of time
nonces and time stamps. This “bound & supersize” technique is
particularly effective for bounded model-checking. Time data reuse
and compression is formally defined as a code-to-code conversion
function in [13].

5. SOUNDNESS OFTIMEOUT ORDER ABSTRACTION

In this section, we briefly describe how we can prove the
soundness of TO-abstraction that we have discussed in Section
4. (A more detailed proof appears in [13].) The soundness claim
we guarantee is stated as Theorem 1.

Theorem 1: For any executionα of the original timed model
with any instantiation ofε and u, there exists a corresponding
executionβ of the untimed model such that values of the untimed
variables in the state after the k-th (discrete) transitionappearing
in α are the same as those in the state after the k-th transition
appearing inβ.

The key technique to use is asimulation relation from the
original model to the untimed abstraction [7]. The basic idea of the
simulation relation technique is to find, for each possible transition
and trajectory of one automaton, a corresponding transition that
have the “same effects”. For example, the maximum operationof
the timed original model has the “same effect” of the symbolic
maximum operation in untimed model. We split this simulation
relation proof into two parts: 1. Simulation relation from the
original model (we call the modelOrig) to the infinite-state
untimed model obtained after time data abstraction and timeout
order constraint (we call this modelInf) and 2. Simulation relation
from Inf to the finite-state untimed model obtained after time data
reuse and compression (we call this modelFin).

Proof Idea: [Simulation relation fromOrig to Inf] : Essentially,
the two models executes the same execution, one using numerical
time data, and the other using the symbolic representation of it.
The simulation relation is defined so that a state ofOrig and a
state ofInf is related when the values of all untimed variables
in Orig are exactly equal to those inInf , and also symbolic
representations of time data inInf “correctly” represent time data

6For example, we need this technique for the DHCP-F protocol. However, we
do not need it for resource-sharing example described in Section 2.

7

in Orig. The notable difference betweenOrig and Inf raises
from two points. The first point is the difference of when timeouts
can be executed inOrig and Inf . In Inf , the local clocks are
abstracted away, and instead, the scheduler conservatively disables
timeouts that would violate the timeout order inferred by symbolic
timeout times. We need to prove (and have actually proved in
[13]) that when a timeout action is enabled inOrig, the same
timeout action is also enabled inInf . This fact comes from the
observation that when the scheduler disables a timeout inInf , the
corresponding timeout inOrig has not yet reached. The second
point is from the over-approximation of‘clocki + u + 2ε’ using
max(picked ts id set) + u + ε in Inf . We take into account this
point in the simulation relation by relating a states of Orig and
a stater of Inf when the symbolic value of a timeout variable
in r (when converted into the numeric value using the information
in s) is not exactly equal, but isless thanor equal to the value
of the corresponding timeout variable ins. We have succeeded to
prove a simulation relation with this condition (which is weaker
than exact matching of symbolic and numerical values).

[Simulation relation fromInf to Fin] : A proof for a simulation
relation fromInf to Fin is relatively easy compared to that from
Orig to Inf . The key idea is to add a table of corresponding time
stamps (and time nonces) and reused/compressed version of them
in Fin, so thatFin now emulatesInf in parallel to its usual
execution. This table is just for proving correctness, and does not
change the behavior ofFin. After this emulation is defined, we can
easily relateInf andFin using the state values ofInf enumerated
in Fin. �

6. CASE STUDIES

In this section, we briefly present two case studies of TO-
abstraction. The first one is an implementation of the resource-
sharing protocol described as Protocol 3. The second one is the
DHCP Failover protocol. We used the SAL model-checker [2]
developed by SRI for both case studied. For the presented case
studies, we manually abstracted the timed model into the untimed
model described in the SAL language. We tried to define every
data structure in SAL as general as we can, so that the structure
can be reused for other case studies. The actual code can be
found in [12]. We are planning to develop an automatic conversion
tool for TO-abstraction. The full model-checking using BDDwas
not feasible for both case studies arguably due to the complexity
of the protocol. (We encountered the out-of-memory error when
SAL was computing the transition function, that is, even before
verification.) Therefore, we conducted a bounded model-checking.
The number of time stamps and time nonces were increased when
the time-stamp/time-nonce unavailability error has occurred. All
experiments are conducted using a Linux machine with an Intel
CoreTM 2 Quad at 2.66 GHz and 4GB memory.

Resource-Sharing Protocol: We applied TO-abstraction to our
implementation of Protocol 3 (partial code appears in Figure 1).
We used the configuration of twoΠ1 processes and twoΠ2

processes. We verified the protocol up to depth 20, and found no
counterexample. The verification time was 24915.5 seconds (6.9
hours).

DHCP Failover Protocol: We applied TO-abstraction to the
DHCP-F protocol (we briefly explained the protocol in Section
2.) The main safety property of DHCP-F that we verify in
this paper is the no-duplicated-address-assignment property – one
specific address is assigned to at most one process. We used the
minimum interesting configuration, which consists of one main
server, one backup server, and two clients (for a possible duplicated
assignment). We succeeded in verifying the protocol up to depth

20. The verification time was 350743.7 seconds (97.4 hours).To
examine the effectiveness of bug-finding using TO-abstraction, we
experimented with verification of DHCP-F with a slight change:
We removed one condition for checking a sequence number to
ensure that the received message is for the current round. After
this mutation, we found a counterexample at depth 17 (the run
time was 52851.28 seconds∼ 14.7 hours). This counterexample
has a complex scenario, and we believe that it is very hard to find
by human analysis. More details of this counterexample appear in
[13].

7. CONCLUSION

We presentedtimeout order abstraction(TO-abstraction), a tech-
nique to abstract a particular subset of loosely synchronized real-
time distributed systems (LSRTDS’s) into a finite-state untimed
model. By using this technique, the user can model-check the
untimed abstraction to verify the original system, or find bugs in it.
TO-abstraction is (as far as we know) the first automatic analysis
tool for time-parametric verification of LSRTD’s. The user can use
only maximum operation for manipulating time data in the current
version of TO-abstraction. Extension of allowable operations is
future study.

Acknowledgement: We thank anonymous reviewers for their
helpful comments on a preliminary version of the presented paper.

REFERENCES

[1] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[2] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea, and
A. Tiwari. SAL 2. In Proc. of CAV 2004, volume 3114 ofLecture Notes in
Computer Science, pages 496–500. Springer, 2004.

[3] S. Dolev, S. Gilbert, L. Lahiani, N. A. Lynch, and T. Nolte. Timed virtual
stationary automata for mobile networks. InPrinciples of Distributed Systems,
9th International Conference, OPODIS 2005, volume 3974 ofLecture Notes
in Computer Science, pages 130–145. Springer, 2006.

[4] R. Fan, I. Chakraborty, and N. Lynch. Clock synchronization for wireless
networks. InOPODIS 2004: 8th International Conference on Principles of
Distributed Systems, volume 3544 ofLecture Notes in Computer Science,
pages 400–414. Springer, 2005.

[5] R. Fan, R. Droms, N. Griffeth, and N. Lynch. The DHCP failover protocol: A
formal perspective. In27th IFIP WG 6.1 International Conference on Formal
Methods for Networked and Distributed Systems (FORTE 2007), volume 4731
of Lecture Notes in Computer Science, pages 208–222. Springer, 2007.

[6] T. A. Henzinger. The theory of hybrid automata. InLICS ’96: Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science, page 278,
Washington, DC, USA, 1996. IEEE Computer Society.

[7] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool
Publishers, 2006.

[8] T. Nolte and N. Lynch. Self-stabilization and virtual node layer emulations.
In Stabilization, Safety, and Security of Distributed Systems, 9th International
Symposium (SSS 2007), volume 4838 ofLecture Notes in Computer Science,
pages 394–408. Springer, 2007.

[9] T. Nolte and N. Lynch. A virtual node-based tracking algorithm for mobile
networks. In International Conference on Distributed Computing Systems
(ICDCS 2007), page 1. IEEE Computer Society, 2007.

[10] S. Umeno. Event order abstraction for parametric real-time system verifica-
tion. In EMSOFT 2008: The 8th ACM & IEEE International Conference on
Embedded Software, pages 1–10, October 2008.

[11] S. Umeno and N. Lynch. Supplimental files for the
RTSS 2009 paper. The files can be obtained from
http://people.csail.mit.edu/umeno/to_abstraction.

[12] S. Umeno and N. Lynch. Supplimental files for the
submitted paper. The files can be obtained from
http://people.csail.mit.edu/umeno/to_abst.

[13] S. Umeno and N. Lynch. Timeout order abstraction for formalverification
of loosely synchronized real-time distributed systems. Technical report,
Massachusetts Institute of Technology. To appear soon.

[14] S. Umeno and N. Lynch. Safety verification of an aircraft landing protocol:
A refinement approach. InProc. of HSCC’07, Hybrid Systems: Computation
and Control, volume 4416 ofLecture Notes in Computer Science, pages 557
– 572. Springer, 2007.

8

