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Abstract— We present timeout order abstraction (TO-abstractign
technique to systematically abstract a given loosely synchronized
real-time distributed system (LSRTDS) into an untimed model. We
define the subclass of LSRTDS's that we can apply TO-abstraction
using a syntax template that represents a restriction to Tempo,
the primary modeling language of TIOA [7]. The untimed model
obtained from the abstraction is a classical finite state machine, ah
thus one can automatically verify temporal properties of the modé
using a conventional model-checker. We prove the soundness dfet
abstraction using simulation relation. From this result, we guarante
that any untimed safety property of the untimed model also holds dr
the original TIOA model.

We have applied TO-abstraction to a resource-sharing protocol
and the DHCP Failover protocol. We verified untimed abstractions
of them by bounded model-checking up to depth 20. We have also
experimented with effectiveness of bug-finding using our technige by
mutating particular parts of the original code. From this experiment,
we found a complex bad execution that would have been very difficult
to find by human or simulations.!

1. INTRODUCTION

Analyzing correctness of real-time distributed systemsais
challenging problem due to the combination of nondetersnini
from process interleaving and timing constraints in thetesys

TO-abstraction using a syntax template that representstiacten

to Tempo, the primary modeling language of TIOA [7]. The
TIOA framework has been used to model and verify (with hand
proofs) several real-time distributed systems and algarst (for
example, [8], [9], [3], [4], [5], [14]). TO-abstraction ehkes the
user to conducttime-parametric verificationof a given TIOA
model described by the template in the sense that the locek cl
skew bounde and the special timing-related constant that we
explain later are treated as parameters of the system, arefahe,
are not instantiated into concrete values. TO-abstrag@nforms

a code-to-code conversion by which a model described usiag t
template is converted into ordinary (untimed) 1/0 automatode.
The untimed model obtained by TO-abstraction is a finitéesta
machine, and thus one can automatically verify (untimeahpteral
properties of the model using a conventional model-chedkéer
prove a simulation relation from the original TIOA model toet
abstraction using the loose synchronization assumpticerited
earlier. From this result, we guarantee that any untimeeétgaf
property of the untimed model also holds for the original AIO
model. This soundness theorem works asieta theorenfor the
template: the theorem applies to every system describechdy t
template.

executions. The class bbosely-synchronized real-time distributed The template can express interesting building blocks the¢ p
systemgLSRTDS?'s) is an interesting subclass of real time discesses in the system can use to communicate time data and se

tributed systems. In this subclass, the processes or nodulbe
system are assumed to hale®se synchronizatigrthat is, there

timeouts. For instance, a process can pitike noncean arbitrary
value that represents some future time on its local clocke Th

is an a priori known upper bound on the skew between local Process sends the time nonce to other processes. By iatellg

clocks in processes. Processes communitiate data (timing-

setting timeouts using the time nonce, one group of prosesse

related information such as time stamps) with each othed, afime out after another group of processes have done so. Agsoc
set theirtimeoutsusing time data. These timeouts are used tg)ay update its timeout time or variables using a “max” operat
constrain processes’ behavior in such a way that the preses$or pieces of time data. This max operation is typically used

execute a certain designated action before or after otluemepses
execute another designated action. For example, the DH{T¥é&ia
protocol [5], used for one of the two case studies in this pdpks
into this subclass. Due to a general assumption about éwolat
local clock values and timeout setting using time data comioad
tion between processes, automatic exhaustive explorétioael-
checking) techniques for LSRTDS’s has not been studied fidaus
in the community, as far as we know. In particular, existimged
and hybrid model-checkers cannot directly treat the sgisclaf

LSRTDS'’s that we treat in this paper. We tackle in this paper t of LSRTDS'’s, which have not been studied in the context

verification problem for LSRTDS's by providing a way of maaéi
assisted automatic analysis for a particular subclass &TE’s.
We presentimeout order abstraction (TO-abstractigrg tech-

conservatively update the estimate of other processegotimn
times. A process may check whether or not time data stored in
their state variables or time data received from other Eeee has
already “expired” (its local clock value already exceeds ¥alue
of the time data).

Contributions There are three main contributions in the pre-
sented work.

First, we provide an abstraction technique, timeout ortistrac-
tion (TO-abstraction), for formal verification of a specifobclass
of
automated formal verification. As far as we know, TO-absioac
presented in this paper is the first technique that enabéeggér to
reduce a verification problem of a LSRTDS to a finite-state ehod

nique to systematically abstract an LSRTDS into an untimechecking problem. By conducting case studies, we have found
model. We define the subclass of LSRTDS's that we can appiyiat TO-abstraction is useful not just for verification (eping
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guarantees), but also for bug-finding. We have experimewitd
“mutating” parts of the code for a case study of the technique
and we found, by model-checking the abstracted model, a-coun

of parts of the paper or proofs), and the code used for thestag can be obtained {€rexample that is complex and thus is arguably difficult ol toy
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human or simulations.



Second, the template presented in the paper provides ptotonication are interesting. We discuss the usage of buildiogkis
designers with interesting building blocks for real-timetpcols. using small toy examples.
In particular, thetime-stamp-estimation trickhat we explain in We started this research by analyzing tBeICP Failover
Section 2 gives the designers an interesting way of addioly-fa protocol (DHCP-F) and trying to find common patterns that
tolerance to their protocols. This special trick is useddithout — satisfy both of the following properties: 1. The set of patte
particularly mentioning its usefulness, intuition, or #aty? We is general, and other existing real-time protocols may hasex
make this special usage explicit by having it as one of thiging it already, or a protocol designer can use it for a future giesi
blocks that can be expressed by the template. and 2. Every protocol described by the set of patterns can be

Third, we provide a case study on automatic verification ef thsystematically abstracted into an untimed model that caretied
DHCP Failover (DHCP-F) protocol. The protocol has beenistlid by a conventional model-checker. TiHCP Failover protocol
in [5] in the context of formal verification using manual (ldan (DHCP-F) [5] is an extension of th®ynamic Host Configuration
written) proofs, but no study on automatic analysis of thetgeol  Protocol (DHCP) which is widely deployed for communication
has been reported thus far. Our case study provides extmustievices to automatically obtain an IP address on the Intefe
exploration of scenarios of DHCP-F up to the execution lengtDHCP server offers a client an IP address in the form of a 8&as
of 20 (20 discrete transitions, including sending and rdrgi  with an expiration time. DHCP-F supplements the ordinaryd®H
messages, of the system) for the configuration of two cliants with stronger fault tolerance using multiple backup sesvexwhen
two servers. the main server encounters a failure and becomes down, dhe of

Related work There are several techniques that have been dgckup servers takes over the main server's job. The mdinudiy
veloped thus far for a reduction from real-time system \eatfon ©f USing such backup servers is to maintain the consistent of
to finite-state machine verification. The most famous tephaiis M€ 1ease periods of IP addresses across the main serverlland a
arguably the triangular-automaton-construction techeitpr timed ~Packup servers. The time-stamp-estimation trick that welagx
automata, developed by Alur and Dill [1]. We have studied alf! S€ction 2 is used for this purpose.
abstraction techniqueyent order abstractigrfor parametric imed e have found key building blocks of DHCP-F that other
verification by focusing on key event orders [10]. The clags rotocols can use under the loose-synchronization assompt
LSRTDS’s that we treat by TO-abstraction cannot be expressE 0C€SSes in the protocol use the following two main ways of
by such frameworks as Alur-Dill Timed Automata [1], LinearS€tting imeouts.
Hybrid Automata [6], or Time-Interval Automata that we uge i 1) The first way of setting a timeout usesime noncea value

[10]. This is mainly due to the fact that the loosely synclized arbitrarily picked by a processA typical use of a time nonce
assumption allows very general evolution of local clockuest is described in Protocol 1 in this section.

as long as the local clock value evolves increasingly and the2) The second way uses tame stamp plus a special fixed
loosely synchronized assumption (theskew bound among the constant waiting time:. A time stamp is a value copied from
local clocks) are satisfied, the evolution can be arbitrand(thus the current value of the local clock of a process. Timeout
can be non-linear). Therefore, we cannot directly benedinfthe setting using a time stamp andcan be considered a special
existing verification techniques developed for these fraomks. form of setting timeout using a time nonce. This special form
We consider this fact as one of the main reasons that LSRTDS’s is used for processes to perform ttime-stamp-estimation
have not been studied intensively in the automatic veritioat trick, used in Protocol 2.

community. In the rest of this section, we illustrate by examples howsde u

The rest of this paper is organized as follows. Section 2a#gl the building blocks in the template, and how a designer cah ad
how we have found the template for TO-abstraction, and wky thime data communication into his/her protocol in order tgiove
building blocks for time data communication expressedgishe  the system throughput and fault-tolerance.
template are interesting. We discuss the usage of buildiogkb ~ We consider the following common setting for the examples.
using small toy examples. In Section 3, we describe thengstti Two processes?, and P, share a resource, and they must not
of a distributed real-time system that we assume and theatest access the resource at the same time. Their strategy is time-
syntax template for the TIOA programming language with \mhic sharing the resource by communicating with each other bgtisgn
the modules in the system must be described in order to use TRlessages through channels. Two processes’ local clocksosely
abstraction. Section 4 is devoted to presenting how we camaad synchronized, and the skew between them is strictly less ha
a TIOA model described using the template defined in Section\§e assume that the values of their local clocks are monaibyic
into a finite-state untimed model. In Section 5, we brieflylakp increasing. We assume that for this time-shariRgfirst accesses
how we can prove the soundness of TO-abstraction. In Sectigie resource and theR, and P, alternately accesses the resource
6, we reports applications of TO-abstraction to a resosh@ing in turns. At first, we assume that the channel is stable and thu
protocol and the DHCP Failover protocol. We conclude in ect messages would not be lost and message contains would not

7. become broken.
Without using timing-related information, the processes c
2. BACKGROUND use the following simple strategy: Each process sends ae“don

message to the other process when it finishes its job. When a
process receives a “done” message, it starts using theroesou
This simple protocol is inefficient in some cases because one
process cannot start the job until it receives the other geeis

In this section, we explain how we found the template for TO
abstraction, and why their building blocks for time data coun

2The Internet-draft version of DHCP-F does not consider thjse of subtle
arguments about loosely synchronized clocks, and thus how doleading server
has to wait to conservatively estimate time stamps other seivave picked is 3A time nonce in an actual low-level implementation may be computsdg,
not clearly stated. We contacted the first author of [5], areteninformed that for example, a complex optimization and/or adaptive algorithmma randomized
this subtle special usage, which we will call the time-starsfirgation trick, was algorithm. We just assume the most general (least restriciisg)ymption: as long
proposed by him, discussed by the authors of [5], and thenteddp the model as its value is larger than the current clock of the proceatspitks the time nonce,
of DHCP-F used in [5]. it is a valid time nonce for our setting.



“done” message. If the message delay is relatively long @eth Protocol 3: Two groups of processed; andIl, share a re-
to the resource usage time interval, inefficiency becomeeah r source, and any two processes in the different groups must no
problem. Processes can use time nonces to loosely synzéronise the resource at the same time. Processéys ifirst broadcast
their behaviors, as Protocol 1 shows. Protocol 1 makes matleeir “T'S + «” values toIl;, and processes ihl; wait until
efficient use of the resource if the clock skew bounid smaller the latest time among receivedl’'S + w values. Upon receipt
than the message delay. of every T'S + u value, processes il, update an estimate
Protocol 1: P, picks the time until which it will use the of the latest time using a ‘max’ operatiorestimation :=
resource, as a time nonceN;, and sends it toP,. P, sets a max(received TS u,estimation), and updates the timeout time
timeout atT'N, and starts using the resource. WhBnreceives to estimation + €. When a process receives a broken-content
TN, it sets a timeout af’N; + ¢. The skew bound is used message, it uses the time-stamp-estimation trick, by ngett
to most conservativelgstimate whenP; times out,on P’s local timeout atmax(clock+u+-2¢, old_timeout_time). When a process
clock When P, times out, it is guaranteed thd? has already inII; has received messages from all processék iand has timed
timed out. Therefore, canimmediatelyuse the resourceP, out, it can use the resource and broadcastsSa- v value toll;.
picks another time nonc&N-, sets a timeout d'N-, and sends II; andIl, repeat the same routine forever. We can in addition give
TN, to P;. Upon receipt ofN,, P, sets its timeout td' N, +<.  processes the choice of choosing their own “customizediure-
P, and P, repeat the same routine forever. O sharing time, instead of the constant timeWhen broadcasting a
Now we consider a different assumption for channels. Now thgsource-sharing time to another group, a process may etoos
channels are not stable, and contents of messages sentehetw@opose an arbitrary time using a time nonce, instead $ft u.
processes may become broken. When message contents bectmiéis case, that process starts using the resource ordy ift
broken inside the channel, processes can recognize thedtibents  gets acknowledgments from all processes in the differeatigr
are broken (for example, using a check-sum). Under the abo(lecause the time-stamp-estimation trick cannot be usetthisn
assumption, we cannot use Protocol 1 — if informatiofi’df, sent  case). O
from P, to P, becomes broken, there is no w#y can estimate Protocol 3 above may exhibit subtle corner-case scenahnats t
when P; finishes its job. One (not so smart) option is going backre difficult to verify by human or simulations. For example,
to “done” message communications. a processP, waiting for acknowledgments for its “customized”
Using a time stamp with a constant waiting time instead of afequest may receive another “customized” request from aes
arbitrarily time nonce resolves this situation. Supposzesses a in the different group, instead of an acknowledgment to\is oe-
priori share the value of the constant waiting timeand the value guest. This scenario can happen whers sent message becomes
of « is fixed. content-broken, and thu®, cannot receive acknowledgements
Protocol 2: P, picks a time stam’S;, instead of an arbitrary from all processes in the different group. Because of subtle
time nonce, and sets its timeout®®; + u. Therefore,P; uses the Scenarios in Protocol 3 such as the one described above, the
resource foru time units (measured on its local clocky, sends implementer of the protocol will gain the benefit of autoroati
TS, 4+ u to P,. If the above message sent is not broken,P, ~ analysis of the implemented protocol using TO-abstractioe
sets its timeout td'S; + u + ¢ (the received time data plug as use one possible implementation of the protocol as our fasec
in Protocol 1. If the message is broke, sets its timeout to the study in the paper.
special valuerlocks +u + 2¢, whereclock, is the current value of
Py’s local clock. WhenP, times out, it immediately starts using _ . 3 SETT'N_GS ANDTE_MPLATE o )
the resource. It also picks a time starfiy,, sets its timeout to [N this section, we explain the settings of a distributed-tieae
TSy + u, and sendd’'S, + u to P;. P; and P, repeat the same System that we assume and the syntax template that deseribes
routine forever. ] restricted subclass of the ordinary TIOA guarded-commetykk
Time-Stamp-Estimation Trick: The timeout setting using !@nguage. The basic idea of the template is to restrict usenef
clocks+u+2¢ in Protocol 2 is the special timeout setting, thime-  data and timeouts to a special form for which TO-abstractian
stamp-estimatiotrick that we have mentioned in the introduction.0@ applied. There is no restriction imposed for “untimedrt
We explain in the following why this value can be used to eaten  the language.
conservatively whenP; times out. We can interpret the value
clocks + u + 2e as (clocks + €) + u + e. If clocks + ¢ is equal 3.1. Processes an.d Modules
to or greater thaiT's;, then P, indeed succeeds in conservatively A System consists of a set of processg§} and channels
estimatingP,’s timeout (if the message were not brokéh,would between processef’; ;}.* Processes in the system can be het-
have set its timeout t&S; + u -+ ). We consider in the following €rogeneous — a process can execute a different program fiatm t
the moment thatP,’s timeout is set toclocks + u + 2. From  Of another. For example, processes may be split into twopgrou
the loose synchronization assumption, the valuelofk, + ¢ is Severs and Clients: Processes in Servers run the same mrogra
at least as large as the value dbck;, the local clock of,. and processes in Clients run a program that is different ftioen
BecauseP;'s clock value is monotonically increasing, the currenferver, butis the same for all Clients. Processes commntenidih
value ofclock, is greater than the value @tS;, which is copied €ach other via channels. A channel has a first-in first-oUtQf!
from the past value oflock;. Therefore,clocks + ¢ > TS;, as Dbufferin it to store process messages. The buffer size iside
needed. The key to the above argument was that because of @iReorder to conduct model-checking after the abstractiemyd
fact that P, received a (broken-content) message frBm P, was @ message sent to the channel when its buffer is full is simply
sure thatP, had already picked time noncES;. The value of discarded. We assume that processedamsely synchronizedor
clocks + ¢ overestimatesny time stamp that has been picked thu@ny pair(?;, P;) of processes, the deviation between the values of
far in physical timg and a process can perform this estimatign
looking at just its local clock “In the full version of this paper [13], We actually give thesugn option to use

Wi tend ti hari bl to twi f additional mudules, environment and helper modules, to deseaimore general
€ can extend ime-sharing problém 1o two groups o promss%etting. Due to space limitation, we only talk about process®l channels in this

as we describe in the following Protocol 3. paper.



their IO(.:aI. clocksclock; andclock;, respectively, are blounded. DY+ timeout_time is the only timeout variable ¢¥ in this process.
an a priori known amourt, as shown in the following inequality: * proposing_time_nonce is the only timed variable z* in this process,

‘Clockq; — Clockj| < ¢. We assume that the bound is known to and stores a time nonce used for its own “customized” request.
every process as its parameter. We also assume that a donséaput beast; (opponent._group, input receive; (j, '‘CUSTOM’, tn, k)
positive real value: is known to every process as its parameter. ‘CONST’, ts-u, 1) eff if pc # critthen
A TIOA that models a process in the system must have the fol- pre ts-u= C'OC'E;‘ tuA Z/Vi/'“”g—fm_—msgm =false
lowing automation declaration: “Automatd® (s, u: NonNegReal, pe = critready 0% resetting -

. . " L7 eff pc = crit; proposing-time_nonce := 0;
p: OtherDiscreteParameters)”. In the above declaratjons a fimeout.time = £ ack_rovd.list = o
parameter that contains non-timing-ralated informatisach as timeout._is_set := true; if tn + e > clock; then
value initializations for “untimed variables”. We discusatimed  output beast; (opponent_group, pc := sending.ack;
and timed variables in Section 3.3. ‘CUSTOM', tn, k) ?ck—'ntfftéct—mst[ﬂ =

; ; ; re tn = new_time_nonce() A Imeout.ime -=

The entire system is represented by composing processes and oo = ot roatty 0 max(timeout time, ¢ + £):
channels in the sense of TIOA (an automata composition by syn x = new_interact inst( timeout_is_set = true;
chronizing output and input actions with the same name. Bdelf eff pc := waiting_for_ack ack sending list:=
more details). ©MPOSITION below represents the composition. proposing_time_nonce := tn ~ acksending.list U j;

my_interact.inst := k fifi
e, u, {init;t) = input receive; (j, ‘BROKEN’, 0, L)
) b (2
L eff if (pc =idle v output timeout;
(HieProcess,IDsPi (57 u, ””ti)) X (Hi,j€ProcessJDsCi,j) pc = waiting_for_timeout v pre clock; = timeout_time A
(COMPOSITION) pc = sending_ack) then timeout_is_set
eff timeout_time :=0;
. .. . T . timeout_time := timeout_is_set := false;

The set{init;} in S(e,u, {init;}) represents a list of initialization max(timeout_time, if pc = crit then
parameters for each proceBs Note that every process shares the clock; + u + 2e); pc = idle;
sames andwu after the compositions(andu are parameters of the timeout is_set = true; e
entire systems). fi fi

Fig. 1. Parts of Tempo code for the resource sharing protégokocol 3.
3.2. Action Signatures of Proces$3

In this subsection, we present the form for the signaturess'g' State Variables of Proced3
(interfaces) of actions for proced3. The system has output and  State variables in a TIOA that represents prodesare split into
input actions for message communication between processels the six groups shown in Table I. This explicit split of varied is

as ‘'send’ and ‘receive’. A ‘send’ action has the followingrsature: the core of why we can apply TO-abstraction to the template.
send; (j:ProcessIDM :UntimedMessagey:NonNegRealx:InteractionInst.

This action represents th&; sends real-valued “time data” and [ Group Name [ Variables [ Types of Variables)
“‘untimed data”M to processP;. We will explain in Section 3.5 o4 variables (F}0 NonNegReal

the form of time data allowed in the template. Untimed data iSTimeout variables oy NonNegReal

an arbitrary value in a bounded domain. An interaction ims#a Timeout setting Booleans {timeout_is set" };._ | Boolean

x is a special identifier of process interactions to distisQui [Tinteraction Instance variables {wF}7_ | Integer

different set of interactions. A ‘receive’ action has themsa | Untimed variables {oF 1 BoundedDomaifi
type of interface as a ‘send’, in order to match communicetio | Local clock variable clock; NonNegReal
between processes. A ‘broadcast’ actidrast;, has a similar TABLE |

interface assend;, but instead of a process IP, it has a set of
process IDsJ that represents a subset of processes to which the
broadcast is performed. A process also has internal actibinch The first group consists of timed variables. These variabées
are performed without communicating outside of the world.  store real-valued time data such as time nonces and timepstam
A timeout action ofP; is modeled as an output actidiimeout},  (plus u), or the result of a ‘max’ operation of multiple pieces
and has a very specific form for its precondition (the tramsit of time data. We will see the form of value assignments that
guard) so that the timeout happens at the time the local @dék  can be used for timed variable in Section 3.5. The secondpgrou
hits a specified timeout time. The actual form of the precomli consists of timeout variables. These variables are speaialbles
is described in Section 3.5. to set a time when a timeout action must be performed. They can
To give the reader information about how templates are Hgtuastore time data, possibly plus the slackand the result of the
used in a real example, we present the Tempo code for otime-stamp-estimation trick. The third group consists iofeut
implementation of 3 that we use for one of the case studies. Dgetting Booleans. These are Boolean variables that are tesed
to space limitation, we present in Figure 1 only parts of thdec  indicate whether or not the timeout ftimeout? is set. The fourth
We explain some use of time data and timeout in this codast; group consists of untimed variables. These variables care st
of ‘CONST’ in Figure 1 usesglock; + u for its broadcasting time any bounded-size information other than time data. An uedim
data. It's timeout time is set to the same value. Whereest; of  variable can be, for example, a Boolean, a (bounded-siag)ten
‘CUSTOM’ picks a new time nonce, and broadcasts it. It's time or a finite set of process IDs to aggregate the informatiorugbo
variable proposing_time_nonce is set to this time nonce, but the which processes have respondedAts message. The last group
timeout is not set yet (since it has not obtained acknowladgm consists of just one variablejock;, which represents the local
The timeout time is updated using the time-stamp-estimatiock clock of processP;. The value of this variable evolves over real
and a ‘max’ operation when a process receives a “BROKENime. The actual evolution is defined by th@jectory definition
message. discussed in Section 3.4.

STATE VARIABLES OF PROCESSP;



3.4. Trajectory of Proces#; data (which can be expressed by the template) in its sending

We insist that a TIOA model for procesy have the following M€SSages.
trajectory definition for evolution of the value of its localock. Effects of Actions: The effects of an action are constructed by
The definition describes that 1. A local clock is monotorical simple assignments to variables and if statements thatdecl
increasing, and 2. When a local clock hits onetpf(a timeout assignments or nested if statements.
time) and the timeout fot? is set, the timeout action must be The user can usexpiration checksn the branch condition of
performed before time elapses. if statements. These checks are in the formXf~ clock; or
X + ¢ ~ clock;, where~ is either> or <, and X is eitherz®
or x (x is only for send, broadcast, and receive actions). Using
an expiration check, a process can, for example, check wheth

Note that the loose-synchronization assumption desceaeder received time data represents a future time, and thus caalioiyv
in this section cannot be described by the trajectory defmiof set the time data as a timeout timecdgive; of ‘CUSTOM’ in
one process, but is used in the soundness theorem as an &ssumpFigure 1 uses this check).

The values of untimed variables are assigned by arbitrgoyesx

3.5. Transitions of ProcesB; sions that only use untimed variables. The values of timedbies

In this subsection, we describe the template for trangitioh are assigned by any form &fimeDataExpression, defined in
processP;. A transition is defined using its precondition (the guard) ImedExpression. . . _
and effects. We have templates for both preconditions afedtef A timeout is set and reset byimeoutAssignment defined

The template is defined formally using a BNF-like form. Due td" TIMEOUTASSIGN TimeoutUpdate Expression is defined in
space limitation, we cannot list the entire template in ta@ep. TimedExpression. We can see ilMEOUTA SSIGN that an assign-

Instead, we explain important constructs in the templatéhia Ment to a timeout variable]’ is always performed with a setting

evolve: d(clock;) > 0
stop when: 3k : clock; > t¥ A timeout_is_set?

subsection. (See [13] for the entire template.) to timeout-is_set;.

Timed Expression Template: The templates for T Assi e kT UndateE .
TimeDataExpression, Timeout Expression, and vmeout Assignment ::=ti := TimeoutUpdate Bapression;
TimeoutUpdate Expression shown in TimedExpression are timeout_is_set} := true; |
the most important templgtes in_the entire template sets@he t5 .= 0; timeout_is_set’ := false;
includes a time nonce picking (netime_nonce(), which computes (TIMEOUTASSIGN)

a value greater thamlock;, a future time), computation of a

time stamp plus the constant (clock; + u), a ‘max’ operation,

timeout setting usinge, and the time-stamp-estimation trick 4. TIMEOUT ORDERABSTRACTION

(clock; + u + 2¢). These expressions are used in templates for Timeout order abstraction (TO-abstraction) enables tlee tes
process transitions explamed later in thls_ section. SerirBil apstract a TIOA model described using the template explaine
and its explanation again to observe that timed expressiotf®  Section 3 into an untimed finite-state model. This absiwacts
code can be expressed using these templates. performed as a code-to-code conversion from a model destrib
by the template into ordinary (untimed) 1/0 automata code W
first explain the overview of this technique.

TimeDataExpression ::= new_time_-nonce() | clock; + u |
x| x| 4.1. Intuition behind Timeout Order Abstraction
max(TimeDataExpression, Our goal for TO-abstraction is to obtain an untimed modet tha
TimeDataExpression) conservatively abstracts the original one. In order to iobtn
Timeout Expression ::= TimeDataEzpression | untimed model, we remove the local clocks of processes, and

maintain just the right amount of information that can eate
correct timeout orders in the original timed model. The kegai
is to not focus on real values of time nonces and time stamps,

TimeDataExpression + € |
clock; + u + 2¢ |

max(clock; + u + 2, but instead use identifiers (IDs) of them (labels in otherdsyr
TimeDataExpression + €) Identifiers are integers that distinguish different timences and
TimeoutUpdate Expression ::= Timeout Expression | stamps. We explain in more detail how IDs can be used using toy

examples described in Section 2.

In Protocol 1, time nonces are used to synchronize processes
behavior. Processes control the ordering of timeouts usiey
relative difference of their timeout times measured onrthazal

. . . . . clocks: one proces®; sets a timeout to a time non@N;, and
Precondition of Timeout Actions: The precondition of timeout o other P sets it to TN, + ¢. Information that is sufficient
¢ .

a,ft'on,“me‘)“t,? must always have the following formiock; = 14 yetrieve ‘the fact that?; times out after?; has done so in
L7 A timeout_is_sety. The above condition states that a timeout,y nossible scenario, is that both processes use the samae ti
action timeout? is enabled when the local clock d@®; hits the nonce TN, and P;'s timeout is set by adding the “slack’ to
specified timeout time, and also the value dfimeout_is_set  the time nonce, buf;'s timeout is set solely by the time nonce.
Is true. To keep track of the above information, we can use the foligwi
Precondition of ‘send’ and ‘bcast;” Actions: Preconditions abstraction: Picks of real-valued time nonces are replagqucks
for send;(j, M, x,x) and bcast;(J, M, x, ) must include the of symbolic IDs of them. Thé:-th picked time nonc& Ny in an
binding of the sending time datg in the following form: y =  execution of the original system is represented by ID (ietgg.
TimeDataExpression. Basically, a process can include any timeThe timeout time forP; set toT' N, is symbolically represented

max(tf, Timeout Expression)
(TimedExpression)



by a pair(k, false), and the timeout time foP, set toT' N, +¢ is  technique is used to represent the infinite state space ofttireed
symbolically represented by a pdit, true) — the Boolean values abstraction using a finite one.

represent whether the slaeks added or not. Then, we remove the We first explain each technique briefly here, and will go into
local clocks of both processes. After this abstractionneb®ugh more details in subsections of this section.

v;/]e cannot acce%s to the informzf;ltiltl)n Ohf local CAQCA( yalueBcési [Time Data Abstraction]: First, time data abstractionabstracts
they are removed), we can carefully choose which timeauist - oo ocal clocks from a given TIOA model, and abstracts-real
not occurat the current state of the untimed model, by looking "’\?alued time data in the system using symbolic representtias
the symbolic representations: I;’s timeout is set to(k, false)  gigcyssed in Section 4.1. In addition, all boolean condtitn the

gg(rjf (5 jm Seém::%?]usﬁ dIZriiZttitr?\(géfﬁuoer)de]rgsj ,?hg{nce;nugggist:pgg:)i%e original model that require a local clock value to determineir
the original timed model. The above discussion is the baksa i trgth—values are conserv_a’_uvely a.pprc_mmated_.
of time data abstraction and timeout order constraining, ¢fthe [Timeout Order Constraining]:Using information from the sym-
three techniques that we use in combination for TO-abstract  Polically represented timeout time, we constrain the ordér

We can apply the above idea of maintaining information thdtmeouts, as we discussed in Section 4.1.
is sufficient to retrieve correct timeout orders to Proto2ohs [Time Data Reuse and CompressioAJn execution of the untimed
well. In this case, we use IDs of time stamps. Since processe®del may require infinite number of new time nonce and/oetim
always addu to time stamps, we can just keep track of the IDstamp IDs because the length of a model execution is typicall
of a time stamp when the value computed from a time stamipfinite. Our basic strategy is teeusea time stamp or a time
plus u (in the form of TSy, + w) is communicated. We explain nonce that is once taken by some process but is no longer usec
how we treat the time-stamp-estimation trick in the absiwac anywhere in the model.
after we explain the abstraction for the max operation. lotétol
3, processes use ‘max’ operations to conservatively upttee 4.3. Time Data Abstraction
timeout estimates. To represent a ‘max’, we use a set of IDs. F
example,max(tny, tns, tny) is represented by1,3,7}. Now tng
is considered asiax(tn3), and thus is represented by}. Timeout
settingmax(tny, tns) + ¢ is represented b{{1, 3}, true). We can
constrain timeout orders as follows: If for two sets of timenoe
IDs IDsy; andIDsy, IDs; O IDsy and two timeouts are set at

(IDsy,true) and (IDss, false), respectively, then the timeout at . X oo

(IDsy, true) is disabled. This is becaug®s, represents a larger SAMPS and time nonces using positive integers that rayrése
value than/ Ds,. When time nonces and time stamps are used -%_dentmers of time sta_lmps anc_j time nonces, as d'SCUSS@bm
the same protocol, we use two sets of integers (IDs) to reptes lon 4.1..The type of t'|med yan_ables (which store time dalfar

one time data({1,2}, {4}) representsuax(TN,, T Na, T'Ss +u), abstraction becomesymbolicTimeData = (set of Natural) x

and ({3}, {2}, true) represents a timeout setiabux (T N3, TSz + (set of Natural), where the first set represents time stamps and
u) + ¢. We do not allow a timeout update using a slack-addeffl¢._Second represents time nonces. And the type of timeout
timeout and non-slack timeout, since the updated timeaqutagbe  Va'iables becomesSymbolicTimeout = (set of Natural) x
represented symbolicafyWe add a run-time check of consistency(set of Natural) x Boolean, where the last Boolean entry represents

of timeout update in the abstraction, so that the abstraiedel whether or not the “slack” value is added to the timeout value.
conservatively approximates the oriéinal For the above two typeSymbolicTimeData and SymbolicTimeout,

The time-stamp-estimation trick usingock; + u + 2 is ab- We define two functionss_set andtn_set that get the first integer
stracted as set and the_second_lnteger set, resp_ectlvely, from a giverbaeljc
({}. picked ts.id_set, true), where picked_ts_id_set is the set 'ePresentation of time data or a timeout value. We also use a
of time stamp IDs that have been picked thus far ijpredicate (a Boolean functiosjack_added for SymbolicTimeout
the current execution.({},picked_ts id_set,truc) represents to access to the third entry (a Boolean valuepggibolicTimeout.
max(picked_ts_set) + u + ¢ in the original model, where To use symbolic representation of time data discussed above
picked_ts_set is the set of time stamps picked thus far. This reflectime data abstraction conducts the following five processes
the discussion for the time-stamp-estimation trick in ®ec that 1) Over-approximating the preconditions of timeout acion
clock; + u + 2¢ can be interpreted aglock; +¢) +u+¢e, and  2) Symbolically representing of time stamps and time nonces
clock;+e over-approximates every time stamp that has been picked using IDs,
in physical time. 3) Abstracting expiration checks, and

4) Abstracting the time-stamp-estimation tricklock; 2¢,
4.2. Overview of Timeout Order Abstraction ) and g P ock +ut2e

We use three sub-techniques in combination for timeout oder5) Removing the local clock and the trajectory definition.
abstraction of a TIOA model described by the template erpli  The transformation is formally defined as a function (a ctue-
in Section 3. The three techniques are: 1. Time data abista@  code conversion) from the TIOA syntax template defined irtiSec
Timeout order constraining, and 3. Time data reuse and G@Apr 3 g the ordinary 1/0O automata syntax. Due to space limitatioe

sion. The first two techniques are used to abstract the widgrl cannot present the definition of this function in this paper
real-time system into an untimed, but infinite-state mod@ie third  the definition is described in [13]. In the following, we eaj

important parts of the abstraction.

By time data abstractiorthat we describe in this section, the
user can abstract a TIOA model described using the template
discussed in Section 3 into an untimed infinite-state modéd.
will consider how we can make this untimed model a finiteestat
model in Section 4.5.

The basic idea of time data abstraction is to represent time

5This restriction is not too restrictive because the user gs@ two timeout Over-approximating the Preconditions of Timeout Actions:
variables for a situation in which one proce3gis waiting for a timeout of another Pp 9 .

processP, (P uses a slack-added timeout in this case) and at the same timeu1e precgndlglon of .everyktlmeou'[ action, _WhICh has the _form
waited by a different proces®s (P, uses a non-slack timeout, afdy uses a _ClOC_ki = t; Atimeout_is_set;, iS over-approximated by replacing
slack-added timeout). it with timeout,is,setf.



Symbolically Representing Time Stamps and Time Nonces: 4.5. Time Data Reuse and Compression

We treat time nonce IDs using a global variapleked_tn_id_set The length of an execution of an untimed model obtained from
of positive integer typepicked_tn_id_set represents the set of {ime data abstraction can be infinite. This implies that aecation
time nonce IDs picked thus far. Now netwe.nonce() function may require infinite number of new time nonces or time stamps.
gives the smallest ID not ipicked tn_id_set. \We perform book- The simplest strategy that we can follow to reduce the necgss
keeping for time stamp IDs similarly usindcked_ts_id_set. EVery  nymper of time nonces and time stamps iseosea time stamp or
appearance otlock; + u is replaced by newimestamplD(), 3 time nonce once taken by some process but no longer useg in an
which gives the smallest ID not ipicked_ts_id_set. time data in the model. This reuse would not change the behavi
Abstraction of Expiration Checks: Expiration checks of the of the untimed model (in terms of its traces) since a time Bonc
form clock; > x + ¢ is abstracted using the same logic as W@y 5 time stamp is symbolically represented by its IDs, and fo
use to determine the order of timeouts, explained in Seetidn  the yntimed model, these IDs have no more information thah ju
Informally, if there is a timeout set af and the value of is at gjstinguishing an ID from another. In addition, we sometifreeed
mostz, then_clockl- >x+te will not hold, co.nS|der|ng the loose- 5 more elaborate technique that we dafie data compressiom
synchro_mz_aﬂon assumption. If we cannot infer the trut[ue_va_)f order to effectively express multiple time nonces (or stajiyy one
the expiration check, then the a}bspractmn uses a nonsdigtistic symbolic time nonce (or stamp). Please see [13] for moreilseta
choice for the result of the expiration check. _ of time data compression. This reuse and compression s
Expiration checks of the formlock; > x is approximated qo not completely exclude the possibility that the resgltmodel
using a special list, called the expired time-data list,afifstores il needs an infinite number of time nonces or time stamps.
time nonce and time stamp IDs picked thus far that are “styongpowever, by incorporating the monitor for availability oifrie
exp|red"‘—exp|red orzall. Ioce_ll clocks. Whether_a time nonce/stammonces and time stamps, we can use the following strategy: we
ID 1Dy is strongly expired is deduced from either of the followingfirst hound the number of time nonces and time stamps that may
two facts: 1. A timeout is performed & D + ¢, and symbolic seq in the model, and when model-checking it, we also monito
time data7'D contains/Dy; 2. A non-deterministic choice for {he ayailability of time nonces and time stamps. If we obtain
clock; > x + ¢ results in evaluating the inequality to be truecoynterexample for the availability, we increase the sitzéine
andzx includesiDy,. U_sing the exp_ired list, we can mfe_r the truth yonces and time stamps. This “bound & supersize” technigue i
value of clock; > x in the following case: if all IDs inz are  particularly effective for bounded model-checking. Tinsalreuse

strongly expired, themlock; > = must be true. If we cannot infer ng compression is formally defined as a code-to-code csiover
the truth value of the expiration check, then the abstraati®es a fynction in [13].

non-deterministic choice.

Rule for the time-stamp-estimation trick: As we discussed in 5. SOUNDNESS OFTIMEOUT ORDERABSTRACTION
Section 4.1, the time-stamp-estimation trick usigk; + u + 2¢ In this section, we briefly describe how we can prove the
is abstractly represented by soundness of TO-abstraction that we have discussed ino8ecti
({}, picked ts_id_set, true). 4. (A more detailed proof appears in [13].) The soundnessncla

Removing the local clock and the trajectory definition: After ;e guarantee is stated as Theorem 1.
the untiming abstraction conducted above, the definitiorthef Theorem 1: For any execution of the original timed model
transitions of the untimed system does not use local clobks:; it any instantiation of: and u, there exists a corresponding
at all. Thus, we can safely remove local clock variables @@l t gyecutions of the untimed model such that values of the untimed
trajectory definition. variables in the state after the k-th (discrete) transit@ppearing

4.4. Timeout Order Constraining g]pge:rrﬁ]éhi?]ﬂsame as those in the state after the k-th transition

The untimed model after time data abstraction looses the con The key technique to use is simulation relationfrom the

trol over timeout orders in the original timed model becausgriginal model to the untimed abstraction [7]. The basiaidéthe
the abstraction removes local clocks of processes. Therefze  gimy|ation relation technique is to find, for each possithsition
need to put the correct timeout orders back into the untimeg,q trajectory of one automaton, a corresponding tramstfiat
model by constraining timeout orders using the informafi@m a6 the “same effects”. For example, the maximum operatfon
symbolically represented timeout time. To constrain tmtgnrd_gr, the timed original model has the “same effect’” of the symboli
we allow the abstract scheduler that resolves non-det@mim  mayimum operation in untimed model. We split this simulatio
the untimed model to disable specific timeouts. The schedulgs|ation proof into two parts: 1. Simulation relation frorhet
determines the next action to be performed from the set of &}iginal model (we call the modeDrig) to the infinite-state
enabled actions in the current state. Whether a specificra®io ,ntimed model obtained after time data abstraction anddirne
enabled or not is normally determined solely by its prectowli  orger constraint (we call this modeh f) and 2. Simulation relation

In addition to each precondition of actions, for timeouti@ts, from 7y f to the finite-state untimed model obtained after time data
the scheduler looks at symbolically represented timeauetto eyse and compression (we call this modieh).

decide whether a particular timeout action is enabled or @onh- ) ] _ . _
sidering the loose synchronization assumption, if a timeation ~Proof Idea [Simulation relation fromOrig to Inf]: Essentially,
timeout}, is set to a time larger than the time for another timeouthe two models executes the same execution, one using raaheri
timeout) by more thane, thentimeout], occurs aftertimeout] UMe data, and the other using the symbolic representatiah o
has done so. By rephrasing the above statement in symbolif€ Simulation relation is defined so that a stateCofig and a
representations, we obtain the following. Timeout actioneout?, state of Inf is related when the values of all untimed variables
of a processi is disabled (even whenimeout_is_set’ is true) 1N Orig are exactly equal to those ifinf, and also symbolic
when the following condition hoIdsﬂtZ € Timeout_variables; - representations of time data Im f “correctly” represent time data

. . ] - . j ;
(J # 1) A (tnset(ty) C tn,set(t}C)) A (tsset(ty) C ts-set(t})) A 6For example, we need this technique for the DHCP-F protocolveéver, we
—slack_added(t}) A slack_added(¢},). do not need it for resource-sharing example described inde2t



in Orig. The notable difference betweenrig and Inf raises 20. The verification time was 350743.7 seconds (97.4 hols).
from two points. The first point is the difference of when tomés examine the effectiveness of bug-finding using TO-abstragctve
can be executed iWrig and Inf. In Inf, the local clocks are experimented with verification of DHCP-F with a slight chang
abstracted away, and instead, the scheduler conseryadiigglbles We removed one condition for checking a sequence number to
timeouts that would violate the timeout order inferred bynbplic  ensure that the received message is for the current rouridr Af
timeout times. We need to prove (and have actually proved this mutation, we found a counterexample at depth 17 (the run
[13]) that when a timeout action is enabled @vig, the same time was 52851.28 seconds 14.7 hours). This counterexample
timeout action is also enabled i f. This fact comes from the has a complex scenario, and we believe that it is very hardtb fi
observation that when the scheduler disables a timeolit fiy the by human analysis. More details of this counterexample apipe
corresponding timeout iWrig has not yet reached. The second13].
point is from the over-approximation otlock; + u + 2¢’ using
max(picked_ts_id_set) + u + ¢ in Inf. We take into account this 7 CONCLUS'O_N )
point in the simulation relation by relating a statef Orig and ~ We presentetimeout order abstractioT O-abstraction), a tech-
a stater of Inf when the symbolic value of a timeout variablenique to abstract a particular subset of loosely syncheshieal-
in » (when converted into the numeric value using the infornmatiotime distributed systems (LSRTDS'’s) into a finite-stateimet
in s) is not exactly equal, but ifess thanor equal to the value Model. By using this technique, the user can model-check the
of the corresponding timeout variable inWe have succeeded to Untimed abstraction to verify the original system, or fingibin it.
prove a simulation relation with this condition (which is aker ~TO-abstraction is (as far as we know) the first automatic el
than exact matching of symbolic and numerical values). tool for time-parametric verlflcat|o'n of LSRTD’s. The usemncuse

[Simulation relation from/n f to F'in]: A proof for a simulation ©nly maximum operation for manipulating time data in therent
relation fromInf to Fin is relatively easy compared to that fromVersion of TO-abstraction. Extension of allowable opensi is
Orig to Inf. The key idea is to add a table of corresponding timéuture study. ) .
stamps (and time nonces) and reused/compressed versibarof t Acknowledgement: We thank anonymous reviewers for their
in Fin, so thatFin now emulatesinf in parallel to its usual Nelpful comments on a preliminary version of the presentguep
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