
Proving safety properties of an aircraft landing protocol
using timed and untimed I/O automata: a case study

by

Shinya Umeno

B.S., Information Science (2004)

Tokyo Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 2007

c© 2007 Massachusetts Institute of Technology
All rights reserved

Signature of Author .
Department of Electrical Engineering and Computer Science

October 25th, 2006

Certified by .
Nancy A. Lynch

Professor of Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Srinivas Devadas

Chairman, Department Committee on Graduate Students

Proving safety properties of an aircraft landing protocol

using timed and untimed I/O automata: a case study

by

Shinya Umeno

Submitted to the Department of Electrical Engineering and Computer Science
on October 25th, 2006, in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis presents an assertional-style verification of the aircraft landing protocol of NASA’s
SATS (Small Aircraft Transportation System) concept of operation [16] using the timed and
untimed I/O automata frameworks. We construct two mathematical models of the landing
protocol using the above stated frameworks. First, we study a discrete model of the protocol,
in which the airspace of the airport and every movement of the aircraft are all discretized.
The model is constructed by reconstructing a mathematical model presented in [2] using the
untimed I/O automata framework. Using this model, we verify the safe separation of aircraft
in terms of the bounds on the numbers of aircraft in specific discretized areas. In addition,
we translate this I/O automaton model into a corresponding PVS specification, and conduct a
machine verification of the proof using the PVS theorem prover.

Second, we construct a continuous model of the protocol by extending the discrete model
using the timed I/O automata framework [6]. A refinement technique has been developed to
reason about the external behavior between two systems. We present a new refinement proof
technique, a weak refinement using a step invariant. Using this new refinement, we carry over
the verification results for the discrete model to the new model, and thus guarantee that the
safe separation of aircraft verified for the discrete model also holds for the new model. We also
prove properties specific to the new model, such as a lower bound on the spacing of aircraft in
a specific area of the airport, using an invariant-proof technique.

Thesis Supervisor: Nancy A. Lynch
Title: Professor

Acknowledgments

First of all, I would like to thank my thesis supervisor, Professor Nancy Lynch. Without her

continuous support, I could not have written this thesis. Through interactions with her for this

thesis, I learned many things, such as how to organize chapters and paragraphs, how to make

rigorous mathematical arguments, and lots and lots.

I also would like to thank G. Dowek and C. Muñoz and V. Carreño, the authors of the paper

[2, 12], which inspires my research presented in this thesis. Indeed, what we call the “discrete

model” in this thesis is originally constructed by them in [2]. In addition, the construction of

the “continuous model” in this thesis follows a scheme analogous to the one used for the “hybrid

model” presented in [12].

I am grateful to my office mates and the members of Theory of Distributed Algorithms. In

particular, I thank Sayan Mitra for having both technical and non-technical discussions with

me. I also thank Calvin Newport. As a student who entered MIT in the same year as I, I

often talked with him about the progress of each other’s master’s theses and other things that

came up for us at the same time (how to write a proposal for a thesis, how to apply a teaching

assistantship, and so forth).

I also thank Professor Osamu Watanabe and Professor Roger Pulvers in Tokyo Institute of

Technology. Prof. Watanabe was the supervisor for my bachelor’s thesis, and I leaned basics of

proof techniques in computer science literature from him. Prof. Pulvers taught me English in

several courses, and I also discussed with him about how to write a statement of objectives for

graduate school applications. Without these two people, I would not have entered MIT.

A special thanks goes to my friends, especially, F. L., N. I., K. K., A.T., K. S., P. S., H.

S.-B., N. Y., T. I., R. Y., S. R., H. O., T. A., S. T., M. H., N. N., H. I., M. S., Y. K., Y. S., S.

K., K. E., A. E., Y. P., S. P., M. T., A. P., S.C., K. H., K. S., M. K., J. W., S. P. These people

helped me to temporarily get relief from pressure of writing this thesis. Thank you, all!

Last, but not least, I thank my parents and my wife Chieko. Chieko always supported me

mentally, and also by delicious dinners. With her Japanese-style dinners, I did not need to miss

our country, Japan, too much, and could concentrate on writing the thesis.

Contents

1 Introduction 9

2 Discrete model of SATS 12

2.1 Introduction . 12

2.2 Discrete model . 12

2.2.1 Logical zones . 13

2.2.2 Leader aircraft . 14

2.2.3 Paths of aircraft . 15

2.3 Formal code for the discrete model . 17

2.3.1 Types and auxiliary functions . 17

2.3.2 Transition signatures and state variables of the discrete model 25

2.3.3 Mathematical Notations . 27

2.3.4 Transitions of the discrete model . 28

3 Properties of the discrete model and their proof 39

3.1 Introduction . 39

3.2 Main Properties . 39

3.3 Auxiliary invariants . 43

3.3.1 Uniqueness of aircraft and the correspondence between the logical zones

and the landing sequence . 43

3.3.2 Key Invariants . 54

3.4 Proving the main properties, Part 1: Properties that can be proved by straight-

forward induction . 61

3.5 Blocking of aircraft . 63

3.6 Proving the main properties, Part 2: strengthening Property 6 73

3.7 Proving the main properties, Part 3: the key lemma, and the remaining properties 76

3.7.1 Intuition behind the lemma . 77

4

3.7.2 The key lemma . 85

3.7.3 Proof of Lemma 3.26 . 90

3.7.4 Proof of Property 2 . 112

3.8 Proof using the PVS theorem prover . 113

3.8.1 Steps we have taken to use a theorem-prover 113

3.8.2 Theorem-proving process in PVS . 114

3.8.3 Our experience obtained by this case study and possible improvement for

mechanical proof processes using theorem-provers 116

4 Timed I/O automata framework 121

4.1 Timed I/O automata . 121

4.1.1 Functions . 121

4.1.2 Time . 121

4.1.3 Static and dynamic types . 122

4.1.4 Trajectories . 122

4.1.5 Hybrid Sequences . 124

4.1.6 Timed Automata . 126

4.1.7 Timed I/O Automata . 129

4.2 Simulation relation and refinement proof techniques for timed I/O automata . . 130

4.2.1 Forward simulation and refinement for timed I/O automata 130

4.2.2 Weak refinement using step invariants . 135

4.2.3 Close correspondence between executions of two automata implied by a

forward simulation . 138

4.2.4 Invariants deduced from a forward simulation 139

5 Continuous model of SATS and its safe separation property 140

5.1 Introduction . 140

5.2 Hybrid model of [12] . 140

5.3 Our New Continuous model . 143

5.3.1 Formal Specification for ContSATS . 145

5.3.2 State of ContSATS . 148

5.3.3 Transitions inherited from the discrete model to ContSATS 148

5.3.4 New Internal Transitions in ContSATS 152

5.3.5 Trajectories of ContSATS . 153

5.3.6 Assumptions for ContSATS . 154

5.4 Basic invariants of ContSATS . 156

5.5 Carrying over results from the discrete model using a refinement 159

5.5.1 Refinement mapping . 160

5.5.2 Auxiliary invariants needed for refinement proof 162

5.5.3 Refinement proof . 173

5.6 Spacing properties of aircraft in ContSATS . 177

5.6.1 ST: the spacing of aircraft in the approach area 177

5.6.2 S(H3,B) and S(L,B): the spacing between aircraft in the initiation zones

(holding3 and lez) and aircraft in the base zones 180

5.6.3 S(M,H3): the spacing of aircraft in a missed approach path, part 1 181

5.6.4 S′
M and S(T,M): the spacing of aircraft in a missed approach path, part 2 . 182

5.6.5 S(M,H3): the spacing of aircraft in a missed approach path, part 3 189

6 Conclusions and Future Work 191

A PVS code 197

6

List of Figures

2.1 13 logical zones in SATS . 13

2.2 Logical zones divided into four areas . 14

2.3 Paths of aircraft . 16

2.4 Paths of aircraft that have missed the approach 17

2.5 Vocablary Part 1 of 2 . 19

2.6 Vocablary Part 2 of 2 . 20

2.7 Auxiliary functions defined in PVS: Part 1 of 2 21

2.8 Auxiliary functions defined in PVS: Part 2 of 2 22

2.9 The virtual number of aircraft . 24

2.10 Code for the discrete model [Part 1 of 2. Signature and States] 26

2.11 Code for the discrete model [Part 2 of 2. Transitions] 29

2.12 Missed Approach Initiation . 35

2.13 The double transition of aircraft in the third case of LowestAvailableAltitude(right) 37

3.1 An example of a state in which the virtual number of aircraft on the right side is

more than two . 41

3.2 The left side is b-blocked, where b is the first aircraft of lez(right) 65

3.3 c is not ready to go to the opposite side until b initiates the approach 66

3.4 Transitions between cases creating a circle . 81

3.5 Transitions between seven cases in the lemma . 86

3.6 A typical node in a PVS proof tree . 115

3.7 Use of labels . 115

3.8 Use of labels (when another formula is inserted to the assumptions) 115

5.1 Sub-area that exhibits a continuous behavior in the hybrid model of [12] 143

5.2 The continuous model ContSATS . 144

5.3 Vocabulary for ContSATS . 146

5.4 Formal code for ContSATS, Part 1 of 3 . 148

7

5.5 Formal code for ContSATS, Part 2 of 3 . 149

5.6 Formal code for ContSATS, Part 3 of 3 . 150

5.7 Lower bounds on the spacing of aircraft in two consecutive zones in ContSATS . 178

5.8 Two aircraft are respectively in the different sides of the base zones. 179

5.9 Two lemmas and one theorem that state the minimum spacing of aircraft 184

8

Chapter 1

Introduction

Safety-critical systems have been the subject of intensive study of applications of formal verifi-

cation techniques. As a case study, we conduct an assertional-style safety verification of one of

such safety critical systems: an aircraft landing protocol that is part of NASA’s SATS (Small

Aircraft Transportation System) concept of operation [16].

The SATS program aims to increase access to small and medium sized airports. The situ-

ation is significantly different in these airports from large airports, where separation assurance

services are provided by the Air Traffic Control (ATC). Due to the limited facilities and inferior

infrastructure in such airports, in the SATS concept, a centralized air traffic management sys-

tem is automated as a module called the Airport Management Module, and gives supplemental

information to pilots to achieve the safe landing of the aircraft. It is the pilots’ responsibility to

determine the moment when their aircraft initiate the final approach initiation to the ground.

Pilots follow the procedures defined in the SATS concept of operation to control their aircraft

in a designated area in the air space of the airport, called the Self Controlled Area.

It is crucial to guarantee a safe separation of the aircraft in the Self Controlled Area when

each pilot follows the procedures of the SATS concept. For this reason, a mathematical model

of the landing and departure protocols of SATS is presented in [2]. The model is a finite-state

transition system obtained from a mathematical abstraction of the real system. In [2], some

properties of the discrete model that represent the safety separation of the aircraft have been

exhaustively checked using a model-checking technique. These include properties such as a

bound on the number of aircraft in a particular portion of the airport (for example, no more

than four aircraft are in the entire Self Controlled Area; or at most one aircraft is at a certain

part of the airspace in the airport).

As mentioned above, in the discrete model, the geographical and kinematic information of

the real system is discretized. This model can be used to prove the safe separation of aircraft in

terms of the bounds on the numbers of aircraft in specific discretized areas. However, to examine

9

properties that involve more realistic dynamics of aircraft, such as the spacing between aircraft,

we need a more detailed modeling of the aircraft kinematics and the geometry of the airport. To

treat such properties, a hybrid model of the protocol is presented in [12], in which the movement

of the aircraft in some specific air space of the airport is modeled as a continuous behavior.

Using this model, a lower bound on the spacing between two aircraft in this specific area (where

aircraft moves continuously) of the hybrid model is claimed and exhaustively checked using a

symbolic model-checking technique. A limitation of this hybrid model is that it captures only

the dynamic behavior of aircraft in some specific area of the airport.

In this thesis, we construct two mathematical models of the protocol using the timed and

untimed I/O automata framework [10, 6], and conduct a safety verification of them using

assertional-style proof techniques.

First, we present a discrete model that is constructed by reconstructing the model presented

in [2] using the untimed I/O automata framework. I/O automata have been successfully used to

model nondeterministic distributed systems and to prove properties of them. Their treatment

of nondeterminism is suitable for constructing a discrete model of the landing protocol in which

the next possible step that the model can take is nondeterministically defined. Using our recon-

structed model, we carry out a proof of these properties using inductive proof techniques that

have been used in the computer science literature, as opposed to an exhaustive state exploration

used in [2]. We also translate this I/O automaton model into a corresponding PVS specification,

and conduct a machine verification of the proof for the properties of the discrete model using the

PVS theorem prover.1 Thus, this case study demonstrates the feasibility of using a mechanical

theorem prover to prove properties of a moderately large and complex system in the context of

the I/O automata framework.

The second model we present in this thesis is a continuous model that more realistically

reflects the dynamics of aircraft movement in a real system than the discrete model we study

first or the hybrid model presented in [12]. In contrast to the above mentioned models, our

continuous model captures the continuous movement of aircraft in the entire Self Controlled

Area. As discussed in Chapter 5, some problems that arises from the discretization of the

aircraft dynamics are resolved in this model. Using this model, we first formally verify the safe

separation properties proved for the discrete model also hold in our new continuous model. We

use the refinement technique to carry over the results for the discrete model to the continuous

model. In doing so, we introduce a new refinement definition, a weak refinement using a step

invariant, that makes use of invariants of automata in a refinement proof. Next, we verify several

1Complete I/O automata and PVS specification codes, and PVS proof scripts are available at
http://theory.csail.mit.edu/∼umeno/

10

minimum spacing properties including those verified in [12]. These properties are proved using

an invariant-proof technique.

This thesis is organized as follows. Chapter 2 is devoted to presenting the discrete model of

the protocol. We start by an overview of the model. Next we present formal I/O automata code

of the model, and then closely examine auxiliary functions used for the automata, and state

variables and transitions of the model. In Chapter 3, we introduce the main properties of the

discrete model we want to prove. These properties mainly state upper bounds on the number

of aircraft in particular areas of the airport. Next, we prove some auxiliary invariants that we

consider to be the most basic properties of the model. Using these invariants, we prove the

main properties. We also introduce an important notion of “blocking” of aircraft. Using this

notion, we strengthen some of the main properties in order for them to be proved inductively.

We also discuss some issues concerning proofs in PVS. In Chapter 5, we present the continuous

model of the protocol, and verify the safe separation properties of it. We introduce the formal

description of the model, and examine it by comparing it with the discrete model in Chapter 2,

and the hybrid model of [12]. Next we carry over the results for the discrete model presented in

Chapter 2 to the new model by using a refinement technique. Finally, we verity several spacing

properties that represents a finer geographical and dynamical claim than can be expressed using

the discrete model.

Finally in Chapter 6, we summarize the results of this thesis, and give an evaluation. We

also discuss future work in this chapter.

The code used for the PVS proof is attached as Appendix A

11

Chapter 2

Discrete model of SATS

2.1 Introduction

In this chapter, we present an I/O automaton model for SATS, based on the discrete model

presented in [2]. Whereas the model in [2] describes both aircraft landings and departures, in

this thesis we restrict our attention to landings. The main reason for this restriction is that the

interesting procedures of SATS are performed in the landing part, and the properties that are

not trivial, that is, those we cannot prove by just examining the preconditions of the transitions,

are defined for the landing protocol.1

In this discrete model, the space of the airport used for landings of aircraft is is divided into

several zones. These zones are represented as state components of the automaton, and the model

can be used to check if the desirable upper bound on the number of aircraft in a specific zone

is satisfied. However, to verify the properties that involve more realistic dynamics of aircraft,

such as a property of the spacing between aircraft, we need a more detailed model of the aircraft

kinematics and the geometry of the airport. A continuous model, such as the hybrid model

presented in [12], or the continuous model we will present in Chapter 5, is suitable to deal with

such properties.

We start with an informal explanation of the discrete model in Section 2.2, and present the

formal definition of the model as an I/O automaton in Section 2.3. We also closely examine

each transition of the model in Section 2.3.4.

2.2 Discrete model

In this section, we will present a high-level overview of the model used in this chapter.

1Indeed, for the departure part, the properties examined in [2] can be proved immediately from how the
preconditions of the transitions for the departure procedures are defined.

12

2.2.1 Logical zones

The space of the airport used for landings is logically divided into 13 zones (see Figure 2.1). Each

zone is modeled as a first-in first-out queue of aircraft. Only the first aircraft of a zone can move

to another zone, and when an aircraft moves from one zone to another, it is removed from the

head of the queue that it leaves, and is added to the end of the queue that it joins. Some zones

have a symmetric structure with respect to the left side and the right side, and share the same

name but have different attribute values designating their side, for instance, holding3(right)

and holding3(left).2

holding3(right)

holding2(right)

holding3(left)

holding2(left)

base(right)base(left)

intermediate

final

runway

lez(left)lez(right)

maz(right) maz(left)

Figure 2.1: 13 logical zones in SATS

For the sake of easier understanding of how each zone is used, we group these 13 zones into

the following four areas, depending on how they are used in the system: the left initiation area,

the right initiation area, the approach area, and the runway (see Figure 2.2). The left initi-

ation area consists of holding3(left) (holding fix at 3000 feet) and holding2(left)(holding

fix at 2000 feet), which represent the zones to hold the aircraft at 3000 feet and 2000 feet,

respectively, and which are used for the vertical approach initiation from the left side of the

airport; lez(left) (lateral entry zone), which is used for the lateral approach initiation from

the left side; and maz(left) (missed approach zone), which is used as the path that an air-

craft that has missed the approach goes through to initiate the approach operation again. The

right initiation area is a counterpart of the left initiation area, consisting of holding3(right),

holding2(right), lez(right), and maz(right). The approach area consists of base(right),

2Note that this right and left are determined with respect to a pilot’s view; thus it is the opposite to what we
actually see in the picture (for instance, holding3(right) is on the left side in the picture.)

13

base(left), intermediate, and final, which make a T-shaped area for the aircraft to land.

The runway consists of zone runway. We say that an aircraft is on the approach if it is in the

approach area. In addition, we often refer to the combined area of the two initiation areas and

the approach area (thus, it consists of all logical zones except for runway) as the operation area.

Actually, this area is the abstraction of the Self Controlled Area that we mentioned in Chapter

1. In this thesis, we focus on the safety conditions in the operation area.

Approach Area

Runway

Right Initiation Area Left Initiation Area

Figure 2.2: Logical zones divided into four areas

2.2.2 Leader aircraft

When an aircraft enters the system, the system assigns its leader aircraft, or the aircraft it has

to follow. This leader relation constructs a chain: the first aircraft that enters the system does

not have a leader, the second aircraft that enters the system is assigned the first aircraft as

the leader, the third one is assigned the second one as the leader, and so on. A leader is an

important notion of the system since it is used within the conditions to decide if an aircraft can

initiate the final approach to the ground. As we will examine closely later, an aircraft cannot

go to the approach area until its leader has gone there. We will present the initiation conditions

formally in Section 2.3.4.

The assignment of the leader for an aircraft does not change once it is assigned if that aircraft

lands successfully in the first try. However, an aircraft does not always succeed in landing at

the first attempt; that is, it may miss the approach. In such a case, its leader is reassigned and

it has to redo the landing process from the approach initiation. We will closely look at the case

when an aircraft misses the approach in Section 2.3.4.

14

2.2.3 Paths of aircraft

In the SATS concept, a centralized ground-based automation system, called the Airport Man-

agement Module, is used in the protocol to give aircraft information needed to decide whether

or not each aircraft can proceed to the next zone at that moment. This module would typically

be located at the airport and would calculate information for aircraft from aircraft performance,

aircraft position information, and a set of predetermined operation rules of the concept. It is

worth to note here that the module does not decide the exact order of the progression of the

aircraft in the Self Controlled Area. Each aircraft uses the information given by the module,

and individually decides whether or not it can proceed to the next zone.

In the discrete model, the information given by the module is implicitly used within the

preconditions of the transitions that represents when specific movements of aircraft are allowed.

When several transitions are allowed to perform at the same state of the model, the next

possible transition of the system is nondeterministically determined. Details of the movement

of an aircraft in the logical zones – such as when a specific procedure (movement) of the aircraft

is allowed, or under what conditions it can initiate the approach to the ground – are presented

in Section 2.3.4. Here we present a high level picture of how an aircraft moves from the entry to

the logical zones, initiates the approach to the ground, and lands on the runway. We refers to

the corresponding transitions’ names in parentheses when explaining the movements of aircraft

in the following.

An aircraft can enter the logical zones by entering either holding3 (VerticalEntry) or lez

(LateralEntry) of either side. An aircraft that has entered holding3 descends to holding2

of the same side (HoldingPatternDiscend), and initiates the approach to the ground from

there (VerticalApproachInitiation). An aircraft that has entered lez can go directly to the

approach area if specific conditions are met, but if the conditions are not satisfied, it first goes to

holding2 (LateralApproachInitiation). Every aircraft that initiates the approach first goes

to the base zone of the same side where it initiates the approach: for instance, an aircraft that

initiates the approach from holding2(right) goes to base(right). Once an aircraft enters

base, it merges into intermediate (Merging), then proceeds to final (FinalSegment) and

lands on runway (Landing). This progression of the movement of aircraft is depicted in Figure

2.3.

An aircraft may miss the approach to the ground at the final zone. In such a case, it has

to execute the landing operation again from the initiation of the approach. Thus, it once again

goes back to a zone where it can initiate the approach again, and make the next try to land.

The problem that arises here is how to decide which side of the area it should go back to in

15

Lateral Entry

Vertical Entry

Figure 2.3: Paths of aircraft

order to initiate the approach (remember that an aircraft can initiate the approach either from

the left side or the right side of the logical zones). The system solves the problem by assigning

the side of an approach initiation area to which a particular aircraft has to go in case it misses

the approach. This assignment of the side, called the “missed approach holding fix (mahf)” is

given by a centralized automated system called Airport Management Module, to an aircraft

when it enters the system, based on a global system variable nextmahf. The variable nextmahf

is of type Side, an enumeration of left and right, and is used by the system to keep track

of the last assignment of mahf to aircraft that have entered the system. The system flips the

value of nextmahf, either from left to right or vice versa, every time it assigns the mahf to

an aircraft. This produces an alternating assignment of the left side and the right side to the

aircraft in the landing sequence. Note that despite the use of the centralized module, as we will

discuss in Section 2.3.4, the protocol actually exhibits nondeterministic behavior: Though the

centralized module gives the information to aircraft so that each aircraft can individually decide

the moment when that aircraft will proceed to the next zone, the module does not determine

the exact order in which aircraft proceed in the system.

An aircraft that has missed the approach is treated in a way analogous to a newly entering

aircraft in terms of the operation in the landing sequence: it is first taken from the head of

the landing sequence, then the mahf assignment of it is reassigned based on nextmahf, and it is

again added to the end of the landing sequence. The variable nextmahf is flipped in this case

as well, so that the alternating assignment will be preserved even in case some aircraft miss the

approach.

In the logical zones, a missed aircraft, with the reassignment as stated above, first goes

16

to maz of the side that it is assigned as its mahf (MissedApproach), and from there it goes

back to either holding2 or holding3 of the same side as the side of maz where it leaves

(LowestAvailableAltitude). Whether it goes to holding2 or holding3 is determined by

the situation at the time it leaves maz. Details of the transition for a case of a missed approach

are discussed in Section 2.3.4. These paths for aircraft that have missed the approach are shown

in Figure 2.4.

If mahf is right if mahf is left

Figure 2.4: Paths of aircraft that have missed the approach

2.3 Formal code for the discrete model

In this section, we present formal code for the landing protocol of SATS. The language we

used is a subset of the Timed I/O Automata formal language (TIOA) [3], which is intended to

model systems that involve time-dependent behavior or continuous dynamics, using the notion

of trajectories. Since we have just discrete transitions for the model treated in this chapter, we

used a subset of the language without trajectories.

2.3.1 Types and auxiliary functions

The automaton code imports the vocabulary statement (Figures 2.5 and 2.6). The vocabulary is

used to define or declare types and auxiliary functions. For example, an aircraft type, Aircraft,

is defined, and auxiliary functions such as leader or virtual are declared, in the vocabulary.

Recursive types (such as queue) or recursive functions (such as leader) cannot currently be

defined in TIOA. Thus we just declare recursive types and the types of recursive functions,

and other functions that use those, in TIOA code, and define them in the PVS specification

language. Then, we import the definitions given in this PVS code in a translation process from

17

IOA code to PVS code. Figures 2.7 and 2.8 show the PVS file that defines recursive functions

and types, and other auxiliary functions that use those, for the discrete model.

For the auxiliary predicates, we use the “ qn” suffix for their name, whereas in PVS, we use

the “?” suffix. This is because “?” is a reserved word in the TIOA language. In a translation

process from TIOA code to PVS code, every “ qn” suffix of function names is replaced by the

“?” suffix.

Here we explain types and auxiliary functions defined or declared in the vocabulary.

Types (lines 2 - 16)

queue, Zone (lines 3 and 4): Each zone is defined as a queue of type Aircraft. The length

of a queue represents the number of aircraft in the zone represented by that queue.

ID (line 6): The type ID is used to express the ID of aircraft.

Side (line 7): The type Side is defined as an enumeration of right and left.

Aircraft (lines 8 - 11): An aircraft is defined as a tuple that has two attributes: one is

the mahf assignment, mahf of type Side, set by the system when it enters the system; and the

other is a unique ID, id, which is encoded as a natural number in the discrete model. Note that

there is no attribute for the leader, since the leader relation is defined using an explicit queue

of aircraft, called the landing sequence, in the model as explained in Section 2.3.23

z name (line 13): The type for a name of the logical zones is defined as z name, an

enumeration of the names of all thirteen zones. These names are used in the following zone map.

zone map (line 16): This type is used as the type for Pzones, a state variable of the

automaton. A function of this type maps a name of the logical zones (z name) to an actual

queue representing that zone.

Operators (lines 18 - 100)

The section of the code in lines 18 - 100 defines auxiliary functions (operators).

[], assign (lines 19 and 20): These are auxiliary functions for zone map. The operator

[] is used to access the queue from a given zone mapping and a given zone name. For

example, zones[holding3L] denotes the queue for holding3L that zones maps to. Operator

assign is used to re-assign the value of a function of type zone map for a particular argument.

For example, assign(zones, holding3L, add(zones(holding3L),a)) represents a new zone

3We could have expressed the leader relation as an attribute of an aircraft (it forms a structure similar to a
linked list), but we used a queue, since queues are defined using a PVS primitive list structure, and all auxiliary
functions and libraries for that structure can be used in the machine proof.

18

——————————————————————————————————————

1:vocabulary SatsVocab
2: types
3: queue, %% defined in PVS as a queue of aircraft.
4: Zone, %% defined in PVS as the above queue of aircraft. It has a different name
5: %% just to differenciate logical zones and the landing sequence.
6: ID, %% defined as positive natural number type in PVS
7: Side enumeration [right,left],
8: Aircraft tuple [
9: mahf: Side, % Missed approach holding fix assignment.

10: id : ID % ID of the aircraft
11:],
12: %% name of zones
13: z_name enumeration [holding3L, holding3R, holding2L, holding2R, lezL, lezR,
14: mazL, mazR, baseL, baseR, intermediate, final, runway]
15:
16: zone_map, %% a type for mappings from a name of a zone to an actual queue of aircraft.
17:
18: operators
19: __[__]: zone_map, z_name -> Zone, %% accessor for zone_map
20: assign: zone_map, z_name, Zone -> zone_map, %% for assigning zone_map
21:
22:
23: % a function that maps any zone name to an empty queue.
24: initialZones: -> zone_map,
25:
26:
27: %%%%%%%%%% basic queue functions %%%%%%%%%%%%%%%%%%%%%%%%%
28: empty: -> Zone,
29: empty: -> queue,
30: empty_qn: queue -> Bool,
31: empty_qn: Zone -> Bool,
32: length: queue -> Nat,
33: length: Zone -> Nat,
34: add: queue, Aircraft -> queue,
35: add: Zone, Aircraft -> Zone,
36: first: queue-> Aircraft,
37: first: Zone -> Aircraft,
38: rest: queue -> queue,
39: rest: Zone -> Zone,
40: in_queue_qn:Aircraft, queue-> Bool,
41: in_queue_qn:Aircraft, Zone-> Bool,
42:
43: %%%%%%%% Side -> z_name %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44: %% maps zone(side) to a zone name.
45: %% e.g., holding3(right) = holding3R
46: holding3:Side->z_name, holding2:Side->z_name,
47: lez:Side->z_name, maz:Side->z_name, base:Side->z_name
48:
49: %%%%%%%% Opposite side %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50: opposite:Side->Side,

——————————————————————————————————————

Figure 2.5: Vocablary Part 1 of 2

19

——————————————————————————————————————

51: %%%%%% recursive functions defined in PVS %%%%%%%%%%%%%%%%%%%%%%%%%
52: %% leader aircraft
53: leader: Aircraft, queue -> Aircraft,
54:
55: %% a precedes b in seq q
56: precedes_qn: Aircraft, Aircraft, gueue ->Bool,
57:
58: %% Number of aircraft in a zone that is assigned to one side
59: assigned: Zone, Side -> Nat,
60:
61: %%%%% on_zone?, assigned?, etc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62: %% Is any aircraft in a particualr zone assigned to a particular side as its mahf?
63: assigned_qn:Zone,Side-> Bool,
64:
65: %% Is a particular aircraft in a particular zone?
66: on_zone_qn:Zone,Aircraft->Bool,
67:
68: %% Is a particular aircraft in a particular side?
69: on_qn:Side,Aircraft->Bool,
70:
71: %% Is a paricular aircraft on the approach?
72: on_approach_qn:zone_map,Aircraft-> Bool,
73:
74: %% Is aircraft a in the operation area?
75: on_zones_qn:zone_map,Aircraft-> Bool,
76:
77: %% The number of aircraft on the approach assigned to a particular side as their mahf.
78: assigned_approach:zone_map,Side->Nat,
79:
80: %% Is any aircraft on the approach assigned to a particular side as its mahf?
81: on_approach_qn:zone_map,Side-> Bool,
82:
83: %%%%%% actual, virtual %%
84: %% the acutal number of aircraft at the initiation area of a particular side
85: actual:zone_map,Side->Nat,
86:
87: %% the virtual number of aircraft at the initiation area of a particular side
88: virtual:zone_map,Side-> Nat,
89:
90: %%%%%% arrival_op, assigned2fix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91: %% the number of aircraft assigned to a particular side as their mahf
92: assigned2fix:zone_map,Side -> Nat,
93:
94: %% the number of aircraft in the operation area.
95: arrival_op:zone_map -> Nat,
96:
97: %%%%%%%%%% move %%%
98: % predicated parameters
99: % an aircraft moves from z_from to z_to
100: move:z_name, z_name, zone_map -> zone_map,

——————————————————————————————————————

Figure 2.6: Vocablary Part 2 of 2

20

——————————————————————————————————————

1: %% This file defines recurcive functions and types,
2: %% and other auxiliary functions that use those.
3:
4: %% accessing a zone by side
5: holding3(side:Side):z_name = IF side = left THEN holding3L ELSE holding3R ENDIF
6: holding2(side:Side):z_name = IF side = left THEN holding2L ELSE holding2R ENDIF
7: lez(side:Side):z_name = IF side = left THEN lezL ELSE lezR ENDIF
8: maz(side:Side):z_name = IF side = left THEN mazL ELSE mazR ENDIF
9: base(side:Side):z_name = IF side = left THEN baseL ELSE baseR ENDIF

10:
11: %% side of a zone
12: side(z:z_name|
13: z=holding3L OR z=holding3R OR z=holding2L OR z=holding2R OR z=lezL OR z=lezR OR
14: z=mazL OR z=mazR OR z=baseL OR z=baseR): Side =
15: IF z=holding3L OR z=holding2L OR z=lezL OR z=mazL OR z=baseL THEN left ELSE right ENDIF
17:
18: %% Opposite side
19: opposite(side:Side) : Side =
20: IF side = right THEN left
21: ELSE right
22: ENDIF
23:
24: %% leader of an aircraft
25: leader(a: Aircraft, q:queue| a /= first(q)): RECURSIVE Aircraft =
26: IF a = first(rest(q)) THEN first(q)
27: ELSE leader(a,rest(q))
28: ENDIF
29: MEASURE length(q)
30:
31: %% Is b the leader aircraft of a ?
32: leader?(a,b:Aircraft, q:queue): bool =
33: b = leader(a,q)
34:
35: %% Does aircraft ’a’ exist in the queue?
36: in_queue?(a:Aircraft, q:queue): bool = member(a,q)
37:
38: %% Is ’a’ precedes ’b’ in the landing sequence?
39: precedes?(a,b:Aircraft, q:queue) : RECURSIVE bool =
40: IF empty?(q) OR first(q) = b THEN false
41: ELSIF first(q)=a THEN in_queue?(b, rest(q))
42: ELSE precedes?(a,b,rest(q))
43: ENDIF
44: MEASURE length(q)
45:
46: %% Number of aircraft in a zone to assigned to one side
47: assigned(z:Zone,side:Side): RECURSIVE nat =
48: IF empty?(z) THEN 0
49: ElSIF mahf(first(z)) = side THEN 1+assigned(rest(z),side)
50: ELSE assigned(rest(z),side)
51: ENDIF
52: MEASURE length(z)
53:
54: %% Is any aircraft in zone z assigned to the mahf side ?
55: assigned?(z:Zone,side:Side): bool =
56: assigned(z,side) /= 0
57:
58: %% Is an aircraft in zone z ?
59: on_zone?(z:Zone,a:Aircraft) :bool = in_queue?(a,z)

——————————————————————————————————————

Figure 2.7: Auxiliary functions defined in PVS: Part 1 of 2

21

——————————————————————————————————————

60: %% Is aircraft a on this side?
61: on?(side:Side, a:Aircraft, z:zone_map):bool =
62: on_zone?(z(holding3(side)),a) OR on_zone?(z(holding2(side)),a) OR
63: on_zone?(z(lez(side)),a) OR on_zone?(z(maz(side)),a)
64:
65: %% Is aircraft a on the approach ?
66: on_approach?(z:zone_map,a:Aircraft): bool = on_zone?(z(baseR),a) or on_zone?(z(baseL),a)
67: or on_zone?(z(intermediate),a) or on_zone?(z(final),a)
68:
69: %% Is aircraft a on any zone (excluding runway)?
70: on_zones?(zones:zone_map,a:Aircraft): bool =
71: EXISTS (z:z_name) : on_zone?(zones(z),a) AND z/=runway
72:
73: %% # of aircrafts with this mahf on approach
74: assigned_approach(z:zone_map,side:Side): nat =
75: assigned(z(baseR),side) + assigned(z(baseL),side) +
76: assigned(z(intermediate),side) + assigned(z(final),side)
77:
78: %% Is any aircraft on the approach assigned to the mahf side ?
79: on_approach?(z:zone_map,side:Side): bool =
80: assigned?(z(baseR),side) or assigned?(z(baseL),side) or
81: assigned?(z(intermediate),side) or assigned?(z(final),side)
82:
83: %% Acutal number of aircraft at one side (excluding the approach)
84: actual(z:zone_map,side:Side):nat =
85: length(z(holding3(side)))+length(z(holding2(side)))+length(z(lez(side)))+
86: length(z(maz(side)))
87:
88: %% Virtual number of aircraft at one fix
89: virtual(z:zone_map,side:Side): nat =
90: length(z(holding3(side))) + length(z(holding2(side)))+
91: length(z(lez(side))) + length(z(maz(side))) +
92: assigned(z(holding3(opposite(side))),side) + assigned(z(holding2(opposite(side))),side) +
93: assigned(z(lez(opposite(side))),side) + assigned(z(maz(opposite(side))),side) +
94: assigned(z(base(right)),side) + assigned(z(base(left)),side) +
95: assigned(z(intermediate),side) + assigned(z(final),side)
96:
97: %% Number of aircraft assigned to a fix
98: assigned2fix(z:zone_map,side:Side):nat =
99: assigned(z(holding3R),side) + assigned(z(holding3L),side) +
100: assigned(z(holding2R),side) + assigned(z(holding2L),side) +
101: assigned(z(lezR),side) + assigned(z(lezL),side) +
102: assigned(z(baseR),side) + assigned(z(baseL),side) +
103: assigned(z(intermediate),side) + assigned(z(final),side) +
104: assigned(z(mazR),side) + assigned(z(mazL),side)
105:
106: %% Total number of simultaneous arrival operations
107: arrival_op(z:zone_map):nat =
108: actual(z,right) + actual(z,left) +
109: length(z(baseR)) + length(z(baseL)) + length(z(intermediate)) + length(z(final))
110:
111: % define movement of aircrafts
112: % an aircraft moves from z_from to z_to
113: move(z_from, z_to: z_name, zones:zone_map| z_from /= z_to AND NOT empty?(z_from)):
114: zone_map = zones WITH [(z_from) := rest(zones(z_from)),
115: (z_to) := add(zones(z_to), first(zones(z_from)))]

——————————————————————————————————————

Figure 2.8: Auxiliary functions defined in PVS: Part 2 of 2

22

mapping that is the same as the original mapping zones except for that the queue for holding3L

is updated to add(zones(holding3L),a).

initialZones (line 24): This function represents the empty zones.

Basic queue operations (lines 27 - 41): These functions represent basic queue opera-

tions.

Operators to access a zone name by a side (lines 46 and 47): The auxiliary functions

defined in this part maps a side to a zone name. For example, holding3(right) = holding3R.

opposite (line 50): The function opposite maps a given side to the opposite side of it.

For example, opposite(right) = left.

leader (line 53): We define the leader of an aircraft a in a given sequence as the aircraft

just in front of a in the sequence. Function leader, which represents the leader of a given

aircraft in a given sequence, is formally defined in PVS in Figure 2.7, lines 25 - 29. The first

IF clause in the formal code works as a “guard” that guarantees that the value of leader is

well-defined even if the given aircraft a is not in the given queue q. If a is not in q, leader

returns a by default.

precedes qn (line 56): To state some auxiliary lemmas in Chapter 3, we need the notion

that aircraft a precedes b in the given sequence. A mathematical definition of this relation is

given in Section 2.3.3. This precedes relation is defined in PVS in Figure 2.7, lines 39 - 44.

assigned (line 59): This function calculates the number of aircraft a in zone such that

a.mahf = side. This function is defined in PVS in Figure 2.7, lines 47 - 52.

assigned qn (line 63): The predicate assigned qn(z, σ) checks if the value of assigned(z, σ)

is not zero.

on zone qn (line 63): The predicate on zone qn(z, a) checks if aircraft a is in zone z. This

predicate is defined using in queue qn (Figure 2.7, line 59).

on qn (line 69): The auxiliary predicate on qn(side,a) checks if aircraft a is in the

initiation area of side in state s, that is, if a is either in holding3(side), holding2(side),

lez(side), or maz(side). Note that base(side) zone is not included, since, even though base

has a right/left symmetric structure, it is part of the approach area, but not the initiation area.

This predicate is defined in PVS in Figure 2.8, lines 61 - 63.

on approach qn for aircraft (line 72): The auxiliary predicate on approach qn checks

if aircraft a is in the approach area, that is, if a is either in base(right), base(left),

intermediate, or final. This predicate is defined in PVS in Figure 2.8, lines 66 and 67.

on zones qn (line 75): The auxiliary predicate on zones qn checks if aircraft a is in the

operation area, that is, if a is in a logical zone except for runway. This predicate is defined in

23

PVS in Figure 2.8, lines 70 and 71.

assigned approach (line 78): The auxiliary function assigned approach calculates the

number of aircraft a on the approach such that a.mahf = side. This function is defined in PVS

in Figure 2.8, lines 74 - 76.

on approach qn for a side (line 81): The auxiliary predicate on approach qn checks if

there is an aircraft a on the approach such that a.mahf = side. This predicate is defined in

PVS in Figure 2.8, lines 79 - 81. Note we have two on approach qn predicates with different

types. The one explained earlier is a predicate over the set of aircraft that checks if a given

aircraft is on the approach.

actual, virtual (lines 85, 88): One interesting notion in the SATS concept that is used

within the preconditions of some transitions is the virtual number of aircraft in one side. The

virtual number of aircraft in side σ counts the actual number of aircraft in side σ, plus the

number of “potential aircraft” that may possibly come to side σ in the near future if they miss

the approach, that is, aircraft that are outside of the initiation area of side σ, but have the mahf

assignment of σ. Figure 2.9 shows an example of the virtual number of aircraft in the right

initiation area.

The mahf of this aircraft
is assigned right

Right Initiation Area Left Initiation Area

The trajectory of the aircraft
if it misses the approach

The virtual number of aircraft in
the right initiation area in this state is:
2 (actual number of aircraft) +
1 (the number of potential aircraft)
 = 3

Figure 2.9: The virtual number of aircraft

The actual number is expressed in PVS by the function actual defined in Figure 2.8, lines

84 - 86. The virtual number of aircraft is expressed in PVS by the function virtual defined in

Figure 2.8, lines 89 - 95.

assigned2fix (line 92): The function assigned2fix calculates the number of aircraft a in

the logical zones such that a.mahf = side. This function is defined in PVS in Figure 2.8, lines

24

98 - 104.

arrival op (line 95): The function arrival op is used to calculate the total number of

aircraft in the operation area, and is defined in PVS in Figure 2.8, lines 107 - 109. It counts

all aircraft in the logical zones except for the runway zone. This function is defined in PVS in

Figure 2.8, lines 107 - 109.

move (line 100): The function move represents the movement of aircraft in the logical

zones. Given two zone names z from and z to and a zone mapping that represents a status

of the logical zones, it returns a new zone mapping that represents a new status of the logical

zones in which the first aircraft of z from is moved to the last of z to. This function is used in

transitions that represents a movement of aircraft. This function is defined in PVS in Figure

2.8, lines 113 - 115.

2.3.2 Transition signatures and state variables of the discrete model

Now we present a formal definition of the model in a subset of TIOA. We split the code into

two. The former part states signatures of transitions and state variables, and the latter part

states the definition of the transitions (the precondition and effects of them).

We first show the former part of the code in Figure 2.10.

All transitions are declared as output transitions. By having all transitions as output, we

consider every transition of the discrete model is an external behavior of the model.

Three state variables are defined for the discrete model (described in the “states” section

in Figure 2.10). Variable zones is a zone mapping from a zone name to an actual zone queue.

It represents the status of the logical zones: What aircraft are located on which zone, and the

attributes of those aircraft. Initially, this variable is assigned the empty zones.

As explained in Section 2.2.3, variable nextmahf is used when the system assigns the mahf

attribute of entering aircraft. Initially, this variable is assigned right.

In our abstract model, we encode the notion of the leader aircraft explained in Section 2.2.2

as an explicit queue of aircraft, called the “landing sequence.” Variable landing seq represents

the landing sequence in the model. When an aircraft first enters the system, in addition to

being added to the logical zones, it is also added to the end of the landing sequence. When an

aircraft lands or exits from the operation area, it is removed from the landing sequence. We will

closely look at these additions and removals of aircraft in Section 2.3.4. Using function leader,

the leader of aircraft a in the landing sequence is defined as the aircraft just in front of a in

the sequence. By this definition of the leader, the landing sequence represents the chain of the

leader relation discussed in Section 2.2.2. The leader relation in the landing sequence is used

within the precondition of some specific transitions. We will guarantee by Invariant 3.6 that,

25

——————————————————————————————————————
automaton SATS

imports SatsVocab

signature
output

VerticalEntry(ac:Aircraft, id:ID, side:Side),
LateralEntry(ac:Aircraft, id:ID, side:Side),
HoldingPatternDescend(ac:Aircraft,side:Side),
VerticalApproachInitiation(ac:Aircraft,side:Side),
LateralApproachInitiation(ac:Aircraft,side:Side),
Merging(ac:Aircraft,side:Side),
Exit(ac:Aircraft),
FinalSegment(ac:Aircraft),
Landing(ac:Aircraft),
Taxiing(ac:Aircraft),
MissedApproach(ac:Aircraft),
LowestAvailableAltitude(ac:Aircraft,side:Side)

states
zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : Zone % landing sequence is defined as a queue
initially

zones = initialZones ∧

nextmahf = right ∧

landing seq = empty

let
%% access to the state components
holding3(side: Side) = zones[holding3(side)];
holding2(side: Side) = zones[holding2(side)];
lez(side: Side) = zones[lez(side)];
maz(side: Side) = zones[maz(side)];
base(side: Side) = zones[base(side)];
intermediate = zones[intermediate];
final = zones[final];
runway = zones[runway];

%% first aircraft in the landing sequence?
first in seq qn(a:Aircraft) = (a = first(landing seq));

%% define functions on a zone map as functions on a state
on approach qn(a:Aircraft) = on approach qn(zones, a);
on approach qn(side:Side) = on approach qn(zones,side);
actual(side:Side) = actual(zones,side);
virtual(side:Side) = virtual(zones,side);
assigned2fix(side:Side) = assigned2fix(zones,side);
arrival op = arrival op(zones);

%% new aircraft
aircraft(side:Side, id :ID) = [IF empty qn(landing seq) THEN side ELSE nextmahf, id];

%% reassign aircraft
reassign(a:Aircraft) = set mahf(a, IF empty qn(landing seq) THEN a.mahf ElSE nextmahf);

%% new aircraft enters a zone
enter(z enter: z name, side:Side, id:ID, zones :zone map) =

assign(zones , z enter, add(zones[z enter], aircraft(side,id)));

——————————————————————————————————————

Figure 2.10: Code for the discrete model [Part 1 of 2. Signature and States]

26

whenever the precondition is satisfied, the given aircraft a for leader used in the precondition

is in the landing sequence (the given queue for leader).

A state of the model is implicitly expressed in TIOA code (for example, landing seq denotes

the landing sequence for a given state). On the other hand, an explicit state structure is

constructed at a translation stage to PVS code. For instance, in PVS code, the landing sequence

is represented by landing seq(s) for a given state s. Analogously, for instance, auxiliary function

actual(side) will have an argument for a state in PVS (actual(s,side) for a given state s)

2.3.3 Mathematical Notations

We have shown the types and auxiliary functions in Section 2.3.1, and formal code for the

state variables of the model in Section 2.3.2. We use the following notations in this thesis to

mathematically express the conditions on these types and auxiliary functions for a given state

of the model.

1. We use the notation opposite(σ) for side σ to represent the opposite side of σ.

2. We use || notation to express the number of aircraft in a given zone. For example, |maz(σ)|

represents the number of aircraft in maz(σ) (that is, the length of maz(σ)). A zone is

indexed starting from 0.

3. We use the notation z[i] to express the aircraft in position i in z.

4. We use z1 ◦ z2 to represent the concatenation of two zones (seen as two sequences) z1 and

z2.

5. We use “.” notation to access attributes of aircraft. For example, a.mahf represents the

value of the mahf attribute of aircraft a.

6. We use mathematical notation leader(a) to represent a leader of aircraft a in the landing

sequence.

7. In Section 2.3.1, we explained auxiliary predicate precedes qn defined in PVS. Mathe-

matically, the precedes relation is defined as follows.

Definition 2.1. The relation precedes for a given sequence is the irreflexive transitive

closure of the leader relation for the same sequence.

For example, if a is the leader of b and b is the leader of c, then we say that a precedes c.

And for any aircraft a, a does not precede a.

27

8. We use the mathematical notation assigned(z, σ) to express the number calculated by

assigned(z, σ).

9. We say that aircraft a is in side σ if and only if on qn(a,side) holds.

10. We say that a is on the approach if and only if on approach qn(a) holds.

11. We use the mathematical notation assigned approach(σ) to represent a value of

assigned approach for σ.

12. We say that on approach qn(σ) holds if and only if on approach qn(σ) holds.

13. We use the mathematical notations actual(σ) and virtual(σ) to represent the values of

actual(σ) and virtual(σ), respectively.

14. We use the mathematical notation assigned2fix(σ) to represent the value of

assigned2fix(σ).

15. We use the mathematical notation arrival op to represent the value of arrival op.

2.3.4 Transitions of the discrete model

In this subsection, we closely examine each transition in the automaton described in the previous

subsection. The code for the transition definitions of the automata is shown in Figure 2.11. The

transitions of the automaton is described in “precondition-effect” style.

Twelve transitions are defined in the model based on the original procedures in SATS. Each

one represents either a movement of an aircraft from one logical zone to another, an entry of an

aircraft into the logical zones, or a removal of an aircraft from the logical zones.

Some of the transitions have an attribute side because some transitions can be performed

either from the right side or the left side of the airport. For example,

VerticalApproachInitiation(right) represents the approach initiation of an aircraft from

holding2(right).

Each transition has its own precondition. A transition can occur only when its precondition is

satisfied. We say that a transition is enabled at a particular state of the model if its precondition

is satisfied in that state.

Many of the transitions represent the effects that the first aircraft of a specific zone is

removed, and is added to the end of another zone. In the rest of the thesis, we refer to this kind

of effects (the first aircraft of a zone z1 is removed and added to the end of another zone z2)

as a movement of the first aircraft from zone z1 to z2. In the formal automaton definition, this

effect is described by using function move explained in Section 2.3.

28

——————————————————————————————————————
transitions

output VerticalEntry(a, id, side)
pre virtual(side) < 2 ∧

¬on approach qn(side) ∧

empty qn(maz(side)) ∧

empty qn(lez(side)) ∧

empty qn(holding3(side)) ∧

a = aircraft(side,id) ∧

∀ac: Aircraft
((on zones qn(ac) ∨

in queue qn(ac, landing seq) ∨

on zone qn(runway, ac)) ⇒ ac.id =/ id)
eff zones := enter(holding3(side),side,id,zones);

landing seq := add(landing seq, a);
nextmahf := opposite(a.mahf);

output LateralEntry(a, id, side)
pre virtual(side) = 0 ∧

a = aircraft(side,id) ∧

∀ac: Aircraft
((on zones qn(ac) ∨

in queue qn(ac, landing seq) ∨

on zone qn(runway, ac)) ⇒ ac.id =/ id)
eff zones := enter(lez(side),side,id,zones);

landing seq := add(landing seq,a);
nextmahf := opposite(a.mahf);

output HoldingPatternDescend(a, side)
pre ¬(empty qn(holding3(side))) ∧

a = first(holding3(side)) ∧

empty qn(holding2(side))
eff zones:=move(holding3(side),holding2(side),zones)

output VerticalApproachInitiation(a, side)
pre ¬(empty qn(holding2(side))) ∧

a = first(holding2(side)) ∧

length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

on approach qn(leader(a,landing seq)))
eff zones := move(holding2(side),base(side),zones)

output LateralApproachInitiation(a, side)
pre ¬(empty qn(lez(side))) ∧

a = first(lez(side))
eff IF length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

on approach qn(leader(a,landing seq)))
THEN

zones := move(lez(side),base(side),zones)
ELSE

zones := move(lez(side),holding2(side),zones)
FI

output Merging(a, side)
pre ¬(empty qn(base(side))) ∧

a = first(base(side)) ∧

(first in seq qn(a) ∨

on zone qn(intermediate,leader(a,landing seq))∨
on zone qn(final,leader(a,landing seq)))

eff zones := move(base(side),intermediate,zones)

output Exit(a)
pre ¬(empty qn(intermediate)) ∧

¬(empty qn(landing seq)) ∧

a = first(intermediate) ∧

first in seq qn(a)
eff zones:=

assign(zones,intermediate,rest(intermediate));
landing seq := rest(landing seq)

output FinalSegment(a)
pre ¬(empty qn(intermediate)) ∧

a = first(intermediate)
eff zones := move(intermediate, final, zones)

output Landing(a)
pre ¬(empty qn(final)) ∧

¬(empty qn(landing seq)) ∧

a = first(final) ∧

empty qn(runway)
eff zones := move(final,runway,zones);

landing seq := rest(landing seq);

output Taxiing(a)
pre ¬(empty qn(runway)) ∧

a = first(runway)
eff zones:= assign(zones, runway, rest(runway));

output MissedApproach(a)
pre ¬(empty qn(final)) ∧

¬(empty qn(landing seq)) ∧

a = first(final)
eff zones:= assign(zones, final, rest(final));

zones:= assign(zones, maz(a.mahf),
add(maz(a.mahf),reassign(a)));

landing seq := add(rest(landing seq),reassign(a));
nextmahf := opposite(reassign(a).mahf);

output LowestAvailableAltitude(a, side)
pre ¬(empty qn(maz(side))) ∧

a = first(maz(side))
eff IF empty qn(holding3(side)) ∧

empty qn(holding2(side))
THEN
zones := move(maz(side),holding2(side),zones)

ELSE
IF empty qn(holding3(side)) THEN
zones := move(maz(side),holding3(side),zones)

ELSE
zones := move(maz(side),holding3(side),

move(holding3(side),holding2(side),zones))
FI

FI

——————————————————————————————————————

Figure 2.11: Code for the discrete model [Part 2 of 2. Transitions]

29

To help the reader to understand why the protocol has the rules represented by the precon-

ditions of the transitions, here we briefly present some of the safety properties of the model that

we will prove.

We will prove upper bounds on the numbers of aircraft in the vertical and lateral initiation

areas (holding2, holding3, and lez): there is at most one aircraft in each of these zones. Each of

these bounds is desirable basic property of the model, considering the safety separation of aircraft

in each holding fix. Now a reader may easily understand, for instance, why it is reasonable

that the precondition of entry and descend transitions (VerticalEntry, LateralEntry, and

HoldingPatternDescend) check the emptiness of the zone that an aircraft goes to. On the

other hand, more complicated preconditions are defined for some transitions: for example, some

preconditions refer to a condition on the virtual number of aircraft, or a condition on whether

the leader of the moving aircraft is in a specific area of the logical zones. We have to make use of

these more complicated preconditions in order to prove bounds on the number of aircraft in some

zones such as maz. This complication comes from the fact that, as we will see in the following,

the transition representing a missed approach does not have a “guard” in a precondition that

prevents the transition from being performed. This is quite reasonable, considering the real

system: an aircraft cannot just assume some specific condition that prevents it from missing

the approach. For this reason, some of the main properties we will prove do not immediately

follow from the preconditions of the transitions, and thus we need a more intelligent way to

prove them.

Entry to the logical zones: VerticalEntry and LateralEntry

An aircraft can enter the operation area in either a vertical way or a lateral way. A vertical

entry is represented by the VerticalEntry transition, and a lateral entry is represented by the

LateralEntry transition.

VerticalEntry(a, id, σ): This transition represents the vertical entry of aircraft a to holding3(σ)

zone. The transition has an attribute Side: a vertical entry can be performed either from the

right side or from the left side of the airport.

The entering aircraft a is assigned its mahf by this transition. The assignment is determined

according to a global system variable, called nextmahf. The aircraft is assigned the same side

as the current value of nextmahf, and every time the system assigns the mahf to an aircraft, it

flips the value of nextmahf. If there is no aircraft in the system when the new aircraft enters,

its mahf is set to the side it enters, and the value of nextmahf is set to the opposite side of the

mahf of that aircraft. Also, a new aircraft is given a unique ID.

30

A vertical entry to holding3(σ) by aircraft a – VerticalEntry(a, id, σ)4– is enabled if the

following conditions are true:

• virtual(σ) < 2.

• on approach qn(σ) does not hold.

• |lez(σ)| = 0.

• |maz(σ)| = 0.

• |holding3(σ)| = 0.

• For any aircraft b already in the logical zones, a.ID 6= b.ID

The last condition in the above precondition guarantees that only an aircraft whose ID is

different from any other aircraft’s ID enters the system. This unique ID is given by the Aircraft

Management Module in the real system.

The effect of the transition is as follows:

• a is added to the end of holding3(σ). a.mahf is set to the value of nextmahf if the landing

sequence is not empty; otherwise it is set to the side a enters (σ).

• a is also added to the end of the landing sequence.

• The value of nextmahf is set to opposite(a.mahf).

LateralEntry(a, id, σ): This transition represents the lateral entry of aircraft a to lez(σ), a

lateral entry zone. The transition has an attribute of Side, as does VerticalEntry. A lateral

entry to lez(σ) by aircraft a – LateralEntry(a, id, σ) – is enabled if the following conditions

are true:

• virtual(σ) = 0.

• For any aircraft b already in the logical zones, a.ID 6= b.ID

4In the rest of the thesis (mainly in the proofs), we sometimes use the notation VerticalEntry(σ) to just specify
the side for which the transition is performed. As we see in the formal description of the abstract model defined as
an I/O automaton, this representation of the transition (VerticalEntry(σ)) is not rigorously correct: the actual
VerticalEntry transition is parameterized by the new aircraft, the unique ID of it, and the side it enters. Thus,
it has the form VerticalEntry(a,id,σ), where a is of type Aircraft, id is of type ID, and σ is of type Side.
However, we omit these parameters except for the side in order to simplify the statement. We also sometimes
omit attributes of other transitions other than the side attribute.

31

And the effect of the transition is as follows: transition:

• a is added to the end of lez(σ). a.mahf is set to the value of nextmahf if the landing

sequence is not empty; otherwise it is set to the side a enters (σ).

• a is also added to the end of the landing sequence.

• The value of nextmahf is set to opposite(a.mahf).

Note that the first condition in the precondition – virtual(σ) = 0 – implies that there is

no aircraft on side σ (holding2(σ), holding3(σ), lez(σ), and maz(σ)), and that there is no

aircraft a with a.mahf = σ in the operation area.

Descend from 300 to 200 feet: HoldingPatternDescend

HoldingPatternDescend(a, σ): This transition represents a descent of the altitude of aircraft

a from a holding fix at 3000 feet (holding3) to a holding fix at 2000 feet (holding2).

The first aircraft a on holding3(σ) is allowed to descend (move) to holding2(σ)

by HoldingPatternDescend(σ) if no aircraft is in holding2(σ).

Approach Initiation: VerticalApproachInitiation and LateralApproachInitiation

An aircraft can initiate the approach to the ground either from the holding fix at 2000 feet

(holding2), or from the lateral entry zone (lez). Every aircraft that initiates the approach

first enters the T-shaped approach area by moving to base zone of the side it comes from. The

approach initiation from holding2 is represented by VerticalApproachInitiation, and the

approach initiation from lez is represented by LateralApproachInitiation.

VerticalApproachInitiation(a, σ): This transition represents a vertical approach initiation of

aircraft a from holding2(σ) to base(σ). The first aircraft a of holding3(σ) can initiate the

approach to base(σ) by VerticalApproachInitiation(σ) if the following conditions hold:

• a is the first aircraft in the landing sequence, or its leader is already on the approach.

• |base(opposite(σ))| ≤ 1.

The effect of the transition is the movement of the first aircraft of holding2(σ) to base(σ).

The first condition above ensures that if aircraft a has its leader aircraft, then the leader

aircraft has to initiate the approach before a does so. This part of the precondition is described

in the actual TIOA code as

“(first in seq?(a) ∨ on approach?(leader(a,landing seq))).”

32

LateralApproachInitiation(a, σ): This transition represents a lateral approach initiation

of aircraft a from lez(σ) to base(σ). The lateral approach initiation procedure is differ-

ent from its vertical-case counterpart, VerticalApproachInitiation, in that the transition

for a lateral approach initiation is always enabled for the first aircraft of lez, but it can di-

rectly proceed to base only when some specific conditions are met. These specific conditions

are stated below as Conditions 1 and 2, and actually, as we can see, they are equivalent to

the precondition of VerticalApproachInitiation, which represents the guard that delays the

approach initiation. If the conditions are not met, the aircraft first moves to holding2 of

the same side that the aircraft comes from, and tries to initiate the approach from there by

VerticalApproachInitiation. Thus, even though the transition is always enabled whenever

lez is not empty, the effect of the transition is based on the current situation, and thus the

aircraft will not actually initiate the approach by this transition in some cases. This is reason-

able considering that preserving the order of the leader relation is crucial to satisfy the desirable

safety conditions that we will prove in this thesis. (See Figure 2.3 again to see the paths of

aircraft that leave from the lateral entry zone.)

The transition LateralApproachInitiation(a, σ) is always enabled if lez(σ) is not empty.

The effect of the transition is the movement of the first aircraft a of lez(σ) to base(σ) if the

following two conditions hold:

1. a is the first aircraft in the landing sequence, or its leader is already on the approach.

2. |base(opposite(σ))| ≤ 1.

If the conditions are not satisfied, the effect of the transition is the movement of the first

aircraft of lez(right) to holding2(right).

Progression in the approach area: Merging, FinalSegment, Exit, and Landing

After the approach initiation, aircraft go through the T-shaped approach zone. The progression

of aircraft in this approach zone is represented by three transitions Merging, FinalSegment,

and landing. An aircraft under a specific condition may also exit from the airport during the

approach to the ground. This procedure is represented by the Exit transition.

Merging(a): Once an aircraft enters a base zone of either the right side or the left side in the

approach area, it merges to the center of the approach area (intermediate zone). Since the

system aims to ensure that the order of the actual landing of aircraft is the same as the order

in the landing sequence, this merging procedure has a precondition analogous to that for the

approach initiation procedures.

33

The first aircraft a of base(σ) can proceed (move) to intermediate by Merging(σ) if a is

the first aircraft in the landing sequence, or its leader is in either the intermediate zone or the

final zone.

FinalSegment(a): The first aircraft a of intermediate can always proceed (move) to final

zone. More specifically, the transition is always enabled if intermediate is not empty, and the

effect is the movement of the first aircraft of intermediate to final.

Exit(a): The first aircraft a of intermediate may also exit the airport if it is the first aircraft

in the landing sequence. Thus the transition Exit is enabled when intermediate is not empty,

and the effect of the transition is the following:

• The first aircraft of intermediate is removed from the zone.

• The first aircraft of the landing sequence is removed from the sequence.

Note that the precondition of the transition ensures that the system removes the same aircraft

from both the logical zones and the landing sequence.

Landing(a): The first aircraft a of final may land on the ground, i.e., proceeds to runway if

no aircraft is on runway. The effect of the transition is the following.

• The first aircraft of final moves to runway.

• The first aircraft of the landing sequence is removed from the sequence.

At the same time when the first aircraft of final is removed from that zone, the first aircraft

of the landing sequence is also removed from the sequence. This is because we do not count

aircraft on runway as active aircraft (they are all “done”), and this is consistent with the fact

that we separate runway from the operation area.

As opposed to Exit transition, the precondition of Landing does not guarantee that the

system removes the same aircraft from both the final zone and the landing sequence, since it

is not directly guaranteed from the precondition that the first aircraft in the final zone and

the first aircraft in the landing sequence is the same aircraft. Instead, we will prove this fact

in Section 3.3 as an invariant of the model (Corollary 3.8). That is, we will prove that the first

aircraft of final is the same as the first aircraft of the landing sequence whenever final is not

empty.

34

Taxiing from the runway: Taxiing

Taxiing(a): The transition Taxiing removes the first aircraft a of runway, and it is always

enabled when runway is not empty.

Note that the transition does not remove an aircraft from the landing sequence since it has

already been removed from there when it lands, by the Landing transition.

m

a

b

m’

a

b

MissedApproach

landing sequence:
a mb

landing sequence:
abm’

m’s mahf was assigned
right before it misses
the approach

nextmahf: left nextmahf: right

m’s mahf got a reassignment, and
thus changed to left according
to the value of nextmahf in
the pre state (depicted as m’)

Figure 2.12: Missed Approach Initiation

Missed Approach Initiation: MissedApproach

MissedApproach(a):

An aircraft on final zone may miss the approach. A missed approach is represented by the

MissedApproach transition. The transition is always enabled if final is not empty.

By the transition, an aircraft that misses the approach goes to maz zone at the side that it

is assigned as mahf. The landing sequence also changes as we present in the following. A key

point of the transition is that the aircraft is reassigned its mahf when it misses the approach.

The first aircraft of the landing sequence is removed, and the same aircraft with the re-

assignment of the mahf is added to the end of the sequence. This reassignment process is done

in a way analogous to the case of the entry of an aircraft as we see in the following.

The effect of MissedApproach(a) is explained in the following.

• The first aircraft a of the landing sequence is removed from the sequence.

• The first aircraft of final is removed from there.

• Aircraft a′, the aircraft a with the reassignment of mahf, is added to the end of the

35

sequence. The re-assignment is done as follows: If the landing sequence is not empty, then

a.mahf is set to the current value of nextmahf; otherwise, a.mahf is not re-assigned.

• a′ is also added to the end of maz(a.mahf) (note a.mahf is the mahf attribute of a before

the re-assignment.)

• The value of nextmahf is set to opposite(a′.mahf) (note we are referring to a′, not a).

The reassigned first aircraft of the landing sequence, a′, is added to both the landing sequence

and a maz zone. Without guaranteeing that the first aircraft of the landing sequence is the same

as the first aircraft of the final zone, the aircraft added to a maz zone by the transition may

potentially be totally irrelevant to the first aircraft of final zone. Indeed, the precondition of

the transition does not guarantees the coincidence of two aircraft. However, as we mentioned in

the discussion of the Landing transition, we will prove the invariant that states the first aircraft

of final is the same as the first aircraft of the landing sequence.5

An example of the transition MissedApproach is illustrated in Figure 2.12.

Return to the vertical initiation zone from missed approach: LowestAvailableAlti-
tude

LowestAvailableAltitude(a, σ):

After aircraft a has missed the approach and thus goes to missed approach zone, it goes back

to the vertical initiation area, holding2(σ) or holding3(σ) depending on the situation at the

moment when it leaves maz(σ). This procedure is represented by LowestAvailableAltitude(a, σ)

transition. As the name of the transition implies, the aircraft seeks the lowest available altitude

from holding2(σ) and holding3(σ) (the former is lower than the other) in the current situa-

tion, and moves to that holding fix. An interesting point of this transition is that it may exhibit

a “double transition” with which two aircraft moves the logical zones with one transition. This

is the only transition that may exhibit a multiple transition of aircraft; the rest of the transitions

handle just one aircraft at a time.

More formally, the transition LowestAvailableAltitude(a, σ) is enabled for the first air-

craft a of maz(σ) whenever maz(σ) is not empty, and the transition has the following three

effects depending on the state of the model in which the transition is performed:

• If both holding2(σ) and holding3(σ) are empty, then the first aircraft of maz(σ) moves

to holding2(σ).

5We could have taken another approach in the definition of the model: adding the reassigned first aircraft
of final to maz, and the reassigned first aircraft of the landing sequence to the sequence. But even with this
approach, we again need the equality of the first aircraft of final and the landing sequence in order to guarantee
that the model is adding the same aircraft to the landing sequence and the operation area.

36

• If holding3(σ) is empty, but holding2(σ) is non-empty, then the first aircraft of maz(right)

moves to holding3(right).

• If holding3(σ) is not empty, then the first aircraft of maz(σ) moves to holding3(σ), and

at the same time, the first aircraft of holding3(σ) moves to holding2(σ).

The double transition of aircraft in the third case is illustrated in Figure 2.13.

Figure 2.13: The double transition of aircraft in the third case of LowestAvailableAltitude(right)

When a double transition of aircraft occurs, an aircraft in holding3(σ) goes to holding2(σ)

without any special condition (the transition is always enabled when maz(σ) is not empty.)

It might seem that this fact jeopardizes the upper bound |holding2(σ)| ≤ 1, stated in the

introduction of this section: if there is an aircraft in holding2(σ), holding3(σ), and maz(σ),

respectively, in the pre state of the transition, then |holding2(σ)| exceeds one in the post state.

However, we can guarantee that this scenario would never occur: we will prove (as part of

the conditions for Lemma 3.26) that whenever both holding3(σ) and maz(σ) are non-empty,

holding2(σ) is empty.

Here we consider why the original authors of the discrete model of [2] needed this double tran-

sition for LowestAvailableAltitude. By moving an aircraft in holding3(σ) to holding2(σ)

when another aircraft is entering holding3(σ) (a double transition), the discrete model of [2]

guarantees that the bound |holding3(σ)| ≤ 1 would not be violated after the

LowestAvailableAltitude transition. Indeed, if LowestAvailableAltitude(σ) does not ex-

hibit a double transition, but move only the first aircraft of maz(σ) to holding3(σ) when

|holding3(σ)| = 1, the post state of the transition would violate the bound

|holding3(σ)| ≤ 1. In the original paper [2], the authors partially justified using this double

transition in the discrete model, by claiming that the double transition exhibited in

37

LowestAvailableAltitude would never occur in a real protocol since the SATS concept pre-

cludes an aircraft from hovering at one altitude when a lower altitude is available. This indi-

cates that when a missed aircraft moves to holding3 by LowestAvailableAltitude, the aircraft

previously in holding3 has already descended to holding2 by HoldingPatternDescend. However,

we cannot verify such a property for the discrete model since the model does not have any

time-dependent constraints, such as the time bound for HoldingPatternDescend to be per-

formed after the moment a lower altitude becomes available (that is, holding2 becomes empty).

We will present a new time-dependent model in Chapter 5 that does not exhibit any multi-

ple transition of aircraft. In this new model, the above mentioned property for an order of

LowestAvailableAltitude and HoldingPatternDescend is proved by assuming a reasonable

time-dependent constraints, and thus LowestAvailableAltitude deals with only one aircraft

at a time in the new model.

38

Chapter 3

Properties of the discrete model and
their proof

3.1 Introduction

In this chapter, we state and prove safety properties of the discrete model of SATS presented in

Chapter 2. The properties are taken from the original paper [2].

In Section 3.2, we present the main properties we prove in this chapter. The properties

mainly represent upper bounds on the number of aircraft in particular areas of the airport.

Section 3.3 is dedicated to introducing and proving the auxiliary invariants that we consider to

be the most basic properties of the model. In Section 3.4, we start proving the main properties,

using the basic properties proved in Section 3.3. In Section 3.5, we also introduce the important

notion of “blocking” of aircraft. Using this notion, we strengthen some of the main properties,

and prove them in Sections 3.6 and 3.7. In Section 3.8, we discuss some issues concerning proofs

in PVS.

3.2 Main Properties

In this section we present the main properties of the abstract model of SATS that we will prove in

the rest of the chapter. We present seven properties taken from the original paper [2], which are

chosen since these properties can be also used to prove the safe separation property of aircraft in

the continuous model presented in Chapter 5, by carrying over the results in this chapter using

a refinement mapping. Five main properties out of seven state upper bounds on the number of

aircraft in specific zones or areas.

In the rest of the thesis, we will also present the corresponding PVS code used for mechanical

theorem-proving of the properties.

In PVS, each property is expressed as a predicate over the states, and is declared as an

39

invariant as follows:

Invariant_#: LEMMA (FORALL (s:states): reachable(s) => Inv#(s));

where Inv# is a predicate that expresses the corresponding property, and # is replaced by

the actual number of the property. In the following, we describe the seven properties, along

with the corresponding predicates in PVS

Property 1: The total number of aircraft in the operation area is at most four (arrival op ≤ 4).

Inv1(s:states):bool = arrival_op(s) <= 4

Property 2: The total number of aircraft in one side is at most two (∀σ : Side, actual(σ) ≤ 2).

Inv2(s:states):bool = FORALL (side:Side): actual(s,side) <= 2

Property 3: ∀σ : Side, |holding2(σ)| ≤ 1 ∧ |holding3(σ)| ≤ 1. (The number of aircraft in each

vertical holding fix is at most one.)

Inv3(s:states):bool = FORALL (side:Side):
length(holding3(side,s)) <= 1 AND length(holding2(side,s)) <= 1

Property 4: ∀σ : Side, |maz(σ)| ≤ 2. (The number of aircraft in a missed approach zone is at

most two.)

Inv4(s:states):bool = FORALL (side:Side): length(maz(side,s)) <= 2

Property 5: ∀σ : Side, |lez(σ)| ≤ 1. (The number of aircraft in a lateral entry zone is at most

one.)

Inv5(s:states):bool = FORALL (side:Side): length(lez(side,s)) <= 1

Property 6: If lez(σ) is not empty, then the vertical holding fixes and the missed approach

zone of the same side (holding2(σ), holding3(σ), and maz(σ)) are all empty.
Inv6(s:states):bool = FORALL (side:Side):

NOT(empty?(lez(side,s))) IMPLIES empty?(holding2(side,s)) AND
empty?(holding3(side,s)) AND
empty?(maz(side,s))

Property 7: ∀σ : Side, assigned2fix(σ) ≤ 2. (The number of aircraft assigned to one side as

their mahf in the operation area is at most two.)

Inv7(s:states):bool = FORALL (side:Side): assigned2fix(s,side)<=2

All properties are proved using an induction over steps of the abstract model (the length of

the sequence of transitions the model takes), some of which need to be strengthened, or need to

be proved together to make an inductive proof work. We will closely examine the dependency

and which properties have to be proved together in Sections 3.4 - 3.7, which are devoted to the

proof of these main properties.

There are some facts that one may notice from these statements of properties. First, since

an initiation area includes a missed approach zone of the same side, Property 2 (actual(σ) ≤ 2)

implies Property 4 (|maz(σ)|). Yet it is reasonable to have Property 2 and Property 4 separately,

first because they are stated separately in [2], and more importantly because we actually have to

40

use the stated upper bound on |maz(σ)| to prove the stated upper bound on actual(σ). Again,

we will examine the details in Sections 3.4 - 3.7.

To see an example why some properties need to be strengthened, let us consider proving

Property 2 (∀σ : Side, actual(σ) ≤ 2). We can see, from the following, the reason why this

property by itself is not strong enough to make an inductive argument. Suppose, in some state

s, aircraft a with a.mahf = σ is in final, and it misses the approach. Thus an aircraft enters

maz(σ). Since we just assume actual(σ) ≤ 2 in the induction hypothesis, if actual(σ) = 2 before

the transition, we cannot guarantee that actual(σ) ≤ 2 in the post state of the missed approach

transition.

One might consider strengthening Property 2 using the virtual number of aircraft (virtual(σ))

introduced in Section 2.3.2, instead of using the actual number of aircraft (actual(σ)). Since

virtual(σ) ≥ actual(σ) for any state, we could prove Property 2 by proving that virtual(σ) ≤ 2

in any reachable state of the model. However, this approach would not work since the value of

virtual(σ) can exceed two in some reachable states. To see the reason, consider the following

scenario depicted in Figure 3.1.

landing sequence :

c is assigned right
as its mahf

Right Initiation Area Left Initiation Area

b

The trajectory of aircraft c
in case it misses the approach

The potential number of aircraft in
the right initiation area is:
2 (actual number of aircraft: a; b) +
1 (the number of potential aircraft: c)
 = 3

a

b c

a c

Figure 3.1: An example of a state in which the virtual number of aircraft on the right side is
more than two

Such a situation can be achieved by the following execution A of the model.

Execution A:

1. First, aircraft a enters holding3(right) by VerticalEntry, and is assigned its mahf

according to the side it enters, which is right, since it is the first aircraft that enters the

41

system. The value of nextmahf is set to left (the opposite side of the mahf of the new

aircraft).

2. Second, aircraft a descends to holding2(right) by HoldingPatternDescend. This tran-

sition is enabled since there is no aircraft in holding2(right).

3. Third, aircraft b enters holding3(right) by VerticalEntry, and is assigned left as its

mahf. The value of nextmahf is flipped to right. we can easily verify that the transition

is indeed enabled in this state.

4. Next, aircraft c enters holding3(left) by VerticalEntry, and is assigned right as its

mahf. Again, we can easily verify that the transition is enabled in this state.

5. Then, aircraft a initiates the approach by VerticalApproachInitiation, and moves to

base(right). This transition is enabled since a is the first aircraft in the landing sequence,

and |base(left)| = 0.

6. Finally, aircraft a proceeds to final in the approach area by two transitions, Merging

and FinalSegment. Then, it misses the approach (MissedApproach), and hence goes to

maz(right) according to its mahf assignment. These two transitions are enabled in our

scenario, considering that a is the first aircraft in the landing sequence.

Thus the state of the model after the above sequence of transitions is one of the reachable

states. Furthermore, as we can see from the picture, the value of virtual(right) is three in that

state.

Even though virtual(right) exceeds two, the above scenario would not jeopardize the upper

bound on actual(right) stated in Property 2. A potentially problematic scenario is that c initi-

ates and misses the approach after following the above steps, and therefore goes to maz(right).

This leads to the case that actual(right) = 3. However, this would not be the case because

aircraft c has the leader aircraft b, and b has not initiated the approach yet. Aircraft b has to

leave the right initiation area before c initiates the approach. In other words, aircraft b “blocks”

the aircraft c in this situation. This example leads to a notion of blocking of aircraft. To prove

the upper bound on actual(σ) stated as Property 2, we have to take into account not only mahf

assignments of aircraft outside of side σ, but also a blocking relation between aircraft. We will

define this notion of blocking formally in Section 3.5.

A scenario analogous to the one presented above was discussed in [2], and the authors argued

that Property 2 would not be violated in this scenario since, as we discussed above, aircraft b has

to leave the right initiation area before c initiates the approach. However, they did not need to

42

define the notion of “blocking” to verify the property, since they verified it by a model-checking

(state exploration).

3.3 Auxiliary invariants

Before we start proving the main properties presented in the previous section, we first state

and prove auxiliary invariants of the abstract model. Invariants in this section are basic to the

model, and are heavily used in proofs in the succeeding sections.

In Section 3.3.1, we prove basic properties that guarantee that the model is validly defined

so that it reflects the system in reality. These properties include the uniqueness of aircraft and

the correspondence between the operation area and the landing sequence.

In Section 3.3.2, we move on to higher-level invariants of the system that we can infer from

each step of the model. For example, the model has a local rule for the order of approach

initiations of aircraft: an aircraft cannot initiate the approach until its leader initiates. We

extend this rule to a global rule that refers to any two aircraft in the entire landing sequence.

3.3.1 Uniqueness of aircraft and the correspondence between the logical
zones and the landing sequence

The first basic property to be proved in this section is the uniqueness of aircraft in the system.

In a real system of SATS, each aircraft has its own unique ID, by which the system distinguishes

aircraft. This basic fact is important to the SATS concept since, as we have seen in Section

3.2, maintaining the correct order of aircraft in the system is crucial in satisfying the safety

properties of the model: The existence of two or more identical aircraft could confuse the order

of approach initiation and the landing. Thus, it is clearly desirable for the model to possess

some kind of uniqueness property of aircraft.

In addition, we need some type of correspondence between the operation area and the landing

sequence. This is because the landing sequence is an abstract notion we developed in order to

model the leader relation in a real system, and we have to match the aircraft in this abstract

sequence with the aircraft in the operational area, by proving, for example, if an aircraft is in

the operation, it is also in the landing sequence.

Since invariants in this subsection are the most basic properties of the model, we have to use

them in almost every proof of properties and other auxiliary invariants in the rest of this chapter.

A proof for these invariants themselves is no exception: some invariants in this subsection have

to be proved together to make an inductive proof work since they depend on each other.

We start by proving the uniqueness of aircraft. A natural way to describe the uniqueness

43

property of aircraft is to define it in terms of their IDs (recall that an ID is one of the attributes

of the Aircraft data type). That is, we define the uniqueness of aircraft as the fact that all

aircraft in the system are respectively assigned different IDs. Since, if IDs of two aircraft are

different, those aircraft are different (in terms of the attribute-wise equality, which is used in

PVS), the uniqueness of ID immediately implies the uniqueness of aircraft.

Note also that we need the uniqueness property for both the logical zones and the landing

sequence. This is because, before obtaining some correspondence results (which we will prove

as invariants of the model using the uniqueness property), a uniqueness result for one of these

two cannot carry over to a uniqueness result for the other.

Uniqueness of ID and aircraft on the logical zones

The uniqueness of ID in the logical zones is defined as follows.

Lemma 3.1. (Uniqueness of ID of aircraft on the logical zones) For any reachable state of

SATS, the following two conditions hold:

(i). (The uniqueness of ID in one zone) For any logical zone z and natural numbers i and j,

where i < j < |z|, z[i].ID 6= z[j].ID.

(ii). (The uniqueness of ID between different zones) For any two logical zones z1 and z2 such

that z1 6= z2, and any two aircraft a ∈ z1 and b ∈ z2, a.ID 6= b.ID.

The above lemma is stated formally in PVS as follows.

ID_uniqueness(zones:zone_map): bool =
%% ID uniqueness on the same zone
(FORALL (i,j: nat, z:z_name):

i < length(zones(z)) and j < length(zones(z)) and i<j IMPLIES
nth(zones(z),i)‘id /= nth(zones(z),j)‘id)

AND
%% ID uniqueness between different zones
(FORALL (a,b: Aircraft, z1,z2:z_name):

z1/=z2 AND
(on_zone?(zones(z1),a) AND on_zone?(zones(z2),b)) IMPLIES
a‘id /= b‘id)

ID_uniqueness_lemma: LEMMA
(FORALL (s:states): reachable(s) => ID_uniqueness(zones(s)))

Proof. By induction. The base case vacuously holds since there is no aircraft on any logical zone

in the initial state.

Inductive step: Suppose the condition holds in the pre state of a transition. When an aircraft

is added to a logical zone, the system assigns an ID to the aircraft in a way that the ID is different

from any other IDs of aircraft that are already in the logical zones, thus the condition holds in

the post state in the case of VerticalEntry and LateralEntry.

44

In the case of the transition that moves an aircraft from zone z1 to zone z2, it is sufficient

to check the uniqueness in z1 and z2, and the uniqueness between zones. The uniqueness of ID

in z1 is preserved by the transition since we just remove the first aircraft. The uniqueness of

ID in z2 holds since from the induction hypothesis, the ID of the aircraft that moves into z2

is different from the ID of any aircraft on z2 in the pre state. Finally, the uniqueness between

zones is preserved because of the following reason. The uniqueness between z1 and z2 holds from

the following: The IDs of aircraft in z2 other than the newly added aircraft are different from

those in z1 since the uniqueness between zones holds in the pre state. And the ID of the newly

added aircraft to z2 is different from any aircraft in z1 from the uniqueness of ID in z1 in the pre

state. The uniqueness between either z1 or z2 and any other zone z3 holds from the uniqueness

between z1 and z3, and between z2 and z3 in the pre state, as it implies all IDs of the aircraft

in z1 and z2 are different from the ID of an aircraft on z3. The case of MissedApproach can be

treated same way as above since the reassignment of the mahf of an aircraft does not change its

ID, and thus the transition can be considered as that an aircraft just moves from final zone to

maz zone when we just focus on ID of aircraft.

The final case is for a transition that removes an aircraft from logical zones (Taxiing or

Exit) and the condition immediately holds from the induction hypothesis.

The uniqueness of aircraft in the logical zones are defined analogously to the uniqueness of

ID. As we stated earlier in this subsection, the uniqueness of ID on the logical zones implies the

uniqueness of aircraft on the logical zones.

Corollary 3.2. (Uniqueness of aircraft on the entire logical zones) For any reachable state of

the abstract model, the following two conditions hold:

(i). (The uniqueness of aircraft on one zone) For any logical zone z and natural numbers i and

j where i < j < |z|, z[i] 6= z[j].

(ii). (The uniqueness of aircraft between different zones) For any two logical zones z1 and z2

such that z1 6= z2, If a ∈ z1, then a /∈ z2.

Corollary 3.2 is stated in PVS as follows.

45

%% uniqueness for zones
uniqueness(zones:zone_map): bool =

%% uniqueness on the same zone
(FORALL (i,j: nat, z:z_name):

i < length(zones(z)) and j < length(zones(z)) and i<j IMPLIES
nth(zones(z),i) /= nth(zones(z),j))

AND
%% uniqueness between different zones
(FORALL (a: Aircraft, z1,z2:z_name):

z1/=z2 IMPLIES
(in_queue?(a,zones(z1)) IMPLIES NOT in_queue?(a,zones(z2))))

uniqueness_lemma: LEMMA
(FORALL (s:states): reachable(s) => uniqueness(zones(s)))

Correspondence of the number of aircraft between the operation area and the land-
ing sequence

Before moving on to the uniqueness of ID of aircraft in the landing sequence, we prove the

correspondence of the number of aircraft between the operation area and the landing sequence,

which we need in order to prove the uniqueness of ID in the landing sequence. The lemma states

that the number of aircraft in the operation area (arrival op) exactly matches the number of

aircraft in the landing sequence (|landing seq|) in any reachable state. Using this lemma, we

can also prove the upper bound on the number of the aircraft in the operation area by proving

the upper bound on the number of aircraft in the landing sequence.

The statement of the lemma is as follows.

Lemma 3.3. For any reachable state of SATS, arrival op = |landing seq|

The lemma is formally stated in PVS as follows.

n_of_ac_coincides_lemma: LEMMA
(FORALL (s:states):
reachable(s) => (arrival_op(s) = length(landing_seq(s))))

Proof. A proof is straightforward by induction. For the base step, there is no aircraft in either

the landing sequence or the operation area, thus the condition holds.

Inductive step: In the case that the action adds an aircraft to the operation area (Vertical

Entry and LateralEntry), it also adds one aircraft to the landing sequence. Thus the condition

holds. In the case that the action removes an aircraft from the operation area (Exit or Landing),

the action also removes one aircraft from the landing sequence, thus the condition holds. The

rest of the transitions do not add or remove an aircraft from either the landing sequence or the

operation area. Note that MissedApproachmoves aircraft with a reassignment of mahf, but does

not change the total number of aircraft in both the logical zones and the landing sequence.

46

Uniqueness of ID and aircraft in the landing sequence

Now we prove the uniqueness of ID of aircraft in the landing sequence. It turns out that in

order to make an inductive proof work, we need to prove two more invariants together with this

uniqueness property. We first state the uniqueness of ID of aircraft in the landing sequence as

Invariant 3.4. Next we state two other invariants, Invariants 3.5 and 3.6. Finally we prove these

three together as Lemma 3.7.

The uniqueness of ID of aircraft in the landing sequence is formally stated as follows.

Invariant 3.4. (Uniqueness of ID of aircraft on the landing sequence) For any reachable state

of SATS, the following condition holds:

For any natural numbers i and j where i < j < |landing seq|, landing seq[i].ID 6= landing seq[j].ID

Invariant 3.4 is stated in PVS as follows.

%% ID uniqueness for one queue
ID_queue_uniqueness(q:queue): bool =

(FORALL (i,j: nat):
i < length(q) and j < length(q) and i<j IMPLIES
nth(q,i)‘id /= nth(q,j)‘id)

%% ID uniqueness lemma for the landing sequence
landing_seq_ID_uniqueness_lemma: LEMMA

(FORALL (s:states):
reachable(s) => ID_queue_uniqueness(landing_seq(s)))

We now introduce the two invariants that need to be proved together with Invariant 3.4.

The first invariant states that the combined zone of intermediate and final (the concate-

nation intermediate ◦ final) is exactly the same as the first portion of the landing sequence

of the same length. In other words, the order of aircraft in the approach area after merging

from the base zones to the intermediate zone by Merging is exactly the same as the order of

aircraft in the landing sequence. This property implies Corollary 3.8, stated later, which states

that the aircraft that is about to land (that is, the first aircraft in final zone) is the first aircraft

in the landing sequence, and therefore the order of the landings of aircraft matches the order of

aircraft in the landing sequence. This corollary is used in almost every inductive proof in the

rest of the paper when we analyze the cases of Landing and MissedApproach.

Invariant 3.5. (Strong correspondence between the landing sequence and zones intermediate

and final) Let c = intermediate ◦ final. For any reachable state of SATS, the following

condition holds:

For any natural number i where i < |c| and i < |landing seq|, c[i] = landing seq[i].

Invariant 3.5 is stated in PVS as follows.

47

first_final_support: LEMMA
(FORALL (s:states):
reachable(s) =>
LET final_approach_area = append(final(s),intermediate(s)) IN
FORALL (i:nat):
i<length(landing_seq(s)) AND i<length(final_approach_area)
IMPLIES nth(landing_seq(s),i) = nth(final_approach_area,i))

The second invariant states that any aircraft in the operation area is also in the landing

sequence. The correspondence here is weaker than Lemma 3.5 in the sense that we do not have

the exact correspondence referring to the order of aircraft. However, this lemma applies to any

aircraft in the operation area, not just in intermediate zone and final zone. This property is

also a most basic properties of the model, and is used in a proof of main properties.

Invariant 3.6. (Weak correspondence between the landing sequence and the operation area)

For any reachable state of SATS, if an aircraft is in the operation area, then it is also in the

landing sequence.

Invariant 3.6 is stated in PVS as follows.

queue_correspondence_lemma: LEMMA
(FORALL (s:states, a:Aircraft):
reachable(s) =>
(on_zones?(s,a) IMPLIES in_queue?(a, landing_seq(s))))

Now we prove these three invariants together.

Lemma 3.7. For any reachable state of the abstract model, the invariant conditions stated in

Invariants 3.4, 3.5, and 3.6 hold.

Before going into a detailed proof, we here state why we need to prove these two additional

invariants, Invariants 3.5 and 3.6, together with the uniqueness of ID in the landing sequence. As

we examine in the following, we need Invariant 3.5 as an induction hypothesis to prove Invariant

3.4, and vice versa, and also need Invariant 3.5 as an induction hypothesis to prove Invariant

3.6 and vice versa.

We first consider the reason why Invariant 3.5 and Invariant 3.4 depend on each other. To

prove the case of MissedApproach in an inductive proof for Invariant 3.4, we need the condition

of Lemma 3.5 in the pre state for the following reason. In this case, the transition removes

the first aircraft of the landing sequence, and adds the reassigned first aircraft of final to the

landing sequence. We have to guarantee that the aircraft removed from final zone has the

same ID as the aircraft added to maz (though it may have a different mahf assignment), since

otherwise we do not know any relation between the ID of the added aircraft and the ID of aircraft

that have already been in the landing sequence, and thus cannot guarantee the uniqueness of

ID.

48

On the other hand, when we analyze the case of Merging in an inductive proof for Invariant

3.5, we need the uniqueness of aircraft in the landing sequence just as we will present it in the

proof. Thus we need Invariant 3.4.

Now we consider why Invariant 3.6 and Invariant 3.5 depend on each other. We first examine

the reason why we need Invariant 3.5 to prove Invariant 3.6. The statement of Invariant 3.6

may seem somewhat obvious: aircraft in the operation area are also in the landing sequence.

However, we have not obtained the fact that the aircraft that lands by Landing transition, and

thus moves out of the operation area, is indeed the first aircraft of the landing sequence. Hence,

in the case of Landing action, we do not know if the model removes the same aircraft from the

operation area and the landing sequence. Since Invariant 3.5 implies this fact, we need Invariant

3.5 to prove Invariant 3.6.

The reason why we need Invariant 3.6 to prove Invariant 3.5 is that, by using Invariant 3.6,

we can guarantee that whenever a transition that uses the leader function

(VerticalApproachInitiation, LateralApproachInitiation, or Merging) is enabled, leader

indeed returns the correct leader of the given aircraft (recall that leader returns a default value

if the aircraft given to the function is not in the given queue, in order to guarantee that the

value of the function is always well-defined.) For example, the precondition of Merging refers

to the leader of the first aircraft of base zone. Nevertheless, the precondition does not have

an assumption that the first aircraft of base is actually in the landing sequence. If we assume

Invariant 3.6 in the pre state, we can guarantee that the leader function indeed returns the

correct leader of the given aircraft, since the lemma implies that the first aircraft of base is in

the landing sequence.

Proof. We prove three conditions together by induction, that is, by assuming all three of them

as the induction hypothesis. We refer to the combined zone of final and intermediate as just

the “combined zone” in the following.

For the base case, the landing sequence and the operation area, and thus also the combined

zone, are all empty. Hence three conditions trivially hold. Now we start the induction step.

First Condition: We start by proving the first condition, i.e., the condition for Lemma

3.4.

• In the case of the transitions for an entry of aircraft (VerticalEntry and LateralEntry):

The transition adds an aircraft with the ID that is not equal to the ID of any aircraft that

are already in the landing sequence. Thus the uniqueness of aircraft is preserved in the

post state.

49

• In the case of Exit and Landing:

The transition removes an aircraft from the operation area. Since the removal of aircraft

does not affect the uniqueness of aircraft, it is preserved in the post state.

• In the case of MissedApproach:

The transition removes the first aircraft of both final and the landing sequence, and adds

the reassigned first aircraft of final. The second condition of the induction hypothesis

implies the first aircraft of the final zone is also the first aircraft of the landing sequence.

Thus, the transition removes the first aircraft from the landing sequence, and adds the

same aircraft with new assignment of mahf to the sequence. Since this reassignment does

not affect the ID of the aircraft, the uniqueness is still preserved in the post state.

The rest of the transitions do not affect the landing sequence, or the ID of aircraft. Thus

the condition immediately follows from the induction hypothesis. [End of the proof of the first

condition.]

Second Condition: Now we prove the second condition of the claim, that is, the condition

for Lemma 3.5. we start by proving the most interesting case, the case of Merging transition.

• In the case of Merging:

The transition moves an aircraft from base to intermediate. The condition for aircraft

other than the aircraft that just joins c by the transition holds from the induction hy-

pothesis since the transition just adds an aircraft to c. Now we show the condition for the

aircraft that just joins c by the transition. Let us call this newly coming aircraft a.

The precondition of the transition ensures that a is either the first aircraft of the landing

sequence, or the leader of a is already in c. In the former case, if c is empty in the pre

state, then we are done, since a will be the first aircraft in both the landing sequence

and c in the post state, as required. We claim that c is empty in the pre state. For a

contradiction, suppose it is not empty in the pre state. It follows that |c| ≥ 1. From the

induction hypothesis, the first aircraft of c is the same as the first aircraft of the landing

sequence, which is a. It implies that a is both in c and in base in the pre state. This

contradicts the uniqueness of aircraft in the logical zones stated as Corollary 3.2.

Next, we consider the case that the leader of a is in c in the pre state. In this case, we use the

condition of Invariant 3.6 to ensure that leader function returns the correct leader: from

the induction hypothesis, every aircraft in the operation area is also in the landing sequence

in the pre state. Since a is in the base zone, a is in the landing sequence. Furthermore, since

we are considering the case in which a is not the first aircraft of the sequence, leader(a,

50

landing seq) returns the correct leader of a. Now we prove the correspondence. Let l be

|c| in the pre state. Thus for the last aircraft b in c in the pre state,b = c[l − 1]. From

Lemma 3.3, |c| ≤ |landing seq|. Thus max(|c|, |landing seq|) = |landing seq|. Since a

becomes the aircraft at position l in c in the post state, it is sufficient to prove that a is

also located at position l in the landing sequence. Suppose, for a contradiction, that a is

located at another position l′ 6= l in the landing sequence. Since the leader of a is already

in c, it follows from the induction hypothesis that for leader(a), there is some position j

such that leader(a) = c[j] = landing seq[j]. Considering the uniqueness of aircraft in

the landing sequence in the pre state from the induction hypothesis, leader(a) appear just

once in the landing sequence, and thus is just positioned at l ′ − 1 in the landing sequence.

It implies that l′ − 1 ≤ l − 1 because otherwise the position of the leader l ′ − 1 exceeds

|c| in the pre state. It follows that a is positioned at l ′ < l in the landing sequence. This

implies from the induction hypothesis that a = landing seq[l ′] = c[l′]. It follows that a is in

c and is also in base in the post state. However, this contradicts the uniqueness of aircraft

on the operation area stated in Corollary 3.2.

• In the case of FinalSegment:

The transition moves the first aircraft of intermediate to the end of final. Since the

combined zone is not changed by the transition, the condition holds from the induction

hypothesis.

• In the case of Landing and MissedApproach:

The transition removes the first aircraft from both final zone and the landing sequence.

The correspondence of aircraft in two sequences follows from the induction hypothesis.

• In the case of Exit:

The transition removes the first aircraft from both intermediate zone and the landing

sequence. If final zone is empty in the pre state, then the condition follows from the

following reason. This assumption and the induction hypothesis implies that the first

aircraft of intermediate is also the first aircraft of c. Thus the transition removes the first

aircraft of both sequences, and therefore the correspondence is preserved by the transition.

If final is not empty in the pre state, from the close correspondence stated in the second

condition, the first aircraft of final is the first aircraft of the landing sequence in the pre

state. Whereas, from the precondition of the transition, the first aircraft of intermediate

is also the first aircraft of the landing sequence. However, this contradicts the uniqueness

of the aircraft in the logical zones since the same aircraft is both on final zone and

51

intermediate zone.

• In the case of the transitions for an entry of aircraft (VerticalEntry and LateralEntry):

The transition adds an aircraft to one of the initiation areas and the end of the landing

sequence. Thus |c| does not change. From Lemma 3.3, |c| ≤ |landing seq|. And since

|c| is not changed, the portion of the landing sequence that we have to prove the corre-

spondence is the same portion as in the pre state. Thus the correspondence we have to

show immediately follows from the induction hypothesis since the newly entering aircraft

is added to a position of the landing sequence out of the range where the correspondence

has to hold.

The rest of the transitions do not affect either the landing sequence or zone final or

intermediate. Thus the condition immediately follows from the induction hypothesis. [End of

the proof of the second condition.]

Third Condition: Now we prove the third condition of the claim, that is, the condition

for Lemma 3.6.

• In the case of the transitions for an entry of aircraft (VerticalEntry and LateralEntry):

The condition for aircraft other than the newly entering aircraft follows from the induction

hypothesis. For the newly entering aircraft, it is added to both the operation area and the

landing sequence. Thus the condition holds.

• In the case of Exit and Landing:

The transition removes the first aircraft of intermediate in the case of Exit, and removes

the first aircraft of final in the case of Landing, and also removes the first aircraft of

the landing sequence in both cases. In the case of the Exit action, the precondition

of the action guarantees that the first aircraft of intermediate is the first aircraft of

the landing sequence. In the case of the Landing, the induction hypothesis implies that

c[0] = landing seq[0]. Since final is not empty from the precondition of Landing,

c[0] = final[0]. Thus, the first aircraft of final is the first aircraft of the landing sequence.

Hence, in either case, the transition removes the same aircraft from both the operation

area and the landing sequence. For aircraft that is not removed by the transition, the

condition holds from the induction hypothesis. For the removed aircraft, we have to show

that the aircraft is no longer in the operation area. This holds from the uniqueness of

aircraft on the entire logical zones stated in Corollary 3.2.

• In the case of MissedApproach:

From a discussion analogous to the case of Landing, it follows that the first aircraft of final

52

is same as the first aircraft of the landing sequence in the pre state. Thus the transition

removes the same aircraft from both the operation area and the landing sequence. In

addition, the transition adds the same reassigned aircraft to both the operation area and

the landing sequence. To prove that the removed aircraft is no longer in the operation

area, we can use Lemma 3.1

The rest of the transitions do not add or remove aircraft from either the operation area or

the landing sequence. Thus the condition immediately follows from the induction hypothesis

[End of the proof of the third condition.]

As a corollary of Lemma 3.7 (Invariant 3.5), the following invariant holds.

Corollary 3.8. For any reachable state of the abstract model, if final zone is not empty, then

the first aircraft of final is the same as the first aircraft in the landing sequence.

Corollary 3.8 is stated in PVS as follows.

first_final_lemma: LEMMA
(FORALL (s:states):

reachable(s) =>
(NOT empty?(final(s)) IMPLIES

first(final(s)) = first(landing_seq(s))))

From this corollary, we can guarantee that the model is actually handling the same aircraft

in the operational area and the landing sequence in the case of Landing and MissedApproach

transitions. Recall that the precondition of these actions does not in itself ensure that the

aircraft that the transition handles in the operation area is the same as the aircraft it handles

in the landing sequence.

The uniqueness of aircraft in the landing sequence is defined analogously to the uniqueness of

ID in the landing sequence. As in the case of the uniqueness of ID and aircraft in the operation

area, the uniqueness of aircraft in the landing sequence follows from the uniqueness of ID of

aircraft in the landing sequence.

Corollary 3.9. (Uniqueness of aircraft on the landing sequence) For any reachable state of the

abstract model, the following condition holds:

For any natural numbers i and j where i < j < |landing seq|, landing seq[i] 6= landing seq[j]

Corollary 3.9 is stated in PVS as follows.

queue_uniqueness(q:queue): bool =
(FORALL (i,j: nat):

i < length(q) and j < length(q) and i<j IMPLIES
nth(q,i) /= nth(q,j))

landing_seq_uniqueness_lemma: LEMMA
(FORALL (s:states):
reachable(s) => queue_uniqueness(landing_seq(s)))

53

Correspondence of the number of aircraft assigned to one side as their mahf between
the operation area and the landing sequence

The next correspondence we prove concerns the number of aircraft assigned a particular side as

their mahf. It states that, for side σ, the number of aircraft a with a.mahf = σ in the operation

area coincides with the number of aircraft a with a.mahf = σ in the landing sequence. By using

this lemma, we can prove a upper bound on the number of mahf assignments to one side in the

operation area by proving a corresponding upper bound on the number of mahf assignments to

the same side in the landing sequence.

Lemma 3.10. For any reachable state of the abstract model and side σ,

assigned(landing seq, σ) = assigned2fix(σ).

Lemma 3.10 is stated in PVS as follows.

assigned_seq(seq:queue, side:Side): RECURSIVE nat =
IF empty?(seq) THEN 0
ELSIF mahf(first(seq)) = side THEN 1+assigned_seq(rest(seq),side)
ELSE assigned_seq(rest(seq),side)
ENDIF
MEASURE length(seq)

assigned_ac_coincides_lemma: LEMMA
(FORALL (s:states, side:Side):

reachable(s) =>
(assigned2fix(s,side) = assigned_seq(landing_seq(s),side)))

We can prove this lemma analogously to Lemma 3.3, except that, unlike Lemma 3.3, we

cannot just count the number of aircraft added or removed, since an aircraft added to (removed

from) the operation area might potentially have a different mahf assignment from the assignment

of the aircraft added to (removed from) the landing sequence by the same transition. We have

to guarantee that when a transition adds (removes) an aircraft to (from) the operation area, it

adds (removes) the same aircraft to (from) the landing sequence.

Proof. For the transitions for an aircraft entry, we can assure from the definition of the transitions

that the same aircraft is added to both. In the case of Exit transition, the precondition ensures

that the first aircraft of final is same as the first aircraft of the landing sequence, and the model

removes this aircraft from both the operation area and the sequence. Thus the condition holds.

In the case of Landing, Corollary 3.8 ensures that the first aircraft of the zone final is also the

first aircraft in the sequence. Thus the model removes the same aircraft from both. The case of

MissedApproach can be proved analogously using Corollary 3.8 in the same way.

3.3.2 Key Invariants

The basic properties proved in Section 3.3.1 guarantees that the model constructed in this chap-

ter behaves as intended; for example, there is no duplication of aircraft (which is guaranteed

54

from the uniqueness of aircraft). In contrast, two invariants in this subsection state key prop-

erties of the model for why the system works correctly, rather than if the model behaves as

intended.

The first invariant (Lemma 3.11) states that the local flipping rule of nextmahf – that the

model flips the value of nextmahf each time it assigns a mahf to an aircraft – indeed constructs

the alternating assignments of the mahf of aircraft in the landing sequence.

The second invariant (Lemma 3.13) states that the local order-preserving rule of the approach

initiation – an aircraft cannot initiate the approach until its leader does so – can be extended to

a similar property that refers to any two aircraft in the landing sequence, by using the notion

that an aircraft precedes another aircraft, defined in Section 2.3.3.

These two invariants are useful in that they enable us to directly discuss any two aircraft in

the landing sequence, not just an aircraft and its leader.

The first invariant is as follows.

Lemma 3.11. (Alternating assignment of right and left to mahf of aircraft) For any reachable

state of the abstract model, if the landing sequence is not empty, then the following two conditions

hold: Let l = |landing seq|, and m = a.mahf where a is the first aircraft in the landing sequence.

(i). For any natural number i < l, landing seq[i].mahf is m if i is even, otherwise it is

opposite(m).

(ii). the value of nextmahf is m if l is even, otherwise it is opposite(m).

This lemma is stated in PVS as follows.1

1Note that, in PVS, we proved the condition on the number of assignments implied by the alternating as-
signment together with the above condition. Thus we have a conjunction of three conditions, as opposed to
two, in which the first condition represents the condition on the number of assignments, and the remaining two
conditions represents the two corresponding conditions in the above lemma. This additional condition is defined
as a corollary of this lemma (Corollary 3.12). We split the conditions of the lemma in PVS into one lemma and
one corollary to improve the readability of the conditions and a proof of them

55

alternate_assignment_lemma: LEMMA
(FORALL (s:states, side:Side):
reachable(s) =>
NOT empty?(landing_seq(s)) IMPLIES
LET first_mahf = first(landing_seq(s))‘mahf IN
LET length_seq = length(landing_seq(s)) IN
(assigned_seq(landing_seq(s),side) =

IF even?(length_seq) THEN length_seq/2
ELSIF first_mahf = side

THEN (length_seq+1)/2
ELSE (length_seq-1)/2 ENDIF) AND

(FORALL (i:nat): i<length(landing_seq(s)) IMPLIES
nth(landing_seq(s),i)‘mahf =

IF even?(i) THEN first_mahf
ELSE opposite(first_mahf) ENDIF) AND

(s‘nextmahf =
IF even?(length_seq) THEN first_mahf

ELSE opposite(first_mahf) ENDIF))

Recall that a zone queue is indexed starting from zero, and thus the first condition holds

even in the case i = 0, in which i-th positioned aircraft is the first aircraft.

The first condition states the main statement of the alternating assignment property in the

landing sequence. We have to prove the second condition (the condition derived from the local

flipping rule of nextmahf) together to make an inductive proof work.

Proof. By induction over steps of the model. The landing sequence is empty in the initial states,

thus the condition trivially holds for the base case. Now we focus on the induction step.

• In the case of transitions for an entry of aircraft (VerticalEntry and LateralEntry):

The first condition of the invariant: For an aircraft that is already in the landing sequence

before the transition, the condition holds from the induction hypothesis since the transition

just adds a new aircraft to the end of the sequence. For the newly entering aircraft, the

mahf assignment of it is determined according to the value of nextmahf in the pre state.

Suppose l is even in the pre state. It implies the new aircraft is assigned the same side

as m, and this aircraft become the l-th positioned aircraft in the sequence in the post

state (recall that the position starts from zero, and thus the last aircraft in the sequence

of length l + 1 is in position l.) Since l is even from our assumption, the condition holds

for the new aircraft in the post state. We can prove the case where l is odd analogously.

The second condition of the invariant: The value of nextmahf is flipped by the transition.

Since the parity of the length of the sequence changes as well, the condition holds.

• In the case of the actions that removes the first aircraft from the landing sequence (Exit

and Landing):

The first condition of the invariant: The second aircraft in the landing sequence (land-

ing seq[1]) in the pre state becomes the first aircraft in the post state. From the induction

56

hypothesis, landing seq[1].mahf = opposite(landing seq[0].mahf) in the pre state. At the

same time, the parity of the position of each aircraft in the sequence changes by the

transition. Hence the condition is preserved by the transition.

The second condition of the invariant: As we mentioned in the first case, the mahf of the

first aircraft is flipped by the transition, whereas the parity of the length of the sequence

changes. Thus the condition holds from the induction hypothesis.

• In the case of MissedApproach:

The first condition of the invariant: The transition removes the first aircraft (let us call it

a0) from the sequence and adds a0 to the end of the sequence with a reassignment of its

mahf. For an aircraft other than a0, the parity of its position changes by the transition

since the first aircraft is removed. At the same time, the mahf of the first aircraft is flipped.

Thus the condition is preserved by the transition. Now we consider the case for a0. Since

a0 is added to (l − 1)-th position (the end of the sequence of length l), the parity of the

position of a0 is odd from the assumption that l is even. The mahf of a0 is reassigned

according to the value of nextmahf in the pre state. Now suppose l is even. From the

second condition that holds in the pre state, it implies that by the transition, a0 gets

assigned the same mahf as the first aircraft in the pre state, which is opposite to the mahf

of the first aircraft in the post state. This is what is required to verify the condition since

the position of a0 in the landing sequence is odd in the post state. We can prove the case

that l is odd analogously.

The second condition of the invariant: The length of the sequence does not change by the

transition. The value of nextmahf is flipped by the transition. At the same time, the mahf

of the first aircraft is flipped as we stated above for the first condition. Thus the condition

still holds in the post state.

The rest of the transitions do not affect either the landing sequence or the mahf assignment

to aircraft. Hence the condition immediately holds from the induction hypothesis.

As a corollary of Lemma 3.11, we can prove the following.

Corollary 3.12. Let l = |landing seq| , and a be the first aircraft in the landing sequence. For

any reachable state of SATS, the following conditions hold:

(i). If l is even, assigned(landing seq, σ) = l
2 .

(ii). If l is odd, assigned(landing seq, σ) is equal to l+1
2 if σ = a.mahf, and it is l−1

2 , otherwise.

57

This corollary restates the alternating assignment property stated in Lemma 3.11 in terms

of the number of aircraft assigned to one side in the landing sequence. Since the assignments to

aircraft in the landing sequence alternate, if the length of the sequence is even, then the number

of aircraft with the mahf assignment to one specific side is exactly half of the length. If the

length of the sequence is odd, then the number is, of course, not exactly half, and depends on

the mahf assignment of the first aircraft.

The next lemma states the order-preserving rule for the approach initiations of aircraft. As

we mentioned earlier in this subsection, there is a local order-preserving rule between an air-

craft and its immediate leader for approach initiation: For VerticalApproachInitiation and

LateralApproachInitiation to be enabled, the leader of the aircraft initiating the approach

by these transitions must have already initiated the approach (that is, must be on the approach

area). The lemma extends this order-preserving rule between an aircraft and its leader to any

two aircraft in the landing sequence using the notion of precedes defined in Section 2.3.

Lemma 3.13. (The order-preserving property between the order of the approach initiations

and the landing sequence) For any reachable state of SATS, the following condition holds:

For any aircraft a and b in the landing sequence, if b precedes a in the sequence, and a is

on the approach, then b is also on the approach.

Lemma 3.13 is stated in PVS as follows.

order_preserve_lemma: LEMMA
(FORALL (s:states, a,b:Aircraft):
reachable(s) =>
(precedes?(b,a,landing_seq(s)) AND on_approach?(s,a) IMPLIES
on_approach?(s,b)))

Proof. By induction. There is no aircraft in the landing sequence in the initial state, thus the

condition trivially holds for the base case. Now we prove the inductive step. Since an aircraft

does not precede the same aircraft, we only consider the case a and b are different aircraft.

• In the case of the transitions for an entry of aircraft (VerticalEntry and LateralEntry):

If neither a nor b is the newly entering aircraft, the condition holds because of the following

reason. b precedes a in the pre state Suppose b precedes a, and a is on the approach in

the post state. Since the transition does not affect the preceding relation between b and a,

or the zone where a is, above two conditions in our assumption also hold in the pre state.

It implies that b is on the approach area in the pre state from the induction hypothesis.

Because b does not move by the transition, b is on the approach in the post state as

required.

58

Suppose a is the newly entering aircraft. From the uniqueness of aircraft on logical zones

stated in Corollary 3.2, a is only on either holding3 or lez, depending on whether the

action is VerticalEntry or LateralEntry. In either case, a is not on the approach, and

therefore the condition vacuously holds.

If b is the newly entering aircraft, b is added to the end of the landing sequence. From the

uniqueness of aircraft in the landing sequence stated in Corollary 3.9, b cannot precede a.

Hence the condition vacuously holds.

• In the case of VerticalApproachInitiation:

The transition moves the first aircraft in holding2 to the approach area (base zone).

Since the transition does not affect the landing sequence, the preceding relation of any

two aircraft in the landing sequence does not change by the transition. Suppose that b

precedes a and a is on the approach in the post state.

We split the case depending on a as follows. If a is not the aircraft initiating the approach

(that is, moving by the transition), a must be already on the approach in the pre state.

Considering that the preceding relation between a and b does not change by the transition,

b is also on the approach in the pre state from the induction hypothesis. Since b does not

move by the transition, and thus is still on the approach in the post state, the condition

holds.

Now we consider the case that a is the aircraft initiating the approach (that is, moving by

the transition). The precondition of the transition guarantees that in the pre state, either

a is the first aircraft in the landing sequence, or the leader of a is already on the approach

area. Considering the uniqueness of aircraft in the landing sequence from Corollary 3.9, a

cannot be the first aircraft of the landing sequence since it is preceded by b. Again from

the uniqueness of aircraft in the landing sequence, the fact that b precedes a implies either

b = leader(a), or b precedes leader(a). In the former case, b has to be on the approach from

the precondition of the action. Hence the condition holds. In the latter case, as leader(a)

is already on the approach in the pre state from the precondition of the transition, we can

apply the induction hypothesis to b and leader(a). It follows that b is on the approach in

the pre state, and b stays there in the post state. Therefore the condition holds.

• In the case of LateralApproachInitiation:

The transition moves an aircraft to either base or holding2 depending on the situation of

the current state. If the first aircraft of lez is the first aircraft in the landing sequence, or

the leader of it is already on the approach (this condition is equivalent to the precondition

59

of VerticalApproachInitiation), it directly initiates the approach from lez, and thus

goes to the approach area. If the above condition is not satisfied as the moment of the

transition, the first aircraft of lez moves to holding2. In the former case, we can have

the similar discussion to the case of VerticalApproachInitiation. In the latter case,

the transition does not affect either the landing sequence or the approach area. Thus the

condition immediately follows from the induction hypothesis.

• In the case of Exit and Landing:

The transition removes the first aircraft of the landing sequence. Suppose that b precedes

a and a is on the approach area in the post state. Neither a nor b is the first aircraft of

the sequence in the pre state, since if so, that aircraft is not in the sequence in the post

state from the uniqueness of aircraft, and thus b does not precede a. Hence both a and b

are not removed from the landing sequence. Therefore the position of them in the logical

zones and the preceding relation between them do not change by the transition. Hence

the condition follows from the induction hypothesis.

• In the case of MissedApproach:

The aircraft that has missed the approach goes from final to maz with a new mahf

assignment. The same aircraft is also removed from the head of the landing sequence, and

is added to the end of the sequence with a new mahf assignment.

If a is the aircraft that has missed the approach, the uniqueness of aircraft implies that a is

not on the approach area in the post state since it is in maz. Thus the condition vacuously

holds.

If b is the aircraft that has missed the approach, b is added to the end of the landing

sequence. From the uniqueness of aircraft in the landing sequence, b just appear at the

end of the landing sequence, and thus does not precede a. Thus the condition holds.

Now we consider the case in which neither a nor b is the aircraft that has missed the

approach. In such a case, the position of a and b in the logical zones and the preceding

relation between them do not change by the transition. Thus the condition follows from

the induction hypothesis.

The rest of the transitions do not affect either the landing sequence or the approach area.

Thus the condition holds from the induction hypothesis.

From Lemma 3.13, we can guarantee that every aircraft has to preserve the order of the

60

landing sequence when it initiates the approach. To see the reason, consider the following

argument. Suppose, for a contradiction, that a violates the order of the landing sequence and

initiates the approach. This implies that there is an aircraft b that precedes a but is still in an

initiation area. However, from Lemma 3.13, b must also be on the approach. This contradicts

the uniqueness of aircraft in the operation area.

3.4 Proving the main properties, Part 1: Properties that can
be proved by straightforward induction

Now we start proving the main properties presented in Section 3.2. Some properties can be

easily proved by induction using the auxiliary invariants we have proved in Section 3.3. The

other properties need to be strengthened using a notion of blocking of aircraft in order to make

an inductive proof go through.

It turns out that some properties depend on other properties, and thus we have to prove

them in such an order that a proof of each property depends only on properties that have been

proved. Because of this, the order of proofs in this section does not match the numbering of the

properties.2

In this section, we start by proving properties that can be proved straightforwardly by

induction (Properties 1, 7, and 5). Then, we move on to arguments about a notion of “blocking

of aircraft”. This notion of blocking is formally introduced in Section 3.5. In Section 3.6, we

strengthen Property 6 using a blocking condition in order to prove it inductively. How we

strengthen this property and how we prove it gives a good introduction to a more complicated

lemma and an argument in Section 3.7. In Section 3.7, we define one key lemma, Lemma 3.26,

to prove the rest of the properties. This lemma consists of the conjunction of two of the main

properties, Property 3 and 4, and seven conditions each of which represents a different blocking

situation. The last property to be proved, Property 2, also follows from this key lemma. A proof

for this lemma turns out to be the longest and most complicated in this thesis, mainly due to a

substantial number of case analyses and discussions on blocking situations.

Here we start by proving Property 1.

Theorem 3.14. (Property 1) For any reachable state of SATS, arrival op ≤ 4.

Proof. By induction. In the initial state, there is no aircraft on the operation area, and thus

arrival op = 0. Hence the condition trivially holds for the base case. Now we start proving the

2Since we did not know what the order of proofs should be when we define these properties in PVS, we just
listed the properties in the order as appear in this thesis. Though we could have re-numbered the properties to
match the order of the proof, in order to maintain the consistency with PVS code, we numbered them in the same
order as code.

61

induction step.

• In the case of VerticalEntry(σ):

The precondition of the transition guarantees that virtual(σ) < 2.

We first claim that from the definition of virtual, virtual(σ) ≥ assigned2fix(σ) for any

state from the following reason. The value of assigned2fix can be calculated by the sum

of the number of aircraft a on σ such that a.mahf = σ, plus the number of aircraft b

such that b.mahf = σ and b is not on σ. On the other hand, the value of virtual can

be calculated by the sum of the number of aircraft on σ, plus the number of aircraft b

such that b.mahf = σ and b is not on σ. Notice that the second number in both sums are

exactly the same. In addition, the first number in the sum of assigned2fix is always less

than or equal to the first number in the sum of virtual. Thus the above claim holds.

It follows from the above claim that assigned2fix(σ) < 2.

From the induction hypothesis, arrival op ≤ 4 in the pre state. Now we prove the condition

by splitting it into two cases. If arrival op < 4 in the pre state, the condition holds since

the transition just adds one aircraft to the operation area. If arrival op = 4 in the pre

state, then it follows from Corollary 3.12 that assigned2fix(σ) = 2. This contradicts with

the above discussion that

assigned2fix(σ) < 2.

• In the case of LateralEntry(σ):

The precondition of the action guarantees that virtual(σ) = 0. Thus, it, of course, follows

that virtual(σ) < 2. Thus we can use the same argument as in the case of VerticalEntry

to prove the condition.

The rest of the transitions do not add an aircraft to the operation area, and thus do not

increase arrival op. Hence the condition follows from the induction hypothesis.

Theorem 3.15. (Property 7) For any reachable state of SATS and side σ,

assigned2fix(σ) ≤ 2.

Proof. The condition immediately follows from Theorem 3.14 and Corollary 3.12: from Theorem

3.14, the number of aircraft on the operation area (arrival op, and thus |landing seq|) is at most

four, and from Corollary 3.12, the number of aircraft assigned one side

assigned2fix(σ) = 2 when arrival op = 4, and assigned2fix(σ) ≤ 2 when arrival op = 3.

If arrival op ≤ 2, the condition is trivial since assigned2fix(σ) ≤ arrival op (the number of

aircraft assigned some side cannot exceed the total number of aircraft there).

62

Theorem 3.16. (Property 5) For any reachable state of SATS and side σ, |lez(σ)| ≤ 1.

Proof. By induction. There is no aircraft in the lez zones in the initial state, thus the condition

holds for the base case. We prove the induction step in the following.

• In the case of LateralEntry(σ):

The precondition of the transition ensures that virtual(σ) = 0 in the pre state of the

transition. This implies that actual(σ) = 0. Thus lez(σ) is empty in the pre state. Since

the transition adds just one aircraft to lez(σ), there is exactly one aircraft in the post

state. Hence the condition holds.

The rest of the transitions do not add an aircraft to lez zone. Thus the condition follows

from the induction hypothesis.

3.5 Blocking of aircraft

As we discussed in Section 3.2, we need a notion of blocking of aircraft to prove the remaining

properties. Recall that, as discussed in Section 3.2, the problem we are concerned about arises

from the fact that, once an aircraft initiates the approach, there is no way to prevent the aircraft

from missing the approach, and in consequence, it goes to a missed approach zone (maz). For

instance, suppose an aircraft a with a.mahf = σ initiates the approach from a state in which

two aircraft are in maz(σ). Since there is no “guard” that prevents MissedApproach from being

performed, the aircraft can possibly go to maz(σ). This scenario would violate Property 3 –

|maz(σ)| ≤ 2. This implies that in order to prove an upper bound on |maz(σ)|, we have to

guarantee that aircraft that will jeopardize the bound would not initiate the approach.

A key to guaranteeing that such an aircraft would not initiate the approach is a fact that

follows from Lemma 3.13: an aircraft has to preserve the order of the landing sequence when it

initiates the approach. That is, if aircraft a is preceded by another aircraft b, a has to wait until

b initiates the approach before a does so. Thus, this condition works as an implicit “guard”

that delays the approach initiation of aircraft that could potentially violate the required bounds.

Using this guard, we can assert the following fact: if, for every aircraft a on side σ, a.mahf = σ

or a is preceded by some other aircraft b in the landing sequence, then no aircraft on σ would

go to maz(opposite(σ)) until b initiates its approach.

We define a notion of “blocking” of aircraft as follows, in order to formally capture the above

mentioned situation – for every aircraft a on side σ, a.mahf = σ or a is preceded by some other

aircraft b in the landing sequence.

First we define a blocking condition for one single aircraft.

63

Definition 3.17. Let a and b be aircraft, σ be a side. We say that a is (b, σ)-blocked if and only

if, a.mahf = σ or a is preceded by b in the landing sequence.

If a is (b, σ)-blocked, then a would not go to maz(opposite(σ)) until b initiates the approach.

Now we define a blocking condition for one whole side.

Definition 3.18. Let b be an aircraft, σ be a side. We say that the side σ is b-blocked if and

only if, for every aircraft a in σ, a is (b, σ)-blocked. We refer to this aircraft b as a blocking

aircraft for side σ.

From the above discussion about the guard for the approach initiation, if side σ is b-blocked,

then no aircraft in that side would reach maz(opposite(σ)) until the aircraft b initiates its ap-

proach. In other words, the side σ cannot “send” any aircraft to opposite(σ).

The blocking condition is defined in PVS as follows. The predicate

blocked_by?(a, b, side) checks if aircraft a is (b, side)-blocked. Using blocked_by?, the

predicate blocked_side? checks whether side is b-blocked. For an easier understanding of the

blocking notion, we defined this notion in terms of σ (and side in PVS). However, the actual

predicate used to strengthen main properties is the last predicate blocked_opposite_side?,

defined as blocked_side? for opposite(side). Indeed, as discussed in the example in the

beginning of this subsection, when we want to strengthen Property 3 (∀σ : Side, |maz(σ)| ≤ 2)

for a specific side σ, we need opposite(σ) to be blocked, so that an aircraft would never come

from opposite(σ) to maz(σ).

blocked_by?(a,b:Aircraft, side:Side, s:states):bool =
mahf(a) = side OR
precedes?(b, a, landing_seq(s))

blocked_side?(b:Aircraft, side:Side, s:states):bool =
Forall (a:Aircraft):

on?(side,a,s) IMPLIES blocked_by?(a,b,side,s)

blocked_opposite_side?(b:Aircraft, side:Side, s:states):bool =
blocked_side?(b, opposite(side), s)

An example of a blocking situation is depicted in Figure 3.2. In this situation, the left side

is b-blocked, since every aircraft in the left side is (b,left)-blocked, that is, each aircraft in the

left side is either assigned left as its mahf, or is preceded by b. Until b initiates the approach,

no aircraft in the left side would reach maz(right).

As we will see in the explanation of Lemma 3.26, we also need to consider a slightly different

blocking situation than b-blocked. More specifically, we need to define the conditions that

capture a situation in which exactly one aircraft c with c.mahf = σ can initiate the approach,

but any other aircraft have to be blocked.

First we define a notion that an aircraft a is σ-ready, for some side σ.

64

Right Initiation Area

The trajectory of aircraft a1 when it initiates
the approach, and then misses the approach.
Note it will not go to maz(right).

b

The mahf of a1

is assigned to left

a2 is preceded by b
in the landing sequence

b-Blocked

a1

a2

Left Initiation Area

landing sequence :
b a1a2

Figure 3.2: The left side is b-blocked, where b is the first aircraft of lez(right)

Definition 3.19. Let σ be a side. We say that aircraft a is σ-ready if and only if the following

conditions hold

1. a is in opposite(σ).

2. a.mahf = σ.

3. For any aircraft b in σ, a precedes b in the landing sequence.

If aircraft a is σ-ready, then a’s approach initiation is not blocked by any aircraft in σ, and

thus a can possibly go to maz(σ) in case it misses the approach.

Example: We now explain an example of σ-ready. In the state depicted in Figure 3.3 (re-

depicted from Figure 3.1), aircraft c is not right-ready, since it is preceded by b in the right side.

However, after b initiates the approach by following a few steps from that state, c is no longer

preceded by any aircraft on the right side. Thus in this new state, a is right-ready.

The condition that checks whether there is a side-ready aircraft in state s is defined in PVS

as follows.

ac_ready_to_approach?(side:Side, s:states): bool =
(EXISTS (a:Aircraft):

mahf(a)=side AND
on?(opposite(side),a,s) AND
(FORALL (b:Aircraft):

on?(side,b,s) IMPLIES precedes?(a,b,landing_seq(s))))

65

landing sequence :

c is assigned right
as its mahf

Right Initiation Area Left Initiation Area

b

The trajectory of aircraft c
in case it misses the approach

a

b c

a c

b is preceded byc

Figure 3.3: c is not ready to go to the opposite side until b initiates the approach

Now we define a notion of a blocking except for one aircraft.

Definition 3.20. Let b be an aircraft, σ be a side. We say that the side σ is b-blocked−1 if and

only if there is an aircraft c such that c is in side σ and c.mahf = opposite(σ), and for every

aircraft a on σ such that a 6= c, a is (b, σ)-blocked.

The condition for b-blocked−1 states that except for one aircraft c, the same blocking condi-

tion as for b-blocked applies to aircraft in side σ.

This notion is defined in PVS as blocked_side_minus_1? as follows. Analogous to

blocked_opposite_side? for blocked_side?, we define blocked_except_for_one? as the

“opposite side” version of blocked_side_minus_1?.3

blocked_side_minus_1?(b:Aircraft, side:Side, s:states):bool =
EXISTS (c:Aircraft):

on?(side,c,s) AND mahf(c) = opposite(side) AND
FORALL (a:Aircraft):
on?(side,a,s) AND a /= c IMPLIES blocked_by?(a,b,side,s)

blocked_except_for_one?(b:Aircraft, side:Side, s:states):bool =
EXISTS (c:Aircraft):

on?(opposite(side),c,s) AND mahf(c) = side AND
FORALL (a:Aircraft):
on?(opposite(side),a,s) AND a /= c IMPLIES

blocked_by?(a,b,opposite(side),s)

3This blocked except for one? is defined in a direct way, as opposed to using blocked side minus 1?.
This is because of a minor technical reason: if we define blocked except for one?(b,side,s)

= blocked side minus 1?(b,opposite(side),s), then the predicate will have the term mahf(c) =

opposite(opposite(side)) when expanded. Though, of course, we can assert that opposite(opposite(side))

= side, in order to ease a mechanical theorem-proving process as much as possible, we chose to define
blocked except for one? in a expanded form.

66

The blocking conditions and σ-ready condition presented in this subsection are preserved by

some transitions under some conditions of the state in which the transitions are performed. The

following Lemmas 3.21, 3.22, and 3.23 state such conditions of the transitions and the states.

Lemma 3.21 states the condition for blocked_opposite_side?. Recall that, as we discussed

earlier in this subsection, we will use a blocking condition to strengthen main properties, and in

doing so for side σ, we have to use the claim opposite(σ) is b-blocked. This is why the lemma is

defined in terms of blocked_opposite_side?, as opposed to blocked_side?.

Lemma 3.21. For any reachable state s of SATS, any side σ, and any aircraft b in the operation

area, if the side opposite(σ) is b-blocked, then the same side is b-blocked after a transition in

any of the following cases.

1. The transition is either HoldingPatternDescend, Merging, FinalSegment, Taxiing, or

LowestAvailableAltitude.

2. The transition is for the entry of an aircraft – VerticalEntry or LateralEntry.

3. The transition is for the approach initiation

– VerticalApproachInitiation or LateralApproachInitiation.

4. The transition is either Exit, Landing, or MissedApproach, and b is on some side.

Lemma 3.21 is stated as two lemmas in PVS as follows. We split the lemma into two lemmas

in PVS, since for the first condition in Lemma 3.21, we have the exact equality for the value of

blocked opposite side?, whereas, we only have an implication for the remaining conditions.

The first lemma blocked_opposite_side?_unchanged states the first condition of Lemma 3.21,

and the second lemma blocked_opposite_side?_implication states the remaining cases.

blocked_opposite_side?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND
enabled(a,s)
IMPLIES

blocked_opposite_side?(ac,side,trans(a,s)) =
blocked_opposite_side?(ac,side,s))

67

blocked_opposite_side?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
((Exit?(a) OR Landing?(a) OR MissedApproach?(a)) AND
(on?(side,ac,s)))) AND
on_zones?(s,ac) AND
enabled(a,s) AND
reachable(s)
IMPLIES

(blocked_opposite_side?(ac,side,s) =>
blocked_opposite_side?(ac,side,trans(a,s))))

Proof. Case 1: The transitions in this group does not affect the set of aircraft in the initiation

areas or the set of aircraft in the landing sequence, nor the mahf assignment of aircraft. Since

all conditions that are related to a blocking argument are above three things, the transition

preserves a blocking by b.

Case 2: If a new aircraft enters to opposite(σ), the transition does not change the set of the

aircraft in σ, and all of them are still either assigned σ as their mahf, or are preceded by b. Thus

the condition holds. Now consider the case that an aircraft enters to σ. For the aircraft in σ

except for the new aircraft, the blocking condition holds since the transition does not affect their

mahf assignments or the preceding relation between them and the blocking aircraft b. For the

new aircraft, since it is added to the end of the landing sequence, it is preceded by any aircraft

that is already in the landing sequence. From Lemma 3.6, the fact that b is in the operation area

implies that it is also in the landing sequence. Thus the new aircraft is preceded by b. Therefore

the blocking condition holds for all aircraft in the initiation area of γ.

Case 3: The transition moves an aircraft from one of the initiation areas to the approach

area. If an aircraft moves from opposite(σ), the condition holds since the transition does not

change the set of the aircraft in σ, and all of them are still assigned σ as their mahf, or are

preceded by b. If an aircraft moves from σ, the transition just removes one aircraft from σ.

Thus all remaining aircraft are still assigned σ as their mahf or are preceded by b. (Note that

since we do not have the condition that a blocking aircraft must be in the initiation area, even

if b initiates the approach by this action, the condition still holds.)

Case 4: If the transition is either Exit or Landing, it removes both the first aircraft of the

landing sequence and the first aircraft of either intermediate, in the case of Exit, or final, in

the case of Landing. In either case, the blocking aircraft b would not be removed from the model

since we assume that it is in some side, on in the approach area. Considering that removing

the first aircraft in the landing sequence does not affect the preceding relation of the remaining

aircraft, nor change the mahf assignment of any aircraft, the initiation area of σ is still b-blocked

68

after the transition.

If the transition is MissedApproach, it removes both the first aircraft of the landing sequence,

and the first aircraft a of final, and adds the removed aircraft a, with reassignment of the mahf,

to the end of the landing sequence and maz(a.mahf). The condition for all aircraft in σ except

for a follows from the same argument as in the case of Exit and Landing. For the reassigned

aircraft a, since it is added to the end of the landing sequence, it is preceded by any aircraft that

has already been in the landing sequence. Thus, from an analogous argument as in the case of

VerticalEntry or LateralEntry, it is preceded by b in the post state of the transition. Hence

the blocking condition holds for all aircraft in the initiation area of σ.

Next we prove a claim analogous to Lemma 3.21 for b-blocked−1.

Lemma 3.22. For any reachable state of SATS, side σ, and aircraft b in the operation area, if

opposite(σ) is b-blocked−1, and b is in σ, then the same side is b-blocked−1 after a transition in

any of the following cases.

1. The transition is either HoldingPatternDescend(opposite(σ)), Merging,

FinalSegment, Taxiing, or LowestAvailableAltitude(opposite(σ)).

2. The transition is either Exit or Landing

3. The transition is MissedApproach(a) and a.mahf = opposite(σ).

4. The transition is VerticalApproachInitiation(a, opposite(σ)), and

a.mahf = opposite(σ).

5. The transition is for the entry of aircraft to opposite(σ) – VerticalEntry(opposite(σ))

or LateralEntry(opposite(σ)).

This lemma is defined in PVS as follows. As in the case of Lemma 3.21, we have two

lemmas in PVS to differentiate the cases when we have the exact equality for the value of

blocked except for one? and the case when we only have an implication.

blocked_except_for_one?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side, b:Aircraft):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s)
IMPLIES

blocked_except_for_one?(b,side,trans(a,s)) =
blocked_except_for_one?(b,side,s))

69

blocked_except_for_one?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side, b:Aircraft):

((Exit?(a) OR
Landing?(a) OR
(MissedApproach?(a) AND
mahf(ac(a)) = opposite(side)) OR
(VerticalApproachInitiation?(a) AND
mahf(ac(a)) = opposite(side) AND
side(a) = opposite(side)) OR
((VerticalEntry?(a) OR LateralEntry?(a)) AND

side(a)=opposite(side)))AND
on?(side,b,s) AND
enabled(a,s) AND
reachable(s))
IMPLIES

blocked_except_for_one?(b,side,s) =>
blocked_except_for_one?(b,side,trans(a,s)))

Proof. Case 1: Transitions in this group do not affect the set of aircraft in the initiation areas

or the landing sequence, or the mahf assignment of aircraft. Since all conditions that are related

to the needed blocking condition are these conditions, the blocking condition holds after the

transition.

Case 2: The transition just removes an aircraft from the approach area. Thus it does not

affect the initiation areas, or the order of the remaining aircraft in the landing sequence. Thus

the condition follows from the assumption on the pre state.

Case 3: The aircraft that misses the approach by the transition is added to the end of the

landing sequence. Thus this aircraft is blocked by the blocking aircraft b in the post state. The

condition for the rest of the aircraft in opposite(σ) holds since the transition does not affect the

preceding relation between these aircraft and the blocking aircraft b.

Case 4: The aircraft c that is not blocked in opposite(σ) in the pre state is still in that side

after the transition, since the aircraft a that initiates the approach by the transition is not c,

considering that a is assigned the opposite side of σ. The condition for all the remaining aircraft

in opposite(σ)holds in the post state since the transition does not affect the preceding relation

between them and the blocking aircraft b.

Case 5: Since the newly entering aircraft by the transition is added to the end of the landing

sequence, it is preceded by the blocking aircraft b in the post state. The transition does not

affect either the aircraft c that is not blocked in the pre state, or the preceding relation between

the rest of the aircraft in opposite(σ) and the blocking aircraft b. Thus the condition holds in

the post state from the induction hypothesis.

Now we prove a lemma for ready aircraft. Note that this lemma states that the existence of a

σ-ready aircraft in the post state implies the existence of such an aircraft in the pre state, rather

than claiming the existence from the pre state to the post state. This direction is opposite from

70

the lemmas for blocking conditions (Lemmas 3.21 and 3.22). This is because, when strengthening

main properties using blocked conditions and ready-aircraft conditions, a blocking condition is

stated as a conclusion, whereas, the existence of a ready aircraft is used as an assumption.

Lemma 3.23. Consider any reachable state s of SATS, side σ, and transition π such that

(s, π, s′) is in the transition relation of the discrete model (s′ is the post state of s after the

transition π). If there is a σ-ready aircraft in s′, then there is a σ-ready aircraft in s in any of

the following cases.

1. The transition π is either HoldingPatternDescend, Merging, FinalSegment, Taxiing,

or

LowestAvailableAltitude.

2. The transition π is either Exit or Landing.

3. The transition π is MissedApproach(a), and a.mahf = σ in s.

4. The transition π is for an entry of aircraft to opposite(σ) – VerticalEntry(opposite(σ))

or LateralEntry(opposite(σ)), and there is an aircraft on σ in s.

5. The transition π is MissedApproach(a), and a.mahf = opposite(σ) and there is an aircraft

on σ in s.

6. The transition is VerticalApproachInitiation(opposite(σ)).

This lemma is defined in PVS as follows. As in Lemma 3.21 and Lemma 3.22, we have

two lemmas in PVS to differentiate the case when we have the exact equality for the value of

ac ready to approach? and the case when we only have an implication.

ac_ready_to_approach?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s) AND
reachable(s)

IMPLIES
ac_ready_to_approach?(side,trans(a,s)) =
ac_ready_to_approach?(side,s))

71

ac_ready_to_approach?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side):

(Exit?(a) OR
Landing?(a) OR
(MissedApproach?(a) AND mahf(ac(a)) = side) OR
((((VerticalEntry?(a) OR LateralEntry?(a)) AND

side(a)=opposite(side)) OR
(MissedApproach?(a) AND mahf(ac(a)) = opposite(side))) AND

EXISTS (ac:Aircraft): on?(side,ac,s)) OR
(VerticalApproachInitiation?(a) AND
side(a) = opposite(side))) AND

enabled(a,s) AND
reachable(s)
IMPLIES

(ac_ready_to_approach?(side,trans(a,s)) =>
ac_ready_to_approach?(side,s)))

Proof. Case 1: Transitions in this group do not affect the set of aircraft in the initiation areas

or the landing sequence, or the mahf assignment of aircraft. Since all conditions that are related

to the condition for the aircraft to be ready to approach from the opposite side of σ to σ, the

condition holds in the pre state of the transition.

Case 2: The transition just removes an aircraft from the approach area. Thus it does not

affect the initiation areas, or the order of the remaining aircraft in the landing sequence. Thus

the condition follows from the assumption on the post state.

Case 3: The aircraft that misses the approach moves to maz(σ), and thus the transition does

not affect opposite(σ). Therefore a σ-ready aircraft c in the post state is already in that area in

the pre state. the aircraft c precedes all aircraft in σ since it does so in the post state, and the

only difference in σ between the pre and post states is that the aircraft that misses the approach

by the transition is not in σ in the pre state. Thus this aircraft c satisfied the condition for a

σ-ready aircraft in the pre state.

Case 4: The newly added aircraft a by the transition is not a σ-ready aircraft c since a is

added to the end of the landing sequence, and thus is preceded by an aircraft in σ. This implies

that c is already in opposite(σ) in the pre state. This aircraft c precedes all aircraft in the

initiation area of σ since it does so in the post state, and the transition does not affect the side

σ or the preceding relation of the aircraft in the landing sequence. Thus this aircraft c satisfied

the condition for a σ-ready aircraft in the pre state.

Case 5: We can prove this case by a discussion analogous to Case 4. That is, the aircraft

a that misses the approach by the transition is not σ-ready since a is added to the end of the

landing sequence after the transition. Thus a σ-ready aircraft c in the post state is already

in opposite(σ) in the pre state. From the same discussion as in Case 4, we conclude that this

aircraft c satisfied the condition for a σ-ready aircraft in the pre state.

Case 6: The transition moves one aircraft in opposite(σ) to the approach area. A σ-ready

72

aircraft c in the post state is already in opposite(σ) in the pre state, since if the transition moves

c, it is on the approach in the post state, and thus is not σ-ready. This aircraft c precedes all

aircraft in σ in the pre state since it does so in the post state, and the transition does not affect

the side σ or the preceding relation of the aircraft in the landing sequence.

3.6 Proving the main properties, Part 2: strengthening Prop-

erty 6

In this section, we prove Property 6, which we need to strengthen by using a blocking condition

defined in Section 3.5. The definition of the original Property 6 as an invariant is as follows.

Theorem 3.24. (Property 6) For any reachable state of SATS and side σ, if lez(σ) is non-

empty, then holding2(σ), holding3(σ), and maz(σ) are all empty.

The property is defined in PVS as a predicate over states as follows.

Inv6(s:states):bool = FORALL (side:Side):
NOT(empty?(lez(side,s))) IMPLIES empty?(holding2(side,s)) AND

empty?(holding3(side,s)) AND
empty?(maz(side,s))

As we have mentioned, we cannot directly prove this property – we need to strengthen it to

make an inductive proof go through. To see the reason, consider proving Property 6 by induction

for an arbitrary side σ. We have to ensure that there is no aircraft a with a.mahf = σ in the

approach area when lez(σ) is non-empty, since otherwise, one missed approach would violate

the property. Now in turn, to prove this condition, we have to guarantee that no aircraft a with

a.mahf = σ will initiate the approach when lez(σ) is non-empty. For this purpose, we need a

blocking condition to guarantee that such a problematic approach initiation would not occur.

A possible blocking aircraft is only in lez(σ) since we are proving that other zones in side

σ are all empty. Furthermore, from Property 5, there is only one aircraft in that zone. Thus

only the first aircraft of lez(σ) can possibly be a blocking aircraft.

This discussion leads us to the following strengthened Property 6.

Lemma 3.25. (Strengthened Property 6) For any reachable state of SATS and side σ, if

lez(σ) is non-empty, then the following conditions hold.

(i) holding2(σ), holding3(σ), and maz(σ) are all empty.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is the first aircraft of lez(σ).

73

This strengthened property is defined in PVS as follows.

Lem1(s:states):bool = FORALL (side:Side):
NOT (empty?(lez(side,s))) IMPLIES

empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_opposite_side?(first(lez(side,s)),side,s)

The first condition is from the original Property 6; the second condition is to guarantee that

a missed aircraft would not go to maz(σ) when lez(σ) is non-empty; and the third condition

states a blocking condition. The state depicted in Figure 3.2 is actually an example of the states

that satisfy these three conditions with respect to the right side. Namely, the first condition is

satisfied since there is no aircraft in the right initiation area except for lez(right), the second

condition is vacuously true since there is no aircraft on the approach, and the third condition

holds because the left initiation area is b-blocked by the first aircraft b of lez(right).

Proof. By induction. There is no aircraft in any zone in the initial state. Thus the condition

vacuously holds for the base case. Now we consider the inductive case. Let b be the first aircraft

of lez(σ), the blocking aircraft of our interest.

• In the case of VerticalEntry:

In the case that a new aircraft enters holding3(σ), the precondition of the transition

ensures that lez(σ) is empty in the pre state. Since it remains empty in the post state, the

condition is vacuously true. In the case that a new aircraft enters holding3(opposite(σ)),

the first and second conditions of the lemma follow from the induction hypothesis and

the fact that the transition does not affect the zones referred in the first condition or

the approach area. The third condition follows from Lemma 3.21, and the fact that the

transition does not affect lez(σ), and thus the blocking aircraft b remains being the first

aircraft of lez(σ).

• In the case of LateralEntry:

In the case that a new aircraft enters lez(σ), the precondition of the transition ensures

that virtual(σ) = 0. This implies that there is no aircraft in σ, and no aircraft a with

a.mahf = σ is in opposite(σ) or in the approach area. These facts immediately follow

the three required conditions. In the case that a new aircraft enters lez(opposite(σ)),

the condition follows from the reason analogous to the case of VerticalEntry when an

aircraft enters opposite(σ).

• In the case of VerticalApproachInitiation:

In the case that an aircraft initiates the approach from holding2(σ) by the transition:

74

The induction hypothesis implies that no aircraft is in lez(σ), since otherwise, no aircraft

is in holding2(σ). Since the transition does not affect lez(σ), the zone remains empty

in the post state. Thus the condition is vacuously true. Now we consider the case that an

aircraft initiates the approach from holding2(opposite(σ)). If lez(σ) is empty in the pre

state, the condition holds from the same reason as the above case. If there is an aircraft

in lez(σ) in the pre state, then from the induction hypothesis, the three conditions of the

lemma hold in that state. Hence opposite(σ) is blocked by the first aircraft of lez(σ).

Thus only aircraft a with a.mahf = opposite(σ) can initiate the approach from there.

This fact and the induction hypothesis follow the second condition. The first condition

immediately follows from the induction hypothesis since the transition does not affect any

of zones referred in the condition. The third condition follows from Lemma 3.21, and the

fact that the transition does not affect lez(σ), and thus the blocking aircraft b remains

being the first aircraft of lez(σ).

• In the case of LateralApproachInitiation:

In the case that an aircraft initiates the approach from lez(σ), it follows that no aircraft

is in lez(σ) in the post state, since, from Property 5, only one aircraft is there in the

pre state. Thus the condition vacuously holds. In the case that an aircraft initiates

the approach from lez(opposite(σ)), we can use an argument analogous to the case of

VerticalApproachInitiation when an aircraft initiates from opposite(σ).

• In the case of MissedApproach:

Suppose lez(σ) is non-empty in the post state. Since the transition does not affect

lez(σ), it is non-empty in the pre state, and thus from the induction hypothesis, the three

conditions in the lemma hold in that state. It follows, from the second condition, that no

aircraft a with a.mahf = σ is on the approach in the pre state. Thus an aircraft that misses

the approach goes to maz(opposite(σ)). Hence the emptiness of the three zones referred

in the first condition follows from this fact and the induction hypothesis. The second

condition follows since, the transition just removes an aircraft from the approach area.

The third condition follows from Lemma 3.21 and the fact that the transition does not

affect lez(σ), and thus the blocking aircraft b remains being the first aircraft of lez(σ).

• In the case of Exit or Landing:

Suppose lez(σ) is non-empty in the post state. Since the transition does not affect

lez(σ), it is non-empty in the pre state, and thus from the induction hypothesis, the

three conditions in the lemma hold in that state. The first condition immediately follows

75

from the induction hypothesis since the transition does not affect the initiation areas.

The second condition follows again from the induction hypothesis since it just removes an

aircraft from the approach area. The third condition follows from Lemma 3.21 and the

fact that the transition does not affect lez(σ) thus the blocking aircraft b remains being

the first aircraft of lez(σ).

• In the case of HoldingPatternDescend or LowestAvailableAltitude

Suppose lez(σ) is non-empty in the post state. Since the transition does not affect

lez(σ), it is non-empty in the pre state, and thus from the induction hypothesis, the

three conditions in the lemma hold in that state. The transition for side σ is disabled

since no aircraft is in either holding3(σ) or maz(σ). If the transition is performed on

opposite(σ), then, since it does not affect the side σ or the approach area, the first and

second conditions follow from the induction hypothesis. The third condition follows from

Lemma 3.21 and that the fact that the transition does not affect lez(σ), and thus the

blocking aircraft b remains being the first aircraft of lez(σ).

• In the case of Merging, FinalSegment, or Taxiing:

Suppose lez(σ) is non-empty in the post state. Since the transition does not affect lez(σ),

the zone is non-empty in the pre state, and thus from the induction hypothesis, the three

conditions in the lemma hold in that state. The transition does not affect the initiation

areas, or the set of aircraft on the approach. Thus the first and second conditions follow

from the induction hypothesis. The third condition follows from Lemma 3.21 and the fact

that the transition does not affect lez(σ), and thus the blocking aircraft b remains being

the first aircraft of lez(σ).

3.7 Proving the main properties, Part 3: the key lemma, and
the remaining properties

In this subsection, we present a key lemma to prove the rest of the main properties. As we

mentioned in Section 3.4, this lemma has the longest and most complex statement, and its proof

is also complicated because of the substantial number of case analyses and discussions on blocking

conditions. The lemma consists of nine conditions, where two of them state main properties,

Properties 3 (∀σ : Side, |holding3(σ)| ≤ 1∧ |holding2(σ)| ≤ 1) and 4 (∀σ : Side, |maz(σ)| ≤ 1),

and the remaining seven conditions describe case analyses for seven different blocking situations.

76

Each of these seven conditions has a form analogous to the strengthened Property 6 proved in

Section 3.6.

Property 2 (∀σ : Side, actual(σ) ≤ 2), the last main property to be proved, easily follows

from this key lemma, as discussed in the end of this section.

3.7.1 Intuition behind the lemma

Since the statement of the key lemma is complicated in itself, we present some intuition behind

how the lemma is constructed in this subsection.

First, we examine the reason why we need multiple conditions describing different blocking

situations to be proved together, rather than just a single blocking situation as in Lemma 3.25.

Consider proving Property 4 (∀σ : Side, |maz(σ)| ≤ 1) by induction. Analogous to the case

of Property 6 strengthened and proved in Section 3.6, when two aircraft are in maz(σ), we have

to guarantee that no aircraft a such that a.mahf = σ is on the approach, since otherwise one

missed approach would violate the bound. Now, to ensure the above fact, we need opposite(σ)

to be blocked by some aircraft. From this discussion, in order to prove Property 4, one may

come up with the following claim stated as Claim 1, which describes one blocking situation.

This claim has a form analogous to the strengthened Property 6 (Lemma 3.25).

Claim 1. For any reachable state of SATS and side σ, if |maz(σ)| = 2, then the following

conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is some aircraft in side σ.

As in Lemma 3.25, this Claim 1 has three conditions: a condition on the emptiness of zones

for side σ; a condition on the mahf assignments of aircraft in the approach area; and a blocking

condition for opposite(σ). Analogous to Lemma 3.25, the second condition guarantees that a

missed aircraft goes to opposite(σ), and thus a missed approach would not cause any violation

of Property 4. As in Lemma 3.25, the third condition, a blocking condition, is used to guarantee

the second condition, by guaranteeing that every aircraft initiating from opposite(σ) is assigned

opposite(σ). The first condition guarantees that there is no approach initiation from side σ.4

4One might think that this condition is strong since we could possibly use the blocking argument for side σ

as well as the opposite side. However, considering that we prove Property 2 later, which states that the total
number of aircraft in one initiation area is at most two, we can see that this emptiness condition is actually a
necessary condition for Property 2

77

Even though describing one specific blocking situation works well in the case of Lemma 3.25,

it turns out that, as we see in the following, Claim 1, which describes one blocking situation, is

not strong enough to be proved by induction.

The reason why Lemma 3.25 can be proved without having any other case, whereas Claim

1 is not strong enough to be proved by induction, comes from the assumptions of these two

results. In Lemma 3.25, we assume |lez(σ)| = 1. The value of |lez(σ)| increases just by

LateralEntry(σ), which has a strict examination of the safety separation in its precondition:

virtual(σ) = 0. As we saw in the proof of the strengthened Property 6 (Lemma 3.25), this

precondition directly implies the required blocking condition.

In contrast, in Claim 1, we assume |maz(σ)| = 2. The value of |maz(σ)| increases by

MissedApproach, which, as we have discussed several times, has no “guard” in its precondition

to examine the current situation of the system (it is enabled whenever final is non-empty).

This implies that there is no way we can guarantee the required blocking condition by the pre-

condition of the transition, and thus we need an analogous blocking condition to hold in the pre

state before MissedApproach is performed.

For this purpose, we need the following Claim 2, which has a form analogous to Claim 1,

but represents the “pre situation” just before |maz(σ)| gets two by MissedApproach.

Claim 2. For any reachable state of SATS and side σ, if |maz(σ)| = 1 and some aircraft a with

a.mahf = σ is on the approach, then the following conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) At most one aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is some aircraft in side σ.

In this claim, we have the exact same conditions for the first and third conclusions as in Claim

1. The difference is in the assumption and the second conclusion. We assume that |maz(σ)| = 1,

and some aircraft a with a.mahf = σ is on the approach. This reflects the fact that the Claim

2 represents the “pre case” just before |maz(σ)| gets set to 2 by MissedApproach. The second

conclusion, the only conclusion that differs from Claim 1, states what should be true in the

“pre case” of Claim 1 in order to prove the second conclusion of Claim 1. Namely, at most one

aircraft a with a.mahf = σ must be on the approach, since no such aircraft must be there after

MissedApproach.

Now, consider proving Claim 2 by induction. First, as in the case of Claim 1, let us examine

the case of the MissedApproach transition. As opposed to Claim 1, in this case, we can guarantee

the blocking condition without depending on another claim. Indeed, we can guarantee the

78

blocking condition from an main property proved so far, as follows. In Claim 2, we assume that

|maz(σ)| = 1 and some aircraft a with a.mahf = σ is on the approach. This implies that if

the post state of MissedApproach satisfies these assumptions, then at least two aircraft a with

a.mahf = σ are on the approach in the pre state. It follows from Theorem 3.15 (Property 7;

assigned2fix(σ) ≤ 2) no aircraft a with a.mahf = σ is outside of the approach area. This implies

that no aircraft a with a.mahf = σ is in opposite(σ). Thus, from the definition of b-blocked,

opposite(σ) is b-blocked by any aircraft b in the operation area. From the above discussion,

we do not need any additional pre cases for Claim 2 in the case of MissedApproach. Note

that we could not use the same argument for Claim 1 using Property 7 because, even though

aircraft in maz(σ) must have been assigned σ for its mahf before they missed the approach, it

by no means guarantee that their mahf’s are still assigned σ after the re-assignment of mahf by

MissedApproach.

A problem in proving Claim 2 occurs in the case of VerticalApproachInitiation(σ).

Even though this transition has a precondition that represents a guard that delays the approach

initiation, it does not guarantee any blocking condition. Indeed, the precondition checks if the

aircraft initiating the approach follows the order in the landing sequence, and if |base(right)| +

|base(left)| ≤ 3. Nevertheless, it does not examine any condition about the initiation areas.

This implies that we need another claim that represents the “pre situation” just before the

assumption of Claim 2 is satisfied by VerticalApproachInitiation(σ). The assumption of

Claim 3 in the following represents the situation just before the assumption of Claim 2 get

satisfied by VerticalApproachInitiation(σ), that is, the states in which |maz(σ)| = 1, and

either holding2(σ) or holding3(σ) is non-empty.

Claim 3. For any reachable state of SATS and side σ, if |maz(σ)| = 1 and either holding2(σ)

or holding3(σ) is non-empty, then the following conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is some aircraft in side σ.

Analogous to the previous two claims, there are three conclusions in this claim. First,

|holding2(σ)| + |holding3(σ)| ≤ 1 must be true since after VerticalApproachInitiation(σ)

is performed, there must be no aircraft in holding2(σ) and holding3(σ), in order to prove the

first conclusion of Claim 2. Second, no aircraft a with a.mahf = σ must be on the approach, since

one aircraft assigned σ as its mahf initiates approach by VerticalApproachInitiation(σ), and

at most one aircraft assigned σ as its mahf must be on the approach after the transition, in order

79

to prove the second conclusion in Claim 3. Third, we need a blocking condition corresponding

to the third conclusion of Claim 3.

In this way, we can explore more cases until we construct sufficiently many cases so that

we can prove the required blocking condition for each case either from those cases used as

induction hypotheses, or from main properties that have already been proved. We already saw

one situation where we can use Property 7 to prove the required blocking condition in the

discussion for the “pre case” of Claim 2 just before MissedApproach is performed.

An important point we want to know is whether these cases can be proved individually in

some order, or need to be proved together in an inductive proof. It turns out that even the

three claims above have a dependency on each other. As we discussed above, we need Claim 2

to prove Claim 1 in the case of MissedApproach, and need Claim 3 to prove Claim 2 in the case

of VerticalApproachInitiation(σ). In addition, we actually need Claim 1 to prove Claim 3

from the following reason. In Claim 3, we assume that |maz(σ)| = 1, and either holding2(σ)

or holding3(σ) is non-empty. Consider proving Claim 3 by induction. In the case of the

LowestAvailableAltitude(σ) transition, since its precondition does not guarantee anything

about the required blocking condition (the transition is always enabled if maz(σ) is non-empty),

we have to obtain the blocking condition using some “pre situation” analogous to the cases of

Claim 1 and Claim 2. The pre situation of Claim 3 for LowestAvailableAltitude(σ) is repre-

sented by the states in which |maz(σ)| = 2 This is exactly what Claim 1 assumes. Furthermore,

Claim 1 is actually sufficient to prove Claim 3 in the case of LowestAvailableAltitude(σ).

Thus we need Claim 1 to prove Claim 3.

To see the dependency of the claims discussed above, see Figure 3.4, which depicts “transi-

tions between cases.” An arrow between claims represents that the claim the arrow points at

needs the claim the arrow starts from as an induction hypothesis when we analyze the transition

that labels the arrow. For example, Claim 2 is needed to prove Claim 1, more specifically in the

case of the MissedApproach transition. Analogously, we need Claim 3 when we prove Claim 2

by induction, more specifically in the case of the VerticalApproachInitiation(σ) transition.

Finally, we need Claim 1 when we prove Claim 3 by induction, more specifically in the case

of LowestAvailableAltitude(σ). This observation closes a cycle of dependency of claims by

adding an arrow from Claim 1 to Claim 3. This implies that we have to prove these claims (and

actually more cases) together in an inductive proof.

It turns out that the three claims stated above are not strong enough to be proved inductively,

and thus we have to revise them slightly. In these claims, we do not specify which aircraft

blocks opposite(σ); instead, we just state that some aircraft blocks it. As we will see in the

80

Right Initiation Area Left Initiation Area

No aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Claim 3

Right Initiation Area Left Initiation Area

No aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

VerticalApproachInitiation

Claim 1

Right Initiation Area Left Initiation Area

At most one aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Claim 2

Miss
ed

Appro
ach

LowestAvailableAltitude
Assume: two aircraft in maz(right)

Assume: one aircraft on maz(right)
at least one aircraft assigned to right on the approach

Assume: one aircraft in maz(right)
at least one aircraft in the right vertical initiation area

b-blocked by
aircraft b in the right
initiation area

b-blocked by
aircraft b in the right
initiation area

b-blocked by
aircraft b in the right
initiation area

Figure 3.4: Transitions between cases creating a circle

following, this ambiguity causes a problem when we prove Claim 2 using Claim 3 as an induction

hypothesis. We revise the three claims in two steps. First, we revise the claims by specifying a

blocking aircraft in each claim. It turns out that after this simple refinement, Claim 1 contains

a contradictory statement. We resolve this problem in the second revision by introducing a finer

case analysis of a blocking aircraft.

First Revision: As we discussed before, when we prove Claim 2 by induction, we need

Claim 3 as an induction hypothesis in the case of VerticalApproachInitiation(σ). It turns

out that assuming that some aircraft blocks the side σ is not sufficient to prove Claim 2. This is

because, without specifying the position of a blocking aircraft, the blocking aircraft can possibly

be the aircraft a that initiates the approach by

VerticalApproachInitiation(a, σ). In such a case, we cannot use this blocking aircraft a to

prove Claim 2, since the blocking aircraft specified in Claim 2 must be in side σ, and a is on the

approach after the transition. This implies that we have to clearly specify in which position the

81

blocking aircraft for Claim 3 is.

A more careful examination of possible positions of the blocking aircraft resolves this prob-

lem. Considering the assumption of Claim 2, we actually have only one possible blocking aircraft

for that claim, namely the first aircraft of maz(σ). This is because of the following reason. First,

holding2(σ) and holding3(σ) are empty (this is what we prove for the claim), and lez(σ) is

also empty from Theorem 3.24 (Property 6). Thus the only possible zone at which the blocking

aircraft can be located is maz(σ). Furthermore, since we assume in Claim 2 that |maz(σ)| = 1,

the blocking aircraft must be the first aircraft of maz(σ). This discussion leads us to the fol-

lowing revised version of Claim 2. The only change from the original Claim 2 is that now we

specify the position of the blocking aircraft in Conclusion (iii).

Claim 2. (First Revision) For any reachable state of SATS and side σ, if |maz(σ)| = 1 and

some aircraft a with a.mahf = σ is on the approach, then the following conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) At most one aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is the first aircraft of maz(σ).

To reflect this change of Claim 2 to Claim 3 and Claim 1, we also specify the position of the

blocking aircraft in these two claims as well. Here we have to be careful. The blocking aircraft

should match up in these three claims, since otherwise we cannot use the blocking condition of

one claim to prove the blocking condition of another claim.

We designate the first aircraft of maz(σ) as the blocking aircraft in Claim 3. This is because

Claim 3 is used in the proof of Claim 2 in the case of VerticalApproachInitiation(σ). Since

this transition does not affect maz(σ), the first aircraft of maz(σ) must be the blocking aircraft

for Claim 3 as well as Claim 2.

Claim 3. (First Revision) For any reachable state of SATS and side σ, if |maz(σ)| = 1 and

either holding2(σ) or holding3(σ) is non-empty, then the following conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b is the first aircraft of maz(σ).

Analogously, we have to revise Claim 1. Recall that Claim 1 is used to prove Claim 3 in

the case of the LowestAvailableAltitude(σ) transition. We designate in Claim 1 the second

82

aircraft of maz(σ) to be the blocking aircraft. This is because when there are two aircraft in

maz(σ) (the assumption of Claim 1), the second aircraft of maz(σ) becomes the first aircraft of

that zone after the LowestAvailableAltitude(σ) transition. Since we have to match up the

blocking aircraft in Claim 1 with the blocking aircraft in Claim 3 (the first aircraft of maz(σ)),

we need the second aircraft of maz(σ) to be the blocking aircraft in Claim 1.

Claim 1. (First Revision) For any reachable state of SATS and side σ, if |maz(σ)| = 2, then

the following conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked, where b b is the second aircraft of maz(σ).

Second Revision: We revised the three claims by specifying the actual position of the

blocking aircraft. However, the new statement in Claim 1 – that the second aircraft of maz(σ)

blocks the initiation area – seems contradictory. This is because the second aircraft of maz(σ)

may have just entered maz(σ) by MissedApproach. In such a case, the aircraft has been added

to the end of the landing sequence, and hence cannot be a blocking aircraft except for some

special situation explained in the following. The only case that an aircraft that has just missed

the approach can be a blocking aircraft is the case when all aircraft in opposite(σ) are assigned

opposite(σ) as their mahf. In this case, from the definition of b-blocked, we can conclude

that the required blocking condition holds no matter what aircraft is specified as a blocking

aircraft. However, there are some reachable states in which some aircraft a with a.mahf = σ is

in opposite(σ) and, at the same time, the assumption of Claim 1 is satisfied. This implies that

Claim 1 need another revision.

Adding a finer case analysis resolves this contradictory statement in Claim 1. We use two

different blocking aircraft in Claim 1, depending on the mahf assignment of the first aircraft

m of maz(σ). If m.mahf = σ, then opposite(σ) is blocked by the second aircraft of maz(σ), as

originally stated in the claim. If m.mahf = opposite(σ), then opposite(σ) is blocked by the first

aircraft m of maz(σ). Note that the blocking aircraft in the second case, the first aircraft of

maz(σ), is not chosen arbitrarily. Indeed, the possible positions of the blocking aircraft are just

the above mentioned two, since we prove in this claim that holding2(σ) and holding3(σ) are

empty, and from Property 6 proved in Theorem 3.24, lez(σ) is also empty.

Claim 1. (Second Revision) For any reachable state of SATS and side σ, if |maz(σ)| = 2,

then the following conditions hold.

83

(i) holding2(σ) and holding3(σ) are empty

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) Let b be the first aircraft m of maz(σ) if m.mahf = opposite(σ); otherwise let b be the

second aircraft of maz(σ). opposite(σ) is b-blocked.

To reflect this change in Claim 1, we also modify Claim 3. Recall that Claim 1 is needed

to prove Claim 3 by induction, namely in the case of LowestAvailableAltitude(σ). When

there are two aircraft in maz(σ), LowestAvailableAltitude(σ) transition makes the following

changes: the first aircraft of maz(σ) goes to holding2(σ) or holding3(σ), and the second

aircraft of maz(σ) becomes the first aircraft of that zone. Thus in order to match up blocking

aircraft for Claim 1 and Claim 3, we modify the blocking condition for Claim 3 as follows.

Claim 3. (Second Revision) For any reachable state of SATS and side σ, if |maz(σ)| = 1

and either holding2(σ) or holding3(σ) is non-empty, then the following conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1.

(ii) There is no aircraft a with a.mahf = σ on the approach.

(iii) Let b be the first aircraft h of the concatenation holding2(σ) ◦ holding3(σ) if h.mahf =

opposite(σ); otherwise let b be the first aircraft of maz(σ). opposite(σ) is b-blocked.

We have modified the blocking condition in Claim 3 and Claim 1. Now see in the following

how the contradictory statement in Claim 1 (the second aircraft of maz(σ) blocks opposite(σ)

has been resolved with this modification. In the revised Claim 1, we designate the second aircraft

of maz(σ) as the blocking aircraft only when the mahf of the first aircraft of maz(σ) is assigned

σ. We assume the mahf of the first aircraft of maz(σ) is assigned σ in the following. A key

is that under the assumption of Claim 1, if the mahf of the first aircraft of maz(σ) is assigned

σ, then we have the special case mentioned earlier in this subsection, where any aircraft is a

blocking aircraft. This follows from the discussion analogous to the case we saw when Claim 2 is

introduced: Before the second aircraft of maz(σ) missed the approach, it had been assigned σ.

Considering that we assume the first aircraft of maz(σ) is assigned σ as its mahf, two aircraft a

with a.mahf = σ are on the approach before MissedApproach occurs. From Property 7 proved

in Lemma 3.15, assigned2fix(σ) ≤ 2. It follows that no aircraft a with a.mahf = σ is in

opposite(σ). Since this fact also holds after MissedApproach, the second aircraft of maz(σ) is

a blocking aircraft, regardless of whether or not it precedes aircraft in opposite(σ).

For simplicity, we explained how the lemma is constructed by focusing on the three claims

each of which describes a different blocking situation. However, we need more cases than the

84

three cases described in the above stated three claims in order to prove them together induc-

tively. For example, we need a “pre case” of the situation assumed in Claim 3 before the

LowestAvailableAltitude(σ) is performed. By adding these missing cases to the three claims

and two main properties, we obtain the complete statement of Lemma 3.26 presented in the

following subsection.

3.7.2 The key lemma

In this subsection, we present the complete lemma statement. It consists of a conjunction of

two main properties, Properties 3 and 4, and seven case conditions each of which describes a

different blocking situation.

In Figure 3.5, we show a high level picture of the seven different blocking situations described

as Cases 1 - 7 in the lemma: the picture represents abstract “transitions” between seven cases,

following the same philosophy of Figure 3.4. An arrow between two cases represents that the

case at which an arrow starts become a “pre case” of the case at which an arrow ends (a “post

case”). To prove the conditions of a case, we need a pre case of that case as an induction

hypothesis, specifically when analyzing the transition that labels the arrow for that case and its

pre case.

Now we explain how these seven cases are constructed. The first three cases, Cases 1, 2,

and 3, of the seven correspond to the three claims, (revised) Claim 1, 2, and 3, respectively,

discussed in Section 3.7.1.

The following two cases, Cases 4 and 5, also share the same construction scheme as Cases 1

- 3. That is, these two cases are constructed in the following way.5 The first conclusion of a case

states an upper bound on the number of aircraft in specific zones of side σ; more specifically, the

conclusion is defined in a way that the bound on one specific zone specified in the conclusion can

be used to prove the corresponding bound on the same zone for the “post case”, as we discussed

when constructing Claims 2 and 3. The second conclusion of a case describes the bound on the

number of aircraft a on the approach with a.mahf = σ. This bound is also determined in a way

that the bound can be used to prove the corresponding bound for the “post case”. The third

conclusion of a case describes a blocking condition, which states that some specific aircraft in

side σ blocks opposite(σ). This condition guarantees a scenario in which the model violates the

second conclusion would never occur. We specified the blocking aircraft in the third conclusion

in a way that the blocking aircraft specified in this case becomes the blocking aircraft specified

5The reader might consider that the fact that these cases share the same scheme may imply that there may
possibly be a way to describe the lemma in a more concise way, rather than having seven different cases. However,
as we discussed in the previous subsection, we have to specify the blocking aircraft in each case, and there is not
quite a good way to describe the position of the blocking aircraft in a uniform way that applies to all seven cases.

85

Left Initiation Area

Right Initiation Area

b-blocked

Left Initiation Area

No aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Case 1
Assume: two aircraft in maz(right)

Right Initiation Area Left Initiation Area

No aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Case 3
Assume: one aircraft in maz(right), and
at least one aircraft in the right vertical initiation area

Right Initiation Area Left Initiation Area

At most one aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Case 2
Assume: one aircraft in maz(right), and
at least one aircraft assigned to right on the approach

MissedApproach

Right Initiation Area Left Initiation Area
Right Vertical
Initiation Area

Approach Area

Case 4
Assume: at least one aircraft in the right vertical initiation area,
and at least one aircraft assigned to right on the approach

At most one aircraft assigned
to the right side

Right Initiation Area Left Initiation Area
Right Vertical
Initiation Area

Approach Area

Case 5
Assume: at least two aircraft in
the right vertical initiation area

MissedApproach

No aircraft assigned
to the right side

VerticalApproachInitiation
(right)

LowestAvailableAltitude
(right)

Right Initiation Area Left Initiation Area
Right Vertical
Initiation Area

Approach Area

Case 7
Assume: one aircraft in maz(right), and
there is an aircraft that is ready to approach
from the left side to the right side

Right Initiation Area

No aircraft assigned
to the right side

Right Vertical
Initiation Area

Approach Area

Case 6
Assume: at least one aircraft in the right vertical
initiation area, and there is an aircraft that is ready
to approach from the left side to the right side

VerticalApproachInitiation
(left)

VerticalApproachInitiation
(left)

LowestAvailableAltitude
(right)LowestAvailableAltitude

(right)

VerticalApproachInitiation
(right)

b-blocked

b-blocked

b-blocked

b-blocked
b-blocked-1

b-blocked-1

Figure 3.5: Transitions between seven cases in the lemma

86

in the “post case” after the transition.

We construct the remaining cases, Cases 6 and 7, based the same philosophy as the former

five cases, but these two cases consider a slightly different blocking situation. In these cases,

we consider a situation in which one aircraft c with c.mahf = σ in opposite(σ) can initiate

the approach, but any other aircraft have to be blocked. This is because, for instance, Case 6

represents the “pre case” of Case 2 before the

VerticalApproachInitiation(opposite(σ)) is performed. In such a case, we allow exactly

one aircraft c with c.mahf = σ to initiate the approach, but any other aircraft have to be blocked,

since, after the transition, σ has to be blocked, as described in Case 2. We express this kind of

situations using σ-ready and b-blocked−1 defined in Section 3.5.

Now we present the complete lemma. It turns out that Case 2 does not need the condition

on the emptiness of holding zones (holding3(σ) and holding2(σ)), since we can prove this

fact using some other cases. Thus the condition is removed from the case.6 From the same

reason, Case 7 needs only the blocking condition.

Lemma 3.26. For any reachable state of SATS and side σ, the following two properties and

the seven case conditions hold.

Property 3: |holding3(σ)| ≤ 1 ∧ |holding2(σ)| ≤ 1.

Property 4: |maz(σ)| ≤ 1.

Case 1: If |maz(σ)| = 2, then the following conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) Let b be the first aircraft m of maz(σ) if m.mahf = opposite(σ); otherwise let b be the

second aircraft of maz(σ). opposite(σ) is b-blocked.

Case 2: If |maz(σ)| = 1 and some aircraft a with a.mahf = σ is on the approach, then the

following conditions hold.

(i) holding2(σ) and holding3(σ) are empty

(ii) At most one aircraft a with a.mahf = σ on the approach.

(iii) opposite(σ) is b-blocked, where b is the first aircraft of maz(σ).

6We could have chosen to retain these conditions to preserve the uniformity of the form of the case statements.
However, in order to shorten the proof length (especially in PVS) by removing the conditions that we do not
actually need to prove, we chose to remove this condition from the case statement.

87

Case 3: If |maz(σ)| = 1 and either holding2(σ) or holding3(σ) is non-empty, then the fol-

lowing conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) Let b be the first aircraft h of the concatenation holding2(σ) ◦ holding3(σ) if h.mahf =

opposite(σ); otherwise let b be the first aircraft of maz(σ). opposite(σ) is b-blocked.

Case 4: If either holding2(σ) or holding3(σ) is non-empty, and some aircraft a with a.mahf =

σ is on the approach, then the following conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1.

(ii) At most one aircraft a with a.mahf = σ on the approach.

(iii) opposite(σ) is b-blocked, where b is the first aircraft of the concatenation holding2(σ) ◦

holding3(σ).

Case 5: If both holding2(σ) and holding3(σ) are non-empty, then the following conditions

hold.

(i) maz(σ) is empty.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) Let b be the first aircraft h of the concatenation holding2(σ) ◦ holding3(σ) if h.mahf =

opposite(σ); otherwise let b be the second aircraft of holding2(σ)◦holding3(σ). opposite(σ)

is b-blocked.

Case 6: If either holding2(σ) or holding3(σ) is non-empty, and there is a σ-ready aircraft,

then the following conditions hold.

(i) |holding2(σ)| + |holding3(σ)| ≤ 1 and maz(σ) is empty.

(ii) No aircraft a with a.mahf = σ is on the approach.

(iii) opposite(σ) is b-blocked−1, where b is the first aircraft of the concatenation holding2(σ) ◦

holding3(σ).

Case 7: If |maz(σ)| = 1 and there is a σ-ready aircraft, then the following condition holds.

opposite(σ) is b-blocked−1, where b is the first aircraft of maz(σ)

88

The lemma is defined in PVS as follows.

%% case 1: |maz(side)| = 2
Lem2_case1(s:states,side:Side):bool =

length(maz(side,s))=2 IMPLIES
empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(maz(side,s)) IN %% first aircraft in maz
LET a2 = first(rest(maz(side,s))) IN %% second aircraft in maz
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% case 2: |maz(side)| = 1 and on_approach?(side).
Lem2_case2(s:states,side:Side):bool =

length(maz(side,s))=1 AND on_approach?(s,side) IMPLIES
assigned_approach(s,side) <= 1 AND
LET a1 = first(maz(side,s)) IN
blocked_opposite_side?(a1,side,s)

%% case 3: |maz(side)| = 1 and either h2(side) or h3(side) is not empty
Lem2_case3(s:states,side:Side):bool =

length(maz(side,s))=1 AND
(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s))))

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND

NOT on_approach?(s,side) AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

LET a2 = first(maz(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% case 4: on_approach?(side) and either h2(side) or h3(side) is not empty
Lem2_case4(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
on_approach?(s,side)
IMPLIES

length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
assigned_approach(s,side) <= 1 AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

blocked_opposite_side?(a1,side,s)

%% case 5: both h2(side) and h3(side) are non-empty.
Lem2_case5(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) AND NOT (empty?(holding3(side,s)))) IMPLIES
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(holding2(side,s)) IN
LET a2 = first(holding3(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

89

%% case 6: there is a side-ready aircraft and
%% either h2(side) or h3(side) is not empty
Lem2_case6(s:states,side:Side):bool =

LET a1 = IF NOT (empty?(holding2(side,s)))
THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
ac_ready_to_approach?(side,s)
IMPLIES

length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_except_for_one?(a1,side,s)

%% case 7: there is a side-ready aircraft and |maz(side)| = 1
Lem2_case7(s:states,side:Side):bool =

LET a1 = first(maz(side,s)) IN
length(maz(side,s))=1 AND
ac_ready_to_approach?(side,s)
IMPLIES

blocked_except_for_one?(a1,side,s)

%% Lemma 2: combination of seven cases, and invariants 3 and 4.
Lem2(s:states):bool =

FORALL (side:Side):
Inv3(s) AND Inv4(s) AND Lem2_case1(s,side) AND
Lem2_case2(s,side) AND Lem2_case3(s,side) AND Lem2_case4(s,side) AND
Lem2_case5(s,side) AND Lem2_case6(s,side) AND Lem2_case7(s,side)

3.7.3 Proof of Lemma 3.26

Now we start proving Lemma 3.26. Before going into the detailed proof for the lemma, we first

present some common strategies used to prove the conditions for each of Cases 1 to 7.

The easiest case is that the assumption of the case in the post state and the effect of the

transition imply the assumption of the same case in the pre state. For example, when we prove

Case 1 in the case of Landing, the transition does not affect maz(σ). Thus, if |maz(σ)| = 2 in

the post state, then |maz(σ)| = 2 in the pre state as well. Thus the assumption of Case 1 is

satisfied in the pre state. In such a case, we can make use of the conditions that hold in the

pre state to prove the corresponding conditions in the post state, by using the same argument

as in the proof of Lemma 3.25 (the strengthened Property 6). In these cases, as in Lemma

3.25, we use Lemma 3.21 or 3.22 to obtain the required blocking condition for the case from the

corresponding blocking condition that holds for the pre state.

In order to prove some specific cases in the seven cases, we need another case as an induction

hypothesis. For example, when we prove Case 1 in the case of MissedApproach, we use Case

2 as the “pre case,” as discussed in Section 3.7.1. In this case, the assumption of the “pre

case” follows from the assumption of the “post case” and the effects and the precondition of the

transition. Thus, we can prove the conditions of the post case using the corresponding conditions

of the pre case. We again use Lemma 3.21 or 3.22 to obtain the required blocking condition for

the case from the from the corresponding blocking condition for the “pre case”. When applying

these lemmas, we have to make sure that the blocking aircraft match up between the pre state

90

and the post state.

As we saw in Section 3.7.1, in some cases, we obtain the required blocking condition by

main properties that have been proved. A property mainly used for this purpose is Property 7

(Theorem 3.15) that states assigned2fix(σ) ≤ 2. We demonstrated how this property is used

to obtain the required blocking condition in Section 3.7.1 when we consider proving Claim 2,

namely in the case of MissedApproach. In that case, the assumption in the post state and the

effects of the transition imply that two aircraft a with a.mahf = σ are on the approach. It follows

from Property 7 that there is no other aircraft b with b.mahf = σ outside of the approach area.

This fact gave us the required blocking condition.

In the proof of Cases 6 and 7 in the case of VerticalApproachInitiation, we have a

different discussion from the discussions stated above, in order to obtain the required blocking

condition, as we will see in the proof.

The actual proof of Lemma 3.26 is as follows. The proof is more than ten pages long, due

to the the substantial number of case analyses for the seven cases and the twelve transitions.

Proof. By induction. There is no aircraft on any zone in the initial state. Thus the assumptions

of all cases are not satisfied, and also the upper bounds for Properties 2 and 3 hold. Now we

consider the inductive step.

• In the case of VerticalEntry:

– Properties 3 and 4: The precondition of the transition guarantees that there is no

aircraft in holding3 of the side where the new aircraft enters. Thus the number of

aircraft in holding3 of that side is one in the post state. The bound on holding3

of the opposite side and the bounds on holding2 zones and maz zones hold from the

induction hypothesis, since the transition does not affect these zones.

– Case 1: Suppose there are two aircraft in maz(σ) in the post state. Since the transi-

tion does not effect maz(σ), there are already two aircraft in maz(σ) in the pre state.

The transition for the side σ cannot have been performed since the precondition of

the transition is not satisfied.

If a new aircraft enters into the opposite side of σ, since there are already two aircraft

in maz(σ) in the pre state, the three conditions of Case 1 hold in the pre state from

the induction hypothesis. The emptiness of holding2(σ) and holding3(σ) follows

from the facts that the same emptiness holds in the pre state and that the transition

does not affect these zones. The condition of the assignments in the approach area

analogously follows since it holds in the pre state and the transition does not affect

91

the approach area. The blocking condition follows from Lemma 3.21, and the fact

that the transition does not affect maz, thus the specified blocking aircraft in the pre

state remains being in the same position in the same zone.

– Case 2: Suppose there are one aircraft in maz(σ) and at least one aircraft assigned

σ on the approach in the post state. The transition for the side σ cannot have been

performed from a reason analogous to Case 1: there is already one aircraft in maz(σ),

and thus the transition is disabled.

If a new aircraft enters into the opposite side of σ, since the transition does not

effect maz(σ) or the approach area, the pre state of the transition also satisfies the

assumption of Case 2. Thus we can use an argument analogous to Case 1 to prove

two conditions using Lemma 3.21 and the fact that the transition does not affect

maz(σ) or the approach area.

– Case 3: We can prove this case using a discussion analogous to the previous two cases.

That is, when we assume the assumption of the case in the post state, the transition

for side σ has been disabled, and the transition for the opposite side does not affect

the initiation area of σ or the approach area, and thus preserves the emptiness of the

vertical initiation area, and the number of assignments to one side in the approach

area. The blocking condition follows from Lemma 3.21.

– Case 4: Suppose that in the post state of the transition, there are at least one

aircraft in the vertical initiation area of side σ and at least one aircraft assigned σ in

the approach area. First consider the case that the transition is performed for side

σ. Since the transition does not affect the approach area, there are already at least

one aircraft assigned σ in the area in the pre state. Thus the transition for the side

σ is disabled in the pre state.

In the case of the transition for the opposite side of σ, we can use a discussion

analogous to the previous cases.

– Case 5: Suppose that in the post state of the transition, there are at least two aircraft

in the vertical initiation area of side σ. First consider the case that the transition is

performed for side σ. The emptiness of maz(σ) in the pre condition holds since the

precondition of the transition guarantees that there are no aircraft in maz(σ) in the

pre state and the transition does not affect that zone. Analogously, the condition on

the assignments in the approach area follows from the pre condition of the transition

and the fact that the transition does not affect that area. There must be at lest one

aircraft in the vertical initiation area of side σ in the pre state, since there are at

92

least two in the post state and the transition adds just one aircraft into that area.

From this fact and the condition on the potential number of aircraft in the initiation

area of side σ stated in the precondition – the number is less than two, it follows

that there are no aircraft assigned σ outside of the initiation area of σ. It implies the

remaining condition to be proved since from the definition of the blocking of aircraft,

the initiation area is blocked by any aircraft with respect to side σ if there is no

aircraft assigned σ in the area.

In the case of the transition for the opposite side of σ, we can use a discussion

analogous to the previous cases.

– Case 6: Suppose that in the post state of the transition, there are at least one

aircraft on the vertical approach area of side σ, and there is an aircraft that is ready

to approach from the opposite side of σ to side σ. First consider the case that the

transition is performed for side σ. The emptiness of maz(σ) and the condition on the

assignments in the approach area follows analogously to Case 5 from the precondition

of the transition and the fact that the transition does not affect these zone and area.

The blocking condition also follows from a discussion analogous to Case 5: since the

transition does not affect the initiation area of the opposite side of σ, the aircraft

that is ready to approach from that area to side σ have already been there in the

pre state. Since this aircraft has the mahf assignment of side σ, it is counted as the

potential aircraft that possibly goes to side σ. In addition, from the precondition

of the transition, the potential number of aircraft on the initiation area of σ is less

than two. It implies that there are no aircraft assigned σ in the initiation area of

the opposite side of σ, other than the aircraft mentioned above – the aircraft that is

ready to approach. Thus the blocking condition holds.

In the case of the transition for the opposite side of σ, we can use a discussion

analogous to the previous cases. Note that in this case, we use Lemma 3.23 to obtain

the fact that the conditions of Case 6 hold in the pre state, and use Lemma 3.22,

instead of Lemma 3.21, to prove the blocking condition.

– Case 7: Suppose that in the post state of the transition, there are one aircraft in

maz(σ) and there is an aircraft that is ready to approach from the opposite side of

σ to side σ. The transition for side σ is disabled in the pre state since there is one

aircraft in maz(σ) in the pre state considering that the transition does not affect that

zone.

In the case of the transition for the opposite side of σ, we can use a discussion

93

analogous to Case 6.

• In the case of LateralEntry:

– Properties 3 and 4: The transition does not affect either holding3(σ), holding2(σ),

or maz(σ). Thus the conditions hold from the induction hypothesis.

– Cases 1 to 6 in the case that the transition is performed for the opposite side of σ:

We can prove the six cases by a discussion analogous to the corresponding cases of

VerticalEntry using Lemmas 3.21, 3.23, and 3.22, and the fact that the transition

does not affect the initiation area of side σ or the approach area.

We consider the case that the transition is performed for side σ in the following.

– Cases 1, 2, 3, and 7: Suppose there are at least one aircraft in maz(σ) in the post

state as we suppose in these cases, and also suppose that the transition for side σ

is performed. It follows that these aircraft are already in that zone in the pre state,

since the transition does not affect maz(σ). It implies that the potential number of

aircraft in the initiation area of side σ is at least one in the pre state. This is a

contradiction since the precondition of the action ensures that the potential number

is zero in the pre state.

– Case 4: We can prove this case by contradiction in a way analogous to the above

cases. For this case, we assume that there are at least one aircraft assigned σ in the

approach area in the post state. Since the transition does not affect the approach

area, these aircraft assigned σ are already in the area in the pre state. This leads to

a contradiction with the precondition of the transition that states that the potential

number of aircraft in the initiation area of side σ is zero in the pre state.

– Cases 5 and 6: In these cases, we assume that there are at least one aircraft in the

vertical initiation area of side σ in the post state. Since the transition does not affect

that area, these aircraft are already in the area in the pre state. Now we have a

contradiction analogous to above cases concerning the potential number of aircraft.

• In the case of VerticalApproachInitiation:

– Properties 3 and 4: The transition removes an aircraft from holding2. Thus the

transition does not increase the number of aircraft in holding2, holding3, and maz.

Thus the conditions hold from the induction hypothesis.

– Case 1: Suppose there are two aircraft in maz(σ) in the post state. Since the tran-

sition does not affect maz zones, there are exactly two aircraft in maz(σ) in the pre

94

state as well. It implies that the pre state satisfies the assumption of Case 1, and thus

from the induction hypothesis, the three conditions of Case 1 hold in the pre state. I

follows that there is no aircraft in the vertical approach initiation area of side σ, and

hence the transition for side σ is disabled in the pre state.

Now we consider the case that the transition is performed for the opposite side of

σ. Since the transition does not affect the vertical approach initiation of side σ, the

emptiness conditions on holding3 and holding2 hold from the induction hypothesis.

The bound on the assignments of aircraft in the approach area follows from the facts

that the same bound holds in the pre state, and that the number of assignments to

σ in the approach area does not change by the transition since the initiation area of

the side where an aircraft initiates the approach is blocked. The blocking condition

follows from Lemma 3.21 and the facts that the same blocking condition holds in the

pre state, and that the transition does not move the blocking aircraft in the pre state.

– Case 2: Suppose in the post state, there is one aircraft in maz(σ) and there are at

least one aircraft assigned σ in the approach zone. Since the transition does not affect

maz zones, there is exactly one aircraft in maz(σ) in the pre state as well.

First we consider the case that the transition is performed for side σ. The precondition

for the transition ensures that there are at least one aircraft in holding2(σ) in the

pre state. It implies that the pre state satisfies the assumption of Case 3, and thus

the three conditions of the case hold in the pre state. The bound on the number of

the assignments of aircraft in the approach area, which is one, holds since there are no

aircraft assigned σ in the approach from the conditions of Case 3, and the transition

just adds one aircraft to the approach area. In addition, considering that there are

at least one aircraft assigned σ on the approach in the post state, the aircraft that

initiates the approach by this transition should be assigned σ. It implies from the

blocking condition of Case 3 that the initiation are of the opposite side of σ is blocked

by the first aircraft of maz(σ). Since the transition does not move this aircraft, the

blocking condition in the post state follows from Lemma 3.21.

Next we consider the case that the transition is performed for the opposite side of σ.

We split the case depending on whether there is already an aircraft assigned σ on the

approach in the pre state.

∗ If there is an aircraft assigned σ on the approach in the pre state, it implies that

the pre state satisfies the assumption of Case 2, and thus the conditions of Case

2 hold in the pre state. It follows that the initiation area of the opposite side

95

is blocked, and there are at most one aircraft assigned σ on the approach. The

same bound on the assignments of aircraft in the approach area follows from

the above two facts, and the blocking condition of Case 2 follows from the same

blocking condition that hold in the pre state and Lemma 3.21.

∗ Suppose there is no aircraft assigned to σ in the approach area in the pre state.

Considering that from the assumption of the case, there are at least such aircraft

in the approach area in the post state, the aircraft that initiates the approach

by this transition must be assigned σ. In addition, the fact that this aircraft

can initiate the approach implies that this aircraft satisfies the condition for

an aircraft that is ready to go approach from the opposite side of σ to side σ.

It implies that the pre state satisfies the assumption of Case 7, and thus the

two conditions of Case 7 hold in the pre state. Since this aircraft initiates the

approach by the transition, and except for this aircraft, the initiation area of the

opposite side of σ is blocked by the first aircraft of maz(σ), that area is blocked

by the same blocking aircraft in the post state. The condition on the assignments

of aircraft in the approach area follows from the facts that there is no aircraft

assigned σ in the approach area in the pre state, and that the transition adds

just one aircraft to the approach area.

– Case 3: Suppose there is one aircraft in maz(σ) and there are at least one aircraft in

the vertical initiation area of side σ. Since the transition does not affect maz zones,

there is one aircraft in maz(σ) in the post state as well.

First we consider the case that the transition is performed for side σ. The precondition

for the transition ensures that there are at least one aircraft in holding2(σ) in the

pre state. Since the transition removes one aircraft from holding2(σ), there must be

another aircraft in the vertical initiation area in the pre state since there are at least

one aircraft in the area in the post state. It implies that the pre state satisfies the

assumption of Case 5, and thus there is no aircraft in maz(σ). This is a contradiction.

Next we consider the case that the transition is performed for the opposite side of σ.

Since the transition does not affect the vertical initiation area of side σ, there are at

least one aircraft in that area in the pre state. It follows that the pre state satisfies

the assumption of Case 3, and thus the three conditions of Case 3 hold in the pre

state. The bound on the number of aircraft in the vertical initiation area follows from

the same bound that holds in the pre state, and the fact that the transition does not

affect the area. The condition on the number of assignments in the approach area

96

follows from the same condition that holds in the pre state, and the fact that the

initiation area of the side where an aircraft initiates the approach by this transition

is blocked. The blocking condition holds from the same blocking condition that holds

in the pre state, Lemma 3.21, and the fact that the transition does not move the

blocking aircraft.

– Case 4: Suppose that in the post state there are at least one aircraft in the vertical

initiation area of side σ, and at least one aircraft assigned σ on the approach.

First we consider the case that the transition is performed for side σ. The precondition

of the transition ensures that holding2(σ) is not empty. Considering that there are

at least one aircraft in the vertical initiation area of side σ even after the transition

that removes one aircraft from that area, there must be at least two aircraft in the area

in the pre state. It follows that the pre state satisfies the assumption of Case 5, and

thus the three conditions of Case 5 hold in the pre state. From the second condition,

there is no aircraft assigned σ in the approach area in the pre state. Considering

that there are at least such aircraft in the same area after the transition, the aircraft

that initiates the approach by this transition must be assigned σ. It follows that the

initiation are of the opposite side of σ is blocked by the second aircraft of the vertical

initiation area of side σ. Since this aircraft becomes the first aircraft of the same area,

the blocking condition that we need holds from Lemma 3.21. The condition of the

assignments follows from the facts that there is no aircraft assigned σ on the approach

in the pre state, and that the transition just adds one aircraft to the approach area.

The bound on the number of aircraft in the vertical initiation area of σ follows since

there is at most one aircraft in holding2 and holding3, respectively, from Property 3

that holds in the pre state, and the transition removes one aircraft from holding2(σ).

Next we consider the case that the transition is performed for the opposite side of

σ. We can prove the conditions using a discussion analogous to Case 2 as follows. If

there already is an aircraft assigned σ in the approach in the pre state, then the pre

state satisfies the assumption of Case 2. We can use a discussion analogous to that

in Case 2 to prove the three conditions using the same three conditions that hold in

the pre state. If there is no aircraft assigned σ in the approach area in the pre state,

then considering the fact that there are at least one such aircraft in the same area

after the transition, the aircraft that initiates the approach by this transition must

be assigned σ. From this and the fact that this aircraft can initiate the approach,

it satisfy the condition for an aircraft that is ready to approach from the opposite

97

side of σ to side σ. It follows that the pre state satisfies the assumption of Case 6,

and thus the three conditions of the case hold in the pre state. We can prove the

conditions for case 4 using the three conditions above in a way analogous to Case 2.

– Case 5: Suppose that in the post state, there are at lest two aircraft in the vertical

approach area of side σ. First we consider the case that the transition is performed

for side σ. From Property 3 that holds in the pre state, there is at most one aircraft in

both holding2 and holding3, respectively. Since the transition removes one aircraft

from holding2(σ), that zone becomes empty after the transition. It follows that

there is at most one aircraft in the vertical approach area of side σ in the post state.

This is a contradiction.

Next we consider the case that the transition is performed for the opposite side of σ.

Since the transition does not affect the vertical initiation area of side σ, there are at

least two aircraft in the vertical approach area of side σ in the pre state. It follows

that the pre state satisfies the assumption of Case 5, and thus the three conditions

of the case hold in the pre state. We can prove the three conditions of Case 5 using

the three conditions above and Lemma 3.21 in a way analogous to the corresponding

case in Case 1 or Case 3.

– Case 6: Suppose that in the post state there are at least one aircraft in the vertical

initiation area of side σ, and there is an aircraft that is ready to approach from the

opposite side of σ to side sigma.

First we consider the case that the transition is performed for side σ. From the pre-

condition of the transition, holding2(σ) is not empty in the pre state. Considering

that the transition removes one aircraft from that zone, there must be two aircraft

in the vertical initiation area of side σ in the pre state since there is still one aircraft

after the transition. It implies that the pre state satisfies the assumption of Case 5,

and thus the three conditions of the case hold in the pre state. It implies that the

initiation area of side σ is blocked by some specific aircraft with respect to σ. We

split the case into following two cases depending on the blocking aircraft.

∗ If the first aircraft of holding2(σ) in the pre state is assigned σ, the area is

blocked by the first aircraft of holding3(σ). From Lemma 3.21 and the fact

that the transition does not move the specified blocking aircraft, the area is still

blocked by the same aircraft after the transition. It contradicts the assumption

in the post state that there is an aircraft that is ready to approach from that

initiation area to side σ.

98

∗ If the first aircraft of holding2(σ) in the pre state is assigned the opposite

side of σ, the area is blocked by that aircraft. The emptiness of maz(σ) follows

from the facts that it is empty in the pre state and that the transition does not

affect the zone. The bound on the number of aircraft in the vertical initiation

area of σ, which is one, follows from Property 3 that holds in the pre state

and the fact that the transition removes one aircraft from holding2(σ). The

condition on the number of assignments to σ in the approach area follows from

the same condition that holds in the pre state and the fact that the aircraft that

initiates the approach by the transition is assigned the opposite side of σ, and

thus the number of assignments to σ in the approach area does not change by

the transition.

Now we prove the blocking condition. In this case, we cannot use the same

discussion as the above case to prove the blocking condition since the blocking

aircraft initiates the approach by the transition, and thus does not block any

aircraft after the transition. As we show in the following, we have to use the

blocking condition for side σ, as opposed to the opposite side of σ like we have

done so far, in order to lead to a contradiction. For a sake of contradiction,

suppose that there are more than one aircraft, not necessarily ready to approach,

in the initiation area of the opposite side of σ. From Theorem 3.16 (Property 5),

two aircraft cannot be in lez(opposite(σ)). Furthermore, from Theorem 3.24

(Property 6), there cannot be any aircraft in lez(opposite(σ)) since otherwise

aircraft exist in both lez(opposite(σ)) and other initiation area of opposite(σ),

which contradicts Property 6. Thus, two aircraft are in the initiation area of the

opposite side of σ excluding lez(opposite(σ)). It implies that by any possible

position of two aircraft in the area, the assumption of either Case 1, 3, or 5

for the opposite side of σ is satisfied. It implies that in that area, all aircraft

assigned the opposite side of σ are blocked by some specific aircraft in side σ.

This contradicts the fact that the first aircraft of holding2(σ), which is assigned

the opposite side of σ, initiates the approach by this transition. Thus there is at

most one aircraft in the initiation area of the opposite side of σ, and hence the

blocking condition for this case holds.

Next we consider the case that the transition is performed for the opposite side of σ.

Since the transition does not affect the vertical initiation are of side σ, there are at

least one aircraft in that area in the pre state. In addition, from Lemma 3.23, there

99

is an aircraft that is ready to approach from the opposite side of σ to side σ in the

pre state. It follows that the pre state satisfies the assumption of Case 6, and thus

the three conditions of the case hold in the pre state. We split the case depending on

the mahf assignment of the aircraft that initiates the approach by this transition.

∗ If the mahf assignment of the aircraft that initiates the approach is σ, then

it implies that after the transition, there is no aircraft assigned to σ since the

initiation area where this aircraft initiates the approach is blocked with respect

to σ except for the aircraft. This contradicts with the fact that in the post state,

there is an aircraft that is ready to approach from this initiation area to side σ.

∗ Suppose the mahf assignment of the aircraft that initiates the approach is the

opposite side of σ. The emptiness condition of maz(σ) and the bound on the

number of aircraft in the vertical initiation area of σ follows from the facts that

the same conditions hold in the pre state, and that the transition does not affect

these zone and area. The bound on the number of aircraft assigned σ in the

approach holds since the same bound holds in the pre state, and the aircraft that

initiates the approach is assigned the opposite side of σ, and thus does not affect

the number of the assignments to σ. The blocking condition follows from Lemma

3.22 and the facts that the same blocking condition holds in the pre state and

that the transition does not move the blocking aircraft.

– Case 7: Suppose that in the post state there is exactly one aircraft in maz(σ), and

there is an aircraft that is ready to approach from the opposite side of σ to side

sigma. Since the transition does not affect maz(σ), there is exactly one aircraft in

that zone in the pre state.

First we consider the case that the transition is performed for side σ. From the

precondition of the transition, holding2(σ) is not empty in the pre state. It follows

that the pre state satisfies the assumption of Case 3, and thus the three conditions

of the case hold in that state. We split the case into two depending on the mahf

assignment of the first aircraft of holding2(σ).

∗ If the first aircraft of holding2(σ) is assigned σ, then from the blocking condition

holds in the pre state from Case 3, the initiation area of the opposite side of σ is

blocked by the first aircraft of maz(σ) with respect to σ. Since the transition does

not affect maz(σ), this blocking aircraft stays in that zone after the transition,

and thus the initiation area of the opposite side of σ is still blocked by the aircraft.

This contradicts with the fact that there is an aircraft that is ready to approach

100

from that area to side sigma.

∗ If the first aircraft of holding2(σ) is assigned the opposite side of σ, we can use

the same discussion as in the corresponding case in the proof of Case 6. That is

we prove that there must be just one aircraft in the initiation area of the opposite

side of σ by applying the blocking condition to side σ.

Next we consider the case that the transition is performed for the opposite side of σ.

From Lemma 3.23, there is an aircraft that is ready to approach from the opposite

side of σ to side sigma in the pre state as well. It implies that the pre state satisfies

the assumption of Case 7, and thus the conditions of the case hold in that state. We

can use a discussion analogous to the corresponding case in the proof of Case 6. That

is, if the aircraft that initiates the approach by the transition is assigned σ, then the

initiation area of the opposite side of σ is blocked in the pre state, and thus it is a

contradiction; and if the aircraft is assigned the opposite side of σ, then we can use

Lemma 3.22 to obtain the blocking condition.

• In the case of LateralApproachInitiation:

– Property 3 and 4: The transition does not affect either holding2, holding3, or maz.

Thus the bounds immediately follows from the corresponding bounds that hold in

the pre state.

– Cases 1 to 6 in the case that the transition is performed for side σ: All of these cases

assume that there are at least one aircraft in either the vertical initiation area or maz

of side σ. Since the transition does not affect these area and zone, if we assume the

case assumption holds in the post state, it implies that there are at least one aircraft

in these area and zone in the pre state. It follows from Theorem 3.24 (Property

6) that there is no aircraft in lez(σ) in the pre state. This contradicts with the

precondition of the transition that ensures that the zone is not empty.

– Cases 1 to 6 in the case that the transition is performed for the opposite side of

σ: The transition moves an aircraft to the different space depending on the pre

state. In the case that the aircraft moves to the approach area, we can prove the

conditions using a discussion analogous to the corresponding case in the proof of

VerticalApproachInitiation. In the case that the aircraft moves to

holding2(opposite(σ)), we can prove the conditions using a discussion analogous to

the corresponding case in the proof of VerticalEntry.

• In the case of MissedApproach:

101

– Properties 3: The transition does not affect the vertical initiation area. Thus the

bound immediately follows from the induction hypothesis.

– Properties 4: We prove the bound on the number of maz(γ) for an arbitrary side γ.

In the case that the mahf of the aircraft that misses the approach is assigned γ: If the

number of aircraft in maz(γ) in the pre state is strictly less than two, then since the

transition just adds one aircraft, the number of aircraft in maz(γ) in the post state

is at most two. If the number of aircraft in maz(γ) in the pre state is exactly two,

it follows that the pre state satisfies the assumption of Case 1. It implies that there

is no aircraft assigned γ on the approach. This contradicts the fact that the aircraft

that misses the approach has γ as its mahf.

In the case that the mahf of the aircraft that misses the approach is assigned the

opposite side of γ: the aircraft that misses the approach goes to maz of the opposite

side of γ. Thus the transition does not affect maz(γ). Hence the condition follows

from the induction hypothesis.

– Case 1: Suppose there are two aircraft in maz(σ) in the pre state.

We first consider the case that the mahf of the aircraft that misses the approach is

assigned σ. Since one aircraft enters maz(σ) by the transition, the number of aircraft

in maz(σ) in the pre state is exactly one, and there are at least one aircraft assigned

to σ on the approach. It follows that the pre state satisfies the assumption of Case 2,

and thus the three conditions of the case hold in the pre state. Since the transition

removes one aircraft from the approach area, the bound on the number of assignments

of aircraft immediately holds from the same bound that holds in the pre state. The

emptiness of the vertical initiation area of side σ follows from the following reason.

If there is an aircraft in that area in the post state, it is already in the area in the

pre state since the transition does not affect the area. It implies that the pre state

satisfies the assumption of Case 3. It follows that there is no aircraft assigned σ on

the approach in the pre state. This is a contradiction. Thus the vertical initiation

area of σ must be empty. Next we prove the blocking condition. We have to consider

two cases depending on the mahf assignment of the first aircraft of maz(σ) in the

post state.

∗ If the mahf assignment of the aircraft is σ in the post state, then we have to prove

that the second aircraft of maz(σ) blocks the initiation area of the opposite side

of σ in that state. In the pre state, we have two aircraft assigned to σ: one is

the first aircraft of maz(σ), and the other is in the approach area. Thus from

102

Theorem 3.15, there is no other aircraft assigned to σ in the operation area in

that state. Since the transition does not add any aircraft to the initiation area

of the opposite side of σ, there is no aircraft assigned to σ in that area after the

transition, and thus the area is blocked by any aircraft in the system, especially

by the second aircraft of maz(σ), in the post state, as needed.

∗ If the mahf assignment of the aircraft is the opposite side of σ, we have to prove

that this aircraft blocks the initiation area of the opposite side of σ. The condition

follows from the same blocking condition that holds in the pre state and Lemma

3.21.

Next we consider the case that the mahf of the aircraft that misses the approach is

assigned the opposite side of σ. The aircraft that misses the approach goes to maz

of the opposite side of σ. It implies that there are already two aircraft in maz(σ)

in the pre state. Thus the pre state satisfies the assumption of Case 1, and hence

the three conditions of the case hold in the pre state. The emptiness of the vertical

initiation area follows immediately from the fact that the area is empty in the pre

state, since the transition does not affect the area. The condition on the number of

aircraft assigned σ in the approach area follows from the same condition that holds

in the pre state, since the transition removes one aircraft from the area, thus does

not increase the number of aircraft. The blocking condition follows from Lemma 3.21

and the facts that the same blocking condition holds in the pre state, and that the

transition does not move the blocking aircraft.

– Case 2: Suppose that in the post state, there is one aircraft in maz(σ) and there are

at least one one aircraft assigned σ on the approach.

We first consider the case that the mahf of the aircraft that misses the approach is

assigned σ. Considering that the transition removes one aircraft from the approach

area, and this aircraft is assigned σ, there must be at lest two aircraft assigned σ in

the approach area in the pre state. Furthermore, from Theorem 3.15 (Property 7),

there are exactly two aircraft assigned σ in the area, and there is no other aircraft

assigned σ in other areas. It implies that there is exactly one aircraft assigned σ in

the approach area in the post state, and the initiation are of the opposite side of σ

is blocked with respect to σ by any aircraft, and thus especially the blocking aircraft

specified in the case, as needed.

In the case that the mahf of the aircraft that misses the approach is assigned the

opposite side of σ, we can use a discussion analogous to the corresponding case in the

103

proof of Case 1. That is, we first assert that the assumption of Case 1 holds in the

pre state as well, and then prove the conditions using the corresponding conditions

that hold in the pre state and Lemma 3.21.

– Case 3: Suppose that in the post state, there is one aircraft in maz(σ) and there are

at least one aircraft in the vertical initiation area of side σ.

We first consider the case that the mahf of the aircraft that misses the approach is

assigned σ. The assumption of the case implies that there are at lest one aircraft

assigned σ in the approach area in the pre state. In addition, considering that the

transition does not affect the vertical approach areas, there are at least one aircraft

in the vertical initiation area of side σ. It follows that the pre state satisfies the

assumption of Case 4, and thus the three conditions of the case hold in the pre state.

The bound on the number of aircraft in the vertical approach area immediately follows

from the same bound that holds in the pre state, since the transition does not affect

the area. There are no aircraft assigned σ in the approach area after the transition

since there is at least one such aircraft in the pre state from a condition of Case 4, and

we identify this aircraft with the aircraft that misses the approach by the transition

because it is assigned σ. To prove the blocking condition, we consider the following

two cases.

∗ Suppose the first aircraft of the vertical initiation area of side σ is assigned σ in

the pre state. It follows that there are two aircraft assigned σ in the pre state:

one is the aircraft above, and the other is the aircraft that misses the approach

by the transition. Thus we can prove the blocking condition in the same way as

Case 2 using Theorem 3.15 (Property 7).

∗ Suppose the first aircraft of the vertical initiation area of side σ is assigned the

opposite side of σ in the pre state. From the blocking condition of Case 4 that

holds in that state, the initiation area of the opposite side of σ is blocked by the

first aircraft of the vertical initiation area of σ. From Lemma 3.21, the area is

blocked by the same aircraft in the same position, as needed.

In the case that the mahf of the aircraft that misses the approach is assigned the

opposite side of σ, we can use a discussion analogous to the corresponding situation

in the previous cases.

– Case 4: Suppose that in the post state, there are at least one aircraft in the vertical

initiation area of side σ and at least one aircraft assigned σ in the approach area.

Considering that the transition does not affect the vertical initiation areas, there are

104

at least one aircraft in that area in the pre state as well.

We first consider the case that the mahf of the aircraft that misses the approach is

assigned σ. We lead to a contradiction to this assumption in the following. There are

at least one aircraft assigned σ in the approach area after the transition removes one

aircraft assigned σ from that area. It follows that in the pre state, there must be at

least two aircraft assigned σ in the area. Thus the pre state satisfies the assumption of

Case 4, and hence the three conditions of the case hold in the pre state. It implies that

there is at most one aircraft assigned σ in the approach area. This is a contradiction.

In the case that the mahf of the aircraft that misses the approach is assigned the

opposite side of σ, we can use a discussion analogous to the corresponding situation

in the previous cases.

– Case 5: Suppose that in the post state, there are at least two aircraft in the vertical

initiation area of side sigma. Since the transition does not affect the vertical initiation

areas, there are at least two aircraft in that area in the pre state as well. It follows

that the pre state satisfies the assumption of Case 5, and thus the three conditions

of the case hold in the pre state. The second condition in Case 5 implies that there

is no aircraft assigned σ in the approach in the pre state. Therefore the aircraft that

misses the approach by this transition is assigned the opposite side of σ before the

transition. We can use a discussion analogous to the corresponding situation in the

previous cases in order prove each condition using the corresponding condition that

holds in the pre state.

– Case 6: Suppose that in the post state, there are at least one aircraft in the vertical

initiation area of side sigma, and there is an aircraft that is ready to approach from

the opposite side of σ to side σ. Since the transition does not affect the vertical

initiation areas, there are at least one aircraft in the vertical initiation area of σ in

the pre state as well. In addition, from Lemma 3.23, there is an aircraft that is

ready to approach from the opposite side of σ to side σ in the pre state. It implies

that the pre state satisfies the assumption of Case 6, and thus the three condition of

the case hold in that state. The second condition of Case 6 implies that there is no

aircraft assigned σ in the approach in the pre state. Thus the aircraft that misses the

approach by this transition is assigned the opposite side of σ before the transition.

We can use a discussion analogous to the corresponding situation in the previous

cases in order prove each condition using the corresponding condition that holds in

the pre state. Note, however, that in this case, we have to use Lemma 3.22 instead

105

of Lemma 3.21 to obtain the blocking condition.

– Case 7: Suppose that in the post state, there is one aircraft in maz(σ), and there is

an aircraft that is ready to approach from the opposite side of σ to side σ.

We first consider the case that the mahf of the aircraft that misses the approach is

assigned σ. The assumption of the case implies that there are two aircraft assigned

σ in the pre state: one is the aircraft above, and the other is the one that is ready

to approach to σ. Thus, from Theorem 3.15 (Property 7), there is no other aircraft

assigned σ in the pre state. The condition on the number of assignments in the

approach area in the post state follows from the above fact and the fact that the

transition removes one aircraft assigned σ from the approach area, since this aircraft

is the only one that is assigned σ in that area. The blocking condition follows from

the following reason. In the pre state, there is no aircraft assigned σ in the initiation

area of the opposite side of σ, except for the one mentioned above. It implies that this

area is blocked, except for one aircraft, by any aircraft in the pre state with respect

to σ. Using Lemma 3.22, we obtain the blocking condition we need in the post state.

• In the case of LowestAvailableAltitude:

– Property 3: We will prove the condition for an arbitrary side γ. First we consider the

case that the transition is performed for side γ. The precondition of the transition

ensures that there are at least one aircraft in maz(γ) in the pre state. We split the

case depending on the number of aircraft in the zone in that state.

∗ Suppose there is exactly one aircraft on maz(γ) in the pre state. If there is at

most one aircraft in the vertical approach zone after the transition, the bound

vacuously holds. If there are more than one aircraft in the vertical approach zone

in the post state, it implies that there are at least one aircraft in the vertical ini-

tiation area in the pre state. It follows that the pre state satisfies the assumption

of Case 3, and thus there is at most one aircraft in the vertical initiation area

of γ in that state. If there is no aircraft in the area, the bound holds since the

transition just add one aircraft to holding2(γ).

Now consider the case that there is exactly one aircraft in the vertical initi-

ation area of γ in the pre state. If one aircraft is on holding2(γ) and no

aircraft is on holding3(γ), the transition moves an aircraft to holding3(γ).

Thus both of these zones have exactly one aircraft after the transition. If one

aircraft is on holding3(γ) and no aircraft is on holding2(γ), the transition per-

106

forms a simultaneous movement of aircraft: it moves the aircraft on holding3(γ)

to holding2(γ), and the first aircraft of maz(γ) to holding3(γ). Thus both

holding2(γ) and holding3(γ) have exactly one aircraft after the transition.

∗ Suppose there are more than one aircraft on maz(γ) in the pre state. Property

4 that holds in the pre state implies that there are exactly two aircraft in that

zone in the pre state. Hence, the pre state satisfies the assumption of Case 1.

It follows that there is no aircraft in the vertical approach area. Thus there is

exactly one aircraft in holding2(γ) and no aircraft in holding3(γ) in the post

state.

– Property 4: The transition does not affect maz zones. Thus the condition immediately

follows from the induction hypothesis.

– Case 1: Suppose there are two aircraft in maz(σ) in the post state. If the transition

is performed for side σ, it implies that there are three aircraft in maz(σ) in the pre

state. This contradicts with Property 4 that holds in the pre state.

Now we consider the case that the transition is performed for the opposite side of

σ. In this case, the transition does not affect the initiation area of side sigma or

the approach area. In addition, the blocking condition in the pre state immediately

implies the same blocking condition in the post state from Lemma 3.21. Thus the

pre state satisfies the assumption of Case 1, and the conditions we have to prove

immediately follows from the corresponding conditions that hold in the pre state.

This discussion apply for the rest of the cases when the transition is performed for

the opposite side of σ. Thus we will only prove the case the transition is performed

for side σ in the following. Note, however, that as before, in order to prove Cases 6

and 7, we have to use Lemma 3.23 to assert that the pre state satisfies the assumption

of the corresponding case, and have to use Lemma 3.22, instead of Lemma 3.21 to

prove the blocking condition. The proof structure is the same as the rest of the cases.

– Case 2: Suppose that in the post state, there is exactly one aircraft in maz(σ), and

there are at least one aircraft assigned σ in the approach area. As stated above, we

only consider the case that the transition is performed for side σ. In the following, we

lead to a contradiction to the fact that the transition is preformed for that side. The

assumption of the case implies that there are exactly two aircraft on maz(σ) in the

pre state. Thus the pre state satisfies the assumption of Case 1. It follows that there

is no aircraft assigned σ on the approach in the pre state. This is a contradiction.

– Case 3: Suppose that in the post state, there is exactly one aircraft on maz(σ) and

107

there are at least one aircraft in the vertical initiation area of side σ. We only consider

the case that the transition is performed for side σ. It implies that there are exactly

two aircraft on maz(σ) in the pre state. Thus the pre state satisfies the assumption

of Case 1. It follows that the three conditions of the case hold in the pre state. The

bound on the number of aircraft in the vertical initiation area in the post state holds

since there is no aircraft in the area in the pre state from the first condition of Case 1,

and the transition just adds one aircraft to the area. The condition on the number of

assignments in the approach area hold since the same condition holds in the pre state

from Case 1 and the transition does not affect the area. Now we prove the blocking

condition. Basically, we can prove it using the blocking condition that holds in the

pre state, and Lemma 3.21. However, we have to be careful about the matching of

the blocking aircraft in the pre state and the post state. First suppose that in the

pre state, the first aircraft of maz(σ) is assigned σ. In this case, the initiation area

of the opposite side is blocked by the second aircraft of maz(σ), from the blocking

condition stated in Case 1. Since the first aircraft of maz(σ) moves to the vertical

initiation area of side σ by the transition, and the area is empty in the pre state from

the first condition of Case 1, this aircraft becomes the first aircraft of the vertical

initiation area of σ. In the case that the first aircraft of that area is assigned σ, we

have to prove for Case 3 that in the post state, the initiation area of the opposite side

of σ is blocked by the first aircraft of maz(σ). Since the same area is blocked by the

second aircraft of maz(σ) in the pre state, and this aircraft becomes the first aircraft

of the zone after the transition, we obtained the required blocking condition. We can

analogously prove the blocking condition in the case that the first aircraft of maz(σ)

is assigned the opposite side of σ.

– Case 4: Suppose that in the post state, there are at least one aircraft in the vertical

initiation area of side σ, and at least one aircraft assigned σ in the approach area.

Since the transition does not affect the approach area, there are at least one aircraft

assigned σ in the approach area in the pre state as well. We only consider the case

that the transition is performed for side σ. We first prove that the vertical initiation

area of σ is empty in the pre state. Suppose, for a contradiction, it is not empty.

It implies that the pre state satisfies the assumption of Case 3. It in turn follows

that there is no aircraft assigned to σ on the approach in the pre state. This is a

contradiction. Now we prove the rest of the conditions. The precondition of the

transition ensures that maz(σ) is not empty in the pre state.

108

First we consider the case that there is exactly one aircraft in maz(σ) in the pre

state. It follows that the pre state satisfies the assumption of Case 2, and thus the

conditions of Case 2 hold in that state. The condition of the number of assignments

in the approach area hold since the same condition holds in the pre state and the

transition does not affect the area. The blocking condition follows from Lemma 3.21,

the blocking condition that holds in the pre state, and the fact that the first aircraft

of maz(σ) in the pre state – the specified blocking aircraft in Case 2 – becomes the

first aircraft of the vertical initiation area of σ – the specified blocking aircraft in

Case 4.

Next we consider the case that there is more than one aircraft in maz(σ) in the pre

state. We prove that this case cannot happen by contradiction. Property 4 that holds

in the pre state implies that there are exactly two aircraft in the zone in that state.

It follows that the pre state satisfies the assumption of Case 1, and thus there is no

aircraft assigned σ on the approach in that state. This is a contradiction.

– Case 5: Suppose that in the post state, there are at least two aircraft in the vertical

initiation area of σ. We only consider the case that the transition is performed for

side σ. It follows that in the pre state, there are at least one aircraft in maz(σ), and

at least one aircraft in the vertical initiation area

First we consider the case that there is exactly one aircraft in maz(σ) in the pre

state. It follows that the pre state satisfies the assumption of Case 3, and thus the

conditions of Case 3 hold in that state. There are at most two aircraft in the vertical

initiation area in the post state, since there are at most one aircraft in the area in the

pre state and the transition just adds one aircraft to the area. The condition of the

number of assignments in the approach area hold since the same condition holds in

the pre state and the transition does not affect the area. We can prove the blocking

condition using the matching of the blocking aircraft between the pre state and the

post state, and Lemma 3.21 in a way analogous to the proof of Case 4.

Next we consider the case that there is more than one aircraft in maz(σ) in the pre

state. We can lead to a contradiction using Property 4 and Case 1 in a way analogous

to the proof of Case 4.

– Case 6: Suppose that in the post state, there are at least one aircraft in the vertical

initiation area of side σ, and there is an aircraft that is ready to approach from the

opposite side of σ to side σ. From Lemma 3.23, there is an aircraft that is ready

to approach from the opposite side of σ to side σ in the pre state as well. We only

109

consider the case that the transition is performed for side σ. The precondition of the

transition ensures that there are at least one aircraft on maz(σ) in the pre state.

We first consider the case that there is exactly one aircraft in maz(σ) in the pre state.

First we prove that the vertical initiation area is empty in the post state. Suppose, for

a contradiction, that the area is not empty in the post state. It follows that the pre

state satisfies the assumption of Case 3, and thus the initiation area of the opposite

side of σ is blocked with respect to σ. This contradicts that there is an aircraft that

is ready to approach from the opposite side of σ to side σ in that state. There is

no aircraft in maz(σ) in the post state since there is exactly one in the pre state,

and the transition removes it from the zone. Next we prove, by contradiction, that

there is no aircraft assigned σ on the approach area in the post state. Suppose, for

a contradiction, there are at least one aircraft assigned σ on the approach area in

the post state. It follows that the pre state satisfies the assumption of Case 2, and

thus the initiation area of the opposite side of σ is blocked with respect to σ. This

is a contradiction from the same reason as above. Finally, we prove the blocking

condition. The pre state satisfies the assumption of Case 7, and thus the blocking

condition stated in Case 7 hold in the pre state The blocking condition follows from

this condition and the fact that the first aircraft of maz(σ) in the pre state becomes

the first aircraft in the vertical initiation area of σ in the post state, and thus the

specified blocking aircraft matches between the pre state and the post state.

Next we consider the case that there is more than one aircraft in maz(σ) in the pre

state. We prove, by a contradiction, this case cannot happen. Property 4 that holds

in the pre state implies that there are exactly two aircraft in maz(σ) in that state.

It implies that the pre state satisfies the assumption of Case 1, and thus the the

initiation area of the opposite side of σ is blocked with respect to σ in that state.

This contradicts that there is an aircraft that is ready to approach from the opposite

side of σ to side σ in the state.

– Case 7: Suppose that in the post state, there is one aircraft in maz(σ), and there

is an aircraft that is ready to approach from the opposite side of σ to side σ. From

Lemma 3.23, there is an aircraft that is ready to approach from the opposite side of

σ to side σ in the pre state as well. We only consider the case that the transition

is performed for side σ. We prove, by contradiction, that the transition cannot be

performed for the side in the following. Since the transition removes one aircraft from

maz(σ), there must be exactly two aircraft in maz(σ) in the pre state. It follows that

110

the pre state satisfies the assumption of Case 1, and thus the the initiation area of

the opposite side of σ is blocked with respect to σ in that state. This contradicts

that there is an aircraft that is ready to approach from the opposite side of σ to side

σ in the state.

• In the case of HoldingPatternDescend:

– Property 3: The transition moves an aircraft from holding3 of one side to holding2

of the same side. The bound on the number of aircraft in holding3 holds from the

same bound that holds in the pre state. The bound on the number of aircraft in

holding2 follows from the fact that the precondition of the transition ensures that

there is no aircraft in holding3 of the side that an aircraft joins by the transition.

– Property 4: The bound immediately follows from the induction hypothesis since the

transition does not affect maz zones.

– Cases 1 to 7: The transition does not affect either maz zones, or the number of aircraft

in the vertical initiation areas. In addition, Lemma 3.23 implies that if there is an

aircraft that is ready to approach, then the same condition holds in the pre state.

It follows that when we assume the assumption of one of the cases in the pre state,

the assumption of the same case is satisfied in the pre state. The conditions of the

each case follows from the same condition that hold in the pre state, the fact that

the transition does not affect either maz zones, the approach initiation area, or the

number of aircraft in the vertical initiation areas, and the combination of Lemma

3.21 or 3.22 and the matching of the blocking aircraft between the pre state and the

post state.

• In the case of Exit or Landing:

– Properties 3 and 4: The bounds immediately follows from the induction hypothesis

since the transition does not affect the vertical initiation areas or maz zones.

– Cases 1 to 7: Analogous to the case of HoldingPatternDescend, if we assume the

assumption of one of the cases in the post state, the assumption of the same case

is satisfied in the pre state. This is because the transition just removes one aircraft

from the approach area and does not affect the other areas. Note that even though

the transition does affect the approach zone, the assumption of each case in the post

state implies the assumption of the same case in the pre state, since the condition in

each assumption that refers to the approach area states that there are at least one

111

aircraft assigned σ in that area, and there can be more aircraft assigned σ in the pre

state, but not less.

The bounds on the number of aircraft in a zone of the initiation area immediately

follows from the same bounds that holds in the pre state and the fact that the

transition does not affect that area.

The conditions on the number of assignments in the approach area holds since the

transition removes one aircraft from that area, but does not add any aircraft to the

area.

The blocking condition can be proved using Lemma 3.21 or 3.22.

• In the case of FinalSegment or Taxiing: The transition does not affect the initiation areas

or the membership of aircraft in the approach area. Thus Properties 3 and 4 immediately

follows from the induction hypothesis, and each case of Cases 1 to 6 can be proved in a

way analogous to the case of HoldingPatternDescend.

3.7.4 Proof of Property 2

Now we prove Property 2, ∀σ : Side, actual(σ) ≤ 2. We use Lemma 3.26 as well as the properties

we have proved so far in order to conduct a case analysis in the proof. The formal definition of

the property is as follows.

Theorem 3.27. (Property 2) For any reachable state of SATS and side σ, actual(σ) ≤ 2.

Proof. We prove the bound for the initiation area of an arbitrarily chosen side σ. First, if there

is an aircraft in lez(σ), Properties 5 and 6 imply that there is only one aircraft in the initiation

area of σ – the first aircraft of lez(σ). Thus actual(σ) = 1 in this case.

Next we consider the case that lez(σ) is empty. We consider three cases:

split the case depending on the number of aircraft in maz(σ). There are at most two aircraft

in the zone from Property 4.

• |maz(σ)| = 2: The state satisfies the assumption of Case 1 of Lemma 3.26. It implies that

both holding3(σ) and holding2(σ) are empty. Thus the bound holds.

• |maz(σ)| = 1: If both holding3(σ) and holding2(σ) are empty, then the bound trivially

holds. If either holding3(σ) or holding2(σ) is non-empty, then the state satisfies the

assumption of Case 3 of Lemma 3.26. It implies that |holding2(σ)| + |holding3(σ)| ≤ 1.

Thus the bound holds.

112

• |maz(σ)| = 0: Since both maz(σ) and lez(σ) are empty in the state, the only posi-

tion at which aircraft can be located is the vertical approach area. From Property 3,

|holding2(σ)| ≤ 1 and |holding3(σ)| ≤ 1. Thus actual(side) ≤ 2.

3.8 Proof using the PVS theorem prover

In this section, we explain how we conducted our mechanical theorem-proving process for the

proofs presented in this Chapter. We also discuss how we could improve the production speed

and also ease the difficulties of such mechanical proof verification using theorem-provers, based

on the experience we obtained through the process.

3.8.1 Steps we have taken to use a theorem-prover

We took the following process to conduct a machine-supported verification of the proofs pre-

sented in this Chapter.

1. First, we translated TIOA code to PVS code by using an automatic translator [8], which

is written by Hongping Lim in our research group. As we discussed in Section 2.3, we also

input some supplemental PVS files that define auxiliary recursive functions and types, and

functions that use those. The translator looks up the vocabulary file, and find the func-

tions whose types are declared, but whose definitions are not specified, in the vocabulary

file. When the translator finds such functions, it complements the definitions of them by

inserting the actual definitions of those functions from the supplemental PVS files. The

translator’s output uses a framework primarily developed for a library of theorem-proving

strategies for PVS, called TAME, written by Myla Archer [1]. Theorem-proving strate-

gies are tools that can be used in an interactive theorem-proving: they combine basic

commands of a theorem-prover by executing these commands in a specific order using

some control flow mechanics such as if then. TAME is specifically designed for supporting

theorem-proving of invariants of timed I/O automata and the abstraction relations be-

tween automata. This framework includes definitions for the basic structures of timed I/O

automata, and it also has basic theories for establishing an induction over the number of

transitions of an automaton, and for proving an abstraction relation between automata.

(you may consider them as some type of macros that combine basic PVS commands)

2. Next, we stated the properties we want to prove, in PVS code. As we have seen in Section

113

3.3, we need to state not only main properties we want to prove, but also some auxiliary

lemmas needed to prove the main properties.

3. Finally, we conducted a mechanical verification of the hand-written proofs using the inter-

active theorem-prover of PVS. During this theorem-proving process, we found additional

auxiliary lemmas that could be used to avoid repetitive arguments in the theorem-proving.

In such cases, we added those lemmas to the PVS code, proved them separately from the

proof of main properties or other auxiliary lemmas, and used them directly in the proof.

3.8.2 Theorem-proving process in PVS

Here we informally explain how theorem-proving is conducted in PVS. It is important to (at

least roughly) understand how PVS works in order to understand the suggestion for improving

the verification process discussed in Section 3.8.3.

PVS has a “growing tree structure” for the proof process: A proof start with just the

top of the tree, which will grow during the verification process. This top node contains the

assumptions, the logical formulas we assume, and the conclusion, the logical formula we want

to prove using the assumptions. The proof process progresses by manipulating these given

formulas, for example, by applying the modus pones rule to formulas, or by using substitution

for a specific term that appear in one formula, using the equality specified in another formula.

These basic manipulations are given by interactions with the prover using prover commands.

The result of such a prover command creates a child of the node for which the command is

executed. This child contains the formulas after the manipulation by that command for the

parent’s formulas. In this way, the “proof tree” grows downward.

When we have a formula A ∧ B in the conclusion, we can split the verification process into

two “branches”, where in one branch, the new proof goal is to prove A, and in the other branch,

the new goal is B. In PVS, this split creates a branching in the proof tree: after a split in some

node with the goal A∧B, that node has two children, where one child has the new goal A, and

the other has B. By this branching, the proof tree grows both vertically and horizontally.

All formulas in the assumptions and the conclusion are numbered simply from 1 in the order

they appear (See Fig. 3.6 to see one typical node in a PVS proof tree. Here, we have two

formulas for the assumptions, and one formula for the conclusion. Formulas in the assumptions

are numbered from -1.) We may also label the formulas using some prover commands, and use

those labels to refer to formulas, instead of formula numbers. These labels can be some arbitrary

text, such as “Assumption 1”, or “Induction hypothesis 3” (see Fig. 3.7). The advantage of using

labels over using formula numbers to refer to formulas is as follows. The formula numbers are

114

{-1} in_queue?(ac!1, q!1)
{-2} ac!1‘mahf = side!1
|-------

{1} assigned(q!1, side!1) >= 1

Figure 3.6: A typical node in a PVS proof tree

[-1,(Assumption 1)]
in_queue?(ac!1, q!1)

[-2,(Assumption 2)]
ac!1‘mahf = side!1

|-------
{1,(Conclusion)}

assigned(q!1, side!1) >= 1

Figure 3.7: Use of labels

determined just by the order in which the formulas appear in a specific node. Thus, for instance,

the second formula in one specific node N may become the third formula in its child node, since,

for example, the command executed in N introduces one new formula to the child node. Fig.

3.8 shows the formulas in a child of the node depicted in Fig. 3.7, where one new formula (which

appear at the top) is inserted by the lemma command that inserts a formula stated as a lemma.

In this child node, the formula labeled sf Assumption 2 is now have the formula number −3.

Labels are useful in that, once a formula is labeled at some branch, we can refer to the same

formula by its label regardless of insertion of other formulas.

Some of the prover commands take formula numbers as arguments. For example, the replace

command that is used for substitution of a particular term using an equality is used in the form

(replace i j). When the command (replace i j) is executed in some node of the prove

tree, the prover first checks if i and j are valid formula numbers for the formulas in that node,

and also checks if the formula numbered i has form x = y. If the command does not satisfy

these conditions, a prover simply skips this command. Otherwise, it creates a child of that node,

{-1} FORALL (side: Side, z: Zone): length(z) >= assigned(z, side)
[-2,(Assumption 1)]

in_queue?(ac!1, q!1)
[-3,(Assumption 2)]

ac!1‘mahf = side!1
|-------

[1,(Conclusion)]
assigned(q!1, side!1) >= 1

Figure 3.8: Use of labels (when another formula is inserted to the assumptions)

115

and the child contains the formulas in which every occurrence of x in the parent’s formulas is

replaced by y. We may also use labels to refer to the formulas, instead of using formula numbers

like i and j in this example.

PVS considers the proof obligation for one specific node is verified in any of the following

cases: 1. the conclusion formula becomes true. 2. the assumptions contains false (since we are

assuming that all assumptions are true, one false that appear in an assumption gives a false

implication), and 3. the same formula appears in an assumption and the conclusion. When the

proof obligations of all leaves of the tree are verified, the theorem-proving for the theorem that

is stated in the top of the tree is successfully finished.

PVS also has some commands that make use of decision procedures, rather than just doing

simple logical or algebraic manipulations. Those commands combine simple manipulation com-

mands by executing these simple commands in a order determined by some decision procedure.

Among the commands that use decision procedures, a grind command has a decision procedure

that basically “tries everything that PVS can” to finish the verification of the node in which grind

is executed. Since the problem that grind deals with is generally undecidable, this command is

not guaranteed to terminate.

The collection of prover commands executed during a proof process constructs a tree of

commands that represents a proof tree for that proof. This tree of commands is saved as a text

file, called a proof script, using an S-expression representation for that tree.

In addition, PVS has a graphical feature that generates a picture of the proof tree of the

current theorem-proving process. This depicted tree is useful in that we can easily recognize

which proof branch we are currently verifying.

3.8.3 Our experience obtained by this case study and possible improvement
for mechanical proof processes using theorem-provers

In this section, we describe our experience in using PVS for a mechanical verification of our proof,

and discuss how we could have improved the mechanical proof process using theorem-provers

based on that experience.

Our experience using PVS

In our case study, the whole verification of the proofs presented in this chapter took about four

months. Though the author, who conducted the mechanical verification, was doing course work

during the same time period, more than 20 hours were devoted to theorem-proving using PVS in

each week. We consider that the following are the three main reasons this large amount of time

had to be devoted to conducting this project. First, some theorems and lemmas (most notably

116

Lemma 3.26) have a lengthy proof, even in the hand-written version. For this respect, we cannot

really improve the production speed of the machine-verified proof, unless we can improve the

hand-written proofs.

Second, the author was learning the PVS theorem-prover along with the verification process.

Though I have some experience in using PVS at the point when this theorem-proving project

for the SATS protocol was started, I was still leaning PVS at that point, especially in terms of

an efficient theorem-proving; for example, which prover command works best (in terms of both

result of the command and time to execute it) for what case. Even if a choice of the command

does not change the execution time of one command, a collection of them in a large proof does

make a drastic difference in the efficiency, for example, the running time of the whole proof

process.

Third, verifying a large proof, like the one for Lemma 3.26, in PVS slows down the verification

process in several aspects:

1. For a small, simple proof obligation, a decision procedure command, such as grind, was so

powerful that we could basically finish the verification of that small obligation by using

just one grind command. Using the grind command in an earlier stage of the proof took

longer time (since grind presumably made some unnecessary attempts because of the lack

of supplemental information) than in the later stage where supplemental information (for-

mulas) needed to prove the obligation had been provided by human interaction. Using

grind in an early stage was acceptable (with respect to time-efficiency) for small proofs

since the places in which we used grind were few in such proofs. In a large proof, we had

many branches whose proof obligations were trivial to a human. We wanted to use grind

to finish those branches. The problem here was that since we had many branches that

we wanted to use grind, if we had used grind commands without adding a supplemental

information that might have helped a decision procedure, the running time of the whole

proof would become unacceptably long. This was a serious problem since we often needed

to re-run the whole proof. For example, we found some auxiliary lemmas that helped

reducing the redundancy in the proof tree. In such a case, we had to exit the current proof

process once and stated those lemmas before using them. To reduce the re-running time

of a large proof, we basically had to add sufficient information for a decision procedure

(or sometimes “hide” unnecessary information that may confuse a decision procedure) be-

fore executing grind. This process of adding supplemental information would reduced the

running time of the proof, but required extra human interaction.

2. Theorem-proving process for a large proof made a proof tree large. When dealing with

117

such a large tree, we experienced that each execution of a prover command, especially

for one that uses a decision procedure (such as grind), became slower (it sometimes took

more than twice as long as in the case when the command was executed in a smaller proof

tree). It might be because PVS has to store more internal information for a large proof

than for a small proof. This slow-down reduced possible places where commands with

decision procedures could be used in an earlier stage of the proof, in addition to the reason

discussed in the above Reason 1.

3. Since we had to deal with a large proof tree for a large proof, a graphical representation

of that tree made by PVS became large. This construction of the graphical tree took long

time (up to 5 minutes depending on the size of the tree), and the tree was updated every

time we executed a new command (it sometimes took around 20 seconds). This made it

infeasible to use the graphical feature. Thus, we had to rely on only the text information

to comprehend what branch of the proof tree we were verifying now. We sometimes lost a

big picture of the proof in such situations, and thus took long time to grasp what assumed

formulas were really needed and what were unnecessary information in order to prove the

conclusion of that branch.

How we could have improved the production speed of the machine-verified proofs

As we have discussed earlier in this subsection, in our case study, the main difficulty to conduct

a theorem-proving came up when verifying large proofs. An easy and effective way to resolve

the above mentioned problems for verifying a large proof is to decompose the proof into small

sub-proofs using lemmas. For example, for mechanical verification of the proof for Lemma

3.26, we could state several lemmas each of which represents an inductive step of the proof for

one specific transition. Since there are thirteen transitions, we would state thirteen lemmas.

We could also have even smaller sub-proofs: For instance, the proof of the inductive step for

VerticalApproachInitiation is lengthy. Thus we could have the auxiliary lemmas VAI.Case1

- VAI.Case7, each of which represents the proof obligation for one specific case of the inductive

step for VerticalApproachInitiation. Then, the verification of the original large proof can

be done by applying these lemmas to verify the corresponding branches in the original proof.

By verifying one large proof as a collection of sub-proofs, we can make the size of a PVS

proof tree for one sub-proof small. In this way, we can increase the number of cases when we

can use the grind-type of command in an earlier stage of the verification, and also increase the

accessibility to the graphical feature for the proof tree.

118

How we could have improved the stability of machine verified proofs for modification

We sometimes came across the situation in which we proved a theorem using some auxiliary

lemmas that have not yet been proved, and found that the statement of the lemmas need

some minor changes or additional minor assumptions. In such a case, we modified the lemmas

as required, and proved it. Then, of course, we had to re-run the proof verification for the

theorem that used these lemmas, in order to check the theorem-proving was still sound. This

process sometimes required some additional verification steps that did not appear in the original

verification, in order to verify the modified part.

To gain the maximum stability of machine verified proofs for such modifications, we could

make use of labels when we refer to formulas. This is because the modification of the lemma

statement may result in inserting some additional formulas in a node for which the lemma is

applied. For example, suppose we have three formulas A1, A2, B in the assumption before the

modification of the lemma, and we have four formulas A1, A2, A3, B after the modification. Since

the formulas are indexed simply from the beginning of a sequence of formulas, formula B has

the formula number three before the modification, but the number for B becomes four after the

modification. If we are referring to the formulas by number, and, for example, we are using

B for the substitution of formulas (replace 3 1), such substitution command in the original

proof script may result in an invalid command (since the formula number 3 now refers to A3.)

In such a case, PVS simply skips executing that command, and keep executing the remaining

commands in a given proof script. Of course, the proof verification may fail to finish rerunning

the original proof script successfully since one command that is needed, (replace 3 1), has

been skipped.

To avoid such situations, we can make use of labels for formulas. If we had given a label

formula B for formula B, and formula A1 for A1 in the above situation, and we had referred B

by that label ((replace formula B formula A1)), the problem would have been avoided.

The TAME strategies [1] could be used to help a user to label formulas automatically. These

strategies help the user by setting up the proof obligation of an induction proof, with automated

labeling. The strategies also have features with which, whenever new formulas are introduced

by a command defined in the strategies, these formulas are automatically labeled.

Strategies for PVS that could have been used to support theorem-proving of large
proofs

The TAME strategies [1] could be used to support theorem-proving of large proofs in various

ways. First, as we explained above, TAME helps the user to label the formulas. TAME also

has strategies for applying lemmas that combine basic steps (inserting a formula stated as a

119

lemma and instantiating this formula for the specific case we are currently dealing with). By

reducing the interaction with PVS required for the user, these strategies can help the user to

have sub-proofs we have discussed above.

A new type of strategies that could reduce the interaction with PVS are strategies for date-

type specific simplifications. In our case study, we had many cases in which we had to do some

simplification for queue structures that are trivial to a human. We stated lemmas that represent

the equalities between queues before and after some simplifications, and used these lemmas to

simplify queues. However, if we have had some simplification strategies specific to queues, then

we would have required less amount of human interaction with PVS. Myla Archer, the developer

of TAME, is currently writing these simplification strategies for major data structures, such as

queues. However, we may sometimes find other simplifications that would come up often in

the proof, than the simplifications supported by the existing strategies. This implies that the

close connection between the user of the strategies and the developer of them is required (for

example, we should avoid the situation that we have to wait for one week for the strategy writer

to write a new simplification strategy). A straightforward way to resolve this problem is for the

user to become also the writer, though this requires an additional learning effort for the user.

To do so, a more experienced writer of the strategies can give some “template” for simplification

strategies so that efforts for a new writer are minimized.

120

Chapter 4

Timed I/O automata framework

In this chapter, we explain preliminaries for the timed I/O automata framework. We also

introduce simulation relation and refinement proof techniques for the framework.

4.1 Timed I/O automata

In this section, we introduce the mathematical framework we use in Chapter 5, timed I/O

automata. All material of this section is taken from [6].

4.1.1 Functions

In this section, we present basic notations and operations for functions that are used in the rest

of this chapter.

If f is a function, then we denote the domain and range of f by dom(f) and range(f),

respectively. If S is a set, then we write fdS for the restriction of f to S, that is, the function

g with dom(g) = dom(f) ∩ S such that g(c) = f(c) for each c ∈ dom(g).

If f is a function whose range is a set of functions and S is a set, then we write f ↓ S for the

function g with dom(g) = dom(f) such that g(c) = f(c)dS for each c ∈ dom(g). The restriction

operation → is extended to sets of functions by pointwise extension.

4.1.2 Time

In this thesis, a time axis T is the set R of real numbers. We define T≥0 = {t ∈ T|t ≥ 0}

An interval J is a nonempty, convex subset of T. We denote intervals as usual: [t1, t2] = {t ∈

T |t1 ≤ t ≤ t2}, [t1, t2) = {t ∈ T |t1 ≤ t < t2}, etc. An interval J is left-closed (right-closed) if it

has a minimum (resp., maximum) element and is left-open (right-open) otherwise. It is closed if

it is both left-closed and right-closed. For K ⊆ T and t ∈ T, we define K + t = {t′ + t|t′ ∈ K}.

121

Similarly, for a function f with domain K, we define f + t to be the function with domain K + t

satisfying, for each t′ ∈ K + t, (f + t)(t′) = f(t′ − t).

In some definitions and theorems in this chapter we assume that the relation ≤ on R extends

to a relation on R ∪ {∞} such that ∞ ≤ ∞ and for all t ∈ R, t < ∞.

4.1.3 Static and dynamic types

We assume a universal set V of variables. A variable represents a location within the state of

a system. For each variable v, we assume both a (static) type, which gives the set of values it

may take on, and a dynamic type, which gives the set of trajectories it may follow. Formally,

for each variable v we assume the following:

1. type(v), the (static) type of v. This is a nonempty set of values.

2. dtype(v), the dynamic type of v. This is a set of functions from left-closed intervals of T

to type(v) that satisfies the following properties.

(a) Closure under time shift: For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

(b) Closure under subinterval: For each f ∈ dtype(v) and each left-closed interval J ⊆

dom(f), fdJ ∈ dtype(v).

(c) Closure under pasting: Let f0f1 · · · be a sequence of function in dtype(v) such that, for

each nonfinal index i, dom(fi) is right-closed and max(dom(fi)) = min(dom(fi+1)).

Then the function f defined by f(t) = fi(t), where i is the smallest index such that

t ∈ dom(fi), is in dtype(v).

4.1.4 Trajectories

In this subsection, we define the notion of a trajectory, define operations on trajectories, and

prove simple properties of trajectories and their operations. A trajectory is used to model the

evolution of a collection of variables over an interval of time.

Basic definitions

Let V be a set of variables. A valuation v for V is a function that associates with each variable

v ∈ V a value in type(v). We write val(V) for the set of valuations for V . Let J be a left-closed

interval of T with left endpoint equal to 0. Then a J-trajectory for V is a function τ : J → val(V),

such that for each v ∈ V , τ ↓ v ∈ dtype(v). A trajectory for V is a J -trajectory for V , for any

J . We write trajs(V) for the set of all trajectories for V . If Q is a set of valuations for some set

V of variables, we write trajes(Q) for the set of all trajectories whose range is a subset of Q.

122

A trajectory for V where V = Ø is simply a function from a time interval to the special

function with the empty domain. Thus, the only interesting information represented by such

a trajectories is the length of the time interval that constitutes the domain of the trajectory.

We use trajectories over the empty set of variables when we wish to capture the amount of

time-passage. but abstract away the evolution of variables.

A trajectory for V with domain [0, 0] is called a point trajectory for V . If v is a valuation

for V then ℘(v) denotes the point trajectory for V that maps 0 to v. We say that a J -trajectory

is finite if J is a finite interval, closed is J is a (finite) closed internal, open if J is a right-open

interval, and full if J = T≥0.

If τ is a trajectory then τ.ltime, the limit time of τ , is the supremum of dom(τ). We define

τ.fval, the first evaluation of τ , to be τ(0), and if τ is closed, we define τ.lval, the last valuation

of τ , to be τ(τ.ltime). For τ a trajectory and t ∈ T≥0, we define

τ E t = τd[0, t],

τ C t = τd[0, t),

τ D t = (τd[t,∞)) − t.

By convention, we also write τ E ∞ = τ and τ C ∞ = τ .

Prefix ordering

Trajectory τ is a prefix of trajectory υ, denoted by τ ≤ υ, if τ can be obtained by restricting υ to

a subset of its domain. Formally, it τ and υ are trajectories for V , then τ ≤ υ iff τ = υddom(τ).

Alternatively, τ ≤ υ iff there exists a t ∈ T≥0 ∪ {∞} such that τ = υ E t or τ = υ C t. If T is a

set of trajectories for V , then pref(T) denotes the prefix closure of T , defined by

pref(T) = {τ ∈ trajs(V)|∃υ ∈ T : τ ≤ υ}

The following theorem gives a simple domain-theoretic characterization of the set of trajec-

tories over a given set V of variables:

Lemma 4.1. (Lemma 3.4 of [6]) Let V be a set of variables. The set trajs(V) of trajectories

for V , together with the prefix ordering ≤, is an algebraic cpo. Its compact elements are the

closed trajectories.

Concatenation

The concatenation of two trajectories is obtained by taking the union of the first trajectory

and the function obtained by shifting the domain of the second trajectory until the start time

123

agrees with the limit time of the first trajectory; the last valuation of the first trajectory, which

may not be the same as the first valuation of the second trajectory, is the one that appears in

the concatenation. Formally, suppose τ and τ ′ are trajectories for V , with τ closed. Then the

concatenation τ _ τ ′ is the function given by

τ _ τ ′ = τ ∪ (τ ′d(0,∞) + τ.ltime).

The following lemma shows the close connection between concatenation and the prefix ordering.

Lemma 4.2. (Lemma 3.5 of [6]) Let τ and υ be trajectories for V with τ closed. Then

τ ≤ υ ⇔ ∃τ ′ : υ = τ _ τ ′.

We extend the definition of concatenation to any (finite or countably infinite) number of

arguments. Let τ0τ1 · · · be a (finite or infinite) sequence of trajectories such that τi is closed for

each nonfinal index i. Define trajectories τ ′
0, τ

′
1, · · · inductively by

τ ′
0 = τ0,

τ ′
i+1 = τ ′

i _ τi+1 for nonfinal i

Lemma 4.2 implies that for each nonfinal τ ′
i ≤ τ ′

i+1. We define the concatenation τ0 _ τ1 _

· · · to be the limit of the chain τ ′
0tau′

1 · · · ; existence of this limit follows from Lemma 4.1.

4.1.5 Hybrid Sequences

In this subsection, we introduce the notion of a hybrid sequence, which is used to model a combi-

nation of changes that occur instantaneously and changes that occur over the intervals of time.

Our definition is parameterized by a set A of actions, which are used to model instantaneous

changes and instantaneous synchronizations with the environment, and a set V of variables,

which are used to model changes over intervals of time. We also define some special kinds of

hybrid sequences and some operations on hybrid sequences, and give basic properties.

Basic Definitions

Fix a set A of actions and a set V of variables. An (A, V)-sequence is a finite or infinite

alternating sequence α = τ0a1τ1 · · · , where

1. each τi is a trajectory in trajs(V),

2. each ai is an action in A,

3. if α is a finite sequence, then it ends with a trajectory, and

124

4. if τi is not the last trajectory in α, then τi is closed.

A hybrid sequence is an (A, V)-sequence for some A and V .

If α is a hybrid sequence, with notation as above, then we define the limit time of α, α.ltime,

to be
∑

i τi.ltime. A hybrid sequence α is defined to be closed if α is a finite sequence and its

final trajectory is closed.

For any hybrid sequence α, we define the first valuation of α, α.fval to be head(α).fval.

Also, if α is closed, we define the last valuation of α, α.lval, to be last(α).lval, that is, the last

valuation in the final trajectory of α.

If α is a closed (A, V)-sequence, where V = Ø and β ∈ trajs(Ø), we call α _ β a time-

extension of α.

Prefix Ordering

We say that (A, V)-sequence α = τ0a1τ1 · · · is a prefix of (A, V) sequence β = υ0b1υ1 · · · , denoted

by α ≤ β, provided that (at least) one of the following holds:

1. α = β.

2. α is a finite sequence ending in some τk; τi = υi and ai+1 = bi + 1 for every i, 0 ≤ i ≤ k;

and τk ≤ υk.

Similar to the set of trajectories over V , the set of (A, V)-sequence is also as algebraic cpo.

Lemma 4.3. (Lemma 3.6 of [6]) Let V be the set of variables and A a set of actions. The set of

(A, V)-sequences, together with the prefix ordering ≤, is an algebraic cpo. Its compact elements

are the closed (A, V)-sequences.

Concatenation

Suppose α and α′ are (A, V)-sequences with α closed. Then the concatenation α _ α′ is the

(A, V)-sequence given by

α _ α′ = init(α)(last(α) _ head(α′))tail(α′).

(Here, init, last, head, and tail are ordinary sequence operations.)

Lemma 4.4. (Lemma 3.7 of [6]) Let α and β be (A, V)-sequence with α closed. Then

α ≤ β ⇔ ∃α′ : β = α _ α′

125

As we did for trajectories, we extend the concatenation definition for (A, V)-sequences to

any finite or infinite number of arguments. Let α0α1 · · · be a finite or infinite sequence of (A, V)-

sequence such that αi is closed for each nonfinal index i. Define (A, V)-sequences α′
0, α′

1, · · ·

inductively by

α′
0 = α0,

α′
i+1 = α′

i _ αi+1 for nonfinal i

Lemma 4.4 implies that for each nonfinal i, α′
i ≤ α′

i+1. We define the concatenation α0 _

α1 · · · to be the limit of the chain α′
0α

′
1 · · · ; existence of this limit is ensured by Lemma 4.3.

Restriction

Let A and A′ be sets of actions and let V and V ′ be sets of variables. The (A′, V ′)-restriction

of an (A, V)-sequence α, denoted by αd(A′, V ′), is obtained by first projecting all trajectories

of α on the variables in V ′, then removing the actions not in A′, and finally concatenating all

adjacent trajectories. Formally, we define the (A′, V ′)-restriction first for closed (A, V)-sequences

and then extend the definition to arbitrary (A, V)-sequences using a limit construction. The

definition for closed (A, V)-sequence is by induction on the length of those sequences:

τd(A′, V ′) = τ ↓ V ′ if τ is a single trajectory,

αaτd(A′, V ′) =

{

(αd(A′, V ′))a(τ ↓ V ′) if a ∈ A′

(αd(A′, V ′)) _ (τ ↓ V ′) otherwise

It is easy to see that the restriction operator is monotone on the set of closed (A, V)-

sequences. Hence, if we apply this operation to a directed set, the result is again a directed

set. Together with Lemma 4.3, this allows us to extend the definition of restriction to arbitrary

(A, V)-sequences by

αd(A′, V ′) = t{βd(A′, V ′)|β is a closed prefix of α}.

4.1.6 Timed Automata

A timed automaton is a state machine whose states are divided into variables and that has a

set of discrete actions, some of which may be internal and some external. The state of a timed

automation may change in two ways: by discrete transitions, which change the state atomically,

and by trajectories, which describe the evolution of the state over intervals of time. The evolution

described by a trajectory may be described by continuous or discontinuous functions. Formally,

a timed automaton (TA) A = (X,Q,Θ, E,H,D, T) consists of the following:

126

• A set X of internal variables.

• A set Q ⊆ val(X) of states.

• A nonempty set Θ ⊆ Q of start states.

• A set E of external actions and a set H of internal actions, disjoint from each other.

• A set D ⊆ Q×A×Q of discrete transitions. We say that a is enabled in x if (x, a, x ′) ∈ D

for some x′.

• A set T ⊆ trajs(Q) of trajectories. Given a trajectory τ ∈ T , we denote τ.fval by τ.fstate

and, if τ is closed, we denote τ.lval by τ.lstate.

we require that the following axioms hold:

T0 (Existence of point trajectories). If x ∈ Q, then ℘(x) ∈ T .

T1 (Prefix closure). For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .

T2 (Suffix closure). For every τ ∈ T and every t ∈ dom(τ), τ D t ∈ T .

T3 (Concatenation closure). Let τ0τ1 · · · be a sequence of trajectories in T such that,

for each nonfinal index i, τi is closed and τi.lstate = τi+1.fstate. Then τ0 _ τ1 _ · · · ∈ T .

Notation: We denote the components of a TA A by XA, QA, ΘA, EA, etc. We sometimes

omit these subscripts, where no confusion seems likely.

In this thesis, we specify sets of trajectories using differential equations and inclusions. In

doing so, we use the following notations. Suppose the time domain T is R, τ is a (fixed) trajectory

over some set of variables V , v ∈ V , and e is an integrable function containing variables from

V . Then we say that τ satisfies

d(v) = e

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v(t2) = v(t1) +
∫ t2
t1

e(t′)dt′.

We generalize this notation to handle inequalities as well as equalities. We say that τ satisfies

e ≤ d(v)

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v(t1) +
∫ t2
t1

e(t′)dt′lev(t2). t ∈ dom(τ), v(0) +
∫ t

0 e(t′)dt′ ≤ v(t), and τ satisfies

d(v) ≤ e

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v(t2)lev(t1) +
∫ t2
t1

e(t′)dt′.

Conventions for automata specifications: In the examples of this thesis, we assume the

time axis T to be R and specify timed automata by using the TIOA language presented in [3].

127

In this thesis, the set of states of an automaton equals the set of all valuations of its state

variables. A type AugmentedReal denotes R ∪ {∞}.

The transitions are specified in precondition-effect style, as in usual I/O automata.

In this thesis, the trajectories are specified using a combination of differential equations

and inclusions, and stopping conditions. A trajectory belongs to the set of legal trajectories of

an automaton if it satisfies the stopping condition expressed by the stop when clause and the

equations or inequalities in the evolve clause. The stopping condition is satisfied by a trajectory

if the only state in which the condition holds is the last state of that trajectory. That is, time

cannot advance beyond the point where the stopping condition is true. The evolve clause

specifies the differential equations and inclusions that must be satisfied by the trajectories. we

write d(v) = e for d(v) = e, d(v) ≤ e for d(v) ≤ e, and e ≤ d(v) for e ≤ d(v). We assume

that the evolution of each variable follows a continuous function throughout a trajectory. This

implies that the value of a discrete variable is constant throughout a trajectory: time-passage

does not change the value of discrete variables.

Execution and traces

We now define execution fragments, executions, trace fragments, and traces, which are used to

describe automaton behavior. An execution fragment of a timed automaton A is an (A, V)-

sequence α = τ0a1tau1a2 · · · , where (1) each τi is a trajectory in T and (2) if τi is not the

last trajectory in α, then (τi.lstate, ai+1, τi+1.fstate) ∈ DA. An execution fragment records

what happens during a particular run of a system, including all the instantaneous, discrete state

changes and all the changes to the state that occur while time advances. We write fragsA for

the set of all execution fragments of A.

If α is an execution fragment, with notation as above, then we define the first state of α,

α.fstate, to be α.fval. An execution fragment of a timed automaton A from a state x of A is

an execution fragment of A whose start state is x. We write fragsA(x) for the set of execution

fragments of A from x. An execution fragment α is defined to be an execution if α.fstate is a

start state, that is α.fstate ∈ ΘA. We write execsA for the set of all executions of A. If α is a

closed (A, V)-sequence, then we define the last state of α, α.lstate, to be α.lval. A state of A is

reachable if it is the last state of some closed execution of A. We write reachable(A) for the set

of all reachable states of A. A property that is true for all reachable state of an automaton is

called an invariant of the automaton.

Execution fragments are closed under countable concatenation (Lemma 4.7 of [6]).

Lemma 4.5. Let α0α1 · · · be a finite or infinite sequence of execution fragments of A such that,

128

for each nonfinal index, i, αi is closed and αi.lstate = αi+1.fstate. Then α0 _ α1 · · · is an

execution fragment of A.

The external behavior of a timed automaton is captured by the set of “traces” of its execu-

tion fragments, which record external actions and the trajectories that describe the intervening

passage of time. A trace consists of alternating external actions and trajectories over the empty

set of variables, Ø; the only interesting information contained in these trajectories in the amount

of time that elapses.

Formally, if α is an execution fragment, then the trace of α, denoted by trace(α), is the

(E,Ø)-restriction of α, αd(E,Ø). A trace fragment of a timed automaton A from a state x of A

is the trace of an execution fragment of A whose first state is x. We write tracefragsA(x) for

the set of trace fragment of A from x. Also, we define a trace of A to be a trace fragment from a

start state, that is, the trace of an execution of A, and write tracesA for the set of traces of A.

4.1.7 Timed I/O Automata

Timed I/O automata is a refined version of timed automata of Section 4.1.6 by distinguishing

between input and output actions.

A timed I/O automaton (TIOA) A is a tuple (B, I,O) where

• B = (X,Q,Θ, E,H,D, T) is a timed automaton.

• I and O partition E into input and output actions, respectively.

• The following additional axioms are satisfied:

E1 (Input action enabling). For every x ∈ Q and every a ∈ I, there exists x′ ∈ Q such

that (x, a, x′) ∈ D.

E2 (Time-passage enabling.) For every x ∈ Q, there exists τ ∈ T such that τ.fstate =

x and either

1. τ.ltime = ∞ or

2. τ is closed and some l ∈ L is enabled in τ.lstate.

Notation: We denote the components of a TA A by BA, IA, OA, XA, QA, ΘA, EA, etc. We

sometimes omit these subscripts, where no confusion seems likely. We abuse notation slightly

by referring to a TIOA A as a TA when we intend to refer BA.

An execution fragment, execution, trace fragment, or trace of a TIOA A is defined to be an

execution fragment, execution, trace fragment, or trace of the underlying TA BA, respectively.

129

Definition 4.6. A step of automaton A starting with state s, or simply a step starting with s

when A is obvious from the context, is an execution fragment of A starting with s that consists

of either one discrete transition surrounded by two point trajectories, or one closed trajectory

with no discrete transition.

4.2 Simulation relation and refinement proof techniques for timed

I/O automata

In this section, we introduce simulation relation and refinement proof techniques for timed

I/O automata. In Section 4.2.1, we introduce a forward simulation relation from automaton

A to automaton B, and a refinement from automaton A to automaton B. These techniques

can be used to show trace inclusion between two automata A and B (tracesA ⊆ tracesB).

The soundness theorems of these techniques are also given. In Section 4.2.2, we introduce a

new refinement that has a slightly different definition from an ordinary refinement presented

in Section 4.2.1. This refinement captures an idea of using invariants of automata in a proof

of a refinement. A simulation relation or a refinement actually give us a stronger claim than

just trace inclusion. In Section 4.2.3, we introduce the notion of samples for an automaton

execution. Using this notion, we prove the close correspondence between the executions of

two automata that are related by a simulation relation. In Section 4.2.4, as an application of

this close correspondence, we discuss invariants that can be deduced from the existence of a

simulation relation.

4.2.1 Forward simulation and refinement for timed I/O automata

A forward simulation and a refinement are proof techniques that can be used to show trace

inclusion between two automata A and B (tracesA ⊆ tracesB) [6, 9].1 We often consider B as a

specification of a system, and consider A as an implementation of that specification. Informally,

the trace inclusion tracesA ⊆ tracesB tells us that the external behavior of the implementation

A does not go beyond what we expect from the specification B. All definitions and proofs for

forward simulations and ordinary refinements in this subsection are from [6]. Weak refinements

are introduced in [9], but are not discussed in [6]. Thus, we define weak refinements in terms

of the TIOA framework of [6] (since, as we mentioned, the paper [9] uses slightly different

framework from the one of [6]), and prove the soundness theorem for them.

1Many kinds of simulation relation and refinement proof techniques and their soundness are studied in [9].
However, the authors use slightly different definitions of timed I/O automata from [6]. In this thesis, we follow
the definitions used in [6].

130

Forward simulation (materials from [6])

To prove that there is a forward simulation from automaton A to automaton B, we define a

relation between QA to QB, and show that this relation satisfies the following conditions for a

forward simulation.

Definition 4.7. (Forward Simulation) Let A and B be comparable timed I/O automata. A

forward simulation from A to B is a relation R ⊆ QA × QB satisfying the following conditions,

for all states xA and xB of A and B, respectively:

1. If xA ∈ ΘA, then there exists a state xB ∈ ΘB such that xARxB .

2. If xARxB and α is an execution fragment of A consisting of one action surrounded by two

point trajectories, with α.fstate = xA, then B has a closed execution fragment β with

β.fstate = xB , trace(β) = trace(α), and α.lstate R β.lstate.

3. If xARxB and α is an execution fragment of A consisting of a single closed trajectory,

with α.fstate = xA, then B has a closed execution fragment β with β.fstate = xB ,

trace(β) = trace(α), and α.lstate R β.lstate.

Condition 1 states that for each start state of A there exists a related start state of B.

Conditions 2 and 3 assert that each discrete transition and trajectory of A, respectively, can be

simulated by a corresponding execution fragment of B with the same trace.

We need a soundness theorem for the forward simulation technique in order to verify that

the technique is sound, that is, the existence of a refinement from A to B indeed implies the

trace inclusion tracesA ⊆ tracesB.

In order to prove the soundness theorem, we need the following lemma that states that a

forward simulation yields a correspondence for open trajectories (this is stated as Lemma 4.21

of [6]).

Lemma 4.8. Let A and B be comparable timed I/O automata and R be a forward simulation

from A to B. Let xA and xB be states of A and B, respectively, such that xARxB. Let α be an

execution fragment of A from state xA consisting of a single open trajectory. Then B has an

execution fragment β with β.fstate = xB and trace(β) = trace(α).

The soundness of a forward simulation immediately follows as a corollary from the following

theorem and Condition 1 of the definition of a forward simulation.

Theorem 4.9. Let A and B be comparable timed I/O automata, and let R be a forward sim-

ulation from A to B. Let xA and xB be be states of A and B, respectively, such that xARxB.

Then tracefragsA(xA) ⊆ tracefragsB(xB).

131

A proof appears in [6]. Nevertheless, since, in order to prove Theorem 4.21, we need the same

construction of an execution fragment of B presented in the proof of Theorem 4.9 (Theorem

4.22 of [6]), we will repeat the proof here.

Proof. Suppose that δ is the trace of an execution fragment of A that starts from xA. We prove

that δ is also a trace of an execution fragment of B that starts from xB. Let α = τ0α1τ1 · · · be

an execution fragment of A such that α.fstate = xA and δ = trace(α).

We consider the following cases:

1. α is an infinite sequence.

Using Axioms T1 and T2, we can write α as an infinite concatenation of execution fragments

α0 _ α1 _ · · · , in which αi with i even consist of a trajectory only, and αi with i odd

consist of a single discrete step surrounded by two point trajectories.

We define inductively a sequence β0β1 · · · of closed execution fragments of B, such that

β0.fstate = xB and, for all i, βi.lstate = βi+1.fstate, αi.lstate R βi.lstate, and trace(βi) =

trace(αi). We use Condition 2 of the definition of a forward simulation to construct bi’s

with i even, and use Condition 3 to construct bi’s with i odd. Let β = β0 _ β1 _ · · · . By

Lemma 4.7 of [6], β is an execution fragment of B. Clearly, β.fstate = xB . By Lemma

3.9 of [6], trace(β) = trace(α). Thus β has the required properties.

2. α is a finite sequence ending with a closed trajectory.

Similar to the first case.

3. α is a finite sequence ending with an open trajectory.

Similar to the first case, using Lemma 4.8.

Corollary 4.10. Let A and B be comparable timed I/O automata and let R be a simulation

relation from A to B. Then traces(A) ⊆ traces(B).

Refinement (materials from [6])

A refinement is a simple, special case of a forward simulation, often used in practice, in which

the relation between QA and QB is a partial function.

Definition 4.11. (Refinement) Let A and B be comparable timed I/O automata. Let r be a

partial function from QA to QB.

We say that r is a refinement from A to B if it satisfies the following three conditions, for

all states xA and xB of A and B, respectively.

132

1. If xA ∈ ΘA, then xA ∈ dom(r) and r(xA) ∈ ΘB.

2. If α is an execution fragment of A consisting of one action surrounded by two point

trajectories and α.fstate ∈ dom(r), then α.lstate ∈ dom(r) and B has a closed execution

fragment β with β.fstate = r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

3. If α is an execution fragment of A consisting of a single closed trajectory and α.fstate ∈

dom(r), then α.lstate ∈ dom(r) and B has a closed execution fragment β with β.fstate =

r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

The following theorem (Theorem 4.27 of [6]) gives us the soundness of a refinement.

Theorem 4.12. Let A and B be two timed I/O automata and suppose R ⊆ QA × QB. Then

R is a refinement from A to B iff R is a forward simulation from A to B and R is a partial

function.

Weak refinement

In some cases, we want to use invariants of automata in a proof of a refinement. A weak

refinement2 can be used for such cases. Weak refinements are introduced in [9], but are not

discussed in [6]. Thus, we define weak refinements here in terms of the TIOA framework of [6]

(since, as we mentioned, the paper [9] uses slightly different framework from the one of [6]), and

prove the soundness theorem for them.

Definition 4.13. (Weak Refinement) Let A and B be comparable timed I/O automata. Let

PA be an invariant of A, and PB be an invariant of B. Let r be a partial function from QA to

QB .

We say that r is a weak refinement with respect to PA and PB if it satisfies the following two

conditions for all states xA and xB of A and B, respectively.

1. If xA ∈ ΘA, then xA ∈ dom(r) and r(xA) ∈ ΘB.

2. If α is an execution fragment of A consisting of one action surrounded by two point

trajectories, and α.fstate ∈ dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate))

holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with β.fstate =

r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

2This usage of the term “weak” here comes from [9], and has nothing to do with Milner’s usage [11]; he uses it
to indicate whether or not internal steps are abstracted away. In contrast, we use the term “weak” here since we
have more assumptions (namely, invariants of automata) in Conditions 2 and 3 in the definition of this refinement,
than an ordinary refinement.

133

3. If α is an execution fragment of A consisting of a single closed trajectory, and α.fstate ∈

dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate))

holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with β.fstate =

r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

The following theorem states a reduction from the existence of a weak refinement (Definition

4.13) to the existence of an ordinary refinement (Definition 4.11).

Theorem 4.14. Let A and B be comparable timed I/O automata, and let r be a weak refinement

from A to B with respect to PA and PB. Then the following mapping r∗ is a refinement from A

to B.

r∗ = rd(reachable(A) ∩ {x|r(x) ∈ reachable(B)})

Proof. Condition 1 of a refinement follows from Condition 1 of the weak refinement r and the

fact that start states of A and B are reachable states of A and B, respectively.

Condition 2 of a refinement follows from the following argument: Suppose α is an execution

fragment of A consisting of one discrete transition surrounded by two point trajectories, and

α.fstate ∈ dom(r∗).

From this, we assert the following facts:

1. From α.fstate ∈ dom(r∗) and the definition of r∗, we have α.fstate ∈ dom(r), α.fstate ∈

reachable(A), and r(α.fstate) ∈ reachable(B).

2. Since α.fstate is a reachable state of A from the above Fact 1, and α is a valid execution

of A, α.lstate is also a reachable state of A.

3. Since PA and PB are invariants of A and B, respectively, PA(α.fstate) ∧ PB(r(α.fstate))

hold.

4. From the above Fact 3, the assumptions of Condition 2 of the definition of the weak

refinement are satisfied, with respect to α and r. From this, α.lstate ∈ dom(r) and B has

a closed execution fragment β1 with β1.fstate = r(α.fstate), trace(β1) = trace(α), and

β1.lstate = r(α.lstate).

5. For β1 in the above Fact 4, since β1.fstate = r(α.fstate) is a reachable state of B (by

Fact 1), and β1 is a valid execution fragment of B, β1.lstate = r(α.lstate) is a reachable

state of B.

134

Using the above facts, we show that α.lstate ∈ dom(r∗) and B has a closed execution

fragment β with β.fstate = r∗(α.fstate), trace(β) = trace(α), and β.lstate = r∗(α.lstate).

We first prove α.lstate ∈ dom(r∗). It is sufficient to prove α.lstate ∈ dom(r), α.lstate ∈

reachable(A), and r(α.lstate) ∈ reachable(B). These conditions follow from Fact 1, Fact 2, and

Fact 5, respectively.

Now we prove that B has a closed execution fragment β that satisfies the required condi-

tions. For β1 in Fact 4, from the definition of r∗, β1.fstate = r(α.lstate) = r∗(α.lstate) and

β1.lstate = r(α.lstate) = r∗(α.lstate) (note that r∗(α.fstate) and r∗(α.lstate) are well defined

since α.fstate ∈ dom(r∗) from our assumption, and α.lstate ∈ dom(r∗) as proved). Thus, this

β1 satisfies the required conditions.

We can prove Condition 3 of a refinement similarly to the case of Condition 2.

4.2.2 Weak refinement using step invariants

An ordinary refinement or a weak refinement from A to B works fine in many cases to show

trace inclusion between two automata A and B. To prove a weak refinement from A to B, we

can assume invariants of A and B hold when proving Conditions 2 and 3 (the step conditions)

of the refinement. This is useful since we often need some invariants of two automata to prove

the step conditions of the refinement. However, there are some cases when we need to make use

of invariants in a slightly different way. As we will see in Chapter 5, in some cases, we actually

need invariants of B in order to prove some invariants of A needed in the proof of a refinement

from A to B. Since we can assert the fact that invariants of B also hold for A only after proving

a refinement from A to B, without some modification to the refinement definition, this reasoning

is circular.

Informally, our solution to this problem is to prove the inductive case of the invariant proof

for such invariants of A, assuming additional conditions – invariants of B. In the following, we

present a new definition of invariants that captures the above informal discussion

Definition 4.15. Let A be a timed I/O automaton. Let P1 and P2 be predicates over QA. We

say that P1 is a step invariant of A using P2, or simply a step invariant using P2 when A is

obvious from the context, if, for any reachable state s of A and any step α of A starting with s,

the following condition holds.

P1(α.fstate) ∧ P2(α.fstate) ⇒ P1(α.lstate)

The following lemma easily follows from the definition of a step invariant.

135

Lemma 4.16. P1 ∧ P2 ∧ ... ∧ Pn is a step invariant for automaton A using condition Q if P1

is a step invariant of A using Q, and Pi, 2 ≤ i ≤ n, is a step invariant of A using Q and

P1 ∧ ... ∧ Pi−1.

Now we are ready to define the new refinement. The main difference from the definition

of an ordinary weak refinement (Definition 4.13) is that we assume an additional predicate P ∗

over QA in the step conditions (Conditions 2 and 3) of the refinement. This P ∗ must be a step

invariant using λs.PB(r(s)), where PB is an invariant of B. This captures the above informal

discussion: since we need invariant PB of B in order to prove that P ∗ is an invariant of A, we

just require P ∗ to be a step invariant using λs.PB(r(s)), invariant PB “adapted” to A using

mapping r.

Definition 4.17. Let A be a timed I/O automaton. Let PA be an invariant of A, and PB be

an invariant of B. Let r be a partial function from QA to QB . Let P ∗ be a step invariant of A

using λs.PB(r(s)).

We say that r is a weak refinement using PA, PB, and P ∗ if it satisfies the following three

conditions for all states xA and xB of A and B, respectively.

1. If xA ∈ ΘA then xA ∈ dom(r), r(xA) ∈ ΘB, and P ∗(xA) hold.

2. If α is an execution fragment of A consisting of one action surrounded by two point

trajectories, and α.fstate ∈ dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate)) ∧ P ∗(α.fstate)

holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with β.fstate =

r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

3. If α is an execution fragment of A consisting of a single closed trajectory, and α.fstate ∈

dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate)) ∧ P ∗(α.fstate)

holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with β.fstate =

r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

We now prove the soundness of the above refinement. Analogously to the case of an ordinary

weak refinement (Theorem 4.14), we prove the soundness of this new refinement by proving that

the existence of a new refinement implies the existence of an ordinary weak refinement.

136

Theorem 4.18. Let A and B be comparable timed I/O automata, and let r be a weak refinement

from A to B using PA, PB, and P ∗. Then the following mapping r∗ is a weak refinement from

A to B, with respect to λs.(s ∈ reachable(A)) and λt.(t ∈ reachable(B)).

r∗ = rd{x|P ∗(x)}

Proof. Condition 1 of a weak refinement for r∗ follows from Condition 1 of the new refinement

r and the definition of r∗.

Condition 2 of a weak refinement for r∗ follows from the following argument: Suppose α

is an execution fragment of A consisting of one discrete transition surrounded by two point

trajectories, and α.fstate ∈ dom(r∗), α.fstate ∈ reachable(A), and β.fstate ∈ reachable(B)

hold.

From this, we assert the following facts:

1. PA(α.fstate) holds since PA is an invariant of A and α.fstate is a reachable state of A.

PB(r(α.fstate)) follows from an analogous reason.

2. From α.fstate ∈ dom(r∗) and the definition of dom(r∗), we have α.fstate ∈ dom(r) and

P ∗(α.fstate).

3. From Facts 1 and 2, the assumptions of Condition 2 of the new refinement r is satisfied

with respect to α. Thus, α.lstate ∈ dom(r) and B has a closed execution fragment β1

with β1.fstate = r(α.fstate), trace(β1) = trace(α), and β1.lstate = r(α.lstate).

4. P ∗(α.lstate) holds since P ∗ is a step invariant using λs.PB(r(s)), α.fstate is a reachable

state of A, P ∗(α.fstate) holds from the Fact 2, and PB(r(α.fstate)) holds from Fact 1.

Using the above facts, we now prove that α.lstate ∈ dom(r∗) and B has a closed execution

fragment β with β.fstate = r∗(α.fstate), trace(β) = trace(α), and β.lstate = r∗(α.lstate).

First, we prove α.lstate ∈ dom(r∗). It is sufficient to prove α.lstate ∈ dom(r) and P ∗(α.lstate).

The first condition follows from Fact 3, and the second condition follows from Fact 4.

Now we prove that B has a closed execution fragment β that satisfies the required condi-

tions. For β1 in Fact 3, from the definition of r∗, β1.fstate = r(α.lstate) = r∗(α.lstate) and

β1.lstate = r(α.lstate) = r∗(α.lstate) (note that r∗(α.fstate) and r∗(α.lstate) are well defined

since α.fstate ∈ dom(r∗) from our assumption, and α.lstate ∈ dom(r∗) as proved). Thus, this

β1 satisfies the required conditions.

We can prove Condition 3 of the definition of a weak refinement similarly to the case of

Condition 2.

137

4.2.3 Close correspondence between executions of two automata implied by
a forward simulation

The existence of a simulation relation from A to B actually implies more than just trace inclusion

– it implies a close correspondence, involving both traces and states, between each execution

fragment of A and some execution fragment of B.

We first formally define this close correspondence between two execution fragments. To do

this, we need a notion of a sample of an execution fragment.

Definition 4.19. Let A be a timed I/O automaton, and let α be an execution fragment of A.

A sample of α is a (possibly infinite) sequence of closed execution fragments α0α1 · · · of A such

that αi.lstate = αi+1.fstate for any i ≥ 0 and α = α0 _ α1 _ · · · .

Informally, we can consider each αi.fstate as a sampling point of α for the given sample

α0α1 · · · .

Now we define a close correspondence between two execution fragments.

Definition 4.20. Let A and B be comparable timed I/O automata. Let α and β be execution

fragments of A and B, respectively. Let R be a relation over QA and QB. Let Σ = α0α1 · · · be

a sample of α. We say that α and β correspond with respect to R and Σ, provided that there

exists a sample β0β1 · · · of β such that for any i ≥ 0, αi.fstate R βi.fstate, αi.lstate R βi.lstate,

and trace(βi) = trace(αi).

Since trace(βi) = trace(αi) for any i ≥ 0, ltime(α0 _ α1 _ ... _ αk) = ltime(β0 _ β1 _

... _ βk), for any k ≥ 0.

Theorem 4.21. Let A and B be comparable timed I/O automata, and let R be a forward

simulation from A to B. Let xA and xB be states of A and B, respectively, such that xARxB.

For any execution fragment α of A starting with xA and any sample Σ of α, there is an execution

β of B starting with xB such that α and β correspond with respect to R and Σ.

Proof. By using the same construction scheme as in the proof of Lemma 4.9 as a “subroutine”,

for each closed execution fragment αi in sample Σ, we can inductively construct a correspond-

ing execution fragment βi of B such that βi.lstate = βi+1.fstate, αi.lstate R βi.lstate, and

trace(αi) = trace(βi) for any i ≥ 0. Note that αi’s here and αi’s in the proof of Lemma 4.9 is

defined differently: in this proof, each αi corresponds to α in Lemma 4.9. We split each αi into

a concatenation of smaller execution fragments α0
i _ α1

i _ · · ·αki

i to construct a corresponding

βi as in the proof of Lemma 4.9 (since each αi is closed, it is split into a finite concatenation).

Since each βj
i that corresponds to αj

i is closed (by a construction using simulation relation R as

138

in the proof of Lemma 4.9), and βi is constructed by a finite concatenation β0
i _ β1

i _ · · · βki

i ,

each βi is closed. Now let β = β0 _ β1 · · · . From Theorem 4.7 of [6], β is an execution fragment

of B. It is easy to see that α and β correspond with respect to R and Σ, by sample β0β1 · · · of

β.

4.2.4 Invariants deduced from a forward simulation

As we discussed in Section 4.2.3, a forward simulation from A to B actually implies more than

just trace inclusion (tracesA ⊆ tracesB) proved by the soundness theorem (Corollary 4.10).

Using Theorem 4.21 proved in Section 4.2.3, we can guarantee that for any invariant of B, A

has a corresponding similar invariant. We formally state this claim as follows.

Theorem 4.22. Let A and B be timed I/O automata. Let R be a simulation relation from A

to B. Let PB be an invariant of B. For any s ∈ reachable(A), there exists t ∈ QB such that

sRt and PB(t) (equivalently, the predicate λs.(∃t ∈ QB : sRt ∧ PB(t)) is an invariant of A.)

Proof. From Theorem 4.21, there is an execution β of B such that α and β correspond with re-

spect to R and sample α (a sequence with a single element α). Thus, for this β, α.lstate R β.lstate.

Since β is a valid execution of B, β.lstate is a reachable state of B. Thus PB(β.lstate) holds.

From Theorems 4.12, 4.14, and 4.18, we have the following corollary of Theorem 4.22.

Corollary 4.23. Let A and B be timed I/O automata. Let r be a refinement, a weak refinement,

or a weak refinement using step invariants, from A to B. Let PB be an invariant of B. The

predicate λs.PB(r(s)) is an invariant of A.

Proof. First we consider the case when r is an ordinary refinement. From theorem 4.12, r is

a simulation relation from A to B. Thus from Theorem 4.22, for any s ∈ reachable(A), there

exists t ∈ QB such that sRt and PB(t). Since r is a partial function, there exists exactly one t

such that sRt, namely r(t). Thus for any s ∈ reachable(A), PB(r(s)) holds, as required.

Now we consider the case when r is a weak refinement, or a weak refinement using step

invariants from A to B. From Theorems 4.14 and 4.18, there exists some ordinary refinement

r∗ from A to B such that dom(r∗) ⊆ dom(r) and ∀s ∈ dom(r∗), r∗(s) = r(s). For this r∗, by

using th same argument as above, we assert that for any s ∈ reachable(A), PB(r∗(s)) holds.

Since r∗(s) = r(s) for any s ∈ dom(r∗), and reachable(A) ⊆ dom(r∗), for any s ∈ reachable(A),

PB(r(s)) holds.

139

Chapter 5

Continuous model of SATS and its
safe separation property

5.1 Introduction

In this chapter, we introduce a new model of the SATS landing protocol that more realisti-

cally reflects the aircraft dynamics and the airport geometry. We use the timed I/O automata

framework presented in Chapter 4 to construct the new model.

This chapter is organized as follows. In Section 5.2, we study an extension of the discrete

model of [2] presented in [12], what the authors call a hybrid model. In the hybrid model of [12],

the movement of the aircraft in the approach area and the missed approach zones is modeled

as a continuous behavior. In Section 5.3, we present our new continuous model ContSATS,

and compare it with both the discrete model presented in Chapter 2 and the hybrid model of

[12]. Section 5.5 is devoted to carrying over the previous results to the new model. Using the

refinement technique, we prove that the safe separation properties analogous to those for the

discrete model hold for the new model. In Section 5.6, we verify several spacing properties of

aircraft in ContSATS.

5.2 Hybrid model of [12]

In Chapter 2, we have constructed a discrete model of the SATS landing protocol based on [2].

We have used the I/O automata framework to construct the model. Using this discrete model,

we have stated and proved the safe separation property of the protocol in terms of the bounds

on the number of aircraft in specific discretized zones.

However, to state and prove safety properties of the protocol that involve more realistic

dynamics of aircraft, such as a lower bound on the spacing between aircraft, we need a more

detailed modeling of the aircraft dynamics and the geometry of the airport. To treat such

140

properties, an extension of the discrete model of [2], what the authors call a hybrid model, is

presented in [12]. In the hybrid model of [12], the movement of the aircraft in the approach area

and the missed approach zones is modeled as continuous behavior: This particular sub-area (the

approach area and the missed approach zones) of the airport is modeled as a collection of lines

representing pre-determined paths of aircraft on which aircraft continuously move according to

their velocity vector (the amount of speed, plus the direction on the line on which the aircraft

is moving). See Fig. 5.1 for a picture of this sub-area. Now the discrete transitions for aircraft

in the approach area and the maz zones (Merging, FinalSegment, Landing, MissedApproach, and

HoldingPatternDescend) are performed when an aircraft reaches the intersection points of two

consecutive lines, in order to reassign the line on which that aircraft moves. On the other hand,

the behavior of aircraft in the area outside of this area and these zones is still discretized: air-

craft in this area (holding3, holding2, and lez) move in logically divided zones by discrete

transitions in the exact same way as in the discrete model of [2]. Even though a formal speci-

fication of this hybrid model does not appear in [12],1 we can formalize this model as follows:

In the hybrid model of [12], aircraft have a new attribute pos. This pos attribute of an aircraft

represents the position in the line at which the aircraft is located. Using pos, the preconditions

of the transitions performed for aircraft in the approach area and the maz zones in the discrete

model are modified as follows. Such a transition is enabled when the original precondition for

that transition is satisfied, and in addition, the aircraft a that moves by the transition is at the

end point of the line in which a moves (a.pos = Lz, where Lz is the length of the line z in which

a is).

In [12], the authors assume that the velocity v of each aircraft in the approach area and the

missed approach zones is bounded by Vmin ≤ v ≤ Vmax (where 0 < Vmin ≤ Vmax) and the initial

spacing of S0 is guaranteed when an aircraft initiates the approach. Using these assumptions,

lower bounds on the spacings between two aircraft in the approach area and the missed approach

zones, respectively, of the hybrid model are claimed and exhaustively checked in [12] using a

symbolic model-checking technique. To formally state the bounds the authors obtained in [12],

we use the following constants. Let LB, LI, LF, and LM represent the lengths of lines representing

base, intermediate, final, and maz, respectively. In [12], they consider the case that the lengths of

the base zones are different on the right and left sides. However, since this slight generalization

does not drastically change our results, we assume in this thesis that the airport geometry is

symmetric.2 We indicate by LT the total length that aircraft fly in the approach area, that is,

1The authors model-checked some properties of the model. Thus there is a formal specification of the model.
However, such a specification does not appear in [12]: instead, the authors informally described how the hybrid
model differs from the previous discrete model of [2].

2Indeed, the results would change in a very subtle manner in an asymmetric case for the results of [12]: If we

141

LB + LI + LF. The function D is used to represent the distance that a specific aircraft has flown

in the approach area, and then in the missed approach zone:

D(a) =

a.pos if a is in base
LB + a.pos if a is in intermediate
LB + LI + a.pos if a is in final
LB + LI + LF + a.pos if a is in maz
0 otherwise

In [12], the spacing between two aircraft a and b in the approach area and the maz zones

is determined by the difference between the values of this D function for a and b, that is,

|D(a)−D(b)|. Note that this spacing does not represent the Euclidean distance between a and b.

Indeed, if a is in the right-most portion of base(right) and b in the left-most portion of base(left),

then the spacing between a and b using D is zero, even if they are on the opposite side of each

other. In addition, for instance, if a is in intermediate and b is in base, then the spacing between

a and b is not the Euclidean distance between a and b, but the distance that b must fly in the

determined path in the approach area from the current position of b to reach the current position

of a ((Lb − b.pos)+ a.pos, see two aircraft in base(right) and in intermediate, respectively, in Fig.

5.1).

We are now ready to present the spacing bounds model-checked in [12]. Let ∆ = Vmax−Vmin
Vmin

.

For any reachable states of the hybrid model, the following two conditions hold:

1. For any two aircraft a and b that are in the approach area, D(a) − D(b) ≤ ST, where

ST = S0 − (LT − S0)∆.

2. For any side σ and any two aircraft a and b that are in maz(σ), D(a) − D(b) ≤ SM, where

SM = min(LT − LM∆, 2S0 − (LT + LM − S0)∆).

A limitation of this hybrid model is that it captures only the dynamic behavior of aircraft in

the approach area and the maz zones – the area outside of these area and zones is still discretized.

In this chapter, we present a new continuous model that more realistically captures the air-

craft dynamics and the airport geometry than the hybrid model of [12] studied in this section.

In contrast to the hybrid model of [12], our continuous model captures the continuous move-

ment of aircraft in the entire Self Controlled Area. As we will see in Section 5.3, a double

transition that the discrete model of [2] (and thus also the model in Chapter 2) exhibits by

use an asymmetric geometry, the only change in the approach area is the length LB of the base zones: one of the
base zone is longer than the other. Let Lmax be the length of the longer base zone, and Lmin be the length of the
shorter one. We can obtain the lower bounds for the asymmetric case checked in [12] by replacing every LB that
appears in the lower bounds by either Lmin or Lmax in a way that the replacement increases the spacing.

142

base(right) base(left)

maz(right) maz(left)

intermediate

final

Discrete transitions are performed
when aircraft move across these
intersection points and end points.

Figure 5.1: Sub-area that exhibits a continuous behavior in the hybrid model of [12]

LowestAvailableAltitude is no longer performed in this model: only one aircraft move from

one zone to another by each transition.

Using this model, we first formally verify that the safe separation properties proved for the

discrete model in Chapter 3 also hold in our new model. We use a weak refinement using a

step invariant, the new refinement technique presented in Chapter 4, to carry over the results

for the discrete model to the new model. Next we verify several lower bounds on the spacing

of aircraft including those model-checked in [12]. For the spacing of aircraft in the maz zones,

we actually obtain a stronger bound than the one model-checked in [12] using an additional

reasonable assumption.

5.3 Our New Continuous model

In the hybrid model of [12], the dynamics of the aircraft in the approach area and the missed

approach zones are described as continuous behavior: these area and zones are presented as a

collection of lines in which aircraft move continuously according to their velocity. Using this

model, the authors of [12] model-checked some spacing properties of aircraft for the model. The

model of [12] is sufficient to reason about bounds on the spacing of aircraft in the approach area

and the missed approach zone. However, if we want to examine similar properties for the rest of

the area, rather than just the approach area and the missed approach zones, we need a model

that describes a more complete dynamics of aircraft in the entire Self Controlled Area.

In this section, we present a new continuous model of the landing protocol, ContSATS,

that more realistically reflects the dynamics of the aircraft movement in a real system than

the model of [12]. To describe a complete continuous dynamics in the entire Self Controlled

Area, we use the same strategy as used for the model of [12]: in ContSATS, we model all the

possible paths of aircraft as a collection of lines, with aircraft moving on them according to

their velocity; the discrete transitions are performed on the intersection points of consecutive

lines (see Fig. 5.2, and compare it with Fig. 2.3 and 2.4). In the new model, analogously

to the hybrid model of [12], we use the discrete transitions to re-assign the line on which an

aircraft moves when that aircraft reaches the intersection point of two lines. Note that the

143

discrete transitions are performed instantaneously: no time elapses during the transitions. This

assumption is reasonable considering that they just re-assign the logical zone (the line) to which

the aircraft currently belongs.

holding3hold(left)

holding2hold(left)

These two end points coincide.
We did not depict them in the same
picture to avoid a complication.

The missed paths for the right
side is analogously defined

base(right)lez(right)

maz(left)

holding3ma(left)
holding2ma(left)

holding3dec(left)

()

intermediate

final

Figure 5.2: The continuous model ContSATS

There are two major problems that make this extension nontrivial. The first problem is

that the system has holding fixes (holding3 zones and holding2 zones), where aircraft hover

until the condition for the next procedure (modeled as a discrete transition) is satisfied. In the

real system, when an aircraft reaches some specific holding point, it starts hovering by circling

around the point. We abstractly model hovering aircraft as follows: when an aircraft reaches

a specific holding point (holding3hold or holding2hold of either side in Fig. 5.2), it temporarily

stops moving along on the lines, and stays at the point until the condition for the next procedure

is satisfied. To obtain some reasonable upper bound on the duration of this hovering after the

next procedure (transition) gets enabled, we set a “time bound” for this next procedure to be

performed. We will discuss more details of this time bound in Section 5.3.1.

The second problem arises from the design of a specific transition of the discrete model. The

procedure for aircraft to go back to the holding fixes when missing the approach is represented by

LowestAvailableAltitude. As the name implies, the aircraft moves to the lowest available altitude

by the above stated transition: if holding2 and holding3 of that side are both empty, then it

moves to holding2; and if holding3 is empty, but holding2 is not, then it moves to holding3. A

problem occurs when holding3 is not empty at the moment the transition is performed: the

missed aircraft then moves to holding3, and at the same time, an aircraft in holding3 descends

to holding2. Therefore, LowestAvailableAltitude exhibits a double transition of aircraft in this

situation. Considering that we cannot fully synchronize two aircraft in a real system, this

movement is not a faithful modeling of the reality. The problem was not resolved in the hybrid

model of [12] either, because the holding fixes are still discretized, and the transition does still

exhibit a double transition. In [2], the authors partially justified using a double transition

by claiming that a double transition never occurs in a real protocol since the SATS concept

144

precludes an aircraft from hovering at one altitude when a lower altitude is available. This

indicates that when a missed aircraft moves to holding3, the aircraft previously in holding3 has

already descended to holding2. However, they could not verify such a property for the discrete

model of [12] or the hybrid model of [2], since the model does not have any time-dependent

constraints, such as a time bound for HoldingPatternDescend to be performed when a lower

altitude becomes available (that is, holding2 becomes empty).

In our new model, we modify the effects of LowestAvailableAltitude(σ) so that the transition

will never exhibit a double transition: if holding2(σ) and holding3(σ) are both empty, then the

aircraft moves (its line is re-assigned) to holding2(σ); otherwise it moves to holding3(σ) without

checking if holding3(σ) is empty or not. Therefore only one aircraft moves at once in the logical

zones by the transition. In addition, we will guarantee (by Lemma 5.8 and Theorem 5.13)

that holding3(σ) is actually empty whenever LowestAvailableAltitude(σ) occurs in ContSATS,

provided that the distances that an aircraft flies in the approach area and in the missed approach

zone are sufficiently long. Informally, this fact states that an explicit check of the emptiness of

holding3(σ) can be replaced by reasonable time-dependent constraints. We will formally state

these constraints in Section 5.3.6. The emptiness of holding3(σ) in the latter situation of the

transition is crucial in the proof of the refinement (Theorem 5.13) to match up the effects of the

transition in ContSATS and in the discrete model.

5.3.1 Formal Specification for ContSATS

Now we present formal code for ContSATS. It is written in the timed I/O automata specification

language (TIOA, [3]). Analogous to the formal code for the discrete model presented in Chapter

2, the automaton definition imports vocabulary ContSatsVocab presented in Figure 5.3.

As we have discussed, each logical zone has (possibly multiple) corresponding lines represent-

ing paths of aircraft on which aircraft move, presented by enumeration Lines in ContSatsVocab

(again, see Fig. 5.2). All zones but holding2 and holding3 have exactly one line corresponding

to their zone-queue counterpart. Each holding2 zone has one point, holding2hold, and one line,

holding2ma, which respectively represent a hovering point of aircraft and the path from the end

point of the missed approach path to the hovering point. Each holding3 zone has one point and

two lines, where the point and one line are analogous to those of holding2’s – a hovering point,

holding3hold, and the path, holding3ma; and the other line, holding3dec, is used to represent the

descending path from holding3hold to holding2hold.3

3We do not split this path to two: one belongs to holding2 and the other to holding3. The reason is because,
to our best knowledge, a typical minimum vertical separation of two aircraft for the safety purpose is set to 1000
feet. Presumably, the 1000-feet difference in the altitudes of holding fixes comes from this issue, though we could
not find the statement that specifically mention this minimum vertical separation in [16]. If we split the line,

145

——————————————————————————————————————–

vocabulary ContSatsVocab
types
%% ADDED %%
Lines enumeration

[LINE_holding3holdL, LINE_holding3holdR, LINE_holding3maL, LINE_holding3maR,
LINE_holding3decL, LINE_holding3decR, LINE_holding2holdL, LINE_holding2holdR,
LINE_holding2maL, LINE_holding2maR, LINE_lezL, LINE_lezR, LINE_mazL, LINE_mazR,
LINE_baseL, LINE_baseR, LINE_intermediate, LINE_final, LINE_runway,
]

%% NEW ATTRIBUTES ADDED %%
Aircraft tuple [

mahf: Side, % Missed approach holding fix assignment.
id : ID % ID of the aircraft
line: Lines % Which line the aircraft is on.
pos : AugmentedReal % The position of the aircraft in the zone.
t : AugmentedReal % The time when the discrete transition for the aircraft gets enabled.

% it is set to -1 if the transition is not enabled yet, or
% the transition does not have a time bound.

]

%% Everything else is exactly the same as SatsVocab used for the discrete model.

——————————————————————————————————————–

Figure 5.3: Vocabulary for ContSATS

The line on which a specific aircraft currently moves is specified by a new attribute of aircraft,

line. To distinguish the logical-zone queues and the line names as an aircraft attribute, we use

the prefix “LINE ” for the line names; for example, the final zone as a line is represented as

LINE final. The position of a specific aircraft in the line is specified by another new attribute of

aircraft, pos. Using both the line value and pos value, we can uniquely determine on which line,

and at what position in that line the aircraft is now.

Another new attribute of Aircraft is t, which is used to express a time bound on the dura-

tion from the time some specific transitions become enabled to the time those transitions are

performed. Transitions StartDescending, VerticalApproachInitiation, and Taxiing, have these time

bounds. StartDescending is a new transition that makes an aircraft holding at holding3hold start

descending. The VerticalApproachInitiation transition is “inherited” from the discrete model of

[2], and this transition also makes a hovering aircraft (at holding2hold, this time) start moving.

Taxiing is also inherited from the discrete model. This transition has a time bound in ContSATS

due to the change in the precondition of Landing as we will discuss in Section 5.3.3. Informally,

we can consider these time bounds as follows. When one of the above the transitions gets en-

abled, the aircraft a corresponding to the transition (the one that will move by the transition)

we can easily see that the entry of an aircraft to holding3 when another aircraft just across the border of these
split line will violate this minimum vertical separation of 1000 feet. Thus we decided to have the descending path
belong just to holding3.

146

has its t value reset to the value of now. As we will see in Section 5.3.5, by the stop when clause

in the trajectory definition, we will insist ContSATS to fire the transition either before or at

the time the value of now−a.t gets the following pre-determined time bound for that transition.

T3, T2, and TTax represents the time bounds for StartDescending, VerticalApproachInitiation, and

Taxiing respectively. We use function T that maps the name of a zone to the above specified

time bounds for aircraft in that zone:

T(z) =

T3 if z = holding3(σ) for some side σ
T2 if z = holding2(σ) for some side σ
TTax if z = runway
0 otherwise

We set t of aircraft outside of the holding zones or of the runway to −1, indicating that the

timers are not set for those aircraft. In formal code, we represent these conditions of the deadline

for the transitions by the stop when statement in the trajectory definition. Note that after the

transition that has a time bound is performed, the t attribute for the respective aircraft is reset

to −1.

We now introduce some constants and functions for the lengths of lines that are used in

formal code of ContSATS. L3dec, L3ma, LB, LI, LF, and LM respectively represents the lengths

of holding3dec, holding3ma, base, intermediate, final, and maz. We use the function L to obtain

the length from the name of the line. For example, L(final) = LF. We indicate by LT the total

length that aircraft fly in the approach area, that is, LB + LI + LF. We use the function D to

represent the distance a specific aircraft has flown in the approach area, and then in the missed

approach zone:

D(a) =

a.pos if a.line = LINE base(σ) for some side σ
LB + a.pos if a.line = LINE intermediate
LB + LI + a.pos if a.line = LINE final
LB + LI + LF + a.pos if a.line = LINE maz(σ) for some side σ
0 otherwise

We present formal code for ContSATS in Figures 5.4 - 5.6. We use three effects set pos,

set line, and set t to re-assign the pos, line, and t attributes of aircraft, respectively. We retain

the queue structure of the logical zones in ContSATS since having the same structure as the

discrete model is useful when proving a refinement from ContSATS to the discrete model. We

maintain the consistency between the zone queues and the lines representing paths of aircraft

in ContSATS as follows: when an aircraft achieves an intersection point of two consecutive

lines representing two specific zones, the discrete transition is triggered (since the trajectory is

stopped by the stopping condition in the stop when clause), and re-assigns the line on which the

aircraft moves, and also moves the same aircraft to the corresponding queue in the logical zones.

147

——————————————————————————————————————–
automaton ContSATS

imports ContSatsVocab

%% All original discrete transitions are considered as the output transitions.
%% We added four new internal transitions, as well as the trajectory definition.
signature

output

VerticalEntry(ac:Aircraft, id:ID, side:Side),
LateralEntry(ac:Aircraft, id:ID, side:Side),
HoldingPatternDescend(ac:Aircraft,side:Side),
VerticalApproachInitiation(ac:Aircraft,side:Side),
LateralApproachInitiation(ac:Aircraft,side:Side),
Merging(ac:Aircraft,side:Side),
Exit(ac:Aircraft),
FinalSegment(ac:Aircraft),
Landing(ac:Aircraft),
Taxiing(ac:Aircraft),
MissedApproach(ac:Aircraft),
LowestAvailableAltitude(ac:Aircraft,side:Side),

internal

StartHolding2(ac:Aircraft,side:Side),
StartHolding3(ac:Aircraft,side:Side),
StartDescending(ac:Aircraft,side:Side),
SetTime

states

zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : Zone % landing sequence is defined as a queue
now : AugumentedReal % the time elapsed from the initial state
initially

zones = initialZones ∧ nextmahf = right ∧ landing seq = empty ∧ now = 0

%% The auxiliary functions are the same as SATS

——————————————————————————————————————–

Figure 5.4: Formal code for ContSATS, Part 1 of 3

We will formally prove the consistency between the zone queues and the lines in ContSATS as

Lemma 5.2.

5.3.2 State of ContSATS

The ContSATS model has one new analog state variable now (see “states” section of the code in

Figure 5.4). It keeps track of the time that has elapsed since the system starts its execution. The

evolution of the value of now is described as d(now) = 1 in evolve statement in the trajectory

statement in Figure 5.6, line 17.

5.3.3 Transitions inherited from the discrete model to ContSATS

All of the twelve output transitions are “inherited” from the discrete model. The preconditions

and the effects of these transitions were modified in a way that they correctly express the

movement of the aircraft on lines representing paths. More specifically, for the transitions that

represent the movement of aircraft from one zone to another, the following three modifications

148

——————————————————————————————————————–
transitions

output VerticalEntry(a, id, side)
pre let time = IF empty qn(holding2(side)) THEN now

ELSE -1 FI in
let line = IF side = right THEN AC holding3holdR

ELSE AC holding3holdL in
virtual(side) < 2 ∧

¬on approach qn(side) ∧

empty qn(maz(side)) ∧

empty qn(lez(side)) ∧

empty qn(holding3(side)) ∧

a = aircraft(side,id,line,time) ∧

∀ac: Aircraft
(in queue qn(ac, landing seq) ∨ ∃ z, on zone qn(z, ac)

⇒ ac.id =/ id)
eff zones :=

assign(zones, holding3(side), add(holding3(side), a));
landing seq := add(landing seq, a);
nextmahf := opposite(a.mahf);

output LateralEntry(a, id, side)
pre let line = IF side = right THEN AC lezR

ELSE AC lezL in
virtual(side) = 0 ∧

a = aircraft(side,id,line,-1) ∧

∀ac: Aircraft
(in queue qn(ac, landing seq ∨ ∃ z, on zone qn(z, ac))

⇒ ac.id =/ id)
eff zones :=

assign(zones, lez(side), add(lez(side), a));
landing seq := add(landing seq,a);
nextmahf := opposite(a.mahf);

internal StartDescending(a, side)
pre ¬empty qn(holding3(side)) ∧

a = first(holding3(side)) ∧

a.line = AC holding3hold(side)
eff set line(a, AC holding3dec(side));

set pos(a, 0);
set t(a, -1);

output HoldingPatternDescend(a, side)
pre ¬(empty qn(holding3(side))) ∧

a = first(holding3(side)) ∧

a.line = AC holding3dec(side) ∧

a.x = L3

eff set line(a, AC holding2hold(side));
set pos(a, 0);
IF length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧

D(leader(a,landing seq)) ≥ S0))
THEN set t(a, now) FI
zones:=move(holding3(side),holding2(side),zones);

output VerticalApproachInitiation(a, side)
pre ¬(empty qn(holding2(side))) ∧

a = first(holding2(side)) ∧

length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧

D(leader(a,landing seq)) ≥ S0))
eff set line(a, AC base(side));

set pos(a, 0);
set t(a, -1);
zones := move(holding2(side),base(side),zones)

output LateralApproachInitiation(a, side)
pre ¬(empty qn(lez(side))) ∧

a = first(lez(side)) ∧

a.x = LL

eff set pos(a, 0);
IF length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧

D(leader(a,landing seq)) ≥ S0))
THEN set line(a, AC base(side))

zones := move(lez(side),base(side),zones);
ELSE set line(a, AC holding2hold(side))

zones := move(lez(side),holding2(side),zones);
FI;

internal SetTime
pre ∃ a:Aircraft

(a.line = AC holding2holdL ∨

a.line = AC holding2holdR) ∧

a.t = -1 ∧ ¬first in seq qn(a) ∧

on approach qn(leader(a,landing seq)) ∧

D(leader(a,landing seq)) = S0

eff zones:= setTime(zones, landing seq)

output Merging(a, side)
pre ¬(empty qn(base(side))) ∧

a = first(base(side)) ∧

(first in seq qn(a) ∨

on zone qn(intermediate,leader(a,landing seq))∨
on zone qn(final,leader(a,landing seq))) ∧

a.x = LB

eff set line(a, AC intermediate);
set pos(a,0)
zones := move(base(side),intermediate,zones);

output Exit(a)
pre ¬(empty qn(intermediate)) ∧

¬(empty qn(landing seq)) ∧

a = first(intermediate) ∧

first in seq qn(a)
eff zones:= assign(zones,intermediate,rest(intermediate));

landing seq := rest(landing seq)

——————————————————————————————————————–

Figure 5.5: Formal code for ContSATS, Part 2 of 3

149

——————————————————————————————————————–

output FinalSegment(a)
pre ¬(empty qn(intermediate)) ∧

a = first(intermediate)∧
a.x = LI

eff set line(a, AC final);
set pos(a, 0)
zones := move(intermediate, final, zones);

output Landing(a)
pre ¬(empty qn(final)) ∧

¬(empty qn(landing seq)) ∧

a = first(final) ∧

a.x = LF

eff set line(a, AC runway);
set pos(a, 0);
set t(a, now);
zones := move(final,runway,zones);
landing seq := rest(landing seq);

output Taxiing(a)
pre ¬(empty qn(runway)) ∧

a = first(runway)
eff set t(a, −1);

zones:= assign(zones, runway, rest(runway));

output MissedApproach(a)
pre ¬(empty qn(final)) ∧

¬(empty qn(landing seq)) ∧

a = first(final) ∧

a.x = LF

eff set line(a, AC maz(a.mahf));
set pos(a, 0)
zones:= assign(zones, final, rest(final));
zones:= assign(zones, maz(a.mahf),
add(maz(a.mahf),reassign(a)));
landing seq := add(rest(landing seq),reassign(a));
nextmahf := opposite(reassign(a).mahf);

output LowestAvailableAltitude(a, side)
pre ¬(empty qn(maz(side))) ∧

a = first(maz(side)) ∧

a.x = LM;
eff IF empty qn(holding3(side)) ∧ empty qn(holding2(side))

THEN set line(a, AC holding2ma(side));
set pos(a, 0);
zones := move(maz(side),holding2(side),zones);

ELSE set line(a, AC holding3ma(side));
set pos(a, 0)
zones := move(maz(side),holding3(side),zones);

FI

internal StartHolding3(a, side)
pre ¬(empty qn(holding3(side))) ∧

a = first(holding3(side)) ∧

a.line = AC holding3ma(side) ∧

a.pos = L3ma;
eff set line(a, AC holding3hold(side));

set pos(a, 0);
IF empty qn(holding2(side)) THEN set t(a, now); FI

internal StartHolding2(a, side)
pre ¬(empty qn(holding2(side))) ∧

a = first(holding2(side))
a.line = AC holding2ma(side)
a.pos = L2ma

eff set line(a, AC holding2hold(side));
set pos(a, 0);
IF length(base(opposite(side))) ≤ 1 ∧

(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧

D(leader(a,landing seq)) ≥ S0))
THEN set t(a,now) FI

trajectories :1
stop when :2

(∃ a:Aircraft, :3
(∃ z:Zone, on zone qn(z, a)) ∧ :4
a.x ≥ L(a.line)) :5

∨ (∃ a:Aircraft, :6
(∃ z:Zone, on zone qn(z, a)) ∧ :7
a.t 6= −1 ∧ now − a.t ≥ T(a.line)) :8

∨ (∃ a:Aircraft, :9
(∃ z:Zone, on zone qn(z, a)) ∧ :10
((a.line = holding2L ∨ a.line = holding2R)∧ :11
a.t = −1 ∧ :12
¬first in seq qn(a) ∧ :13
on approach qn(leader(a,landing seq)) ∧ :14
D(leader(a,landing seq)) = S0)) :15

evolve :16
d(now) = 1 :17
∀ a: Aircraft :18

IF (a.line=holding3decL ∨ a.line=holding3decR) :19
THEN (Vd min ≤ d(a.x) ≤ Vd max) :20
ELSE (Vmin ≤ d(a.x) ≤ Vmax) FI :21

——————————————————————————————————————–

Figure 5.6: Formal code for ContSATS, Part 3 of 3

150

are performed. First, the condition a.pos = L∗ is added into the precondition where a is the

aircraft moving by the transition and L∗ is the length of the line on which a is currently located.

This expresses that when the abstract movement of an aircraft between zones occur, that aircraft

has to be on the intersection point of two lines (in other words, the end point of the line on

which the aircraft is).

Second, an appropriate set line effect is added to the effects of the transition so that the

transition not only moves the aircraft in logical zones, but also re-assigns the lines on which the

aircraft moves. An appropriate set pos effect is also added to reset the pos value of the aircraft

to 0 when the line is re-assigned.

Lastly, some specific transitions have a set t effect added in their effects. As discussed in

Section 5.3.1, when a specific transition gets enabled, the t value of the aircraft corresponding to

that transition is re-assigned to the current value of now, and when the transition is performed,

the t value is reset to −1. For example, HoldingPatternDescend sets the t value of the aircraft it

moves if VerticalApproachInitiation (one of the transitions that have a time bound) gets imme-

diately enabled after the transition. And VerticalApproachInitiation has a set t effect that resets

the t value to −1.

Analogously to the hybrid model of [12], by the precondition of the approach initiation

transitions (VerticalApproachInitiation and LateralApproachInitiation), the model guarantees the

initial separation distance of S0 in the approach area between an aircraft initiating the approach

and its immediate leader. The condition is expressed in terms of the D value of the leader

aircraft as follows: D(leader(a,landing seq)) ≥ S0.

Three transitions inherited from the discrete model to ContSATS have more differences than

the above stated general modifications. This is because we modified these three transitions in

order to more realistically represent a real system. The first transition modified is LowestAvail-

ableAltitude. As discussed in the beginning of this section, the effects of LowestAvailableAltitude

are modified so that it never exhibits a double transition. More specifically, the transition is

modified as follows: if holding2 and holding3 are both empty, then the aircraft moves (its line

is re-assigned) to holding2; otherwise it moves to holding3 without checking if holding3 is empty

or not. Therefore only one aircraft moves at once in the logical zones by the transition. Recall

that a double transition of aircraft in the discrete model occurs only when holding3 is not empty

at the time LowestAvailableAltitude is performed. In addition, if holding3 is empty at the time

LowestAvailableAltitude is performed, the effects of the transition are actually the same between

the discrete model and ContSATS (when we ignore the effects that just apply to ContSATS,

such as set line). The emptiness of holding3(σ) in the latter situation of the transition is cru-

cial in the proof of the refinement (Theorem 5.13) to match up the effects of the transition in

151

ContSATS and in the discrete model. Indeed, we guarantee this fact in the proof of refinement

(Theorem 5.13) using Lemma 5.8.

The second transition modified is Landing. In the discrete model, the precondition of Landing

checks if runway is empty when the transition is performed. In a continuous model, this is not

reasonable considering that we cannot stop aircraft that have already started the final approach.

Therefore we remove this condition in ContSATS. Instead, we have a time bound for Taxiing

so that it removes aircraft frequently. We will guarantee (in the proof of refinement, Theorem

5.13, using Lemma 5.11) that this time bound indeed works for firing Taxiing frequently enough

to avoid the landing when some aircraft is still on the runway.

The last transition modified is HoldingPatternDescend. The precondition of HoldingPattern-

Descend checks if holding2 is empty. Since a descending aircraft cannot stop and wait until

holding2 gets empty in a real system, it is more reasonable to check this condition when they

start descending by StartDescending, and not when HoldingPatternDescend is performed. There-

fore, the emptiness condition of holding2 within the precondition of HoldingPatternDescend is

removed, but the precondition of StartDescending does check this emptiness. When proving a

refinement from ContSATS to the discrete model of Chapter 2, we have to guarantee that,

in ContSATS, holding2 is actually empty when HoldingPatternDescend is performed. We use

Lemma 5.9 to prove this fact.

5.3.4 New Internal Transitions in ContSATS

In ContSATS, we add four new internal transitions (recall that the discrete model does not have

any internal transitions). Since these are internal, they do not appear in traces of ContSATS.

StartHolding3(σ) makes an aircraft that reaches the hovering point of holding3(σ) start hovering.

Since this hovering occurs within a holding3 zone, the transition just re-assigns the line attribute

of an aircraft from LINE holding3ma to LINE holding3hold, and does not change the logical-zone

queues.

StartHolding2(σ) does a job analogous to StartHolding3(σ) for aircraft in holding2(σ).

StartDescending(σ) makes a hovering aircraft in holding3(σ) start moving again, as discussed

before. Analogously to StartHolding3, the transition re-assigns the line attribute of an aircraft

from LINE holding3hold to LINE holding3dec, and does not change the logical-zone queues.

SetTime sets the t value of an aircraft in holding2 to the current value of now when Verti-

calApproachInitiation for that aircraft becomes enabled. Note that VerticalApproachInitiation can

be enabled by the leader aircraft of an aircraft in holding2 reaching the initial spacing position

S0. In such a case, as we will explain in Section 5.3.5, the trajectory will be stopped by the

conditions specified in the stop when clause in the trajectory definition. Then, this internal

152

transition, SetTime, takes care of setting a deadline for VerticalApproachInitiation. To perform the

re-assignment of the t attribute of aircraft in holding2, we use the auxiliary function setTime.

This function can be formally defined as follows. The auxiliary function setTimeAircraft sets

the t attribute of aircraft to now if its leader just reaches the point S0. Using this function,

setTimeZone sets the t attribute of all aircraft in one zone. The function setTime sets the t

attribute of aircraft in both holding2 zones using setTimeZone.

setTime(zones:zone_map, landing_sequence:queue, now:AugumentedReal) :=

let zones’ = assign(zones(holding2(right)),setTimeZone(zones(holding2(right)),landing_sequence, now)) in

let zones’’= assign(zones’(holding2(left)),setTimeZone(zones(holding2(left)), landing_sequence, now)) in

zones’’

setTimeZone(zone:queue, landing_sequence:queue, now:AugumentedReal):=

IF NOT empty?(queue) THEN

first(setTimeAircraft(rest(queue),landing_sequence, now), setTimeZone(cdr(queue),landing_sequence,now))

ELSE queue

setTimeAircraft(a:Aricraft, landing_sequence:queue, now:AugumentedReal):=

IF a.t = -1 AND

NOT first_in_seq_qn(a) AND

on_approach_qn(leader(a,landing_seq)) AND

D(leader(a,landing_seq)) = S0

THEN set_t(a, now)

ELSE a

5.3.5 Trajectories of ContSATS

The trajectory section of the TIOA code in Figure 5.6 defines the trajectories of ContSATS.

This section consists of the stop when clause and the evolve clause.

stop when clause

This clause determines the condition when the trajectory is stopped, and thus some discrete

transition has to be performed. In ContSATS, this clause is used to stop the trajectory in

the following three ways: First, if an aircraft a reached the end point of the line on which it

moves, the trajectory stops in order for some discrete action to be performed to re-assign the

line attribute of a. This condition is stated in lines 3 - 5 of Figure 5.6.

Second, as explained in Section 5.3.3, the trajectory is stopped when the deadline for the

specified time bound for the specific transitions is reached. More specifically, the trajectory is

stopped when, for some aircraft a with its t value not equal to −1, now − a.r ≥ T(a.line) is

satisfied. The above stated inequality represents that at least T(a.line time has elapsed since

the transition for a became enabled. This condition is stated in lines 6 - 8 of Figure 5.6.

Third, the trajectory is stopped when VerticalApproachInitiation for aircraft a becomes en-

abled by the leader of aircraft a reaching the initial separation S0. The trajectory need to be

153

stopped in this situation because, as discussed in Section 5.3.4, the SetTime transition must be

performed to set the t value of a to the current value of now in order to initiate a timer for

VerticalApproachInitiation. This condition is stated in lines 9 - 15 of Figure 5.6. The condition in

line 11 checks that a is in a holding2 zone (for which VerticalApproachInitiation is performed).

The condition in line 12 checks if the t value of a has not been set to the value of now. After

the t value is set, this condition does not hold, and thus the trajectory can evolve without being

stopped after the SetTime transition. The conditions in lines 13 - 15 check if the precondition

for VerticalApproachInitiation is satisfied.

evolve clause

As stated in Section 5.3.2, the now state variable evolves at rate one.

As in [12], we assume that the velocity of the aircraft is bounded. We have two kinds of

bounds depending on whether the aircraft is moving straight to some destination or is descending

by circling down. Namely, Vdmin ≤ d(a.pos) ≤ Vdmax (where 0 < Vdmin ≤ Vdmax) holds for aircraft

a when its line value is LINE holding3dec(σ) for some σ, and Vmin ≤ d(a.pos) ≤ Vmax (where

0 < Vmin ≤ Vmax) holds otherwise. Two kinds of bounds are used since it is reasonable to

consider that an aircraft flying toward some destination moves faster compared to an aircraft

descending by circling down in the holding zones. These constraints are specified in Figure 5.6,

lines 18-21 of the trajectory statement.4

5.3.6 Assumptions for ContSATS

We will assume the following conditions for ContSATS in this thesis (all assumptions and the

constant definitions introduced in this subsection are summarized in Table 5.1).

First, considering that the SATS concept is created for increasing the volume of the landings

by simultaneously operating the multiple landings, it is reasonable to assume that the initial

separation of aircraft in the approach area is less than the total distance aircraft fly in that area,

S0 < LT, since otherwise, obviously, there can be at most one aircraft in the approach area.

For the next assumption, we use the following new constants. Let

ST = S0 − (LT − S0)∆,

where

∆ =
Vmax − Vmin

Vmin

4The former velocity bound is used even for aircraft hovering at holding2hold or holding3hold. However, since
the pos value of these aircraft is not used in the precondition or the effects of the transition, it does not make any
difference if we used any other bound for the pos value of these hovering aircraft in the evolve statement.

154

We use this ∆ in the rest of the thesis. As presented in Section 5.1, this length ST is a lower

bound on the spacing between two aircraft in the approach area model-checked for the hybrid

model in [12]. We will state an analogous claim in Lemma 5.10. We assume that ST > 0. This

is a necessary requirement for the system so that aircraft would never crash, since the bound

is tight. Indeed, the spacing between two aircraft a and b becomes exactly ST in the following

scenario B:

Scenario B:

1. Aircraft a initiates the approach, and a moves in the approach area at its minimum possible

speed Vmin.

2. Aircraft b initiates the approach exactly when a has flown the initial separation distance

S0, and b moves in the approach area at its maximum possible speed Vmax.

3. When a reaches the end point of LINE final, (LT−S0)
Vmin

time has elapsed since b initiated the

approach. Thus the distance between a and b has been reduced by (LT−S0)
Vmin

(Vmax − Vmin)

compared to the initial distance. Thus the distance between a and b at this point is

S0 −
(LT−S0)

Vmin
(Vmax − Vmin) = ST.

For an analogous reason, we assume 2S0 − (LT + LM −S0)∆ > 0. As we will prove in Section

5.6, the term in the left-hand side of the above inequality (2S0 − (LT + LM − S0)∆) is a lower

bound of the spacing between two aircraft in a missed approach zone. We can also easily check

that this minimum spacing is also tight by examining the following scenario C:

Scenario C:

1. Aircraft a initiates the approach, and a moves in the approach area at its minimum possible

speed Vmin.

2. Aircraft b initiates the approach exactly when a has flown the initial separation distance

S0, and b moves in the approach area at any speed withing the specified velocity bound.

3. Aircraft c initiates the approach exactly when b has flown the initial separation distance

S0, and c moves in the approach area at its maximum possible speed Vmax.

4. Aircraft a misses the approach, and goes to maz(σ). It continues moving at the speed of

Vmin

5. Aircraft b misses the approach, and goes to maz(opposite(σ)). (Recall that aircraft’s mahf

are assigned alternately. Thus b’s mahf is assigned the opposite side from a’s mahf)

155

6. Aircraft c misses the approach, and goes to maz(σ). It continues moving at the speed of

Vmax

7. We can examine in a way analogous to Scenario B that, when a reaches the end point of

maz(σ), the spacing between a and b is exactly 2S0 − (LT + LM − S0)∆.

Thus the above inequality is a necessary condition of the system so that aircraft never crash.

In order to obtain a refinement from ContSATS to the discrete model, we have to assume

the following two conditions. First, we assume the following inequality.

L3ma

Vmin
+ T3 +

L3dec

Vdmin

<
LT + LM

Vmax
.

Informally, this says that the largest possible duration that an aircraft takes to go through a

holding3 zone is shorter than the smallest possible duration that an aircraft takes to go through

the approach area and the missed approach zone.5 This inequality is used to guarantee that

holding3(σ) is always empty whenever LowestAvailableAltitude(σ) is performed.

We also assume TTax < ST
Vmax

. Informally, this inequality states that the Taxiing transition

is performed frequently relative to the minimum spacing of aircraft in the approach area. It is

used to guarantee that runway is empty whenever Landing is performed.

Constant 1. ∆ = Vmax−Vmin
Vmin

Constant 2. ST = S0 − (LT − S0)∆

Assumption 1. ST > 0

Assumption 2. 2S0 − (LT + LM − S0)∆ > 0

Assumption 3. L3ma
Vmin

+ T3 + L3dec
Vdmin

< LT+LM
Vmax

Assumption 4. TTax < ST
Vmax

Table 5.1: Constants and Assumptions of ContSATS

5.4 Basic invariants of ContSATS

Here we state and prove some basic invariants that we can prove straightforwardly by induction.

As in the case of the discrete model, the uniqueness of IDs in the logical zones is needed to

prove other auxiliary invariants. The proof can be done in the exact same way as in the discrete

model.
5Of course, from the definition of ContSATS, an aircraft in holding3(σ) can potentially hover at

LINE holding3hold(σ) for an unbounded time as long as holding2(σ) is not empty. However, as we will dis-
cuss in the proof of Lemma 5.7, holding2(σ) is actually empty when an aircraft is in holding3(σ) and another
aircraft is in maz(σ). From this fact, we can determine the bound on the duration that one aircraft takes to go
through holding3(σ) when another aircraft is in maz(σ).

156

Lemma 5.1. (Uniqueness of ID of aircraft on the entire logical zones) For any reachable state

of ContSATS, the following two conditions hold:

(i). (The uniqueness of ID on one zone) For any logical zone z and natural numbers i and j

where i < j and both numbers are less than the length of z, the ID of the i-th positioned

aircraft in the zone z and the ID of the j-th positioned aircraft in the zone z are different.

(ii). (The uniqueness of ID between different zones) For any two distinct logical zones z1 and

z2, and any two aircraft a ∈ z1 and b ∈ z2, the ID of a and the ID of b are different.

The following lemma states the consistency of the position of aircraft between the logical

zone queues and the lines representing paths (represented as the line attribute of aircraft).

Lemma 5.2. Let ∼ be the relation between z name and Lines that is represented by the following

pairs:

holding2L ∼ LINE holding2Lhold, holding2R ∼ LINE holding2Rhold,

holding2L ∼ LINE holding2Lma, holding2R ∼ LINE holding2Rma,

holding3L ∼ LINE holding3Lhold, holding3R ∼ LINE holding3Rhold,

holding3L ∼ LINE holding3Lma, holding3R ∼ LINE holding3Rma,

holding3L ∼ LINE holding3Ldec, holding3R ∼ LINE holding3Rdec,

lezL ∼ LINE lezL, lezR ∼ LINE lezR,

mazL ∼ LINE mazL, mazR ∼ LINE mazR,

baseL ∼ LINE baseL, baseR ∼ LINE baseR,

intermediate ∼ LINE intermediate,

final ∼ LINE final, runway ∼ LINE runway,

and any other two are not related.

For any reachable state of ContSATS, the following holds.

∀a : Aircraft ∀z : zone name, on zone qn(z, a) ⇔ z ∼ a.line ∧ (∃z, on zone qn(z, a))

Proof. By induction. The initial case is trivial since there is no aircraft in any zone. Now we

consider the inductive case. Since the trajectory does not affect either the line attribute of the

aircraft or the logical zones expressed as queues, we prove the cases for the discrete transitions

in the following.

Note that on zone qn(z, a) directly implies (on zones qn(a) ∨ on zone qn(runway, a)). Thus

we prove z ∼ a.line for the sufficient condition in the following.

For the entry transitions, the new aircraft gets assigned the appropriate line value with

respect to its entering zone. The condition for the rest of the aircraft follows from the induction

hypothesis.

157

If the transition re-assigns the line attribute of the aircraft, it is easy to see from the

definition of the transitions that the re-assignment of the line attribute of the aircraft is done

in a consistent way with the movement of it in the logical zone queues.

In the case of the transitions that remove one aircraft from the logical zones (Exit and

Taxiing):

Lemma 5.1 implies that after the transition, the removed aircraft is not in the logical zones.

Thus both the right-hand side and the left-hand side of the equivalent condition is evaluated to

be false. Thus the condition holds for this aircraft. The condition for the rest of the aircraft

holds from the induction hypothesis.

The SetTime transition does not affect either the line value of any aircraft or the logical zone

queues. Thus the condition holds from the induction hypothesis.

The following two invariants can be easily proved using the constraints by the stop when

statement of the trajectory.

The first invariant states that the pos value of an aircraft will never increase beyond the

actual length of the line the aircraft is on.

Lemma 5.3. For any reachable state of ContSATS, the following holds.

∀a : Aircraft, (∃z : z name, on zone qn(z, a)) ⇒ a.pos ≤ L(a.line)

Proof. By induction. The condition holds in the initial state since there is no aircraft in the

operation area. Now we consider the inductive case. We first consider the discrete transitions.

When an aircraft enters the operation area, its pos is set to 0, which is smaller than L(a.line)

values. Now consider the case that aircraft a is already in the operation area before the transition.

All the transitions that affect pos set the value of pos to 0. Since L(a.line) is bigger than 0 for all

zones, the condition holds after the transition. In the case when the transition does not affect

pos of a, it is easy to see from the definition of the transition that it does not affect line attribute

of a, either. Thus the condition immediately follows from the induction hypothesis.

Next let us consider the case of the trajectory. Suppose β is a closed trajectory of ContSATS

such that β.fstate satisfies the condition of the lemma. From the stop when condition in the

trajectory definition, the final state of β satisfies the condition of the lemma, as required.

The following invariant states the bound on now when the timer is set.

Lemma 5.4. For any reachable state of ContSATS, the following holds.

∀a : Aircraft, (∃z : z name, on zone qn(z, a)) ∧ a.t 6= −1 ⇒ 0 ≤ now − a.t ≤ T(a.line)

158

Proof. By induction. The condition holds in the initial state since there is no aircraft in either

the operation area or the runway.

Now we consider the inductive case. We first consider the discrete transitions. The SetTime

transition can set some aircraft’s t value to now. In this case, we have to check if 0 ≤ now−now ≤

T(a.line). Since T(a.line) is bigger than 0 for any zone where an aircraft gets the t value other

than −1, the condition holds after the transition. Each of the rest of the transitions sets t of one

aircraft to either −1 or now, or does not affect t. The condition trivially holds for the transitions

that set t to −1. In the case when the transition sets t of aircraft a to now, we can prove that

the condition holds analogously to the case of SetTime. In the case when the transition does

not affect the t value, it is easily proved by induction that a.t has the value −1 both before and

after the transition. Thus the condition holds.

Next let us consider the case of the trajectory. Suppose β is a closed trajectory of ContSATS

such that β.fstate satisfies the condition of the lemma. From the stop when condition in the

trajectory definition, the final state of β satisfies the condition of the lemma, as required.

5.5 Carrying over results from the discrete model using a re-
finement

In Chapter 3, we formally verified the safe separation of aircraft in terms of the number of

aircraft in the logical zones. If we can carry over these results to ContSATS, we can guarantee

the same safe separation as the discrete model. Some readers may wonder why we care about

the separation verified in the discrete model, since we have obtained a finer continuous model.

However, the consistency of the positions of aircraft between the lines and the logical-zone

queues (proved as Lemma 5.2) tells us that these properties actually imply important spacing

properties in ContSATS: For example, from the property that there is at most one aircraft

in one holding3, we can guarantee that two aircraft would never get close in the same holding3

zone.

On the other hand, we cannot guarantee spacing properties of two aircraft in two adjacent

zones from the properties of the discrete model. Some of these properties will actually be proved

as auxiliary lemmas for the refinement (as step invariants). We also prove other such properties

in Section 5.6.

We use the refinement technique presented in Chapter 4 to carry over the results from

the discrete model to the continuous model. To make the discrete model of Chapter 2 (an

ordinary I/O automaton) comparable to ContSATS (a timed I/O automaton), we first construct

ExtSATS, a natural extension of the discrete model to a timed I/O automaton. This extension

159

can be done in the following generic way.

Generic extension scheme from an ordinary I/O automaton to a timed I/O automa-

ton: Suppose A is an ordinary I/O automaton. We construct A′ that is an timed extension

(timed I/O automaton version) of A. First, in A′, we add a new now state component to A

which evolves at rate 1 (d(now) = 1). There is no stop when statement for A′, and all discrete

transitions are exactly the same as before the extension. From this straightforward extension,

it is easy to see that all invariants of A are also invariants of A′.

By this extension, we obtained the following ExtSATS.

———————————————————————————————————————
automaton ExtSATS

imports SatsVocab % ExtSATS uses the same vocablary as the discrete model.

signature: The same as the discrete model.

states

zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : Zone % landing sequence is defined as a queue
now :AugumentedReal % ** time variable is added **
initially

zones = initialZones ∧

nextmahf = right ∧

landing seq = empty∧
now = 0

%% Auxiliary function definitions are exactly the same as the discrete model.

transitions : The same as the discrete model.

trajectories

evolve

d(now) = 1

———————————————————————————————————————

5.5.1 Refinement mapping

To assert the fact that there is a refinement from ContSATS to ExtSATS, we define a re-

finement mapping from QContSATS to QExtSATS, and prove that for every step of the concrete

model, there is a sequence of corresponding steps of the specification.

A refinement is primarily used to show a trace inclusion, that is, every possible external

behavior of the implementation automata (ContSATS, in our case) can be exhibited by the

specification automata (ExtSATS). However, it indeed implies a stronger correspondence be-

tween the concrete model and the specification, as stated as Theorem 4.22 in Chapter 4. We

160

use this correspondence property to show that every invariant of ExtSATS is also an invariant

of ContSATS.

Before defining a mapping, we first need to define the “equality” between a zone of ContSATS

and a zone of ExtSATS. Since the Aircraft types used are different for these two models, we

have to define what “a zone in ContSATS is equal to a zone in ExtSATS” means. The equality

between zones components of ContSATS and ExtSATS is defined by the following zone-wise

equality that ignores the new attributes of aircraft in ContSATS:

Definition 5.5. Two zone queues z and z ′ of ContSATS and ExtSATS, respectively, are equal,

denoted by zone equal(z, z ′), if the following two conditions hold.

1. length(z) = length(z ′).

2. For any position i : 1 ≤ i ≤ length(z), z[i].ID = z ′[i].ID ∧ z[i].mahf = z′[i].mahf.

Since type Zone is a queue of aircraft, we will use this equality between the landing sequences

of ContSATS and ExtSATS.

By using the above definition of equality between zones of ContSATS and ExtSATS, we

define the equality between the logical zones of ContSATS and that of ExtSATS.

Definition 5.6. The logical zones zones of ContSATS is equal to the logical zones zones ′ of

ExtSATS, denoted by zones equal(zones, zones′) if for any zone name z,

zone equal(zones(z), zones(z ′)) holds.

One straightforward refinement mapping to consider (and actually the one we use for the

refinement proof in Section 5.5.3 is the following mapping r from the states of ContSATS to

the states of ExtSATS: for all s ∈ QContSATS, r(s) = t such that

zones equal(s.zones, t.zones) ∧ s.nextmahf = t.nextmahf ∧

zone equal(s.landing seq, t.landing seq) ∧ t.now = s.now.

This mapping maps a state of ContSATS to a state of ExtSATS so that every component of

the state of ExtSATS matches the corresponding component of the state of ContSATS. Note

that such a state r(s) in ExtSATS is uniquely determined for every s in ContSATS since the

above conditions specify all components of ExtSATS.

In order to prove a refinement, we usually prove some auxiliary invariants of the models

first, and then prove the main refinement using these invariants. In our case, as discussed in

Section 5.3.3, we need invariants to guarantee, for instance, that holding3(σ) is empty when the

LowestAvailableAltitude(σ) transition is performed. The weak refinement technique, presented

161

formally in Section 4.2, has been developed to make use of the invariants of the specification

automaton (the automaton to whose states a refinement maps), as well as those of the imple-

mentation automaton (the automaton from whose states a refinement maps), in the proof of the

refinement. By using this technique, we can assume that invariants of the specification hold in

the state considered in the inductive case of the refinement.

It turns out that we have to use a weak refinement using a step invariant presented in Section

4.2.2 so that we can use invariants of ExtSATS in the proof of invariants of ContSATS. This

is because in order to prove some invariants of ContSATS – for example, the emptiness of

holding3 as stated above, we actually need some invariants of ExtSATS that have been verified.

Since we can assert the fact that the invariants of ExtSATS also hold for ContSATS only after

proving the refinement, we need a refinement using a step invariant to avoid circular reasoning.

In Section 5.5.2, we prove invariants of ContSATS in a form that, when we combine all of

the invariants as one conjunction, they form a step invariant defined in Section 4.2.2.

5.5.2 Auxiliary invariants needed for refinement proof

Now we start proving the auxiliary invariants of ContSATS needed for the refinement proof.

The following Condition Φ states the conditions needed to prove the auxiliary invariants of

ContSATS in this subsection. As we will see in Section 5.5.3, this Φ corresponds to λs.PB(r(s))

in the definition of a weak refinement using a step invariant in Section 4.2.2. In the rest of the

thesis, we refer to the first condition of Φ by Φ.1, the second condition by Φ.2, and so on.

It is easy to see that every condition in Φ is actually an invariant of the discrete model

SATS, and therefore an invariant of ExtSATS. Some of them are exactly the same as the

main properties of the SATS automaton that we proved in Chapter 3: The conditions Φ.1 and

Φ.2 are Property 3 and Property 6. The conditions Φ.6 and Φ.7 follow from Property 2, which

states the number of aircraft in an initiation area of one side is at most two.

The rest of the properties follow from the auxiliary lemmas we have proved in Chapter 3.

This fact indicates that, by proving these auxiliary invariants, the assertional style proof gives

us more insight into how the system works than the exhaustive state exploration. The condition

Φ.3 states the condition proved as Corollary 3.8. The condition Φ.4 easily follows from Case 1

and Case 3 of Lemma 3.26. The condition Φ.5 follows from Case 4 of Lemma 3.26.

Condition Φ:

1. ∀σ : side, length(holding3(σ)) ≤ 1 ∧ length(holding2(σ)) ≤ 1

2. ∀σ : side, ¬empty qn(lez(σ)) ⇒

empty qn(holding2(σ)) ∧ empty qn(holding3(σ)) ∧ empty qn(maz(σ))

162

3. first(final) = first(landing seq)

4. ∀σ : side, (on approach qn(σ) ∧ ¬empty qn(maz(σ))) ⇒ empty qn(holding3(σ))

5. ∀σ : side, on approach qn(σ) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1

6. ∀σ : side, length(maz(σ)) ≥ 2 ⇒ empty qn(holding2(σ)) ∧ empty qn(holding3(σ))

7. ∀σ : side,¬empty qn(maz(σ))) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1

The invariants in this subsection are stated in a way that, when we combine all the invariants

as one conjunction, they form a step invariant using Φ.

We start by proving two invariants, Lemma 5.7 and Lemma 5.8, which are used to prove

whenever LowestAvailableAltitude(σ) is performed, holding3(σ) is empty. With these two invari-

ants, we bound the distance that a missed aircraft has flown in maz(σ) when holding3(σ) is

not empty. Informally, we will show that no aircraft in maz(σ) can catch up with an aircraft

in holding3(σ). The important observation needed to prove this fact is that from Φ.7: if there

are some aircraft in both maz(σ) and holding3(σ), then holding2(σ) is empty. This implies that

an aircraft hovering at holding3hold(σ) can start descending within the time bound T3 after

another aircraft enters maz(σ). This fact gives us the following upper bound on the pos value

of aircraft a on maz(σ) when holding3(σ) is not empty: a.pos ≤ (L3ma
Vmin

+ T3 + L3dec
Vd min

) · Vmax. The

term in the right-hand side of the inequality describes the maximum time that an aircraft takes

to go through the entire holding3(σ) zone (the time to go through holding3ma(σ); plus the time

bound on the hovering; plus the time to go through holding3dec(σ)) times the maximum possible

velocity of a. The condition Φ.5 gives us further information to improve this bound: if there

are some aircraft assigned σ on the approach, and there are some aircraft in holding3(σ), then

holding2(σ) is empty. This indicates that holding2(σ) has been empty since an aircraft in maz(σ)

first initiated its final approach. Using this fact, we will improve the above stated bound to

(L3ma
Vmin

+ T3 + L3dec
Vd min

) · Vmax − Lt.

To formally capture the above discussion about Φ.5, we have the first invariant, Lemma 5.7,

and we state the final bound in Lemma 5.8 and prove it using Lemma 5.7. In both Lemmas 5.7

and 5.8, we have three different cases depending on which line or point in holding3 the aircraft

is on.

Lemma 5.7 states the upper bound of D(a) for aircraft a on the approach when an aircraft b

is in holding2. There are three conclusions (1) (2) and (3) in Lemma 5.7. The three conclusions

state the bound on D(a) in different situations: Conclusion (1) is for the case when b is in

LINE holding3ma; Conclusion (2) is for the case when b is in LINE holding3hold; and Conclusion

(3) is for the case when b is in LINE holding3dec.

163

Lemma 5.8 has the exact same three conclusions as Lemma 5.7, but has a different assump-

tion: In Lemma 5.8, we assume aircraft a is in maz and aircraft b is in holding3. Thus, Lemma

5.7 states the “pre situation” of the situation that we assume in Lemma 5.8 before a moves to

maz by the MissedApproach transition.

Lemma 5.7. Consider a reachable state s of ContSATS that satisfies Conditions Φ and the

following Condition A1.

(A1) :∀a, b : Aircraft,∀σ : side,

on approach qn(a) ∧ a.mahf = σ ∧ on zone qn(holding3(σ), b)

⇒ (1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤
b.pos

Vmin
· Vmax.

(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ (
L3ma

Vmin
+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ (
L3ma

Vmin
+ T3 +

b.pos

Vd min
) · Vmax.

Let α be a step of ContSATS starting with s. Then α.lstate satisfies Condition A1.

Proof. Case 1: We first consider the case when α consists of one discrete transition. In this

proof, we focus on proving the condition for the aircraft affected by the transition since the

condition for the rest of aircraft immediately follows from A1 in s.

• LowestAvailableAltitude(σ): If holding2(σ) is empty before the transition, the aircraft moves

to that zone by the transition. Thus the transition does not affect holding3(σ) or the

approach area, and thus the condition immediately follows from A1 that holds before the

transition. If holding2(σ) is not empty before the transition, from Φ.4, maz(σ) is empty.

This contradicts with the precondition of the transition.

• VerticalApproachInitiation(σ): The aircraft a that initiates the approach by this transition

is set its pos value to 0. Thus D(a) = 0 after the transition. Since the pos value of every

aircraft is more than or equal to 0, the condition holds.

• LateralApproachInitiation(σ): From the precondition of the transition, lez(σ) is not empty

before the transition. It follows from Φ.2 that holding3(σ) is empty before the transition

and also after the transition since it does not affect holding3(σ).

164

The rest of the transitions do not move an aircraft to the approach zone or set the line value

of an aircraft to holding3ma(σ). Thus the condition immediately follows from the same condition

A1 that holds in s.

Now we consider the case of the trajectory. Let δ be the duration of α. Let Da and D′
a

be the value of D(a) in states s and α.lstate, respectively. Let b.pos and b.pos ′ be the value

of b.pos in states s and α.lstate, respectively. From the evolve statement of the trajectory,

b.pos′ ≥ b.pos + δ · Vmin and D′
a ≤ Da + δ · Vmax hold. We can easily show D′

a ≤ b.pos′

Vmin
· Vmax

follows from D′
a ≤ b.pos

Vmin
· Vmax using the above two inequalities.

Case 2: We first consider the case when β consists of one discrete transition.

• VerticalEntry(σ): When there are some aircraft assigned σ on the approach, the transition

is disabled.

• StartHolding3(σ): This transition changes the line value of one aircraft from LINE holding3ma(σ)

to

LINE holding3hold(σ). The precondition for the transition ensures that the pos value

of the aircraft that starts holding is L3ma. Since this aircraft had the line value of

LINE holding3ma(σ), it follows from the first condition of A1 that, before the transition,

for any aircraft a assigned σ on the approach, D(a) ≤ L3ma
Vmin

· Vmax. From Φ.5 and the

fact that there are at least one aircraft assigned σ on the approach and one aircraft at

holding3(σ), there is no aircraft in holding2(σ) before and also after the transition, since it

does not affect holding2(σ). It implies that the t value is set to now after the transition,

and thus now − b.t = 0. Therefore, it is sufficient to show that D(a) ≤ L3ma
Vmin

· Vmax holds

for any aircraft a assigned σ on the approach. This inequality immediately follows from

D(a) ≤ L3ma
Vmin

· Vmax.

• VerticalApproachInitiation(σ): For the aircraft a that initiates the approach, D(a) = 0 holds

after the transition. In addition, from Lemma 5.4, now − b.t ≥ 0 holds for any aircraft b

in holding3(σ). Since L3ma
Vmin

≥ 0, the required inequality holds.

• LateralApproachInitiation(σ): We can use the same discussion as in Case 1 to show that

holding3(σ) is empty.

The rest of the transitions do not move an aircraft to the approach zone or set the line value

of an aircraft to LINE holding3hold(σ). Thus the condition immediately follows from the same

condition A1 that holds in s.

The trajectory case can be proved analogously to Case 1. In this case, we have the exact

value for now in the last state of the trajectory: if the trajectory is of length δ, then the value

165

of now increases exactly by δ. Using this fact and a similar bound on a.pos as in Case 1, we can

easily obtain the required inequality.

Case 3: We first consider the case when β consists of one discrete transition.

• StartDescending(σ): Suppose aircraft b starts descending by this transition. From Lemma

5.4, now − b.t ≤ T3 holds in state s. From the second condition of Condition A1, D(a) ≤

(L3ma
Vmin

+ (now − b.t)) · Vmax holds in s. It follows from these two inequality that D(a) ≤

(L3ma
Vmin

+ T3) · Vmax Considering that the pos value of b is set to 0 after the transition, this

inequality is exactly what we require.

• VerticalApproachInitiation(σ): We can use the same discussion to prove the condition as in

Case 2 using the fact that D(a) = 0 for the aircraft a that initiate the approach after the

transition, and (− L3ma
Vmin

− T3) Vd min ≤ 0.

• LateralApproachInitiation(σ): We can use the same discussion as in Case 1 to show that

holding3(σ) is empty.

The rest of the transitions do not move an aircraft to the approach zone or set the line

value of an aircraft to holding3dec(σ). Thus the condition immediately follows from the same

condition A1 that holds in s.

The trajectory case can be proved analogously to Case 1.

As we discussed in the explanation of Lemma 5.7, we assume in Lemma 5.8 a different

situation than Lemma 5.7, but it has the exact same three conclusions. The situation that we

assume in Lemma 5.8 states the “post situation” that aircraft a that was on the approach in

Lemma 5.7 has moved to maz by MissedApproach. This is why we use Condition A1 defined in

Lemma 5.7 to prove the inductive step of the conclusions of Lemma 5.8 for MissedApproach.

Lemma 5.8. Consider a reachable state s of ContSATS that satisfies Conditions Φ, Condition

A1 in Lemma 5.7, and the following Condition A2.

(A2) :∀a, b : Aircraft,∀σ : side, on zone qn(maz(σ), a) ∧ on zone qn(holding3(σ), b) ⇒

(1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤
b.pos

Vmin
· Vmax.

(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ (
L3ma

Vmin
+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ (
L3ma

Vmin
+ T3 +

b.pos

Vd min
) · Vmax.

166

Let α be a step of ContSATS starting with s. Then α.lstate satisfies Condition A2.

Proof. As in the proof of Lemma 5.7, we focus on proving the condition for the aircraft affected

by the transition since the condition for the rest of aircraft immediately follows from A2 in s.

Since D(a) = LT + a.pos for aircraft a in maz, it is sufficient to prove the following three

conditions:

(1) b.line = LINE holding3ma(σ) ⇒ a.pos ≤
b.pos

Vmin
· Vmax − LT.

(2) b.line = LINE holding3hold(σ) ⇒ a.pos ≤ (
L3ma

Vmin
+ (now − b.t)) · Vmax − LT.

(3) b.line = LINE holding3dec(σ) ⇒ a.pos ≤ (
L3ma

Vmin
+ T3 +

b.pos

Vd min
) · Vmax − LT.

Case 1: We first consider the case when α consists of one discrete transition.

• MissedApproach: Let a be the aircraft that misses the approach, and b be the aircraft

that has a line attribute of LINE holding3ma(σ). From the precondition of the transition,

D(a) = LT holds in s. Since a was on the approach before the transition, it follows from

the first condition of A1 that b.pos ≥ LT
Vmax

· Vmin in s. From this inequality, we obtain
b.pos
Vmin

·Vmax − LT ≥ 0. Since a.pos is set to 0 after the transition, and b.pos does not change

by the transition, the above inequality is exactly what we require.

• LowestAvailableAltitude: If holding2(σ) is empty, the aircraft moves to that zone. Thus

holding3(σ) or the approach area does not change by the transition. Thus the condition

immediately follows

Now suppose holding2(σ) is not empty. If there are at least one aircraft in maz(σ) after

the transition, it implies that there are at least two aircraft in that zone before it. This

contradicts to Φ.6.

The rest of the transitions do not affect maz(σ) or set the zone attribute of aircraft to

LINE holding3ma(σ). Thus the condition immediately follows from the same condition A2 that

holds before the transition.

The proof for the trajectory case can be easily done by a discussion analogous to Lemma

5.7 using the bound on the change of a.pos and b.pos between the first and last state of the

trajectory.

Case 2: We first consider the case when β consists of one discrete transition.

• MissedApproach: The proof can be done in a way similar to Case 1, using Case 2 of

A1 instead of Case 1 of A1. Let a be the aircraft that misses the approach, and b be

167

the aircraft that has a line attribute of LINE holding3(σ). From the precondition of the

transition, D(a) = LT holds in s. Since a was on the approach before the transition, it

follows from Case 2 of A1 that now − b.t ≥ LT
Vmax

− L3ma
Vmin

. From this inequality, we obtain

(L3ma
Vmin

+ (now − b.t)) · Vmax − LT ≥ 0 Since a.pos is set to 0 after the transition, the above

inequality is exactly what we need.

• VerticalEntry(σ): If maz(σ) is not empty, this transition is disabled.

• StartHolding(σ): The proof is similar to Case 2 of Lemma 5.7. If holding3(σ) and maz(σ)

are both not empty, it follows from Φ.7 that holding2(σ) is empty. Therefore the t attribute

of the aircraft b that starts holding is set to now after the transition. In addition, from

the precondition of the action, b.pos = L3ma holds before the transition. Now let a be an

arbitrary aircraft in maz(σ). From Case 1 of Condition A2 and the fact that b.pos = L3ma,

a.pos ≤ L3ma
Vmin

· Vmax − LT holds before the transition. Considering that now − b.t = 0 after

the transition, and that a.pos does not change by the transition, the above inequality is

exactly what we need.

The rest of the transitions do not affect maz(σ) or set the zone attribute of an aircraft to

LINE holding3(σ). Thus the condition immediately follows from the same condition A2 that

holds before the transition.

The proof for the trajectory case can be easily done analogously to Case 1.

Case 3: We first consider the case when β consists of one discrete transition.

• MissedApproach: The proof is similar to Case 1 and Case 2. In this case we use Case 3 of

Lemma 5.7. Let a be the aircraft that misses the approach, and b be the aircraft that has

a line attribute of LINE holding3(σ). From the precondition of the transition, D(a) = LT

holds in s. Since a was on the approach before the transition, it follows from Case 3 of A1

that b.pos ≥ (LT
Vmax

− L3ma
Vmin

−T) Vd min before the transition. This inequality is equivalent to

(L3ma
Vmin

+ T + b.pos
Vd min

)Vmax − LT ≥ 0. Considering that a.pos is set to 0, the above inequality

is exactly what we need.

• StartDescending(σ): Let a be any aircraft in maz(σ), and b be the aircraft that starts

descending. From Lemma 5.4, now − b.t ≤ T holds before the transition. And from Case

2 of Condition A2, a.pos ≤ (L3ma
Vmin

+ (now − b.t)) · Vmax − LT holds in s. Using these two

inequalities, we obtain a.pos ≤ (L3ma
Vmin

+ T) · Vmax − LT. Considering that b.pos is set to 0

after the transition and a.pos does not change by the transition, the above inequality is

exactly what we need.

168

The rest of the transitions do not affect maz(σ) or set the zone attribute of an aircraft to

LINE holding3dec(σ). Thus the condition immediately follows from the same condition A2 that

holds before the transition.

The proof for the trajectory case can be easily done analogously to Case 1.

The following lemma is used in the case of HoldingPatternDescend in the refinement proof. As

discussed in Section 5.3.3, the HoldingPatternDescend(σ) transition has been modified from the

discrete model so that it no longer checks the emptiness of holding2(σ): instead, an aircraft does

so when it starts descending (StartDescending(σ)). Thus, we have to guarantee that holding2 is

empty when the transition is performed in ContSATS, in order to obtain the correspondence

step of this transition in ExtSATS in the refinement. We assert by the following invariant that

whenever some aircraft is descending from holding3(σ) to holding2(σ), holding2(σ) is empty.

Lemma 5.9. Consider a reachable state s of ContSATS that satisfies Conditions Φ and the

following condition B.

(B) :∀a : Aircraft, ∀σ : side,

(on zone qn(holding3(σ)) ∧ a.line = LINE holding3dec(σ)) ⇒ empty qn(holding2(σ)).

Let α be a step of ContSATS starting with s. Then α.lstate satisfies the condition B.

Proof. Since the zone queues and the line attribute of the aircraft does not change by a trajectory,

it is sufficient to prove the condition for execution fragments with one discrete transition.

• StartDescending(σ): From the precondition of the transition, holding2(σ) is empty.

• HoldingPatternDescend(σ): From the condition Φ.1, there is exactly one aircraft in holding3(σ)

before the transition. Thus there is no aircraft in the zone after the transition. Therefore

the condition holds.

• LateralApproachInitiation(σ): From the condition Φ.2 and the precondition of the transition,

there is no aircraft in holding3(σ). Thus the condition holds after the transition.

The rest of the transitions do not add an aircraft to holding2(σ), or change the line attribute

of an aircraft to LINE holding3dec(σ). Thus the condition holds from the same condition B that

holds before the transition.

The next invariant states the lower bound on the spacing between an aircraft and its immedi-

ate leader in the approach area. The separation is defined in terms of the difference between the

169

D values of two aircraft. It actually states a generalized bound on the spacing in the approach

area than the bound model-checked in [12]. Indeed, if we substitute the largest possible value

LT of D(leader(a, landing seq)), then we have the same bound of ST = S0 −
LT−S0
Vmin

(Vmax − Vmin).

We use this property to prove Lemma 5.11.

Lemma 5.10. Consider a reachable state s of ContSATS that satisfies Conditions Φ and the

following Condition C1.

(C1) :∀a : Aircraft,

(on approach qn(a) ∧ ¬first in seq qn(a)) ⇒

D(leader(a, landing seq)) − D(a) ≥ S0 −
D(leader(a, landing seq)) − S0

Vmin
(Vmax − Vmin).

Let α be a step of ContSATS starting with s. Then α.lstate satisfies Condition C1.

Proof. We first prove the condition for the discrete transitions.

• VerticalApproachInitiation(σ): the precondition of the transition ensures that

D(leader(a, landing seq)) ≥ S0. Since D(a) = 0 after the transition,

D(leader(a, landing seq)) − D(a)

= D(leader(a, landing seq))

≥ S0

≥ S0 −
D(leader(a, landing seq)) − S0

Vmin
(Vmax − Vmin).

Thus the condition holds.

• LateralApproachInitiation(σ): If the aircraft moves to the approach area, we can use the

same discussion to prove the condition as in the case of VerticalApproachInitiation. If the

aircraft moves to holding2, the condition immediately follows from Condition C1 that holds

before the transition. since the transition does not affect the approach area.

• Exit: From the uniqueness of the aircraft, the exiting aircraft is no longer in the approach

area after the transition. Thus the condition for the aircraft holds. The precondition of the

transition guarantees that the exiting aircraft is the first aircraft in the landing sequence.

It follows that the aircraft that immediately follows the exiting aircraft becomes the first

aircraft of the landing sequence after the transition. Thus the condition for this new first

aircraft trivially holds. The conditions for the rest of the aircraft follows from Condition

C1 that holds before the transition.

170

• Landing and MissedApproach: From the condition Φ.3, the first aircraft of final is the first

aircraft of the landing sequence. Thus we can use the same discussion as in the case of

Exit.

• Merging and FinalSegment These transitions change the line and pos values of one aircraft

on the approach, say a, but it is easy to see that from the definition of the function D,

these changes does not affect the value of D(a). The conditions for the rest of the aircraft

follows from Condition C1 that holds before the transition.

The rest of the transitions do not affect the approach area, and thus do not change the value

of D of the aircraft in the area. Thus Condition C1 for the rest of the aircraft after the transition

follows from the same Condition C1, which holds before the transition.

Now we prove Condition C1 for trajectories. Let b be the leader of a in the landing sequence,

and δ be the duration of the closed trajectory in β. From the “evolve” statement defined in

the trajectory, the following conditions hold, where a.x is the value of a.pos in the first state of

the trajectory, and a.x′ is the value of a.pos in the last state of the trajectory. b.x and b.x′ are

defined analogously.

a.x′ ≤ a.x + Vmax · δ, and

b.x′ ≥ b.x + Vmin · δ.

Thus, from the definition of the function D,

D′
a ≤ Da + Vmax · δ, and

D′
b ≥ Db + Vmin · δ,

where Da and D′
a represents the value of D(a) in the first and the last states of the trajectory,

respectively. Db and D′
b are defined analogously.

Thus,

D′
b − D′

a ≥ Db + Vmin · δ − Da − Vmax · δ

= (Db − Da) + Vmin · δ − Vmax · δ

≥ S0 −
Db − S0

Vmin
(Vmax − Vmin) + Vmin · δ − Vmax · δ (from the induction hypothesis)

≥ S0 −
D′

b − Vmin · δ − S0

Vmin
(Vmax − Vmin) + Vmin · δ − Vmax · δ

= S0 −
D′

b − S0

Vmin
(Vmax − Vmin).

Therefore Condition C1 holds for the trajectory.

171

The following invariant is used in the case of Landing in the refinement proof. As discussed

in Section 5.3.3, Landing in ContSATS does not check if runway is empty or not. Instead, we

set a time bound for Taxiing so that the system removes aircraft from runway frequently enough.

This invariant helps us to show, in the refinement proof, that the zone is empty whenever an

aircraft lands.

Lemma 5.11. Consider a reachable state s of ContSATS that satisfies Conditions Φ, Condition

C1 in Lemma 5.10, and the following Condition C2.

(C2) :∀a, b : Aircraft, (on zone qn(runway, a) ∧ on approach qn(b)) ⇒

now − a.t ≥
D(b) − (LT − ST)

Vmax

Let α be a step of ContSATS starting with s. Then α.lstate satisfies Condition C2.

Proof. There are really four cases that we have to check. Three discrete transitions (Landing,

VerticalApproachInitiation, and LateralApproachInitiation), and the trajectory case. The Taxiing

transition also affects the runway zone, but it does so in a preferable way with respect to the

lemma: it removes an aircraft from runway. The rest of the transitions does not add or remove

the aircraft from either the approach area or runway, and thus the condition immediately follows

from the same condition C2 that holds before the transition.

• Landing: The first aircraft of the final zone, say a, lands by this transition. From the

condition Φ.3, a is the first aircraft of the landing sequence. Thus it precedes any aircraft

that is in the sequence. In addition, from Condition C1 that holds before the transition,

any aircraft and its leader has a separation of at least ST if both are on the approach. It

implies that there is a separation of at least ST between a and any other aircraft b in the

approach area. Therefore D(b) − (LT − ST) ≥ (D(a) − ST) − (LT − ST) = D(a) − Lt. Since

D(a) = LT holds from the precondition, D(b) − (LT − ST) ≥ 0 before the transition. Since

D(b) does not change by the transition, the same inequality holds after the transition.

Considering that a.t is set to now by the transition, which gives us now − a.t = 0, and the

above inequality, we can obtain the required inequality. The condition for the rest of the

aircraft follows from the same condition C2 that holds before the transition.

• VerticalApproachInitiation: Let b be the aircraft that initiates the approach. After the

transition, D(b) becomes 0. Since LT ≥ ST, −LT−ST
Vmax

is non-positive. Considering that, from

Lemma 5.4, now−a.t ≥ 0 if a.t 6= −1, the required inequality holds. The condition for the

rest of the aircraft follows from the same condition C2 that holds before the transition.

172

• LateralApproachInitiation: If the moving aircraft really initiates the approach (that is, it

moves to the approach area), we can use the same discussion to the case of VerticalApproa-

chInitiation. If the aircraft moves to holding2, the transition does not affect the approach

area. Thus the condition follows from the same condition C2 that holds before the transi-

tion.

• The trajectory: We can prove the condition easily in a way analogous to the proof of the

trajectory case of Lemma 5.10. In this case, we have the exact value for now in the last

state of the trajectory: if the trajectory is of length δ, then the value of now increases

exactly by δ. In addition, a.t does not change throughout the trajectory. Using these facts

and a bound on b.pos by the evolve statement, we can obtain the required inequality.

From Lemma 4.16 and auxiliary lemmas proved in this subsection (Lemmas 5.7, 5.8, 5.9,

5.10, and 5.11), we have the following corollary.

Corollary 5.12. The conjunction A1 ∧A2 ∧B ∧C1 ∧C2 forms a step invariant of ContSATS

using Φ.

We use this step invariant to prove a refinement from ContSATS to ExtSATS in the next

subsection.

5.5.3 Refinement proof

Now we prove the refinement from ContSATS to ExtSATS. We use the mapping r defined

in Section 5.5.1. Recall that r is the mapping from the states of ContSATS to the states of

ExtSATS such that for all s ∈ QContSATS, r(s) = t such that

zones equal(s.zones, t.zones) ∧ s.nextmahf = t.nextmahf ∧

zone equal(s.landing seq, t.landing seq) ∧ t.now = s.now.

This maps a state of ContSATS to the state of ExtSATS so that every component of the

state of ExtSATS matches the corresponding component of the state of ContSATS. Also recall

that such a state r(s) in ExtSATS for every s in ContSATS is uniquely determined since the

above conditions specify all components of the automata.

To prove r is a weak refinement using a step invariant, we need three predicates: invari-

ants PA and PB of ExtSATS and ContSATS, respectively, and a step invariant P ∗ of A

using λs.PB(r(s)). For PA, we use the conjunction of all invariants that have been proved for

173

ContSATS in this chapter. Let us call this conjunction InvA. For PB , we use the conjunction

of the conditions of ExtSATS corresponding to Φ. Φ is first defined to express the property

of ExtSATS in ContSATS. However, since we can use the exact same expression to represent

Conditions Φ in both ExtSATS and ContSATS, we define InvB to be the conjunction of the

conditions stated in Φ. Lastly, we will use A1 ∧A2 ∧ B ∧ C1 ∧C2 defined in the last subsection

as P ∗. Since Φ = λs.InvB(r(s)), this conjunction satisfies the definition of a step invariant of

ContSATS using λs.InvB(r(s)).

Theorem 5.13. The function r is a weak refinement from ContSATS to ExtSATS using

InvA, InvB, and A1 ∧ A2 ∧ B ∧ C1 ∧ C2.

Proof. Condition 1: No aircraft is in any zone or the landing sequence in the initial states s0

and t0 of ExtSATS and ContSATS, respectively. Thus the conditions A1, A2, B, C1, and C2 hold.

And the values of nextmahf and now are the same in both automata. It implies that r(s0) = t0.

Condition 2 and 3: Suppose α is a step of A. We refer to α.fstate as s and α.lstate as s ′ in

the following. It is easy to see that s′ ∈ dom(r) since r is a total function. We also assume

invariants of ContSATS, Conditions Φ, and A1 ∧A2 ∧B∧C1 ∧C2 hold in s. We first prove the

case that α consists of one discrete transition (Condition 2). We have the following cases of the

possible transitions.

• LowestAvailableAltitude(σ): From the precondition of the transition, there is at least one

aircraft in maz(σ) in s, and thus also in r(s). It follows that LowestAvailableAltitude(σ) is

enabled in r(s), and thus an execution fragment β of ExtSATS starting with r(s) that

consists of one LowestAvailableAltitude(σ) surrounded by two point trajectories is a valid

execution fragment of ExtSATS. It is easy to see trace(α) = trace(β).

Now we prove β.lstate = r(s′). As discussed in Section 5.3.3, if holding3(σ) is empty in

s, LowestAvailableAltitude(σ) in s has the exact same effects in ContSATS and ExtSATS

with respect to r. Thus trace(α) = trace(β) and β.lstate = r(s′) hold in such a case.

Thus it is sufficient to prove that holding3(σ) is empty in s. From the precondition, there

is an aircraft a such that a.x = LM, and a.line = LINE maz(σ). From Lemma 5.3 and the

condition A2 defined in Lemma 5.8, if holding3(σ) is not empty a.x = LM ≤ (L3ma
Vmin

+ T3 +

L3dec
Vd min

)Vmax−LT. This contradicts the assumption that (L3ma
Vmin

+T3 + L3dec
Vd min

)Vmax < LT +LM.

Thus there is no aircraft in holding3(σ).

• HoldingPatternDescend(σ): As discussed in 5.3.3, the transition in ContSATS does not

check if holding2(σ) is empty. To guarantee that HoldingPatternDescend(σ) is enabled in

174

ExtSATS when it is so in ContSATS, holding2(σ) must be empty in ExtSATS when the

transition is performed.

From the precondition, there is an aircraft with the line value of LINE holding3dec(σ) in

s. It follows from the condition B defined in Lemma 5.7 that holding2(σ) is empty in that

state. Thus holding2(σ) is also empty in r(s), and therefore HoldingPatternDescend(σ) is

enabled in that state. Let β be the execution fragment of ExtSATS starting with r(s)

that consists of one HoldingPatternDescend(σ). It is easy to see that trace(α) = trace(β)

and β.lstate = r(s′)

• Landing: From the precondition of the transition, there is at least one aircraft in final in

s, and thus also in r(s). Consider an execution fragment β of ExtSATS starting with

r(s) that consists of one Landing transition. It is easy to see trace(α) = trace(β). It

follows from Φ.3 that, in both automata, this transition removes the first aircraft from

both final and landing sequence. Thus β.lstate = r(s′) holds. Now we prove Landing is

indeed enabled in r(s). It is sufficient to prove that runway is empty in s. Suppose, for a

contradiction, aircraft a is in runway in s. From the precondition of the transition, there

is an aircraft b in final such that b.x = LT. From the condition C2 defined in Lemma 5.11,

now− a.t ≥ LT−(LT−ST)
Vmax

= ST
Vmax

. In addition, from Lemma 5.4, now− a.t ≤ TTax. These two

inequalities give us TTax ≥
ST

Vmax
. This contradicts the assumption TTax < ST

Vmax
.

• StartHolding2, StartDescending3, StartDescending, or SetTime: Let β be the point trajectory

of r(s). These transitions do not affect either nextmahf, zones, landing sequence, or now.

Thus β.lstate = r(s′) holds. The condition trace(α) = trace(β) also holds since these

transitions are internal.

For the rest of the transitions, the precondition of each of these transitions immediately

implies the precondition of the corresponding transition of ExtSATS in r(s). Consider the

execution fragment β of ExtSATS that starts with r(s) and consisting of that corresponding

transition of ExtSATS. The condition trace(α) = trace(β) obviously follows. It is also easy to

see that β.lstate = r(s′) holds from the definition of these transitions.

Now we consider the case in which α consists of one closed trajectory (Condition 3). Let

β be an execution fragment of ExtSATS consisting of a single closed trajectory such that the

duration of β is the same as the duration of α. It is easy to see that trace(α) = trace(β). Since

the values of the variable now in both ExtSATS and ContSATS increase by the same amount

(the duration of the trajectory) by these trajectories, and the other components referred in r do

not change by them, β.lstate = r(s′) holds.

175

We have proved that there is a weak refinement using step invariants from ContSATS to

ExtSATS. From Corollary 4.10 and Theorems 4.12, 4.14, and 4.18, this fact implies that

traces(ContSATS) ⊆ traces(ExtSATS).

Furthermore, we can prove that invariants of ExtSATS are also invariants of ContSATS

using Corollary 4.23.

Corollary 5.14. Let P be an invariant of ExtSATS. Then, λs.P (r(s)) is an invariant of

ContSATS.

Proof. From Theorem 5.13, there is a weak refinement from ExtSATS to ContSATS. The

required condition immediately follows from Corollary 4.23.

Thus all conditions stated in Φ are invariants of ContSATS, and thus so are all of A1, A2,

B, C1, and C2 since these form a step invariant using Φ, and all these conditions hold in the

start state of ContSATS. We state this fact as a corollary as follows.

Corollary 5.15. Conditions Φ, A1, A2, B, C1, and C2 are invariants of ContSATS

In addition, from Corollary 5.14, all safe separation properties proved in Chapter 3 are in-

variants of ContSATS. From this fact, we can guarantee the following safe separation properties

of ContSATS.

Corollary 5.16. The following facts hold for ContSATS.

1. From Property 3 proved in Chapter 3 (the number of aircraft in each vertical fix is at most

one), any two aircraft would never get close in holding2 and holding3 zones.

2. From Property 5 proved in Chapter 3 (the number of aircraft in a lateral entry zone is at

most one), any two aircraft would never get close in lez zones.

3. From Property 6 proved in Chapter 3 (if a lez zone of one specific side is not empty, then

holding2 and holding3 and maz zones of the same side are all empty), when an aircraft is

in a lez zone, no aircraft is in the missed approach path or is hovering in the vertical fixes.

(See Figure 5.2 again and observe that an aircraft in a lateral entry path represented as

the line lez and an aircraft in a missed approach path represented as the line maz would get

close if these aircraft were on these two path, respectively, at the same time. The guarantee

stated above prevents such a scenario.)

176

5.6 Spacing properties of aircraft in ContSATS

In the previous section, by using a refinement technique, we proved that all invariants of the

discrete model of SATS that have been proved in Chapter 3 are also invariants of ContSATS.

From this fact, we can guarantee some safe separation properties of ContSATS, as stated in

Corollary 5.16.

The spacing properties stated in Corollary 5.16 express the safe separation of aircraft in one

specific zone. However, one might be interested in the safe separation of aircraft in the areas

other than those stated above, or aircraft in two consecutive zones. In addition, maz zones may

contain two aircraft at the same time (recall that Property 4 proved in Chapter 3 states that at

most two aircraft are in each maz zone, and there is a reachable state of the discrete model in

which two aircraft in one maz zone). Thus we also want to prove a lower bound on the spacing

of aircraft in maz zones. In this section, we conclude the safe separation property analysis for

ContSATS in this thesis, by proving such spacing properties for all pairs of consecutive zones

and for the maz zones in ContSATS.

The spacing between two aircraft is defined as the distance of the two aircraft with respect

to the pre-determined paths of ContSATS:

Definition 5.17. For any two consecutive lines L1 and L2 on which aircraft move from L1 to

L2 (that is, at the end point of L1, the line value of aircraft is re-assigned to L2), The spacing

between aircraft a on L1 and aircraft b on L2, denoted by S(a,b) is defined as follows:

S(a,b) = (L(a.line) − a.pos) + b.pos

An overview of the spacing properties of aircraft in two consecutive zones that we prove in

this section is depicted in Figure 5.7. Each bi-directed arrow in the picture represents a lower

bound on the spacing of aircraft that we prove in this section.

The spacing of two aircraft does not always represents the Euclidean distance between the

two aircraft. For example, the arrow labeled ST in Figure 5.7 forms an “L” shape. The distance

between the two aircraft that are at the end points of this arrow is determined by the length of

this “L” shape.

5.6.1 ST: the spacing of aircraft in the approach area

We first prove a lower bound on the spacing of two aircraft in the approach area. Though the

approach area consists of four different zones, we prove a lower bound on the spacing between

two aircraft in any (not necessarily consecutive) zones in the approach area using the D function

177

holding3dec(right)

base(right)lez(right)

holding3ma(left)

holding2ma(left)

maz(left)

S (H3,B)

S (L,B) ST

S (T,M)

SM

S (M,H3)

S (M,H2)

’

holding2hold(right)

Figure 5.7: Lower bounds on the spacing of aircraft in two consecutive zones in ContSATS

of aircraft. Recall that the value of D function for aircraft a (D(a)) represents the distance a

has flown in the approach area, and then in maz:

D(a) =

a.pos if a.line = LINE base(σ) for some side σ
LB + a.pos if a.line = LINE intermediate
LB + LI + a.pos if a.line = LINE final
LB + LI + LF + a.pos if a.line = LINE maz(σ) for some side σ
0 otherwise

We prove an upper bound on the difference between two aircraft’s D values: |D(a) − D(b)|.

Here we explain what this difference |D(a) − D(b)| represents in a different situation.

1. If two aircraft are in the same zone (line), then |D(a) − D(b)| represents the difference of

the pos values of two.

2. If the pair of the lines two aircraft are respectively on is either (base(right), intermediate),

(base(left), intermediate), or (intermediate, final), then |D(a)−D(b)| represents the spacing

of two aircraft S(a,b) as defined is Definition 5.17. If the pair is (base(σ), final) for some

side σ, then |D(a)−D(b)| = (L(a.line)− a.pos) + b.pos + LI. This is the spacing of aircraft

a on base(σ) and b on final when we consider two zones final and intermediate as one larger

zone.

3. The only subtle point is what |D(a) − D(b)| represents when one aircraft is in base(right),

and the other is in base(left) (Figure Figure 5.8). In this case, we have two aircraft

merging to the center of the approach area, instead of one catching up with the other

(like the situations we have seen in Cases 1 and 2). In this case, the Euclidean distance

between two aircraft is actually larger than or equal to |D(a) − D(b)| from the following

178

reason: Suppose, without loss of generality, D(a) ≥ D(b). The Euclidean distance between

a and b is 2LB − (D(a) + D(b)). Now the difference between the Euclidean distance and

|D(a) − D(b)| is (2LB − (D(a) + D(b))) − (D(a) − D(b)) = 2LB − 2D(a) = 2LB − 2(a.pos).

From Lemma 5.3, LB ≥ a.pos. Thus the Euclidean distance between a and b is larger than

or equal to |D(a)−D(b)|. Thus, a bound on |D(a)−D(b)| implies some meaningful spacing

bound of aircraft for this situation as well.

b a

D(b) D(a)

2LB

Figure 5.8: Two aircraft are respectively in the different sides of the base zones.

From the above discussion, a lower bound for |D(a) − D(b)| of two aircraft a and b in the

approach area express a meaningful safe separation of aircraft. Thus, we prove a lower bound

for this value as the following theorem.

Theorem 5.18. For any reachable state s of ContSATS and aircraft a and b in the approach

area, the following condition holds.

|D(a) − D(b)| ≥ ST

Proof. To prove this bound, we use Condition C1 that are used to the refinement proof in

Section 5.5. Recall that C1 is an invariant of ContSATS as stated in Corollary 5.15. As

discussed in Section 5.5.2, Condition C1 states a generalized lower bound on the spacing in the

approach area than the one model-checked in [12]. Indeed, if we substitute the largest possible

value LT of D(leader(a, landing seq)) obtained from Lemma 5.3, then we have the same bound of

ST = S0−
LT−S0
Vmin

(Vmax−Vmin) as model-checked in [12]. Note, however, that, rigorously speaking,

the condition C1 states the separation between a specific aircraft and its immediate leader in

term of the D values when both are in the approach area. Nevertheless, we can guarantee that

this lower bound holds for any two aircraft in the approach area, since aircraft follow the order

in the landing sequence when initiating the approach (the leader of an aircraft initiates the

approach before that aircraft does so), and each pair of an aircraft and its leader maintain this

spacing property of ST in terms of the D values.

179

5.6.2 S(H3,B) and S(L,B): the spacing between aircraft in the initiation zones
(holding3 and lez) and aircraft in the base zones

First we prove a lower bound on the spacing between aircraft in holding3(σ) and aircraft in

holding2(σ), as follows:

Theorem 5.19. For any reachable state of ContSATS, aircraft a in holding3(σ), and aircraft

b in holding2(σ), S(a,b) ≥ L3.

Proof. From Condition B (defined in Lemma 5.7) that is proved to be an invariant of ContSATS

by Corollary 5.15, no aircraft is descending from holding3(σ) to holding2(σ) (no aircraft is

on LINE holding3dec(σ)) when aircraft b is in holding2(σ). This implies that the spacing

between two aircraft in holding3 and in holding2, respectively, is at least L3, the length

of the descending path from the hovering point LINE holding3hold(σ) to the hovering point

LINE holding2hold(σ).

We have also obtained a safe separation property for aircraft in lez(σ) and aircraft in

holding2(σ), as Fact 4 in Corollary 5.16: no two aircraft are in lez(σ) and holding2(σ), re-

spectively, at the same time.

However, LINE holding2hold(σ) – the part of holding2(σ) that connects holding3(σ), lez(σ),

and base(σ) – is not really a line, but a holding point (a line with length 0). Thus, it is reasonable

to consider a lower bound on the spacing for aircraft in these three zones holding3(σ), lez(σ),

and base(σ). From Property 6 proved in Chapter 3, we can guarantee that aircraft are not in

lez(σ) and in holding3(σ) at the same time. We also want to have a lower bound on the spacing

between aircraft a in either holding3(σ) or lez(σ) and aircraft b in base(σ) (see the arrows labeled

by S(H3,B) and S(L,B) in Figure 5.7).

We first prove the case in which aircraft a is in holding3(σ).

Theorem 5.20. For any reachable state of ContSATS, and aircraft a in holding3(σ) and air-

craft b in base(σ), S(a,b) ≥ S(H3,B), where

S(H3,B) = L3dec −
L3dec

Vmaz
(Vmax − Vmin).

Proof. We obtain lower bounds for the spacing between aircraft a in holding3(σ) and aircraft b

in base(σ) by the following operational argument: Informally, we are looking at the situation

where aircraft a is “catching up with” aircraft b. From Theorem 5.19, aircraft a cannot start

moving on the line LINE holding3dec(σ) when b is in LINE holding2hold(σ). Thus it is only

after b starts moving on LINE base(σ) that a starts “catching up with” aircraft b. The worst

case occurs when a moves at its maximum speed Vmax, and b moves at its minimum speed

180

Vmin. In this case, the spacing of a and b is reduced by L3dec
Vmaz

(Vmax − Vmin) when a reaches

the end point of LINE holding3dec(σ). Thus, a lower bound on the spacing between aircraft in

LINE holding3dec(σ) and LINE base(σ) is S(H3,B) = L3dec −
L3dec
Vmaz

(Vmax − Vmin)

The above arguments are informal operational arguments. However, we can easily formalize

these arguments as invariant proofs in a way similar to step invariants proved in 5.5.

Now we prove a lower bound on the spacing between aircraft a in lez(σ) and aircraft b in

base(σ).

Theorem 5.21. For any reachable state of ContSATS, and aircraft a in lez(σ) and aircraft b

in base(σ), S(a,b) ≥ S(L,B), where

S(L,B) = Ll −
Ll

Vmaz
(Vmax − Vmin)

Proof. We can prove this lower bound by an analogous argument for Theorem 5.20, using the

fact (which follows from Fact 4 in Corollary 5.16) that if b is in holding2(σ), no aircraft is in

lez(σ).

5.6.3 S(M,H3): the spacing of aircraft in a missed approach path, part 1

In this subsection, we prove a lower bound on the spacing between aircraft a on LINE maz(σ)

and aircraft b on LINE holding3ma(σ).

Theorem 5.22. For any reachable state of ContSATS, aircraft a on LINE maz(σ) and aircraft

b on LINE holding3ma(σ), S(a,b) ≥ S(M,H3), where

S(M,H3) = LM + LT − L3ma∆.

Proof. We can easily derive this lower bound using Condition A2 defined in Lemma 5.8, and

proved to be an invariant of ContSATS in the end of Section 5.5. From Conclusion (1) of A2,

(i) D(a) ≤ b.pos
Vmin

· Vmax holds for aircraft a and b we are considering. Since D(a) = a.pos + LT for

a on LINE maz(σ), the above inequality (i) is equivalent to (ii) a.pos ≤ b.pos
Vmin

· Vmax − LT. Thus,

S(a,b) = (LM − a.pos) + b.pos

≥ (LM − (
b.pos

Vmin
· Vmax − LT)) + b.pos (from inequality (ii))

= LM + LT −
b.pos

Vmin
(Vmax − Vmin)

≥ LM + LT −
L3ma

Vmin
(Vmax − Vmin) (from Lemma 5.3)

Thus we obtained the required lower bound S(M,H3).

181

5.6.4 S′
M and S(T,M): the spacing of aircraft in a missed approach path, part 2

In [12], a lower bound on the spacing of aircraft in maz zones is stated and model-checked. The

authors obtained the following lower bound SM on the spacing as the minimum of two spacing

bounds:

SM = min(LT − LM∆, 2S0 − (LT + LM − S0)∆).

We prove a stronger bound S′
M in this subsection using an invariant-proof technique. The

bound is stronger in that the spacing we will obtain is actually the second term (S ′
M = 2S0 −

(LT + LM − S0) in the minimum in SM stated above. The proof is done in a way analogous to

the auxiliary lemmas that formed a step invariant in Section 5.5. In this case, however, since we

have obtained a refinement from ContSATS to ExtSATS, we can use invariants of ExtSATS

as invariants of ContSATS, and thus can use an ordinary-style invariant proof, as opposed to

a step invariant.

To prove the spacing property for maz zones, we need a lower bound on the spacing between

two aircraft that are respectively in the approach area and in the missed approach zone. In

Condition C1 of Lemma 5.10, we specified an lower bound on the spacing of an aircraft and its

leader in the approach area. We can state the new lower bound analogously as follows.

Lemma 5.23. Let s be a reachable state of ContSATS, a the first aircraft in the landing se-

quence that is on the approach, b the last aircraft of maz(σ) for some σ, that is, b = maz(σ)[|maz(σ)|−

1]. Then the following holds.

D(b) − D(a) ≥ S0 −
D(b) − S0

Vmin
(Vmax − Vmin).

Note that the inequality is almost identical to the one stated in the condition C1 of Lemma

5.10. The only difference is that the leader aircraft in C1 is replaced by the last aircraft in the

missed approach zone.

Proof. The proof can be done in a way analogous to Lemma 5.10. In the initial state, there is

no aircraft in the logical zones. Thus the condition holds. Now we consider the induction step.

Suppose the condition holds in a reachable state s of ContSATS. Let α be a step of ContSATS

starting with s. We denote α.lstate by s′.

First we consider the case α consists of a single discrete transition surrounded by two point

trajectories. We prove the condition for aircraft that are affected by the transition, since the

condition for the rest of the aircraft immediately follows from the induction hypothesis.

• VerticalApproachInitiation(σ): From the assumption of the condition, we assume that the

aircraft that initiates the approach by the transition is the first aircraft of the landing

182

sequence. Since b is in the missed approach area, we have D(b) ≥ LT. We also have an

assumption on S0: S0 < LT. Hence we have D(b) > S0 > S0 − D(b)−S0

Vmin
(Vmax − Vmin).

Considering that the value of D(a) is 0 in s′, the above inequality is exactly what we need.

• LateralApproachInitiation(σ): If the aircraft moves to the approach area, we can use the

same discussion to prove the condition as in the case of VerticalApproachInitiation. If the

aircraft moves to holding2, the condition immediately follows from the induction hypoth-

esis, since the transition does not affect the approach area or the maz zones.

• Exit and Landing: The second aircraft of the landing sequence becomes the first aircraft

by the transition. We have the required spacing before the transition between the first

aircraft and the last aircraft in a maz zone. In addition, before the transition, from the

condition C1 (recall C1 is now an invariant of ContSATS), the first aircraft and the second

aircraft maintain a minimum spacing stated in the condition. Thus the spacing between

the first aircraft of the landing sequence in s′ (which was the second aircraft in s) and the

last aircraft in a maz zone clearly satisfies the spacing stated in the lemma.

• MissedApproach: the first aircraft of the landing sequence whose mahf assignment is σ

becomes the last aircraft of maz(σ), and the second aircraft of the landing sequence becomes

the first aircraft. The spacing between these two aircraft immediately follows from the

lower bound on the spacing stated in the condition C1 in Lemma 5.10. The spacing

between the second aircraft of the landing sequence and the last aircraft of the maz zone

of the opposite side of σ follows from the same discussion as in the case of Exit and Landing.

• LowestAvailableAltitude(σ): From Property 4 proved in Chapter 3, the number of aircraft

in one maz zone is at most two. If there are two aircraft in maz(σ), then the condition

immediately holds since the last aircraft does not change (thought it also becomes the first

aircraft in that zone). If there is one aircraft in the zone, then there is no aircraft after

the transition. Thus the condition holds.

• Merging and FinalSegment These transitions change the line and pos values of one aircraft

on the approach, say a, but it is easy to see that from the definition of the function D,

these changes does not affect the value of D(a). The conditions for the rest of the aircraft

follows from Condition C1 that holds before the transition.

The rest of the transitions do not affect the approach area or the missed approach zones,

and thus do not change the value of D of the aircraft in these areas. Thus the conditions for the

rest of the aircraft follows from the induction hypothesis.

183

The trajectory case can be proved in the exact same way as in Lemma 5.10.

By using an algebraic manipulation to the inequality proved in Lemma 5.23, we have D(a)−

D(b) ≥ S0 −
D(a)
Vmax

(Vmax − Vmin) for aircraft a on the approach and aircraft b in a maz zone. By

substituting LT, the largest possible value of D(a) for a on the approach, we have the following

lower bound on the spacing between aircraft a on the approach and aircraft b in a maz zone:

S(T,M) = S0 −
LT

Vmax
(Vmax − Vmin).

The key property of ContSATS needed to prove an lower bound on the spacing for aircraft

in one maz zone is the alternate assignment property of mahf stated as Lemma 3.11. From

this property, two consecutive aircraft in the approach would go to the different maz zones

if they miss the approach. Thus, a key to prove an lower bound on the spacing in the maz

zones is to bound the spacing of an aircraft and its leader of the leader in the approach area.

This observation gives us the following Lemma 5.24. Using this lemma, we prove Lemma 5.25,

which states the spacing between an aircraft a with a.mahf = σ in the approach area (and thus

can possible come to maz(σ) in case it misses the approach), and the last aircraft in maz(σ).

Finally, using Lemma 5.25, we prove Theorem 5.26, which states a lower bound on the spacing

between two aircraft in one maz zone (see Figure 5.9, in which a bi-directed arrow represents

the minimum spacing that each lemma and theorem is specifying).

maz(right) maz(left) maz(right) maz(left)maz(right) maz(left)

mahf:left

mahf:left

mahf:right

c

b

a ab

c
mahf:left

mahf:right

Lemma 5.16 Lemma 5.17 Theorem 5.18

Figure 5.9: Two lemmas and one theorem that state the minimum spacing of aircraft

Lemma 5.24. Let s be a reachable state of ContSATS, a an aircraft with a = landing seq[i]

for i > 2, and b the leader of the leader of a in the landing sequence. Then, the following holds:

D(b) − D(a) ≥ 2S0 − (D(b) − S0)∆.

Proof. There is no aircraft in the logical zones in the initial state. Thus the condition for that

state trivially holds. Now we consider the inductive case.

Suppose the condition holds in a reachable state s of ContSATS. Let α be a step of

ContSATS starting with s. We denote α.lstate by s′.

184

First we consider the case α consists of a single discrete transition surrounded by two point

trajectories. We prove the condition for aircraft that are affected by the transition, since the

condition for the rest of the aircraft immediately follows from the induction hypothesis.

• VerticalApproachInitiation: The precondition of the transition guarantees that the spacing

between the aircraft a that initiates the approach and its leader b is at least S0. It implies

that D(b)−D(a) ≥ S0. We want to bound the spacing between a and b’s leader c. From the

condition C1 of Lemma 5.10, it follows that D(c)−D(b) ≥ S0 − (D(c)− S0)∆ By summing

up these two inequality side by side, we have the required bound.

• LateralApproachInitiation: If the aircraft moves to the approach area, we can use the same

discussion to prove the condition as in the case of VerticalApproachInitiation. If the aircraft

moves to holding2, the condition immediately follows from the induction hypothesis, since

the transition does not affect the approach area.

• Exit, Landing, and MissedApproach: These transitions remove the first aircraft in the land-

ing sequence, and thus the first in final from the approach area. The condition trivially

holds for the removed aircraft since it is no longer in the approach area.

• Merging and FinalSegment These transitions change the line and pos values of one aircraft

on the approach, say a, but it is easy to see that from the definition of the function D,

these changes does not affect the value of D(a). The conditions for the rest of the aircraft

follows from Condition C1 that holds before the transition.

The rest of the transitions do not affect the approach area or the missed approach zones,

and thus do not change the value of D of the aircraft in these areas. Thus the conditions for the

rest of the aircraft follows from the induction hypothesis.

The trajectory case can be proved easily by using bounds of the velocity of the aircraft

specified in the evolve statement in the same way as Lemma 5.10.

The following lemma states the minimum spacing between an aircraft assigned σ in the

approach area, and an aircraft in maz(σ). Note also that the specified inequality is the exact

same inequality as in Lemma 5.24, but for a different assumption for aircraft a and b.

Lemma 5.25. Let s be reachable state s of ContSATS, a an aircraft on the approach with

a.mahf = σ, and b an aircraft in maz(σ). Then, the following holds:

D(b) − D(a) ≥ 2S0 − (D(b) − S0)∆.

185

Proof. The proof can be done in analogously to Lemma 5.24. The initial case is trivial since

there is no aircraft in the logical zones.

Now we consider the inductive case. Suppose the condition holds in a reachable state s of

ContSATS. Let α be a step of ContSATS starting with s. We denote α.lstate by s ′.

First we consider the case α consists of a single discrete transition surrounded by two point

trajectories. Again, we prove the condition for aircraft that are affected by the transition, since

the condition for the rest of the aircraft immediately follows from the induction hypothesis.

• VerticalApproachInitiation: Let a be the aircraft that initiates the approach by the transi-

tion, and suppose a’s mahf is σ. Let b be the aircraft in maz(σ). From Lemma 3.26 proved

in Chapter 3, if there is an aircraft assigned σ in the approach area, then there is at most

one aircraft in maz(σ). Thus b is the only aircraft in maz(σ).

If a is not the first aircraft of the landing sequence at the moment it initiates the approach,

it is the second aircraft in the sequence because of the following reason. From Case 2

of Lemma 3.26, if there is exactly one aircraft in maz(σ), there is at most one aircraft

assigned σ in the approach area. Considering the alternate assignment property of mahf’s

of aircraft, if a is positioned at third or larger in the landing sequence, there must be at

least two aircraft assigned σ in the approach area, which is a contradiction.

If a is the second aircraft of the landing sequence, then from the precondition of the

transition, the spacing between a and the first aircraft c is at least S0. Thus D(c)−D(a) ≥

S0 holds. In addition, by Lemma 5.23, D(b) − D(c) ≥ S0 − (D(b) − S0)∆. By summing up

these two inequality side by side, we have the required inequality.

If a is the first aircraft in the landing sequence, it implies that its leader aircraft c has

already landed or missed the approach. Considering the alternate assignment property of

mahf’s of aircraft, c was assigned the opposite side of σ as its mahf when it was on the

approach. It follows that c and b are two different aircraft. Considering that c was a’s

immediate leader, b had already been in maz(σ) when c reached the landing point (that is,

when D(c) = LT). In this moment, by Lemma 5.23, D(b) − LT ≥ S0 − (D(b) − S0)∆ holds.

From this, we have (i) D(b) ≥ S0 + LT
1+∆ , and using this, we also have (ii) 2S0 −

LT
1+∆∆ ≥

2S0 − (D(b)−S0)∆. Considering that the value of D(b) monotonically increases, the above

stated two inequalities (i) and (ii) also hold at the time a initiates the approach. Since

D(a) = 0 after the transition, it is sufficient to show S0 + LT
1+∆ ≥ 2S0 − LT

1+∆∆ to obtain

the required inequality for the lemma. This inequality is equivalent to LT ≥ S0, and the

inequality holds from our assumption LT > S0.

186

• LateralApproachInitiation: If the aircraft moves to the approach area, we can use the same

discussion to prove the condition as in the case of VerticalApproachInitiation. If the aircraft

moves to holding2, the condition immediately follows from the induction hypothesis, since

the transition does not affect the approach area.

• Exit and Landing: These transitions removes the first aircraft of the landing sequence from

the approach area. The condition trivially holds since it does not affect D value or the

mahf of the remaining aircraft.

• MissedApproach: Before the transition, the only aircraft that has the same mahf assignment

as that of the first aircraft of the landing sequence is the third aircraft. This is because of

the alternate assignment property of mahf’s and the fact that, from Property 1 proved in

Chapter 3, there is at most four aircraft in the operation area. Thus the required inequality

immediately follows from Lemma 5.24.

• : Merging and FinalSegment: These transitions change the line and pos values of one aircraft

on the approach, say a, but it is easy to see that from the definition of the function D,

these changes does not affect the value of D(a). The conditions for the rest of the aircraft

follows from Condition C1 that holds before the transition.

• LowestAvailableAltitude(σ): The transition removes the first aircraft of maz(σ). As we

discussed in VerticalApproachInitiation, if there is an aircraft assigned σ in the approach,

there is at most one aircraft in maz(σ). Thus there is no aircraft in maz(σ) after the

transition.

The rest of the transitions do not affect the approach area or the missed approach zones,

and thus do not change the value of D of the aircraft in these areas. Thus the conditions for the

rest of the aircraft follows from the induction hypothesis.

The trajectory case can be proved easily by using bounds of the velocity of the aircraft

specified in the evolve statement in the same way as Lemma 5.10.

Now we are ready to prove a lower bound on the spacing for aircraft in one maz zone.

Theorem 5.26. Let s be a reachable state s of ContSATS, a and b be aircraft in maz(σ) with

D(b) > D(a). Then, the following holds:

D(b) − D(a) ≥ 2S0 − (D(b) − S0)∆.

Proof. The initial case is trivial since there is no aircraft in the logical zones.

187

Now we consider the inductive case. Suppose the condition holds in a reachable state s of

ContSATS. Let α be a step of ContSATS starting with s. We denote α.lstate by s ′.

First we consider the case α consists of a single discrete transition surrounded by two point

trajectories. Again, we prove the condition for aircraft that are affected by the transition, since

the condition for the rest of the aircraft immediately follows from the induction hypothesis.

• MissedApproach: The transition moves the first aircraft in the approach area to the maz

zone of the side the aircraft is assigned as its mahf. The required inequality immediately

follows from Lemma 5.25.

• LowestAvailableAltitude: From Property 4 proved in Chapter 3, there are at most two

aircraft in maz(σ). Thus, after the transition, there is just one aircraft in that zone.

The rest of the transitions do not affect the missed approach zones, and thus do not change

the value of D of the aircraft in these areas. Thus the conditions for the rest of the aircraft

follows from the induction hypothesis.

The trajectory case can be proved easily by using bounds of the velocity of the aircraft

specified in the evolve statement in the same way as Lemma 5.10.

By substituting the largest possible value of D(b) when b is in a maz zone, which is LT+LM, in

the inequality stated in Lemma 5.26, we have the following lower bound on the spacing between

two aircraft in one maz zone:

Corollary 5.27. For any reachable state of ContSATS, aircraft a and b in maz(σ), S(a,b) ≥ SM′,

where

S′
M = 2S0 − (LT + LM − S0)∆.

This bound is stronger than the minimum spacing model-checked in [12], which is SM =

min(LT−LM∆, 2S0− (LT +LM−S0)∆). To obtain this stronger bound, we used the assumption

S0 < LT. In [12], to our best knowledge, the authors do not mention any assumption on the size

of S0. The lack of this assumption might be the reason they had to take the minimum in their

spacing bound SM. Indeed, a model-checking for the lower bound of 2S0 − (LT +LM −S0)∆ (the

second spacing of the minimum of two spacing values in SM, which is the bound S′
M we obtained)

cannot be succeeded without assumption S0 < LT. This is because, if S0 can be arbitrary large,

the value of 2S0 − (LT + LM − S0)∆ can also be arbitrary large. They obtained the first term

of the minimum in SM (which is LT − LM∆; note it does not depend on S0) by considering the

scenario that, when an aircraft initiates the approach, its leader has already landed or missed

the approach. This is actually the same scenario we considered in the case of the approach

initiation transitions in Lemma 5.25, in which we used the assumption S0 < LT.

188

5.6.5 S(M,H3): the spacing of aircraft in a missed approach path, part 3

In this subsection, we prove a lower bound on the spacing between aircraft a in LINE maz(σ)

and aircraft b in LINE holding2ma(σ). In Section 5.6.4, we proved a lower bound on the spacing

between two aircraft in one maz zone, as Theorem 5.26. The scenario we considered in Theorem

5.26 is that one aircraft a on LINE maz(σ) is catching up with another aircraft b on the same line.

As we can see from Figure 5.7, this “catching-up” situation still continues even after b moves

to LINE holding2ma(σ). Theorem 5.29 states an lower bound on the spacing of aircraft we are

considering in this subsection. It actually states the same inequality as in Theorem 5.26, except

that D(b) in the original inequality in Theorem 5.26 is replaced by D′(b) = LT + LM + b.pos.

This is because the D function is meaningfully defined for aircraft on the approach or in a maz

zone (for other aircraft, it returns 0). The new D′ function can be considered as the D function

extended for aircraft on a LINE holding2ma line. Indeed, the value D’(b) for aircraft b on a

LINE holding2ma represents the distance that b has flown in the approach area, and then in a

maz zone, and finally in LINE holding2ma.

To prove this theorem, we need the following Lemma 5.28 that states the spacing of aircraft

a on the approach and aircraft b on LINE holding2ma(σ). This lemma states a claim analogous

to Lemma 5.25, but consider the situation when b has already flown through LINE maz(σ), and

thus is on LINE holding2ma(σ).

Lemma 5.28. Let s be a reachable state s of ContSATS, a be an aircraft on the approach and

b be aircraft on LINE holding2ma(σ). Then, the following inequality holds:

D′(b) − D(a) ≥ 2S0 − (D′(b) − S0)∆.

Proof. The initial case is trivial since there is no aircraft in the logical zones.

Now we consider the inductive case. Suppose the condition holds in a reachable state s of

ContSATS. Let α be a step of ContSATS starting with s. We denote α.lstate by s ′.

The proof for the trajectories and the transitions other than

LowestAvailableAltitude(b,σ) can be done analogously to Lemma 5.25.

In the case of LowestAvailableAltitude(b,σ): If holding2(σ) is not empty, then b goes

to holding3(σ). Thus the condition follows from the induction hypothesis. If holding2(σ) is

empty, b moves to LINE holding2ma(σ). In this case, we can easily prove the condition from

Lemma 5.25 and the fact that D(b) in s is equal to D’(b) in s′.

Theorem 5.29. Let s be a reachable state s of ContSATS, a be an aircraft on LINE maz(σ)

and b be aircraft on LINE holding2ma(σ). Then, the following holds:

D′(b) − D(a) ≥ 2S0 − (D′(b) − S0)∆.

189

Proof. The initial case is trivial since there is no aircraft in the logical zones.

Now we consider the inductive case. Suppose the condition holds in a reachable state s of

ContSATS. Let α be a step of ContSATS starting with s. We denote α.lstate by s ′.

The proof for the trajectories and the transitions other than

LowestAvailableAltitude(b,σ) can be done analogously to Theorem 5.26.

In the case of LowestAvailableAltitude(b,σ): If holding2(σ) is not empty, then b goes

to holding3(σ). Thus the condition follows from the induction hypothesis. If holding2(σ) is

empty, b moves to LINE holding2ma(σ). In this case, we can easily prove the condition from

Theorem 5.26 and the fact that D(b) in s is equal to D’(b) in s′.

By an algebraic manipulation to the inequality in Theorem 5.29, we have the following

inequality for aircraft a on LINE maz(σ) and aircraft b on LINE holding2ma(σ).

D′(b) − D(a) ≥ (1 +
Vmin

Vmax
)S0 −

Vmax − Vmin

Vmax
D(a).

By substituting the maximum value LT + LM of D(a) to the above inequality, we have the

following lower bound S(M,H2) on the spacing between aircraft a on LINE maz(σ) and aircraft b

on LINE holding2ma(σ).

S(M,H2) = (1 +
Vmin

Vmax
)S0 −

Vmax − Vmin

Vmax
(LT + LM).

190

Chapter 6

Conclusions and Future Work

Summary: In this thesis, we first reconstructed the mathematical model of an aircraft landing

protocol presented in [2], using the I/O automata framework. Though the protocol is complex,

the IOA code we gave has a manageable form. This model is a discrete model in that the

airspace of the airport and all movements of the aircraft are discretized. Using the reconstructed

model, we verified some safety separation properties of aircraft in the Self Controlled Area using

invariant-proof techniques. As is often the case, we had to strengthen some properties by using

extra conditions, and by proving other properties together with them. All proofs of the properties

have been rigorously checked using PVS. We found that using a mechanical prover is helpful in

managing a large proof for a moderately complex system such as ours.

To examine properties that involve more realistic dynamics of aircraft, such as the spacing

between aircraft, we needed a more detailed modeling of the aircraft kinematics and the geometry

of the airport. A continuous model, called ContSATS, is presented to verity such properties of

the protocol. Safety properties of the model were verified using the refinement technique and the

invariant-proof technique. For the refinement technique, we introduced a new technique, a weak

refinement using a step invariant. Using this new technique, we carried over the verification

results for the discrete model to ContSATS. On the other hand, we needed a more careful

analysis to prove lower bounds on the spacing between aircraft in ContSATS, since lower

bounds on the spacing between aircraft in the two adjacent zones cannot be directly established

by safe separation properties carried over from the discrete model. Using both the safe properties

carried over from the discrete model and properties specific to ContSATS, we proved several

spacing properties of aircraft in ContSATS.

Evaluation: In this thesis, we used the following general approach to formally verify safety

properties of the given system using the timed I/O automata framework.

1. We first model the system as a discrete state-transition system, by abstracting away the

191

details of the continuous behavior of the system. We sometimes need to express some

assumption of a real system by having supplemental conditions in the preconditions of

some specific transitions in the discrete model: In this thesis, we first model the SATS

landing protocol based on the model presented in [2]. The Landing transition, for instance,

has an explicit check for the condition if the zone in which aircraft is moving is empty.

Since the discrete model of the protocol does not have a time-dependent assumption, we

had to rely on these explicit checks to prove safe separation properties of the model.

2. Using the discrete model constructed in Step 1, we prove some safety properties of the

model that can be expressed in the model. Since the state structure of the model is discrete,

we state safety properties as bounds on various quantities in of the discrete structure, such

as the length of the queue.

3. Then, we construct a new model that has a finer abstraction of a real system: It may

have more continuous behavior than the discrete model developed at Step 1, by having,

for example, a real time clock structure and time bounds for particular transitions to be

performed using that clock. In this new model, some explicit checks in the preconditions of

some transitions may be replaced by implicit guarantees that follows from time-dependent

behavior of the model, such as time bounds for particular transitions to be performed. We

need to prove that such guarantees indeed hold in the new model to obtain a refinement

from the continuous model to the discrete model in Step 4.

4. Using the new model, we first prove that the safety properties proved for the discrete model

carry over to the new model, by using the simulation relation technique or the refinement

technique. To prove the conditions needed for a simulation relation or a refinement, we

often need to have an invariant of the new system. Typical invariants needed at this

stage are properties that state that time-dependent or continuous behavior of the system

indeed replaces particular conditions that are explicitly checked by the precondition of

transitions of the discrete model, but are not explicitly checked in the new model. As in

our case presented in this thesis, we may need invariants of the discrete model to prove

the invariants of the new model needed for a refinement. In such a case, we prove these

invariants as step invariants, and use a weak refinement using a step invariant introduced

in Section 4.2.2.

5. After we establish a simulation relation or a refinement from the new model to the discrete

model, we can use invariants of the discrete model as those of the new model, by “adapting”

them using a simulation relation or a refinement mapping. This claim is stated as Theorem

192

4.22 and Corollary 4.23.

6. Using invariants carried over from the discrete model and other auxiliary invariants proved

so far, we prove the properties that can be specified by the new model, but not by the

discrete model. These properties are mainly concerned with time-dependent or continuous

behavior of the new model.

Of course, we can iterate the above steps until we obtain a sufficiently detailed model and

its safety properties.

One characteristic of this approach is the fact that we can use invariants of the discrete

model to prove even invariants of a new refined model (as step invariants; these step invariants

of the new model are guaranteed to be invariants of the model after we establish a refinement

or a simulation relation from the new model to the discrete model.) For invariants of a discrete

model to be useful for the verification process of a new model, it is crucial to construct a discrete

model and find its invariants in a way that these invariants state useful information when carried

over to the refined model.

We believe that this approach is general enough to be applied to other case studies, and we

discuss some possible applications of this approach in the following future work section.

Future work: One possible new application of the above discussed approach in the real-

time safety critical systems domain is verification of time-triggered bus architectures for the

safety critical systems. Recently, several distributed fault-tolerant bus architecture protocols

(for example, SAFEbus [4] that has been used in Boeing 777, TTA [7] that has been used

in aircraft by Honeywell, and will be used in new intelligent cars by Audi) for safety critical

embedded control systems used for aircraft or automobiles have been developed. These protocols

are mainly designed for “X-by-Wire” applications (such as steer-by-wire or brake-by-wire), in

which an aircraft or an automobile is controlled electrically by computers embedded in it.

These bus protocols offer basic and reliable communication scheme by using fault-tolerant

distributed algorithms. Several people have acknowledged the importance of a formal approach

for such algorithms used for bus architectures, and there have been several case studies for formal

verification of those algorithms (an excellent survey for an overview of formal verification for

TTA is given by Rushby [14]).

These protocols use time-triggered approach, by which each distributed controller of the

system communicates using Time-Devision Media-Access (TDMA) slots. For these systems, it

is crucial to synchronize local clocks of distributed controllers. For this reason, a distributed

fault-tolerant clock synchronization algorithm is used in the controllers. Even though clock

193

synchronization algorithms used for the bus architectures have been intensively studied in the

context of formal verification [13], start-up algorithms that establish an initial synchronization

of the local clocks has not yet been studied as deeply using a formal approach. Fault-tolerant

start-up algorithms for bus architectures use a real-time time-dependent behavior in an intricate

manner, and to verify the correctness of the algorithm, we have to consider every possible

behavior caused by a faulty process under assumed fault hypotheses. These facts make an

automatic verification of the algorithm using model-checking technique infeasible. Thus, instead,

for some case study [15], some discretized version of the algorithm that abstracts away the real

time using the discrete time is used to model-check the correctness of the algorithm, without

proving the soundness of such an abstraction (though the authors have stated an intuition behind

why the abstraction is believed to be sound).

Considering their time-dependent behavior, the fact that an automated checking of properties

of them is infeasible, and their importance as real industry applications, formal verification of

time-triggered bus architectures, especially their start-up algorithms are appropriate for a next

application of the approach presented in this thesis. Following that approach, we will try to

construct two mathematical models – a discrete model and a continuous model – of the start-up

algorithms, and establish a soundness of the abstraction performed for the discrete model by

proving a simulation relation or a refinement from the continuous model to the discrete model.

We also aim to establish new mathematical techniques and approaches in this case study.

194

Bibliography

[1] Myla Aicher. Tame: Pvs strategies for special purpose theorem proving. Annals of Mathe-

matics and Artificial Intelligence, 29, 2001.

[2] G. Dowek, C. Muñoz, and V. Carreño. Abstract model of the SATS concept of operations:

Initial results and recommendations. Technical Report NASA/TM-2004-213006, NASA

Langley Research Center, NASA LaRC,Hampton VA 23681-2199, USA, March 2004.

[3] Stephen Garland. TIOA User Guide and Reference Manual, September 2005.

[4] Kenneth Hoyme and Kevin Driscoll. Safebus. IEEE Aerospace and Electronic Systems

Magazine, 8, no. 3:34–39, March 1993.

[5] http://www.flexray.com. FlexRay Requirements Specification.

[6] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of

Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool Publish-

ers, 2006.

[7] H Kopetz and G Bauer. The time-triggered architecture. Proceedings of The IEEE, 91;

PART 1:112–126, January 2003.

[8] Hongping Lim, Dilsun Kaynar, Nancy Lynch, and Sayan Mitra. Translating timed I/O

automata specifications for theorem proving in PVS. In International Conference on Formal

Modelling and Analysis of Timed Systems (FORMATS’05), volume 3829 of Lecture Notes

in Computer Science, pages 17–31, Uppsala, Sweden, September 2005.

[9] Nancy Lynch and Frits Vaandrager. Forward and backward simulations – part II: Timing-

based systems. Information and Computation, 128(1):1 – 25, July 1996.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[11] Robin Milner. Communication and Concurrency. Prentice-Hall International, Englewood,

Cliffs, 1989.

195

[12] C. Muñoz and G. Dowek. Hybrid verification of an air traffic operational concept. In Pro-

ceedings of IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verifi-

cation, and Validation, Columbia, Maryland, 2005.

[13] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal Verification for Time-

Triggered Clock Synchronization. In Charles B. Weinstock and John Rushby (eds.), editors,

Dependable Computing for Critical Applications 7, volume 12 of Dependable Computing and

Fault-Tolerant Systems, pages 207–226. IEEE Computer Society, January 1999.

[14] John Rushby. An overview of formal verification for the time-triggered architecture. In

W. Damm and E.-R. Olderog, editors, FTRTFT 2002, volume 2469 of Lecture Notes in

Computer Science, pages 83–105, 2002.

[15] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model Checking a Fault-

Tolerant Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation. In

Proc. of the 2004 International Conference on Dependable Systems and Networks, pages

189–198, Florence, Italy, June 2004. IEEE Computer Society.

[16] T.Abbott, K. Jones, M. Consiglio, D. Williams, and C. Adams. Small Aircraft Trans-

portation System, High Volume Operation concept: Normal operations. Technical Re-

port NASA/TM-2004-213022, NASA Langley Research Center, NASA LaRC,Hampton VA

23681-2199, USA, 2004.

196

Appendix A

PVS code

[common decls.pvs]: ———————————————————————————

%%
%% Generated by tioa2pvs
%% Date generated: Tue Jul 18 16:02:40 EDT 2006
%% tioa2pvs version: 20060717
%%

common_decls : THEORY BEGIN

%%
%% File contents from the file: sats_include1

ID : TYPE = posnat
%% End of file contents from the file: sats_include1
%%

%%
%% Tuples, Enums and Unions

Side: TYPE = {
right,
left}

z_name: TYPE = {
holding3L,
holding3R,
holding2L,
holding2R,
lezL,
lezR,
mazL,
mazR,
baseL,
baseR,
intermediate,
final,
runway}

Aircraft : TYPE = [#
mahf: Side,
id: ID #]

% User defined theories
IMPORTING queue[Aircraft]

%%
%% File contents from the file: sats_include2

Zone : TYPE = queue
zone_map : TYPE = [z_name -> Zone]

197

% lambda expression for zones in start state
initialZones(n: z_name):MACRO Zone = null

%% End of file contents from the file: sats_include2
%%

%%
%% File contents from the file: sats_include3

%% accessing a zone by side
holding3(side:Side):z_name = IF side = left THEN holding3L ELSE holding3R ENDIF
holding2(side:Side):z_name = IF side = left THEN holding2L ELSE holding2R ENDIF
lez(side:Side):z_name = IF side = left THEN lezL ELSE lezR ENDIF
maz(side:Side):z_name = IF side = left THEN mazL ELSE mazR ENDIF
base(side:Side):z_name = IF side = left THEN baseL ELSE baseR ENDIF

%%%% holding3 holding2 lez maz base defined in common_decls

%% side of a zone
side(z:z_name|

z=holding3L OR z=holding3R OR z=holding2L OR z=holding2R OR z=lezL OR z=lezR OR
z=mazL OR z=mazR OR z=baseL OR z=baseR): Side =

IF z=holding3L OR z=holding2L OR z=lezL OR z=mazL OR z=baseL THEN left ELSE right ENDIF

%% Opposite side
opposite(side:Side) : Side =
IF side = right THEN left
ELSE right
ENDIF

%% Does an aircraft exist in the queue?
in_queue?(a:Aircraft, q:queue): bool = member(a,q)

%% leader of an aircraft
leader(a: Aircraft, q:queue| a /= first(q)): RECURSIVE Aircraft =

IF in_queue?(a,q) THEN
IF a = first(rest(q)) THEN first(q)

ELSE leader(a,rest(q))
ENDIF

ELSE a
ENDIF
MEASURE length(q)

%% Is b the leader aircraft of a ?
leader?(a,b:Aircraft, q:queue): bool =
b = leader(a,q)

%% Is a precedes b in the landing sequence?
precedes?(a,b:Aircraft, q:queue) : RECURSIVE bool =
IF empty?(q) OR first(q) = b THEN false
ELSIF first(q)=a THEN in_queue?(b, rest(q))
ELSE precedes?(a,b,rest(q))
ENDIF
MEASURE length(q)

%% Number of aircraft in a zone to assigned to one side
assigned(z:Zone,side:Side): RECURSIVE nat =
IF empty?(z) THEN 0
ElSIF mahf(first(z)) = side THEN 1+assigned(rest(z),side)
ELSE assigned(rest(z),side)
ENDIF
MEASURE length(z)

%% Is any aircraft in zone z assigned to the mahf side ?
assigned?(z:Zone,side:Side): bool =
assigned(z,side) /= 0

%% Is an aircraft in zone z ?
on_zone?(z:Zone,a:Aircraft) :bool = in_queue?(a,z)

198

%% Is aircraft a on this side?
on?(side:Side, a:Aircraft, z:zone_map):bool =

on_zone?(z(holding3(side)),a) OR
on_zone?(z(holding2(side)),a) OR
on_zone?(z(lez(side)),a) OR
on_zone?(z(maz(side)),a)

%% Is aircraft a on the approach ?
on_approach?(z:zone_map,a:Aircraft): bool =
on_zone?(z(baseR),a) or on_zone?(z(baseL),a) or
on_zone?(z(intermediate),a) or on_zone?(z(final),a)

%% Is aircraft a on any zone (excluding runway)?
on_zones?(zones:zone_map,a:Aircraft): bool =
EXISTS (z:z_name) : on_zone?(zones(z),a) AND z/=runway

%% # of aircrafts with this mahf on approach
assigned_approach(z:zone_map,side:Side): nat =
assigned(z(baseR),side) + assigned(z(baseL),side) +
assigned(z(intermediate),side) + assigned(z(final),side)

%% Is any aircraft on the approach assigned to the mahf side ?
on_approach?(z:zone_map,side:Side): bool =
assigned?(z(baseR),side) or assigned?(z(baseL),side) or
assigned?(z(intermediate),side) or assigned?(z(final),side)

%% Acutal number of aircraft at one side (excluding the approach)
actual(z:zone_map,side:Side):nat =
length(z(holding3(side)))+length(z(holding2(side)))+length(z(lez(side)))+
length(z(maz(side)))

%% Virtual number of aircraft at one fix
virtual(z:zone_map,side:Side): nat =
length(z(holding3(side))) + length(z(holding2(side)))+
length(z(lez(side))) + length(z(maz(side))) +
assigned(z(holding3(opposite(side))),side) +
assigned(z(holding2(opposite(side))),side) +
assigned(z(lez(opposite(side))),side) +
assigned(z(maz(opposite(side))),side) +
assigned(z(base(right)),side) +
assigned(z(base(left)),side) +
assigned(z(intermediate),side) +
assigned(z(final),side)

%% Number of aircraft assigned to a fix
assigned2fix(z:zone_map,side:Side):nat =
assigned(z(holding3R),side) +
assigned(z(holding3L),side) +
assigned(z(holding2R),side) +
assigned(z(holding2L),side) +
assigned(z(lezR),side) +
assigned(z(lezL),side) +
assigned(z(baseR),side) +
assigned(z(baseL),side) +
assigned(z(intermediate),side) +
assigned(z(final),side) +
assigned(z(mazR),side) +
assigned(z(mazL),side)

%% Total number of simultaneous arrival operations

199

arrival_op(z:zone_map):nat =
actual(z,right) + actual(z,left) +
length(z(baseR)) + length(z(baseL)) +
length(z(intermediate)) + length(z(final))

% define movement of aircrafts

% an aircraft moves from z_from to z_to
move(z_from, z_to: z_name, zones:zone_map| z_from /= z_to AND NOT empty?(z_from)): zone_map =
zones WITH [(z_from) := rest(zones(z_from)),

(z_to) := add(zones(z_to), first(zones(z_from)))]
%% End of file contents from the file: sats_include3
%%

END common_decls

—————————————————————————————–

[sats decls.pvs]: ————————————————————–

%%
%% Generated by tioa2pvs
%% Date generated: Wed Jul 19 18:00:55 EDT 2006
%% tioa2pvs version: 20060717
%%

sats_decls : THEORY BEGIN

timed_auto_lib: LIBRARY = "../timed_auto_lib"
IMPORTING timed_auto_lib@time_thy
IMPORTING timed_auto_lib@list_rewrites
IMPORTING timed_auto_lib@bool_rewrites
IMPORTING common_decls

% State variables
states: TYPE = [#

zones: zone_map,
nextmahf: Side,
landing_seq: Zone #]

% Automaton function declarations

holding3(side: Side, s: states): Zone = zones(s)(holding3(side))

holding2(side: Side, s: states): Zone = zones(s)(holding2(side))

lez(side: Side, s: states): Zone = zones(s)(lez(side))

maz(side: Side, s: states): Zone = zones(s)(maz(side))

base(side: Side, s: states): Zone = zones(s)(base(side))

intermediate(s: states): Zone = zones(s)(intermediate)

final(s: states): Zone = zones(s)(final)

runway(s: states): Zone = zones(s)(runway)

first_in_seq?(s: states, a: Aircraft): bool = a = first(landing_seq(s))

assigned_on(s: states, side: Side, mahf: Side): nat =
assigned(zones(s)(holding3(side)), mahf)
+ assigned(zones(s)(holding2(side)), mahf)
+ assigned(zones(s)(lez(side)), mahf)
+ assigned(zones(s)(maz(side)), mahf)

assigned_on?(side: Side, mahf: Side, s: states): bool =
assigned?(zones(s)(holding3(side)), mahf)

200

OR assigned?(zones(s)(holding2(side)), mahf)
OR assigned?(zones(s)(lez(side)), mahf)
OR assigned?(zones(s)(maz(side)), mahf)

on?(side: Side, a: Aircraft, s: states): bool = on?(side, a, zones(s))

on_approach?(s: states, a: Aircraft): bool = on_approach?(zones(s), a)

on_zones?(s: states, a: Aircraft): bool = on_zones?(zones(s), a)

assigned_approach(s: states, side: Side): nat =
assigned_approach(zones(s), side)

on_approach?(s: states, side: Side): bool = on_approach?(zones(s), side)

actual(s: states, side: Side): nat = actual(zones(s), side)

virtual(s: states, side: Side): nat = virtual(zones(s), side)

assigned2fix(s: states, side: Side): nat = assigned2fix(zones(s), side)

arrival_op(s: states): nat = arrival_op(zones(s))

aircraft(s: states, side: Side, id_: ID): Aircraft =
(# mahf := IF empty?(landing_seq(s)) THEN side ELSE nextmahf(s) ENDIF,
id := id_ #)

enter(z_enter: z_name, s: states, side: Side, id: ID, zones_: zone_map):
zone_map =
zones_ WITH [(z_enter) := add(zones(s)(z_enter), aircraft(s, side, id))]

reassign(s: states, a: Aircraft): Aircraft =
a WITH
[(mahf) :=

IF empty?(landing_seq(s)) THEN mahf(a) ELSE nextmahf(s) ENDIF]

% Start state
start(s: states): bool = s=s WITH [

zones := initialZones,
nextmahf := right,
landing_seq := empty]

% Actions signatures
actions: DATATYPE BEGIN

VerticalEntry(ac: Aircraft, id: ID, side: Side): VerticalEntry?
LateralEntry(ac: Aircraft, id: ID, side: Side): LateralEntry?
HoldingPatternDescend(ac: Aircraft, side: Side): HoldingPatternDescend?
VerticalApproachInitiation(ac: Aircraft, side: Side):
VerticalApproachInitiation?

LateralApproachInitiation(ac: Aircraft, side: Side):
LateralApproachInitiation?

Merging(ac: Aircraft, side: Side): Merging?
Exit(ac: Aircraft): Exit?
FinalSegment(ac: Aircraft): FinalSegment?
Landing(ac: Aircraft): Landing?
Taxiing(ac: Aircraft): Taxiing?
MissedApproach(ac: Aircraft): MissedApproach?
LowestAvailableAltitude(ac: Aircraft, side: Side):
LowestAvailableAltitude?

END actions

% actions visibility
visible?(a:actions): bool =

FALSE

% Enabled
enabled(a:actions, s:states):bool =

CASES a OF
VerticalEntry(a, id, side):

virtual(s, side) < 2 AND NOT on_approach?(s, side)

201

AND empty?(maz(side, s))
AND empty?(lez(side, s))
AND empty?(holding3(side, s))
AND a = aircraft(s, side, id)
AND
(FORALL (a: Aircraft):

on_zones?(s, a) OR in_queue?(a, landing_seq(s))
OR on_zone?(runway(s), a)
=> id(a) /= id),

LateralEntry(a, id, side):
virtual(s, side) = 0 AND a = aircraft(s, side, id)

AND
(FORALL (a: Aircraft):

on_zones?(s, a) OR in_queue?(a, landing_seq(s))
OR on_zone?(runway(s), a)
=> id(a) /= id),

HoldingPatternDescend(a, side):
NOT empty?(holding3(side, s)) AND a = first(holding3(side, s))

AND empty?(holding2(side, s)),

VerticalApproachInitiation(a, side):
NOT empty?(holding2(side, s)) AND a = first(holding2(side, s))

AND length(base(opposite(side), s)) <= 1
AND
(first_in_seq?(s, a)

OR on_approach?(s, leader(a, landing_seq(s)))),

LateralApproachInitiation(a, side):
NOT empty?(lez(side, s)) AND a = first(lez(side, s)),

Merging(a, side):
NOT empty?(base(side, s)) AND a = first(base(side, s))

AND
(first_in_seq?(s, a)

OR on_zone?(intermediate(s), leader(a, landing_seq(s)))
OR on_zone?(final(s), leader(a, landing_seq(s)))),

Exit(a):
NOT empty?(intermediate(s)) AND NOT empty?(landing_seq(s))

AND a = first(intermediate(s))
AND first_in_seq?(s, a),

FinalSegment(a):
NOT empty?(intermediate(s)) AND a = first(intermediate(s)),

Landing(a):
NOT empty?(final(s)) AND NOT empty?(landing_seq(s))

AND a = first(final(s))
AND empty?(runway(s)),

Taxiing(a):
NOT empty?(runway(s)) AND a = first(runway(s))

AND first_in_seq?(s, a),

MissedApproach(a):
NOT empty?(final(s)) AND NOT empty?(landing_seq(s))

AND a = first(final(s)),

LowestAvailableAltitude(a, side):
NOT empty?(maz(side, s)) AND a = first(maz(side, s))

ENDCASES

%enabled (a:actions, s:states):bool = enabled_specific(a,s)

% Transition function
trans(a:actions, s:states):states =

202

CASES a OF
VerticalEntry(a, id, side):

s WITH
[landing_seq := add(landing_seq(s), a),

nextmahf := opposite(mahf(a)),

zones := enter(holding3(side), s, side, id, zones(s))],

LateralEntry(a, id, side):
s WITH

[landing_seq := add(landing_seq(s), a),

nextmahf := opposite(mahf(a)),

zones := enter(lez(side), s, side, id, zones(s))],

HoldingPatternDescend(a, side):
s WITH [zones := move(holding3(side), holding2(side), zones(s))],

VerticalApproachInitiation(a, side):
s WITH [zones := move(holding2(side), base(side), zones(s))],

LateralApproachInitiation(a, side):
s WITH

[zones :=
IF length(base(opposite(side), s)) <= 1

AND
(first_in_seq?(s, a)

OR on_approach?(s, leader(a, landing_seq(s))))
THEN move(lez(side), base(side), zones(s))

ELSE move(lez(side), holding2(side), zones(s))
ENDIF],

Merging(a, side):
s WITH [zones := move(base(side), intermediate, zones(s))],

Exit(a):
s WITH

[landing_seq := rest(landing_seq(s)),

zones := zones(s) WITH [(intermediate) := rest(intermediate(s))]],

FinalSegment(a): s WITH [zones := move(intermediate, final, zones(s))],

Landing(a):
s WITH

[landing_seq := rest(landing_seq(s)),

zones := move(final, runway, zones(s))],

Taxiing(a):
s WITH [zones := zones(s) WITH [(runway) := rest(runway(s))]],

MissedApproach(a):
s WITH

[landing_seq := add(rest(landing_seq(s)), reassign(s, a)),

nextmahf := opposite(mahf(reassign(s, a))),

zones :=
zones(s) WITH [(final) := rest(final(s))] WITH

[(maz(mahf(a))) := add(maz(mahf(a), s), reassign(s, a))]],

LowestAvailableAltitude(a, side):
s WITH

[zones :=
IF empty?(holding3(side, s)) AND empty?(holding2(side, s))

THEN move(maz(side), holding2(side), zones(s))
ELSIF empty?(holding3(side, s))

203

THEN move(maz(side), holding3(side), zones(s))
ELSE

move
(maz(side),
holding3(side),
move(holding3(side), holding2(side), zones(s)))

ENDIF]

ENDCASES

% Import statements
IMPORTING timed_auto_lib@machine

[states, actions, enabled, trans, start, visible?]
visible(a:actions): bool = visible?(a)
reachable(s:states): bool = reachable(s)
equivalent(s,s1:states): bool = equivalent(s, s1)

END sats_decls

————————————————————————————————————–

[dt lemmas.pvs]: ———————————————————————————–

dt_lemmas : THEORY

BEGIN

IMPORTING sats_decls, list_props[Aircraft]

parity_axiom: AXIOM (FORALL (i:nat): (even?(i) IFF NOT even?(i+1)))

%% ID uniqueness for one queue
ID_queue_uniqueness(q:queue): bool =

(FORALL (i,j: nat):
i < length(q) and j < length(q) and i<j IMPLIES

nth(q,i)‘id /= nth(q,j)‘id)

%% uniqueness for one queue
queue_uniqueness(q:queue): bool =

(FORALL (i,j: nat):
i < length(q) and j < length(q) and i<j IMPLIES

nth(q,i) /= nth(q,j))

%% An aircraft that entered the landing_sequence (b, here) is preceded by
%% any aircraft that is already in the sequence (a).
dt1: LEMMA (Forall (a,b:Aircraft, q:queue):

in_queue?(a,q) AND NOT in_queue?(b,q) IMPLIES precedes?(a,b, add(q,b)))

dt2: LEMMA (FORALL (a:Aircraft, q:queue):
in_queue?(a,add(q,a)))

dt3: LEMMA (FORALL (a:Aircraft, q1,q2: queue):
in_queue?(a,q1) IMPLIES in_queue?(a,append(q1,q2)))

dt4: LEMMA (FORALL (a:Aircraft, q1,q2: queue):
in_queue?(a,append(q1,q2)) AND NOT in_queue?(a, q2) IMPLIES
in_queue?(a,q1))

dt4_2: LEMMA (FORALL (a,b:Aircraft, q: queue):
in_queue?(a,add(q,b)) AND a/=b IMPLIES
in_queue?(a,q))

204

dt5: LEMMA (FORALL (a:Aircraft, q:queue):
length(add(q,a)) = length(q) + 1)

dt6: LEMMA (FORALL (a:Aircraft, i:nat, q:queue):
NOT empty?(q) AND i<length(q) IMPLIES nth(add(q,a),i) = nth(q,i))

dt7: LEMMA (FORALL (a:Aircraft, q:queue):
NOT in_queue?(a,q) IMPLIES
(FORALL (i:nat): i < length(q) IMPLIES nth(q,i) /= a))

dt8: LEMMA (FORALL (a:Aircraft, q:queue):
nth(add(q,a),length(q)) = a)

dt10: LEMMA (FORALL (q:queue):
length(q) > 0 IMPLIES length(q) = 1+length(rest(q)))

dt11: LEMMA (FORALL (q:queue):
length(q) >= 2 IMPLIES length(rest(q)) > 0)

dt12: LEMMA (FORALL (q:queue,a:Aircraft):
empty?(q) IMPLIES first(add(q,a)) = a)

dt12_1: LEMMA (FORALL (q:queue,a:Aircraft):
NOT empty?(q) IMPLIES first(add(q,a)) = first(q)) %% proved

dt13: LEMMA (FORALL (q:queue,a:Aircraft):
length(add(q,a)) > 0 AND NOT empty?(add(q,a)))

dt14: LEMMA (FORALL (q:queue,a:Aircraft):
in_queue?(a,q) AND a/=first(q) IMPLIES in_queue?(a,rest(q)))

dt14_2: LEMMA (FORALL (q:queue, a,b:Aircraft):
precedes?(a,b,q) OR precedes?(b,a,q) IMPLIES in_queue?(a,q))

dt15_1: LEMMA (FORALL (q:queue, a,b:Aircraft):
a/=first(q) AND b/=first(q) AND NOT empty?(q) IMPLIES

precedes?(a,b,rest(q)) = precedes?(a,b,q))

dt16: LEMMA (FORALL (q:queue, a,b:Aircraft):
a/=b AND precedes?(a,b,q) IMPLIES NOT precedes?(b,a,q)) %% proved using dt15_1

dt16_1: LEMMA (FORALL (q:queue,a:Aircraft):
NOT empty?(q) IMPLIES add(rest(q),a) = rest(add(q,a)))

dt17: LEMMA (FORALL (q:queue, a,b,c:Aircraft):
precedes?(a,b,add(q,c)) AND a/=c AND b/=c IMPLIES precedes?(a,b,q))

dt18: LEMMA (FORALL (q:queue, a,b,c:Aircraft):
precedes?(a,b,q) AND a/=c AND b/=c IMPLIES precedes?(a,b,add(q,c)))

%% dt18 opposite direction of dt17 %%

dt19: LEMMA (FORALL (q:queue, a,b:Aircraft):
in_queue?(a,q) AND in_queue?(b,q) AND a/=b

IMPLIES (precedes?(a,b,q) OR precedes?(b,a,q)))

dt19_1: LEMMA (FORALL (q:queue, a:Aircraft):
in_queue?(a,q) AND a/=first(q) IMPLIES in_queue?(leader(a,q),q))

dt31: LEMMA (FORALL (q:queue, i:nat):
NOT empty?(q) AND i<length(q) IMPLIES in_queue?(nth(q,i),q))

dt20: LEMMA (FORALL (q:queue, a,b:Aircraft):
precedes?(a,b,q) AND b/=first(q) AND queue_uniqueness(q) IMPLIES

precedes?(a, leader(b,q),q) OR a = leader(b,q))

dt21: LEMMA (FORALL (q:queue, a:Aircraft): NOT precedes?(a,a,q))

dt22: LEMMA (FORALL (q:queue, a:Aircraft):

205

in_queue?(a,q) IMPLIES (EXISTS (i:nat): i<length(q) AND nth(q,i) = a))

dt23: LEMMA (FORALL (q1,q2:queue, a:Aircraft):
(in_queue?(a,q1) OR in_queue?(a,q2)) IFF in_queue?(a,append(q1,q2)))

dt23_2: LEMMA (FORALL (q1,q2:queue):
empty?(q1) AND empty?(q2) IFF empty?(append(q1,q2)))

dt24: LEMMA (FORALL (q:queue, ac:Aircraft, i:nat):
NOT empty?(q) AND
i<length(q) AND
ac = nth(q,i) AND
queue_uniqueness(q) AND
i>0
IMPLIES

leader(ac,q) = nth(q,i-1))

dt24_2: LEMMA (FORALL (q:queue, ac:Aircraft, i:nat):
NOT empty?(q) AND
i<length(q)-1 AND
ac /= first(q) AND
in_queue?(ac,q) AND
leader(ac,q) = nth(q,i) AND
queue_uniqueness(q)
IMPLIES

ac = nth(q,i+1))

dt25: LEMMA (FORALL (q:queue, ac1,ac2:Aircraft):
NOT empty?(q) AND
queue_uniqueness(q) AND
ac1/=first(q) AND
ac2/=first(q) AND
in_queue?(ac1,q) AND
in_queue?(ac2,q) AND
leader(ac1,q) = leader(ac2,q)

IMPLIES
ac1 = ac2)

dt26: LEMMA (FORALL (q1,q2:queue):
NOT empty?(q1) IMPLIES
first(append(q1,q2)) = first(q1))

dt27: LEMMA (FORALL (q:queue, i:nat):
NOT empty?(rest(q)) AND NOT empty?(q) AND
i<length(rest(q))

IMPLIES
nth(rest(q),i) = nth(q,i+1))

dt28: LEMMA (FORALL (q1,q2:queue, a:Aircraft):
append(q1, add(q2,a)) = add(append(q1,q2),a))

dt29: LEMMA (FORALL (q1,q2:queue):
NOT empty?(q1) IMPLIES

append(rest(q1),q2) = rest(append(q1,q2)))

dt30: LEMMA (FORALL (q1,q2:queue):
NOT empty?(q2) IMPLIES
append(add(q1, first(q2)), rest(q2)) = append(q1,q2))

dt32: LEMMA (FORALL (q:queue):
NOT empty?(q) AND queue_uniqueness(q) IMPLIES NOT in_queue?(first(q),rest(q)))

dt33: LEMMA (FORALL (q:queue,ac:Aircraft):
NOT empty?(q) AND ID_queue_uniqueness(q) AND ac‘id = first(q)‘id IMPLIES

NOT in_queue?(ac, rest(q)))

dt15: LEMMA (FORALL (q:queue, a,b:Aircraft):
NOT empty?(q) AND precedes?(a,b,rest(q)) AND queue_uniqueness(q)

IMPLIES precedes?(a,b,q))

206

%% lemmas immediately follow from the definition
df0: LEMMA (FORALL (side:Side, z:Zone): length(z)>=assigned(z, side))

df1: LEMMA (FORALL (side:Side, s:states): virtual(s,side)>=assigned2fix(s,side))

df2: LEMMA (FORALL (side:Side, s:states): virtual(s,side)>=actual(s,side))

df3: LEMMA (FORALL (side:Side, s:states): assigned2fix(s,side) >= assigned_approach(s,side))

df4: LEMMA (FORALL (side:Side, s:states): on_approach?(s,side) => assigned2fix(s,side) >= 1)

df5: LEMMA (FORALL (side:Side, s:states): on_approach?(s,side) => assigned_approach(s,side) >= 1)

df6: LEMMA (FORALL (side:Side, q:queue, ac: Aircraft):
(ac‘mahf /= side) IMPLIES (assigned(add(q,ac),side) = assigned(q,side)))

df7: LEMMA (FORALL (side:Side, s:states): NOT on_approach?(s,side) => assigned_approach(s,side) = 0)

df8: LEMMA (FORALL (side:Side, q:queue, ac: Aircraft):
(ac‘mahf = side) IMPLIES (assigned(add(q,ac),side) = assigned(q,side) + 1))

df9: LEMMA (FORALL (side:Side, q:queue, ac: Aircraft):
(ac‘mahf /= side) IMPLIES (assigned?(add(q,ac),side) = assigned?(q,side)))

df10: LEMMA (FORALL (side:Side, q:queue, ac: Aircraft):
(assigned(add(q,ac),side) <= assigned(q,side) + 1))

df10_1: LEMMA (FORALL (side:Side, q:queue, ac:Aircraft):
in_queue?(ac,q) AND ac‘mahf = side IMPLIES assigned(q,side)>=1)

df11: LEMMA (FORALL (side:Side, s:states, ac:Aircraft, mahf:Side):
on?(side,ac,s) AND ac‘mahf = mahf IMPLIES assigned_on(s,side,mahf)>=1)

df12: LEMMA (FORALL (side:Side, z1,z2:Zone):
NOT empty?(z1) IMPLIES
assigned(rest(z1),side) + assigned(add(z2,first(z1)),side) =
assigned(z1,side) + assigned(z2,side))

df13: LEMMA (FORALL (side:Side, z:Zone, a,b :Aircraft):
on_zone?(z,a) AND on_zone?(z,b) AND a/=b AND a‘mahf = side AND b‘mahf = side IMPLIES

assigned(z,side) >= 2)

df14: LEMMA (FORALL (side:Side, s:states, a,b:Aircraft, mahf:Side):
on?(side,a,s) AND on?(side,b,s) AND a‘mahf = mahf AND b‘mahf = mahf AND a/=b IMPLIES

assigned_on(s,side,mahf)>=2)

h3_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(LateralEntry?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a) OR
MissedApproach?(a) OR
(LowestAvailableAltitude?(a)
AND empty?(holding3(side(a),s))
AND empty?(holding2(side(a),s))))
IMPLIES

holding3(side,trans(a,s)) = holding3(side,s))

h2_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
LateralEntry?(a) OR

207

Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a) OR
MissedApproach?(a) OR
(LowestAvailableAltitude?(a)
AND empty?(holding3(side(a),s))
AND NOT empty?(holding2(side(a),s))))
IMPLIES

holding2(side,trans(a,s)) = holding2(side,s))

maz_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a))
IMPLIES

maz(side,trans(a,s)) = maz(side,s))

lez_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a) OR
MissedApproach?(a) OR
LowestAvailableAltitude?(a))
IMPLIES

lez(side,trans(a,s)) = lez(side,s))

intermediate_unchanged: LEMMA
(FORALL (s:states, a:actions):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a))

IMPLIES
intermediate(trans(a,s)) = intermediate(s))

final_unchanged: LEMMA
(FORALL (s:states, a:actions):
(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a))

IMPLIES
final(trans(a,s)) = final(s))

opposite_side_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
LateralEntry?(a) OR

208

HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
LowestAvailableAltitude?(a)) AND

side(a) = opposite(side)
IMPLIES

holding3(side,trans(a,s)) = holding3(side,s) AND
holding2(side,trans(a,s)) = holding2(side,s) AND
lez(side,trans(a,s)) = lez(side,s) AND
maz(side,trans(a,s)) = maz(side,s))

assigned_approach_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND
enabled(a,s)
IMPLIES

assigned_approach(trans(a,s),side) = assigned_approach(s,side))

on_approach?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND
enabled(a,s)
IMPLIES

on_approach?(trans(a,s),side) = on_approach?(s,side))

assigned_approach_inequality: LEMMA
(FORALL (s:states, a:actions, side:Side):

(Exit?(a) OR
Landing?(a) OR
MissedApproach?(a)) AND
enabled(a,s)
IMPLIES

assigned_approach(trans(a,s),side) <= assigned_approach(s,side))

on_approach?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side):

(Exit?(a) OR
Landing?(a) OR
MissedApproach?(a)) AND
enabled(a,s)
IMPLIES

on_approach?(trans(a,s),side) => on_approach?(s,side))

on?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND
enabled(a,s)
IMPLIES

on?(side, ac, trans(a,s)) = on?(side, ac, s))

on?_implication: LEMMA

209

(FORALL (s:states, a:actions, side:Side, ac:Aircraft):
(VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
(ac/=ac(a) AND (VerticalEntry?(a) OR LateralEntry?(a))) OR
(ac/=reassign(s,ac(a)) AND MissedApproach?(a))) AND
enabled(a,s) AND
reachable(s)
IMPLIES

on?(side, ac, trans(a,s)) => on?(side, ac, s))

on?_implication2: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
MissedApproach?(a) OR
(VerticalApproachInitiation?(a) AND ac/=ac(a))) AND
enabled(a,s) AND
reachable(s)
IMPLIES

on?(side, ac, s) => on?(side, ac, trans(a,s)))

on?_implies_on_zones?: LEMMA
(FORALL (s:states, side:Side, ac:Aircraft):

on?(side, ac, s) => on_zones?(s,ac))

on_approach?_ac_unchanged: LEMMA
(FORALL (s:states, a:actions, ac:Aircraft):
(VerticalEntry?(a) OR
LateralEntry?(a) OR
HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s)
IMPLIES

on_approach?(trans(a,s),ac) = on_approach?(s,ac))

on_approach?_ac_implication: LEMMA
(FORALL (s:states, a:actions, ac:Aircraft):
(VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
(ac/=ac(a) AND (Exit?(a) OR Landing?(a) OR MissedApproach?(a)))) AND

enabled(a,s) AND
reachable(s)

IMPLIES
on_approach?(s,ac) => on_approach?(trans(a,s),ac))

on_approach?_ac_implication2: LEMMA
(FORALL (s:states, a:actions, ac:Aircraft):
((ac/=ac(a) AND

(VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a))) OR

Exit?(a) OR
Landing?(a) OR
MissedApproach?(a)) AND
enabled(a,s) AND
reachable(s)

IMPLIES
on_approach?(trans(a,s),ac) => on_approach?(s,ac))

%% predicate on_zones? is preserved by movement of ac.
%% This is used in the proof of on_zones?_implication
on_zones?_preserved_by_move: LEMMA

(FORALL (zones:zone_map, z1,z2:z_name, ac:Aircraft):
z1/=runway AND z2/=runway AND z1/=z2 AND NOT empty?(zones(z1)) IMPLIES
on_zones?(move(z1,z2,zones),ac) => on_zones?(zones,ac))

210

on_zones?_implication: LEMMA
(FORALL (s:states, a:actions, ac:Aircraft):
((ac/=ac(a) AND

(VerticalEntry?(a) OR
LateralEntry?(a))) OR

HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Merging?(a) OR
Exit?(a) OR
FinalSegment?(a) OR
Landing?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s) AND
reachable(s)

IMPLIES
on_zones?(trans(a,s),ac) => on_zones?(s,ac))

%% auxiliary lemma for on?
on?_support: LEMMA

(FORALL (s:states, side:Side):
(NOT empty?(holding3(side,s)) IMPLIES on?(side,first(holding3(side,s)),s)) AND
(NOT empty?(holding2(side,s)) IMPLIES on?(side,first(holding2(side,s)),s)) AND
(NOT empty?(maz(side,s)) IMPLIES on?(side,first(maz(side,s)),s)) AND
(NOT empty?(maz(side,s)) AND NOT empty?(rest(maz(side,s)))

IMPLIES on?(side,first(rest(maz(side,s))),s)))

%% auxiliary lemma for on_zones?
on_zones?_support: LEMMA

(FORALL (s:states, side:Side):
(NOT empty?(holding3(side,s)) IMPLIES on_zones?(s,first(holding3(side,s)))) AND
(NOT empty?(holding2(side,s)) IMPLIES on_zones?(s,first(holding2(side,s)))) AND
(NOT empty?(maz(side,s)) IMPLIES on_zones?(s,first(maz(side,s)))) AND
(NOT empty?(maz(side,s)) AND NOT empty?(rest(maz(side,s)))

IMPLIES on_zones?(s,first(rest(maz(side,s))))))

%% from the definition of reachability
reachability_lemma: LEMMA

(FORALL (s:states, a: actions):
reachable(s) AND enabled(a,s) => reachable(trans(a,s)))

% What is implied by virtual=0
virtual_0: LEMMA

(FORALL (s:states,side:Side):
virtual(s,side) = 0 IMPLIES

empty?(holding3(side,s)) AND
empty?(holding2(side,s)) AND
empty?(lez(side,s)) AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
(Forall (a:Aircraft):
on?(opposite(side),a,s) IMPLIES mahf(a) = opposite(side)))

%% The number of aircraft on zones coincides with the number of ac in the landing sequence.
n_of_ac_coincides_lemma: LEMMA

(FORALL (s:states):
reachable(s) =>

(arrival_op(s) = length(landing_seq(s))))

%% the number of aircraft on the combined area of final and intermediate zones is
%% less than the number of aircraft in the landing sequence.
%% This lemma is used in "landing_seq_ID_uniqueness_first_final_queue_correspondence."

final_app_area_lt_seq: LEMMA
(FORALL (s:states):

reachable(s) =>

211

(LET final_approach_area = append(final(s),intermediate(s)) IN
length(final_approach_area) <= length(landing_seq(s))))

%% uniqueness
%% ID uniqueness for zones
ID_uniqueness(zones:zone_map): bool =

%% ID uniqueness on the same zone
(FORALL (i,j: nat, z:z_name):

i < length(zones(z)) and j < length(zones(z)) and i<j IMPLIES
nth(zones(z),i)‘id /= nth(zones(z),j)‘id)

AND
%% ID uniqueness between different zones
(FORALL (a,b: Aircraft, z1,z2:z_name):

z1/=z2 AND
(on_zone?(zones(z1),a) AND on_zone?(zones(z2),b)) IMPLIES
a‘id /= b‘id)

ID_uniqueness_preserved_by_move: LEMMA
(FORALL (z1,z2 :z_name, zones:zone_map):

(z1/=z2) AND NOT empty?(zones(z1)) IMPLIES
(ID_uniqueness(zones) => ID_uniqueness(move(z1,z2,zones))))

ID_uniqueness_lemma: LEMMA
(FORALL (s:states):

reachable(s) => ID_uniqueness(zones(s)))

%% uniqueness for zones
uniqueness(zones:zone_map): bool =

%% uniqueness on the same zone
(FORALL (i,j: nat, z:z_name):

i < length(zones(z)) and j < length(zones(z)) and i<j IMPLIES
nth(zones(z),i) /= nth(zones(z),j))

AND
%% uniqueness between different zones
(FORALL (a: Aircraft, z1,z2:z_name):

z1/=z2 IMPLIES
(in_queue?(a,zones(z1)) IMPLIES NOT in_queue?(a,zones(z2))))

uniqueness_lemma: LEMMA
(FORALL (s:states):

reachable(s) => uniqueness(zones(s)))

%% What is implied by the uniqueness? %%%%%%%%%%%%%%%
facts_from_uniqueness3 : LEMMA

(FORALL (s:states):
reachable(s) =>

(FORALL (z:z_name): NOT empty?(zones(s)(z)) IMPLIES
NOT in_queue?(first(zones(s)(z)), rest(zones(s)(z)))))

landing_seq_ID_uniqueness_first_final_queue_correspondence: LEMMA
(FORALL (s:states):
reachable(s) =>

(ID_queue_uniqueness(landing_seq(s)) AND
(LET final_approach_area = append(final(s),intermediate(s)) IN
FORALL (i:nat):

i<length(landing_seq(s)) AND i<length(final_approach_area) IMPLIES
nth(landing_seq(s),i) = nth(final_approach_area,i)) AND

(FORALL (a:Aircraft): on_zones?(s,a) IMPLIES in_queue?(a, landing_seq(s)))))

%% ID uniqueness lemma for the landing sequence
landing_seq_ID_uniqueness_lemma: LEMMA

(FORALL (s:states):
reachable(s) => ID_queue_uniqueness(landing_seq(s)))

%% uniqueness lemma for the landing sequence
landing_seq_uniqueness_lemma: LEMMA

(FORALL (s:states):
reachable(s) => queue_uniqueness(landing_seq(s)))

212

%% What is implied by the uniqueness? %%%%%%%%%%%%%%%
facts_from_uniqueness : LEMMA

(FORALL (s:states, side:Side, a1,a2:Aircraft):
reachable(s) =>

(((on?(side,a1,s) and on?(opposite(side),a2,s)) OR
(on?(side,a1,s) and on_approach?(s, a2)) OR
(on?(side,a1,s) and NOT empty?(final(s)) AND a2 = first(final(s))) OR
(on?(side,a1,s) and NOT empty?(intermediate(s)) AND a2 = first(intermediate(s))))

IMPLIES a1/=a2))

facts_from_uniqueness2 : LEMMA
(FORALL (s:states):
reachable(s) =>

NOT empty?(landing_seq(s)) IMPLIES
(NOT in_queue?(first(landing_seq(s)), rest(landing_seq(s)))))

facts_from_ID_uniqueness : LEMMA
(FORALL (s:states):
reachable(s) =>

(NOT empty?(landing_seq(s)) IMPLIES
NOT in_queue?(reassign(s,first(landing_seq(s))), rest(landing_seq(s)))))

facts_from_ID_uniqueness2 : LEMMA
(FORALL (s:states, a,b:Aircraft):
reachable(s) =>

((on_zones?(s,a) AND on_zones?(s,b) AND a/=b) IMPLIES
a‘id /= b‘id))

%% the first ac in the final zone is also the first in the landing_seq
first_final_lemma: LEMMA

(FORALL (s:states):
reachable(s) =>

(NOT empty?(final(s)) IMPLIES first(final(s)) = first(landing_seq(s))))

%% If an aircraft is on some zone, then it is also in the landing sequence.
queue_correspondence_lemma: LEMMA
(FORALL (s:states, a:Aircraft):

reachable(s) =>
(on_zones?(s,a) IMPLIES in_queue?(a, landing_seq(s))))

%% Auxiliary function to compute the number of aircraft assigned to one mahf in the landing seq.
assigned_seq(seq:queue, side:Side): RECURSIVE nat =

IF empty?(seq) THEN 0
ELSIF mahf(first(seq)) = side THEN 1+assigned_seq(rest(seq),side)
ELSE assigned_seq(rest(seq),side)
ENDIF
MEASURE length(seq)

df_for_assigned_seq: LEMMA
(FORALL (seq:queue,side:Side,ac:Aircraft):

assigned_seq(add(seq,ac),side) = IF ac‘mahf = side THEN assigned_seq(seq,side) + 1
ELSE assigned_seq(seq,side) ENDIF)

%% The number of ac assigned to one mahf on zones coinsides with the number of it in the landing seq.
assigned_ac_coincides_lemma: LEMMA

(FORALL (s:states, side:Side):
reachable(s) =>

(assigned2fix(s,side) = assigned_seq(landing_seq(s),side)))

%% The mahf to an aircraft is alternately assigned to right and left.
alternate_assignment_lemma: LEMMA

(FORALL (s:states, side:Side):
reachable(s) =>
NOT empty?(landing_seq(s)) IMPLIES

213

LET first_mahf = first(landing_seq(s))‘mahf IN
LET length_seq = length(landing_seq(s)) IN
(assigned_seq(landing_seq(s),side) =

IF even?(length_seq) THEN length_seq/2
ELSIF first_mahf = side

THEN (length_seq+1)/2
ELSE (length_seq-1)/2 ENDIF) AND

(FORALL (i:nat): i<length(landing_seq(s)) IMPLIES
nth(landing_seq(s),i)‘mahf =

IF even?(i) THEN first_mahf
ELSE opposite(first_mahf) ENDIF) AND

(s‘nextmahf = IF even?(length_seq) THEN first_mahf
ELSE opposite(first_mahf) ENDIF))

%% The order of entering the approach area agrees with the order in the landing sequence..
order_preserve_lemma: LEMMA
(FORALL (s:states, a,b:Aircraft):

reachable(s) =>
(precedes?(b,a,landing_seq(s)) AND on_approach?(s,a) IMPLIES
on_approach?(s,b)))

%% blocked_by?, blocked_opposite_side?, blocked_except_for_one?, ac_ready_to_approach?
%% Aircraft a cannot enter the approach area since it is blocked (preceded)
%% by aircraft b, or its mahf is assigned to the opposite side, so
%% it will not go to maz of this side.
blocked_by?(a,b:Aircraft, side:Side, s:states):bool =

mahf(a) = side OR
precedes?(b, a, landing_seq(s))

%%
blocked_side?(b:Aircraft, side:Side, s:states):bool =

Forall (a:Aircraft):
on?(side,a,s) IMPLIES blocked_by?(a,b,side,s)

%% Every aircraft on the opposite side is blocked by aircraft b, or its mahf is
%% opposite side.
blocked_opposite_side?(b:Aircraft, side:Side, s:states):bool =

blocked_side?(b, opposite(side), s)
%Forall (a:Aircraft):
% on?(opposite(side),a,s) IMPLIES blocked_by?(a,b,side,s)

%%
blocked_side_minus_1?(b:Aircraft, side:Side, s:states):bool =

EXISTS (c:Aircraft):
on?(side,c,s) AND mahf(c) = opposite(side) AND
FORALL (a:Aircraft):

on?(side,a,s) AND a /= c IMPLIES blocked_by?(a,b,side,s)

%% Every aircraft on the opposite side is blocked by aircraft b, or its mahf is
%% opposite side, except for one aircraft.
blocked_except_for_one?(b:Aircraft, side:Side, s:states):bool =

%blocked_side_minus_1?(b, opposite(side), s)
EXISTS (c:Aircraft):

on?(opposite(side),c,s) AND mahf(c) = side AND
FORALL (a:Aircraft):

on?(opposite(side),a,s) AND a /= c IMPLIES blocked_by?(a,b,opposite(side),s)

%% this auxiliary predicate is used in lemma 2, case 6/7.
%% Is there an aircraft that is ready to go to the approach
%% and goes to opposite side if it missed the approach?
%% Here, ’ready’ means that it precedes all aircrafts on the opposite side
ac_ready_to_approach?(side:Side, s:states): bool =

(EXISTS (a:Aircraft):
mahf(a)=side AND
on?(opposite(side),a,s) AND
(FORALL (b:Aircraft):

on?(side,b,s) IMPLIES precedes?(a,b,landing_seq(s))))

214

%% action specific lemmas
%% When NOT on_approach?(s,side) holds, an aircraft that missed appraoch goes
%% to the opposite side of maz, thus maz of this side does not change.
MissedApproach_going_opposite : LEMMA

(FORALL (s:states, a:actions, side:Side):
MissedApproach?(a) AND
NOT on_approach?(s,side) AND
enabled(a,s)

IMPLIES
maz(side,trans(a,s)) = maz(side,s))

VerticalEntry_LateralEntry_lemma : LEMMA
(Forall (s:states, a:actions):

(VerticalEntry?(a) OR LateralEntry?(a)) AND
enabled(a,s) AND
reachable(s)
IMPLIES

(NOT in_queue?(ac(a), landing_seq(s))) AND
(FORALL (ac:Aircraft): on_zones?(s,ac) => ac/=ac(a)))

HoldingPatternDescend_lemma : LEMMA
(FORALL (s:states, a:actions):

HoldingPatternDescend?(a) AND
enabled(a,s) AND
reachable(s)
IMPLIES
(length(holding3(side(a),trans(a,s))) = length(holding3(side(a),s)) - 1) AND
(length(holding3(side(a),s)) <= 1 IMPLIES empty?(holding3(side(a),trans(a,s)))) AND
(first(holding3(side(a),s)) = first(holding2(side(a),trans(a,s)))) AND
(NOT empty?(holding2(side(a),trans(a,s)))))

VerticalApproachInitiation_lemma : LEMMA
(FORALL (s:states, a:actions):

VerticalApproachInitiation?(a) AND
enabled(a,s) AND
reachable(s)
IMPLIES
length(holding2(side(a),trans(a,s))) = length(holding2(side(a),s)) - 1 AND
(FORALL (side:Side) : NOT on_approach?(s, side) IMPLIES

assigned_approach(trans(a, s), side) <= 1) AND
(FORALL (side:Side) : (NOT mahf(ac(a)) = side) IMPLIES

on_approach?(trans(a,s), side) = on_approach?(s, side)) AND
(length(holding2(side(a),s)) + length(holding3(side(a),s)) <= 1 IMPLIES
empty?(holding2(side(a),trans(a,s))) AND empty?(holding3(side(a),trans(a,s)))) AND
(((NOT (empty?(holding2(side(a), trans(a, s)))) OR

NOT (empty?(holding3(side(a), trans(a, s))))) AND
length(holding3(side(a), s)) <= 1 AND
length(holding2(side(a), s)) <= 1)
IMPLIES
(NOT (empty?(holding2(side(a), s))) AND
NOT (empty?(holding3(side(a), s))))) AND

(length(holding2(side(a), s)) <= 1 IMPLIES empty?(holding2(side(a), trans(a,s)))) AND
(FORALL (b: Aircraft): on?(opposite(side(a)),b,s) AND mahf(ac(a)) = opposite(side(a))

IMPLIES (blocked_except_for_one?(b,opposite(side(a)),s) =>
blocked_opposite_side?(b,opposite(side(a)),trans(a,s)))) AND

(on_approach?(trans(a,s),ac(a))))

LateralApproachInitiation_lemma : LEMMA
(FORALL (s:states, a:actions):

LateralApproachInitiation?(a) AND
enabled(a,s) AND
reachable(s)
IMPLIES
(FORALL (side:Side) : NOT on_approach?(s, side) IMPLIES

assigned_approach(trans(a, s), side) <= 1) AND
(empty?(holding2(side(a),s)) AND

215

empty?(holding3(side(a),s)) AND
empty?(maz(side(a),s)) AND
length(lez(side(a),s)) <= 1

IMPLIES
((NOT on_approach?(s,opposite(side(a))) AND
on_approach?(trans(a,s),opposite(side(a)))) IMPLIES
(FORALL (b:Aircraft):

(blocked_opposite_side?(b,opposite(side(a)),trans(a,s)))) AND
(ac_ready_to_approach?(opposite(side(a)), s))) AND

(NOT (length(base(opposite(side(a)),s)) <= 1 AND
(first_in_seq?(s,ac(a)) OR on_approach?(s,leader(ac(a),landing_seq(s)))))

IMPLIES
(FORALL(b:Aircraft): blocked_except_for_one?(b, opposite(side(a)),s) IMPLIES

blocked_except_for_one?(b, opposite(side(a)),trans(a,s))) AND
(ac_ready_to_approach?(opposite(side(a)),trans(a,s))

IMPLIES ac_ready_to_approach?(opposite(side(a)),s)))))

MissedApproach_lemma : LEMMA
(FORALL (s:states, a:actions):
MissedApproach?(a) AND
enabled(a,s) AND
reachable(s)
IMPLIES
%% MissedApproach_going_opposite
(FORALL (side:Side) :

(NOT on_approach?(s,side) IMPLIES maz(side,trans(a,s)) = maz(side,s))) AND
LET ma_mahf = mahf(ac(a)) IN
(length(maz(ma_mahf,trans(a,s))) = length(maz(ma_mahf,s)) + 1) AND
(maz(opposite(ma_mahf),trans(a,s)) = maz(opposite(ma_mahf),s)) AND
(on_approach?(trans(a,s),opposite(ma_mahf)) = on_approach?(s,opposite(ma_mahf))) AND
(on_approach?(s,ma_mahf)) AND
(assigned_approach(s, ma_mahf) <= 1 IMPLIES NOT on_approach?(trans(a,s), ma_mahf)) AND
(assigned_approach(trans(a,s),ma_mahf) = assigned_approach(s,ma_mahf) -1) AND
(on?(ma_mahf, reassign(s,ac(a)), trans(a,s))))

LowestAvailableAltitude_lemma: LEMMA
(FORALL (s:states, a:actions):
LowestAvailableAltitude?(a) AND
enabled(a,s) AND
reachable(s)
IMPLIES
(IF empty?(holding3(side(a),s)) AND empty?(holding2(side(a),s)) THEN

length(holding2(side(a),trans(a,s))) = length(holding2(side(a),s)) + 1 AND
holding3(side(a),trans(a,s)) = holding3(side(a),s) AND
first(holding2(side(a),trans(a,s))) = first(maz(side(a),s))

ELSIF empty?(holding3(side(a),s)) THEN
holding2(side(a),trans(a,s)) = holding2(side(a),s) AND
length(holding3(side(a),trans(a,s))) = length(holding3(side(a),s)) + 1 AND
first(holding3(side(a),trans(a,s))) = first(maz(side(a),s))

ELSE
length(holding2(side(a),trans(a,s))) = length(holding2(side(a),s)) + 1 AND
length(holding3(side(a),trans(a,s))) = length(holding3(side(a),s)) AND
(empty?(holding2(side(a),s)) =>

first(holding2(side(a),trans(a,s))) = first(holding3(side(a),s))) AND
(length(holding3(side(a),s))<=1 IMPLIES

first(holding3(side(a),trans(a,s))) = first(maz(side(a),s)))
ENDIF) AND
(length(maz(side(a),trans(a,s))) = length(maz(side(a),s)) - 1) AND
(length(maz(side(a),s)) >= 1 IMPLIES

first(maz(side(a),trans(a,s)))=first(rest(maz(side(a),s)))))

%% Auxiliary predicates to express that every ac on the opposite side has the opposite side as the mahf
opposite_mahf_opposite_side?(side:Side, s:states):bool =

Forall (a:Aircraft):
on?(opposite(side),a,s) IMPLIES a‘mahf = opposite(side)

%% Auxiliary predicates to express that every ac except for one on the opposite side has
%% the opposite side as the mahf

216

opposite_mahf_except_for_one?(side:Side, s:states):bool =
EXISTS (c:Aircraft):

on?(opposite(side),c,s) AND mahf(c) = side AND
FORALL (a:Aircraft):

on?(opposite(side),a,s) AND a /= c IMPLIES a‘mahf = opposite(side)

%% What is implied by assigned2fix(s,side) <= 2 ?
assigned2fix_lemma: LEMMA

(FORALL (s:states, side:Side):
assigned2fix(s,side) <= 2
IMPLIES
((((EXISTS (a:Aircraft): on?(side,a,s) AND mahf(a) = side) AND

on_approach?(s,side)) OR
(assigned_approach(s,side) >= 2))

IMPLIES
opposite_mahf_opposite_side?(side,s)) AND

(on_approach?(s,side) AND ac_ready_to_approach?(side, s)
IMPLIES

opposite_mahf_except_for_one?(side,s)))

%% What is implied by virtual(s,side) < 2 ?
virtual_lt_2_lemma: LEMMA

(FORALL (s:states, side:Side):
virtual(s,side) < 2

IMPLIES
((EXISTS (ac:Aircraft): on?(opposite(side),ac,s) AND mahf(ac)=side)

IMPLIES
empty?(holding2(side,s)) AND opposite_mahf_except_for_one?(side, s)) AND

(NOT empty?(holding2(side,s)) IMPLIES opposite_mahf_opposite_side?(side, s)))

%% Lemmas on blocked_by?, blocked_opposite_side?
blocked_by?_unchanged: LEMMA

(FORALL (s:states, a:actions, side:Side, ac1:Aircraft, ac2:Aircraft):
(HoldingPatternDescend?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s)
IMPLIES
blocked_by?(ac1,ac2,side,trans(a,s)) = blocked_by?(ac1,ac2,side,s))

blocked_opposite_side?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND
enabled(a,s)
IMPLIES

blocked_opposite_side?(ac,side,trans(a,s)) =
blocked_opposite_side?(ac,side,s))

blocked_opposite_side?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(VerticalEntry?(a) OR
LateralEntry?(a) OR
VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a) OR
((Exit?(a) OR Landing?(a) OR MissedApproach?(a)) AND
(on?(side,ac,s)))) AND
on_zones?(s,ac) AND
enabled(a,s) AND
reachable(s)
IMPLIES

217

(blocked_opposite_side?(ac,side,s) =>
blocked_opposite_side?(ac,side,trans(a,s))))

%% The following two lemmas state why we focus on blocked_opposite_side?
blocked_assigned_approach : LEMMA

(FORALL (s:states, a:actions, side:Side, ac:Aircraft):
(VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a)) AND

side(a) = opposite(side) AND
blocked_opposite_side?(ac,side,s) AND
enabled(a,s) AND
reachable(s) AND
on?(side,ac,s)
IMPLIES

assigned_approach(trans(a,s),side) = assigned_approach(s,side))

blocked_on_approach : LEMMA
(FORALL (s:states, a:actions, side:Side, ac:Aircraft):

(VerticalApproachInitiation?(a) OR
LateralApproachInitiation?(a)) AND

side(a) = opposite(side) AND
blocked_opposite_side?(ac,side,s) AND
enabled(a,s) AND
reachable(s) AND
on?(side,ac,s)
IMPLIES

on_approach?(trans(a,s),side) = on_approach?(s,side))

%% Lemmas on ac_ready_to_approach? and blocked_except_for_one?
ac_ready_to_approach?_unchanged: LEMMA

(FORALL (s:states, a:actions, side:Side):
(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s) AND
reachable(s)

IMPLIES
ac_ready_to_approach?(side,trans(a,s)) =
ac_ready_to_approach?(side,s))

ac_ready_to_approach?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side):

(Exit?(a) OR
Landing?(a) OR
(MissedApproach?(a) AND mahf(ac(a)) = side) OR
((((VerticalEntry?(a) OR LateralEntry?(a)) AND

side(a)=opposite(side)) OR
(MissedApproach?(a) AND mahf(ac(a)) = opposite(side))) AND
EXISTS (ac:Aircraft): on?(side,ac,s)) OR
(VerticalApproachInitiation?(a) AND
side(a) = opposite(side))) AND

enabled(a,s) AND
reachable(s)

IMPLIES
(ac_ready_to_approach?(side,trans(a,s)) => ac_ready_to_approach?(side,s)))

blocked_except_for_one?_unchanged: LEMMA
(FORALL (s:states, a:actions, side:Side, b:Aircraft):

(HoldingPatternDescend?(a) OR
Merging?(a) OR
FinalSegment?(a) OR
Taxiing?(a) OR
LowestAvailableAltitude?(a)) AND

enabled(a,s)
IMPLIES

blocked_except_for_one?(b,side,trans(a,s)) =

218

blocked_except_for_one?(b,side,s))

blocked_except_for_one?_implication: LEMMA
(FORALL (s:states, a:actions, side:Side, b:Aircraft):

((Exit?(a) OR
Landing?(a) OR
(MissedApproach?(a) AND
mahf(ac(a)) = opposite(side)) OR
(VerticalApproachInitiation?(a) AND
mahf(ac(a)) = opposite(side) AND
side(a) = opposite(side)) OR
((VerticalEntry?(a) OR LateralEntry?(a)) AND

side(a)=opposite(side)))AND
on?(side,b,s) AND
enabled(a,s) AND
reachable(s))
IMPLIES

blocked_except_for_one?(b,side,s) =>
blocked_except_for_one?(b,side,trans(a,s)))

blocked_implies_not_ready : LEMMA
(FORALL (s:states, a:actions, side:Side, b:Aircraft):

blocked_opposite_side?(b, side, s) AND
on?(side, b, s) AND
reachable(s)

IMPLIES
NOT ac_ready_to_approach?(side,s))

VAI_ac_ready: LEMMA
(FORALL (s:states, a:actions):
VerticalApproachInitiation?(a) AND
mahf(ac(a)) = opposite(side(a)) AND
enabled(a,s) AND
reachable(s)
IMPLIES
ac_ready_to_approach?(opposite(side(a)), s))

END dt_lemmas

—————————————————————————————————————–

[sats invariants.pvs]: —————————————————————————

sats_invariants : THEORY

BEGIN

IMPORTING dt_lemmas

%%%%% invariants from Cesar’s paper %%%

Inv1(s:states):bool = arrival_op(s) <= 4

Inv2(s:states):bool = FORALL (side:Side): actual(s,side) <= 2

Inv3(s:states):bool = FORALL (side:Side):
length(holding3(side,s)) <= 1 AND length(holding2(side,s)) <= 1

Inv4(s:states):bool = FORALL (side:Side): length(maz(side,s)) <= 2

Inv5(s:states):bool = FORALL (side:Side): length(lez(side,s)) <= 1

Inv6(s:states):bool = FORALL (side:Side):
NOT(empty?(lez(side,s))) IMPLIES empty?(holding2(side,s)) AND

empty?(holding3(side,s)) AND
empty?(maz(side,s))

219

Inv7(s:states):bool = FORALL (side:Side): assigned2fix(s,side)<=2

%%%%% Lemmas to prove invariants %%
%%Lemma 1

Lem1(s:states):bool = FORALL (side:Side):
NOT (empty?(lez(side,s))) IMPLIES

empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_opposite_side?(first(lez(side,s)),side,s)

%%Lemma 2
%% Case 1: two aircrafts in maz
Lem2_case1(s:states,side:Side):bool =

length(maz(side,s))=2 IMPLIES
empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(maz(side,s)) IN %% first aircraft in maz
LET a2 = first(rest(maz(side,s))) IN %% second aircraft in maz
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% Case 2: one aircrafts in maz and some aircraft with mahf side is on approach.
Lem2_case2(s:states,side:Side):bool =

length(maz(side,s))=1 AND on_approach?(s,side) IMPLIES
assigned_approach(s,side) <= 1 AND
LET a1 = first(maz(side,s)) IN
blocked_opposite_side?(a1,side,s)

%% Case 3: one aircraft in maz and some aircraft is in holding2/3
Lem2_case3(s:states,side:Side):bool =

length(maz(side,s))=1 AND
(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s))))

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
NOT on_approach?(s,side) AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

LET a2 = first(maz(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% Case 4: some aircraft with mahf side is on approach, and
%% some aircraft is on hoding2/3.
Lem2_case4(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
on_approach?(s,side)

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
assigned_approach(s,side) <= 1 AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

blocked_opposite_side?(a1,side,s)

%% Case 5: both holding2 and holding3 are not empty.
Lem2_case5(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) AND NOT (empty?(holding3(side,s)))) IMPLIES
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(holding2(side,s)) IN
LET a2 = first(holding3(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% Case 6: some aircraft with mahf side is on the opposite side and

220

%% it precedes an aircraft in h2/h3
Lem2_case6(s:states,side:Side):bool =

LET a1 = IF NOT (empty?(holding2(side,s)))
THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
ac_ready_to_approach?(side,s)

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_except_for_one?(a1,side,s)

%% Case 7: one aircraft in maz and some aircraft with mahf side is on the opposite side.
Lem2_case7(s:states,side:Side):bool =

LET a1 = first(maz(side,s)) IN
length(maz(side,s))=1 AND
ac_ready_to_approach?(side,s)

IMPLIES
blocked_except_for_one?(a1,side,s)

%% Lemma 2: combination of 7 cases, and invariants 3 and 4.
Lem2(s:states):bool =

FORALL (side:Side):
Inv3(s) AND Inv4(s) AND
Lem2_case1(s,side) AND
Lem2_case2(s,side) AND
Lem2_case3(s,side) AND
Lem2_case4(s,side) AND
Lem2_case5(s,side) AND
Lem2_case6(s,side) AND
Lem2_case7(s,side)

%% define invariants, lemmas in the order of the proof %%%%%%%%%%%%%%%%%%

Invariant_1: LEMMA (FORALL (s:states): reachable(s) => Inv1(s));

Invariant_7: LEMMA (FORALL (s:states): reachable(s) => Inv7(s));

Invariant_5: LEMMA (FORALL (s:states): reachable(s) => Inv5(s));

Lemma_1: LEMMA (FORALL (s:states): reachable(s) => Lem1(s));

Invariant_6: LEMMA (FORALL (s:states): reachable(s) => Inv6(s));

%% The following lemma is used in the proof of Lemma_2, in order to prove Cases 6 and 7.
Lemma_2_aux: LEMMA (FORALL (s:states, a:actions, side:Side, ac:Aircraft):

VerticalApproachInitiation?(a) AND
side(a) = opposite(side) AND
Inv3(s) AND Inv4(s) AND
Lem2_case1(s,side) AND
Lem2_case3(s,side) AND
Lem2_case5(s,side) AND
ac_ready_to_approach?(side,s) AND
(EXISTS (ac:Aircraft): on?(side,ac,trans(a,s)) AND mahf(ac) = opposite(side)) AND
reachable(s) AND
enabled(a,s)
IMPLIES

blocked_except_for_one?(ac,opposite(side),trans(a,s)))

Lemma_2: LEMMA (FORALL (s:states): reachable(s) => Lem2(s));

Invariant_3: LEMMA (FORALL (s:states): reachable(s) => Inv3(s));

Invariant_4: LEMMA (FORALL (s:states): reachable(s) => Inv4(s));

Invariant_2: LEMMA (FORALL (s:states): reachable(s) => Inv2(s));

END sats_invariants

221

————————————————————————————————–

222

