Event Order Abstraction for Parametric Timed Verification

Shinya Umeno,
CSAIL, Massachusetts Institute of Technology, Cambridge MSA
umeno@csail.mit.edu

Abstract. We present a new abstraction technigesent the system model to a more tractable one such as an Alur-
order abstraction(EOA), for parametric safety verifica-Dill timed automaton [1] and model-check the reduced
tion of real-time systems in which “correct orderings @ystem (using UPPAAL [7] for instance); or Zg@ramet-
events” needed for system correctness are preservedigyerification) Treat the timing parameters as uninter-
timing dependent behavior of the systems. By using EO(€ted constants, find an appropriate set of constraints for
one can separate the task of verifying a system into tf{f¢ iming parameters, and prove or mechanically check
parts: 1. A derivation of timing parameter constraints f e correctnesg under the constramt:_:, [10, 14, 16]. The
irst approach is usually less expensive than the second

correct orderings of events in the system; and 2. A saf%{;)(e with respect to both the computational cost and the

property verification of the system given that those CAmount of human interaction. However, the results ob-

rect qrderings are preserved.- We first. identify bad,e\,"?gﬁ'led from the second approach give us more informa-
orderings. Then we automatically derive a set of timingy, apout the allowed parameter sets, and may give an
constraints under which the system does not exhibit §\¢gineer more freedom of parameter choices.

identified bad event orderings. In parallel to a deriva- |y this paper, we present a new abstraction technique,
tion of timing constraints, by using an ordinary untimegyent order abstractiofEOA), for parametric safety ver-
model-checking, we examine whether a discretized sjfication of the above described class of real-time sys-
tem model in which all timing behaviors are abstracteédms in which correct orderings of events are critical for
away satisfies a desirable safety property under the emrectness. By using EOA, one can separate the task
sumption that the identified bad event orders occur in abverifying a system into two parts: 1. A derivation
system execution. We successively refine this assump@brfiming parameter constrains for correct orderings of
by extracting additional bad event orders from a cou@vents in the system; and 2. A safety property verifica-
terexample obtained from a model-checking. When W@n of the system given that those correct orderings are
successfully model-check the discretized model under{gServed. A parametric verification of a real-time sys-

ordering assumption and derive timing constraints for tH&f" USiNg EOA is conducted in the following steps. First,
we identify “bad” event orders that we want to exclude

ordering assumption, we have obtained a sufficient Setfr%m the system executions. This can be done by simu-

timing c_onstraints under_ which the system executes C%rt'ing the underlying system, or by conducting a model-
rgctly with respect t9 agven safety property. W_e Sum”@ﬁecking for a “discretized” model of the system in which
rize three case studies, a train-gate system, a biphase @kkming constraints are removed, and obtaining a coun-
protocol, and the Fischer mutual exclusion algorithm. terexample. We express bad event orders by a simple
. language that can express an order of events and some
1 Introduction types of repetition of events. Next, by a scheme that we
There are real-time systems whose timing dependent Wik present in the paper, we automatically derive a set
havior is used to ensure “correct orderings of events” thedttiming constraints under which bad event orders are
appear in its execution (for example, a biphase mark pret exhibited. In parallel to a timing constraint deriva-
tocol [10], the Fischer mutual exclusion algorithm ([8}jon, we check whether or not the discretized model of
Section 24.2), and the IEEE 1394 root contention protod¢be system satisfies a desirable safety property under the
[11]). For these systems, certain timing constraints m@gsindition that the model does not exhibits the specified
hold for correctness. To verify the correctness of thelsad event orders. We conduct this check by construct-
systems, a verification engineer or researcher typicdthg a monitot that raise a flag when one of the specified
follows one of the following two approaches: Ifixéd- bad eventorders is exhibited, and model-checking the dis-
parameter verification By fixing the timing parameterscretized model with this monitor under the condition that

(such as delays or time deadlines) in the system, reduce

twe manually constructed monitors for the case studies preden the
*To be presented at the Second Workshop on Event-Based Sesnapril paper (since the construction was straightforward foretesse studies), but

21st, 2008. St. Louis. USA. The paper first appears online junil Ath, 2008. we are planning to develop a monitor construction tool toamek automation

The full version of the paper has been submitted for pulitinat of the verification process.

the monitor does not raises a flag in an underlying €gs, a train-gate system, a biphase mark protocol that has
ecution (in Linear Temporal Logic (LTL) [9], this con-been studied in several verification papers (for example,
dition can be represented Wyl(—Monitor.flag)) = [10, 14]) and the Fischer mutual exclusion algorithm ([8],
(O(—DiscretizedM odel.bad)))). Lastly, if the model- Section24.2). We conclude in Section 6.

checking is completed with a positive answer, we haye .

obtained a set of timing constraints under which the sy&- Time-Interval Automata

tem satisfies the given safety property. If we obtainge ime-interval automat4TIA) framework is an exten-
counterexample, then we extract another bad event orggh of the 1/0 automata (IOA) framework [8]. An I/O
from it, and repeat the same process until we SUCCESromaton is a guarded-command style transition system
fully model-check the discretized model. We extract a bag, istinguished input, output, and internal actions. In
event order manually, since we need some human '”S'%ﬁnally with the TIA framework, one can specify the

to do so. lower and upper time bounds on the interval between one
Related works: Some of the existing model-checkergction and its following actions for an underlying 1/O au-
for real-time systems (MTECH [5], RED [15], TReX [2], tomaton. A time bound for actiom and actions in3 is
LPMC [12], and an extension of UPPAAL [6]) alloau- represented as an interval in the foffnu]. This bound
tomatic synthesisf timing parameters for a given desirrepresents that, for any time of occurrengeof action
able property: these tools automatically derive condsain, No action inB occurs beford + t,, and at least one
on timing parameters for the system to satisfy a givégtion in B is performed before or at + ¢,. When we
property. The main differences of EOA from the exisélefine such atime bourjtl u] between an actiom and set
ing automatic constraint derivation tools listed above adgactions3, we require that at least one actionfhbe
the following three: First, to use EOA, the user has to prerabled aftet is performed, and continue being enabled
vide a set of desirable ordering of events to be excludétil b is performed. In this way, we make sure thas
in the system. Second, EOA can treat a class of systdfitieed enabled in interval + t,,u + t,]. An interval-
that may exhibit an unbounded number of repetitions lpund magspecifies this time bound. The special symbol
events. Third, when doing successive refinements by dsis used to express the time bound on the interval be-
ing EOA, each abstracted model constructed in thesetigeen the system start time and the time an action in the
finements is a completely discrete transition system. T$Recified set occurs. An interval-bound map by itself may
existing parametric model-checkers listed above use a fapt satisfy requirements to express a meaningful bound
ward and backward reachability analysis for a model wiffer example, the specified lower bound is no greater than
symbolically represented states. Thus, if an underlyitite specified upper bound). We say that an interval-bound
parametric model has an unbounded loop that involveap isvalid if it satisfies the requirements (formal defini-
evolution of continuous variables, then this reachabilitigns for the TIA framework appear in the full version of
analysis does not terminate, and therefore the verificatibis paper [13]).
attempt fails (for example, in [5], Section 4.2, the au-

thors stated that they had to modify a model of a bipha gflnltlon 1 (Time-interval automaton). A time-interval

mark protocol so that it exhibits no unbounded Ioop"ilummaton(A’ b) is an /O automatond together with a

The third difference implies that by using EOA, the ver}{‘;JIIiCI interval-bound map for A.

fier can directly employ existing verification teChniq“eéefinition 2 (Timed execution). Aimed executiorof a

for a discrete transition system. In addition, since Flﬁ?ne—interval automatoiA, b) is a (possibly infinite) se-

model-checking process of EOA does not have to MaNRfliencea = s, (m1,t1), 51, (M2, t2), - -- Where thes;’s

late linear inequalities directly like the existing pardree ., states ofl. ther.’s are actions ofd. and thet.’s are
timed system model-checkers, EOA does not suffer frq esinR>0: S’O is ar% initial state ofd: aﬁd for anyyl' >1

the “dimensionality” problem: an automa_tic synthesis 1T, ,)’ is a valid transition om’andt» < t»+1._Wé
these model-checkers rapidly becomes intractable as reg}uir]e a timed execution to satisij_thé upper and

Inumbedr of parameter grows ([5], Section 5. LesSoRRver bound requirements expressedbla formal defi-
earned). nition of these requirements appear in [13]).

_ The rest_of the paper is organized as foIIows._ In Sec-p composition of multiple TIA is defined in a way sim-
tion 2, we introduce a new automaton framewdikie- 5y g that of ordinary I/O automata. Interval-bound maps

interval automata The framework is an extension of th%leA are combined by using a union of maps (by regard-
I/0 automata framework [8], and with this fram(—:‘worlﬁng maps as relations).

one can specify lower and upper time bounds between

one action and its succeeding actions. In Section 3, Eeample 1 (Time-Interval Automaton). We describe an

explain how we specify event orders. Section 4 is devotexample of time-interval automata. The example is in-
to presenting a scheme of an automatic timing constraspired from railroad crossing problems [4]. The example
derivation. Section 5 presents case studies of paramagiconstructed from a composition of a train automaton
verification using EOA. We summarize three case stu@Hgure 1) and a gate automaton (Figure 2). An informal

2

Automaton Train(r, R, p, P: Real) where

0<r<RAOLp<LP
signature
output Request
output Pass
states
requested: Bool := false;
transitions
output Request
pre —requested
eff requested := true;
output Pass
eff requested = false;

bounds:
b(L, {Request}) = [r, R];
b(Pass, {Request}) = [r, R];
b(L, {Pass}) = [p, PJ;
b(Pass, {Pass}) = [p, PJ;

Automaton Gate(d, A, 7, T, ¢, C: Real) where
0<6<A0<TLT,0<c<C
signature

input Request
output Close
output Open
output Check(result: Bool)
states
open: Bool = true;
train_requested: Bool ;= false;
check_succeeded: Bool := false
transitions
input Request
eff train_requested := true;
output Close
pre check_succeeded A open
eff open ;= false;
output Open
pre —open
eff open ;= true;
train_requested := false;

check_succeeded := false;
output Check(result)
pre —check_succeeded A result = train_requested
eff check_succeeded := train_requested;

Figure 1: Train automaton

description of the problem we want to solve is the follow-
ing. A train is about to pass the railroad crossing with a
gate. The gate is supposed to be open except for the time (L. {Check(true), Check(false)}) = [3, AJ;

that the train passes the crossing, so that cars can cross the b(Check(false), {Check(true), Check(false)}) = [3, Al;
railroad. When the train gets close to the crossingg-it b(Close, {Check(true), Check(false)} = [5, A];
questdo close the gate. The gate needs to be closed atthe b(Check(irue), {Close}) = [r, T];

time the train passes the crossing. The railroad actually b(Close, {Open}) = [c, C;

forms a circle, and thus the train passes the railroad cross-=
ing cyclically. After the gate becomes open, it becomes
closed after a bounded time interval.

The actions of thelrain automaton models actionse within [, A]. Once a check succeeds, the gate automa-
taken by the train in the railroad. THeequest action ton stops checkingain_requested, but resumes it within
represents an close request made by the train to the gate\] after the gate becomes closed. The gate becomes
ThePass action represents that the train passes the cragesed Close action) within the time intervalr, T after
ing. The automaton has four bounds for these two acsuccessful check. The gate becomes open aggiar(
tions. The first oned(L, {Request}) = [r, R]) and the action) within the time intervalc, C| after it becomes
second onei(Pass, {Request}) = [r, R]) say that the closed.

Request action will be performed within the time inter- The safety property that we want to verify is that the
val [r,] after the system starts, and every time after th@in passes the crossing only when the gate is closed. We
train passes the crossing, respectively. The third bousgk a monitor automatdvionitor that monitors output ac-
(b(L, {Pass}) = [p, P]) and the forth boundb(Pass, tionsPass, Close, andOpen from Train andGate, and
{Pass}) = [p, P]) say that the Pass action will be perset its state variablbad to true if Pass occurs when the
formed within the time intervalp, P] after the system gate is open. The invariant (safety property) we want to
starts, and every time after the train passes the crossitgack is: for any reachable stateTodin||Gate||Monitor,
respectivel¥ The gate automaton described in Figure Monitor.bad = false.

models a gate system that uses a busy-wait loop for check- o

ing whether a request has been made. The gate autofa- Specifying Event Orders

ton cannot immediately know the arrival of an reques this section, we introduce a formal way of specifying
Instead, a request information is stored in a state Vagj event order that needs to be excluded for system cor-
abletrain_requested, and the gate automaton needs {@ciness. We first consider a simple way of specifying an

repeatedly check this variable (expressed by a succesgfidnt order, and then extend an event order specification
check,Check(true), and a failing checkCheck(false)). - py introducing “don’t-care” events.

We set the time interval between two repeated checks tQ\, event order (without “don’t-care”) simply specifies

the order of consecutive actions in an execution of a TIA.

2We could, for example, think that a train is moving with a bded veloc- For examp|e the event ordeRéquest—Pass“ for the au-
ity within [vmin, Ymaz], @and the length of the railroad 5. The time bound ’

of [p, P] for the pass event is equivalent to saying that= L/vmaq. and tomato_n mam‘ ’G_ate) shown in Example 1 matches any
P =L/vmin. execution of {rain||Gate) that contains &equest ac-

bounds:

Figure 2: Gate automaton

(eo) e: e: es ea

tion immediately followed by @ass action. An event

order may start with & symbol, which specifies that the ‘ ‘
event order matches with a finigeefix of an execution of o 4
an underlying automaton. In other words, an event order , .., =a :
that start with L specifies the very first sequence of events @w2v: —a

1 — check(false) — Request — Check(true) — Pass

; g onani | =4 | ‘
that occurs after the automaton starts executing. . By : —=T
g (P01 .7—‘<P ‘ ‘
®oz2p: T
(P.[0.3]) t —
Example 2 (Event order). An example of (o4 i : =P
event orders that we want to exclude in T S :

G101 p—=2—y
Co2); | - |
@man: | = |

Train||Gate||Monitor discussed in Example 1 is
1 -Check(false)-Request-Check(true)-Pass. In this event &
order, the gate module first failed to detect a request frofn
the train since a request has not been made yet. After the™"*™
train makes a request, the gate module succeeds to detefiire 3: Upper and lower bounds for the event orHer

it, and starts closing the gate. However, the gate close . L .
request is detected too late relative to the speed of closthg Deriving Timing Constraints

the gate, and consequently the train passes the crosgingis section, we present a scheme to derive a set of tim-
before the gate becomes closed (that is, befor€tbee g constraints to exclude an execution that matches with
event occurs). a given event order.

Given an event ordeF’ and a bound map of a TIA,

For a system that exhibits an unbounded repetitionvﬁ? first derive the upper and Iower_ bounds between the
events (such as the train-gate example in Example 1 arie of occurrence of two events IBy. f_rom the up-.
biphase mark protocol that we study in Section 5), som&r and lower bound condltlo_ns for a tlme_d execution
event orders to be excluded cannot be represented TIA. They are tagged with the event-index inter-

form of a simple event order like the ones we consid\é?‘r%or which they are derived (the. symbol is treated

earlier in this section. Consider the event orderPass” 25 the zero-th everth).. An upper bound for an event-

for (Train || Gate). This event order needs to be excludefdeX intervallg, j] is constructed frc_)m the fact that a par-
for an obvious reason: the train passes the crossing %LHar eve‘nt_dc_)es not appean [i, j], whereas a Io_wer
before the train requests that the gate be closed. C?Bﬂl—md forli, j] is constructed from the fact that particular
sidering that the gate is doing a busy-loop checking o yents appear atand;. _An upper bounck and a Iower_
request, thi®ass event can possibly be preceded by m ound! is constructed in a way tha_t, for any execution
tiple failing checks Check(false)). Indeed, the number® = 0(71,t1)s1 - that matches witl = ejez -~ -,

of possible failing checks that precede ta&ss event is (possmly with an IES), the matched supsequence_ of ac-
unbounded when the relation betweem\, r, and R is tlonsdﬁ :tﬁoﬂk&ﬁl ' "f’fﬁflﬂkn (v¥_h$reﬁis are th<e 9-
unknown. What we want to do is ignore these failing no(rje part, a>nl K Matchese;) satisfiesty,; — ty, < u,
checks in between. and Pass in the event order. By &9tk =tk = L.

using a regular-expression-like language, this eventrorgi§ample 3 (Upper and lower bound sets). We show
can be expressed byl*(Check(false))*-Pass”, where an example of construction of upper and lower bounds.
‘+' is a symbol of repetition. The following event ordefrhe ynderlying automaton iBain||Gate2||Monitor dis-

using anignored event specificatiofiES) is more com- cyssed in Example 1, the train-gate model with a busy-

prehensible when an event is ignored for a specific evagbp checking. As discussed in Example 2, one of
index interval, not just in between two consecutive evenfe event order that we want to exclude 1 =

Bounds:

E, =*1-Pass: insert {Check(false)} to [0,1]". In- | -Check(false)-Request-Check(true)-Pass. Figure 3 de-
formally, the ignored event specification (statement afﬁg(:ts the upper bounds and lower bounds gt

insert)) in the above event orddr, specifies that when Upper bound example: We have an upper bound
checking a match between an automaton execution@ 1[0,1]) for the interval betweene, (L) and
the event order, we ignore in that execution any OCCYl- (Check(false)) since we have an upper bound
rence ofCheck(false) in between the beginning of th%pperu’ {Request}) = R defined in the bound map,
execution ¢p) and the first occurrence d¢fass (e1). A and the evenRequest is not performed between,
formal definition of an IES appears in the full version gfnq e1. For a similar reason, we have an upper bound
the paper [13]. (R, [0,2]) betweene, (L) ande; (Request).

A formal definition of a match between a timed execlower bound examplée have a lower boun(b, [1, 3])
tion of a TIA and an event order (possibly with an IESpr the interval betweene; (Check(false)) and eg
appears in [13]. We refer to an execution that match@heck(true)) since we have a lower bound
with E as E-matching executian lower(Check(false), { Check(false), Check(true)})) = ¢

defined in the bound map. e1. We have an upper boungbper(L, {Request}) = R
Q%ﬁ”e‘j forTrain||Gate2, and theRequest event is not

We need a notion of a covering upper bound set and & 4 in the interval betwe (L) ande, (Pass) —
distributed lower bound set to combine individual bound L bl €1 .
only Check(false) is ignored. Thus we have a valid up-

and synthe5|z_e a meaningful timing constraint. Infoﬁer boundR betweene, (L) ande, (Pass). Therefore,
mally, a covering upper bound sg&t for an event inter- X N L
. we can derive a constraipt > R, which imposes an or-
val I is a set of upper bounds such that when we take, a .
) . ; der constraint that equest event must occur before a
union of all intervals for which upper bounds i are

derived, the union becomds(intervals corresponding topaSS event. On the other hand, though we have an upper
upper bounds i coverI). A distributed lower bound boundupper (L, {Check(true), Check(false)}) = A, we

) . cannot derive an upper boutibetweerey andeq, since
set L for an event intervall is a set of lower bounds PP 0 1

such that each interval for which a lower boundJiris Check(false) is ignored in that interval. Therefore, we

constructed is contained iy and all intervals for which cannot derive a constraipt> A. Indeed, the above con-

lower bounds inL are constructed do not overlap (inter§tramt does not exclude;, since the constraint just im-

vals corresponding to lower bounds inare distributed poses that the firstheck event must occur beforass.
in 7, without overlapping). A formal definition appears ilmplementation: We implemented a prototype of a
[13]. timing constraint derivation algorithm. The algorithm

Example 4 (A covering upper bound set and a distributetgarches over all possible covering upper bound sets and
lower bound set). Let us look at Figure 3 again. The $#gtributed lower bound sets, and derives timing con-
of upper boundg (R, [0,2]), (A, [1,3]), (T, [3,4])} cov- Straints in the same way as demons_trated in Example
ers the interval betweery ande, ([0,2]U[1,3]U[3,4] = 5 A de_rlved constraint set may contain some redundant
[0,4]). Each lower bound by itself constructs a lowgionstraints (for example, one constraint is weaker than
bound set that is distributed in the interval betwegand OF equivalent to another constraint) or unrealizable con-
e4, but any set with two or more lower bounds is not disiraints (for example, an upper bound for a specific ac-
tributed in the same interval, since we have some overli set s strictly smaller than a lower bound for the same

of the intervals for which the lower bounds are defined.action set). We use a simple simplification algorithm to
prune these constraints. We usually need to exclude mul-

The following Theorem 1 implies that if we find a covtipje event orders, not just one. The prototype tool can
ering upper bound set and a distributed lower bound ggfo manage constraints derived for multiple event orders,

straints by the third condition in the theorem (the sum of

the upper bounds is strictly less than the sum of the lowgr Case Studies

bounds). _ o 5.1 Train-Gate Problem
Theorem 1 Consider an event ordeF. A time-interval this section, we summarize a case study of EOA for

-) [n
automaton(A, b) exhibits no execution that matches Wlthle train-gate examplErain||Gate||Monitor that we have

i i __ p
FE if there exists a set of upper bountls= {u,,};,_;, a used in earlier sections of the paper.

set of lower bounds, - {lr};_;, and two events_v and We identified the ten event orders to exclude all bad
ew Such that the following three conditions hold: executions. We can classify these event orders into three
1. U covers the interval between ande,,. groups. The first group (consisting of seven event orders)
represents a situation that the train passes the crossing be
fore the gate becomes closed The second group (consist-
3.5 g < ing of two event orders) represents a situation that the gate
becomes open too fast after it become closed, and thus the
gate is open when the train passes the crossing. The third

Example 5 (Timing constraint derivation for an event ors roup (consisting of one event order) represents a situa-
der without an IES). Again, consider the event order de- P 9 P

picted in Fig. 3. As discussed in Example 4, the uppé?n that the gate becomes open too late — after the train
bound set{(R [(') 20), (A, [1,3]), (T, [3,4])} c0\;ers the makes a next request. Since all state variables of the gate

interval betweere, ande,. In addition, the lower boundautomaton are reset when the gate becomes open a_gain, i
set{(p, [0,4]} is distributed in the same interval. Frorr%he gate becomes open after a request from the train, the
Theorem 1, ifp > R + A + T, then (rain || Gate2) request information is reset, and thus the gate will not be

. ; k closed.
exhibits nok; -matching execution. The tool derived the following set of constraints after

Example 6 (Timing constraint derivation for an event oran automatic simplification (the derivation took less than
der with an IES). Consider the event ordey="_1-Pass: one second): 1.(p > R+ T + A); 2. (r+t+c >
insert Check(false) to(0,1)”. We have a lower bound P v § +t+c¢ > P); and 3. (r > C). The tool indi-
lower(L,{Pass}) = p, and L appears at, and Pass cated that the first constraint is originally derived from
ate;. Thus we have a lower bound betweeney and an event order in the first group, the second constraint

2. L is distributed in the interval betweeny ande,,.

5

from an event order in the second group, and the thadbad event order using heuristics. We have started an-
constraint from an event order in the third group. Theralyzing the IEEE 1394 root contention protocol [11] as
fore, we obtained a constraint for each of the three growp®mother case study of EOA. The result will appear in the
we explained above. future publication.

We constructed monitors (classical finite state macknowledgment: | thank Prof. Nancy Lynch for her
chines) for the identified ten event orders. Each moniisétient guidance on this research and helpful comments
raises a flagexclude when it founds a subsequence @n an earlier version of the paper.
actions that match the underlying event order in a current
automaton execution. We successfully model-checked the f
property(CJ(—bad_event_order)) = (CJ(—Monitor.bad)) ererences
for_ the train-gate mOP'e' with these event order mon'torﬁ] R. Alur and D. L. Dill. A theory of timed automatal heoretical
using a SAL symbolic model-checker [3]. The model- = computer Sciencd 26(2):183-235, 1994.

checking time was less than one second. [2] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: Adb

: for reachability analysis of complex systemsQamputer Aided
5.2 Blphase Mark Protocol Verification pages 368-372, 2001.

A biphase mark protocol [10] is a lower-layer CommuIS] L. M. de Moura, S. Owre, H. Ruef3, J. M. Rushby, N. Shankar,
nication protocol for consumer electronics. Several re- M. Sorea, and A. Tiwari. SAL 2. IfProc. of CAV 2004vol-
searchers have conducted formal verification of this pro- ume 3114 of_ecture Notes in Computer Sciengmges 496—
tocol (for example, [10, 14]), but as far as we know, com- 500. Springer, 2004.
pletely automatic verification of it has not been done. Wg] C. Heitmeyer and N. Lynch. The generalized railroad sitg:
identified 22 bad event orders. This number may look A case study in formal verification of real-time systems. ffec
large, but similarly to the train-gate example in Section nical Report MIT/LCS/TM-511, 1994.
5.1, we identified multiple event orders from a single bafpl T- Henzinger, J. Preussig, and H. Wong-Toi. Some lestons
situation (there were six bad situations). The tool derived the HYTECH experience. IRroc. of the 40th Annual Confer-
five constraints (it took less than one second). Three of enfe gn [.)etc'lsa'on angogfmmpages 2887-2892. |EEE Com-
them are equivalent to the three conditions manually de- PUTST SOCISY FTEss. o }
rived in [14], and one is automatically satisfied under thEG] T. Hune, J. Romijn, M. Stoelinga, and F-. W. Vaandragendr

’) - N parametric model checking of timed automataTémls and Al-
protocol model in [14]. The remaining constraint is Nt yithms for Construction and Analysis of Systepages 189—
reported in [14], but we believe that the constraint must 203, 2001.
hold for correctness (it is needed to exclude a simple bgf| k. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshel
scenario). We successfully model-checked the discretized International Journal on Software Tools for Technology r&a
model under the condition that 22 bad event orders do not fer, 1(1-2):134-152, 1997.

occur (it took less than one second). [8] N. A. Lynch. Distributed Algorithms Morgan Kaufmann Pub-

. . lishers Inc., 1996.
5.3 Fischer Mutual Exclusion Z. Manna and A. Pnueli.The Temporal Logic of Reactive and

9
The Fischer mutual exclusion algorithm ([8], Section[] Concurent Systems: Specificatid®pringer-Verlag, 1993.
24.2) is a mutual exclusion algorithm that uses a timifg) J. S. Moore. A formal model of asynchronous communézati
behavior for correctness. We identified one bad event or- and its use in mechanically verifying a biphase mark prdtoco
der, by using the symmetry among process behavior. In Formal Aspects of Computing(1):60-91, 1994.
this event order, we focus on a specific interleaving [pfi] D. P. L. Simons and M. Stoelinga. Mechanical verificatiof
events between a pair of processes. Ignored event specifi- the IEEE 1394a root contention protocol using Uppaal 2k
cations are used to treat behavior of other processes than ternational Journal on Software Tools for Technology Tfans
the focused pair as “don’t-care”. The tool derived the con- 3(4):469-485, 2001.
straint that is manually derived in [8]. We successfullj2] R.Spelbergand W. Toetenel. Parametric real-time reueck-
model-checked the discrete model under the correct or- M9 Using splitting trees.Nordic Journal of Computing8:88—

: o . oo 120, 2001.
dering condition (it took 40 seconds for a system with fl\fe _ .
processes) 13] S. Umeno. Event order abstraction for parametric tieag sys-

tem verification. Technical report, Massachusetts Irstitf
Technology. To appear.

6 Conclusion and Future Work [14] F. W. Vaandrager and A. de Groot. Analysis of a biphase
In this paper, we presentesent order abstractio(EOA) mark protocol with UPPAAL and PVSFormal Asp. Comput.
technique to parametrically verify real-time systems. Ap- 18(4):433-458, 2006.

plicability of the technique is demonstrated by three caé8] F. Wang. Symbolic parametric safety analysis of linkgirid
studies, a train-gate system, a biphase mark protocol, and systems _Nith BDD-Iike data-structuresransactions on Soft-
the Fisher mutual exclusion algorithm. We are planning Wa'e Engineering31:38-51, 2005.

to enhance automation of verification using EOA in tH&] D- Zhang and R. Cleaveland. Fast on-the-fly parameéit-r
following processes: construction of an event order mon- tT'T"e ”Smde' CheSCk'”g' ."Proceefs'ggslgé t280256th IEEE Real-
itor, decomposition of an event order, and extraction of Ime Systems Symposiypages 157-166, '

6

