
Event Order Abstraction for Parametric Timed Verification∗

Shinya Umeno,
CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

umeno@csail.mit.edu

Abstract. We present a new abstraction technique,event
order abstraction(EOA), for parametric safety verifica-
tion of real-time systems in which “correct orderings of
events” needed for system correctness are preserved by
timing dependent behavior of the systems. By using EOA,
one can separate the task of verifying a system into two
parts: 1. A derivation of timing parameter constraints for
correct orderings of events in the system; and 2. A safety
property verification of the system given that those cor-
rect orderings are preserved. We first identify bad event
orderings. Then we automatically derive a set of timing
constraints under which the system does not exhibit the
identified bad event orderings. In parallel to a deriva-
tion of timing constraints, by using an ordinary untimed
model-checking, we examine whether a discretized sys-
tem model in which all timing behaviors are abstracted
away satisfies a desirable safety property under the as-
sumption that the identified bad event orders occur in no
system execution. We successively refine this assumption
by extracting additional bad event orders from a coun-
terexample obtained from a model-checking. When we
successfully model-check the discretized model under an
ordering assumption and derive timing constraints for that
ordering assumption, we have obtained a sufficient set of
timing constraints under which the system executes cor-
rectly with respect to a given safety property. We summa-
rize three case studies, a train-gate system, a biphase mark
protocol, and the Fischer mutual exclusion algorithm.

1 Introduction
There are real-time systems whose timing dependent be-
havior is used to ensure “correct orderings of events” that
appear in its execution (for example, a biphase mark pro-
tocol [10], the Fischer mutual exclusion algorithm ([8],
Section 24.2), and the IEEE 1394 root contention protocol
[11]). For these systems, certain timing constraints must
hold for correctness. To verify the correctness of these
systems, a verification engineer or researcher typically
follows one of the following two approaches: 1. (fixed-
parameter verification) By fixing the timing parameters
(such as delays or time deadlines) in the system, reduce

∗To be presented at the Second Workshop on Event-Based Semantics, April
21st, 2008. St. Louis. USA. The paper first appears online on April 4th, 2008.
The full version of the paper has been submitted for publication.

the system model to a more tractable one such as an Alur-
Dill timed automaton [1] and model-check the reduced
system (using UPPAAL [7] for instance); or 2. (paramet-
ric verification) Treat the timing parameters as uninter-
preted constants, find an appropriate set of constraints for
the timing parameters, and prove or mechanically check
the correctness under the constraints [10, 14, 16]. The
first approach is usually less expensive than the second
one with respect to both the computational cost and the
amount of human interaction. However, the results ob-
tained from the second approach give us more informa-
tion about the allowed parameter sets, and may give an
engineer more freedom of parameter choices.

In this paper, we present a new abstraction technique,
event order abstraction(EOA), for parametric safety ver-
ification of the above described class of real-time sys-
tems in which correct orderings of events are critical for
correctness. By using EOA, one can separate the task
of verifying a system into two parts: 1. A derivation
of timing parameter constrains for correct orderings of
events in the system; and 2. A safety property verifica-
tion of the system given that those correct orderings are
preserved. A parametric verification of a real-time sys-
tem using EOA is conducted in the following steps. First,
we identify “bad” event orders that we want to exclude
from the system executions. This can be done by simu-
lating the underlying system, or by conducting a model-
checking for a “discretized” model of the system in which
all timing constraints are removed, and obtaining a coun-
terexample. We express bad event orders by a simple
language that can express an order of events and some
types of repetition of events. Next, by a scheme that we
will present in the paper, we automatically derive a set
of timing constraints under which bad event orders are
not exhibited. In parallel to a timing constraint deriva-
tion, we check whether or not the discretized model of
the system satisfies a desirable safety property under the
condition that the model does not exhibits the specified
bad event orders. We conduct this check by construct-
ing a monitor1 that raise a flag when one of the specified
bad event orders is exhibited, and model-checking the dis-
cretized model with this monitor under the condition that

1We manually constructed monitors for the case studies presented in the
paper (since the construction was straightforward for these case studies), but
we are planning to develop a monitor construction tool to enhance automation
of the verification process.

1

the monitor does not raises a flag in an underlying ex-
ecution (in Linear Temporal Logic (LTL) [9], this con-
dition can be represented by(�(¬Monitor.f lag)) ⇒
(�(¬DiscretizedModel.bad)))). Lastly, if the model-
checking is completed with a positive answer, we have
obtained a set of timing constraints under which the sys-
tem satisfies the given safety property. If we obtain a
counterexample, then we extract another bad event order
from it, and repeat the same process until we success-
fully model-check the discretized model. We extract a bad
event order manually, since we need some human insights
to do so.

Related works: Some of the existing model-checkers
for real-time systems (HYTECH [5], RED [15], TReX [2],
LPMC [12], and an extension of UPPAAL [6]) allowau-
tomatic synthesisof timing parameters for a given desir-
able property: these tools automatically derive constraints
on timing parameters for the system to satisfy a given
property. The main differences of EOA from the exist-
ing automatic constraint derivation tools listed above are
the following three: First, to use EOA, the user has to pro-
vide a set of desirable ordering of events to be excluded
in the system. Second, EOA can treat a class of systems
that may exhibit an unbounded number of repetitions of
events. Third, when doing successive refinements by us-
ing EOA, each abstracted model constructed in these re-
finements is a completely discrete transition system. The
existing parametric model-checkers listed above use a for-
ward and backward reachability analysis for a model with
symbolically represented states. Thus, if an underlying
parametric model has an unbounded loop that involves
evolution of continuous variables, then this reachability
analysis does not terminate, and therefore the verification
attempt fails (for example, in [5], Section 4.2, the au-
thors stated that they had to modify a model of a biphase
mark protocol so that it exhibits no unbounded loop).
The third difference implies that by using EOA, the veri-
fier can directly employ existing verification techniques
for a discrete transition system. In addition, since the
model-checking process of EOA does not have to manipu-
late linear inequalities directly like the existing parametric
timed system model-checkers, EOA does not suffer from
the “dimensionality” problem: an automatic synthesis of
these model-checkers rapidly becomes intractable as the
number of parameter grows ([5], Section 5. Lessons
learned).

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce a new automaton framework,time-
interval automata. The framework is an extension of the
I/O automata framework [8], and with this framework,
one can specify lower and upper time bounds between
one action and its succeeding actions. In Section 3, we
explain how we specify event orders. Section 4 is devoted
to presenting a scheme of an automatic timing constraint
derivation. Section 5 presents case studies of parametric
verification using EOA. We summarize three case stud-

ies, a train-gate system, a biphase mark protocol that has
been studied in several verification papers (for example,
[10, 14]) and the Fischer mutual exclusion algorithm ([8],
Section24.2). We conclude in Section 6.

2 Time-Interval Automata
Thetime-interval automata(TIA) framework is an exten-
sion of the I/O automata (IOA) framework [8]. An I/O
automaton is a guarded-command style transition system
with distinguished input, output, and internal actions. In-
formally, with the TIA framework, one can specify the
lower and upper time bounds on the interval between one
action and its following actions for an underlying I/O au-
tomaton. A time bound for actiona and actions inB is
represented as an interval in the form[l, u]. This bound
represents that, for any time of occurrenceta of action
a, no action inB occurs beforel + ta, and at least one
action inB is performed before or atu + ta. When we
define such a time bound[l, u] between an actiona and set
of actionsB, we require that at least one action inB be
enabled aftera is performed, and continue being enabled
until b is performed. In this way, we make sure thatb is
indeed enabled in interval[l + ta, u + ta]. An interval-
bound mapspecifies this time bound. The special symbol
⊥ is used to express the time bound on the interval be-
tween the system start time and the time an action in the
specified set occurs. An interval-bound map by itself may
not satisfy requirements to express a meaningful bound
(for example, the specified lower bound is no greater than
the specified upper bound). We say that an interval-bound
map isvalid if it satisfies the requirements (formal defini-
tions for the TIA framework appear in the full version of
this paper [13]).

Definition 1 (Time-interval automaton). A time-interval
automaton(A, b) is an I/O automatonA together with a
valid interval-bound mapb for A.

Definition 2 (Timed execution). Atimed executionof a
time-interval automaton(A, b) is a (possibly infinite) se-
quenceα = s0, (π1, t1), s1, (π2, t2), · · · where thesi’s
are states ofA, theπi’s are actions ofA, and theti’s are
times inR≥0; s0 is an initial state ofA; and for anyj ≥ 1,
(sj−1, πj , sj) is a valid transition ofA andtj ≤ tj+1. We
also require a timed execution to satisfy the upper and
lower bound requirements expressed byb (a formal defi-
nition of these requirements appear in [13]).

A composition of multiple TIA is defined in a way sim-
ilar to that of ordinary I/O automata. Interval-bound maps
of TIA are combined by using a union of maps (by regard-
ing maps as relations).

Example 1 (Time-Interval Automaton). We describe an
example of time-interval automata. The example is in-
spired from railroad crossing problems [4]. The example
is constructed from a composition of a train automaton
(Figure 1) and a gate automaton (Figure 2). An informal

2

——————————————–
Automaton Train(r, R, p, P : Real) where

0 ≤ r ≤ R ∧ 0 ≤ p ≤ P
signature

output Request
output Pass

states
requested: Bool := false;

transitions
output Request

pre ¬requested
eff requested := true;

output Pass
eff requested := false;

bounds:

b(⊥, {Request}) = [r, R];

b(Pass, {Request}) = [r, R];

b(⊥, {Pass}) = [p, P];

b(Pass, {Pass}) = [p, P];

——————————————–

Figure 1: Train automaton

description of the problem we want to solve is the follow-
ing. A train is about to pass the railroad crossing with a
gate. The gate is supposed to be open except for the time
that the train passes the crossing, so that cars can cross the
railroad. When the train gets close to the crossing, itre-
queststo close the gate. The gate needs to be closed at the
time the train passes the crossing. The railroad actually
forms a circle, and thus the train passes the railroad cross-
ing cyclically. After the gate becomes open, it becomes
closed after a bounded time interval.

The actions of theTrain automaton models actions
taken by the train in the railroad. TheRequest action
represents an close request made by the train to the gate.
ThePass action represents that the train passes the cross-
ing. The automaton has four bounds for these two ac-
tions. The first one (b(⊥, {Request}) = [r,R]) and the
second one (b(Pass, {Request}) = [r,R]) say that the
Request action will be performed within the time inter-
val [r,R] after the system starts, and every time after the
train passes the crossing, respectively. The third bound
(b(⊥, {Pass}) = [p, P]) and the forth bound (b(Pass,
{Pass}) = [p, P]) say that the Pass action will be per-
formed within the time interval[p, P] after the system
starts, and every time after the train passes the crossing,
respectively.2 The gate automaton described in Figure 2
models a gate system that uses a busy-wait loop for check-
ing whether a request has been made. The gate automa-
ton cannot immediately know the arrival of an request.
Instead, a request information is stored in a state vari-
able train requested, and the gate automaton needs to
repeatedly check this variable (expressed by a successful
check,Check(true), and a failing check,Check(false)).
We set the time interval between two repeated checks to

2We could, for example, think that a train is moving with a bounded veloc-
ity within [vmin, vmax], and the length of the railroad isL. The time bound
of [p,P] for the pass event is equivalent to saying thatp = L/vmax and
P = L/vmin .

—————————————————————–
Automaton Gate(δ, ∆, τ, T, c, C: Real) where

0 ≤ δ ≤ ∆, 0 ≤ τ ≤ T , 0 ≤ c ≤ C
signature

input Request
output Close
output Open
output Check(result: Bool)

states
open: Bool := true;
train requested: Bool := false;
check succeeded: Bool := false

transitions
input Request

eff train requested := true;
output Close

pre check succeeded ∧ open
eff open := false;

output Open
pre ¬open
eff open := true;

train requested := false;
check succeeded := false;

output Check(result)
pre ¬check succeeded ∧ result = train requested
eff check succeeded := train requested;

bounds:

b(⊥, {Check(true), Check(false)}) = [δ,∆];

b(Check(false), {Check(true), Check(false)}) = [δ, ∆];

b(Close, {Check(true), Check(false)} = [δ, ∆];

b(Check(true), {Close}) = [τ, T];

b(Close, {Open}) = [c, C];

—————————————————————–

Figure 2: Gate automaton

be within[δ,∆]. Once a check succeeds, the gate automa-
ton stops checkingtrain requested, but resumes it within
[δ,∆] after the gate becomes closed. The gate becomes
closed (Close action) within the time interval[τ, T] after
a successful check. The gate becomes open again (Open
action) within the time interval[c, C] after it becomes
closed.

The safety property that we want to verify is that the
train passes the crossing only when the gate is closed. We
use a monitor automatonMonitor that monitors output ac-
tionsPass, Close, andOpen from Train andGate, and
set its state variablebad to true if Pass occurs when the
gate is open. The invariant (safety property) we want to
check is: for any reachable state ofTrain||Gate||Monitor,
Monitor.bad = false.

3 Specifying Event Orders
In this section, we introduce a formal way of specifying
an event order that needs to be excluded for system cor-
rectness. We first consider a simple way of specifying an
event order, and then extend an event order specification
by introducing “don’t-care” events.

An event order (without “don’t-care”) simply specifies
the order of consecutive actions in an execution of a TIA.
For example, the event order “Request-Pass” for the au-
tomaton (Train||Gate) shown in Example 1 matches any
execution of (Train||Gate) that contains aRequest ac-

3

tion immediately followed by aPass action. An event
order may start with a⊥ symbol, which specifies that the
event order matches with a finiteprefixof an execution of
an underlying automaton. In other words, an event order
that start with⊥ specifies the very first sequence of events
that occurs after the automaton starts executing.

Example 2 (Event order). An example of
event orders that we want to exclude in
Train||Gate||Monitor discussed in Example 1 is
⊥-Check(false)-Request-Check(true)-Pass. In this event
order, the gate module first failed to detect a request from
the train since a request has not been made yet. After the
train makes a request, the gate module succeeds to detect
it, and starts closing the gate. However, the gate close
request is detected too late relative to the speed of closing
the gate, and consequently the train passes the crossing
before the gate becomes closed (that is, before theClose
event occurs).

For a system that exhibits an unbounded repetition of
events (such as the train-gate example in Example 1 and a
biphase mark protocol that we study in Section 5), some
event orders to be excluded cannot be represented in a
form of a simple event order like the ones we consider
earlier in this section. Consider the event order “⊥-Pass”
for (Train || Gate). This event order needs to be excluded
for an obvious reason: the train passes the crossing even
before the train requests that the gate be closed. Con-
sidering that the gate is doing a busy-loop checking of a
request, thisPass event can possibly be preceded by mul-
tiple failing checks (Check(false)). Indeed, the number
of possible failing checks that precede thePass event is
unbounded when the relation betweenδ, ∆, r, andR is
unknown. What we want to do is toignore these failing
checks in between⊥ and Pass in the event order. By
using a regular-expression-like language, this event order
can be expressed by “⊥-(Check(false))∗-Pass”, where
‘∗’ is a symbol of repetition. The following event order
using anignored event specification(IES) is more com-
prehensible when an event is ignored for a specific event-
index interval, not just in between two consecutive events:
E2 = “⊥-Pass: insert {Check(false)} to [0, 1]”. In-
formally, the ignored event specification (statement after
insert)) in the above event orderE2 specifies that when
checking a match between an automaton execution and
the event order, we ignore in that execution any occur-
rence ofCheck(false) in between the beginning of the
execution (e0) and the first occurrence ofPass (e1). A
formal definition of an IES appears in the full version of
the paper [13].

A formal definition of a match between a timed execu-
tion of a TIA and an event order (possibly with an IES)
appears in [13]. We refer to an execution that matches
with E asE-matching execution.

Check(false) Request Check(true) Pass

Up
pe
r
Bo
un
ds
:

Lo
we
r
Bo
un
ds
:

∆
∆

δ

R

R

r

δ

T

p

δ

e1 e2 e3 e4(e0)

P

P

P

P

∆

(R,[0,1]) :

(R,[0,2]) :

(∆,[0,1]) :

(∆,[1,2]) :

(∆,[1,3]) :

(T,[3,4]) :

(P,[0,1]) :

(P,[0,2]) :

(P,[0,3]) :

(P,[0,4]) :

(δ,[0,1]) :

(r,[0,2]) :

(δ,[1,3]) :

(δ,[0,3]) :

(p,[0,4]) :

<

<

>

<

<

<

<
<

<

<

<

>

>

>

>

Figure 3: Upper and lower bounds for the event orderE1

4 Deriving Timing Constraints
In this section, we present a scheme to derive a set of tim-
ing constraints to exclude an execution that matches with
a given event order.

Given an event orderE and a bound mapb of a TIA,
we first derive the upper and lower bounds between the
time of occurrence of two events inE. from the up-
per and lower bound conditions for a timed execution
of a TIA. They are tagged with the event-index inter-
val for which they are derived (the⊥ symbol is treated
as the zero-th evente0).. An upper bound for an event-
index interval[i, j] is constructed from the fact that a par-
ticular eventdoes not appearin [i, j], whereas a lower
bound for[i, j] is constructed from the fact that particular
events appear ati andj. An upper boundu and a lower
bound l is constructed in a way that, for any execution
α = s0(π1, t1)s1 · · · that matches withE = e1e2 · · · en

(possibly with an IES), the matched subsequence of ac-
tions β = β0πk1

β1 · · · βkn−1
πkn

(whereβi’s are the ig-
nored part, andπki

matchesei) satisfiestkj
− tki

≤ u,
andtkj

− tki
≥ l.

Example 3 (Upper and lower bound sets). We show
an example of construction of upper and lower bounds.
The underlying automaton isTrain||Gate2||Monitor dis-
cussed in Example 1, the train-gate model with a busy-
loop checking. As discussed in Example 2, one of
the event order that we want to exclude isE1 =
⊥-Check(false)-Request-Check(true)-Pass. Figure 3 de-
picts the upper bounds and lower bounds forE1.
Upper bound example: We have an upper bound
(R, [0, 1]) for the interval between e0 (⊥) and
e1 (Check(false)) since we have an upper bound
upper(⊥, {Request}) = R defined in the bound map,
and the eventRequest is not performed betweene0

and e1. For a similar reason, we have an upper bound
(R, [0, 2]) betweene0 (⊥) ande2 (Request).
Lower bound example:We have a lower bound(δ, [1, 3])
for the interval betweene1 (Check(false)) and e3

(Check(true)) since we have a lower bound
lower(Check(false), {Check(false),Check(true)})) = δ

4

defined in the bound map.

We need a notion of a covering upper bound set and a
distributed lower bound set to combine individual bounds
and synthesize a meaningful timing constraint. Infor-
mally, a covering upper bound setU for an event inter-
val I is a set of upper bounds such that when we take a
union of all intervals for which upper bounds inU are
derived, the union becomesI (intervals corresponding to
upper bounds inU coverI). A distributed lower bound
set L for an event intervalI is a set of lower bounds
such that each interval for which a lower bound inL is
constructed is contained inI, and all intervals for which
lower bounds inL are constructed do not overlap (inter-
vals corresponding to lower bounds inL aredistributed
in I, without overlapping). A formal definition appears in
[13].

Example 4 (A covering upper bound set and a distributed
lower bound set). Let us look at Figure 3 again. The set
of upper bounds{(R, [0, 2]), (∆, [1, 3]), (T, [3, 4])} cov-
ers the interval betweene0 ande4 ([0, 2]∪ [1, 3]∪ [3, 4] =
[0, 4]). Each lower bound by itself constructs a lower
bound set that is distributed in the interval betweene0 and
e4, but any set with two or more lower bounds is not dis-
tributed in the same interval, since we have some overlap
of the intervals for which the lower bounds are defined.

The following Theorem 1 implies that if we find a cov-
ering upper bound set and a distributed lower bound set
for the same interval, then we can obtain the timing con-
straints by the third condition in the theorem (the sum of
the upper bounds is strictly less than the sum of the lower
bounds).

Theorem 1 Consider an event orderE. A time-interval
automaton(A, b) exhibits no execution that matches with
E if there exists a set of upper boundsU = {um}p

m=1, a
set of lower boundsL = {lr}

q
r=1, and two eventsev and

ew such that the following three conditions hold:

1. U covers the interval betweenev andew.

2. L is distributed in the interval betweenev andew.

3.
∑p

m=1 um <
∑q

r=1 lr.

Example 5 (Timing constraint derivation for an event or-
der without an IES). Again, consider the event order de-
picted in Fig. 3. As discussed in Example 4, the upper
bound set{(R, [0, 2]), (∆, [1, 3]), (T, [3, 4])} covers the
interval betweene0 ande4. In addition, the lower bound
set{(p, [0, 4]} is distributed in the same interval. From
Theorem 1, ifp > R + ∆ + T , then (Train || Gate2)
exhibits noE1-matching execution.

Example 6 (Timing constraint derivation for an event or-
der with an IES). Consider the event orderE2 = “⊥-Pass:
insert Check(false) to(0, 1)”. We have a lower bound
lower(⊥, {Pass}) = p, and⊥ appears ate0 and Pass

at e1. Thus we have a lower boundp betweene0 and

e1. We have an upper boundupper(⊥, {Request}) = R
defined forTrain||Gate2, and theRequest event is not
ignored in the interval betweene0 (⊥) ande1 (Pass) –
only Check(false) is ignored. Thus we have a valid up-
per boundR betweene0 (⊥) ande1 (Pass). Therefore,
we can derive a constraintp > R, which imposes an or-
der constraint that aRequest event must occur before a
Pass event. On the other hand, though we have an upper
boundupper(⊥, {Check(true),Check(false)}) = ∆, we
cannot derive an upper bound∆ betweene0 ande1, since
Check(false) is ignored in that interval. Therefore, we
cannot derive a constraintp > ∆. Indeed, the above con-
straint does not excludeE2, since the constraint just im-
poses that the firstCheck event must occur beforePass.

Implementation: We implemented a prototype of a
timing constraint derivation algorithm. The algorithm
searches over all possible covering upper bound sets and
distributed lower bound sets, and derives timing con-
straints in the same way as demonstrated in Example
5. A derived constraint set may contain some redundant
constraints (for example, one constraint is weaker than
or equivalent to another constraint) or unrealizable con-
straints (for example, an upper bound for a specific ac-
tion set is strictly smaller than a lower bound for the same
action set). We use a simple simplification algorithm to
prune these constraints. We usually need to exclude mul-
tiple event orders, not just one. The prototype tool can
also manage constraints derived for multiple event orders,
and does simplification over these constraints.

5 Case Studies
5.1 Train-Gate Problem
In this section, we summarize a case study of EOA for
the train-gate exampleTrain||Gate||Monitor that we have
used in earlier sections of the paper.

We identified the ten event orders to exclude all bad
executions. We can classify these event orders into three
groups. The first group (consisting of seven event orders)
represents a situation that the train passes the crossing be-
fore the gate becomes closed The second group (consist-
ing of two event orders) represents a situation that the gate
becomes open too fast after it become closed, and thus the
gate is open when the train passes the crossing. The third
group (consisting of one event order) represents a situa-
tion that the gate becomes open too late – after the train
makes a next request. Since all state variables of the gate
automaton are reset when the gate becomes open again, if
the gate becomes open after a request from the train, the
request information is reset, and thus the gate will not be
closed.

The tool derived the following set of constraints after
an automatic simplification (the derivation took less than
one second): 1.(p > R + T + ∆); 2. (r + t + c >
P ∨ δ + t + c > P); and 3. (r > C). The tool indi-
cated that the first constraint is originally derived from
an event order in the first group, the second constraint

5

from an event order in the second group, and the third
constraint from an event order in the third group. There-
fore, we obtained a constraint for each of the three groups
we explained above.

We constructed monitors (classical finite state ma-
chines) for the identified ten event orders. Each monitor
raises a flagexclude when it founds a subsequence of
actions that match the underlying event order in a current
automaton execution. We successfully model-checked the
property(�(¬bad event order)) ⇒ (�(¬Monitor.bad))
for the train-gate model with these event order monitors
using a SAL symbolic model-checker [3]. The model-
checking time was less than one second.

5.2 Biphase Mark Protocol
A biphase mark protocol [10] is a lower-layer commu-
nication protocol for consumer electronics. Several re-
searchers have conducted formal verification of this pro-
tocol (for example, [10, 14]), but as far as we know, com-
pletely automatic verification of it has not been done. We
identified 22 bad event orders. This number may look
large, but similarly to the train-gate example in Section
5.1, we identified multiple event orders from a single bad
situation (there were six bad situations). The tool derived
five constraints (it took less than one second). Three of
them are equivalent to the three conditions manually de-
rived in [14], and one is automatically satisfied under the
protocol model in [14]. The remaining constraint is not
reported in [14], but we believe that the constraint must
hold for correctness (it is needed to exclude a simple bad
scenario). We successfully model-checked the discretized
model under the condition that 22 bad event orders do not
occur (it took less than one second).

5.3 Fischer Mutual Exclusion
The Fischer mutual exclusion algorithm ([8], Section
24.2) is a mutual exclusion algorithm that uses a timing
behavior for correctness. We identified one bad event or-
der, by using the symmetry among process behavior. In
this event order, we focus on a specific interleaving of
events between a pair of processes. Ignored event specifi-
cations are used to treat behavior of other processes than
the focused pair as “don’t-care”. The tool derived the con-
straint that is manually derived in [8]. We successfully
model-checked the discrete model under the correct or-
dering condition (it took 40 seconds for a system with five
processes).

6 Conclusion and Future Work
In this paper, we presentedevent order abstraction(EOA)
technique to parametrically verify real-time systems. Ap-
plicability of the technique is demonstrated by three case
studies, a train-gate system, a biphase mark protocol, and
the Fisher mutual exclusion algorithm. We are planning
to enhance automation of verification using EOA in the
following processes: construction of an event order mon-
itor, decomposition of an event order, and extraction of

a bad event order using heuristics. We have started an-
alyzing the IEEE 1394 root contention protocol [11] as
another case study of EOA. The result will appear in the
future publication.
Acknowledgment: I thank Prof. Nancy Lynch for her
patient guidance on this research and helpful comments
on an earlier version of the paper.

References
[1] R. Alur and D. L. Dill. A theory of timed automata.Theoretical

Computer Science, 126(2):183–235, 1994.

[2] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool
for reachability analysis of complex systems. InComputer Aided
Verification, pages 368–372, 2001.

[3] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. InProc. of CAV 2004, vol-
ume 3114 ofLecture Notes in Computer Science, pages 496–
500. Springer, 2004.

[4] C. Heitmeyer and N. Lynch. The generalized railroad crossing:
A case study in formal verification of real-time systems. Tech-
nical Report MIT/LCS/TM-511, 1994.

[5] T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessonsfrom
the HYTECH experience. InProc. of the 40th Annual Confer-
ence on Decision and Control, pages 2887–2892. IEEE Com-
puter Society Press, 2001.

[6] T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear
parametric model checking of timed automata. InTools and Al-
gorithms for Construction and Analysis of Systems, pages 189–
203, 2001.

[7] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Trans-
fer, 1(1-2):134–152, 1997.

[8] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., 1996.

[9] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and
Concurent Systems: Specification. Springer-Verlag, 1993.

[10] J. S. Moore. A formal model of asynchronous communication
and its use in mechanically verifying a biphase mark protocol.
Formal Aspects of Computing, 6(1):60–91, 1994.

[11] D. P. L. Simons and M. Stoelinga. Mechanical verification of
the IEEE 1394a root contention protocol using Uppaal2k.In-
ternational Journal on Software Tools for Technology Transfer,
3(4):469–485, 2001.

[12] R. Spelberg and W. Toetenel. Parametric real-time model check-
ing using splitting trees.Nordic Journal of Computing, 8:88–
120, 2001.

[13] S. Umeno. Event order abstraction for parametric real-time sys-
tem verification. Technical report, Massachusetts Institute of
Technology. To appear.

[14] F. W. Vaandrager and A. de Groot. Analysis of a biphase
mark protocol with UPPAAL and PVS.Formal Asp. Comput.,
18(4):433–458, 2006.

[15] F. Wang. Symbolic parametric safety analysis of linearhybrid
systems with BDD-like data-structures.Transactions on Soft-
ware Engineering, 31:38–51, 2005.

[16] D. Zhang and R. Cleaveland. Fast on-the-fly parametric real-
time model checking. InProceedings of the 26th IEEE Real-
Time Systems Symposium, pages 157–166, 2005.

6

