
Automated Formal Verification of the DHCP
Failover Protocol Using Timeout Order Abstraction

Shinya Umeno and Nancy Lynch
CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

{umeno,lynch}@csail.mit.edu

Abstract—In this paper, we present automated formal veri-
fication of the DHCP Failover protocol. We conduct bounded
model-checking for the protocol usingTimeout Order Abstraction
(TO-Abstraction), a technique to abstract a given timed model in
a certain sub-class of loosely synchronized real-time distributed
systems into an untimed model. A resulting untimed model from
TO-abstraction is a finite state machine, and therefore one can
verify the model using a conventional model-checker.

We have verified the protocol by bounded model-checking
up to depth 20. We also experimented with “mutating” the
original code to examine the efficiency of bug-finding using TO-
Abstraction. We used two mutated pieces of the original code.
The first one represents a model that uses a stronger failure
assumption. The second one represents a model that the protocol
implementer has forgot to add a certain check of a received
message. We found one counterexample for each of two pieces of
mutated code. In particular, the counterexample that was found
for the second mutated code had a complex scenario, and we
believe that it is considerably difficult to find the counterexample
by human or simulations.1

1. INTRODUCTION

In this paper, we present automated formal verification
of the DHCP Failover protocol (DHCP-F, [2]). DHCP-F is
an extension of theDynamic Host Configuration Protocol
(DHCP), which is widely deployed for communication devices
to automatically obtain an IP address on the Internet. DHCP-
F is in the class of loosely synchronized real-time distributed
systems (LSRTDS’s). In this class of distributed systems, the
processes or modules in the system are assumed to haveloose
synchronization, that is, there is an a priori known upper bound
ε on the skew between local clocks in processes. Processes
communicatetime data (timing-related information such as
time stamps) with each other, and set theirtimeoutsusing
time data. These timeouts are used to constrain processes’
behavior in such a way that the processes execute a certain
designated action before or after other processes execute
another designated action. This type of control of timeout
orders is used in DHCP-F to maintain interesting mutual-
exclusion and fault-tolerance properties. Namely, the protocol
supports no duplication of address assignments even under
server failures and recoveries. This property is the one we
verify by the presented case study.

This research has been supported by NSF Award 0702670. This paper will
appear in Proceedings of 15th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2010), Oxford, UK, March 22-26
2010. The paper is formatted using a TEX style file for IEEE conferences.

1Supplemental files such as SAL code used for the case studies presented
in the paper can be obtained from URL cited as [1].

We conduct bounded model-checking for DHCP-F us-
ing Timeout Order Abstraction(TO-Abstraction, [3]). TO-
Abstraction is a technique to systematically abstract an
LSRTDS into an untimed model. The subclass of LSRTDS’s
that we can apply TO-abstraction is defined using a syntax
template that represents a restriction to Tempo, the primary
modeling language of TIOA [4]. The TIOA framework has
been used to model and verify (with hand proofs) several real-
time distributed systems and algorithms (for example, [5],[6],
[7], [8], [2], [9]). TO-Abstraction enables the user to conduct
time-parametric verificationof a given TIOA model described
by the template in the sense that the local clock skew bound
ε and the special timing-related constant that we explain later
are treated as parameters of the system, and therefore, are not
instantiated into concrete values. The untimed model resulting
from TO-Abstraction is a finite state machine, and thus one
can automatically verify (untimed) temporal properties ofthe
model using a conventional model-checker. The soundness
guarantee that we can obtain is that any “untimed” safety
property of the untimed model also holds for the original
TIOA model. Informally, an untimed safety property is a safety
property that refers to non-timing-related part of the protocol.
For example, we can specify no two processes enter the critical
region at the same time, or the value of a particular counter
does not exceed ten in any protocol execution. Basically,
any property that we typically use for the ordinary untimed
protocol verification can be verified using the untimed model
obtained from TO-Abstraction.

Contribution: There are two main contributions in the
presented paper. First, as far as we know, this paper presents
the first machine-automated formal verification of the DHCP
Failover protocol. This protocol is in the class of LSRTDS’s,
and because of its very general assumption of the local clock
value evolutions (as long as the clock values are loosely
synchronized with respect to the boundε, the evolution is
described by an arbitrary increasing function), the protocol
cannot be modeled using such frameworks as Alur-Dill Timed
Automata [10] or Linear Hybrid Automata [11]. Therefore,
the protocol cannot directly benefit from the existing ver-
ification techniques and tools (for example, UPPAAL [12]
and HYTECH [13]) developed for these frameworks. The
protocol has been studied in [2] in the context of formal
verification using manual (hand-written) proofs, but no study
on automatic analysis of the protocol has been reported thus
far. The authors of [2] proved the correctness of the protocol
using elaborate hand-written proofs by induction over system
executions. We consider the complexity of formally verifying

this protocol is considerably high because of the fact that a
complete proof is not included in [2] because a proof consists
of proving several non-trivial lemmas needed to prove the
final correctness theorem. Our case study provides exhaustive
exploration of scenarios of DHCP-F up to the execution length
of 20 (20 discrete transitions, including sending and receiving
messages, of the system) for the configuration of two clients
and two servers.2 Because this is a bounded guarantee, (with
respect to the execution depth and the number of processes),it
cannot replace a complete formal proof. However, considering
the complexity of lemmas and theorems and their proofs in
[2], one cannot be absolutely sure about the correctness of the
proofs (unless one conducts a mechanical theorem-proving). In
this regard, we believe that our case study helps the community
gain more confidence for the correctness of DHCP-F.

Second, we experiment with “mutating” the original code to
examine the efficiency of bug-finding using TO-Abstraction.
We used two mutated pieces of the original code. The first one
represents a model that uses a stronger failure assumption.The
second one represents a model that the protocol implementer
forgot to add a certain check of a received message. We found
one counterexample for each of two pieces of mutated code. In
particular, the counterexample that was found for the second
mutated code had a complex scenario, and we believe that it is
considerably difficult to find the counterexample by human or
simulations. This consequence suggests that TO-Abstraction
can be used not only for verification, but also for experiments
of specification/coding changes in the early-stage development
of LSRTDS’s.

The rest of the paper is organized as follows. In Section
2, we describe the overview of TO-Abstraction that we use
for DHCP-F verification. Section 3 is devoted to explaining
how DHCP-F works, and representing the Tempo code that
models DHCP-F. Section 4 reports how TO-Abstraction can
be applied to DHCP-F and the verification results. We also
report experiments for mutated code of the original protocol.
In Section 5, we conclude by stating the summary of the paper.

2. OVERVIEW OF TIMEOUT ORDER ABSTRACTION

In this section, we describe the overview of TO-Abstraction
that we use for DHCP-F verification. We first explain the
background of this technique in Section 2.1, next explain the
settings and the syntax template used for the technique, and
then explain the technique in Section 2.3.

2.1. Background

We have developed Timeout Order Abstraction by analyzing
the DHCP Failover protocol (DHCP-F), and trying to find
common patterns that satisfy both of the following properties:
1. The set of patterns is general, and other existing real-time
protocols may have used it already, or a protocol designer can
use it for a future design; and 2. Every protocol described
by the set of patterns can be systematically abstracted into
an untimed model that can be verified by a conventional
model-checker. We have found key building blocks of DHCP-
F that other protocols can use under the loose-synchronization

2We conducted a bounded model-checking instead of a full model-checking
because the model-checker we used could not treat the untimed DHCP-F
model due to the size of the model. We show more details in Section4.2.

assumption. Processes in the protocol use the following two
main ways of setting timeouts.

1) The first way of setting a timeout uses atime nonce, a
value arbitrarily picked by a process.3 A typical use of
a time nonce is described in Protocol 1 in this section.

2) The second way uses atime stamp, plus a special
fixed constant waiting timeu. A time stamp is a value
copied from the current value of the local clock of a
process. Timeout setting using a time stamp andu can
be considered a special form of setting timeout using
a time nonce. This special form is used for processes
to perform thetime-stamp-estimationtrick, which we
explain later in this section.

To provide the reader with the idea of how the above
described two ways of setting timeouts can be used, we show
the two relatively simple examples. DHCP-F uses similar
strategies of the two examples in combination.

We consider the following common setting for the examples.
Two processesP1 and P2 share a resource, and they must
not access the resource at the same time. Their strategy is
time-sharing the resource by communicating with each other
by sending messages through channels. Two processes’ local
clocks are loosely synchronized, and the skew between them
is strictly less thanε. We assume that the values of their local
clocks are monotonically increasing. We assume that for this
time-sharing,P1 first accesses the resource and thenP2 andP1

alternately accesses the resource in turns. At first, we assume
that the channel is stable and thus messages would not be lost
and message contains would not become broken.

Protocol 1: P1 picks the time until which it will use the
resource, as a time nonceTN1, and sends it toP2. P1 sets
a timeout atTN1 and starts using the resource. WhenP2

receivesTN1, it sets a timeout atTN1 +ε. The skew boundε
is used tomost conservativelyestimate whenP1 times out,on
P2’s local clock. WhenP2 times out, it is guaranteed thatP1

has already timed out. Therefore,P2 can immediatelyuse the
resource.P2 picks another time nonceTN2, sets a timeout at
TN2, and sendsTN2 to P1. Upon receipt ofTN2, P1 sets
its timeout toTN2 + ε. P1 and P2 repeat the same routine
forever. �

Next, we consider a different assumption for channels.
Now the channels are not stable, and contents of messages
sent between processes may become broken. When message
contents become broken inside the channel, processes can
recognize that the contents are broken (for example, using
a check-sum). Under the above assumption, we cannot use
Protocol 1 – if information ofTN1 sent from P1 to P2

becomes broken, there is no wayP2 can estimate whenP1

finishes its job. One (not so smart) option is going back to
“done” message communications.

Using a time stamp with a constant waiting time instead
of an arbitrarily time nonce resolves this situation. Suppose
processes a priori share the value of the constant waiting time
u, and the value ofu is fixed.

3A time nonce in an actual low-level implementation may be computed
using, for example, a complex optimization and/or adaptive algorithm or a
randomized algorithm. We just assume the most general (least restrictive)
assumption: as long as its value is larger than the current clock of the process
that picks the time nonce, it is a valid time nonce for our setting.

2

Protocol 2: P1 picks a time stampTS1, instead of an arbi-
trary time nonce, and sets its timeout toTS1 + u. Therefore,
P1 uses the resource foru time units (measured on its local
clock). P1 sendsTS1 + u to P2. If the above message sent
to P2 is not broken,P2 sets its timeout toTS1 + u + ε (the
received time data plusε) as in Protocol 1. If the message is
broken,P2 sets its timeout to the special valueclock2+u+2ε,
whereclock2 is the current value ofP2’s local clock. When
P2 times out, it immediately starts using the resource. It also
picks a time stampTS2, sets its timeout toTS2+u, and sends
TS2 + u to P1. When receiving a message fromP2, P1 sets
timeout in a way similar toP2. P1 and P2 repeat the same
routine forever. �

Time-Stamp-Estimation Trick : The timeout setting using
clock2 + u + 2ε in Protocol 2 is the special timeout setting,
the time-stamp-estimationtrick that we have mentioned in the
introduction. We explain in the following why this value can
be used to estimates conservatively whenP1 times out. We can
interpret the valueclock2 + u + 2ε as(clock2 + ε) + u + ε. If
clock2 + ε is equal to or greater thanTS1, then P2 indeed
succeeds in conservatively estimatingP1’s timeout (if the
message were not broken,P2 would have set its timeout to
TS1 + u + ε). We consider in the following the moment
that P2’s timeout is set toclock2 + u + 2ε. From the loose
synchronization assumption, the value ofclock2 +ε is at least
as large as the value ofclock1, the local clock ofP1. Because
P1’s clock value is monotonically increasing, the current value
of clock1 is greater than the value ofTS1, which is copied
from the past value ofclock1. Therefore,clock2 + ε ≥ TS1,
as needed. The key to the above argument was that because
of the fact thatP2 received a (broken-content) message from
P1, P2 was sure thatP1 had already picked time nonceTS1.
The value ofclock2 + ε overestimatesany time stamp that
has been picked thus far in physical time, and a process can
perform this estimationby looking at just its local clock.

This time-stamp-estimation trick is used in the DHCP-F
model of [2] without particularly mentioning its usefulness,
intuition, or subtlety. The Internet-draft version of DHCP-F
does not consider this type of subtle argument about loosely
synchronized clocks, and thus how long a leading server has to
wait to conservatively estimate time stamps other servers have
picked is not clearly stated. We contacted the first author of
[2], and were informed that this subtle special usage, whichwe
will call the time-stamp-estimation trick, was proposed byhim,
discussed by the authors of [2], and then adopted in the model
of DHCP-F used in [2]. TO-Abstraction can treat the time-
stamp-estimation trick by using a special form of abstraction
for it. We will explain more details in Section 2.3.

2.2. Setting and Template

TO-Abstraction assumes that the system is executed under
the loose-synchronization assumption and each process in the
system is described by a syntax template that describes the
restrictions to more general Tempo guarded-command-style
language (the primary modeling language for TIOA, [4]). The
basic idea of the template is to restrict use of time data and
timeouts to a special form for which TO-abstraction can be
applied. There is no restriction imposed for “untimed” partof
the language. In this section, we present more details on this

assumption and the template.
Loose-Synchronization Assumption: We assume that pro-

cesses areloosely synchronized: for any pair (Pi, Pj) of
processes, the deviation between the values of their local
clocks, clocki and clockj , respectively, are bounded by an a
priori known amountε, as shown in the following inequality:
|clocki−clockj | < ε. We assume that theε bound is known to
every process as its parameter. We also assume that a constant
positive real valueu is known to every process as its parameter.

Communication Interface: The template needs the fol-
lowing forms for the signatures (interfaces) of actions for
processPi. The system has output and input actions for
message communication between processes, such as ‘send’
and ‘receive’. A ‘send’ action has the following signature:
sendi(j:ProcessID, M :UntimedMessage, χ:NonNegReal,
κ:InteractionInst). This action represents thatPi sends real-
valued “time data” χ and “untimed data”M to process
Pj . We will explain later in this section the form of time
data allowed in the template. Untimed data is an arbitrary
value in a bounded domain. Aninteraction instance, κ, is a
special identifier of process interactions to distinguish different
set of interactions. A ‘receive’ action has the same type
of interface as a ‘send’, in order to match communications
between processes. A ‘broadcast’ action,bcasti, has a similar
interface assendi, but instead of a process IDj, it has a
set of process IDsJ that represents a subset of processes to
which the broadcast is performed. A process also has internal
actions which are performed without communicating outside
of the world.

Timeouts: A timeout of Pi is modeled as an output action,
timeoutki , and has a very specific form for its precondition
(the transition guard) so that the timeout happens at the time
the local clock ofPi hits a specified timeout time.

State Variables of Processes: State variables in a TIOA that
represents processPi are split into the six groups shown in
Table I. This explicit split of variables is the core of why we
can apply TO-abstraction to the template.

Group Name Variables Types of Variables

Timed variables {xk
i }

ℓi

k=1
NonNegReal

Timeout variables {tki }
ri

k=1
NonNegReal

Timeout setting Booleans {timeout is setki }
ri

k=1
Boolean

Interaction instance variables{wk
i }

qi

k=1
Integer

Untimed variables {vk
i }

mi

k=1
BoundedDomainki

Local clock variable clocki NonNegReal

TABLE I
STATE VARIABLES OF PROCESSPi

The first group consists of timed variables. These variables
can store real-valued time data such as time nonces and time
stamps (plusu), or the result of a ‘max’ operation of multiple
pieces of time data. We will see the form of value assignments
that can be used for timed variable later in this section. The
second group consists of timeout variables. These variables
are special variables to set a time when a timeout action must
be performed. They can store time data, possibly plusε (the
assumed upper bound on the skew), and the result of the time-
stamp-estimation trick. The third group consists of timeout
setting Booleans. These are Boolean variables that are usedto
indicate whether or not the timeout fortimeoutki is set. The

3

fourth group consists of interaction instance variables. These
variables are used to store existing interaction instancesre-
ceived from process communications. The fifth group consists
of untimed variables. These variables can store any bounded-
size information other than time data. An untimed variable
can be, for example, a Boolean, a (bounded-size) counter, or
a finite set of process IDs to aggregate the information about
which processes have responded toPi’s message. The last
group consists of just one variable,clocki, which represents
the local clock of processPi. The value of this variable evolves
over real time, and the evolution is an arbitrary increasing
function that satisfies the loose-synchronization assumption.

Timed Expression Template:Due to space limitation,
we only show the most important part of the template
in this paper. The templates forTimeDataExpression
and TimeoutExpression shown in TimedExpression are
the most important templates in the entire template set.
TimeDataExpression is used to assign a timed variable
xk

i by an assignmentxk
i := TimeDataExpression, and

TimeoutExpression is used to assign a timeout variable
tki by an assignmenttki := TimeoutExpression. The tem-
plates for these two expressions include a time nonce picking
(new time nonce(), which computes a value greater than
clocki, representing a future time), computation of a time
stamp plus the constantu (clocki + u), a ‘max’ operation
to conservatively update the timeout estimate (we will see
how ‘max’ is used in DHCP-F in Section 3), using time
dataχ received from another process, timeout setting usingε,
and the time-stamp-estimation trick (clocki + u + 2ε). These
expressions are used in templates for processes’ transitions
explained later in this section.
TimeDataExpression ::= new time nonce() | clocki + u |

x
k
i | χ |

max(TimeDataExpression,

T imeDataExpression)

TimeoutExpression ::= TimeDataExpression |

TimeDataExpression + ε |

clocki + u + 2ε |

max(clocki + u + 2ε,

T imeDataExpression + ε)
(TimedExpression)

Because of the restricted use of time data described by the
above templates, we can symbolically represent time nonces
and time stamps using symbolic labels of them, as we will
explain in Section 2.3.

2.3. Timeout Order Abstraction

In this section, we briefly describe how Timeout Order
Abstraction (TO-Abstraction) works for the template explained
in Section 2.2. We first explain the intuition behind TO-
Abstraction, and then show more details of techniques used.

Intuition behind TO-Abstraction: Our goal for TO-
abstraction is to obtain an untimed model that conservatively
abstracts the original one. In order to obtain an untimed model,
we remove the local clocks of processes, and maintain just the
right amount of information that can retrieve correct timeout
orders in the original timed model. The key idea is tonot focus

on real values of time nonces and time stamps, but instead use
identifiers (IDs) of them (labels in other words). Identifiers are
integers that distinguish different time nonces and stamps. We
explain in more detail how IDs can be used using toy examples
described earlier in this section.

In Protocol 1, time nonces are used to synchronize processes
behavior. Processes control the ordering of timeouts usingthe
relative difference of their timeout times measured on their
local clocks: one processPi sets a timeout to a time nonce
TNk, and the otherPj sets it toTNk + ε. Information that is
sufficient to retrieve the fact thatPj times out afterPi has done
so in any possible scenario, is that both processes use the same
time nonceTNk, andPi’s timeout is set by adding the “slack”
ε (the assumed upper bound on the skew) to the time nonce,
but Pi’s timeout is set solely by the time nonce. To keep track
of the above information, we can use the following abstraction:
Picks of real-valued time nonces are replaced by picks of
symbolic IDs of them. Thek-th picked time nonceTNk

in an execution of the original system is represented by ID
(integer)k. The timeout time forP1 set toTNk is symbolically
represented by a pair(k, false), and the timeout time forP2

set toTNk +ε is symbolically represented by a pair(k, true)
– the Boolean values represent whether the slackε is added
or not. Then, we remove the local clocks of both processes.
After this abstraction, even though we cannot access to the
information of local clock values (since they are removed),
we can carefully choose which timeoutsmust not occurat
the current state of the untimed model, by looking at the
symbolic representations: IfPi’s timeout is set to(k, false)
andPj ’s timeout is set to(k, true), Pj ’s timeout must not be
performed, considering timeout orders that can possibly appear
in the original timed model. The above discussion is the basic
idea of time data abstraction and timeout order constraining,
two of the three techniques that we use in combination for
TO-abstraction. We can apply the above idea of maintaining
information that is sufficient to retrieve correct timeout orders
to Protocol 2 as well. In this case, we use IDs of time stamps.
Since processes always addu to time stamps, we can just keep
track of the ID of a time stamp when the value computed from
a time stamp plusu (in the form ofTSk+u) is communicated.

In some protocols including DHCP-F, processes use both
time nonces and time stamps, and combine them using
‘max’ operations. For example, a process can combine two
time nonces and three time stamps. In such cases, we
can extend the same idea by using two sets of integers
(IDs) to represent one time data:({1, 2}, {4}) represents
max(TN1, TN2, TS4 + u), and({3}, {2}, true) represents a
timeout set atmax(TN3, TS2 + u) + ε.

The time-stamp-estimation trick usingclocki + u + 2ε
is abstracted as ({}, picked ts id set, true), where
picked ts id set is the set of time stamp IDs
that have been picked thus far in the current
execution. ({}, picked ts id set, true) represents
max(picked ts set) + u + ε in the original model, where
picked ts set is the set of time stamps picked thus far. This
reflects the discussion for the time-stamp-estimation trick
earlier in this section thatclocki + u + 2ε can be interpreted
as (clocki + ε) + u + ε, and clocki + ε over-approximates
every time stamp that has been picked in physical time.

4

Three Techniques Used for TO-Abstraction: Now we explain
techniques used for TO-Abstraction in more details. Due to
space limitation, we explain only the part of the techniques
that are relevant to the DHCP-F case study.

We use three sub-techniques in combination for timeout
oder abstraction of a TIOA model described by the syntax
template for TO-Abstraction. The three techniques are: 1. Time
data abstraction, 2. Timeout order constraining, and 3. Time
data reuse and compression. The first two techniques are used
to abstract the underlying real-time system into an untimed, but
infinite-state model. The third technique is used to represent
the infinite state space of the untimed abstraction using a finite
one.

[Time Data Abstraction]: First, time data abstractionab-
stracts away local clocks from a given TIOA model, and
abstracts real-valued time data in the system using symbolic
representations, as discussed earlier in this section. Thetime-
stamp-estimation trick usingclocki + u + 2ε is abstractly
represented by({}, picked ts id set, true). In addition, all
boolean conditions in the original model that require a local
clock value to determine their truth-values are conservatively
approximated. Processes may use anexpiration checkof the
form clocki < χ, by which it examines whether a received
time dataχ is not “expired”, that is,χ represents a future time.
These expiration checks are approximated using a special list,
called the expired time-data list, which stores time nonce and
time stamp IDs picked thus far that are “globally expired”
– expired onall local clocks. Whether a time nonce/stamp
ID IDk is strongly expired is deduced when a timeout is
performed atTD + ε, and symbolic time dataTD contains
IDk, and in such a case,IDk is included in the expired time-
data list. Using the expired list, we can infer the truth value of
clocki > x in the following case: if all IDs inx are strongly
expired, thenclocki > x must be true. If we cannot infer the
truth value of the expiration check, then the abstraction uses
a non-deterministic choice. Time Data Abstraction is formally
defined in [3] as a function from Tempo code described using
the template to another Tempo code that does not use any
timing information.

[Timeout Order Constraining]:The untimed model after time
data abstraction looses the control over timeout orders in the
original timed model because the abstraction removes local
clocks of processes. Therefore, we need to put the correct
timeout orders back into the untimed model by constraining
timeout orders using the information from symbolically rep-
resented timeout time, as we briefly describe earlier in this
section. Considering the loose synchronization assumption, if
a timeout actiontimeoutik is set to a time larger than the time
for another timeouttimeout

j
ℓ by more thanε, thentimeoutik

occurs aftertimeout
j
ℓ has done so. By rephrasing the above

statement in symbolic representations, we obtain the following.
Timeout actiontimeoutik of a processi is disabled when the
following condition holds:∃t

j
ℓ ∈ Timeout variablesj : (j 6=

i) ∧ (tn set(tjℓ) ⊆ tn set(tik)) ∧ (ts set(tjℓ) ⊆ ts set(tik)) ∧
¬slack added(tjℓ) ∧ slack added(tik), where tn set(tjℓ) and
ts set(tjℓ) represents the time nonce ID set and time stamp ID
set, respectively, that symbolically represents the combined
time nonces and stamps using ‘max’, andslack added(tjℓ)

represents whether or not the Boolean flag that represents the
slackε is added to the underlying timeout, is set to true.
[Time Data Reuse and Compression]:An execution of the
untimed model may require an infinite number of new time
nonce and/or time stamp IDs because the length of a model
execution is typically infinite. Our basic strategy is toreuse
a time stamp or a time nonce that is once taken by some
process but is no longer used anywhere in the model. We use a
more elaborateTime Data Compressiontechnique for DHCP-
F. Time Data Compression is used to express multiple ‘max’ed
time nonces (or stamps) by one symbolic ID. For example,
when processes in the system use eithermax(TN1, TN2)
or TN3 in the current state of the system, we can consider
max(TN1, TN2) as one cluster of time nonces, and therefore
represent it by one ID. More details of how we can find
such “compress-able” time nonce or stamp IDs and how a
compression is actually performed is described in [3]. The
above described reuse and compression techniques are not
technically needed to conduct a bounded model-checking (not
a full model-checking), since processes can use only a finite
number of IDs in a bounded depth. However the techniques
can contribute to reduce the ID space needed for a “valid”
bounded model-checking – for model-checking, we first bound
the size of the ID space, and conduct a model-checking. If we
find that the ID space is actually too small and therefore a fresh
ID is not available in some execution (within a certain depth
for a bounded model-checking), then we increase the size of
the ID space, and run the model-checker again. We used this
“bound-and-supersize” strategy for the presented case study,
in order to find the most compact sufficiently large ID space.

A soundness guarantee that we can obtain for TO-
Abstraction is that for any execution of the resulting untimed
model, there is a corresponding execution of the original
automaton such that the values of all untimed variables are the
same in any pair of two states that respectively appear after
the same number of discrete actions in the two executions.
This soundness guarantee is proved in [3] using a simulation
relation proof technique.

3. DHCP FAILOVER PROTOCOL

The DHCP Failover protocol (DHCP-F)is an extension of
the Dynamic Host Configuration Protocol (DHCP), which is
widely deployed for communication devices to automatically
obtain an IP address on the Internet. Upon a request from a
client, the DHCP server automatically assigns an IP address
to the client. The server gives an assignment in the form of a
“lease”: an IP address assignment from the server is associated
with its expiration time until which a client is allowed to use
the address.

DHCP-F supplements the ordinary DHCP with stronger
fault tolerance using multiple backup servers – when the main
server encounters a failure and becomes down, one of the
backup servers takes over the main server’s job. The main
difficulty of using such backup servers is to maintain the
consistent view of the lease periods of IP addresses across the
main server and all backup servers. Most standard database
consistency techniques cannot be used for DHCP-F because
they are too slow for this application. For this reason, DHCP-
F uses the combination of the two stage assignment scheme.

5

The first assignment is a short assignment that uses a time
stamp plus the constant waiting timeu. This assignment is
fast, requiring no acknowledgment communication, but limits
how long the address can be used by one client. The second
assignment is slower, and used by clients torenew its lease.
It requires explicit acknowledgment from all backup servers,
but a client can use one address indefinitely by renewing the
lease.

DHCP-F is described in an Internet Draft that is over 130
pages long. This length is primarily due to the need to deal
with many types of concurrent server failures.

In [2], Fan et al. analyzed DHCP-F using the TIOA frame-
work and hand-written proofs of correctness. Theydecom-
posedthe DHCP-F protocol into two sub-protocols: theleader
electorand theaddress assigner. The leader elector elects one
of the backup servers as the next main server when the current
main server encounters a failure. The address assigner assigns
an IP address to a client upon the request from it. We will
explain how this assignment process works in Section 3.1.

The leader elector uses afailure detector. When the main
server encounters a failure, the failure detector notifies the
leader electors (implemented in a distributed fashion in each
backup server) of this information. The safety property of the
leader elector (only one server is elected as the main server
at any time) is guaranteed by waiting long enough time since
the elector recovers from a failure. The leader elector sub-
protocol and its analysis of the correctness is relatively simple
compared to the address assigner, which conducts the main
task of the DHCP-F protocol. Therefore, in this case study, we
will focus mainly on the address assigner protocol of DHCP-
F, and we model the leader elector as a simple helper module
that notifies one backup server of the fact that the server is
elected as the new main server.

The main safety property of DHCP-F that we verify in this
paper is the no-duplicated-address-assignment property –one
specific address is assigned to at most one process. In [2],
the authors also verified interesting timeliness properties of
the protocol as well as the no-duplicated-address-assignment
property. Verification of timeliness properties using a machine-
automated method is a challenging future study.

Because we have to use a model-checker to verify the
untimed abstraction, we need to fix the configuration of the
system. We look at the minimum interesting configuration,
which consists of one main server, one backup server, and
two clients (for the possibility of duplicated assignments).

An actual implementation of the DHCP-F server handles
multiple IP addresses concurrently. In this case study, the
model handles just one IP address. This is because this
concurrent treatment of the IP addresses in one server can
be viewed as running multiple threads (or processes) each
of which treats exactly one IP address, and these threads do
not affect each other. Therefore, to verify the no-duplicated-
address-assignment property of DHCP-F, it is sufficient to
focus on one thread that handles one IP address.

3.1. TIOA code of DHCP-F

Due to space limitation, we only present the transition
definition of the server automaton (Fig. 1) and the client
automaton (Fig. 2). The complete code appears in [3]. The

fail input comes in from the environment at any time. The
“leader-elector” helper module outputs thelead action to the
alive server with the minimum ID when the module observes
a failure in the current execution. In the code in Fig. 1, we
assume that when a sever encounters a failure, all variables
except forpotlease are reset.

In this code, lease expiredi is the only timeout ac-
tion in the server and the client.acklease, potlease, and
bcast value are the tree timed variablesx1

i , x2

i , and x3

i .
timeout represents the only timeout variablet1i .

The protocol works as follows in the nominal operation.
First, a client broadcasts a request with some time nonceτ ,
representing the time until which a client wants an IP address.
It picks a new interaction instanceκ for this session, and sends
τ with a message type ‘Request’ andκ. When the main server
receives the request, it sends back an acknowledgment with
the lease offer for ashort lease, using clocki + u. It also
updates its current interaction instance toκ. Then the server
broadcasts the most conservative potential lease time (a ‘max’
of τ and clocki + u) with κ to all backup servers. When a
client receives a lease offer, and if the lease time has not
expired yet, it accepts the offer and uses the IP address until the
specified lease time. When a backup server receives a potential
lease time from the main server, it updates its own estimate of
the most conservative potential lease time stored inpotlease,
and sends back an acknowledgment to the main server with
κ. The main server collects acknowledgements by accepting
only acknowledgements for the current session (judged by
the interaction instance of the acknowledgements). When the
main server has collected acknowledgments from all backup
servers, it updates the value ofacklease, the variable used to
respond a lease-renew request from a client. This implies that
the time nonceτ first sent by a client to the main server is used
only afterthe main server collects acknowledgements from the
backup servers. When the main server receives a renew request
with another time nonceτ2 from the current client after the
above described “collection” period, it offers the lease until
max(τ, TS1 + u, clocki + u), whereTS1 is the time stamp
taken when the main server first responds to the current client.
Then the main server enters the “collection” period for the new
time nonceτ2 (‘max’ed with previously accumulated time data
in potlease). Similarly, for each following renew message, the
client is offered the time nonce for the one-session-previous
renew (or request) message, maxed with a newclocki + u of
the main server and accumulated other time data inacklease.

When the main server encounters a failure, the leader-
elector detects it, and assigns a new main server. Recall that a
lease time (a time nonce) requested by the client is always used
only after collecting acknowledgements from backup servers.
When a backup server inputslead, it sets its timeout to ‘max’
of the potential lease time and ‘clocki + u + 2ε’ (the time-
stamp-estimation trick), so that it times out after all time
nonces stored in the potential lease time,potlease, and all
existing time stamps that a client could be using has expired.
This intricate use of the time-stamp-estimation trick enables
the main server to offer a short lease ofclocki + u, without
collecting acknowledgements from backup servers.

As described above, usage of maximum operations and the
time-stamp-estimation trick used in DHCP-F is very subtle,

6

———————————————————————
input receivej (i, ‘Request’, τ , κ)
eff if leading∧current user = ⊥
∧ pc = waiting then
current user := i;
current interact inst := κ;
acklease := clockj + u;
potlease := acklease;
bcast value :=

max(τ , acklease);
timeout time := potlease + ε;
timeout is set := true;
pc := ack to user; fi

output sendj (i, ‘Ack’, χ, κ)
pre χ = acklease ∧

pc = ack to user ∧
i = current user ∧
κ = current interact inst

eff pc := bcast potlease;

output bcastj (AllServers,
‘PotleaseWrite’, ω, κ)

pre pc = bcast potlease ∧
ω = bcast value ∧
κ = current interact inst

eff pc: = waiting;
for j’:Server ID:
potlease ack rcvd[j’] := (j’ = j);

input receivej (j′,
‘PotleaseWrite’, ω, κ)

eff if ¬ leading ∧ pc 6= down
then
bcast value := ω

potlease := max(potlease, ω)
potlease ack leader := j′

pc := send potlease ack fi

output sendj (j′,
‘PotleaseWriteAck’, ω, κ)

pre ω = bcast value ∧
κ = current interact inst ∧
pc = send potlease ack

eff pc := waiting;

input receivej (j′, ‘PotleaseWriteAck’,
ω, κ)

eff if κ=current interaction inst∧
leading ∧ pc 6= down then
potlease ack rcvd[j’] := true
if ∀ (j:Server ID):

(potlease ack rcvd[i]) then
acklease :=
max(acklease, ω) fi fi

input receivej (i, ‘Renew’, τ , κ)
eff if leading ∧ current user = i

∧ pc 6= down then
current interact inst := κ;
acklease :=
max(acklease, clockj + u);

potlease :=
max(potlease, acklease);

bcast value :=
max(τ , acklease);

timeout time := potlease + ε;
timeout is set := true;

pc := ack to user; fi

output lease expiredj

pre timeout time = clockj ∧
timeout is set

eff timeout time := 0;
timeout is set := false;
current user := ⊥;
pc := waiting;

input failj
eff pc := down
timeout time := 0
timeout is set := false
leading := false
current user := ⊥
current interact inst := ⊥
acklease := 0
bcast value := 0
for j’:Server ID:

potlease ack rcvd[j’] := false

input recoverj
eff pc := waiting;

input leadj

eff leading := true;
timeout time :=
max(clockj + u + 2ε,

potlease + ε);
timeout is set := true;
pc := preparing;

———————————————————————
Fig. 1. Transitions of the server automaton of DHCP-F

and therefore it is hard to manually analyze whether or not the
timeout is set as intended. Thus, we benefit from the power
of automated analysis given by TO-abstraction.

4. MODEL-CHECKING DHCP-F USING TO-ABSTRACTION

In this section, we report the automated formal verification
of DHCP-F using TO-Abstraction. In Section 4.1, we show
the code of DHCP-F after TO-Abstraction. Section 4.2 shows
the verification results. We also experiment with “mutated”
version of the original code to examine the efficiency of bug-
finding using TO-Abstraction.

4.1. Untimed Abstraction of DHCP-F

In this section, we present the untimed abstraction of
DHCP-F. We show in Figures 3 and 4 the untimed version
of code described in Figures 1 and 2, respectively. The

———————————————————————
output bcasti(AllServers,

‘Request’, τ , κ)
pre τ = new time nonce() ∧

κ = new interact inst() ∧
pc = requesting

input receivei(j, ‘Ack’, χ, κ)
eff if χ > clocki ∧

κ = current interact inst
then
timeout := χ;
timeout is set := true;
pc := leasing; fi

output sendi(j, ‘Renew’, τ , κ)
pre τ = new time nonce() ∧

j = current server ∧
κ = new interact inst() ∧
pc = leasing

output lease expiredj

pre timeout = clocki ∧
timeout is set

eff timeout := 0;
timeout is set := false;
pc := idle;

———————————————————————
Fig. 2. Transitions of the client automaton of DHCP-F

yellow-colored parts of the code are the parts changed by the
abstraction.

We use the following functions in the untimed version:
1) symb max: used to represent a symbolic version of

‘max’ operations. This is implemented by element-wise
union to the pair of time-nonce and time stamp ID sets.

2) set timeout: used to represent the symbolic timeout
value using symbolic time data and the boolean for
slack-added or not.

3) ts set: used to represent the time stamp ID set in the
symbolic time data. tnset is similarly defined.

4) expired: used to represent the expiration implication
from the expired time-data list that we described in
Section 2.3.

As we described in 2, all timed and timeout variables now
use symbolic representations with time stamp and time nonce
IDs. The time-stamp-estimation trick is approximated using
picked ts ID set, the time stamp IDs picked thus far in the
current protocol execution. The expired time-data list consists
of two sublists,expired ts ID list and expired tn ID list,
and updated when timeout with a slackε is performed.
Boolean variablercvd time expired is used to determine the
truth-value of the expiration check of the form ofclocki < χ,
using the expired time-data list.

4.2. Verification Results

We used the SAL model-checker [14] developed by SRI
International to conduct verification of the untimed abstraction
of DHCP-F. For this case study, we manually abstracted the
timed model into the untimed model described in the SAL
model. We tried to define every data structure in SAL as
general as we can, so that the structure can be reused for
other case studies. The actual code can be found in [1]. We
are currently implementing an automatic abstraction (code-
conversion) tool for TO-abstraction.

The full model-checking using BDD was not feasible for
this case study arguably due to the complexity of the pro-
tocol. (We encountered the out-of-memory error when SAL
was computing the transition function, that is, even before
verification.) The number of time stamps and time nonces were
increased when the time-stamp/time-nonce unavailabilityerror
has occurred. All experiments are conducted using a Linux
machine with an Intel CoreTM 2 Quad at 2.66 GHz and 4GB
memory.

We used the minimum interesting configuration, which
consists of one main server, one backup server, and two clients
(for a possible duplicated assignment). We used a feature

7

———————————————————————
input receivej (i, ‘Request’, τ , κ)
eff if leading∧current user = ⊥
∧ pc = waiting then
current user := i;
current interact inst := κ;
acklease :=
new ts ID(picked ts ID set);
potlease := acklease;
bcast value :=

symb max(τ , acklease);
timeout time :=
set timeout(potlease, true);
timeout is set := true;
pc := ack to user; fi;
picked ts ID set :=
one ts ID picked(

picked ts ID set)

output sendj (i, ‘Ack’, χ, κ)
pre χ = acklease ∧

pc = ack to user ∧
i = current user ∧
κ = current interact inst

eff pc := bcast potlease;

output bcastj (AllServers,
‘PotleaseWrite’, ω, κ)

pre pc = bcast potlease ∧
ω = bcast value ∧
κ = current interact inst

eff pc: = waiting;
for j’:Server ID:
potlease ack rcvd[j’] := (j’ = j);

input receivej (j′,
‘PotleaseWrite’, ω, κ)

eff if ¬ leading ∧ pc 6= down
then
bcast value := ω

potlease :=
symb max(potlease, ω)

potlease ack leader := j′

pc := send potlease ack fi

output sendj (j′,
‘PotleaseWriteAck’, ω, κ)

pre ω = bcast value ∧
κ = current interact inst ∧
pc = send potlease ack

eff pc := waiting;

input receivej (j′, ‘PotleaseWriteAck’,
ω, κ)

eff if κ=current interaction inst∧
leading ∧ pc 6= down then
potlease ack rcvd[j’] := true
if ∀ (j:Server ID):

(potlease ack rcvd[i]) then
acklease :=
symb max(acklease, ω) fi fi

input receivej (i, ‘Renew’, τ , κ)
eff if leading ∧ current user = i

∧ pc 6= down then
current interact inst := κ;
acklease :=
symb max(acklease,

new time stamp ID(
picked ts ID set));

potlease :=
symb max(potlease,

acklease);
bcast value :=
symb max(τ , acklease);

timeout time := potlease + ε;
timeout is set := true;
pc := ack to user;
one ts ID picked(

picked ts ID set); fi

output lease expiredj

pre timeout is set
eff if slack added(timeout time)

then
expired ts ID list :=

expired ts ID list ∪
ts set(timeout time);

expired tn ID list :=
expired tn ID list ∪
tn set(timeout time); fi

timeout time := ({},{},false);
timeout is set := false;
current user := ⊥;
pc := waiting;

input failj
eff pc := down
timeout time := ({},{},false);
timeout is set := false
leading := false
current user := ⊥
current interact inst := ⊥
acklease := ({},{})
bcast value := ({},{})
for j’:Server ID:

potlease ack rcvd[j’] := false

input recoverj
eff pc := waiting;

input leadj

eff leading := true;
timeout time :=
set timeout(symb max(

({picked ts ID set},{}),
potlease),
true);

timeout is set := true;
pc := preparing;

———————————————————————
Fig. 3. Transitions of the server automaton of DHCP-F, untimedversion

———————————————————————
output bcasti(AllServers,

‘Request’, τ , κ)
pre τ = new time nonce ID(

picked tn ID set)) ∧
κ = new interact inst() ∧
pc = requesting

eff picked ts ID set :=
one ts ID picked(

picked ts ID set)

input receivei(j, ‘Ack’, χ, κ)
eff rcvd time expired :=

if expired(χ,
expired ts ID list,
expired tn ID list)

then true
else choose(true, false)
if ¬ rcvd time expired ∧

κ = current interact inst
then
timeout:=set timeout(χ, false);
timeout is set := true;
pc := leasing; fi

output sendi(j, ‘Renew’, τ , κ)
pre τ = new time nonce ID(

picked tn ID set)) ∧
j = current server ∧
κ = new interact inst() ∧
pc = leasing

eff picked ts ID set :=
one ts ID picked(

picked ts ID set)

output lease expiredj

pre timeout is set
eff if slack added(timeout time)

then
expired ts ID list :=

expired ts ID list ∪
ts set(timeout time);

expired tn ID list :=
expired tn ID list ∪
tn set(timeout time); fi

timeout time := ({},{},false);
timeout is set := false;
pc := idle;

———————————————————————
Fig. 4. Transitions of the client automaton of DHCP-F, untimedversion

of SAL that iteratively increases the depth for the bounded
model-checking up to a specified depth bound to search for
a counterexample. We succeeded in verifying the protocol
up to depth 20 under the failure assumption that when a
server encounters a failure all variablesexcept for potlease
are reset. The total verification time was 350743.7 seconds
(97.43 hours). Table II shows individual times for the bounded
model-checking of different depths and accumulated times
that took up to each of the depths (we only show depth 15
and higher). We consider that the depth of 20 covers several
subtle scenarios and is arguably sufficiently deep for finding
counterexamples that could be potentially encountered in a
real implementation. This is because, as we show later in this
section, when we mutate one check condition in one transition
of the original code, we can find at depth 17 a counterexample
that has a fairly complex scenario.

Depth Individual time (hours) Accumulated time (hours)

15 2.70 5.54
16 5.00 10.54
17 6.45 16.99
18 14.72 31.71
19 23.84 55.55
20 41.88 97.43

TABLE II
BOUNDED MODEL-CHECKING TIMES

First Mutation (Different Failure Assumption): Next, we
experiment with another failure assumption that when a server
encounters a failure, all variables are reset. Under this as-
sumption, we have found a counterexample at depth 17.4

4This counterexample is found with the configuration that the number of
server is one, and the number of clients are two. We are currently running
experiment for the case of two servers and two users. We are expecting to
find a similar counterexample at depth 20. The illustrated counterexample is
for two servers.

8

REQ
ACK

WRITE

RENEW

WRITE-ACK

ACK
EXPIRE

REQ

ACK

Time

FAIL RECOVER LEAD
Server1

Server2

Client2

Client1

Fig. 5. Duplicated lease scenario when all variables are reset by a failure

This counterexample is illustrated in Fig. 5.5 This scenario
is actually realizable in the original timed system as well,as
described in the following:

1) Client-1 sends a lease request that contains a large time
nonceτ .

2) Server 1 sends a Write message to Server 2, and Server
2 sends back a Write-Ack message; and thus Server-1’s
acklease is updated (now the maximum containsτ).

3) Client-1 sends a Renew message, and Server 1 receives
it. acklease is updated to max(acklease, ts + u), which
is no smaller thanτ . And then, potlease is updated to
max(potlease, acklease).

4) A lease offer until max(acklease, ts + u) is sent to Client
1. Client 1 receives it, and updates its lease timeout to
max(acklease, ts + u).

5) Server 1 encounters a failure, and all variables (es-
pecially potlease) are reset. When Server 1 recovers
and gets a lead input, it sets the lease timeout to
max(clocki + u + 2ε, potlease + ε), where the value
of potlease is 0. Therefore, ifτ is larger than the value
of clocki+u+2ε at this moment, Server-1 expires before
Client-1 expires.

6) Since Server-1 expires, it accepts a request from another
client, Client 2, and hence ends up with a duplicated
lease.

This counterexample is expected to appear under the as-
sumption of using volatile memory for potlease. This is
because potlease stores information of the accumulated infor-
mation of the potential lease time for the current client. Ifthis
information is reset, there is no way the server can retrieve
what time nonces the client is now using for its lease time.

Second Mutation (Removing Interaction Instance Check): To
examine the effectiveness of bug-finding using TO-abstraction,
we experimented with verification of DHCP-F with a slight
change. We removed one condition for checking the interaction
instance of the received acknowledgement from a backup
server to ensure that the received acknowledgement is for
the current session. The only change is in the effects of the
action receive(j, “WriteAck”, ω, κ) of the server automa-
ton. We removed the condition “κ = current interact inst”
from the if statement. The main server now accepts any
“PotleaseWriteAck” acknowledgment as an acknowledgment
to the latest “PotleaseWrite” message.

5We obtained from the counterexample more information than justcom-
munication sequence of processes. For example, how potlease and acklease
are changed (using symbolic IDs). From these informations, weconstructed
the realizable scenario in the original real-time model by considering what
kind of assumption for the actual values of time nonces are needed to realize
the counterexample execution found in the symbolic world.

After this mutation, we found a counterexample at depth
17 under the configuration of two servers and two users
(the run time was 52851.28 seconds∼ 14.7 hours). This
counterexample has a complex scenario, and we believe that
it is considerably hard to find by human, or simulations with
fixed values ofε and u, and random assignments of time
nonces.

The counterexample is depicted in Figure 6. A red line in
a client’s time line expresses that the client is using a lease.

REQ
ACK

WRITE

RENEW

WRITE-ACK

ACK
EXPIRE

REQ

ACK

Time

Server1

Server2

Client1

Client2

Fig. 6. Duplicated lease scenario for the mutated DHCP-F

We now explain why this counterexample is a real coun-
terexample that could occur in the original real-time mutated
protocol as well. Suppose the request lease expire timeτ from
Client-2 is very large and the (potential) lease time coversthe
entire time frame depicted in Figure 6.

The key of this counterexample is that the main server
(Server-1) receives the “WriteAck” message from the backup
server (Server-2) between the receipt of the renew message
from a client (Client-1) and the acknowledgment for the renew.

We explain the entire scenario in details in the following.

1) Client-1 sends a lease request that contains a large time
nonceτ .

2) Server-1 (the main server) receives the request from
Client-1, and replies ashort-leaseacknowledgment con-
taining the offer untilts1 +u, wherets1 is a time stamp
picked by Server-1 at this point. Note thatτ is not
included in the short lease. The value ofbcast value
changes tomax(τ, ts1 + u).

3) Client-1 receives the short lease offer and sends a renew
message with a new time nonceτ2.

4) Server-1 broadcasts the “PotleaseWrite” message with
max(τ, ts1+u) (the value ofbcast value) to all backup
servers (just one backup in this case).

5) Server-1 receives a renew message from Client-1.
Server-1 changes the timeout time (the value oftimeout)
to max(τ + u, τ2 + u) + ε, where wherets2 is a time
stamp picked by Server-1 at this point. It also changes
the current interaction instance to the one in this renew
message.

6) Server-1 then receives “PotleaseWriteAck” from the
backup server, Sever-2,before acknowledging the
renew message from Client-1. The value ofcur-
rent interact inst has changed since Server-1 broad-
casts the “PotleaseWrite” message. However, the
server’s program is mutated in such a way that it does
not check the interaction instance to decide to accept
a received acknowledgment or not. Therefore, Server-
1 accepts this “PotleaseWriteAck” from Server-2, and
since Server-2 is the only backup server, Server-1 up-
dates the value ofacklease used for an acknowledgment

9

to a renew request from the current client. This update
is conducted by calculating the maximum of the current
value ofacklease and the received timed valueω, which
contains the largeτ .

7) Client-1 receives the renewing-lease offer from Server-1,
and set its lease timeout to the maximum that contains
τ .

8) Sinceτ is very large, the timeout set to Server-1 at time
max(τ +u, τ2 +u)+ε times out before Client-1’s lease
expires.

9) Client-2 sends a request to Server-1, and Server-1 offers
a lease since it has already timed out.

10) Client-2 receives the lease offer and starts using the IP
address.

The above described scenario shows that the usage of the
maximum operations used in the original DHCP-F protocol
are very intricate: the maximum operations used forpotlease,
acklease, andbcast value in the main and backup servers
control the timing-related behavior of the servers and clients
(by offering a lease time), and how they control this timing-
related behavior in a correct fashion is very non-trivial. The
atomicity assumption for the send and receive actions also
affects the correctness of the protocol: The above scenario
would not occur if the main server can receive a renew
message and send an acknowledgment for it in an atomic
fashion. The atomicity assumption depends on how DHCP-
F is implemented. For example, the atomicity granularity we
are using in our model is actually realized when broadcasting
task and receiving task are operated by two different threads
without using lock/unlock. The above discussed facts about
this counterexample found for the mutated protocol strongly
suggests that we need to use an automated exhaustive analysis
technique such as TO-abstraction for this kind of real-time
protocols.

5. CONCLUSION

In this paper, we present a case study on automated formal
verification of the DHCP Failover protocol using Timeout
Order Abstraction (TO-Abstraction). We successfully verified
the protocol using bounded model-checking up to depth 20.
We also experiment with two “mutated” versions of the
original code. We found a counterexamples for each of the
mutated versions, and one of them had a complex scenario of
process interleaving that we believe could have not been able
to find by human or simulations with fixed system parameters
and random assignments of time nonces. This fact infers
that TO-Abstraction is helpful not only for verification, but
also bug-finding of the protocols. This bug-finding feature
is particularly useful when the underlying protocol is still
in the development stage, and the designer wants to try
slightly different specifications and implementations andthe
correctness holds for them.

We could not conduct a full model-checking for DHCP-
F (even though TO-Abstraction has a potential to conduct
it). Therefore we conducted a bounded model-checking for
resulting untimed finite state model. This was due to the
complexity of DHCP-F. If one aims for only a bounded
model-checking from the first point, he/she might be able
to directly model the protocol without untiming abstraction,

and use satisfiability-modulo-theory (SMT) solver to conduct
a bounded model-checking. The approach closest to the above
described strategy we can refer to isCalendar Automata
approach ([15], [16], [17]). It is a interesting future study to
examine whether the approach can be applied to DHCP-F, and
if so, examine the efficiency compared to the presented case
study.

REFERENCES

[1] S. Umeno and N. Lynch, “Supplemental files for our
iceccs-2010 paper,” the files can be obtained from
http://people.csail.mit.edu/umeno/dhcpf.

[2] R. Fan, R. Droms, N. Griffeth, and N. Lynch, “The DHCP failover
protocol: A formal perspective,” in27th IFIP WG 6.1 International
Conference on Formal Methods for Networked and DistributedSystems
(FORTE 2007), ser. Lecture Notes in Computer Science, vol. 4731.
Springer, 2007, pp. 208–222.

[3] S. Umeno and N. Lynch, “Timeout order abstraction for formalver-
ification of loosely synchronized real-time distributed systems,” Mas-
sachusetts Institute of Technology, Tech. Rep., to appear soon. A stable
draft version is available from [1].

[4] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager,The Theory
of Timed I/O Automata, ser. Synthesis Lectures on Computer Science.
Morgan & Claypool Publishers, 2006.

[5] T. Nolte and N. Lynch, “Self-stabilization and virtual node layer emula-
tions,” in Stabilization, Safety, and Security of Distributed Systems, 9th
International Symposium (SSS 2007), ser. Lecture Notes in Computer
Science, vol. 4838. Springer, 2007, pp. 394–408.

[6] ——, “A virtual node-based tracking algorithm for mobile networks,”
in International Conference on Distributed Computing Systems (ICDCS
2007). IEEE Computer Society, 2007, p. 1.

[7] S. Dolev, S. Gilbert, L. Lahiani, N. A. Lynch, and T. Nolte, “Timed
virtual stationary automata for mobile networks,” inPrinciples of
Distributed Systems, 9th International Conference, OPODIS 2005, ser.
Lecture Notes in Computer Science, vol. 3974. Springer, 2006, pp.
130–145.

[8] R. Fan, I. Chakraborty, and N. Lynch, “Clock synchronization for
wireless networks,” inOPODIS 2004: 8th International Conference
on Principles of Distributed Systems, ser. Lecture Notes in Computer
Science, vol. 3544. Springer, 2005, pp. 400–414.

[9] S. Umeno and N. Lynch, “Safety verification of an aircraft landing
protocol: A refinement approach,” inProc. of HSCC’07, Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer Science, vol.
4416. Springer, 2007, pp. 557 – 572.

[10] R. Alur and D. L. Dill, “A theory of timed automata.”Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[11] T. A. Henzinger, “The theory of hybrid automata,” inLICS ’96:
Proceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science. Washington, DC, USA: IEEE Computer Society, 1996, p. 278.

[12] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
nutshell,” International Journal on Software Tools for Technology
Transfer, vol. 1, no. 1-2, pp. 134–152, 1997. [Online]. Available:
citeseer.ist.psu.edu/larsen97uppaal.html

[13] T. Henzinger, J. Preussig, and H. Wong-Toi, “Some lessons from the
HYTECH experience,” inProc. of the 40th Annual Conference on
Decision and Control. IEEE Computer Society Press, 2001, pp. 2887–
2892.

[14] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar,M. Sorea,
and A. Tiwari, “SAL 2.” in Proc. of CAV 2004, ser. Lecture Notes in
Computer Science, vol. 3114. Springer, 2004, pp. 496–500.

[15] B. Dutertre and M. Sorea, “Timed systems in SAL,” SRI International,
Tech. Rep. SRI-SDL-04-03, 2004.

[16] ——, “Modeling and verification of a fault-tolerant real-time startup
protocol using calendar automata.” inProc. of FORMATS/FTRTFT 2004,
ser. Lecture Notes in Computer Science, vol. 3253. Springer,2004, pp.
199–214.

[17] G. M. Brown and L. Pike, “Easy parameterized verificationof biphase
mark and 8N1 protocols.” inProc. of TACAS 2006, ser. Lecture Notes
in Computer Science, vol. 3920. Springer, 2006, pp. 58–72.

10

