Automated Formal Verification of the DHCP
Failover Protocol Using Timeout Order Abstraction

Shinya Umeno and Nancy Lynch
CSAIL, Massachusetts Institute of Technology, Cambridgg, MSA
{uneno, | ynch}@sail.nmt.edu

Abstract—In this paper, we present automated formal veri- We conduct bounded model-checking for DHCP-F us-
fication of the DHCP Failover protocol. We conduct bounded ing Timeout Order Abstractio(TO-Abstraction, [3]). TO-
model-checking for the protocol usingTimeout Order Abstraction Apstraction is a technique to systematically abstract an
(TO-Abstraction), a technique to abstract a given timed model in LSRTDS into an untimed model. The subclass of LSRTDS's

a certain sub-class of loosely synchronized real-time distributed) A " .
systems into an untimed model. A resulting untimed model from that we can apply TO-abstraction is defined using a syntax

TO-abstraction is a finite state machine, and therefore one can €Mplate that represents a restriction to Tempo, the pyimar
verify the model using a conventional model-checker. modeling language of TIOA [4]. The TIOA framework has
We have verified the protocol by bounded model-checking been used to model and verify (with hand proofs) severat real
up to depth 20. We also experimented with “mutating” the time distributed systems and algorithms (for example,],
original code to examine the efficiency of bug-finding using TO- [7], [8], [2], [9]). TO-Abstraction enables the user to cotl
Abstraction. We used two mutated pieces of the original code. time-parametric verificatiomf a given TIOA model described
The first one represents a model that uses a stronger failure by the template in the sense that the local clock skew bound

assumption. The second one represents a model that the protuc S .
implempenter has forgot to addpa certain check of a reF():eived e and the special timing-related constant that we explaer lat

message. We found one counterexample for each of two pieces oft€ treated as parameters of the system, and thereforeotare n

mutated code. In particular, the counterexample that was found instantiated into concrete values. The untimed model tiesul
for the second mutated code had a complex scenario, and wefrom TO-Abstraction is a finite state machine, and thus one

believe that it is considerably difficult to find the counterexample can automatically verify (untimed) temporal propertiestiut

by human or simulations.* model using a conventional model-checker. The soundness
guarantee that we can obtain is that any “untimed” safety
1. INTRODUCTION property of the untimed model also holds for the original

_ ... TIOA model. Informally, an untimed safety property is a $gfe
In this paper, ‘we present automated formal verlflcat!o&operty that refers to non-timing-related part of the peol.
of the DHCP Failover protocol (DHCP-F, [2]). DHCP-F ispqr example, we can specify no two processes enter theatritic
an extension of theDynamic Host Configuration Protocol yagion at the same time, or the value of a particular counter
(DHCP), which is widely deployed for communication devicegioes not exceed ten in any protocol execution. Basically,
to automatically obtain an IP address on the Internet. DHcgﬁy property that we typically use for the ordinary untimed

F is in the class of loosely synchronized real-time disteu protocol verification can be verified using the untimed model
systems (LSRTDS’s). In this class of distributed systems, typiained from TO-Abstraction.

processes or modules in the system are assumed td
synchronizationthat is, there is an a priori known upper bound Contribution There are two main contributions in the
¢ on the skew between local clocks in processes. Procespegsented paper. First, as far as we know, this paper psesent
communicatetime data (timing-related information such asthe first machine-automated formal verification of the DHCP
time stamps) with each other, and set th@neoutsusing Failover protocol. This protocol is in the class of LSRTDS's
time data. These timeouts are used to constrain processu¥l because of its very general assumption of the local clock
behavior in such a way that the processes execute a certgitue evolutions (as long as the clock values are loosely
designated action before or after other processes execefachronized with respect to the bouadthe evolution is
another designated action. This type of control of timeodeescribed by an arbitrary increasing function), the protoc
orders is used in DHCP-F to maintain interesting mutuatannot be modeled using such frameworks as Alur-Dill Timed
exclusion and fault-tolerance properties. Namely, théqual Automata [10] or Linear Hybrid Automata [11]. Therefore,
supports no duplication of address assignments even unthe protocol cannot directly benefit from the existing ver-
server failures and recoveries. This property is the one \figation techniques and tools (for example, UPPAAL [12]
verify by the presented case study. and HyTecH [13]) developed for these frameworks. The
protocol has been studied in [2] in the context of formal
This research has been supported by NSF Award 0702670. @pir pvill verification using manual (hand-written) proofs, but nodstu
appear in Proceedings of 15th IEEE International ConfexencEngineering gn gutomatic analysis of the protocol has been reported thus

of Complex Computer Systems (ICECCS 2010), Oxford, UK, Marct2@2
2010. The paper is formatted using gXT style file for IEEE conferences. far. The authors of [2] proved the correctness of the prdtoco

1Supplemental files such as SAL code used for the case studissned USING elaborate hand-written proofs by induction over eryst
in the paper can be obtained from URL cited as [1]. executions. We consider the complexity of formally verifyi

this protocol is considerably high because of the fact thataasumption. Processes in the protocol use the following two
complete proof is not included in [2] because a proof cossighain ways of setting timeouts.

of proving several non-trivial lemmas needed to prove the 1) The first way of setting a timeout usedime nonce a
final correctness theorem. Our case study provides exkausti value arbitrarily picked by a proce3sA typical use of
exploration of scenarios of DHCP-F up to the execution lengt 3 time nonce is described in Protocol 1 in this section.
of 20 (20 discrete transitions, including sending and réogi 2) The second way uses time stamp plus a special
messages, of the system) for the configuration of two clients * fixed constant waiting time.. A time stamp is a value
and two server$.Because this is a bounded guarantee, (with copied from the current value of the local clock of a
respect to the execution depth and the number of processes), process. Timeout setting using a time stamp anchn
cannot replace a complete formal proof. However, consideri be considered a special form of setting timeout using

[2], one cannot be absolutely sure about the correctnegseof t to perform thetime-stamp-estimatiotrick, which we

proofs (unless one conducts a mechanical theorem-proving) explain later in this section.
this regard, we believe that our case study helps the contynuni
gain more confidence for the correctness of DHCP-F.
Second, we experiment with “mutating” the original code t
examine the efficiency of bug-finding using TO-AbstractionSt
We used two mutated pieces of the original code. The first oh
represents a model that uses a stronger failure assumptien.
e

second one represents a model that the protocol impleme . : .
; . . Nnor access the resource at the same time. Their strategy is
orgot to add a certain check of a received message. We foutn

: ||me-sharing the resource by communicating with each other
one counterexample for each of two pieces of mutated code, [n . ;
by sending messages through channels. Two processes’ local

particular, the counterexample that was found for the sgco h
. . clocks are loosely synchronized, and the skew between them
mutated code had a complex scenario, and we believe that if IS . .

. o i is strictly less tharz. We assume that the values of their local
considerably difficult to find the counterexample by human of

) . . clocks are monotonically increasing. We assume that far thi
simulations. This consequence suggests that TO'AbﬁmCttime-sharing,Pl first accgsses the reqsource and themnd P,

can be used not only for verification, but also for experiraen | | h . At f
of specification/coding changes in the early-stage devedoy alternately accesses the resource in turns. At first, wenzssu
that the channel is stable and thus messages would not be lost

of LSRTDS's. .
The rest of the paper is organized as follows. In Sectioehnd message contains WOUI.d not b(_acom.e br_oke.n.
; Protocol 1: P, picks the time until which it will use the

2, we describe the overview of TO-Abstraction that we use

for DHCP-F verification. Section 3 is devoted to explainin esource, as a time nondeN;, and sends it taP. Py sets

how DHCP-F works, and representing the Tempo code tHatMmeout atT'’N; and starts using the resource. Whén

models DHCP-F. Section 4 reports how TO-Abstraction ciﬁce'vengl’ It sets a timeout "".TNl +e. The ;kew bound
be applied to DHCP-F and the verification results. We al(if used tomost conservativelgstimate wherP; times out,on
2

To provide the reader with the idea of how the above
described two ways of setting timeouts can be used, we show
e two relatively simple examples. DHCP-F uses similar
rategies of the two examples in combination.

SWe consider the following common setting for the examples.
r;l{wo processes’; and P, share a resource, and they must

report experiments for mutated code of the original protoc s local clock When P times out, it is guaranteed th&

; ; s already timed out. ThereforB; canimmediatelyuse the
In Section 5, we conclude by stating the summary of the papreSourceP;/ picks another time ngndENg sets a tiyrlrj1eout at

2. OVERVIEW OF TIMEOUT ORDERABSTRACTION T'N,, and sends'N, to P1. Upon receipt ofI'N,, Py sets
In this section, we describe the overview of TO-AbstractiofnS timeout t0T'N, +¢. P, and P, repeat the same rothlne
that we use for DHCP-F verification. We first explain th orever.

Next, we consider a different assumption for channels.
the channels are not stable, and contents of messages
sent between processes may become broken. When message
contents become broken inside the channel, processes can
2.1. Background recognize that the contents are broken (for example, using

We have developed Timeout Order Abstraction by analyzirfy check-sum). Under the above assumption, we cannot use
the DHCP Failover protocol (DHCP-F) and trying to find Protocol 1 — if information of7'Ny sent from P, to P,
common patterns that satisfy both of the following propayti P€comes broken, there is no way can estimate wher,

1. The set of patterns is general, and other existing rei-ti fiNIShes its job. One (not so smart) option is going back to
protocols may have used it already, or a protocol designer c40N€" Message communications. S

use it for a future design; and 2. Every protocol describedUSing @ time stamp with a constant waiting time instead
by the set of patterns can be systematically abstracted i¥o@n arbitrarily time nonce resolves this situation. Sig#po
an untimed model that can be verified by a conventionBf0C€Sses a priori share the value of the constant waiting fi
model-checker. We have found key building blocks of DHCP4 @nd the value of: is fixed.

F that other protocols can use under the loose-synchramizat

background of this technique in Section 2.1, next expla& th
settings and the syntax template used for the technique,
then explain the technique in Section 2.3.

3A time nonce in an actual low-level implementation may be computed
.) using, for example, a complex optimization and/or adaptiveriiyn or a

®We conducted a bounded model-checking instead of a full mciustking randomized algorithm. We just assume the most general (ledsictigs)
because the model-checker we used could not treat the untiri€PB- assumption: as long as its value is larger than the curreok dbthe process
model due to the size of the model. We show more details in Sedtian that picks the time nonce, it is a valid time nonce for our sgttin

Protocol 2: P, picks a time stam@’S;, instead of an arbi- assumption and the template.
trary time nonce, and sets its timeout’f®; + u. Therefore, Loose-Synchronization Assumptioe assume that pro-
P, uses the resource far time units (measured on its localcesses ardoosely synchronizedfor any pair (P;, P;) of
clock). P; sendsT'S; + u to P». If the above message sentprocesses, the deviation between the values of their local
to P, is not broken,P, sets its timeout td'S; + u + ¢ (the clocks, clock; and clock;, respectively, are bounded by an a
received time data plus) as in Protocol 1. If the message ispriori known amount, as shown in the following inequality:
broken,P; sets its timeout to the special valdecks +u+2e, |clock; —clock;| < e. We assume that thebound is known to
whereclocks is the current value of’s local clock. When every process as its parameter. We also assume that a donstan
P, times out, it immediately starts using the resource. It algwsitive real value: is known to every process as its parameter.
picks a time stamf@’S,, sets its timeout t@’S, +u, and sends ~ Communication Interface The template needs the fol-
TS, +u to P,. When receiving a message froR, P, sets lowing forms for the signatures (interfaces) of actions for
timeout in a way similar toP,. P, and P, repeat the same process P;. The system has output and input actions for
routine forever. 0 message communication between processes, such as ‘send’
Time-Stamp-Estimation Trick: The timeout setting using and ‘receive’. A ‘send’ action has the following signature:
clocks + u + 2 in Protocol 2 is the special timeout settingsend; (j:ProcessIDM:UntimedMessagey:NonNegReal
the time-stamp-estimatiotrick that we have mentioned in thex:Interactioninst. This action represents tha?; sends real-
introduction. We explain in the following why this value carvalued “time data”x and “untimed data’)/ to process
be used to estimates conservatively wiigrtimes out. We can P;. We will explain later in this section the form of time
interpret the valuelocks + u + 2¢ as(clocky +¢) +u+¢c. If data allowed in the template. Untimed data is an arbitrary
clocky + ¢ is equal to or greater thaiS;, then P, indeed value in a bounded domain. Ainteraction instancex, is a
succeeds in conservatively estimatidgy’s timeout (if the special identifier of process interactions to distinguisfecent
message were not broke®, would have set its timeout to set of interactions. A ‘receive’ action has the same type
TS; + u +). We consider in the following the momentof interface as a ‘send’, in order to match communications
that P,’s timeout is set toclocks + u + 2¢. From the loose between processes. A ‘broadcast’ actibegst;, has a similar
synchronization assumption, the valuectick; + ¢ is at least interface assend;, but instead of a process IB, it has a
as large as the value ofock;, the local clock ofP;. Because Set of process IDg that represents a subset of processes to
P;’s clock value is monotonically increasing, the curreningal Which the broadcast is performed. A process also has iriterna
of clock; is greater than the value @fS;, which is copied actions which are performed without communicating outside
from the past value oflock,. Thereforeclocky + ¢ > T'S;, of the world.
as needed. The key to the above argument was that becausémeouts: A timeout of P; is modeled as an output action,
of the fact thatP, received a (broken-content) message frortimeout}, and has a very specific form for its precondition
Py, P, was sure thaP?; had already picked time non@s;. (the transition guard) so that the timeout happens at the tim
The value ofclock; + ¢ overestimatesany time stamp that the local clock ofP; hits a specified timeout time.
has been picked thus far in physical tinend a process can State Variables of ProcesseState variables in a TIOA that
perform this estimatiomy looking at just its local clock represents process; are split into the six groups shown in
This time-stamp-estimation trick is used in the DHCP-fable I. This explicit split of variables is the core of why we
model of [2] without particularly mentioning its usefulrses can apply TO-abstraction to the template.
intuition, or su.btlety..The Internet-draft version of DHEP [Group Name [Variables
does not consider this type of subtle argument about Ioo‘e%.;vl'med ariables A NorNeaRoal
synchronized clocks, and thus how long a leading servercha s lil 9

. el .) h f‘o Timeout variables {tF) NonNegReal
walt to conservatively estimate time stamps other servavs h Timeout setting Booleans {timeout_is_setf};’izl Boolean

Types of Variables|

picked is not clearly stated. We contacted the first authorQferaction instance variab w7, Integer

[2], and were informed that this subtle special usage, whieh [Untimed variables (R} BoundedDomaif

will call the time-stamp-estimation trick, was proposedhiy, | Local clock variable clock; NonNegReal
discussed by the authors of [2], and then adopted in the model TABLE |

of DHCP-F used in [2]. TO-Abstraction can treat the time- STATE VARIABLES OF PROCESSP;

stamp-estimation trick by using a special form of abstoacti

for it. We will explain more details in Section 2.3. The first group consists of timed variables. These variables

can store real-valued time data such as time nonces and time
stamps (plus:), or the result of a ‘max’ operation of multiple

TO-Abstraction assumes that the system is executed ungarces of time data. We will see the form of value assignments
the loose-synchronization assumption and each proces®inthat can be used for timed variable later in this section. The
system is described by a syntax template that describes sieeond group consists of timeout variables. These vasable
restrictions to more general Tempo guarded-command-stglee special variables to set a time when a timeout action must
language (the primary modeling language for TIOA, [4]). Thbe performed. They can store time data, possibly plthe
basic idea of the template is to restrict use of time data amdsumed upper bound on the skew), and the result of the time-
timeouts to a special form for which TO-abstraction can k&-estimation trick. The third group consists of timeou
applied. There is no restriction imposed for “untimed” pafrt setting Booleans. These are Boolean variables that aretased
the language. In this section, we present more details an thidicate whether or not the timeout feimeout? is set. The

2.2. Setting and Template

3

fourth group consists of interaction instance variabldsesE on real values of time nonces and time stamps, but instead use
variables are used to store existing interaction instamees identifiers (IDs) of them (labels in other words). Identi§iere
ceived from process communications. The fifth group cossishtegers that distinguish different time nonces and stamyes
of untimed variables. These variables can store any bounde#plain in more detail how IDs can be used using toy examples
size information other than time data. An untimed variabléescribed earlier in this section.
can be, for example, a Boolean, a (bounded-size) counter, ofn Protocol 1, time nonces are used to Synchronize processes
a finite set of process IDs to aggregate the information abdsghavior. Processes control the ordering of timeouts usiag
which processes have responded Ags message. The lastrelative difference of their timeout times measured onrthei
group consists of just one variabléock;, which represents |ocal clocks: one procesB; sets a timeout to a time nonce
the local clock of process;. The value of this variable evolvesT N, and the other; sets it to7' N, + . Information that is
over real time, and the evolution is an arbitrary increasingufficient to retrieve the fact th&; times out afte”; has done
function that satisfies the loose-synchronization assilampt so in any possible scenario, is that both processes userties sa
Timed Expression TemplateDue to space limitation, time noncel’ N, andP;’s timeout is set by adding the “slack”
we only show the most important part of the template (the assumed upper bound on the skew) to the time nonce,
in this paper. The templates fdf'imeDataExpression but P;’s timeout is set solely by the time nonce. To keep track
and TimeoutExpression shown in TimedExpression areof the above information, we can use the following abstoacti
the most important templates in the entire template s@licks of real-valued time nonces are replaced by picks of
TimeDataFExpression is used to assign a timed variablesymbolic IDs of them. Thek-th picked time noncel' N,
=¥ by an assignment* := TimeDataExpression, and in an execution of the original system is represented by 1D
Timeout Expression is used to assign a timeout variablginteger)k. The timeout time foP; set toT N}, is symbolically
t¥ by an assignment! := Timeout Expression. The tem- represented by a paii, false), and the timeout time foP;
plates for these two expressions include a time nonce gickiget to7 N, + ¢ is symbolically represented by a pdit, true)
(new_time_nonce(), which computes a value greater thanthe Boolean values represent whether the stack added
clock;, representing a future time), computation of a timer not. Then, we remove the local clocks of both processes.
stamp plus the constant (clock; +), a ‘max’ operation After this abstraction, even though we cannot access to the
to conservatively update the timeout estimate (we will segformation of local clock values (since they are removed),
how ‘max’ is used in DHCP-F in Section 3), using timeve can carefully choose which timeoutsust not occurat
datax received from another process, timeout setting usingthe current state of the untimed model, by looking at the
and the time-stamp-estimation trickl¢ck; + u + 2¢). These symbolic representations: I;’s timeout is set to(k, false)
expressions are used in templates for processes’ tramsitiand P;'s timeout is set tqk, true), P;'s timeout must not be

explained later in this section. performed, considering timeout orders that can possighgap
TimeDataExpression ::= new_time_nonce() | clock; +u | in the original timed model. The above discussion is thedasi
2 x| idea of time data abstraction and timeout order constrgjnin

two of the three techniques that we use in combination for
TO-abstraction. We can apply the above idea of maintaining
information that is sufficient to retrieve correct timeoutlers

max(TimeDataExpression,

TimeDataExpression)

Timeout Expression ::= TimeDataEzpression | to Protocol 2 as well. In this case, we use IDs of time stamps.
TimeDataExpression + € | Since processes always addo time stamps, we can just keep
clock; +u + 2¢ | track of the ID of a time stamp when the value computed from
max(clock; + u + 2¢, a time stamp plus (in the form ofT'S;, +w) is communicated.

TimeDataExpression + ¢) _In some protocols including DHCP-F, processes use both
(TimedExpression) time nonces and time stamps, and combine them using
‘max’ operations. For example, a process can combine two
Because of the restricted use of time data described by titee nonces and three time stamps. In such cases, we
above templates, we can symbolically represent time none@s extend the same idea by using two sets of integers
and time stamps using symbolic labels of them, as we w(lDs) to represent one time dat&{l,2},{4}) represents
explain in Section 2.3. max(T Ny, TNy, TSy + u), and ({3}, {2}, true) represents a
_ _ timeout set ainax(7T' N3, T'S2 + u) + €.
2.3. Timeout Order Abstraction The time-stamp-estimation trick usingock; + u + 2¢
In this section, we briefly describe how Timeout Ordeis abstracted as ({}, picked_ts_id_set,true), where
Abstraction (TO-Abstraction) works for the template expéal picked_ts_id_set is the set of time stamp IDs
in Section 2.2. We first explain the intuition behind TOthat have been picked thus far in the current
Abstraction, and then show more details of techniques useexecution. ({}, picked_ts_id_set, true) represents
Intuition behind TO-Abstractian Our goal for TO- max(picked_ts_set) + u + ¢ in the original model, where
abstraction is to obtain an untimed model that consenigtivevicked_ts_set is the set of time stamps picked thus far. This
abstracts the original one. In order to obtain an untimedehodreflects the discussion for the time-stamp-estimationk tric
we remove the local clocks of processes, and maintain jest #arlier in this section thatlock; + u + 2¢ can be interpreted
right amount of information that can retrieve correct timeo as (clock; + ¢) + u + &, and clock; + £ over-approximates
orders in the original timed model. The key idea iswtifocus every time stamp that has been picked in physical time.

4

Three Techniques Used for TO-Abstractiblow we explain represents whether or not the Boolean flag that represeats th
techniques used for TO-Abstraction in more details. Due stacke is added to the underlying timeout, is set to true.

space limitation, we explain only the part of the techniqug$ime Data Reuse and Compressiomn execution of the
that are relevant to the DHCP-F case study. untimed model may require an infinite number of new time
We use three sub-techniques in combination for timeoHbnce and/or time stamp IDs because the length of a model
oder abstraction of a TIOA model described by the syntaecution is typically infinite. Our basic strategy is reuse
template for TO-Abstraction. The three techniques areiheT 3 time stamp or a time nonce that is once taken by some
data abstraction, 2. Timeout order constraining, and 3.€Tifgrocess but is no longer used anywhere in the model. We use a
data reuse and compression. The first two techniques are uggfle elaboratdime Data Compressiotechnique for DHCP-
to abstract the underlying real-time system into an untirbetl F Time Data Compression is used to express multiple ‘max’ed
infinite-state model. The third technique is used to repres@ime nonces (or stamps) by one symbolic ID. For example,
the infinite state space of the untimed abstraction usingte finwhen processes in the system use eithew(T'Ny, T'N,)
one. or T N3 in the current state of the system, we can consider
[Time Data Abstraction]: First, time data abstractionab- max(7'Ny,T'N2) as one cluster of time nonces, and therefore
stracts away local clocks from a given TIOA model, antepresent it by one ID. More details of how we can find
abstracts real-valued time data in the system using symbdilch “compress-able” time nonce or stamp IDs and how a
representations, as discussed earlier in this sectiontififee compression is actually performed is described in [3]. The
stamp-estimation trick usinglock; + u + 2¢ is abstractly above described reuse and compression techniques are not
represented by{}, picked_ts_id_set,true). In addition, all technically needed to conduct a bounded model-checking (no
boolean conditions in the original model that require a lloca full model-checking), since processes can use only a finite
clock value to determine their truth-values are conserehti number of IDs in a bounded depth. However the techniques
approximated. Processes may useeapiration checkof the can contribute to reduce the ID space needed for a “valid”
form clock; < x, by which it examines whether a receivedounded model-checking — for model-checking, we first bound
time datay is not “expired”, that isyy represents a future time. the size of the ID space, and conduct a model-checking. If we
These expiration checks are approximated using a spestial ffind that the ID space is actually too small and therefore shfre
called the expired time-data list, which stores time nonue alD is not available in some execution (within a certain depth
time stamp IDs picked thus far that are “globally expiredfor a bounded model-checking), then we increase the size of
— expired onall local clocks. Whether a time nonce/stamghe ID space, and run the model-checker again. We used this
ID ID, is strongly expired is deduced when a timeout i$ound-and-supersize” strategy for the presented casdy,stu
performed atT’D + ¢, and symbolic time datd’D contains in order to find the most compact sufficiently large ID space.
1Dy, and in such a casé D, is included in the expired time- A soundness guarantee that we can obtain for TO-
data list. Using the expired list, we can infer the truth eatd Abstraction is that for any execution of the resulting urgm
clock; > z in the following case: if all IDs iz are strongly model, there is a corresponding execution of the original
expired, therclock; > = must be true. If we cannot infer theautomaton such that the values of all untimed variablestere t
truth value of the expiration check, then the abstracticesussame in any pair of two states that respectively appear after
a non-deterministic choice. Time Data Abstraction is fdiyna the same number of discrete actions in the two executions.
defined in [3] as a function from Tempo code described usinthis soundness guarantee is proved in [3] using a simulation
the template to another Tempo code that does not use aghtion proof technique.
timing information.

[Timeout Order Constraining]The untimed model after time 3 _DHCP FAILOVER PROTO(_:OL .

data abstraction looses the control over timeout orderkan t 1 1€ DHCP Failover protocol (DHCP-F)s an extension of
original timed model because the abstraction removes lo¢af Dynamic Host Configuration Protocol (DHCPvhich is
clocks of processes. Therefore, we need to put the corréfiflely deployed for communication devices to automatcall
timeout orders back into the untimed model by constrainiffPt@in an IP address on the Internet. Upon a request from a
timeout orders using the information from symbolically repClent: the DHCP server automatically assigns an IP address
resented timeout time, as we briefly describe earlier in thtp the”(.:hent. The server gives an assignment in the form (.)f a
section. Considering the loose synchronization assumpifio ease-. an I.P gddrgss asmgnmgnt f“)”? the.server is assdcia

a timeout actiortimeout, is set to a time larger than the t‘imem;ha'gsdreexsps'rat'on time until which a client is allowed toais
for another timeoutimeout; by more thare, thentimeout, DHCP-F éupplements the ordinary DHCP with stronger
occurs aftertimeout; has done so. By rephrasing the abovg,

ot i boli tati btain thevd ult tolerance using multiple backup servers — when thexmai
statement in Symbolic representations, we obtain eviatio. server encounters a failure and becomes down, one of the
Timeout actiontimeout), of a process is disabled when the

. . p - i } backup servers takes over the main server's job. The main
following condition holds3t; € Timeout_variables; : (j # difficulty of using such backup servers is to maintain the
i) A (tn_set(t;) C tn_set(t;)) A (ts_set(t;) C ts_set(t})) A consistent view of the lease periods of IP addresses adress t
—slack_added(t;) A slack_added(t},), where tn_set(t;) and main server and all backup servers. Most standard database
ts_set(t)) represents the time nonce ID set and time stamp Ednsistency techniques cannot be used for DHCP-F because
set, respectively, that symbolically represents the caetbi they are too slow for this application. For this reason, DHCP
time nonces and stamps using ‘max’, asldck_added(¢]) F uses the combination of the two stage assignment scheme.

The first assignment is a short assignment that uses a tifag input comes in from the environment at any time. The
stamp plus the constant waiting time This assignment is “leader-elector” helper module outputs tlead action to the
fast, requiring no acknowledgment communication, buttémialive server with the minimum ID when the module observes
how long the address can be used by one client. The secanthilure in the current execution. In the code in Fig. 1, we
assignment is slower, and used by clientsd@newits lease. assume that when a sever encounters a failure, all variables
It requires explicit acknowledgment from all backup sesyerexcept forpotlease are reset.

but a client can use one address indefinitely by renewing thein this code, lease_expired; is the only timeout ac-
lease. tion in the server and the clienacklease, potlease, and

DHCP-F is described in an Internet Draft that is over 13Bcast_value are the tree timed variables}, =7, and x?.
pages long. This length is primarily due to the need to deiineout represents the only timeout variatie
with many types of concurrent server failures. The protocol works as follows in the nominal operation.

In [2], Fan et al. analyzed DHCP-F using the TIOA frameFirst, a client broadcasts a request with some time nence
work and hand-written proofs of correctness. Thi#gcom- representing the time until which a client wants an IP addres
posedthe DHCP-F protocol into two sub-protocols: tleader |t picks a new interaction instaneefor this session, and sends
electorand theaddress assigneiThe leader elector elects oner with a message type ‘Request’ andWhen the main server
of the backup servers as the next main server when the curngstleives the request, it sends back an acknowledgment with
main server encounters a failure. The address assigngnassihe lease offer for ashort lease using clock; + u. It also
an IP address to a client upon the request from it. We willpdates its current interaction instancextoThen the server
explain how this assignment process works in Section 3.1.broadcasts the most conservative potential lease timed& ‘m

The leader elector usesfailure detector When the main of 7+ and clock; + u) with x to all backup servers. When a
server encounters a failure, the failure detector notiffes tclient receives a lease offer, and if the lease time has not
leader electors (implemented in a distributed fashion icheaexpired yet, it accepts the offer and uses the IP addredshmti
backup server) of this information. The safety propertyhs t specified lease time. When a backup server receives a potentia
leader elector (only one server is elected as the main serkeise time from the main server, it updates its own estimiate o
at any time) is guaranteed by waiting long enough time singiée most conservative potential lease time storepaittease,
the elector recovers from a failure. The leader elector sulnd sends back an acknowledgment to the main server with
protocol and its analysis of the correctness is relativehpe . The main server collects acknowledgements by accepting
compared to the address assigner, which conducts the maily acknowledgements for the current session (judged by
task of the DHCP-F protocol. Therefore, in this case study, whe interaction instance of the acknowledgements). When the
will focus mainly on the address assigner protocol of DHCRnain server has collected acknowledgments from all backup
F, and we model the leader elector as a simple helper modsggvers, it updates the value atklease, the variable used to
that notifies one backup server of the fact that the serverrisspond a lease-renew request from a client. This implias th
elected as the new main server. the time nonce- first sent by a client to the main server is used

The main safety property of DHCP-F that we verify in thisnly afterthe main server collects acknowledgements from the
paper is the no-duplicated-address-assignment propeastye— backup servers. When the main server receives a renew request
specific address is assigned to at most one process. In {#th another time nonce, from the current client after the
the authors also verified interesting timeliness propgrté above described “collection” period, it offers the leasdilun
the protocol as well as the no-duplicated-address-assighmmax (7, T'Sy + u, clock; + u), whereT'S; is the time stamp
property. Verification of timeliness properties using a hiae- taken when the main server first responds to the currenttclien
automated method is a challenging future study. Then the main server enters the “collection” period for the/n

Because we have to use a model-checker to verify thiene noncer; (‘max’ed with previously accumulated time data
untimed abstraction, we need to fix the configuration of tha potlease). Similarly, for each following renew message, the
system. We look at the minimum interesting configuratiomlient is offered the time nonce for the one-session-presio
which consists of one main server, one backup server, amghew (or request) message, maxed with a nkwk; + u of
two clients (for the possibility of duplicated assignménts the main server and accumulated other time datckiease.

An actual implementation of the DHCP-F server handles When the main server encounters a failure, the leader-
multiple IP addresses concurrently. In this case study, tBkector detects it, and assigns a new main server. Recalatha
model handles just one IP address. This is because thisse time (a time nonce) requested by the client is alwage us
concurrent treatment of the IP addresses in one server emly after collecting acknowledgements from backup setver
be viewed as running multiple threads (or processes) eaglmen a backup server inpuisad, it sets its timeout to ‘max’
of which treats exactly one IP address, and these threadsofiche potential lease time andiéck; + u + 2¢’ (the time-
not affect each other. Therefore, to verify the no-dupéidat stamp-estimation trick), so that it times out after all time
address-assignment property of DHCP-F, it is sufficient tfonces stored in the potential lease tirpetlease, and all

focus on one thread that handles one IP address. existing time stamps that a client could be using has expired
This intricate use of the time-stamp-estimation trick desb
3.1. TIOA code of DHCP-F the main server to offer a short lease @bck; + u, without

Due to space limitation, we only present the transitiogollecting acknowledgements from backup servers
definition of the server automaton (Fig. 1) and the client As described above, usage of maximum operations and the
automaton (Fig. 2). The complete code appears in [3]. Thiene-stamp-estimation trick used in DHCP-F is very subtle,

input receive; (i, ‘Request’, 7, k)

eff if leadingAcurrent_user = L
A pc = waiting then
current_user := ;
current_interact_inst := k;
acklease := clock; + u;
potlease := acklease;
bcast_value :=

max(7, acklease);

timeout_time := potlease + ¢;
timeout_is_set := true;
pc := ack_to_user; fi

output send; (i, ‘Ack’, x, k)
pre x = acklease A
pc = ack_to_user A
1 = current_user A
K = current_interact_inst
eff pc :=bcast_potlease;

output bcast; (AllServers,
‘PotleaseWrite’, w, k)
pre pc = bcast_potlease A
w = bcast_value A
Kk = current_interact_inst
eff pc: = waiting;
for j:Server_ID:
potlease_ack_rcvd[j] := (' =J);

input receive; (5,
‘PotleaseWrite’, w, k)
eff if = leading A pc # down
then
bcast_value := w
potlease := max(potlease, w)
potlease_ack_leader := ;'
pc := send_potlease_ack fi

output send; (5,
‘PotleaseWriteAck’, w, k)
pre w = bcast value A
K = current_interact_inst A
pc = send_potlease_ack
eff pc := waiting;

input receive; (5, ‘PotleaseWriteAck’,

w, K)

eff if k=current_interaction_instA

leading A pc # down then
potlease_ack_rcvd([j] := true
if V (j:Server_ID):
(potlease_ack_rcvd[i]) then
acklease :=
max(acklease, w) fifi

input receive; (i, ‘Renew’, 7, k)
eff if leading A current_user = ¢
A pc # down then
current_interact_inst := k;
acklease :=
max(acklease, clock; + u);
potlease :=
max(potlease, acklease);
bcast_value :=
max(r, acklease);
timeout_time := potlease + ¢;
timeout_is_set := true;
pc := ack_to_user; fi

output lease_expired ;
pre timeout_time = clock; A
timeout_is_set
eff timeout_time := 0;
timeout_is_set := false;
current_user := |;
pc := waiting;

input fail ;

eff pc:=down
timeout_time :=0
timeout_is_set := false
leading := false
current_user := L
current_interact_inst := |
acklease := 0
bcast_value := 0
for j:Server_ID:

potlease_ack_rcvd][j] := false

input recover;
eff pc = waiting;

input lead;
eff leading := true;
timeout_time :=
max(clock; + u + 2¢,
potlease + ¢);
timeout_is_set := true;
pc := preparing;

Fig. 1.

Transitions of the server automaton of DHCP-F

output send;(j, ‘Renew’, 7, k)
pre 7 =new_time_nonce() A
j = current_server A
K = new_interact_inst() A
pc = leasing

output bcast; (AllServers,
‘Request’, 7, k)
pre 7 =new_time_nonce() A
K = new_interact_inst() A
pc = requesting
input receive; (7, ‘Ack’, x, k)
eff if x > clock; A
K = current_interact_inst
then
timeout := y;
timeout_is_set := true;
pc :=leasing; fi

output lease_expired ;
pre timeout = clock; A
timeout_is_set
eff timeout :=0;
timeout_is_set ;= false;
pc :=idle;

Fig. 2. Transitions of the client automaton of DHCP-F

yellow-colored parts of the code are the parts changed by the
abstraction.

We use the following functions in the untimed version:

1) symb max: used to represent a symbolic version of
‘max’ operations. This is implemented by element-wise
union to the pair of time-nonce and time stamp ID sets.

2) settimeout: used to represent the symbolic timeout
value using symbolic time data and the boolean for
slack-added or not.

3) ts set: used to represent the time stamp ID set in the
symbolic time data. trset is similarly defined.

4) expired: used to represent the expiration implication
from the expired time-data list that we described in
Section 2.3.

As we described in 2, all timed and timeout variables now
use symbolic representations with time stamp and time nonce
IDs. The time-stamp-estimation trick is approximated gsin
picked_ts_ID_set, the time stamp IDs picked thus far in the
current protocol execution. The expired time-data listsists
of two sublists,expired_ts_ID_list and expired_tn_ID_list,
and updated when timeout with a slaekis performed.
Boolean variablecvd_time_expired is used to determine the
truth-value of the expiration check of the form @bck; < y,
using the expired time-data list.

4.2. Verification Results

We used the SAL model-checker [14] developed by SRI
International to conduct verification of the untimed absticn
of DHCP-F. For this case study, we manually abstracted the
timed model into the untimed model described in the SAL
model. We tried to define every data structure in SAL as

and therefore it is hard to manually analyze whether or ret tgeneral as we can, so that the structure can be reused for
timeout is set as intended. Thus, we benefit from the powsther case studies. The actual code can be found in [1]. We
of automated analysis given by TO-abstraction.

4, MODEL-CHECKING DHCP-F UsING TO-ABSTRACTION

are currently implementing an automatic abstraction (eode
conversion) tool for TO-abstraction.
The full model-checking using BDD was not feasible for

In this section, we report the automated formal verificatiothis case study arguably due to the complexity of the pro-

of DHCP-F using TO-Abstraction. In Section 4.1, we showocol. (We encountered the out-of-memory error when SAL
the code of DHCP-F after TO-Abstraction. Section 4.2 showgas computing the transition function, that is, even before
the verification results. We also experiment with “mutatederification.) The number of time stamps and time nonces were
version of the original code to examine the efficiency of bugacreased when the time-stamp/time-nonce unavailalgilitgr
finding using TO-Abstraction. has occurred. All experiments are conducted using a Linux
_ , machine with an Intel Cofé! 2 Quad at 2.66 GHz and 4GB

4.1. Untimed Abstraction of DHCP-F memory.

In this section, we present the untimed abstraction of We used the minimum interesting configuration, which
DHCP-F. We show in Figures 3 and 4 the untimed versiaonsists of one main server, one backup server, and twaslien
of code described in Figures 1 and 2, respectively. Tifor a possible duplicated assignment). We used a feature

input receive; (i, ‘Request’, 7,)
eff if leadingAcurrent_user = L
A pc = waiting then
current_user = g;
current_interact_inst := k;
acklease :=
new_ts_ID(picked_ts_ID_set);
potlease := acklease;
bcast_value :=
symb_max(r, acklease);
timeout_time :=
set_timeout(potlease, true);
timeout_is_set := true;
pc := ack_to_user; fi;
picked_ts_ID_set :=
one_ts_ID_picked(
picked_ts_ID_set)

output send; (¢, ‘Ack’, x,)
pre x = acklease A
pc = ack_to_user A
i = current_user A
Kk = current_interact_inst
eff pc :=bcast_potlease;

output bcast; (AllServers,
‘PotleaseWrite’, w, k)
pre pc = bcast_potlease A
w = bcast_value A
K = current_interact_inst
eff pc: = waiting;
for j:Server_ID:
potlease_ack_rcvd[j'] := (' =j);

input receive; (5,
‘PotleaseWrite’, w, k)
eff if - leading A pc # down
then
bcast_value := w
potlease :=
symb_max(potlease, w)
potlease_ack_leader := j'
pc := send_potlease_ack fi

output send; (5,
‘PotleaseWriteAck’, w, k)
pre w = bcast value A
K = current_interact_inst A
pc = send_potlease_ack
eff pc := waiting;

input receive; (5, ‘PotleaseWriteAck’,

w, K)

eff if k=current_interaction_instA
leading A pc # down then
potlease_ack_rcvd([j] := true
if V (j:Server_ID):

(potlease_ack_rcvd[i]) then

acklease :=
symb_max(acklease, w) fifi

input receive; (i, ‘Renew’, 7, k)
eff if leading A current_user = ¢
A pc # down then
current_interact_inst := x;
acklease :=
symb_max(acklease,
new_time_stamp_ID(
picked_ts_ID_set));
potlease :=
symb_max(potlease,
acklease);
bcast_value :=
symb_max(r, acklease);
timeout_time := potlease + ¢;
timeout_is_set ;= true;
pc := ack_to_user;
one_ts_ID_picked(
picked_ts_ID_set); fi

output lease_expired;
pre timeout_is_set
eff if slack_added(timeout_time)
then
expired_ts_ID_list :=
expired_ts_ID_list U
ts_set(timeout_time);
expired_tn_ID_list :=
expired_tn_ID_list U
tn_set(timeout_time); fi
timeout_time := ({}.{} false);
timeout_is_set := false;
current_user := L;
pc := waiting;

input fail ;
eff pc:=down
timeout_time := ({}.{} false);
timeout_is_set := false
leading := false
current_user := L
current_interact_inst := |
acklease := ({}.{})
bcast_value := ({}.{})
for j:Server_ID:
potlease_ack_rcvd]j] := false

input recover
eff pc :=waiting;

input lead;
eff leading := true;
timeout_time :=
set_timeout(symb_max(
({picked_ts_ID_set},{}),
potlease),
true);
timeout_is_set := true;
pc := preparing;

Fig. 3. Transitions of the server automaton of DHCP-F, untimeion

output bcast; (AllServers,
‘Request’, 7, k)
pre 7 =new_time_nonce_ID(
picked_tn_ID_set)) A
K = new_interact_inst() A
pc = requesting
eff picked_ts_ID_set :=
one_ts_ID_picked(
picked_ts_ID_set)
input receive; (7, ‘Ack’, x, k)
eff rcvd_time_expired :=
if expired(x,
expired_ts_ID_list,
expired_tn_ID_list)
then true
else choose(true, false)
if = rcvd_time_expired A
K = current_interact_inst

output send;(j, ‘Renew’, 7, k)
pre 7 =new_time_nonce_ID(
picked_tn_ID_set)) A
j = current_server A
K = new_interact_inst() A
pc = leasing
eff picked_ts_ID_set :=
one_ts_ID_picked(
picked_ts_ID_set)

output lease_expired;;
pre timeout_is_set
eff if slack_added(timeout_time)
then
expired_ts_ID_list :=
expired_ts_ID_list U
ts_set(timeout_time);
expired_tn_ID_list :=
expired_tn_ID_list U

then

timeout:=set_timeout(y, false);
timeout_is_set := true;
pc :=leasing; fi

tn_set(timeout_time); fi
timeout_time := ({}.{}.false);
timeout_is_set := false;
pc :=idle;

Fig. 4. Transitions of the client automaton of DHCP-F, untinvedsion

of SAL that iteratively increases the depth for the bounded
model-checking up to a specified depth bound to search for
a counterexample. We succeeded in verifying the protocol
up to depth 20 under the failure assumption that when a
server encounters a failure all variablescept for potlease
are reset. The total verification time was 350743.7 seconds
(97.43 hours). Table Il shows individual times for the boeehd
model-checking of different depths and accumulated times
that took up to each of the depths (we only show depth 15
and higher). We consider that the depth of 20 covers several
subtle scenarios and is arguably sufficiently deep for figpdin
counterexamples that could be potentially encountered in a
real implementation. This is because, as we show later & thi
section, when we mutate one check condition in one tramsitio
of the original code, we can find at depth 17 a counterexample
that has a fairly complex scenario.

[Depth | Individual time (hours)[Accumulated time (hours}

15 2.70 5.54

16 5.00 10.54

17 6.45 16.99

18 14.72 31.71

19 23.84 55.55

20 41.88 97.43
TABLE I

BOUNDED MODEL-CHECKING TIMES

First Mutation (Different Failure Assumption)Next, we
experiment with another failure assumption that when aeserv
encounters a failure, all variables are reset. Under this as
sumption, we have found a counterexample at depti 17.

4This counterexample is found with the configuration that thenber of
server is one, and the number of clients are two. We are ciyramtning
experiment for the case of two servers and two users. We arecémg to
find a similar counterexample at depth 20. The illustrated myerample is
for two servers.

dient2

Cientl

Serverl

Server2

Time

After this mutation, we found a counterexample at depth
17 under the configuration of two servers and two users
(the run time was 52851.28 seconds 14.7 hours). This
counterexample has a complex scenario, and we believe that
it is considerably hard to find by human, or simulations with
fixed values ofe and u, and random assignments of time
nonces.

REQ

RENEW 'ACK ACK
F_AIL REEO\/ER LEAD EXPIRE

WRI TE- ACK

T

VR TE

Fig. 5.

This counterexample is illustrated in Fig.>5This scenario
is actually realizable in the original timed system as wad,
described in the following:

1)

2)

3)

4)

5)

6)

This counterexample is expected to appear under the as-
sumption of using volatile memory for potlease. This is
because potlease stores information of the accumulated inf
mation of the potential lease time for the current clienthl§
information is reset, there is no way the server can retrieve
what time nonces the client is now using for its lease time.

Second Mutation (Removing Interaction Instance Chélak)
examine the effectiveness of bug-finding using TO-abstiact 5)
we experimented with verification of DHCP-F with a slight
change. We removed one condition for checking the interacti
instance of the received acknowledgement from a backup
server to ensure that the received acknowledgement is for
the current session. The only change is in the effects of the
action receive(j, “WriteAck”, w, k) of the server automa-
ton. We removed the conditions“= current_interact_inst”
from the if statement. The main server now accepts any
“PotleaseWriteAck” acknowledgment as an acknowledgment
to the latest “PotleaseWrite” message.

Duplicated lease scenario when all variables aret fi@g a failure The counterexample is depicted in Figure 6. A red line in

a client’s time line expresses that the client is using adeas

Ti me
—_—

Cient2
Client-1 sends a lease request that contains a large tm%ieml
noncer.

Server 1 sends a Write message to Server 2, and Serveyrvert
2 sends back a Write-Ack message; and thus Server-1's_
acklease is updated (now the maximum contains

Client-1 sends a Renew message, and Server 1 receives Fig. 6.
it. acklease is updated to max(acklease, ts + u), which)])
is no smaller thanr. And then, potlease is updated to e now explain why this counterexample is a real coun-
max(potlease, acklease). terexample that could occur in the original real-time medat

A lease offer until max(acklease, ts + u) is sent to Cliefotocol as well. Suppose the request lease expire tifinem

1. Client 1 receives it, and updates its lease timeout di€nt-2 is very large and the (potential) lease time covees
max(acklease, ts + u). entire time frame depicted in Figure 6.

Server 1 encounters a failure, and all variables (es-The key of this counterexample is that the main server
pecially potlease) are reset. When Server 1 recovdf@erver-1) receives the “WriteAck” message from the backup
and gets a lead input, it sets the lease timeout $€rver (Server-2) between the receipt of the renew message
mazx(clock; + u + 2¢, potlease + ¢), where the value from a client (Client-1) and the acknowledgment for the rene

of potlease is 0. Therefore, ifr is larger than the value ~We explain the entire scenario in details in the following.

of clock;+u+2¢ at this moment, Server-1 expires before 1) Client-1 sends a lease request that contains a large time
Client-1 expires. noncer.

Since Server-1 expires, it accepts a request from anothep) Server-1 (the main server) receives the request from
client, Client 2, and hence ends up with a duplicated ~ Client-1, and replies ahort-leaseacknowledgment con-
lease. taining the offer untilts; +u, wherets; is a time stamp
picked by Server-1 at this point. Note thatis not
included in the short lease. The value lmfast_value
changes tanax(7,ts; + u).

Client-1 receives the short lease offer and sends a renew
message with a new time nonce.

Server-1 broadcasts the “PotleaseWrite” message with
max(7, ts1+u) (the value obcast_value) to all backup
servers (just one backup in this case).

Server-1 receives a renew message from Client-1.
Server-1 changes the timeout time (the valugroéout)

to max(7 4+ u, 72 + u) + £, where wherets, is a time
stamp picked by Server-1 at this point. It also changes
the current interaction instance to the one in this renew
message.

Server-1 then receives “PotleaseWriteAck” from the
backup server, Sever-2before acknowledging the
renew message from Client-1. The value ofir-
rent_interact_inst has changed since Server-1 broad-
casts the “PotleaseWrite” message. However, the
server's program is mutated in such a way that it does

o /
= o O oo e\ [
N e

Duplicated lease scenario for the mutated DHCP-F

3)

4)

6)

5We obtained from the counterexample more information than gost-
munication sequence of processes. For example, how potleasacklease
are changed (using symbolic IDs). From these informationsgavestructed
the realizable scenario in the original real-time model bysbering what
kind of assumption for the actual values of time nonces areetbelrealize
the counterexample execution found in the symbolic world.

not check the interaction instance to decide to accept
a received acknowledgment or not. Therefore, Server-
1 accepts this “PotleaseWriteAck” from Server-2, and
since Server-2 is the only backup server, Server-1 up-
dates the value aicklease used for an acknowledgment

to a renew request from the current client. This updatand use satisfiability-modulo-theory (SMT) solver to coctdu

is conducted by calculating the maximum of the currer@ bounded model-checking. The approach closest to the above
value ofacklease and the received timed value which described strategy we can refer to @alendar Automata
contains the large. approach ([15], [16], [17]). It is a interesting future syuth

7) Client-1 receives the renewing-lease offer from Sefver-examine whether the approach can be applied to DHCP-F, and
and set its lease timeout to the maximum that contaiifsso, examine the efficiency compared to the presented case
T. study.

8) Sincer is very large, the timeout set to Server-1 at time
max(7 +u, 72 +u) + ¢ times out before Client-1's lease
expires. [1] S. Umeno and N. Lynch, “Supplemental files for our

9) Client-2 sends a request to Server-1, and Server-1 offers Etetcc%/zl(’lgo Ipeapfsrv;i | ”;st g:ﬁ/ . n(é?"o/dﬁs . obtained from
a I_ease Smce_ it has already timed out. . [1%] R. FF;n, FE D?om.s, N. G;iffeth., and N. Lynch, “1E)hé DHCP faity

10) Client-2 receives the lease offer and starts using the IP" protocol: A formal perspective;” i27th IFIP WG 6.1 International
address. Conference on Formal Methods for Networked and Distribugdtems

. . (FORTE 2007) ser. Lecture Notes in Computer Science, vol. 4731.
The above described scenario shows that the usage of the Springer, 2007, pp. 208-222.
maximum operations used in the original DHCP-F protocofs] s. Umeno and N. Lynch, “Timeout order abstraction for format-
are very intricate: the maximum operations usedpfotiease, ification of loosely synchronized real-time distributed teyss,” Mas-
acklease, andbcast_value in the main and backup servers sachusetts Institute of Technology, Tech. Rep., to appsar. A stable

o . : draft version is available from [1].
control the timing-related behavior of the servers andntde 1, p 'y Kaynar, N. Lynch, R. Segala, and F. Vaandragghe Theory

(by offering a lease time), and how they control this timing- ~ of Timed /O Automataser. Synthesis Lectures on Computer Science.
related behavior in a correct fashion is very non-triviaheT Morgan & Claypool Publishers, 2006. '
atomicity assumption for the send and receive actions aldgl T. Nolte and N. Lynch, “Self-stabilization and virtuabde layer emula-

ffects th t f th t I Th b . tions,” in Stabilization, Safety, and Security of Distributed Syste®th
arrects the correctness o € protocol: € above scenaro iernational Symposium (SSS 2003¢r. Lecture Notes in Computer

would not occur if the main server can receive a renew Science, vol. 4838. Springer, 2007, pp. 394-408.
message and send an acknowledgment for it in an atomi@ ——, “A virtual node-based tracking algorithm for mobiletworks,’

; i ; _ in International Conference on Distributed Computing Systél@DCS
fashion. The atomicity assumption depends on how DHCP 2007) IEEE Computer Society, 2007, p. 1.

Fis mple_mented. For ?Xample’ the qtom|0|ty granwa”ty W??] S. Dolev, S. Gilbert, L. Lahiani, N. A. Lynch, and T. NoJtéTimed
are using in our model is actually realized when broadcgstin ~ virtual stationary automata for mobile networks,” Mrinciples of
task and receiving task are operated by two different tlwead Distributed Systems, 9th International Conference, OP®R003 ser.

without using lock/unlock. The above discussed facts about [Scture Notes in Computer Science, vol. 3974. - Springer, 2006

this counterexample found for the mutated protocoll strxongllg]_ R. Fan, |. Chakraborty, and N. Lynch, “Clock synchroriaa for
suggests that we need to use an automated exhaustive analysi wireless networks,” inOPODIS 2004: 8th International Conference

technique such as TO-abstraction for this kind of real-time on Principles of Distributed Systemser. Lecture Notes in Computer
protocols Science, vol. 3544. Springer, 2005, pp. 400-414.

[9] S. Umeno and N. Lynch, “Safety verification of an aircradintling
5 Co protocol: A refinement approach,” Proc. of HSCC'07, Hybrid Systems:

: NCLUSION Computatiqn and Contrpker. Lecture Notes in Computer Science, vol.
In this paper, we present a case study on automated forrﬁ0 4416. Springer, 2007, pp. 557 — 572.

ificati f the DHCP Fail f |] Ti R. Alur and D. L. Dill, “A theory of timed automata.Theoretical

verincation or the allover protocol using 1IMeout ~ compyter Sciengevol. 126, no. 2, pp. 183-235, 1994.

Order Abstraction (TO-Abstraction). We successfully fied [11] T. A. Henzinger, “The theory of hybrid automata,” iblCS '96:

the protocol using bounded model-checking up to depth 20. Proceedings of the 11th Annual IEEE Symposium on Logic inpDiten

We also experiment with two “mutated” versions of thﬁlZ] Science Washington, DC, USA: IEEE Computer Society, 1996, p. 278.
e

iginal de. We f d t | f h of t K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
original code. Vve found a counterexamples 1or each o nutshell,” International Journal on Software Tools for Technology

mutated versions, and one of them had a complex scenario of Transfer vol. 1, no. 1-2, pp. 134-152, 1997. [Online]. Available:
process interleaving that we believe could have not been abl] Citeseer.ist-psu-edu/larsen97uzpaal-html essoom h

: ; ; ; ; ePSO’ T. Henzinger, J. Preussig, and H. Wong-Toi, “Some lessibom the
o gnd b}é human .Or S|mulat|ops_W|th fixed syst_ﬁ:n p]Ec;ll’am_etf HYTECH experience,” inProc. of the 40th Annual Conference on
and random assignments of time nonces. This fact INfers pecision and Control IEEE Computer Society Press, 2001, pp. 2887—
that TO-Abstraction is helpful not only for verification, tou 2892.
also bug-finding of the protocols. This bug-finding featurB4] L. M. de Moura, S. Owre, H. RueB, J. M. Rushby, N. ShankarSorea,

; ; ; ; ; and A. Tiwari, “SAL 2.” in Proc. of CAV 2004 ser. Lecture Notes in
is particularly useful when the underlying protocol is Istil Computer Science, vol. 3114, Springer. 2004, pp. 496-500.

in the development stage, and the designer wants t0 {¥] g Dutertre and M. Sorea, “Timed systems in SAL" SRI Intional,
slightly different specifications and implementations dhd Tech. Rep. SRI-SDL-04-03, 2004.
correctness holds for them. [16] ——, “Modeling and verification of a fault-tolerant retine startup

We could not conduct a full model-checking for DHCP- B0 (oN8 TEertle SotEie BE0C. 2 o 5283, Sprigt, pp. |
F (even though TO-Abstraction has a potential to conduct 199214

it). Therefore we conducted a bounded model-checking ffi7] G. M. Brown and L. Pike, “Easy parameterized verificatafrbiphase
resulting untimed finite state model. This was due to the mark and 8N1 protocols.” ifroc. of TACAS 20Q6ser. Lecture Notes
complexity of DHCP-F. If one aims for only a bounded ™ Computer Science, vol. 3920. Springer, 2006, pp. 58-72.
model-checking from the first point, he/she might be able

to directly model the protocol without untiming abstractio

REFERENCES

10

