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Abstract

We present a new abstraction technique,event order abstraction
(EOA), for parametric safety verification of real-time systems
in which “correct orderings of events” needed for system cor-
rectness are maintained by timing constraints on the systems’
behavior. By using EOA, one can separate the task of verifying
a real-time system into two parts: 1. Safety property verification
of the system given that only correct event orderings occur;and
2. Derivation of timing parameter constraints for correct order-
ings of events in the system.

The user first identifies a candidate set of bad event orders.
Then, by using ordinary untimed model-checking, the user ex-
amines whether a discretized system model in which all timing
constraints are abstracted away satisfies a desirable safety prop-
erty under the assumption that the identified bad event orders oc-
cur in no system execution. The user uses counterexamples ob-
tained from the model-checker to identify additional bad event
orders, and repeats the process until the model-checking suc-
ceeds. In this step, the user obtains a sufficient set of bad event
orders that must be excluded by timing synthesis for system cor-
rectness.

Next, the algorithm presented in the paper automatically de-
rives a set of timing parameter constraints under which the sys-
tem does not exhibit the identified bad event orderings. From
this step combined with the untimed model-checking step, the
user obtains a sufficient set of timing parameter constraints un-
der which the system executes correctly with respect to a given
safety property.

We illustrate the use of EOA with a train-gate example in-
spired by the general railroad crossing problem [13]. We also
summarize three other case studies, a biphase mark protocol,
the IEEE 1394 root contention protocol, and the Fischer mutual
exclusion algorithm.

Keywords: Parametric verification, event-based approach, auto-
matic timing synthesis, counter-example guided abstraction re-
finement (CEGAR)
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1 Introduction

In a typical real-time system, timing constraints on the system’s
behavior are used to ensure its correctness. Such a system isof-
ten modeled by using a set oftiming parameters, rather than us-
ing concrete timing constants (for example, [25, 27, 13]). These
parameters specify, for instance, bounds on the duration between
two specific events in a system execution or certain delays, such
as message delivery times.

Typically, only a subset of possible parameter combinations
in the entire parameter space satisfies correctness of such asys-
tem. A verification engineer or researcher typically follows one
of the following two approaches to formally verify such a sys-
tem: 1. (Fixed-parameter verification) By fixing all timing pa-
rameters in the system, he/she reduces the system model to a
more tractable one such as an Alur-Dill timed automaton [1] and
model-checks the reduced system (using UPPAAL [20] or KRO-
NOS [34], for instance [12, 6, 22]); or 2. (Parametric verifica-
tion) he/she treats the timing parameters as uninterpreted con-
stants, finds an appropriate set of constraints for the parameters,
and manually proves or mechanically checks correctness under
the constraints [25, 32, 35].

The second approach is attractive in the sense that if we can
obtain a positive verification result by this approach, thenwe
have a concrete set of constraints on the timing parameters for
the system to be correct, and may give an implementation engi-
neer more freedom of choice, than fixed-parameter verification.

The user can experiment with several instances of the first ver-
ification approach using multiple parameter combinations,and
then can try to figure out possible correlations between parame-
ters in order for the system to be correct (for example, [27] uses
this approach). However, these experiments by themselves never
become exhaustive if the number of possible parameter combi-
nations is infinite (for example, a parameter can be real-valued,
or an integer but unbounded). Thus we need a more intelligent
approach for completely parametric verification.

Another important challenge, in addition to time-parametric
verification, istiming synthesisof a time-parametric model. For
timing synthesis, one tries to derive, in a systematic way, asuffi-
cient set of timing parameter constraints under which the system
executes correctly. Automatic timing synthesis is considered to
be an even harder problem than automatic time-parametric ver-
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ification since an algorithm or a tool is not a priori given a set
of timing constraints by the user, but has to derive constraints by
itself. A classical undecidability result about parametric timed
automata by Alur et al. [2] implies that a completely automatic
timing synthesis does not terminate in general.

In this paper, we present a new abstraction technique,event
order abstraction(EOA), for parametric safety verification of
the subclass of real-time systems in whichcorrect orderings of
eventsmaintained by timing constraints on the systems’ behav-
ior are critical for correctness (for example, a biphase mark pro-
tocol [25], the Fischer mutual exclusion algorithm ([21], Section
24.2), and the IEEE 1394 root contention protocol [27]). By us-
ing EOA, one can separate the task of verifying a safety prop-
erty of a system into two parts: 1. Safety property verification of
the system given that only correct event orderings occur; and 2.
Derivation of timing parameter constraints for correct orderings
of events in the system.

To use EOA, the user models a real-time system by using the
time-interval automata(TIA) framework, which is an extension
of the I/O automata framework [21], and can express certain
restricted class of timed I/O automata [19]. By using the TIA
framework, the user can specify lower and upper bounds on the
time interval between a specific event and a set of possible events
that follow. The framework has a certain structure that is suitable
for a mechanical timing constraint derivation scheme presented
in this paper.

A parametric verification of a real-time system using EOA
is conducted in the following steps. First step is identification
of “bad” event orders. The user proposes a candidate set of
bad event orders that he/she wants to exclude from the system
executions by timing synthesis. The user then model-checksa
safety property of interest on adiscretized modelof the under-
lying TIA, under the assumption that the model does not ex-
hibit the proposed bad event orders A discretized model of a
TIA is simply an ordinary untimed I/O automaton that does not
have any timing constraints as the original TIA does. If the
model-checking is completed with a positive answer, the user
has obtained a set of bad event orders that he/she needs to ex-
clude. Otherwise, the user uses counterexamples obtained from
the model-checking to extract additional bad event order, and
repeats the same process until he/she successfully model-checks
the discretized model.

The user expresses bad event orders by a simple language that
can express a sequential order of events and some types of rep-
etition of events. He/she typically needs to apply human insight
to extract from the counterexample a bad event order expressed
in a concise way, and this is why we have manually identified
bad event orders for the case studies presented in the paper.

Model-checking under a specific event order assumption can
be carried out in the following two steps. The user first con-
structs a monitor that raises a flag when one of the identified bad
event orders is exhibited. Then he/she model-checks the dis-
cretized model with this monitor under the assumption that the
monitor does not raises a flag (in Linear Temporal Logic (LTL)
[23], this condition can be represented by:�(¬Monitor.flag) ⇒

�(¬DiscretizedModel.propertyViolated)). We used the SAL
model-cheker [9] in this paper. We manually constructed moni-
tors since the construction was straightforward for the presented
case studies (we are planning to develop an automatic monitor
construction tool). Since we successively refine the underlying
discretized model (by refining the bad order assumption) from a
counterexample obtained from model-checking, EOA can be re-
garded as acounterexample guided abstraction refinement(CE-
GAR) technique [7].

Next, by an algorithm that we present in the paper, the user
automatically derives timing parameter constraints underwhich
the system exhibits none of the identified bad event orders. From
this step, the user obtains sufficient timing constraints under
which the system executes correctly with respect to a given
safety property.

Related work: Some of the existing timed model-checkers
(HYTECH [14], RED [33], TReX [3], LPMC [28], and an ex-
tension of UPPAAL [18]) allowautomatic synthesisof timing
parameters for a specified desirable property of a given system:
these tools automatically derive a set of constraints on timing pa-
rameters for the system to satisfy a given property. However, ter-
mination is in general not guaranteed for these model-checkers.

The main differences of EOA from the existing automatic
timed model-checkers listed above are the following four.

First, to use EOA, the user has to provide a set of bad event
orders to be excluded in the system by timing synthesis. Timed
model-checkers mentioned above does not need such inputs.

Second, EOA can treat a class of systems that may exhibit an
unbounded number of repetitions of events. The existing para-
metric model-checkers listed above use symbolic reachability
analysis of states symbolically represented by linear logic ex-
pressions. Thus, if an underlying parametric model has an un-
bounded loop that involves evolution of continuous variables,
then this reachability analysis does not terminate, and there-
fore the verification attempt fails (for example, in [14], Section
4.2, the authors stated that they had to modify a model of a
biphase mark protocol so that it exhibits no unbounded loop).
In EOA, by using a language construct that represents an un-
bounded number of repetitions of events, the user can handle
this kind of system.

Third, when doing successive refinements by using EOA,
each abstraction in a refinement step is a completely untimed
transition system (an ordinary I/O automaton with orderingcon-
straints). Thus the user can directly employ existing verification
techniques for untimed transition systems.

Fourth, EOA does not suffer from the “dimensionality prob-
lem” as much as the timed model-checkers listed above do. Au-
tomatic timing synthesis using the above listed model-checkers
rapidly becomes intractable as the number of parameters grows (
[14], Section 5. Lessons learned). This problem is called the “di-
mensionality problem”, and is regarded as one of the main bottle
necks of the time-parametric model-checkers. With EOA, tim-
ing synthesis is handled separately from model-checking – the
tool derives timing parameter constraints from identified event
orders just with information about time bounds between events,

2



and does not use any information about the state transition struc-
ture of the system. This synthesis process does not use a fixed-
point computation as timed model-checkers do, and thus does
not need linear logic simplification for termination1. Instead, as
we present in Section 6, timing synthesis is done by a straight-
forward search within a certain space inferred by specified event
orders. In all case studies summarized in this paper, the search
spaces were small. Indeed, the train-gate example that we use to
illustrate EOA throughout the paper has ten parameters, andthe
timing synthesis for it from specified event orders took lessthan
one second.

Frehse, Jha, and Krogh [11] presented a CEGAR-based ap-
proach for automatically synthesizing parameter constraints of
linear hybrid automata (LHA) [15]. Though this work is inde-
pendently done from our work, the approach is similar to ours
in that it uses discrete abstraction of the underlying system to
obtain counterexamples, and then synthesize the timing (contin-
uous) parameter constraints to exclude the obtained counterex-
amples. The main differences between their approach and our
approach are the following three: 1. Their approach automati-
cally identifies bad event sequences; 2: Their approach doesnot
treat a repetition of events as our approach does (Treating repe-
titions is crucial to verify certain examples such as the train-gate
example in this paper and a biphase mark protocol, for which
meaningful parameter constraints can be obtained only by treat-
ing repetitive events); 3: Their approach treats LHA, whichis
more general than TIA. They experimented their approach by a
simple car-conflict prevention example, which has only two pa-
rameters. The applicability of their approach to a system with a
large number of parameters such as the ones in Section 7 is not
known.

Several researchers considered digitization of timed transition
systems [17, 5, 4, 26]. These techniques could possibly be used
to obtain a discrete version of real-time systems for fixed param-
eters, but as far as we know, an application of the technique to
parametric verification has not been studied.

We have developed EOA to fill in the gap between the in-
ductive proof approach and automatic time-parametric model-
checking. The inductive proof approach needs human insights
into an underlying system to come up with an inductive prop-
erty, and we believe that identifying bad event orders is more
amenable process and requires less training than coming up
with inductive properties. On the other hand, automatic time-
parametric model-checking may not always scale to a system
with a considerable number of timing variables and parameters,
as we described earlier.

When automatic time-parametric model-checker does not
scale, one can try using inductive invariant reasoning or by
model-checking using parameter constraints as inputs – these
are typically more scalable compared to automatic parameter
synthesis tools. To do so, he/she first needs to derive a set of
timing parameter constraints under which (he/she believes) the
system works correctly. Typically the user performs this deriva-

1Nevertheless, a linear logic simplification for a derived set of constraints isprovided
by the prototype tool for user’s convenience.

tion by first drawing a process communication diagram that de-
picts a possible bad scenario, and then manually finding out how
to constrain timing parameters to exclude the depicted scenario.
This approach is used in [32] to verify a biphase mark proto-
col, and in [27] for the root contention resolving algorithmof
the IEEE 1394 protocol. With EOA, the user can directly make
use of these human insights into the bad scenarios, and can also
automate the process of deriving timing constraints from the bad
scenarios.

The rest of the paper is organized as follows. In Section 2, we
introduce a new automata framework,time-interval automata.
We present the train-gate example, which is inspired by a rail-
road crossing problem [13], in the TIA setting. We use this ex-
ample to illustrate the use of EOA throughout the paper. The
example is simple compared to an industrial protocol, for exam-
ple, a biphase mark protocol that we study in Section 7, yet has
ten parameters and exhibits an unbounded repetition of events.
In Section 3, we explain how the user can formally specify event
orders. In Section 4, we demonstrate how the user can conduct
the bad-event-order identification step. Section 5 is devoted to
presenting the basis for automatic timing constraint derivation.
In Section 6, we present a prototype implementation that auto-
matically synthesize timing constraint from given event orders.
Section 7 presents case studies of time-parametric verification
using EOA. We first present verification of the train-gate exam-
ple. We also summarize three other case studies, a biphase mark
protocol that has been studied in several verification papers (for
example, [25, 32]), the IEEE 1394 root contention protocol [27],
and the Fischer mutual exclusion algorithm ([21], Section24.2).
As a conclusion, in Section 8 we discuss a summary of the paper
and possible future work.

2 Time-Interval Automata

The time-interval automata(TIA) framework is an extension of
the I/O automata (IOA) framework [21]. An I/O automaton is
a guarded-command style transition system with distinguished
input, output, and internal actions. Informally, with the TIA
framework, one can specify the lower and upper time bounds
on the interval between one action and its following actions. A
time bound for actiona and actions inB is represented as an
interval in the form[l, u]. Informally, this bound represents that,
for any time of occurrenceta of actiona, no action inB occurs
beforeta + l, and at least one action inB is performed before or
at ta + u.

As we explain in the reminder of this section, a TIA has
an explicit structure to specify the time bounds for actions, or
events. The automatic derivation scheme we present in Section
5 and also the prototype implementation introduced in Section
6 make use of this explicit structure to conduct a timing synthe-
sis. We compare the relation between the TIA framework and
other timed automata frameworks in the related work part in this
section.

An interval-bound mapdefined in the following Definition 1
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formally specifies time bounds for actions. The special symbol
⊥ is used to express the time bound on the interval between the
system start time and the time an action in the specified set oc-
curs.

Definition 1. (Interval-bound map). Aninterval-bound map
b for an I/O automatonA is a pair of mappings,lower and
upper. Each of lower and upper is a partial function from
actions(A)⊥ ×P(actions(A)) to R>0, whereactions(A)⊥ =
actions(A) ∪ {⊥} is a set of actions ofA extended with a spe-
cial symbol⊥, P(actions(A)) is the power set of actions ofA,
andR>0 is the set of positive reals.

An interval-bound map defined in Definition 1 may not sat-
isfy requirements to express a meaningful bound (for example,
the specified lower bound is not greater than the specified up-
per bound). Due to space limitation, we cannot show these re-
quirements in this paper. These appear in [31]. We say that an
interval-bound map isvalid if it satisfies the requirements.

Definition 2. (Time-interval automaton). A time-interval au-
tomaton(A, b) is an I/O automatonA together with a valid
interval-bound mapb for A.

Definition 3. (Timed execution). Atimed executionof a time-
interval automaton(A, b) is a (possibly infinite) sequenceα =
s0, (π1, t1), s1, (π2, t2), · · · where thesi’s are states ofA, the
πi’s are actions ofA, and theti’s are times inR≥0; s0 is an
initial state ofA; and for anyj ≥ 1, (sj−1, πj , sj) is a valid
transition ofA andtj ≤ tj+1. We also require a timed execution
to satisfy the upper and lower bound requirements expressedby
b:

Upper bound: For every pair of an actionπ and a set of ac-
tions Π with upper(π,Π) defined, and every occurrence ofπ
in the executionπr = π, if there existsk > r with tk >

tr + upper(π,Π), then there existsk′ > r with tk′ ≤ tr +
upper(π,Π) andπk′ ∈ Π.

Lower bound: For every pair of an actionπ and a set of actions
Π with lower(π,Π) defined, and every occurrence ofπ in the
executionπr = π, there does not existk > r with tk < tr +
lower(π,Π) andπk ∈ Π.
The upper and lower bound requirements for a bound with⊥ are
defined similarly (see [31]).

A composition of multiple TIA is defined in a way similar
to that of ordinary I/O automata. Interval-bound maps of TIA
are combined by using a union of maps (by regarding maps as
relations). In order to formally define a composition for time-
interval automata, we need a definition of the compatibilityof a
collection of TIA. The compatibility for TIA is defined simply
as the compatibility of the underlying I/O automata (see [31] for
the formal definition).

Definition 4. (Composition of TIA) For a compatible collection
of TIA, the composition(A, b) = Πi∈I(Ai, bi) is the timed-
interval automaton as follows. (1).A is the composition of the

underlying I/O automata{Ai}i∈I (which is an ordinary asyn-
chronous composition with synchronization of input and output
actions with the same name [21]), and (2).lower is given by
taking union of{loweri}i∈I andupper is given by taking union
of {upperi}i∈I (by regarding partial functions as sets of ordered
pairs).

A TIA must satisfy thefeasibility condition. Namely, every
execution of a TIA must be extended to a time-diverging execu-
tion (that is,supi≥0{ti} = ∞). The definition appears in [31].
All composed TIA of case studies in the present paper are feasi-
ble.

Definition 5. (Discretized TIA) Given a TIA(A, b), the dis-
cretized model of(A, b) is simply an underlying ordinary un-
timed I/O automatonA.

The set of (untimed) executions of a TIA(A, b) (obtained by
ignoring time stamps in timed executions) is contained by the set
of executions of its discretized modelA, sinceA does not have
any timing constraint. Thus, ifA satisfies a safety property un-
der a certain event ordering assumption for its executions,then
(A, b) also does so under the same ordering assumption.

Related work of the TIA framework:The timed I/O automata
(TIOA) framework [19] is a highly expressive framework with
which the user can specify continuous evolution ofanalog vari-
ablesby using differential equations and inequalities, as well
as specifying discrete state transitions as in an ordinary I/O au-
tomaton. Indeed, any TIA can be expressed as a TIOA as well.
However, a TIOA does not have an explicit time bound structure
like a time-interval bound map of a TIA, and thus information
about time bound cannot be easily handled by the scheme or
the tool presented in the paper (a time lower bound needs to be
embedded in the precondition of an action, and an upper bound
needs to be expressed by another construct, thestop-whenstate-
ment).

The MMT (time-constrained) automata framework [24] is
closely related to the TIA framework. While a TIA specifies
time upper and lower bounds on the interval between an event
and a set of events that follow, an MMT automaton specifies
time upper and lower bounds on the duration that an action in
a specific set of actions called ataskstays enabled. When we
define a TIA, for a pair(π,Π) of an action and an action set
with a bound defined, we impose constraints on the TIA so that
at least one action inΠ must be enabled afterπ and before an
action inΠ is performed. If we impose the same constraint on
an MMT automaton, we have a framework similar to TIA. The
timed transition system framework [16] is close to the MMT au-
tomata framework, in that the lower and upper time bound on
the duration that one transition is enabled can be specified.One
main difference between TIA and these two frameworks is that
in TIA, the user can use different bounds for the same set of
actions depending on which action precedes it. We need this
feature to model a biphase mark protocol.

The Alur-Dill timed automata framework [1] is arguably the
best known framework to model a real-time system, and is the
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——————————————–
Automaton Train(r, R, p, P : Real) where

0 ≤ r ≤ R ∧ 0 ≤ p ≤ P
signature

output Request
output Pass

states
requested: Bool := false;

transitions
output Request

pre ¬requested
eff requested := true;

output Pass
eff requested := false;

bounds:

b(⊥, {Request}) = [r, R];

b(Pass, {Request}) = [r, R];

b(⊥, {Pass}) = [p, P ];

b(Pass, {Pass}) = [p, P ];

——————————————–

Figure 1: Train automaton

theoretical foundation for timed model-checkers like UPPAAL
[20] and KRONOS [34]. This framework can model only a sys-
tem with fixed timing parameters, but not a time-parametric sys-
tem.

The parametric timed automata (PTA) framework introduced
in [2] is a time-parametric version of the Alur-Dill timed au-
tomata framework. In a PTA, the user specifies lower and upper
bounds on a time interval in which the automaton stays in a spe-
cific location (in the Alur-Dill timed automata sense). A TIA
can be modeled as a PTA, but time bound for events becomes
implicit (unlike the explicit interval-bound map) and thuscannot
directly use the automatic timing synthesis scheme presented in
the paper.

Example 1. (Time-Interval Automaton). We describe an exam-
ple of time-interval automata. The example is inspired fromrail-
road crossing problems [13]. The example is constructed from a
composition of a train automaton (Figure 1) and a gate automa-
ton (Figure 2). An informal description of the problem we want
to solve is the following. A train is about to pass the railroad
crossing with a gate. The gate is supposed to be open except
for the time when the train passes the crossing, so that cars can
cross the railroad. When the train gets close to the crossing,it re-
queststhat the gate be closed. The gate needs to be closed at the
time the train passes the crossing. The railroad actually forms a
circle, and thus the train passes the railroad crossing cyclically.
After the gate becomes closed, it becomes open after a bounded
time interval.2

The actions of theTrain automaton model actions taken by
the train. TheRequest action represents a close request made
by the train to the gate. ThePass action represents an event that
the train passes the crossing. The automaton has four bounds

2If the reader prefers an example with more digital system flavor than the train-gate
example, he/she can regard this example as, for instance, the following single-writer/multi-
reader shared variable problem: one writer process (Train) writes to a shared variable (rail-
road crossing) periodically, and before writing to the variable, it first requests the guardian
process (Gate) to lock the variable so that any reader (a car crossing the rail-road) cannot
access to the variable while the writer is writing to it.

—————————————————————–
Automaton Gate(δ, ∆, τ, T, c, C: Real) where

0 ≤ δ ≤ ∆, 0 ≤ τ ≤ T , 0 ≤ c ≤ C
signature

input Request
output Close
output Open
output Check(result: Bool)

states
open: Bool := true;
train requested: Bool := false;
check succeeded: Bool := false

transitions
input Request

eff train requested := true;
output Close

pre check succeeded ∧ open
eff open := false;

output Open
pre ¬open
eff open := true;

train requested := false;
check succeeded := false;

output Check(result)
pre ¬check succeeded ∧ result = train requested
eff check succeeded := train requested;

bounds:

b(⊥, {Check(true), Check(false)}) = [δ, ∆];

b(Check(false), {Check(true), Check(false)}) = [δ, ∆];

b(Open, {Check(true), Check(false)} = [δ, ∆];

b(Check(true), {Close}) = [τ, T ];

b(Close, {Open}) = [c, C];

—————————————————————–

Figure 2: Gate automaton

for these two actions. The first one (b(⊥, {Request}) = [r,R])
and the second one (b(Pass, {Request}) = [r,R]) say that the
Request action will be performed within the time interval[r,R]
after the system starts, and every time after the train passes the
crossing, respectively. The third bound (b(⊥, {Pass}) = [p, P ])
and the fourth bound (b(Pass, {Pass}) = [p, P ]) say that the
Pass action will be performed within the time interval[p, P ] af-
ter the system starts, and every time after the train passes the
crossing, respectively.3 The gate automaton described in Figure
2 models a gate system that uses a busy-wait loop for checking
whether a request has been made. The gate automaton cannot
immediately know the arrival of a request. Instead, a request
information is stored in a state variabletrain requested, and
the gate automaton needs to repeatedly check this variable (ex-
pressed by a successful check,Check(true), and a failing check,
Check(false)). We set the time interval between two repeated
checks to be within[δ,∆]. Once a check succeeds, the gate au-
tomaton stops checkingtrain requested, but resumes it within
[δ,∆] after the gate becomes closed. The gate becomes closed
(Close action) within the time interval[τ, T ] after a successful
check. The gate becomes open again (Open action) withing the
time interval[c, C] after it becomes closed.

The safety property that we want to verify is that the train
passes the crossing only when the gate is closed. We use a

3We could, for example, think that a train is moving with a bounded velocity within
[vmin, vmax], and the length of the railroad isL. The time bound of[p, P ] for the pass
event is equivalent to saying thatp = L/vmax andP = L/vmin.
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monitor automatonSM (safety monitor) that monitors output ac-
tionsPass, Open, andClose from Train andGate, and set its
state variablepropertyViolated to true ifPass occurs when the
gate is open (see [31] for a formal description). The invariant
(safety property) we want to check is: for any reachable state of
Train||Gate||SM, SM.propertyViolated = false.

3 Specifying Event Orders

In this section, we introduce a formal way of specifying an event
order that needs to be excluded for system correctness. We first
consider a simple way of specifying an event order, and then
extend an event order specification by introducing “don’t-care”
events. The notion of these “don’t-care” events are important
in order to treat a repetition of events in a single system (aswe
will see in the case study for the train-gate example in Section
7.1) and in order to ignore events by a process that is unrelated
to a key local behavior in concurrent or distributed systems(as
we will see in the case study for the Fischer mutual exclusionin
Section 7.4).

An event order (without “don’t-care”) simply specifies the
order of consecutive actions in an execution of a TIA. For
example, the event order “Request-Pass” for the automa-
ton (Train||Gate) of Example 1 matches any execution of
(Train||Gate) that contains aRequest action immediately fol-
lowed by aPass action. We give a formal definition of a match
between an automaton execution and an event order in Defini-
tion 9, after introducing “don’t-care” events. An event order
may start with a⊥ symbol, which specifies that the event order
matches a finiteprefixof an execution of an underlying automa-
ton. In other words, an event order that start with⊥ specifies
the very first sequence of events that occurs after the automaton
starts executing.

Definition 6. (Event order) An event order of a time-interval
automaton(A, b) is a sequence of actions ofA, possibly starting
with a special symbol⊥.

Example 2. (Event order). An example of event orders that we
want to exclude inTrain||Gate||SM of Example 1 is
⊥-Check(false)-Request-Check(true)-Pass. In this event order,
the gate module first failed to detect a request from the train
since a request has not been made yet. After the train makes a re-
quest, the gate module succeeds in detecting it. However, the re-
quest is detected too late relative to the time for the gate module
to close the gate, and consequently the train passes the crossing
before the gate becomes closed (that is, before theClose event
occurs).

For a system that exhibits an unbounded repetition of events
(such as the train-gate example in Example 1 and a biphase mark
protocol that we study in Section 7), some event orders to be
excluded cannot be represented in a form of a simple event or-
der like the ones we consider above. Consider the event order
“⊥-Pass” for (Train || Gate). This event order needs to be

excluded for an obvious reason: the train passes the crossing
even before the train requests that the gate be closed. Con-
sidering that the gate is doing a busy-loop checking of a re-
quest, thisPass event can possibly be preceded by multiple
failing checks (Check(false)). Indeed, since the relation be-
tween the frequency of these checks (δ and ∆) and the time
when a request is made (r andR) is unknown, the number
of possible failing checks that precede thePass event is un-
bounded. What we want to do is toignore these failing checks
in between⊥ andPass in the event order. By using a regular-
expression-like language, this event order can be expressed by
“⊥-(Check(false))∗-Pass”, where ‘∗’ is a symbol of repetition.
The following event order using anignored event specification
(IES) is more comprehensible when an event is ignored for a
specific event-index interval, not just in between two consecu-
tive events:E2 = “⊥-Pass: insert {Check(false)} to[0, 1]”.
Informally, the ignored event specification (statement after in-
sert)) in the above event orderE2 specifies that when checking
a match between an automaton execution and the event order,
we ignore in that execution (possibly multiple) occurrences of
Check(false) in between the beginning of the execution (e0)
and the first occurrence ofPass (e1). A formal definition of an
IES is as follows.

Definition 7. (Ignored event specification). An ignored event
specification (IES) for an event order is in the following form:
insert (Ym to [im, jm])r

m=1, whereYm represents a set of events
that are ignored in the interval betweeneim

andejm
.

To formally define a match between an automaton execution
and an event order with an IES, we need an ignored event set
IE
k that represents the set of the ignored events in the interval

between thek-th and (k+1)-st events inE (⊥ is considered as
the zero-th event).

Definition 8. (Ignored event set). For an event order with an
IES,E = (⊥)e1 · · · en : insert (Ym to [im, jm])r

m=1, we define
IE
k =

⋃
im≤k<jm

Ym for 0 ≤ k ≤ n− 1.

Definition 9. (Match between a timed execution and an
event order with an IES). Consider a timed executionα =
s0, (π1, t1), s1, · · · of an time-interval automaton(A, b). Let
α′ be the sequence of actions that appear inα, that is,α′ =
π1π2π3 · · · . We say thatα matches an event order with an IES,
E = e1 · · · en :
insert (Ym to [im, jm])r

m=1, if there exists a finite subsequence
β of α′ such thatβ can be split intoβ0πk1

β1πk2
β2 · · ·βn−1πkn

,
where, for alli, 1 ≤ i ≤ n, πki

= ei, andβi is a sequence of
actions and all actions that appear inβi are inIE

i .

A match for an event order that starts with⊥ is defined sim-
ilarly to Definition 9 (an additional conditionk1 = 1 is added
to the definition). For an event order without an IES, allβi’s in
Definition 9 are empty sequences.

We refer to an execution that matchesE as anE-matching
execution.
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4 Identifying Bad Event Orders

In this section, we illustrate how the user can extract bad event
orders from counterexamples obtained from untimed model-
checking of the discretized model.

We use the train-gate example. The safety property we want
to check is that the gate is closed whenever the train passes the
gate.

We first specified the following set of bad event orders as a
candidate4:

A1. ⊥-Pass : insert {Check(false)} to [0, 1]

A2. ⊥-Request-Pass : insert {Check(false)} to [0, 1]

A3. ⊥-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]

The above event ordersA1, A2, andA3 represent a situation
that the train passes the crossing before the gate becomes closed.
A1 specifies a situation that the train passes the gate even before
it requests the gate be closed.A2 specifies a situation that the
train has requested the gate be closed, but the gate automaton
does not detect a request before the train passes the crossing.
A3 specifies the situation that the gate automaton successfully
detects a close request, but the gate does not become closed be-
fore the train passes the crossing. Here we used our human in-
sight into the underlying system that an unbounded number of
Check(false) events can appear before theRequest event.

We manually constructed event order monitors,{EOMi}
3
i=1,

for these event orders, and then model-checked the un-
timed model under the assumption that the above orders
do not appear in system executions. In Linear Tempo-
ral Logic (LTL) [23], this condition can be expressed by:
UntimedTrain||UntimedGate||SM |=

�(¬
∨3

i=1 EOMi.flag) ⇒ �(¬SM.propertyViolated). A coun-
terexample that can be obtained from a LTL expression in this
form starts with a system execution that leads to a bad state,fol-
lowed by acyclein which the flags of all monitors never become
true. This is because we use the “always”� operator for the or-
dering assumption. The user can basically ignore the cycle part
and can just focus on the first part of the counterexample that
contains information about a bad event order.

When we model-checked the safety property with the or-
dering assumption thatA1, A2, and A3 do not occur, we
obtained the following counterexample execution:Request -
Check(true) - Close - Open - Pass, followed by a cycle in which∨3

i=1 EOMi.flag never becomes true. This execution represents
a situation that the gate successfully becomes closed before the
train passes the crossing, but becomes open again too fast. Since
we knew that multipleCheck(false) events could have appeared
before theRequest event and after theOpen event in this exe-
cution, we identified the following bad event order.

B1. ⊥-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [0, 1], {Check(false)} to [4, 5]

4Of course, the user could instead start by model-checking the untimed model with no
ordering constraint, and build up sufficient event orders. Nevertheless, if theuser knows
partial information about what bad event orders might be, he/she can use human insight to
set up a candidate set of bad orders at the beginning, as in the presented case.

In this way, the user can continue identifying bad event orders
using both counterexamples from untimed model-checking and
human insight. We present the entire set of bad event orders for
the train-gate example in Section 7.1.

5 Deriving Timing Constraints

In this section, we present a scheme to derive a timing parameter
constraint to exclude an execution that matches a given event
order. The scheme just uses the bound map of an underlying
TIA, but not the state-transition structure of it.

Derivation of a timing parameter constraint for a given event
order is taken in the following three steps:

1. We enumerate bounds on a pair of events in the event order
that are immediately derivable from the bound mapb of an
underlying TIA and the bound conditions in Definition 3.

2. We combine enumerated individual bounds to form a time
bound for larger interval of events in order to derive a mean-
ingful constraint in the next step.

3. We find a matching pair of combined upper bound and
lower bound, and then derive a timing constraint.

As we show in Section 6, this scheme forms the basis for the
prototype implementation. More specifically, each step of the
above described scheme is systematic, and can be easily auto-
mated. We present a more detail of each of the steps in the fol-
lowing.

Enumerating bounds: Given an event orderE and the bound
mapb of a TIA, we first enumerate the upper and lower bounds
between the time of occurrence of two events inE from the up-
per and lower bound conditions in Definition 3. The bound sets
UE

i,j andLE
i,j defined in Definitions 10 and 11, respectively, con-

tain upper and lower bounds between the times of occurrence
of the actions that matchei andej in E, respectively, that are
immediately derivable from the bound mapb and the upper and
lower band conditions in Definition 3 (the⊥ symbol is treated
as the zero-th evente0). The bounds are tagged with the event-
index interval for which they are derived. Note that, for a pair
(π,Π) of an action and an action set with a bound, an upper
bound for an event-index interval[i, j] is found from the fact that
the i-th event isπ, and an event inΠ does not appear in[i, j],
whereas a lower bound for[i, j] is found from the fact that the
i-th event isπ, and an event inΠ appears atthej-th event. This
is consistent with the upper and lower bound conditions in Def-
inition 3. For anyE-matching executionα = s0(π1, t1)s1 · · · ,
the matched subsequence of actionsβ = β0πk1

β1 · · ·βkn−1
πkn

(in Definition 9) satisfiestkj
− tki

≤ u for (u, [i, j]) ∈ UE
i,j , and

tkj
− tki

≥ l for (l, [i, j]) ∈ LE
i,j (this fact is proved as a key

lemma for Theorem 1 in [31]).
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Figure 3: Upper and lower bounds for the event orderE1

Definition 10. (Upper bound set). Fori andj, 0 ≤ i < j ≤ n,

UE
i,j = {(u, [i, j]) | u =upper(ei,Π) such that

(ei,Π) ∈ Domain(upper) ∧

(j = i+ 1 ∨

ei+1 · · · ej−1 contains no action inΠ) ∧

∪j−1
k=i I

E
k contains no action inΠ.}

Definition 11. (Lower bound set). Fori andj, 0 ≤ i < j ≤ n,

LE
i,j = {(ℓ, [i, j]) | ℓ =lower(ei,Π) such that

(ei,Π) ∈ Domain(lower) ∧

ej ∈ Π}

Note that the bound map of an underlying TIA is used only in
this first enumeration step.

Example 3. (Upper and lower bound sets). We show an
example of UE

i,j and LE
i,j . The underlying automaton is

Train||Gate||SM discussed in Example 1, the train-gate model
with a busy-loop checking. As discussed in Example 2, one of
the event order that we want to exclude isE1 =
⊥-Check(false)-Request-Check(true)-Pass. Figure 3 depicts
the upper bounds inUE1

i,j and lower bounds inLE1

i,j .
Upper bound example:We have an upper bound(R, [0, 1])
for the interval betweene0 (⊥) and e1 (Check(false)) since
we have an upper boundupper(⊥, {Request}) = R defined
in the bound map, and the eventRequest is not performed
betweene0 and e1. For a similar reason, we have an up-
per bound(R, [0, 2]) betweene0 (⊥) ande2 (Request). The
upper bound setUE1

0,1 for the interval betweene0 and e1 is:
{(R, [0, 1]), (P, [0, 1]), (∆, [0, 1])}.
Lower bound example:We have a lower bound(δ, [1, 3]) for the
interval betweene1 (Check(false)) ande3 (Check(true)) since
we have a lower bound
lower(Check(false), {Check(false),Check(true)})) = δ de-
fined in the bound map.

Combining bounds: We need a notion of a covering upper
bound set and a distributed lower bound set to combine individ-
ual bounds inUi,j andLi,j , respectively, so that we can synthe-
size a meaningful timing constraint. Informally, a covering up-
per bound setU for an event intervalΓ is a set of upper bounds
such that when we take a union of all intervals that tag upper
bounds inU , the union becomesΓ (tagged intervals of upper
bounds inU coverΓ). A distributed lower bound setL for an
event intervalΓ is a set of lower bounds such that each interval
that tags a lower bound inL is contained inΓ, and all intervals
that tag lower bounds inL do not overlap (tagged intervals of
lower bounds inL aredistributedin Γ, without overlapping).

Definition 12. (Covering upper bound set). Consider a set of
upper boundsS = {(uk, [ik, jk])}m

k=1 for a time-interval au-
tomaton(A, b) and an event orderE (possibly with an IES),
where(uk, [ik, jk]) ∈ UE

ik,jk
for k, 1 ≤ k ≤ m. We say thatS

covers the interval betweenev andew if for any event pointerp,
v ≤ p ≤ w−1, there exists an upper bound(uk1

, [ik1
, jk1

]) ∈ S

such thatik1
≤ p andp+ 1 ≤ jk1

.

Definition 13. (Distributed lower bound set). Consider a set
of lower boundsS = {(lk, [ik, jk])}m

k=1 for a time-interval au-
tomaton(A, b) and an event orderE (possibly with an IES),
where(lk, [ik, jk]) ∈ LE

ik,jk
for k, 1 ≤ k ≤ m. We say thatS

is distributed in the interval betweenev andew if the following
two conditions hold:

1. For any lower bound(lk1
, [ik1

, jk1
]) ∈ S, v ≤ ik1

and
jk1

≤ w.

2. For any two lower bounds(lk1
, [ik1

, jk1
]), (lk2

, [ik2
, jk2

]) ∈
S, jk1

≤ ik2
or jk2

≤ ik1
.

Example 4. (A covering upper bound set and a distributed lower
bound set). Let us look at Figure 3 again. The set of up-
per bounds{(R, [0, 2]), (∆, [1, 3]), (T, [3, 4])} covers the inter-
val betweene0 ande4 ([0, 2]∪[1, 3]∪[3, 4] = [0, 4]). Each lower
bound by itself constructs a lower bound set that is distributed
in the interval betweene0 ande4, but any set with two or more
lower bounds is not distributed in the same interval, since we
have some overlap of the intervals for which the lower bounds
are defined.

Deriving bounds: The following Theorem 1 implies that if we
find a covering upper bound set and a distributed lower bound
set for the same interval, then we can obtain the timing con-
straints by the third condition in the theorem (the sum of the
upper bounds is strictly less than the sum of the lower bounds).
A formal proof of this theorem appears in [31].

Theorem 1. Consider an event orderE, possibly with an
IES. A time-interval automaton(A, b) exhibits noE-matching
execution if there exists a set of upper boundsU =
{(um, [im, jm])}p

m=1 where(um, [im, jm]) ∈ UE
im,jm

, a set of
lower boundsL =
{(lr, [ir, jr])}

q
r=1 where(lr, [ir, jr]) ∈ LE

ir,jr
, and two events

ev andew such that the following three conditions hold:
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1. U covers the interval betweenev andew.

2. L is distributed in the interval betweenev andew.

3.
∑p

m=1 um <
∑q

r=1 lr.

Example 5. (Timing constraint derivation for an event order
without an IES). Again, consider the event order depicted in
Fig. 3. As discussed in Example 4, the upper bound set
{(R, [0, 2]), (∆, [1, 3]), (T, [3, 4])} covers the interval between
e0 ande4. In addition, the lower bound set{(p, [0, 4]} is dis-
tributed in the same interval. From Theorem 1, ifp > R+∆+T ,
then (Train || Gate) exhibits noE1-matching execution.

Example 6. (Timing constraint derivation for an event or-
der with an IES). Consider the event orderE2 = “⊥-Pass:
insert Check(false) to(0, 1)”. We have a lower bound
lower(⊥, {Pass}) = p, and⊥ appears ate0 and Pass at e1.
Thus we have a lower boundp betweene0 ande1 (from Defini-
tion 11). We have an upper boundupper(⊥, {Request}) = R

defined forTrain||Gate, and theRequest event is not ignored in
the interval betweene0 (⊥) ande1 (Pass) – only Check(false)
is ignored. Thus we have a valid upper boundR betweene0 (⊥)
ande1 (Pass). Therefore, we can derive a constraintp > R,
which imposes an order constraint that aRequest event must
occur before aPass event. On the other hand, though we have
an upper bound
upper(⊥, {Check(true),Check(false)}) = ∆, we cannot derive
an upper bound∆ betweene0 ande1, sinceCheck(false) is ig-
nored in that interval. Therefore, we cannot derive a constraint
p > ∆. Indeed, the above constraint does not excludeE2, since
the constraint just imposes that the very firstCheck event after
eachOpen event must occur beforePass of that round.

6 Implementation

We have implemented in Python a prototype of a timing con-
straint derivation tool (METEORS: MEchanical Timing / Event-
ORder Synthesizer, version 0.1), based on the scheme described
in Section 5. The problem that the implemented prototype tool
solves is as follows. The user gives the tool the set of time
bounds defined in an underlying TIA for which he/she wants
to derive a timing parameter constraint. Then the user gives
the tool (typically multiple) bad event orders to be excluded by
timing synthesis. The tool first enumerates upper and lower
bounds immediately derivable from the given time bound in-
formation. The computational complexity of this enumeration
process grows only linearly with respect to the number of pa-
rameters (we need to do an enumeration for each parameter, and
enumerations for different parameters are independent of each
other). The tool then searches over all possible covering up-
per bound sets and distributed lower bound sets. When the tool
finds a matching pair of a covering upper bound and a distributed
lower bound set, it derives timing constraints in the same way as
demonstrated in Examples 5 and 6.

The current prototype assumes both lower and upper bounds
(pi andPi, respectively) are defined for all pairs with bounds

(πi,Πi) ∈ actions(A)⊥ ×P(actions(A)).5 Therefore, the un-
derlying TIA has the lower bound parameter set{pi}

n
i=1 and the

upper bound parameter set{Pi}
n
i=1, both of which contain the

same number of timing parameters, and a lower bound is at most
as large as the matching upper bound:pi ≤ Pi.

A linear term over lower bound parameters{pi}
n
i=1 is in the

form c1p1+c2p2+· · ·+cnpn, which we also write as
∑n

i=1 cipi,
whereci is an integer constant for1 ≤ i ≤ n. A linear term over
upper bound parameters{Pi}

n
i=1 is defined analogously.

An inequality the tool derives from one pair of a covering up-
per bound set and a distributed lower bound set has the form
φ > ψ, whereφ =

∑n
i=1 cipi is a linear term over lower bound

parameters andψ =
∑n

i=1 diPi is a linear term over upper
bound parameters. The tool in general finds in a given event
order multiple matching pairs of covering upper bound sets and
distributed lower bound sets, for each of which it can derivea
linear inequality. In such a case, multiple inequalities can be
derived, and the given event order appears in no system execu-
tion if at least one of the inequalities is satisfied. Thus, the tool
derives adisjunction of linear inequalitiesfor one given event
order.

The user typically needs to exclude multiple bad event orders.
All specified event orders can be excluded if all disjunctions of
linear inequalities derived from the event orders are satisfied.
Therefore, a timing constraint derived by the tool forms acon-
junction of disjunctions of linear inequalities– in a form sim-
ilar to conjunctive normal form of Boolean logic, but in our
case we have linear inequalities instead of Boolean variables:∧

i∈I

∨
j∈Ji

Li,j , whereLi,j is a linear inequality.
The constraint derived by the tool may first contain some un-

realizable inequalities (for example, an upper bound for a spe-
cific action set is strictly smaller than a lower bound for thesame
action set), or redundant inequalities (for example, one inequal-
ity is weaker than or equivalent to another inequality in a dis-
junction). We use a simple simplification algorithm to prune
these inequalities. The details of this simplification algorithm is
described in [31].6

Scalability experiment: To obtain a rough idea of the scalability
of the constraint derivation process of the prototype with respect
to the event order length, we conducted an experiment on de-
riving a constraint for randomly generated event orders of the
train-gate example. This experiment (and all other experiments
in this paper) was conducted on a desktop computer with an In-
tel CoreTM2 Quad at 2.66 GHz and 4GB memory. We exper-
imented with ten randomly generated event orders with length
of thirteen, and the tool finished the constraint derivationpro-

5After obtaining a constraint simplified by the tool, the user can manually substitute
pi = 0 for (πi, Πi) with only an upper bound, and can substitutePi = ∞ for (πi, Πi)
with only a lower bound. The current prototype does not make use of thisinformation of
“unbounded in one side” in a simplification of a constraint, and this is our future work.

6Note that this simplification process is completely independent of constraint derivation
process, and is provided by the tool for user’s convenience. The user could instead man-
ually simplify the derived constraint or could use external linear-logic simplification tools
as well. This is different from the timed/hybrid model-checkers like HyTech, RED,TRex,
and LPMC which inherently need an intelligent linear-logic simplification scheme to con-
duct a fixed-point calculation for reachable states symbolically expressed by a linear logic
expression.
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cess within one second for all experiments. Considering that the
length of the event orders that we identified for the case studies
presented in Section 7 are all less than ten, the results of these
experiments are satisfactory. However, we have to conduct more
case studies in order to examine the order of the length of thebad
event orders in larger real-time systems.

Discussion: Though the current prototype does not treat a “dis-
junctive” language construct (such as∪ of a regular expression),
it is easy to derive a constraint for an event order that uses such
a construct at the top level. For example, suppose we want to
exclude a (pseudo) event ordere1e2{e13, e

1
3}e4, which specifies

that the third event order is eithere13 or e23. We can simply treat
this event order as two distinguished event orderse1e2e

1
3e4 and

e1e2e
2
3e4.

Similarly, to exclude an execution that matches both of two
event ordersE1 andE2 (E1∩E2 in a regular expression), we can
individually derive constraints forE1 andE2, and then disjunct
them to obtain a constraint (at least one ofE1 andE2 needs to
be excluded to excludeE1∩E2). Since we disjunct disjunctions
of linear inequalities derived forE1 andE2, the derived con-
straint forE1 ∩ E2 is a disjunction of linear inequalities. Thus,
derivation of a constraint fromE1 ∩ E2 (among other ordinary
event orders) does not destruct the conjunction-of-disjunctions
structure of the final constraint.

7 Case Studies

7.1 Train-Gate Problem

In this section, we illustrate the user of EOA and the prototype
tool using the train-gate exampleTrain||Gate||SM that we have
used in earlier sections of the paper.

We identified the following ten event orders to exclude all bad
executions in the same way as described in Section 4.

A1. ⊥-Pass : insert {Check(false)} to [0, 1]

A2. ⊥-Request-Pass : insert {Check(false)} to [0, 1]

A3. ⊥-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]

A4. Pass-Open-Pass : insert {Check(false)} to [2, 3]

A5. Pass-Open-Request-Pass : insert {Check(false)} to [2, 3]

A6. Pass-Open-Request-Check(true)-Pass :
insert {Check(false)} to [2, 3]

A7. Pass-Pass

B1. ⊥-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [0, 1], {Check(false)} to [4, 5]

B2. Pass-Open-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [2, 3], {Check(false)} to [6, 7]

C1. Close-Pass-Request

We can classify these event orders into three groups. The first
group (A1 - A7) represents a situation that the train passes the
crossing before the gate becomes closed.A1, A2, andA2 are
the event orders used as a first candidate set of bad event orders
in Section 4. InA4, A5, andA6, the⊥ symbol inA1, A2, and
A3, respectively, is replaced byPass-Open, so that they specify
situations similar toA1, A2, andA3, but after at least onePass

events have been performed.A7 is like A4, but withoutOpen

afterPass. The second group (B1 andB2) represents a situation
that the gate becomes open too fast after it becomes closed, and
thus the gate is open when the train passes the crossing.B1 and
B2 intrinsically represents the same situation, but the⊥ symbol
inB1 is replaced byPass-Open, so thatB2 specifies a situation
after at least onePass events have been performed. The third
group (C1) represents a situation that the gate becomes open
again too late, that is, after the train makes a next request.Since
all state variables of the gate automaton are reset when the gate
becomes open (byOpen event), if the gate becomes open after a
request from the train, the request information is reset, and thus
the gate would not become closed.

In this bad order identification process, we manually con-
structed a monitor (a classical finite state machine) for each of
the identified ten event orders. Each monitor raises a flagex-
clude when it finds a subsequence of actions that match the
underlying event order in a current automaton execution. Ac-
tually, we could (manually) combine some of the monitors7 and
needed to construct only six monitors (EOM1 - EOM6) at last.
Model-checking for each refinement step took less than one sec-
ond. At the end of the bad order identification step, we suc-
cessfully model-checked the property�(¬bad event order) ⇒
�(¬SM.propertyViolated) for
Train||Gate||SM||EOM1|| · · · ||EOM6, using a SAL symbolic
model-checker [9], wherebad event order = EOM1.flag ∨
EOM2.flag ∨ · · · ∨ EOM6.flag.

For event ordersA2, A3, A5, andA6, we had to do a “de-
composition” of an event order. For example, we cannot di-
rectly derive a meaningful constraint fromA3. In A3, unlike
the event orderE1 depicted in Figure 3, we have possibly un-
bounded number ofCheck(false) events beforeRequest, and
theseCheck(false) events are ignored. Thus, the bounds cor-
responding to(∆, [0, 1]), (∆, [1, 2]), (∆, [1, 3]), (δ, [0, 1]), and
(δ, [1, 3]) in Figure 3 are removed from the set of enumerated
bounds for deriving a constraint forA3, and therefore we cannot
derive the same constraint as in Example 5. DecomposingA2

into the following two event orders resolved this problem: one
with no Check(false): A′

3 = ⊥-Request-Check(true)-Pass,
and one with one or moreCheck(false) events: A′′

3 =
⊥-Check(false)-Request-Check(true)-Pass :
insert {Check(false)} to [0, 1]. A′′

3 still has an IES, but for this
event order, an upper bound removed from the upper bound set
of E1 in Figure 3 is only(∆, [0, 1]), and thus we can derive
the same constraintp > R + T + ∆ as in Example 5. We
decomposedA3, A5, andA6 similarly to the case ofA2 de-
scribed above. We manually decomposed event orders for this
case study, and automation of this decomposition is future work.
More detailed analysis and automation of this decomposition
process is our future work.

After the decompositions ofA2,A3,A5, andA6, we had four-
teen event orders, and the tool derived the following set of con-
straints from the given event orders after automatic simplifica-
tion (the total time of derivation and simplification took less than

7For example, by changing the initial state of the monitor forA4, we could also treat
A1. Same for the pairs ofA2 andA5; A3 andA6; andB1 andB2.
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one second): 1.(p > R+T+∆); 2. (r+t+c > P ∨ δ+t+c >
P ); and 3.(r > C). The tool indicated that the first constraint
was originally derived from a decomposedA6, the second from
B1, and the third fromC1. Therefore, we obtained a constraint
for each of the three groups we explained above.

7.2 Biphase Mark Protocol

A biphase mark protocol [25] is a lower-layer communication
protocol for consumer electronics. Several researchers have
conducted formal verification of this protocol (for example,
[25, 32]), but as far as we know, completely automatic verifica-
tion of it has not been done. We identified 22 bad event orders.
(We successfully model-checked the discretized model under the
condition that 22 bad event orders do not occur, and model-
checking for each refinement step took less than one second).
This number may look large, but similarly to the train-gate ex-
ample in Section 7.1, we identified multiple event orders from a
single bad situation (there were eight bad situations). Eight event
orders (derived from three situations) had to be decomposedas
in the case of the train-gate example. The tool derived threecon-
straints (it took less than one second), which are equivalent to the
three conditions manually derived in [32]. We actually had two
more additional constraints for the first timing parameter syn-
thesis attempt. One additional constraint was derived due to one
event order that actually need not be excluded. The other con-
straint was derived because for one particular bad scenario, we
supplied a shorter event sequence than needed to derive a weaker
constraint (which is equivalent to one of the three constraints in
[32] that we also derived in the first attempt.) By removing the
first event order, and adding more event sequence to the second
one, in the second attempt, we succeeded to derive three con-
straints as manually derived in [32].8 A more detailed report on
this case study will appear in a forthcoming publication [29].

7.3 IEEE 1394 Root Contention Protocol

The IEEE 1394 standard specifies communication infrastructure
between electric devices. By using IEEE 1394, up to 63 de-
vices can be connected in a tree topology. The root contention
protocol (RCP) that we studied is used at the last phase of the
tree topology identification. Though the bad scenarios to beex-
cluded are two, due to the interleaved process actions (events),
we ended up having 42 event orders. The model-checking suc-
cessfully completed under the ordering assumption within one
second. The tool derived a set of constraints that are equivalent
to those manually derived in [27]. A more detailed report on this
case study will appear in a forthcoming publication [29].

8In the conference version of this paper [30], we (from a misunderstanding)
mentioned that the authors of [32] have used an additional constraint other than
the derived three, in order to complete the proof. However, this turned out to be
not the case: we contacted with Frits Vaandrager, one of the authors of [32], and
he kindly clarified that the additional property of the system mentioned in [32]
was not additionally assumed, but was actually just discovered as an invariant of
the system.

7.4 Fischer Mutual Exclusion

The Fischer mutual exclusion algorithm ([21], Section 24.2) is a
mutual exclusion algorithm that uses a timing behavior for cor-
rectness. We identified one bad event order, by using the sym-
metry among process behavior. In this event order, we focus
on a specific interleaving of events between a pair of processes.
Ignored event specifications are used to treat behavior of other
processes than the focused pair as “don’t-care”. We successfully
model-checked the discrete model under the correct ordering as-
sumption (it took 40 seconds for a system with five processes).
The tool derived the constraint that is manually derived in [21].

8 Conclusion and Future Work

In this paper, we presented theevent order abstraction(EOA)
technique to parametrically verify real-time systems. By using
EOA, the user can directly make use of his/her intuition about
what kind of bad scenarios need to be prevented, by specifying
bad event orders. We demonstrated the applicability of the tech-
nique by a simple train-gate system and a summary of three other
case studies, a biphase mark protocol, the root contention pro-
tocol of IEEE 1394, and the Fisher mutual exclusion algorithm,
are briefly reported.

This technique can be extended by enhancing automation of
verification using EOA in the following processes: construction
of an event order monitor, decomposition of an event order, and
extraction of a bad event order using heuristics. An interesting
future direction is extending bad event order language to treat a
partial order of events, as well as the current sequential order.

We consider that identifying bad event orders is useful not
only for the verification/synthesis process of EOA, but alsofor
implementation engineers to understand what kind of undesir-
able scenarios can occur in the underlying system/protocolwhen
parameters are badly tuned. Along this line, identified bad event
orders could be used in model-based testing or model-based test-
case generation [10, 8], in which a formally specified model is
used to test an actual implementation of a system.
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