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Abstract 1 Introduction

We present a new abstraction technicaieent order abstraction !N @ typical real-time system, timing constraints on theteyes
(EOA), for parametric safety verification of real-time sysis behavior are used _to ensure |t§ correctness. Such a systém is
in which “correct orderings of events” needed for system cdgn modeled by using a settiiing parametersrather than us-
rectness are maintained by timing constraints on the systefid concrete timing constants (for example, [25, 27, 13hede
behavior. By using EOA, one can separate the task of vegjfyiparameters specify, for instance, bounds on the duratioveee

a real-time system into two parts: 1. Safety property veiion WO specific events in a system execution or certain delagh s

of the system given that only correct event orderings ocand; &S Message delivery times.

2. Derivation of timing parameter constraints for correates-  Typically, only a subset of possible parameter combination
ings of events in the system. in the entire parameter space satisfies correctness of sy a
dem. A verification engineer or researcher typically foloane
ﬁhe following two approaches to formally verify such a-sys
fem: 1. Fixed-parameter verificatiorBy fixing all timing pa-
rameters in the system, he/she reduces the system model to a
more tractable one such as an Alur-Dill timed automaton fit] a
del-checks the reduced system (using UPPAAL [20] or KRO-
S [34], for instance [12, 6, 22]); or 2P&rametric verifica-

'[?n) he/she treats the timing parameters as uninterpreted con-

The user first identifies a candidate set of bad event ord
Then, by using ordinary untimed model-checking, the user
amines whether a discretized system model in which all mi
constraints are abstracted away satisfies a desirably pabgt-
erty under the assumption that the identified bad event smter
cur in no system execution. The user uses counterexamples:%
tained from the model-checker to identify additional badrav

orders, and repeats the process until the model-checking ét ts find ate set of traints for th
ceeds. In this step, the user obtains a sufficient set of bext e ants, finds an appropriate set of constraints for the petes)

orders that must be excluded by timing synthesis for systam Cand manua_lly proves or mechanically checks correctnessrund
rectness. the constraints [25, 32, 35].

Next. the algorith ted in th ¢ ticall The second approach is attractive in the sense that if we can
_ Next, the algonithm presented in the paper automaticary c?3‘?)tain a positive verification result by this approach, tken
rives a set of timing parameter constraints under which yke s

e . i~ . havi ncr f constraints on the timin rametders f
te_m does not gxhlblt 'Fhe |dent|f|_ed bad event ordgrmgs. Fr f?%iyit(;% (,Eoe;i ?:?)trrcc)ecioar?(tj ?natj ;ivet aen impl grr? :n?atice):}eeigi
this step 90mbmed_ \.N'th the unt_|m_ed model-checking st_e@, eer more freedom of choice, than fixed-parameter veri@inati
user obtains a sufficient set of timing parameter conssaint The user can experiment with several instances of the first ve
der which the system executes correctly with respect toengiv,. . per . S
safety property. ification approa_ch using multlple paramet_er combinati@ms)

. ) ) _then can try to figure out possible correlations betweenrpara
We illustrate the use of EOA with a train-gate example ifars in order for the system to be correct (for example, [28su
spired by the general railroad crossing problem [13]. We algjs approach). However, these experiments by themseswes n
summarize three other case studies, a biphase mark protqgglome exhaustive if the number of possible parameter combi
the IEEE 1394 root contention protocol, and the Fischer aluty ations is infinite (for example, a parameter can be realed|
exclusion algorithm. or an integer but unbounded). Thus we need a more intelligent
Keywords: Parametric verification, event-based approach, auégproach for completely parametric verification.
matic timing synthesis, counter-example guided abstag®-  Another important challenge, in addition to time-pararsetr
finement (CEGAR) verification, istiming synthesisf a time-parametric model. For
timing synthesis, one tries to derive, in a systematic wauf
“This work is supported by NSF Award 0702670 cient set of timing parameter.co_nsyraints unde_r vyhich t@y
"This paper is a refined version of the paper presented in EMSDB8 [30] €Xecutes correctly. Automatic timing synthesis is consideo
with a slight typo-fixing in Figure 2 and a revision in SectiBi2. be an even harder problem than automatic time-parametric ve




ification since an algorithm or a tool is not a priori given & s&l(—DiscretizedModel.propertyViolated)). We used the SAL
of timing constraints by the user, but has to derive consisdly model-cheker [9] in this paper. We manually constructedimon
itself. A classical undecidability result about paraneetimed tors since the construction was straightforward for thes@néed
automata by Alur et al. [2] implies that a completely autdmatcase studies (we are planning to develop an automatic nmonito
timing synthesis does not terminate in general. construction tool). Since we successively refine the ugpaeyl

In this paper, we present a new abstraction techniquent discretized model (by refining the bad order assumptiomy fao
order abstraction(EOQA), for parametric safety verification ofcounterexample obtained from model-checking, EOA can be re
the subclass of real-time systems in whamdrrect orderings of garded as aounterexample guided abstraction refinem@i-
eventsmaintained by timing constraints on the systems’ beha@AR) technique [7].
ior are critical for correctness (for example, a biphasekpan- Next, by an algorithm that we present in the paper, the user
tocol [25], the Fischer mutual exclusion algorithm ([21¢cBon automatically derives timing parameter constraints umdgch
24.2), and the IEEE 1394 root contention protocol [27]). By uthe system exhibits none of the identified bad event ordemsnF
ing EOA, one can separate the task of verifying a safety prdbpis step, the user obtains sufficient timing constraintdeun
erty of a system into two parts: 1. Safety property verifmatf which the system executes correctly with respect to a given
the system given that only correct event orderings occut;2an safety property.

Derivation of timing parameter constraints for correctesidgs Related work: Some of the existing timed model-checkers
of events in the system. (HYTECH [14], RED [33], TReX [3], LPMC [28], and an ex-
To use EOA, the user models a real-time system by using tbasion of UPPAAL [18]) allowautomatic synthesief timing
time-interval automat4TIA) framework, which is an extensionparameters for a specified desirable property of a giveresyst
of the I/O automata framework [21], and can express certafiese tools automatically derive a set of constraints oimtjrpa-
restricted class of timed I/O automata [19]. By using the Tifameters for the system to satisfy a given property. Howéser
framework, the user can specify lower and upper bounds on fhigation is in general not guaranteed for these model-arsck
time interval between a specific event and a set of possieletev  The main differences of EOA from the existing automatic
that follow. The framework has a certain structure thati®fle timed model-checkers listed above are the following four.
for a mechanical timing constraint derivation scheme prese  First, to use EOA, the user has to provide a set of bad event
in this paper. orders to be excluded in the system by timing synthesis. dime
A parametric verification of a real-time system using EOfodel-checkers mentioned above does not need such inputs.
is conducted in the following steps. First step is identifma  Second, EOA can treat a class of systems that may exhibit an
of “bad” event orders. The user proposes a candidate setiobounded number of repetitions of events. The existing-par
bad event orders that he/she wants to exclude from the sysieetric model-checkers listed above use symbolic readhabil
executions by timing synthesis. The user then model-chacksnalysis of states symbolically represented by linearcle-
safety property of interest ondiscretized modedf the under- pressions. Thus, if an underlying parametric model has an un
lying TIA, under the assumption that the model does not @xsunded loop that involves evolution of continuous vaesbl
hibit the proposed bad event orders A discretized model ofhen this reachability analysis does not terminate, andethe
TIA is simply an ordinary untimed I/O automaton that does nfdre the verification attempt fails (for example, in [14],c8en
have any timing constraints as the original TIA does. If th&2, the authors stated that they had to modify a model of a
model-checking is completed with a positive answer, the usphase mark protocol so that it exhibits no unbounded loop)
has obtained a set of bad event orders that he/she needs toneEOA, by using a language construct that represents an un-
clude. Otherwise, the user uses counterexamples obtaioied foounded number of repetitions of events, the user can handle
the model-checking to extract additional bad event orded, ahis kind of system.
repeats the same process until he/she successfully mbeeks  Third, when doing successive refinements by using EOA,
the discretized model. each abstraction in a refinement step is a completely untimed
The user expresses bad event orders by a simple languagettaasition system (an ordinary /0O automaton with ordedog-
can express a sequential order of events and some types-ofsgpints). Thus the user can directly employ existing \eation
etition of events. He/she typically needs to apply humaights techniques for untimed transition systems.
to extract from the counterexample a bad event order exguless Fourth, EOA does not suffer from the “dimensionality prob-
in a concise way, and this is why we have manually identifiégein” as much as the timed model-checkers listed above do. Au-
bad event orders for the case studies presented in the papertomatic timing synthesis using the above listed model-kéexc
Model-checking under a specific event order assumption c¢apidly becomes intractable as the number of parametensdro
be carried out in the following two steps. The user first cofit4], Section 5. Lessons learned). This problem is calleddir
structs a monitor that raises a flag when one of the identifieldd mensionality problem”, and is regarded as one of the maittebot
event orders is exhibited. Then he/she model-checks the discks of the time-parametric model-checkers. With EOA; tim
cretized model with this monitor under the assumption that ting synthesis is handled separately from model-checkirfge— t
monitor does not raises a flag (in Linear Temporal Logic (LTltpol derives timing parameter constraints from identifigdrd
[23], this condition can be represented hy—Monitor.flag) = orders just with information about time bounds between &yen



and does not use any information about the state transitioc+s tion by first drawing a process communication diagram that de
ture of the system. This synthesis process does not use a fixécts a possible bad scenario, and then manually findingaut h
point computation as timed model-checkers do, and thus dt®sonstrain timing parameters to exclude the depictedasaen
not need linear logic simplification for terminatiorinstead, as This approach is used in [32] to verify a biphase mark proto-
we present in Section 6, timing synthesis is done by a straigtol, and in [27] for the root contention resolving algorithoh
forward search within a certain space inferred by specifiede the IEEE 1394 protocol. With EOA, the user can directly make
orders. In all case studies summarized in this paper, thelsease of these human insights into the bad scenarios, andsan al
spaces were small. Indeed, the train-gate example thatev® usutomate the process of deriving timing constraints froeratd
illustrate EOA throughout the paper has ten parametersthendscenarios.

timing synthesis for it from specified event orders took es&n  The rest of the paper is organized as follows. In Section 2, we
one second. introduce a new automata framewotkne-interval automata

Frehse, Jha, and Krogh [11] presented a CEGAR-based \fe-present the train-gate example, which is inspired byla rai
proach for automatically synthesizing parameter congisadf road crossing problem [13], in the TIA setting. We use this ex
linear hybrid automata (LHA) [15]. Though this work is indeample to illustrate the use of EOA throughout the paper. The
pendently done from our work, the approach is similar to ousgample is simple compared to an industrial protocol, fanex
in that it uses discrete abstraction of the underlying sysie ple, a biphase mark protocol that we study in Section 7, yet ha
obtain counterexamples, and then synthesize the timingiteo ten parameters and exhibits an unbounded repetition ofteven
uous) parameter constraints to exclude the obtained c@xateln Section 3, we explain how the user can formally specifynéve
amples. The main differences between their approach and aulers. In Section 4, we demonstrate how the user can conduct
approach are the following three: 1. Their approach autemahe bad-event-order identification step. Section 5 is d&lod
cally identifies bad event sequences; 2: Their approachmitespresenting the basis for automatic timing constraint didw.
treat a repetition of events as our approach does (Treamgrr In Section 6, we present a prototype implementation thai-aut
titions is crucial to verify certain examples such as thintgate matically synthesize timing constraint from given everdess.
example in this paper and a biphase mark protocol, for whigkction 7 presents case studies of time-parametric veidgiica
meaningful parameter constraints can be obtained onlyday-tr using EOA. We first present verification of the train-gateraxa
ing repetitive events); 3: Their approach treats LHA, whigh ple. We also summarize three other case studies, a biphake ma
more general than TIA. They experimented their approach bpmtocol that has been studied in several verification maffer
simple car-conflict prevention example, which has only tae pexample, [25, 32]), the IEEE 1394 root contention proto2a] |
rameters. The applicability of their approach to a systeth @i and the Fischer mutual exclusion algorithm ([21], Sectiba}
large number of parameters such as the ones in Section 7 isA®4 conclusion, in Section 8 we discuss a summary of the paper
known. and possible future work.

Several researchers considered digitization of timedsitian
systems [17, 5, 4, 26]. These techniques could possibly && us
to obtain a discrete version of real-time systems for fixeapa 2 Time-Interval Automata
eters, but as far as we know, an application of the technigue t
parametric verification has not been studied. Thetime-interval automatgTIA) framework is an extension of

We have developed EOA to fill in the gap between the ithe I1/0 automata (IOA) framework [21]. An I/O automaton is
ductive proof approach and automatic time-parametric fodg guarded-command style transition system with distirigeds
checking. The inductive proof approach needs human irsigiffput, output, and internal actions. Informally, with théAT
into an underlying system to come up with an inductive proframework, one can specify the lower and upper time bounds
erty, and we believe that identifying bad event orders isemasn the interval between one action and its following actiohs
amenable process and requires less training than comingtinie bound for actior: and actions inB is represented as an
with inductive properties. On the other hand, automaticetiminterval in the form/l, u]. Informally, this bound represents that,
parametric model-checking may not always scale to a syst®many time of occurrence, of actiona, no action inB occurs
with a considerable number of timing variables and pararsgtéyeforet, + I, and at least one action i is performed before or
as we described earlier. att, + u.

When automatic time-parametric model-checker does nojs we explain in the reminder of this section, a TIA has
scale, one can try using inductive invariant reasoning or B explicit structure to specify the time bounds for actjamrs
model-checking using parameter constraints as inputs sethgvents. The automatic derivation scheme we present inddecti
are typically more scalable compared to automatic paramedeand also the prototype implementation introduced in 8acti
synthesis tools. To do so, he/she first needs to derive a seg afake use of this explicit structure to conduct a timing kgnt
timing parameter constraints under which (he/she bel)e¥es sis. We compare the relation between the TIA framework and
system works correctly. Typically the user performs this\de other timed automata frameworks in the related work patiii t

INevertheless, a linear logic simplification for a derived set of constrairgeoigded SeCtlo_n' . . . .
by the prototype tool for user’s convenience. An interval-bound maplefined in the following Definition 1




formally specifies time bounds for actions. The special syimhunderlying 1/0O automatd A, };c; (which is an ordinary asyn-
1 is used to express the time bound on the interval betweent¢heonous composition with synchronization of input andpotit
system start time and the time an action in the specified set actions with the same name [21]), and (2)wer is given by

curs. taking union of{lower; };c;r andupper is given by taking union

o _ of {upper; }icr (by regarding partial functions as sets of ordered
Definition 1. (Interval-bound map). Annterval-bound map pgjrs).

b for an 1/0 automatonA is a pair of mappings{ower and

upper. Each oflower and upper is a partial function from A TIA must satisfy thefeasibility condition. Namely, every
actions(A) | x P(actions(A)) to R>°, whereactions(A), = execution of a TIA must be extended to a time-diverging execu
actions(A) U { L} is a set of actions ofl extended with a spe-tion (that is,sup;~,{t;} = o0). The definition appears in [31].
cial symbol L, P(actions(A)) is the power set of actions of, All composed TIA of case studies in the present paper aré feas
andR~>" is the set of positive reals. ble.

An interval-bound map defined in Definition 1 may not sabefinition 5. (Discretized TIA) Given a TIA(A, b), the dis-
isfy requirements to express a meaningful bound (for exampiretized model of A, b) is simply an underlying ordinary un-
the specified lower bound is not greater than the specified tipred I/O automatoni.
per bound). Due to space limitation, we cannot show these re- ) ) )
quirements in this paper. These appear in [31]. We say that aﬁh? seF of (“”“me‘?') e,XGC““O”S OT a T('_%’ b) (Ot?ta'”ed by
interval-bound map isalid if it satisfies the requirements.  19N0ring time stamps in timed executions) is contained lystit
of executions of its discretized modé| sinceA does not have
Definition 2. (Time-interval automaton). A time-interval auany timing constraint. Thus, ifl satisfies a safety property un-
tomaton (A, b) is an /0 automatond together with a valid der a certain event ordering assumption for its executitires)
interval-bound mayp for A. (A, b) also does so under the same ordering assumption.
Related work of the TIA frameworRhe timed I/O automata
Definition 3. (Timed execution). Aimed executiorf a time- (TIOA) framework [19] is a highly expressive framework with
interval automator{4, ) is a (possibly infinite) sequenee = which the user can specify continuous evolutiorapélog vari-
s0, (m1,t1), 81, (m2,t2), - - - Where thes;'s are states ofd, the ablesby using differential equations and inequalities, as well
m;'s are actions ofd, and thet;’s are times inR="; s, is an as specifying discrete state transitions as in an ordin@nau-
initial state of A; and for any;j > 1, (s;_1,7;,s;) is a valid tomaton. Indeed, any TIA can be expressed as a TIOA as well.
transition ofA andt; < t;,;. We also require a timed executiorHowever, a TIOA does not have an explicit time bound structur
to satisfy the upper and lower bound requirements expresgedike a time-interval bound map of a TIA, and thus information
b: about time bound cannot be easily handled by the scheme or

Upper bound: For every pair of an actiom and a set of ac- the tool presented in the paper (a time lower bound needs to be
tions II with upper (r, I1) defined, and every occurrence of embedded in the precondition of an action, and an upper bound
in the executionr, = , if there existsk > r with ¢, > needs to be expressed by another construcsttsigwherstate-

t, 4+ upper(m,II), then there existd’ > r with ¢, < t,. + ment).

upper(m, 1) andm, € II. The MMT (time-constrained) automata framework [24] is
closely related to the TIA framework. While a TIA specifies
time upper and lower bounds on the interval between an event
and a set of events that follow, an MMT automaton specifies
time upper and lower bounds on the duration that an action in
a specific set of actions calledtask stays enabled. When we
define a TIA, for a pair(w, II) of an action and an action set
with a bound defined, we impose constraints on the TIA so that

A composition of multiple TIA is defined in a way similart least one action iiil must be enabled after and before an
to that of ordinary I/O automata. Interval-bound maps of TIACtion inll is performed. If we impose the same constraint on
are combined by using a union of maps (by regarding mapsf8sMMT automaton, we have a framework similar to TIA. The
relations). In order to formally define a composition for ¢m timed transition system framework [16] is close to_the MMT au
interval automata, we need a definition of the compatibditp tomata framework, in that the lower and upper time bound on

collection of TIA. The compatibility for TIA is defined simpl the duration that one transition is enabled can be speciee.
as the compatibility of the underlying I/O automata (sed 8. Main difference between TIA and these two frameworks is that

the formal definition). in TIA, the user can use different bounds for the same set of
actions depending on which action precedes it. We need this

Definition 4. (Composition of TIA) For a compatible collectionfeature to model a biphase mark protocol.

of TIA, the composition(4,b) = TL;c;(A;,b;) is the timed-  The Alur-Dill timed automata framework [1] is arguably the

interval automaton as follows. (1M is the composition of the best known framework to model a real-time system, and is the

Lower bound: For every pair of an action and a set of actions
IT with lower(w,II) defined, and every occurrence ofin the
executiont, = w, there does not exigt > r with ¢, < ¢, +
lower(n,II) andm, € II.

The upper and lower bound requirements for a bound witlte
defined similarly (see [31]).



Automaton Train(r, R, p, P: Real) where
0<r<RAOLp<LP
signature

output Request
output Pass
states
requested: Bool := false;
transitions
output Request
pre —requested
eff requested := true;
output Pass
eff requested := false;

Automaton Gate(d, A, 7, T', ¢, C: Real) where
0<6<A0L<T<L<T,0<c<C
signature

input Request

output Close

output Open

output Check(result: Bool)
states

open: Bool := true;

train_requested: Bool := false;

check_succeeded: Bool := false
transitions

input Request

eff train_requested := true;
output Close

bounds: pre check_succeeded A open
b(L, {Request}) = [r, R]; eff open := false;
_ i output Open
b(Pass, {Request}) = [r, R]; pre —open
b(L, {Pass}) = [p, PJ; eff open := true;

train_requested := false;
check_succeeded := false;
output Check(result)
pre —check_succeeded A result = train_requested
eff check_succeeded := train_requested;

b(Pass, {Pass}) = [p, PJ;

Figure 1: Train automaton
bounds:

theoretical foundation for timed model-checkers like URRA b(L, {Check(true), Check(false)}) = [5, AJ;

[20] and KRONOS [34]. This framework can model only a sys- b(Check(false), {Check(true), Check(false)}) = [, Al;
tem with fixed timing parameters, but not a time-parametrg: s b(Open, {Check(true), Check(false)} = [§, Al;
tem. b(Check(true), {Close}) = [r, T;

The parametric timed automata (PTA) framework introduced b(Close, {Open}) = [¢, CJ;

in [2] is a time-parametric version of the Alur-Dill timed au
tomata framework. In a PTA, the user specifies lower and upper
bounds on a time interval in which the automaton stays in a spe
cific location (in the Alur-Dill timed automata sense). A TIA
can be modeled as a PTA, but time bound for events becorfigshese two actions. The first on((, {Request}) = [r, R])
implicit (unlike the explicit interval-bound map) and theennot  and the second oné(Pass, {Request}) = [r, R]) say that the
directly use the automatic timing synthesis scheme predént Request action will be performed within the time interval R]
the paper. after the system starts, and every time after the train pabse
eX‘,jmg:_rossing, respectively. The third bourid (, {Pass}) = [p, P])
and the fourth boundb(Pass, {Pass}) = [p, P]) say that the
Pass action will be performed within the time inter{@alP] af-

the system starts, and every time after the train pabses t
rossing, respectivef/The gate automaton described in Figure
models a gate system that uses a busy-wait loop for checking
ggbqther a request has been made. The gate automaton cannot
|Enmediately know the arrival of a request. Instead, a reiques

Figure 2: Gate automaton

Example 1. (Time-Interval Automaton). We describe an
ple of time-interval automata. The example is inspired frait
road crossing problems [13]. The example is constructed &0
composition of a train automaton (Figure 1) and a gate auto
ton (Figure 2). An informal description of the problem we \tvag
to solve is the following. A train is about to pass the raitfo
crossing with a gate. The gate is supposed to be open ex
for the time when the train passes the crossing, so that ears . . ) ;
cross the railroad. When the train gets close to the crossireg, information is stored in a state vanatﬂeun,reques_ted, ?‘”d
questghat the gate be closed. The gate needs to be closed amﬁegate automaton needs to repeatedly check th!s varieble (
time the train passes the crossing. The railroad actualipsa pressed by a successiul Chg@lhepk(true), and afailing check,
circle, and thus the train passes the railroad crossingoayist Check(false)). We set the time interval between two repeated

After the gate becomes closed, it becomes open after a bdurﬁbeCks to be withirs, ,A]' .Once a check succeeds, th_e g.atg au-
time interval® tomaton stops checkingain_requested, but resumes it within

The actions of théfrain automaton model actions taken b Al after_ the gate becomes plosed. The gate becomes closed
the train. TheRequest action represents a close request malfgloS€ action) within the time intervalr, 7] after a successful
by the train to the gate. THeass action represents an event that eck. The gate becomes open ag@lpgn action) withing the

the train passes the crossing. The automaton has four boJHHg intervallc, C] after it becomes closed. o )

The safety property that we want to verify is that the train
2|f the reader prefers an example with more digital system flavor than the train—gptasses the crossing onIy when the gate is closed. We use a

example, he/she can regard this example as, for instance, the following-giritggr/multi-

reader shared variable problem: one writer process (Train) writes to a shared variable (ait

road crossing) periodically, and before writing to the variable, it first requestguardian 3We could, for example, think that a train is moving with a bounded velagithin

process (Gate) to lock the variable so that any reader (a car crossing the rail-road) cdmnot., , vmmqz], and the length of the railroad . The time bound ofp, P] for the pass

access to the variable while the writer is writing to it. event is equivalent to saying that= L /v,,40 aNdP = L /vy, in.




monitor automatoisM (safety monitor) that monitors output acexcluded for an obvious reason: the train passes the cgpssin
tions Pass, Open, andClose from Train andGate, and set its even before the train requests that the gate be closed. Con-
state variablgropertyViolated to true if Pass occurs when the sidering that the gate is doing a busy-loop checking of a re-
gate is open (see [31] for a formal description). The invdriaquest, thisPass event can possibly be preceded by multiple
(safety property) we want to check is: for any reachablesgifit failing checks Check(false)). Indeed, since the relation be-
Train||Gate||SM, SM.propertyViolated = false. tween the frequency of these checkisand A) and the time
when a request is made @nd R) is unknown, the number
L of possible failing checks that precede tRass event is un-
3 Specifying Event Orders bounded. What we want to do is ignore these failing checks
in betweenl andPass in the event order. By using a regular-
In this section, we introduce a formal way of specifying aarév expression-like language, this event order can be exputdsse
order that needs to be excluded for system correctness. $Ve fir_-(Check(false))*-Pass”, where **’ is a symbol of repetition.
consider a simple way of specifying an event order, and thehe following event order using aignored event specification
extend an event order specification by introducing “doaite¢ (IES) is more comprehensible when an event is ignored for a
events. The notion of these “don't-care” events are importapecific event-index interval, not just in between two cense
in order to treat a repetition of events in a single systemw@s tive events: F, = “ | -Pass: insert {Check(false)} to[0,1]".
will see in the case study for the train-gate example in 8actinformally, the ignored event specification (statemengrafi-
7.1) and in order to ignore events by a process that is uecklagert)) in the above event ordef, specifies that when checking
to a key local behavior in concurrent or distributed systéass a match between an automaton execution and the event order,
we will see in the case study for the Fischer mutual exclusionwe ignore in that execution (possibly multiple) occurrenoé
Section 7.4). Check(false) in between the beginning of the executian)(
An event order (without “don't-care”) simply specifies thand the first occurrence &fass (e1). A formal definition of an
order of consecutive actions in an execution of a TIA. FEES is as follows.
example, the event ordeRéquest-Pass” for the automa-
ton (Train||Gate) of Example 1 matches any execution dPefinition 7. (Ignored event specification). An ignored event
(Train||Gate) that contains &equest action immediately fol- specification (IES) for an event order is in the followingrfor
lowed by aPass action. We give a formal definition of a matchinsert (Y, to [im, jm]);,—1, WhereY;, represents a set of events
between an automaton execution and an event order in Defi@t are ignored in the interval betweey), ande;,, .
tion 9, after introducing “don’t-care” events. An event erd ] .
may start with al. symbol, which specifies that the event order 10 formally define a match between an automaton execution
matches a finitprefixof an execution of an underlying automaa]’;d an event order with an IES, we need an ignored event set
ton. In other words, an event order that start withspecifies I;” that represents the set of the |gr_10red e_vents in the interval
the very first sequence of events that occurs after the anpoma€tween thei-th and ¢+1)-st events i’ (L is considered as
starts executing. the zero-th event).

Definition 6. (Event order) An event order of a time-intervaP€finition 8. (Ignored event set). For an event order with an
automator( 4, b) is a sequence of actions df possibly starting |EE51 E = (L)ey---en: insert (Yo, to [im, jm])m—1, We define
with a special symbal.. I =U,, <k, YmfOro <k <n-—1.

Example 2. (Event order). An example of event orders that weefinition 9. (Match between a timed execution and an
want to exclude iffrain||Gate||SM of Example 1 is event order with an IES). Consider a timed execution—=
1-Check(false)-Request-Check(true)-Pass. In this event order, so, (71,%1),s1,--- of an time-interval automato4,b). Let
the gate module first failed to detect a request from the trainbe the sequence of actions that appeatjrthat is, o’ =
since a request has not been made yet. After the train makes arma73 - - - . We say thaty matches an event order with an IES,
guest, the gate module succeeds in detecting it. Howevergth £ =e€1---¢ep :

quest is detected too late relative to the time for the gatéuteo insert (Y, to [im, jm]);,—1, if there exists a finite subsequence
to close the gate, and consequently the train passes thargos? of o’ such thats can be splitintd3omy, 17k, B2 - - - Bn-17k,,,
before the gate becomes closed (that is, befor€thee event where, for alli, 1 < i < n, m,, = e;, and; is a sequence of
occurs). actions and all actions that appeardnare inI 7.

For a system that exhibits an unbounded repetition of event# match for an event order that starts withis defined sim-
(such as the train-gate example in Example 1 and a biphase nilarly to Definition 9 (an additional conditiok; = 1 is added
protocol that we study in Section 7), some event orders to tbethe definition). For an event order without an IES,&ls in
excluded cannot be represented in a form of a simple event[@efinition 9 are empty sequences.
der like the ones we consider above. Consider the event ordaiVe refer to an execution that matchEsas anE-matching
“1-Pass” for (Train || Gate). This event order needs to bexecution



4 Identifying Bad Event Orders In this way, the user can continue identifying bad eventiarde
using both counterexamples from untimed model-checkirt an
In this section, we illustrate how the user can extract bahevhuman insight. We present the entire set of bad event orders f
orders from counterexamples obtained from untimed modgle train-gate example in Section 7.1.
checking of the discretized model.
We use the train-gate example. The safety property we want

to check is that the gate is closed whenever the train palsee35t Deriving Timing Constraints

gate.
We first specified the following set of bad event orders aﬁ a, . . . _
candidaté: n this section, we presenta schgme to derive a timing paeame
constraint to exclude an execution that matches a givent even
Ay, L-Pass: insert { Check(false)} to [0, 1] order. The scheme just uses the bound map of an underlying
Az. L-Request-Pass : insert {Check(false)} to [0, 1] TIA, but not the state-transition structure of it.
As. L-Request-Check(true)-Pass : insert {Check(false)} to [0, 1] Derivation of a timing parameter constraint for a given éven

The above event orders;, A, and A3 represent a situationOrder is taken in the following three steps:

that the train passes the crossing before the gate becoosesicl
A, specifies a situation that the train passes the gate everebefd. We enumerate bounds on a pair of events in the event order
it requests the gate be closed, specifies a situation that the  that are immediately derivable from the bound nbagd an
train has requested the gate be closed, but the gate automato underlying TIA and the bound conditions in Definition 3.
does not detect a request before the train passes the grossin ] o ]
As specifies the situation that the gate automaton successfulf: We combine enumerated individual bounds to form a time
detects a close request, but the gate does not become closed b pound for Iarggr mterval of events in order to derive a mean-
fore the train passes the crossing. Here we used our human in- Ingful constraintin the next step.
sight into the underlying system that an unbounded number
Check(false) events can appear before tRequest event.

We manually constructed event order monitd8OM; }_,,
for these event orders, and then model-checked the un- _ ) ) )
timed model under the assumption that the above orderés we show in Section 6, this scheme forms the basis for the
do not appear in system executions. In Linear Temr;y_ototype implementation. More specifically, each stephef t

ral Logic (LTL) [23], this condition can be expressed bya_\bove described scheme is systematic, and can be easily auto
UntimedTrain||UntimedGate||SM |= mated. We present a more detail of each of the steps in the fol-

O(=\/2_, EOM;.flag) = CI(=SM.propertyViolated). A coun- 'OWing. ,

terexample that can be obtained from a LTL expression in thisSnumerating boundsGiven an event ordef’ and the bound
form starts with a system execution that leads to a bad $tite, Mapb of a TIA, we first enumerate the upper and lower bounds
lowed by acyclein which the flags of all monitors never becom€tween the time of occurrence of two eventdiifrom the up-
true. This is because we use the “alwagbperator for the or- PEr and lower bound conditions in Definition 3. The bound sets
dering assumption. The user can basically ignore the cyare MEJ andL;”; defined in Definitions 10 and 11, respectively, con-
and can just focus on the first part of the counterexample tH3f! UpPer and lower bounds between the times of occurrence
contains information about a bad event order. of the actions that matck; ande; in E, respectively, that are

When we model-checked the safety property with the dmmediately derivable from the bound ma@nd the upper and
dering assumption thatl;, A», and A; do not occur, we lower band conditions in Definition 3 (thé symbol is treated
obtained the following counterexample executicRequest - 25 the zero-th evenp). The bounds are tagged with the event-
Check(true) - Close - Open - Pass, followed by a cycle in which index interval for which they are derlved: Note that, for @ pa
\/2_, EOM; flag never becomes true. This execution represenfs [1) Of an action and an action set with a bound, an upper
a situation that the gate successfully becomes closedebfer 20und for an event-index intervl j] is found from the fact that
train passes the crossing, but becomes open again too ifass. ghei-th event ist, and an event inl does not appear i, j],
we knew that multiplé€heck(false) events could have appearet/hereas a lower bound fdf, j] is found from the fact that the
before theRequest event and after th®pen event in this exe- ¢"th eventist, and an event il appears athe j-th event. This
cution, we identified the following bad event order. is consistent with the upper and lower bound conditions ift De
inition 3. For anyE-matching executiom = so(m1,t1)s1 -+,
the matched subsequence of actions: Bomi, 51 -+ - Bk, 1 Tk,

(in Definition 9) satisfieg, — t, < u for (u, [i, j]) € Uf;, and
40f course, the user could instead start by model-checking the untimed moblelvit £, — t, > [ for 1,[i,9]) € ij (this fact is proved as a key

ordering constraint, and build up sufficient event orders. Nevertheless, ifséreknows i

partial information about what bad event orders might be, he/she can use huigantns lemma for Theorem 1 in [31])'

set up a candidate set of bad orders at the beginning, as in the presented case.

%t. We find a matching pair of combined upper bound and
lower bound, and then derive a timing constraint.

Bj. 1-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [0, 1], {Check(false)} to [4, 5]




(eo) e: e: es =N

Combining bounds We need a notion of a covering upper

B bound set and a distributed lower bound set to combine iddivi

(R[0,1]) %R ; ; ; ual bounds irU; ; and L, ;, respectively, so that we can synthe-
:Z{Zi; — ! ! ! size a meaningful timing constraint. Informally, a coverimp-

i @nay: =a ‘ 1 1 per bound seV for an event interval” is a set of upper bounds

g @rap: = 5 . 1 such that when we take a union of all intervals that tag upper

EoonY =, : — bounds inU, the union becomek (tagged intervals of upper
®o2pi | =F - | ; ; bounds inU coverT'). A distributed lower bound set for an
(P03D: - ! ; event intervall' is a set of lower bounds such that each interval
oAt ‘ 1 ; ! that tags a lower bound if is contained irT", and all intervals
@A} —=—ri 1 1 1 that tag lower bounds if. do not overlap (tagged intervals of

H E’é[[‘iz]])) ‘ iJ - lower bounds in aredistributedin I, without overlapping).

H iijﬁ —=2 Y ! Definition 12. (Covering upper bound set). Consider a set of

upper boundsS = {(ux, [ix, jr])} 7, for a time-interval au-
. tomaton (A4, b) and an event ordeF (possibly with an IES),
Figure 3: Upper and lower bounds for the event otler where (ug, [ir, js]) € UF . fork,1 < k < m. We say thaS

UksJk

covers the interval betweern) ande,, if for any event pointep,
Definition 10. (Upper bound set). Farandj, 0 <i < j <n, v <p <w— 1, there exists an upper boutwd, , [ix, , jx,]) € S

Ufj = {(u,[7,7]) | v =upper(e;, II) such that suchthati, <pandp+1 < ji.
Definition 13. (Distributed lower bound set). Consider a set
o of lower boundsS = {(lx, [ix, jx]) }7v, for a time-interval au-
G=i+1vV tomaton (A, b) and an event ordeE (possibly with an IES),
ei41- - ej_1 contains no action i) A where(ly, [ir, ji]) € Lf, ;, fork, 1 < k < m. We say that

is distributed in the interval between ande,, if the following
two conditions hold:

(e4, IT) € Domain(upper) A

Ui} IF contains no action ifil. }
Definition 11. (Lower bound set). Forandj,0 <i<j<n, ;| o any lower boundly,, [ix,, jr,]) € S, v < iy, and
ij ={(¢,[i,7]) | £ =lower(e;, IT) such that Ik S w.
2. For any two lower bound8y, , [¢x, , 751 1)s (Ukas [Pks, Tks]) €

(e4,II) € Domain(lower) A _ X ' X
Sy Jky < lky OF iy < gy -

e; € H}
_ ) Example 4. (A covering upper bound set and a distributed lower
'No'te that the bo'und map of an underlying TIA is used only gyund set). Let us look at Figure 3 again. The set of up-
this first enumeration step. per bounds{(R, [0,2]), (A, [1,3]), (T, [3,4])} covers the inter-
Example 3. (Upper and lower bound sets). We show affl betweerk, ande, ([0, 2]U[L, 3]U(3, 4] = [0, 4]). Each lower
example of UZ. and LF.. The underlying automaton isbound by itself constructs a lower bound set that is disteiu
Train||Gate||SM discussed in Example 1, the train-gate mod#) the interval between, ande,, but any set with two or more
with a busy-loop checking. As discussed in Example 2, onel@yer bounds is not distributed in the same interval, sinee w
the event order that we want to excludefis — have some overlap of the intervals for which the lower bounds
1 -Check(false)-Request-Check(true)-Pass. Figure 3 depicts are defined.
the upper bounds itff.1 and lower bounds ianl..
Upper bound example:We have an upper boun@R, [0,1])
for the interval betweer, (L) ande; (Check(false)) since

Deriving boundsThe following Theorem 1 implies that if we
find a covering upper bound set and a distributed lower bound
' set for the same interval, then we can obtain the timing con-
we have an upper boundpper(L, {Request}) = R defined gyaints by the third condition in the theorem (the sum of the

in the bound map, and the eveRequest is not performed |\ \nhar ho(nds is strictly less than the sum of the lower bounds
betweeney ande;. For a similar reason, we have an uUp tormal proof of this theorem appears in [31].

per bound(R, [0, 2],% betweeney (L) ande; (Request). The

upper bound set;; for the interval betweer, ande; is: Theorem 1. Consider an event ordef, possibly with an
{(R,]0,1]), (P, [0,1]), (A, ]0,1])}. IES. A time-interval automatof, b) exhibits noE-matching
Lower bound exampléMVe have a lower boung, [1, 3]) for the execution if there exists a set of upper bounbls =

interval betweer; (Check(false)) andes (Check(true)) since  {(wm, [im, jm]) }oo—1 Where (wm,, [im, jm]) € UzEJ a set of
we have a lower bound lower boundsl, =
lower(Check(false), { Check(false), Check(true)})) = 4 de- {(l, [ir,j.])}7=, where(l,,[i,,j,]) € Lf ; , and two events
fined in the bound map. e, ande,, such that the following three conditions hold:



1. U covers the interval between ande,,. (m;,11;) € actions(A) 1 x P(actions(A)).® Therefore, the un-

2. L is distributed in the interval between ande,,. derlying TIA has the lower bound parameter §gf};., and the

3.5 <1 upper bound parameter SgP,; }™_,, both of which contain the

same number of timing parameters, and a lower bound is at most

Example 5. (Timing constraint derivation for an event ordeas large as the matching upper boupd< P;.
without an IES). Again, consider the event order depicted inA linear term over lower bound parametefs; } , is in the
Fig. 3. As discussed in Example 4, the upper bound $etmc;p;+cops+- - -+c,pn, Which we also write a3 .-, ¢;p;,
{(R,]0,2]), (A,[L,3]), (T,[3,4])} covers the interval betweenwherec; is an integer constant far< i < n. A linear term over
eo andey. In addition, the lower bound s€{p, [0,4]} is dis- upper bound parametets?; }_, is defined analogously.
tributed in the same interval. From Theorem l if R+A+T,  An inequality the tool derives from one pair of a covering up-
then (Train || Gate) exhibits no£; -matching execution. per bound set and a distributed lower bound set has the form

p— n . . i i
Example 6. (Timing constraint derivation for an event or® > ¥»Whereo =320, cip; is a linear term over lower bound

der with an IES). Consider the event ordBs = “1-Pass: parameters and = 3777, diF is a linear term over upper
insert Check(false) to(0,1)". We have a lower bound bound parameters. The tool in general finds in a given event
lower(L, {Pass}) = p, ané:u appears at, and Pass at ¢,. order multiple matching pairs of covering upper bound sets a

Thus we have a lower boundbetweere, ande; (from Defini- qlistribt_;ted '°V.Ver bound sets, for each (.)f WhiCh it can deave
tion 11). We have an upper boungiper( L, {Request}) = R Ilne_ar inequality. I_n such a case, multiple |_nequalltlee te
defined forTrain||Gate, and theRequest event is not ignored in derived, and the given event order appears in no system execu
the interval between, () ande; (Pass) — only Check(false) tlon_ if at '?‘”‘?t one of thg mquahﬂes IS satisfied. Thue,ttbnl

is ignored. Thus we have a valid upper boudtietweerr, () derives adisjunction of linear inequalitie$or one given event

ande; (Pass). Therefore, we can derive a constraint> R, order. i )
which imposes an order constraint thaRequest event must The user typically needs to exclude multiple bad event arder

occur before @ass event. On the other hand, though we havdll specified event orders can be excluded if all disjuncsiofi
an upper bound linear inequalities derived from the event orders are fadis
upper(L, {Check(true), Check(false)}) = A, we cannot derive Thergfore, a timing constraint derlved b)_/ _the_ tool formsqa—
an upper bound\ betweere, ande;, sinceCheck(false) is ig- J_unct|on of_d|SJu_nct|ons of linear inequalitiesin a form sim-
nored in that interval. Therefore, we cannot derive a cairstr 127 10 conjunctive normal form of Boolean logic, but in our
p > A. Indeed, the above constraint does not exclBgdesince C3S€ We have linear inequalities instead of Boolean vasabl
the constraint just imposes that the very fitsteck event after

Nier Vjes, Lij, whereL; ; is alinear inequality.
eachOpen event must occur befoass of that round. The constraint derived by the tool may first contain some un-

realizable inequalities (for example, an upper bound fopex s

cific action set is strictly smaller than a lower bound for shene
6 Implementation action set), or redundant inequalities (for example, oeel-

ity is weaker than or equivalent to another inequality in s di
We have implemented in Python a prototype of a timing cojunction). We use a simple simplification algorithm to prune
straint derivation tool (MTEORS: Mechanical Timing / Event- these inequalities. The details of this simplification aitmn is
Order Synthesizer, version 0.1), based on the scheme descritescribed in [315.
in Section 5. The problem that the implemented prototypé t
solves is as follows. The user gives the tool the set of ti
bounds defined in an underlying TIA for which he/she wa

to derive a timing parameter constraint. Then the user g'\fﬁﬁng a constraint for randomly generated event ordershef t
t_he. tool (typlca!ly multiple) ba_d event orders to be exclidy train-gate example. This experiment (and all other expemnis
timing synthe3|_s. The tQOI first enumera;es upper and IOYYﬁrthis paper) was conducted on a desktop computer with an In-
bounds immediately derivable from the given time bound 05 Core™Ms Quad at 2.66 GHz and 4GB memory. We exper-
formation. The computational complexity of this enumegati imented with ten randomly generated event orders with tengt

process grows only linearly with respect to the number of P¥ thirteen, and the tool finished the constraint derivaiioo-
rameters (we need to do an enumeration for each parameter, an '

enumerations for different parameters are independem’-(‘ji € Safter obtaining a constraint simplified by the tool, the user can manualbgtitute

other). The tool then searches over all possible covering wp= 0 for (m:, I1;) with only an upper bound, and can substitéite= oo for (m;, I1;)
b d d distributed | b d ts. Wh th {Vlth nly a lower bound. The current prototype does not make use ointfeismation of
per boun sets an IStriouted lower bound sets. en € QPbunded in one side” in a simplification of a constraint, and thisirsfature work.

finds a matching pair of a covering upper bound and a dis&tbut  ENote that this simplification process is completely independent of constimivation

; ; H ; H process, and is provided by the tool for user’s convenience. The user codddmsain-
lower bound Se.t’ it derives tlmmg constraints in the Samg &g ually simplify the derived constraint or could use external linear-logigéfioation tools
. as well. This is different from the timed/hybrid model-checkers like HyTech, REREX,
demonstrated in Examples 5 and 6 Il. This is different from the timed/hybrid model-checkers lik h
PMC which inherently need an intelligent linear-logic simplificationeseé to con-
The current protc_)type assumgs both lower a_‘nd u_pper boum a fixed-point calculation for reachable states symbolically expressed byea lagic
(p; and P;, respectively) are defined for all pairs with boundspression.

c§)calability experimentTo obtain a rough idea of the scalability
BFthe constraint derivation process of the prototype waégpect
the event order length, we conducted an experiment on de-




cess within one second for all experiments. Consideringttiza afterPass. The second groups; andB;) represents a situation
length of the event orders that we identified for the caseiessudhat the gate becomes open too fast after it becomes claseéd, a
presented in Section 7 are all less than ten, the resultseeéththus the gate is open when the train passes the crosBingnd
experiments are satisfactory. However, we have to condast mB, intrinsically represents the same situation, but_theymbol
case studies in order to examine the order of the length dfdtle in B, is replaced byass-Open, so thatB; specifies a situation
event orders in larger real-time systems. after at least on®ass events have been performed. The third

Discussion Though the current prototype does not treat a “di§foup (1) represents a situation that the gate becomes open

junctive” language construct (suchiasf a regular expression),adain too late, that is, after the train makes a next req@aste

it is easy to derive a constraint for an event order that usels s@ll state variables of the gate automaton are reset wheretge g

a construct at the top level. For example, suppose we wanP&somes open (t9pen event), if the gate becomes open after a

exclude a (pseudo) event ordares{e, ek }es, which specifies request from the train, the request information is reset,thos

that the third event order is eithet or e2. We can simply treat the gate would not become closed.

this event order as two distinguished event ordgrsele, and N this bad order identification process, we manually con-

e1esedey. structed a monitor (a classical finite state machine) fohesc
Similarly, to exclude an execution that matches both of t4ae identified ten event orders. Each monitor raises adiag

event orders; andE, (E;NE, in a regular expression), we carslude when it finds a s_ubsequence of actions that m_atch the

individually derive constraints foF; andE», and then disjunct Underlying event order in a current automaton execution: Ac

them to obtain a constraint (at least onefif and B needs to tually, we could (manually) combine some of the monitarsd

be excluded to excludE; N E»). Since we disjunct disjunctionsneeded to construct only six monitoESQM1 - EOM6) at last.

of linear inequalities derived foF; and E,, the derived con- Model-checking for each refinement step took less than ome se

straint for£; N Es is a disjunction of linear inequalities. Thusond. At the end of the bad order identification step, we suc-

derivation of a constraint fronf; N E, (among other ordinary cessfully model-checked the propeffi{—~bad_event_order) =

event orders) does not destruct the conjunction-of-dgjans /(—SM.propertyViolated) for _ _
structure of the final constraint. Train||Gate||SM||[EOML1]| - - - |[EOMS, using a SAL symbolic

model-checker [9], wherbad_event_order = EOM1.flag Vv
EOM2.flag v --- v EOM6.flag.

7 Case Studies For event ordersdsy, Az, As, and Ag, we had to do a “de-
composition” of an event order. For example, we cannot di-
7.1 Train-Gate Problem rectly derive a meaningful constraint from. In Az, unlike

i ) ) the event ordef; depicted in Figure 3, we have possibly un-
In this §ect|on, we illustrate the user of EOA and the praiety s nded number oCheck(false) events befor&Request, and
tool using the train-gate exampl@ain||Gate|[SM that we have hesecheck(false) events are ignored. Thus, the bounds cor-
used m ear'h.er sections of the paper. responding ta(A, [0,1]), (A, [1,2]), (A, [1,3]), (6,[0,1]), and
We |Fient|f|ed the following ten even_t ord_ers to gxclude ad b%’ [1,3]) in Figure 3 are removed from the set of enumerated
executions in the same way as described in Section 4. bounds for deriving a constraint fat;, and therefore we cannot

A1, L-Pass: insert {Check(false)} to [0, 1] derive the same constraint as in Example 5. Decompading
Asz. L-Request-Pass : insert {Check(false)} to [0, 1] into the following two event orders resolved this problemeo
As. L-Request-Check(true)-Pass : insert {Check(false)} to [0, 1] with no Check(false): Aé = 1 -Request-Check(true)-Pass,
Ay. Pass-Open-Pass : insert {Check(false)} to [2, 3] and one with one or moré&heck(false) events: A7 =
As. Pass-Open-Request-Pass : insert {Check(false)} to [2, 3] | -Check(false)-Request-Check true)-Pass :

Ao. Pass-Open-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]. AZ still has an IES, but for this

i t {Check(fal to[2,3
insert {Check(false)} to [2, 3] event order, an upper bound removed from the upper bound set

A7. Pass-Pass X . : .
of E; in Figure 3 is only(A, [0, 1]), and thus we can derive

Bj. 1-Request-Check(true)-Close-Open-Pass :

insert {Check(false)} to [0, 1], {Check(false)} to [4, 5] the same constraint > R + T + A as in Example 5. We
Bs. Pass-Open-Request-Check(true)-Close-Open-Pass : decomposeds, A5, and Ag similarly to the case ofd, de-
insert {Check(false)} to [2, 3], {Check(false)} to [6,7] scribed above. We manually decomposed event orders for this
C1. Close-Pass-Request case study, and automation of this decomposition is futamw

We can classify these event orders into three groups. The fif@re detailed analysis and automation of this decompasitio
group (4; - A;) represents a situation that the train passes #@cess is our future work.
crossing before the gate becomes closdd, A,, and A, are  After the decompositions of,, A3, A5, and4s, we had four-
the event orders used as a first candidate set of bad evens of@€n event orders, and the tool derived the following sebof ¢
in Section 4. InA4, A5, and Ag, the L symbol in4;, A,, and straints from the given event orders after automatic sifiicph
A3, respective|y, is rep|aced [fxass-Open, so that they Specify tion (the total time of derivation and Simplification toolsethan
situations similar t041’ A2’ andAg’_ but after at l_eaSt OnBass "For example, by changing the initial state of the monitor for, we could also treat
events have been performed; is like A4, but withoutOpen 4. same for the pairs ofi; and As; A3 and Ag; and By andBs.
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onesecond): Ap > R+T+A); 2. (r+t+c> PV é+t+c> 7.4 Fischer Mutual Exclusion

P); and 3. (). The tool indicated that the first constrai . . . . ,
w;s origine(tﬁyijeri)ved from a decomposéd, the second frommrhe Fischer mutual exclusion algorithm ([21], Section 2452
! utual exclusion algorithm that uses a timing behavior for c

Bi, and the third fronC. Therefore, we obtained a constraint’ . = .
for each of the three groups we explained above. rectness. We identified one bad event order, by using the sym-

metry among process behavior. In this event order, we focus

on a specific interleaving of events between a pair of pre&sess

7.2 Biphase Mark Protocol Ignored event specifications are used to treat behaviorhafr ot
processes than the focused pair as “don't-care”. We sutitiyss

A biphase mark protocol [25] is a lower-layer communicatigfodel-checked the discrete model under the correct orglagin

protocol for consumer electronics. Several researchevs hgjmption (it took 40 seconds for a system with five processes)

conducted formal verification of this protocol (for examplerne tool derived the constraint that is manually derivediti |
[25, 32]), but as far as we know, completely automatic vexific

tion of it has not been done. We identified 22 bad event orders.

(We successfully model-checked the discretized modeluthde 8§  Conclusion and Future Work

condition that 22 bad event orders do not occur, and model-

checking for each refinement step took less than one secohu}his paper, we presented tlegent order abstractiogEOA)
This number may look large, but similarly to the train-gate etechnique to parametrically verify real-time systems. Bing
ample in Section 7.1, we identified multiple event ordersnfia EOA, the user can directly make use of his/her intuition @abou
single bad situation (there were eight bad situations)ntggent what kind of bad scenarios need to be prevented, by spegifyin
orders (derived from three situations) had to be decompasedbad event orders. We demonstrated the applicability ofeble-t

in the case of the train-gate example. The tool derived ttwee nique by a simple train-gate system and a summary of thres oth
straints (it took less than one second), which are equivedahe case studies, a biphase mark protocol, the root contentimn p
three conditions manually derived in [32]. We actually had t tocol of IEEE 1394, and the Fisher mutual exclusion algarmith
more additional constraints for the first timing parametgr-s are briefly reported.

thesis attempt. One additional constraint was deriveddoeé¢  This technique can be extended by enhancing automation of
event order that actually need not be excluded. The other ceerification using EOA in the following processes: constiarc
straint was derived because for one particular bad scenaeio of an event order monitor, decomposition of an event ordet, a
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one, in the second attempt, we succeeded to derive three ety for the verification/synthesis process of EOA, but dtso
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parameters are badly tuned. Along this line, identified heaxhe
orders could be used in model-based testing or model-based t
case generation [10, 8], in which a formally specified model i
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