
Machine-Assisted Parameter Synthesis of the Biphase
Mark Protocol Using Event Order Abstraction ⋆

Shinya Umeno

CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA
umeno@csail.mit.edu

Abstract. We present machine-assisted timing-parameter synthesis of the biphase
mark protocol (BMP) [1] usingevent order abstraction(EOA)[2]. By using EOA,
we separate the task of synthesizing parameter constraints that guarantee key
safety properties of BMP into two parts: 1. Safety property verification ofthe
protocol by a conventional untimed model-checker under the condition that “bad”
event orders do not occur; and 2. Derivation of timing parameter constraints that
are sufficient to exclude bad event orders in the protocol, using our tool M ETE-
ORS. Though the user has to provide information about bad event orders, the rest
of the synthesis process is automated. With the case study presented in this pa-
per, we provide the community with two new pieces of information about BMP.
First, the synthesis process using EOA produces, as a by-product, a list of all
“bad scenarios” of BMP that would happen when parameters are tunedincor-
rectly. Second, the METEORS tool provides information about which parameter
constraint in the finally derived conjunction of constraints is actually sufficient to
exclude each of these bad scenarios.

1 Introduction
Time-parametric verification of real-time systems has beena challenging problem in
the formal verification community [1, 3, 4]. In this problem,timing constraints on the
systems’ behavior depend on a certain parameter set, and values of these parameters
are not fixed at the time of verification. Typically, only a subset of possible parame-
ter combinations in the entire parameter space satisfies correctness of such systems.
Thus, to conduct parametric verification of them, the user has to find an appropriate set
of constraints for the timing parameters, and manually proves or mechanically checks
correctness under the constraints.

Timing-parameter synthesisis a problem in which one wants to derive with a ma-
chine support sufficient constraints on the timing parameters of an underlying real-time
system under which the system executes correctly. This problem is considered harder
than time-parametric verification since the mechanical tool is not a priori given a set of
timing parameter constraints by the user, but it has to synthesize constraints by itself.

In this paper, we present machine-assisted timing-parameter synthesis of the biphase
mark protocol (BMP) [1] usingevent order abstraction(EOA) that we presented in [2].1

⋆ This work is supported by the NSF Award CCF-0702670 and the NSF Award CNS-0614414.
This paper is formatted using the LNCS LATEX template. The paper will appear in The 7th
International Conference on Formal Modelling and Analysis of Timed Systems (FORMATS
2009), Budapest, Hungry, September 13-16, 2009.

1 The SAL code and the python code to reproduce the results of the presented case study are
available from:http://people.csail.mit.edu/umeno/biphase/.

EOA can be applied to real-time systems in which “correct orderings of events” main-
tained by timing constraints on the systems’ behavior are critical for correctness. To use
EOA, the user models a real-time system by using thetime-interval automata(TIA)
framework, an extension of the I/O automata framework [5]. By using EOA, we sepa-
rate the task of synthesizing parameter constraints that guarantee key safety properties
of BMP into two parts: 1. Safety property verification of the protocol by a conventional
untimed model-checker under the condition that “bad” eventorders do not occur; and 2.
Derivation of timing parameter constraints that are sufficient to exclude bad event orders
in the protocol, using our tool METEORS. Though the user has to provide information
about bad event orders, the rest of the synthesis process is completely automated.

BMP has been studied in several papers in the context of time-parametric verifica-
tion, which requires a manual derivation of parameter constraints (for instance, [1, 3,
6]), and in the context of fully automated constraint synthesis for a restrictedly parame-
terized model of the protocol (in which some parameters are fixed to constraint values)
[7, 8]. This work presents the first machine-assisted parameter synthesis for fully pa-
rameterized model of BMP. This protocol has interesting aspects for timing parameter
synthesis: 1. Considerably large number of timing parameters (10 parameters in our
model) and 2. Unbounded number of repetitive events (busy-waiting) with timing con-
straints that may appear in the protocol executions. We willexplain in Section 2 why
the above mentioned two aspects make this protocol especially challenging to conduct
timing-parameter synthesis with existing model-checkers. We also compare the results
with case studies on BMP using other approaches.

With this case study presented in this paper, we provide the community with two
new pieces of information about BMP. First, the synthesis process using EOA produces,
as a by-product, a list of all “bad scenarios” of BMP that would happen when param-
eters are tuned incorrectly. Second, the METEORS tool provides information about
which parameter constraint in the finally derived conjunction of constraints is actually
sufficient to exclude each of these bad scenarios. We believethat these pieces of infor-
mation by themselves deserves values to the community. For example, by the list of all
bad scenarios and its corresponding parameter constraint,an implementer of BMP can
learn what kind of bad executions could occur in the protocolwhen the parameters are
badly tuned or the values of parameters temporally deviate from their nominal values
due to transient failures. When a bad execution is actually observed in an implemen-
tation, by the list of parameter constraints for each bad scenarios, the implementer can
discover which parameter constraint is violated. The user cannot easily obtain these
pieces of information about bad executions of the system by existing model-checkers.

The rest of the paper is organized as follows. In Section 2, weexplain the reason
why BMP is especially challenging to conduct fully automatic parameter synthesis with
existing model-checkers. Section 3 is devoted to summarizethe event order abstraction
(EOA) approach that we use for the case study. In Section 4, weconduct machine-
assisted parameter synthesis of BMP using EOA. We also compare the results with
existing case studies on BMP using other approaches. In Section 5, we conclude by
discussing advantages of using EOA and stating future work.

2 Why Is the Biphase Mark Protocol Especially Challenging?

There are several existing timed/hybrid model-checkers that can conduct fully auto-
matic timing-parameter constraint synthesis [7, 9–12]. However, the biphase mark pro-

2

tocol (BMP) is especially challenging to conduct parameterconstraint synthesis by
these model-checkers from two reasons that we will describein the following.

The first reason is that BMP performs repetitions of events, and there is a time bound
between two consecutive repetitions. Namely, the receiverpart of BMP conducts busy
waiting to detect a signal edge, and checks to detect an edge are performed repeatedly in
every certain time interval. As we will see in Section 4, these repeated checks could fail
an unbounded times since we do not know the relationship between the repetition cycle
(parameter∆) and other timing parameters that are related to the timing of creating an
edge. The second reason is that BMP has a considerable numberof timing parameters
(10 parameters in our modeling). Thus even if the user eliminates repetitions of events
with timing constraints by modifying the model, the resulting model may have too
many parameters to fully automatically synthesis parameter constraints. Indeed, in [7],
the authors had to fix some parameters in order to automatically synthesize parameter
constraints by HYTECH.

Now let us explain why the first reason causes a trouble for existing model-checkers.
The basics of an existing timed/hybrid model-checker performs parameter constraint
synthesis are as follows. It first computes the reachable states of the system, symboli-
cally represented by a linear-arithmetic expression. Thisis done by repeatedly comput-
ing successor states until no new successor states are discovered. Then, by taking the
intersection of the reachable state and the unsafe states, it obtains the bad parameter
settings. Now a parameter constraint is obtained by negating the linear-arithmetic ex-
pression that represents the intersection. If no over- or under-approximation is used for
reachable set computation, then the constraint is both sufficient and necessary. When
the user gives a fully parameterized model of BMP to a model-checker, the reachability
computation does not terminate. As we explained above, arbitrarily number of failing
checks can potentially occur by busy waiting in BMP. Becausethese detections are
repeatedly performed every∆ time units, every successor state of these repeated detec-
tions is a new state in the reachability computation (for example, the state that can be
reached just after two failing detections is a different state from the state just after one
failing detection since∆ time units are elapsed since the first detection). Therefore, the
reachability computation diverges. Indeed, in [7], Henzinger et al. explained that this
was the reason that they had to modify the HyTech model of BMP in such a way that
the model does not perform busy-waiting for an edge detection: a successful detection
occurs within a certain time after an edge has created (and thus they eliminated failing
detections from the model).

Our EOA approach does not suffer from the same problem since the automaton
model is untimed in our approach. In this untimed abstraction, failing detections be-
come stuttering transitions, and thus the model-checking does not diverge due to failing
detections. Instead, the constraint derivation process from bad event orders of EOA
needs a technique called “decomposition” of event orders. This process is automated
by the METEORS tool once the user specifies what events must be decomposed.We
will present more details about decomposition in Section 3.3.

The TReX [11] model-checker can perform what the authors call “extrapolation”,
with which the tool detects the loop in the state transition graph and over-approximates
the effects of the loop in terms of changes of the values of timed variables. For ex-
ample, for the above discussed repetitions of failing detections, TReX may be able to
compute with the extrapolation technique that the effect ofthese repetitions is increas-
ing the values of timed variables byn∆ for an arbitrarily non-negative numbern, and

3

therefore may be able to complete the reachable state computation. However, as far as
we can observe from [13], which presents timing-parameter synthesis for IEEE 1394
root contention protocol using TReX, the tool actually needs human-directed opera-
tions for choosing parameter constraints: the tool gives back the user the list of linear
inequalities which sometimes contains unnecessary inequalities for the correctness (due
to over-approximation used in the model-checking), and theuser needs to manually
choose a subset of the given set of inequalities that he/she believes sufficient and re-
peat the model-checking under the selected constraints. Moreover, the authors reported
that the computation took more than 67 hours for a certain model-checking run under
selected constraints. Considering that their model only have five parameters, which are
considerably less compared to ten parameters in our model ofBMP, timing synthesis of
BMP using TReX is arguably very challenging.

3 Event Order Abstraction Approach

In this section, we explain the event order abstraction (EOA) approach. In Section 3.1,
we describe the time-interval automata framework that the user needs to use to model
a system when using EOA. Section 3.2 is devoted to explain howthe user can specify
bad event orders in the system. Finally in Section 3.3, we summarize how the user
conducts timing parameter synthesis using EOA and our timing-constraint synthesis
tool METEORS. For more detailed explanation of EOA, the reader should refer to [2].

3.1 Time-Interval Automata

Thetime-interval automata(TIA) framework is an extension of the I/O automata frame-
work [5]. An I/O automaton is a classical transition system with distinguished input,
output, and internal actions, and is usually described by a guarded-command style lan-
guage. Informally, with the TIA framework, one can specify the lower and upper time
bounds on the interval between one action and its following actions. A time bound for
an actiona and actions in a set of actionsB is represented as an interval in the form
[l, u]. Informally, this bound represents that, for any time of occurrenceta of actiona,
no action inB occurs beforeta + l, and at least one action inB is performed before or
at ta + u.

An interval-bound mapdefined in the following Definition 1 formally specifies time
bounds for actions. The special symbol⊥ is used to express the time bound on the
interval between the system start time and the time an actionin the specified set occurs.

Definition 1. (Interval-bound map). An interval-bound mapb for an I/O automatonA
is a pair of mappings,lower andupper. Each oflower andupper is a partial function
fromactions(A)⊥×P(actions(A)) toR>0, whereactions(A)⊥ = actions(A)∪{⊥}
is a set of actions ofA extended with a special symbol⊥, P(actions(A)) is the power
set of actions ofA, andR>0 is the set of positive reals.

An interval-bound map defined in Definition 1 may not satisfy requirements to ex-
press a meaningful bound (for example, the specified lower bound is not greater than
the specified upper bound). The formal description of the requirements appears in [2].
We say that an interval-bound map isvalid if it satisfies the requirements.

Definition 2. (Time-interval automaton). A time-interval automaton(A, b) is an I/O
automatonA together with a valid interval-bound mapb for A.

4

Definition 3. (Timed execution). A timed execution of a time-interval automaton(A, b)
is a (possibly infinite) sequenceα = s0, (π1, t1), s1, (π2, t2), · · · where thesi’s are
states ofA, theπi’s are actions ofA, and theti’s are times inR≥0; s0 is an initial state
of A; and for anyj ≥ 1, (sj−1, πj , sj) is a valid transition ofA andtj ≤ tj+1. We also
require a timed execution to satisfy the upper and lower bound requirements expressed
by b:
Upper bound: For every pair of an actionπ and a set of actionsΠ with upper(π,Π)
defined, and every occurrence ofπ in the executionπr = π, if there existsk > r with
tk > tr + upper(π,Π), then there existsk′ > r with tk′ ≤ tr + upper(π,Π) and
πk′ ∈ Π.
Lower bound: For every pair of an actionπ and a set of actionsΠ with lower(π,Π)
defined, and every occurrence ofπ in the executionπr = π, there does not existk > r
with tk < tr + lower(π,Π) andπk ∈ Π.
The upper and lower bound requirements for a bound with⊥ are defined similarly (see
[2]).

A composition of multiple TIA is defined in a way similar to that of ordinary I/O au-
tomata (which is an ordinary asynchronous composition withsynchronization of input
and output actions with the same name [5]). Interval-bound maps of TIA are combined
by using a union of maps (by regarding maps as relations). In order to formally define
a composition for time-interval automata, we need a definition of the compatibility of a
collection of TIA. The compatibility for TIA is defined simply as the compatibility of
the underlying I/O automata (see [5] for the definition).

Definition 4. (Composition of TIA) For a compatible collection of TIA, thecomposi-
tion (A, b) = Πi∈I(Ai, bi) is the timed-interval automaton as follows. (1).A is the
composition of the underlying I/O automata{Ai}i∈I , and (2).lower is given by taking
union of{loweri}i∈I andupper is given by taking union of{upperi}i∈I (by regarding
partial functions as sets of ordered pairs).
Definition 5. (Untimed TIA) Given a TIA(A, b), the untimed model of(A, b) is simply
an underlying ordinary untimed I/O automatonA.

3.2 Specifying Event Orders

In this section, we presents how the user can specify an eventorder that needs to be ex-
cluded for system correctness. One event order specification represents a subsequence
of an (untimed) execution (or technically calledexecution fragment) or a set of execu-
tion fragments.

An event order in its simplest form is just a sequence of actions (transition labels),
which represents consecutive actions that occur in an automaton execution. In some
cases (such as certain bad scenarios of BMP), it is crucial toexpress repetitions of
events. The user can start an event order specification with the special symbol ‘⊥’,
which indicates that the event order matches a prefix of an automaton execution, rather
than an execution fragment in the middle of the execution.

The user can express repetitions using anignored event specification(IES). An IES
specifies the repetitive events in a way similar to the repetition symbol ‘*’ of regular
expressions. For example, an event order with an ignored event specification “a1-a2-a3-
a4: insert{a5, a6} in [2,4]” matches with any execution of TIA that has a subsequence
that matches a regular expressiona1a2(a5 ∪ a6)

∗a3(a5 ∪ a6)
∗a4. We use the above

notation using “insert”, instead of a repetition symbol ‘*’, since we consider that it is
easier to comprehend which events are inserted in what eventinterval.

5

Definition 6. (Event order) An event order of a time-interval automaton(A, b) is a
sequence of actions ofA, possibly starting with a special symbol⊥.

In Definition 7,Ym represents a set of events that are inserted in the interval between
eim

andejm
.

Definition 7. (Ignored event specification). An ignored event specification (IES) for an
event order is in the following form:insert (Ym to [im, jm])r

m=1.

An ignored event setIE
k represents the set of all ignored events between event index

k andk + 1.
Definition 8. (Ignored event set). For an event order with an IES,E = (⊥)e1 · · · en :
insert (Ym to [im, jm])r

m=1, we defineIE
k =

⋃
im≤k<jm

Ym for 0 ≤ k ≤ n − 1.

Definition 9. (Match between a timed execution and an event order with an IES). Con-
sider a timed executionα = s0, (π1, t1), s1, · · · of a time-interval automaton(A, b). Let
α′ be the sequence of actions that appear inα, that is,α′ = π1π2π3 · · · . We say thatα
matches an event order (with an IES),E = e1 · · · en : insert (Ym to [im, jm])r

m=1, if
there exists a finite subsequenceβ ofα′ such thatβ can be split intoβ0πk1

β1πk2
β2 · · ·βn−1πkn

,
where, for alli, 1 ≤ i ≤ n, πki

= ei, andβi is a sequence of actions and all actions
that appear inβi are in IE

i .

A match for an event order that starts with⊥ is defined similarly to Definition 9 (an
additional conditionk1 = 1 is added to the definition). For an event order without an
IES, allβi’s in Definition 9 are empty sequences.

3.3 Timing-Parameter Synthesis using EOA
Timing parameter synthesis using EOA involves two steps: 1.Identifying bad event or-
ders in the untimed abstraction of the original model; and 2.Deriving timing parameter
constraints using our METEORS tool. We explain these two steps in more details in the
following.

The first step is identification of “bad” event orders that appear in the system execu-
tions. Note that the user does not need to specify all bad executions, but it is sufficient
to specify the set of key subsequences of them that covers allbad executions.

The user initially proposes a candidate set of bad event orders that he/she wants to
exclude from the system executions (this candidate set may be empty). The user then
model-checks a safety property of interest on anuntimed modelof the underlying TIA,
under the assumption that the model does not exhibit the proposed bad event orders.
Recall that an untimed model of a TIA(A, b) is simply an underlying ordinary I/O au-
tomatonA. If the model-checking is completed with a positive answer,then the user
has obtained a sufficient set of bad event orders to be excluded for the given safety
property. Otherwise, the user uses a counterexample obtained from the model-checking
to extract an additional bad event order, and repeats the same process until he/she suc-
cessfully model-checks the untimed model.

Model-checking under a specific event order assumption is carried out in the fol-
lowing two steps. The user first constructs a monitor that raises a flag when any of the
identified bad event orders is exhibited. Then he/she model-checks the untimed model
with this monitor under the assumption that the monitor doesnot raise the flag (in Linear
Temporal Logic (LTL) [14], this condition can be represented by:�(¬Monitor.flag) ⇒
�(¬UntimedModel.propertyViolated)). We used the SAL model-cheker [15] in the
presented work. We manually constructed monitors in the presented case study, but we
are planning to develop an automatic monitor construction tool.

6

In the second step, the user provides the set of identified badevent orders to our
tool METEORS (MEchanized Timing/Event-ORder Synthesizer), and the tool auto-
matically derives timing parameter constraints under which the underlying TIA exhibits
no execution that matches the identified bad event orders. The algorithm that METE-
ORS uses and a soundness theorem of the derived constraints aredescribed in [2]. We
briefly summarize the basic idea of the algorithm here. Givenan event order, the tool
combines the time bounds immediately derivable from the interval-bound mapb of the
underlying TIA (A, b), and finds a pair of a combined upper bound and a combined
lower bound. For example, suppose the tool is given the eventorderE = e1e2e3e4,
and is able to derive fromb upper boundsU1 for [e1, e3] andU2 for [e2, e4], respec-
tively, and a lower boundℓ for [e2, e4]. (We use the notation[ei, ej] to represent the
time interval between eventsei andej in E.) If U1 + U2 < ℓ holds, thenE cannot be
exhibited by(A, b) since the time interval betweene1 ande4 in E is at mostU1 + U2

and the time interval betweene2 ande4 is at leastℓ, and thuse3 must appear before
e4 does aftere1e2. The algorithm that METEORS uses systematically goes through all
possible combinations of upper and lower bounds to find a constraint using the same
reasoning described above. An IES is treated very conservatively: we basically literally
ignore ignored events (except for some subtle cases). This is basically why we needde-
compositionof an event order with an IES, described below, for some casesto retrieve
some more information of repetitive events (than just ignoring them), in order to derive
more meaningful constraints.

We have added a new feature of automatic decomposition of event orders to METE-
ORS after we presented [2]. With this new feature, the user can specify repetitive events
specified in an IES that he/she wants to “decompose”. A decomposition of events in an
IES is sometimes needed to obtain a weaker constraint set forthe correctness (repre-
senting a larger allowable parameter set) than the one that could have been obtained
without decomposition. A decomposition of an event order with an IES creates two
event orders such that a union of the two sets of executions that decomposed two or-
ders match respectively is equal to the set of executions that the original event order
matches. This is done by splitting the event order into the case that specified repeti-
tive events occur at least one time and the case that no repetition occurs. For example,
decomposition of event orderE1 = a1(a2)

∗a3a4 with respect to(a2)
∗ produces two

event ordersE0
1 = a1a3a4 andE+

1 = a1(a2)
∗a2a3a4, whereE0

1 ∪ E+
1 = E1. Now

the constraint for the underlying event order is derived notdirectly from the original
one, but from the two decomposed ones. The user can basicallycommand the tool to
decompose all repetitions of events (for example failing detections in BMP), and the
tool will automatically decompose them.

A constraint derived from one event order by METEORS has the form of a disjunc-
tion of linear inequalities over the upper and lower bound parameters (one event order
may have several parameter inequalities for it to be excluded). The user typically has
to exclude more than one event orders, and thus the tool needsto combine individual
constraints by making a conjunction of the constraints. Thus, a parameter constraint
derived from METEORS forms aconjunction of disjunctions of linear inequalities.

By combining the untimed model-checking result from the first step and the derived
constraint from the second step, the user obtains a timing parameter constraint under
which the underlying TIA model satisfies the desirable safety property.

7

Cell:
1 0 0 1 0 1

: Edge is detected

: Decode is performed

Sampling distance

Bits to be sent:

Signal:

Decoding process:

Decoded bits: 1 0 0 1 0 1

Mark sub-cell

Time

Fig. 1.Basic execution of the biphase mark protocol

4 Case Study: the Biphase Mark Protocol

The biphase mark protocol (BMP) is a widely used lower-layercommunication pro-
tocol for industrial and consumer electronics. For example, it is used in Sony/Philips
Digital Interconnect Format (S/PDIF) that has been developed for carrying digital au-
dio signals between devices and stereo components. An industrial version of S/PDIF,
called AES/EBU, also uses BMP.

BMP specifies a way of encoding a bit string to a digital signal, and then decoding
the signal back to a bit string using the timing aspect of the encoded signal. Figure
1 shows how BMP operates. The encoder and the decoder communicate via a digital
signal (a function from time to ‘high’ and ‘low’) sent on a physical wire.

At the encoder side, the time frame is divided into small timewindows, calledcells.
In each cell, the encoder encodes one bit into a digital signal at a time. The encoding
rule specified in BMP is simple. At the beginning of every cell, the encoder flips the
signal, creating anedge. Within one cell, when the encoder has to encode a ‘1’, it flips
the signal within the cell after some time window calledmark sub-cell. On the other
hand, when encoding a ‘0’, the encoder simply does not flip thesignal withing the cell.

The decoder repeatedly checks the signal, and detects the edge by observing that the
level of the signal (low or high) is different from what it observed in the last check. The
decoder interprets the detected edge as the beginning of a cell, and checks the signal
again after the time length called thesampling distance. If the decoder observes the
level of the signal changes within the cell, it decodes a ‘1’,and otherwise a ‘0’.

Several researchers have conducted formal verification of this protocol (for exam-
ple, [1, 3, 6]). We compare the results from the EOA approach with related work in
Section 4.3. The TIA model of a biphase mark protocol we have developed is based on
the model by Vaandrager and de Groot [3]. In the model presented in [3], the authors
consider two important realistic aspects of the protocol. The first aspect is differences
in the clock rates of the encoder and the decoder (that is,clock drift). From this aspect,
the sizes of cells (and mark sub-cells) are not uniformly consistent in the protocol exe-
cution, but have some small deviation from its ideal shape (that is, for an ideal cell size
L, an actual cell has a size within[L − ε, L + ε]). The same phenomenon affects the
decoder as well since its periodic checks for a signal edge detection and the sampling
period depend on its local clock. The second aspect is themetastabilityof the signal
caused by a signal edge. When a signal edge is created by the encoder, the signal level
does not immediately change from a high voltage to low, or lowto high, but needs some
settling time. When the decoder checks the signal during thismetastability period, we
cannot predict whether the decoder may interpret the signallevel as high or low. Thus,
as in the model of [3], the observation of the signal by the encoder is nondeterminis-
tically decided as either high or low within a metastabilityperiod, so that we cover all
possible scenarios that arise from this metastability issue.

8

4.1 Modeling BMP in the TIA Framework

Figure 2 (Encoder automaton) shows TIA code for the model of the encoder in BMP.
This automaton performs the following simple job: it repeatedly and nondeterministi-
cally chooses the next bit to send (expressed bychoose(sending0,sending1S)). It first
outputsEdge0 or Edge1S, depending on the next bit to send. If it chooses to send a ‘1’,
then it outputsEdge1T, representing the “toggling” of the signal within the current cell,
before choosing the next bit to send. The automaton has threebounds. The first bound
represents that the size of mark sub-cell (the time it waits between the edge starting a
cell and the toggling of the signal to encode a ‘1’) is within[m1,M1]. The second and
the third bound represent that the entire cell length is within [c, C].

Figure 4 (Decoder automaton) shows TIA code for the model of the decoder in
BMP. This automaton also models signal settling (Settle action) on the wire as well
as the behavior of the decoder (Detect andDecode actions). The code is a straightfor-
ward translation of the decoder behavior explained earlierin this Section 4. We use the
temporary variablesampledVoltage to represent a sampled voltage of the signal on the
wire at the decoder side. When the signal has not yet settled after an edge is created by
the encoder, the value ofsampledVoltage is nondeterministically determined (expressed
by choose(HIGH,LOW)). Detect(true) andDetect(false) respectively represents that the
decoder succeeds in detecting, and fails to detect a signal-level change.

Decoder has seven time-interval bounds.2 The first bound specifies that the very
first detection of an edge is performed within the time interval [δ,∆] after the system
execution starts. The second bound specifies that after the failing detection of an edge,
the next detection is performed within[δ,∆]. The third bound specifies that the decoder
resumes an edge detection within[δ,∆] after decoding a bit. The fourth bound specifies
that the sampling distance is within[τ, T]. The remaining three bounds specify that the
signal on the wire settles within[h,H] after an edge is created by the encoder.3

Informally, the safety property we want to check is that the decoder correctly de-
codes encoded bits from the signal. To formally define the above described informal
property, we use the safety property monitorSPM (Figure 3).SPM has a FIFO buffer
of size two, representing encoded bits in the signal. When theencoder performsEdge0
or Edge1S, SPM stores a corresponding bit (0 or 1) to its buffer. When the decoder
decodes the signal,SPM removes the first bit in its buffer, and compares this bit with
the decoded bit by the decoder.SPM sets itsdecoding error flag to be true when the
buffered bit (which might be a special empty symbol when the buffer is empty) and
the decoded bit do not match.SPM sets itsbuffer overflow flag to true when the buffer
overflow occurs, and sets itsbuffer underflow flag to true when the buffer underflow oc-
curs. We say that the protocol is correct under a certain event-order constraint if any of
the above described three flags are not raised in all execution of the protocol under the
event-order constraint.

4.2 Parameter Constraint Synthesis of BMP Using EOA

In this section, we present parameter constraint synthesisof BMP using EOA.

2 We are treatingDecode(0) andDecode(1) (representing decoding a ‘0’ and a ‘1’, respec-
tively) as the same symbol.

3 The authors of [3] uses different parameters from ours. Namely, they explicitly model clocks
in the system (for example,m1 becomesmark · min, wheremin is the lower bound for the
clock cycle, andδ becomes2min.) We can retrieve the same clock-cycle information by using
equalities between parameters. Therefore, we call our model fully parameterized.

9

—————————————————
EncoderState = enumeration of

sending0, sending1S, sending1T

Automaton Encoder(m1, M1, c, C: Real) where
0 ≤ m1 ≤ M1 ∧ 0 ≤ c ≤ C

signature
output Edge1S, Edge1T, Edge0S

states
senderPC: EncoderState :=

choose(sending0, sending1S);

transitions
output Edge1S

pre senderPC = sending1S;
eff senderPC := sending1T;

output Edge1T
pre senderPC = sending1T;
eff senderPC := choose(sending0, sending1S);

output Edge0
pre senderPC = sending0;
eff senderPC := choose(sending0, sending1S);

bounds:
b(Edge1S, {Edge1T}) = [m1, M1];
b(Edge1S, {Edge0, Edge1S}) = [c, C];
b(Edge0S, {Edge0, Edge1S}) = [c, C];

—————————————————
Fig. 2. Encoder automaton of the biphase
mark protocol

—————————————————
BitWithBottom = enumeration of 1, 2 ⊥

Automaton SPM

signature
input Edge1S, Edge0S, Decode(decodedBit:Bit)

states
buffer1: BitWithBottom := ⊥
buffer2: BitWithBottom := ⊥
decoding error: Boolean := false
buffer overflow: Boolean := false
buffer underflow: Boolean := false

transitions
input Edge0

if buffer2 6=⊥ then buffer overflow := true endif;
if buffer1 = ⊥ then buffer1 := 0
else buffer2 := 0 endif;

input Edge1S
if buffer2 6=⊥ then buffer overflow := true endif;
if buffer1 = ⊥ then buffer1 := 1
else buffer2 := 1 endif;

input Decode(decodedBit)
if buffer1=⊥ then buffer underflow := true endif;
if buffer2 6= ⊥ and buffer2 6= decodedBit ∨

buffer2 = ⊥ and buffer1 6= decodedBit
then decoding error := true endif;

if buffer2 = ⊥ then buffer1 = ⊥ endif;
buffer2 := ⊥;

—————————————————
Fig. 3. Safety property monitor for the
biphase mark protocol

—————————————————
Bit = enumeration of 0, 1;
SignalVoltage = enumeration of HIGH, LOW;
DecoderState = enumeration of detecting, decoding;
flip(v:SignalVoltage): SignalVoltage = if v = HIGH then
LOW else HIGH endif;

Automaton Decoder(δ, ∆, τ, T, h, H: Real) where
0 ≤ δ ≤ ∆ ∧ 0 ≤ τ ≤ T ∧ 0 ≤ h ≤ H

signature
input Edge1S, Edge1T, Edge0S
output Settle
output Detect(succeed: Boolean)
output Decode(decodedBit: Bit)

states
decoderState: DecoderState := detecting;
signalVoltage: SignalVoltage := LOW;
signalSettled: Boolean := true;
oldVoltage: SignalVoltage := LOW;

transitions
input Edge1S

eff signalVoltage := flip(signalVoltage);
signalSettled := false;

input Edge1T
eff signalVoltage := flip(signalVoltage);

signalSettled := false;

input Edge0
eff signalVoltage := flip(signalVoltage);

signalSettled := false;

output Settle
pre signalSettled = false
eff signalSettled := true

output Detect(succeed)
pre decoderState = detecting ∧

let sampledVoltage: SignalVoltage =
if signalSettled then signalVoltage

else choose(HIGH,LOW) endif in
succeed = (oldVoltage = sampledVoltage);

eff oldVoltage = if succeed then flip(oldVoltage)
else oldVoltage endif;

decoderState = if succeed then decoding
else detecting endif;

output Decode(decodedBit)
pre decoderState = decoding ∧

let sampledVoltage: SignalVoltage =
if signalSettled then signalVoltage

else choose(HIGH,LOW) endif in
decodedBit =

if oldVoltage = sampledVoltage then 0
else 1 endif;

decoderState = detecting;
bounds:

b(⊥, {Detect(true), Detect(false)}) = [δ, ∆];
b(Detect(false),{Detect(true),Detect(false)})=[δ, ∆];
b(Decode, {Detect(true), Detect(false)}) = [δ, ∆];
b(Detect(true), {Decode}) = [τ, T];
b(Edge1S, {Settle}) = [h, H];
b(Edge1T, {Settle}) = [h, H];
b(Edge0, {Settle}) = [h, H];

—————————————————
Fig. 4. Decoder automaton of the biphase
mark protocol

10

...

Edge0S Edge1S
: Failing Detection

: Successful Detection

: Signal
 metastability period
 (the signal has
 not settled yet)

Voltage low

Voltage high Voltage high

Voltage low

: Decode
Decoding occurs too early,
and 0 may be incorrectly decoded.

E2_0 E3

Edge1S
Voltage high

Voltage low

Decoding occurs too early,
and 0 may be incorrectly decoded.

E4
Edge0S

Voltage high

Voltage low

Decoding occurs too early,
and 1 may be incorrectly decoded.

E5
Edge0S

Voltage high

Voltage low

E6_0S
Edge0S/Edge1S

Flat signal for 0 is
completely missed.

Edge starting 0 is
completely missed.

Edge0S/Edge1S Edge1S

Voltage low

Voltage high

E2_1S

Edge starting 1 is
completely missed.

Edge1T Edge1T

...

...

Edge1S
Voltage high

Voltage low

E6_1S
Edge0S/Edge1S

...

Edge1T

Signal toggling for 1
is completely missed.

Edge0S
Voltage high

Voltage low

E7_0
Edge0S/Edge1S

Flat signal for 0 is
completely missed.

Edge1S
Voltage high

Voltage low

E7_1S
Edge0S/Edge1SEdge1T

Signal toggling for 1
is completely missed.

(an edge is not
 detected)

 (an edge is
 detected)

Fig. 5.Bad scenarios of a biphase mark protocol

Step 1. Identifying bad event orders: We first need to identify bad event orders in the
protocol execution that would lead to safety property violation. Here we illustrate how
the user can identify bad event orders by model-checking theuntimed model of BMP.
If the user does not know a clue what kind of event orders exist, then he/she can start
model-checking the untimed model without any event-order assumption. In this case,
he/she obtains the following counterexample:Edge1S - Detect(true) - Decode(0). This
execution is bad since decoding is performed too fast and therefore a zero is decoded
even though the encoder is sending a one. By excluding only this exact sequence can-
not prevent similar scenarios from occurring. This is because an arbitrary number of
Detect(false) can appear beforeDetect(true), and aSettle action can appear any time
after Edge1S. Therefore, the user must specifyEdge1S - Detect(true) - Decode(0): in-
sert {Detect(false)} in [1,2]; {Settle} in[1,3], in order to exclude all similar executions.
(The above event order with an IES is actuallyE4 that we describe later in this section.)
With an event-order constraint for the above event order, the user obtains the following
counterexample:Edge0 - Edge0 - Edge 1S. This execution is bad since the SPM buffer
overflows. We can actually observe that this execution is badalso in terms of decoding:
the decoder completely misses the firstEdge0. Thus the prefixEdge0 - Edge 0S of the
counterexample is a bad event order. There are actually two more similar scenarios:
Edge0 - Edge 1S (Edge0 is missed by the decoder) andEdge1S - Edge 1T (Edge1S
is missed). Therefore, the user wants to specify all of the above three event orders as
bad orders. The user can continue identifying bad scenariosuntil he/she succeeds in
model-checking.

We repeated the process of bad event order identification described above, and found
nine bad scenarios. Now we list all bad scenarios and explainwhy they are bad.

The first scenario is the same as the second bad scenario described above.
E1 1: Edge0-Edge0 E1 2: Edge0-Edge1S E1 3: Edge1S-Edge1T

The rest of the scenarios are depicted in Figure 5.
E2 0 andE2 1S describe similar scenarios: in these scenarios, the edge starting 0

or 1, respectively, is completely missed because the next edge occurs before the decoder
observes the edge.

E2 0: Decode-Edge0-Settle-Edge0: insert {Detect(false)} in [1,3]
E2 1S: Decode-Edge1S-Settle-Edge1T: insert {Detect(false)} in [1,3]

Detect(false) is inserted in the above event orders since it can possibly occur un-
bounded number of times before an edge settles.

11

We also have slightly different versions of the above two event orders. These differ-
ent versions basically describes the same situation as the originally described two. For
example,E2 0 can end withEdge1S instead ofEdge0, as described in Figure 5. The
first Decode in E2 0 andE2 1S can be replaced by⊥ symbol, representing the same
situation as the original one just after the system execution starts (not after at least one
Decode have already been performed). Therefore, we had four versions (including the
one represented above) forE2 0 and two versions forE2 1S.

E3 describes the case that the sampling distance of the decoderis so short that the
decoder decodes the signal before the signal settles after toggling for a ‘1’.

E3: Edge1S-Detect(true)-Edge1T-Decode:
insert {Detect(false)} to [1,2]; {Settle} to [1,3]

E4 describes the case that a signal toggling for a ‘1’ has not been done yet when the
sampling distance for the decoder elapses, and thus a ’0’ is incorrectly decoded.

E4: Edge1S-Detect(true)-Decode: insert {Detect(false)} in [1,2]; {Settle} in [1,3]
E5 describes the case that the sampling distance is so short that the decoding for a ‘0’
is done before the signal settles, and thus a ‘1’ can be incorrectly decoded.

E5: Edge0-Detect(true)-Decode: insert {Detect(false)} in [1,2]
E6 0, E6 1S, E7 0 andE7 1S describe similar situations: the sampling distance is
long relative to the cell size, and thus decoding for the current has not been done before
the next edge occurs.

E6 0: Decode-Edge0-Settle-Detect(true)-Edge0: insert {Detect(false)} in [1,3]
E6 1S: Decode-Edge1S-Settle-Detect(true)-Edge1T-Edge0:

insert {Detect(false)} to [1,3]; {Settle} in [5,6]
E7 0: Edge0-Detect(true)-Settle-Edge0: insert {Detect(false)} in [1,2]
E7 1S: Edge1S-Detect(true)-Settle-Edge1T-Edge0:

insert {Detect(false)} to [1,2]; {Settle} in [4,5]
As in the case ofE2 event orders,E6 0, E6 1S, E7 0, and E7 1S also have

slightly different versions that describes the same situation – Edge1S instead ofEdge0
at the end ofE6’s andE7’s, ⊥ instead ofDecode in E6 0 andE6 1S. Therefore, we
had four event orders forE6 0 andE6 1S, respectively, and two forE7 0 andE7 1S,
respectively.

In total, we had 24 event orders (3E1, 6 E2, 1 E3, 1 E4, 1 E5, 8 E6, and 4E7).
We were able to combine event order monitors for multiple event orders into one

monitor (for example, we can easily construct a monitor thatmonitors four event orders
of the type ofE6 0 at the same time). We had 11 monitors in total for 24 event orders.

We confirmed by untimed model-checking that the safety property described earlier
in this subsection holds at any reachable state of our model under the assumption that
the above specified event orders do not occur in system executions. We also examined
how many encoded bits can exist on the wire as the same time (bycounting the number
of bits in the buffer of SPM), and confirmed that under the sameordering assumption,
only one bit is encoded on the wire at the same time.

Step 2. Deriving timing parameter constraints using METEORS: We specified in our
tool METEORS all ofDetect(false) events in IES’s of the specified event orders as those
that must be decomposed. METEORS derived (after an automatic linear arithmetic
simplification) a constraint, which is a conjunction of the following three inequalities.

(1). m1 > H + ∆; (2). τ > M1 + H; and (3). c > H + ∆ + T .

12

These three inequalities are equivalent to the three constraints manually derived in
[3]. Therefore, though we needed to identify all bad scenarios (in terms of event orders),
we obtained a result equivalent to [3], without manually deriving parameter constraints
from bad scenarios, and safety property verification under the event order assumption
was conducted automatically using a conventional untimed model-checker built in SAL.

METEORS also produced the list of constraints that are sufficient toexclude each
of the specified bad event orders. Table 1 shows the result.

E1 1, E1 2 c > H (subsumed byc > H + ∆ + T)
E1 3 m1 > H (subsumed bym1 > H + ∆)

E2 0 (all four versions) c > H + ∆ (subsumed byc > H + ∆ + T)
E2 1S (both versions) m1 > H + ∆

E3 τ > M1 + H

E4 τ > M1 (subsumed byτ > M1 + H)
E5 τ > H (subsumed byτ > M1 + H)

E6 0 (all four versions)
c > H + ∆ + T

E6 1S (all four versions)
E7 0 (both versions)

c > H + T (subsumed byc > H + ∆ + T)
E7 1S (both versions)

Table 1.Sufficient constraints to exclude each bad event order
The whole synthesis process took us about 12 hours: 3-4 hoursto model BMP in

SAL and find modeling (not design) bug in the model; 5-6 hours to identify the bad
event orders and writing monitors for them; and 2-3 hours to code up the event or-
ders as Python objects to be used by METEORS and decompose event orders to ob-
tain reasonable constraints (this time does not include thetime we took to learn the
basic knowledge of how BMP operates). All computer experiments are conducted on
a machine with Intel CoreTM2 Quad at 2.66 GHz and 2 GB memory. Each untimed
model-checking for bad-event-order identification using SAL (as well as the successful
model-checking) took less than one second.4 The computation time for timing synthesis
using METEORS took less than one second, including simplification.

4.3 Related Work and Comparison of Approaches

In this subsection, we compare case studies of BMP using other approaches with ours.
Fully Automated Timing-Parameter Constraint Synthesis Using Model-Checker: A

first attempt of parametrically model-checking BMP using HYTECH was reported by
Ivanov and Griffioen [8]. They succeeded to verify a model of BMP, but the model
was restrictive compared to our model. (for example, sampling of the signal by the
decoder was only allowed at particular time points). In [7] by Henzinger et al., the
application of HYTECH to BMP is briefly reported. They succeeded to conduct partial
timing synthesis (they had to fix a subset of parameters). To do so, they had to modify
a model of [3] so that only successful detections of the edge appear in the execution.
This modification prevented the model from non-terminatingfix-point calculation due
to unbounded number of failing detections.

Parameterized Verification Using Inductive Reasoning: Parameterized verification
is a different problem from parameter-constraint synthesis, since the user has to provide
parameter constraints first. However, since our approach also needs human interaction
in order to specify bad event orders, it is interesting to compare the results using the
inductive-reasoning approach. In [3], the authors presented parametric verification of a

4 We are stating the computation time not to compare it with a fully automatic approach (since
our approach needs bad event order identification by the user), but toshow that adding an
event-order monitor does not significantly degrade the speed of model-checking.

13

biphase mark protocol using the UPPAAL model-checker and the PVS theorem prover.
They first used UPPAAL to identify bad scenarios by using several fixed combinations
of parameters. They then identified three bad scenarios, depicted a diagram of them,
and manually derived linear inequality constraints from the diagram. Then, to verify
the correctness of the system under the derived constraints, they conducted a mechani-
cal theorem-proving using PVS [16], by translating the UPPAAL model into PVS code.
Though they succeeded in proving the correctness of the protocol under the derived
constraints, they required 37 inductive invariants, consisting of several group of invari-
ants that they needed to prove together. Their first verification attempt needed more than
4000 steps of human interactions with PVS. From our experience of a similar type of
problem – inductive proof of safety properties for an I/O automaton (thought not timed)
using PVS [17], we estimate that the total verification process took them considerably
long time, probably in the order of one month.

In [6], Brown and Pike presented semi-automated parametricverification of a biphase
mark protocol using the SAL model-checker [15] and the Calendar Automata approach
([18, 19]). By using the Calendar Automata approach, the user can embed the timing
constraints of the system behavior in the real-time system using what the authors of
[18] call the “calendar” which specifies the time of occurrence of events in the future.
Since the model contains uninterpreted constants (timing parameters), the user cannot
directly model-check this model, but the verification has tobe done by finding inductive
properties (though the proving process is completely automated). Brown and Pike [6]
manually derived timing parameter constraints in a way similar to [3]. They then had to
come up with five supporting inductive lemmas in order to prove the correctness of the
protocol under the derived constraints.
5 Conclusion
In this paper, we reported timing-parameter-constraint synthesis of the biphase mark
protocol (BMP) using event order abstraction (EOA). BMP hasrepetitions of events
with timing constraints (repeated detections of an edge) and 10 parameters, and these
aspects of BMP disable a direct application of existing timed/hybrid model-checkers.
By using EOA, we successfully synthesized the parameter constraints equivalent to
those manually derived in [3]. The process was machine assisted in two ways: 1. Safety
property verification under identified event order assumption was automatically con-
ducted by the untimed model-checker built in SAL; and 2. Parameter constraint was
automatically derived by out tool METEORS using event order information from the
first step.

We compared the EOA approach with the inductive-reasoning approach, which is
the only other approach that is successfully applied to BMP.For the inductive-reasoning
approach, the user first needs to identify bad event orders (which are not necessarily all
bad orders), and then manually derive sufficient timing-parameter constraints to ex-
clude all bad scenarios. In addition, the properties to be proved or checked must be
strengthened or the user needs auxiliary properties to be proved or checked, so that the
reasoning becomes inductive. In general, constructing inductive properties requires hu-
man insights and some prior training on the inductive-proofmethodology. Indeed, the
lemmas presented in [6] include non-trivial inequalities over variables of the calendar.
Identifying bad event orders is, in contrast, closer to constructing informal operational
arguments, and needs less training than constructing inductive properties.

We consider that identifying bad event orders is useful not only for the verifica-
tion/synthesis process of EOA, but also for implementationengineers to understand

14

what kind of undesirable scenarios can occur in the underlying system/protocol when
parameters are badly tuned. With our tool METEORS, the user can also know what
constraint is sufficient to exclude each of the bad scenarios.

For future work, we want to seek a way of automating identification of bad event
orders. This automation requires the tool to find subsequences of counterexamples that
are sufficient to exclude all bad executions, yet have enoughinformation to derive rea-
sonable constraints.
Acknowledgment: First of all, I thank my supervisor, Prof. Nancy Lynch, for her pa-
tient guidance and fruitful advice on this research work. I also thank anonymous reviews
for their helpful comments.

References

1. Moore, J.S.: A formal model of asynchronous communication and its use in mechanically
verifying a biphase mark protocol. Formal Aspects of Computing6(1) (1994) 60–91

2. Umeno, S.: Event order abstraction for parametric real-time systemverification. In: EM-
SOFT 2008: The 8th ACM & IEEE International Conference on Embedded Software. (2008)
1–10 A technical report version appears as MIT-CSAIL-TR-2008-048, Massachusetts Insti-
tute of Technology, July, 2008.

3. Vaandrager, F.W., de Groot, A.: Analysis of a biphase mark protocol with UPPAAL and
PVS. Formal Asp. Comput.18(4) (2006) 433–458

4. Zhang, D., Cleaveland, R.: Fast on-the-fly parametric real-time model checking. In: Pro-
ceedings of the 26th IEEE Real-Time Systems Symposium. (2005) 157–166

5. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
6. Brown, G.M., Pike, L.: Easy parameterized verification of biphasemark and 8N1 protocols.

In: Proc. of TACAS 2006. Volume 3920 of Lecture Notes in Computer Science., Springer
(2006) 58–72

7. Henzinger, T., Preussig, J., Wong-Toi, H.: Some lessons from the HYTECH experience. In:
Proc. of the 40th Annual Conference on Decision and Control, IEEE Computer Society Press
(2001) 2887–2892

8. Ivanov, S., Griffioen, W.: Verification of a biphase mark protocol.Technical report (1999)
9. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of

timed automata. In: Tools and Algorithms for Construction and Analysis of Systems. (2001)
189–203

10. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-
structures. Transactions on Software Engineering31 (2005) 38–51

11. Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: A tool for reachability analysis of
complex systems. In: Computer Aided Verification. (2001) 368–372

12. Spelberg, R., Toetenel, W.: Parametric real-time model checking using splitting trees. Nordic
Journal of Computing8 (2001) 88–120

13. Collomb-Annichini, A., Sighireanu, M.: Parameterized reachability analysis of the ieee 1394
root contention protocol using trex. In: RT-TOOL 2001. (2001)

14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurent Systems: Specifica-
tion. Springer-Verlag (1993)

15. de Moura, L.M., Owre, S., Rueß, H., Rushby, J.M., Shankar, N., Sorea, M., Tiwari, A.: SAL
2. In: Proc. of CAV 2004. Volume 3114 of Lecture Notes in Computer Science., Springer
(2004) 496–500

16. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In Kapur,
D., ed.: 11th International Conference on Automated Deduction (CADE). Volume 607 of
Lecture Notes in Computer Science., Saratoga, NY (1992) 748 – 752

17. Umeno, S., Lynch, N.: Proving safety properties of an aircraftlanding protocol using I/O
automata and the PVS theorem prover: a case study. In: FM 2006: Formal Methods. Volume
4084 of Lecture Notes in Computer Science., Springer (2006) 64 – 80

15

18. Dutertre, B., Sorea, M.: Timed systems in SAL. Technical ReportSRI-SDL-04-03, SRI
International (2004)

19. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time startup pro-
tocol using calendar automata. In: Proc. of FORMATS/FTRTFT 2004. Volume 3253 of
Lecture Notes in Computer Science., Springer (2004) 199–214

16

