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Abstract. We present machine-assisted timing-parameter synthesis of the biphase
mark protocol (BMP) [1] usingvent order abstractio(EOA)[2]. By using EOA,

we separate the task of synthesizing parameter constraints that geakegpte
safety properties of BMP into two parts: 1. Safety property verificatiothef
protocol by a conventional untimed model-checker under the conditiriibd”
event orders do not occur; and 2. Derivation of timing parametestcaints that

are sufficient to exclude bad event orders in the protocol, using ouMeaad E-

ORS. Though the user has to provide information about bad event otbenest

of the synthesis process is automated. With the case study presented ia-this p
per, we provide the community with two new pieces of information about BMP
First, the synthesis process using EOA produces, as a by-product,cf {8

“bad scenarios” of BMP that would happen when parameters are inoed
rectly. Second, the ®ITEORS tool provides information about which parameter
constraint in the finally derived conjunction of constraints is actually seffid¢o
exclude each of these bad scenarios.

1 Introduction

Time-parametric verification of real-time systems has beehallenging problem in
the formal verification community [1, 3, 4]. In this probletiming constraints on the
systems’ behavior depend on a certain parameter set, andsvaf these parameters
are not fixed at the time of verification. Typically, only a sebof possible parame-
ter combinations in the entire parameter space satisfiesatoess of such systems.
Thus, to conduct parametric verification of them, the usertbdind an appropriate set
of constraints for the timing parameters, and manually @saw mechanically checks
correctness under the constraints.

Timing-parameter synthesis a problem in which one wants to derive with a ma-
chine support sufficient constraints on the timing paramsei€an underlying real-time
system under which the system executes correctly. Thisgmols considered harder
than time-parametric verification since the mechanicdlisnot a priori given a set of
timing parameter constraints by the user, but it has to ®gitk constraints by itself.

In this paper, we present machine-assisted timing-paersghthesis of the biphase
mark protocol (BMP) [1] usingvent order abstractio(EOA) that we presented in [2].

* This work is supported by the NSF Award CCF-0702670 and the NSFdh@AIS-0614414.
This paper is formatted using the LNCS LATEX template. The paper will apjpeThe 7th
International Conference on Formal Modelling and Analysis of Timest&ys (FORMATS
2009), Budapest, Hungry, September 13-16, 2009.
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EOA can be applied to real-time systems in which “correcedrd)s of events” main-
tained by timing constraints on the systems’ behavior atieakfor correctness. To use
EOA, the user models a real-time system by usingtitme-interval automatgTIA)
framework, an extension of the /O automata framework [3].uBing EOA, we sepa-
rate the task of synthesizing parameter constraints treregtee key safety properties
of BMP into two parts: 1. Safety property verification of th@focol by a conventional
untimed model-checker under the condition that “bad” ewedérs do not occur; and 2.
Derivation of timing parameter constraints that are sudficto exclude bad event orders
in the protocol, using our tool KITEORS. Though the user has to provide information
about bad event orders, the rest of the synthesis procesmigetely automated.

BMP has been studied in several papers in the context of pianametric verifica-
tion, which requires a manual derivation of parameter caids (for instance, [1, 3,
6]), and in the context of fully automated constraint systhéor a restrictedly parame-
terized model of the protocol (in which some parameters aeelfio constraint values)
[7,8]. This work presents the first machine-assisted patemsynthesis for fully pa-
rameterized model of BMP. This protocol has interestingeatpfor timing parameter
synthesis: 1. Considerably large number of timing paramadte0 parameters in our
model) and 2. Unbounded number of repetitive events (buayirvg) with timing con-
straints that may appear in the protocol executions. Weexjhlain in Section 2 why
the above mentioned two aspects make this protocol esjyeciallenging to conduct
timing-parameter synthesis with existing model-checkéfs also compare the results
with case studies on BMP using other approaches.

With this case study presented in this paper, we provide ¢nenaunity with two
new pieces of information about BMP. First, the synthesigess using EOA produces,
as a by-product, a list of all “bad scenarios” of BMP that wbbbhppen when param-
eters are tuned incorrectly. Second, th&e NEORS tool provides information about
which parameter constraint in the finally derived conjumctdf constraints is actually
sufficient to exclude each of these bad scenarios. We bdlate¢hese pieces of infor-
mation by themselves deserves values to the community.Xaonge, by the list of all
bad scenarios and its corresponding parameter consgaiinfplementer of BMP can
learn what kind of bad executions could occur in the protedwgn the parameters are
badly tuned or the values of parameters temporally deviata their nominal values
due to transient failures. When a bad execution is actuakbged in an implemen-
tation, by the list of parameter constraints for each badaes, the implementer can
discover which parameter constraint is violated. The usenot easily obtain these
pieces of information about bad executions of the systenxisyieg model-checkers.

The rest of the paper is organized as follows. In Section 2exy#ain the reason
why BMP is especially challenging to conduct fully autoragtarameter synthesis with
existing model-checkers. Section 3 is devoted to summé#rzevent order abstraction
(EOA) approach that we use for the case study. In Section 4cameluct machine-
assisted parameter synthesis of BMP using EOA. We also aentpa results with
existing case studies on BMP using other approaches. Ino&€est we conclude by
discussing advantages of using EOA and stating future work.

2 Why Is the Biphase Mark Protocol Especially Challenging?

There are several existing timed/hybrid model-checkeas ¢hn conduct fully auto-
matic timing-parameter constraint synthesis [7, 9—12)wkler, the biphase mark pro-



tocol (BMP) is especially challenging to conduct parametnstraint synthesis by
these model-checkers from two reasons that we will desarnibee following.

The first reason is that BMP performs repetitions of evemis there is a time bound
between two consecutive repetitions. Namely, the recgigerof BMP conducts busy
waiting to detect a signal edge, and checks to detect an edgedormed repeatedly in
every certain time interval. As we will see in Section 4, thespeated checks could fall
an unbounded times since we do not know the relationshipdegtithe repetition cycle
(parameterd) and other timing parameters that are related to the timfregeating an
edge. The second reason is that BMP has a considerable nofitbeing parameters
(10 parameters in our modeling). Thus even if the user etitemrepetitions of events
with timing constraints by modifying the model, the resutimodel may have too
many parameters to fully automatically synthesis paraneetestraints. Indeed, in [7],
the authors had to fix some parameters in order to automgtmalthesize parameter
constraints by MTECH.

Now let us explain why the first reason causes a trouble fatiexj model-checkers.
The basics of an existing timed/hybrid model-checker perfoparameter constraint
synthesis are as follows. It first computes the reachabtesstd the system, symboli-
cally represented by a linear-arithmetic expression. Ehine by repeatedly comput-
ing successor states until no new successor states areelisdoThen, by taking the
intersection of the reachable state and the unsafe stamstains the bad parameter
settings. Now a parameter constraint is obtained by negéti@ linear-arithmetic ex-
pression that represents the intersection. If no over- detapproximation is used for
reachable set computation, then the constraint is bothcirffiand necessary. When
the user gives a fully parameterized model of BMP to a motiekker, the reachability
computation does not terminate. As we explained abovetrarity number of failing
checks can potentially occur by busy waiting in BMP. Becallmse detections are
repeatedly performed every time units, every successor state of these repeated detec-
tions is a new state in the reachability computation (fomepie, the state that can be
reached just after two failing detections is a differentesteom the state just after one
failing detection sinceA time units are elapsed since the first detection). Therefloee
reachability computation diverges. Indeed, in [7], Hegeinet al. explained that this
was the reason that they had to modify the HyTech model of BM&uch a way that
the model does not perform busy-waiting for an edge detecticuccessful detection
occurs within a certain time after an edge has created (argittiey eliminated failing
detections from the model).

Our EOA approach does not suffer from the same problem sime@atomaton
model is untimed in our approach. In this untimed abstractiailing detections be-
come stuttering transitions, and thus the model-checkirgg thot diverge due to failing
detections. Instead, the constraint derivation proces® foad event orders of EOA
needs a technique called “decomposition” of event ordengs process is automated
by the METEORS tool once the user specifies what events must be decompdised.
will present more details about decomposition in Secti@n 3.

The TReX [11] model-checker can perform what the authors‘egatrapolation”,
with which the tool detects the loop in the state transiticapl and over-approximates
the effects of the loop in terms of changes of the values oédimariables. For ex-
ample, for the above discussed repetitions of failing di&tes, TReX may be able to
compute with the extrapolation technique that the effe¢he$e repetitions is increas-
ing the values of timed variables byA for an arbitrarily non-negative number and



therefore may be able to complete the reachable state catigputHowever, as far as
we can observe from [13], which presents timing-parametethesis for IEEE 1394
root contention protocol using TReX, the tool actually reédman-directed opera-
tions for choosing parameter constraints: the tool givek ilae user the list of linear
inequalities which sometimes contains unnecessary itigiqador the correctness (due
to over-approximation used in the model-checking), anduber needs to manually
choose a subset of the given set of inequalities that he/slwves sufficient and re-
peat the model-checking under the selected constraintsedwer, the authors reported
that the computation took more than 67 hours for a certainakddecking run under
selected constraints. Considering that their model onle lfige parameters, which are
considerably less compared to ten parameters in our mo@We¥ timing synthesis of
BMP using TReX is arguably very challenging.

3 Event Order Abstraction Approach

In this section, we explain the event order abstraction (E&@g#proach. In Section 3.1,
we describe the time-interval automata framework that ger needs to use to model
a system when using EOA. Section 3.2 is devoted to explainthewser can specify

bad event orders in the system. Finally in Section 3.3, wensarze how the user

conducts timing parameter synthesis using EOA and our gjraonstraint synthesis

tool METEORS. For more detailed explanation of EOA, the reader shodi te [2].

3.1 Time-Interval Automata

Thetime-interval automatéT 1A) framework is an extension of the 1/O automata frame-
work [5]. An I/O automaton is a classical transition systeithvdistinguished input,
output, and internal actions, and is usually described hyaaided-command style lan-
guage. Informally, with the TIA framework, one can spectig fower and upper time
bounds on the interval between one action and its followitgpas. A time bound for
an actiona and actions in a set of actiors is represented as an interval in the form
[, u]. Informally, this bound represents that, for any time ofuwcencet, of actiona,
no action inB occurs before, + [, and at least one action 18 is performed before or
att, + u.

An interval-bound maglefined in the following Definition 1 formally specifies time
bounds for actions. The special symhblis used to express the time bound on the
interval between the system start time and the time an attithre specified set occurs.

Definition 1. (Interval-bound map). An interval-bound major an I/O automatord
is a pair of mappingsiower andupper. Each oflower andupper is a partial function
fromactions(A) | x P(actions(A)) toR>?, whereactions(A) | = actions(A)U{L}
is a set of actions afl extended with a special symho| P(actions(A)) is the power
set of actions of, andR>? is the set of positive reals.

An interval-bound map defined in Definition 1 may not satigfguirements to ex-
press a meaningful bound (for example, the specified lowantdas not greater than
the specified upper bound). The formal description of theiregnents appears in [2].
We say that an interval-bound mapvislid if it satisfies the requirements.

Definition 2. (Time-interval automaton). A time-interval automato#, b) is an /O
automatonA together with a valid interval-bound majyfor A.



Definition 3. (Timed execution). A timed execution of a time-intervabematon( A, b)

is a (possibly infinite) sequenee = sq, (71,t1), s1, (72, t2), - - - Where thes;'s are
states ofd, the;’s are actions ofd, and thet;’s are times inR=%; s, is an initial state
of A; and forany;j > 1, (sj—1,7;, s;) is a valid transition ofd and¢; < ¢;,. We also
require a timed execution to satisfy the upper and lower blaequirements expressed
by b:

Upper bound: For every pair of an actionr and a set of actiondl with upper (7, IT)
defined, and every occurrencemfn the executionr, = m, if there exists: > r with
tp > t, + upper(m, II), then there exist&’ > r with ¢, < ¢, + upper(r,II) and
Ty € 11

Lower bound: For every pair of an actionr and a set of action&l with lower (7, IT)
defined, and every occurrencemofn the executionr,. = , there does not exigt > r
with ¢, < t,. + lower(m, IT) andny, € II.

The upper and lower bound requirements for a bound withre defined similarly (see
(2]).

A composition of multiple TIA is defined in a way similar to traf ordinary 1/0 au-
tomata (which is an ordinary asynchronous composition sytichronization of input
and output actions with the same name [5]). Interval-bouagdsrof TIA are combined
by using a union of maps (by regarding maps as relations).dardo formally define
a composition for time-interval automata, we need a definitif the compatibility of a
collection of TIA. The compatibility for TIA is defined simplas the compatibility of
the underlying I/O automata (see [5] for the definition).

Definition 4. (Composition of TIA) For a compatible collection of TIA, themposi-
tion (A,b) = II;c;(A;,b;) is the timed-interval automaton as follows. (H.is the
composition of the underlying I/O automata; };<r, and (2).lower is given by taking
union of{lower; };c; andupper is given by taking union dfupper; };cr (by regarding
partial functions as sets of ordered pairs).

Definition 5. (Untimed TIA) Given a TIAA, b), the untimed model df4, b) is simply
an underlying ordinary untimed 1/0 automateh

3.2 Specifying Event Orders

In this section, we presents how the user can specify an eveet that needs to be ex-
cluded for system correctness. One event order specificefmresents a subsequence
of an (untimed) execution (or technically calledecution fragmehbr a set of execu-
tion fragments.

An event order in its simplest form is just a sequence of astiransition labels),
which represents consecutive actions that occur in an attmmexecution. In some
cases (such as certain bad scenarios of BMP), it is cruciakpoess repetitions of
events. The user can start an event order specification wétspecial symbol ',
which indicates that the event order matches a prefix of ammaatbn execution, rather
than an execution fragment in the middle of the execution.

The user can express repetitions usinggaored event specificatiqiES). An IES
specifies the repetitive events in a way similar to the répatsymbol *' of regular
expressions. For example, an event order with an ignoraw specification &, -a2-as-
aq: insert{as, ag } in [2,4]” matches with any execution of TIA that has a subseme
that matches a regular expressiofus (as U ag)*agz(as U ag)*ay. We use the above
notation using “insert”, instead of a repetition symbol, ‘since we consider that it is
easier to comprehend which events are inserted in what avental.
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Definition 6. (Event order) An event order of a time-interval automatehd) is a
sequence of actions df, possibly starting with a special symhaol

In Definition 7,Y,,, represents a set of events that are inserted in the inteztxablen
e;,, ande;, .
Definition 7. (Ignored event specification). An ignored event speciboaliES) for an
event order is in the following forminsert (Y5, t0 [im, jm])m=1-

Anignored event selt” represents the set of all ignored events between event index
k andk + 1.

Definition 8. (Ignored event set). For an event order with an IES= (L)e; - - - ey, :
insert (Y, to [im, jm]) 5 —1, We defind’ = Ui, <k<j, Ymforo <k <n-—1.

Definition 9. (Match between a timed execution and an event order with &j. Eon-

sider a timed executiom = s, (71, %1), s1, - - - of atime-interval automatofy, b). Let

o' be the sequence of actions that appeasijrthat is,a’ = mymams - - - . We say thatv
matches an event order (with an IE®),= ey - - - e, : insert (Yi,, t0 [im, Jm]) iy If

there exists afinite subsequerttef o’ such thats can be split intQSy g, 17k, 82 - + - Bn—17k,, s
where, for alli, 1 < i < n, 7, = e;, andj; is a sequence of actions and all actions
that appear in3; are in 7.

A match for an event order that starts withis defined similarly to Definition 9 (an
additional conditionk; = 1 is added to the definition). For an event order without an
IES, all 5;'s in Definition 9 are empty sequences.

3.3 Timing-Parameter Synthesis using EOA

Timing parameter synthesis using EOA involves two stepkidntifying bad event or-
ders in the untimed abstraction of the original model; andetiving timing parameter
constraints using our ETEORS tool. We explain these two steps in more details in the
following.

The first step is identification of “bad” event orders thategupin the system execu-
tions. Note that the user does not need to specify all baduéres, but it is sufficient
to specify the set of key subsequences of them that covevadkxecutions.

The user initially proposes a candidate set of bad eventsittat he/she wants to
exclude from the system executions (this candidate set raanipty). The user then
model-checks a safety property of interest oruatimed modebf the underlying TIA,
under the assumption that the model does not exhibit theogeapbad event orders.
Recall that an untimed model of a TI4, b) is simply an underlying ordinary 1/O au-
tomatonA. If the model-checking is completed with a positive answieen the user
has obtained a sufficient set of bad event orders to be extlfadethe given safety
property. Otherwise, the user uses a counterexample ebt&iom the model-checking
to extract an additional bad event order, and repeats the pamsess until he/she suc-
cessfully model-checks the untimed model.

Model-checking under a specific event order assumptionrisecbout in the fol-
lowing two steps. The user first constructs a monitor thatesaa flag when any of the
identified bad event orders is exhibited. Then he/she madudetks the untimed model
with this monitor under the assumption that the monitor daesaise the flag (in Linear
Temporal Logic (LTL) [14], this condition can be represehibgy: (1(—Monitor.flag) =
O(—=UntimedModel.propertyViolated)). We used the SAL model-cheker [15] in the
presented work. We manually constructed monitors in thegued case study, but we
are planning to develop an automatic monitor constructioh t



In the second step, the user provides the set of identifiecebadt orders to our
tool METEORS (MEechanized Timing/Event-@der Synthesizer), and the tool auto-
matically derives timing parameter constraints under Whie underlying TIA exhibits
no execution that matches the identified bad event ordees algorithm that MTE-
ORS uses and a soundness theorem of the derived constraimtssamébed in [2]. We
briefly summarize the basic idea of the algorithm here. Gaemvent order, the tool
combines the time bounds immediately derivable from theruat-bound map of the
underlying TIA (A,b), and finds a pair of a combined upper bound and a combined
lower bound. For example, suppose the tool is given the ewaldr £ = ejeqesey,
and is able to derive frorh upper boundd/; for [e, e3] and Us for [eq, e4], respec-
tively, and a lower bound for [es, e4]. (We use the notatiofe;, e;] to represent the
time interval between events ande; in E.) If Uy + U, < ¢ holds, thenE cannot be
exhibited by(A4, b) since the time interval between ande, in E is at mostU; + Us
and the time interval between ande, is at least/, and thuse; must appear before
e4 does aftee;e,. The algorithm that MTEORS uses systematically goes through all
possible combinations of upper and lower bounds to find atcaing using the same
reasoning described above. An IES is treated very consexlatwe basically literally
ignore ignored events (except for some subtle cases). 3hasically why we neede-
compositiorof an event order with an IES, described below, for some dasesrieve
some more information of repetitive events (than just igmpthem), in order to derive
more meaningful constraints.

We have added a new feature of automatic decomposition of evéers to METE-
ORS after we presented [2]. With this new feature, the user peaify repetitive events
specified in an IES that he/she wants to “decompose”. A deositipn of events in an
IES is sometimes needed to obtain a weaker constraint s#tdazorrectness (repre-
senting a larger allowable parameter set) than the one thédl bave been obtained
without decomposition. A decomposition of an event ordehvein IES creates two
event orders such that a union of the two sets of executiatsdécomposed two or-
ders match respectively is equal to the set of executiortstiieaoriginal event order
matches. This is done by splitting the event order into thee d¢hat specified repeti-
tive events occur at least one time and the case that notrepedccurs. For example,
decomposition of event ordd?; = a;(az)*asaq With respect ta(as)* produces two
event orders?Y = ajazay and B = ay(a2)*asaszas, whereEY U Ef7 = E;. Now
the constraint for the underlying event order is derived ditgctly from the original
one, but from the two decomposed ones. The user can basicaiiynand the tool to
decompose all repetitions of events (for example failingectgons in BMP), and the
tool will automatically decompose them.

A constraint derived from one event order byeEORS has the form of a disjunc-
tion of linear inequalities over the upper and lower boundhpeeters (one event order
may have several parameter inequalities for it to be exdudehe user typically has
to exclude more than one event orders, and thus the tool teeasnbine individual
constraints by making a conjunction of the constraints.sTlauparameter constraint
derived from METEORS forms aconjunction of disjunctions of linear inequalities

By combining the untimed model-checking result from the Btep and the derived
constraint from the second step, the user obtains a timingnpeter constraint under
which the underlying TIA model satisfies the desirable saiedperty.
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Bits to be sent: 1 0 0 1 0 1 Time
Cell:

4 : Edge is detected

Signal: w : Decode is performed

Decoded bits: 1 0 0 1 0 1
Fig. 1. Basic execution of the biphase mark protocol
4 Case Study: the Biphase Mark Protocol

The biphase mark protocol (BMP) is a widely used lower-laggmmunication pro-
tocol for industrial and consumer electronics. For examiplis used in Sony/Philips
Digital Interconnect Format (S/PDIF) that has been dewsddipr carrying digital au-
dio signals between devices and stereo components. Antiradugersion of S/PDIF,
called AES/EBU, also uses BMP.

BMP specifies a way of encoding a bit string to a digital sigaad then decoding
the signal back to a bit string using the timing aspect of theoded signal. Figure
1 shows how BMP operates. The encoder and the decoder coratrinia a digital
signal (a function from time to ‘high’ and ‘low’) sent on a pdigal wire.

At the encoder side, the time frame is divided into small timredows, calleccells
In each cell, the encoder encodes one bit into a digital sigiha time. The encoding
rule specified in BMP is simple. At the beginning of every céie encoder flips the
signal, creating aedge Within one cell, when the encoder has to encode a ‘1, it flips
the signal within the cell after some time window calle@rk sub-cell On the other
hand, when encoding a ‘0’, the encoder simply does not fligitpeal withing the cell.

The decoder repeatedly checks the signal, and detectsdbédgabserving that the
level of the signal (low or high) is different from what it afased in the last check. The
decoder interprets the detected edge as the beginning df, ame checks the signal
again after the time length called tBampling distancelf the decoder observes the
level of the signal changes within the cell, it decodes aah( otherwise a ‘0.

Several researchers have conducted formal verificatiohigfprotocol (for exam-
ple, [1, 3,6]). We compare the results from the EOA approaith velated work in
Section 4.3. The TIA model of a biphase mark protocol we haxelbped is based on
the model by Vaandrager and de Groot [3]. In the model preseint[3], the authors
consider two important realistic aspects of the protocbk Tirst aspect is differences
in the clock rates of the encoder and the decoder (thatdsk drift). From this aspect,
the sizes of cells (and mark sub-cells) are not uniformlysistent in the protocol exe-
cution, but have some small deviation from its ideal shalpat (5, for an ideal cell size
L, an actual cell has a size withjii — ¢, L + ¢]). The same phenomenon affects the
decoder as well since its periodic checks for a signal edggctien and the sampling
period depend on its local clock. The second aspect isrtbestabilityof the signal
caused by a signal edge. When a signal edge is created by theéeznihe signal level
does notimmediately change from a high voltage to low, ortlohigh, but needs some
settling time. When the decoder checks the signal duringnieistability period, we
cannot predict whether the decoder may interpret the sigmel as high or low. Thus,
as in the model of [3], the observation of the signal by theodec is nondeterminis-
tically decided as either high or low within a metastabifigriod, so that we cover all
possible scenarios that arise from this metastabilityeissu
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4.1 Modeling BMP in the TIA Framework

Figure 2 Encoder automaton) shows TIA code for the model of the encoder in BMP.
This automaton performs the following simple job: it reety and nondeterministi-
cally chooses the next bit to send (expressedhnpse(sending0,sending1S)). It first
outputsEdge0 or EdgelS, depending on the next bit to send. If it chooses to send a ‘1’,
then it output€EdgelT, representing the “toggling” of the signal within the cunteell,
before choosing the next bit to send. The automaton has timeeds. The first bound
represents that the size of mark sub-cell (the time it wadtsvben the edge starting a
cell and the toggling of the signal to encode a ‘1’) is withim,, M;]. The second and
the third bound represent that the entire cell length isiwith C].

Figure 4 Decoder automaton) shows TIA code for the model of the decoder in
BMP. This automaton also models signal settlisgt{e action) on the wire as well
as the behavior of the decod@etect andDecode actions). The code is a straightfor-
ward translation of the decoder behavior explained earligris Section 4. We use the
temporary variableampledVoltage to represent a sampled voltage of the signal on the
wire at the decoder side. When the signal has not yet settledaf edge is created by
the encoder, the value sémpledVoltage is nondeterministically determined (expressed
by choose(HIGH,LOW)). Detect(true) and Detect(false) respectively represents that the
decoder succeeds in detecting, and fails to detect a sigvellchange.

Decoder has seven time-interval boun@i§.he first bound specifies that the very
first detection of an edge is performed within the time inéf¥, A] after the system
execution starts. The second bound specifies that afteatliregfdetection of an edge,
the next detection is performed withify A]. The third bound specifies that the decoder
resumes an edge detection withinA] after decoding a bit. The fourth bound specifies
that the sampling distance is within, T']. The remaining three bounds specify that the
signal on the wire settles withifh, ] after an edge is created by the encotler.

Informally, the safety property we want to check is that tieeatler correctly de-
codes encoded bits from the signal. To formally define thevalstescribed informal
property, we use the safety property monig®M (Figure 3).SPM has a FIFO buffer
of size two, representing encoded bits in the signal. Wheetiseder perform&dge0
or EdgelS, SPM stores a corresponding bit (0 or 1) to its buffer. When the deco
decodes the signatPM removes the first bit in its buffer, and compares this bit with
the decoded bit by the decod&iPM sets itsdecoding_error flag to be true when the
buffered bit (which might be a special empty symbol when th#éep is empty) and
the decoded bit do not matcPM sets itsbuffer_overflow flag to true when the buffer
overflow occurs, and sets itsffer_underflow flag to true when the buffer underflow oc-
curs. We say that the protocol is correct under a certaintemeler constraint if any of
the above described three flags are not raised in all execotithe protocol under the
event-order constraint.

4.2 Parameter Constraint Synthesis of BMP Using EOA
In this section, we present parameter constraint syntbé&sP using EOA.

2 We are treatingdecode(0) and Decode(1) (representing decoding a ‘0’ and a ‘1’, respec-
tively) as the same symbol.

3 The authors of [3] uses different parameters from ours. Namady, ¢plicitly model clocks
in the system (for examplerp, becomesnark - min, wheremin is the lower bound for the
clock cycle, and become®min.) We can retrieve the same clock-cycle information by using
equalities between parameters. Therefore, we call our model fullympeterized.



EncoderState = enumeration of
sending0, sendingl1S, sendinglT
Automaton Encoder(my, My, ¢, C: Real) where
0<mi <M, A0<c<C

signature
output EdgelS, EdgelT, Edge0S
states
senderPC: EncoderState :=
choose(sending0, sending1S);
transitions
output EdgelS
pre senderPC = sendinglS;
eff senderPC := sendinglT;

output EdgelT
pre senderPC = sendinglT;
eff senderPC := choose(sending0, sendinglS);

output Edge0
pre senderPC = sending0;
eff senderPC := choose(sending0, sendinglS);
bounds:
b(EdgelS, {EdgelT}) = [m1, M1];
b(Edgels, {Edge0, EdgelS}) = [¢, CY;
b(Edge0S, {Edge0, EdgelS}) = [¢, CY;

Fig. 2. Encoder automaton of the biphase

mark protocol

BitWithBottom = enumeration of 1, 2 L
Automaton SPM

signature
input EdgelS, Edge0S, Decode(decodedBit:Bit)

states
bufferl: BitWithBottom := L
buffer2: BitWithBottom := L
decoding_-error: Boolean := false
buffer_overflow: Boolean := false
buffer_underflow: Boolean := false

transitions
input Edge0
if buffer2 £ _L then buffer_overflow := true endif;
if bufferl = L then bufferl := 0
else buffer2 := 0 endif;
input EdgelS
if buffer2 £ _L then buffer_overflow := true endif;
if bufferl = L then bufferl := 1
else buffer2 := 1 endif;
input Decode(decodedBit)
if bufferl=_L then buffer_underflow := true endif;
if buffer2 ## L and buffer2 # decodedBit v/
buffer2 = | and bufferl # decodedBit
then decoding_error := true endif;
if buffer2 = L then bufferl = L endif;
buffer2 := 1;

Fig. 3. Safety property monitor for the
Fig. 4. Decoder automaton of the biphase

biphase mark protocol

Bit = enumeration of 0, 1;

SignalVoltage = enumeration of HIGH, LOW;
DecoderState = enumeration of detecting, decoding;
flip(v:SignalVoltage): SignalVoltage = if v = HIGH then
LOW else HIGH endif;

Automaton Decoder(s, A, 7, T', h, H: Real) where
0<8§<ANOLST<TAO<Lh<H

signature
input EdgelS, EdgelT, Edge0S
output Settle
output Detect(succeed: Boolean)
output Decode(decodedBit: Bit)

states
decoderState: DecoderState := detecting;
signalVoltage: SignalVoltage := LOW;
signalSettled: Boolean := true;
oldVoltage: SignalVoltage := LOW;

transitions
input EdgelS
eff signalVoltage := flip(signalVoltage);
signalSettled := false;
input EdgelT
eff signalVoltage := flip(signalVoltage);
signalSettled := false;
input Edge0
eff signalVoltage := flip(signalVoltage);
signalSettled := false;

output Settle
pre signalSettled = false
eff signalSettled := true

output Detect(succeed)
pre decoderState = detecting A
let sampledVoltage: SignalVoltage =
if signalSettled then signalVoltage
else choose(HIGH,LOW) endif in
succeed = (oldVoltage = sampledVoltage);
eff oldVoltage = if succeed then flip(oldVoltage)
else oldVoltage endif;
decoderState = if succeed then decoding
else detecting endif;

output Decode(decodedBit)
pre decoderState = decoding A
let sampledVoltage: SignalVoltage =
if signalSettled then signalVoltage
else choose(HIGH,LOW) endif in
decodedBit =
if oldVoltage = sampledVoltage then 0
else 1 endif;
decoderState = detecting;
bounds:
b(L, {Detect(true), Detect(false)}) = [5, A];
b(Detect(false),{ Detect(true),Detect(false) } )=[4, A];
b(Decode, {Detect(true), Detect(false)}) = [5, A];
b(Detect(true), {Decode}) = [, T1;
b(Edgels, {Settle}) = [r, H];
b(EdgelT, {Settle}) = [h, H];
b(EdgeO, {Settle}) = [k, H];

mark protocol
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Fig. 5. Bad scenarios of a biphase mark protocol

Step 1. Identifying bad event ordekd/e first need to identify bad event orders in the
protocol execution that would lead to safety property \tiola Here we illustrate how
the user can identify bad event orders by model-checkingitiened model of BMP.
If the user does not know a clue what kind of event orders gttish he/she can start
model-checking the untimed model without any event-orégsueption. In this case,
he/she obtains the following counterexamiildgelS - Detect(true) - Decode(0). This
execution is bad since decoding is performed too fast anefibre a zero is decoded
even though the encoder is sending a one. By excluding oifye®tact sequence can-
not prevent similar scenarios from occurring. This is beeaan arbitrary number of
Detect(false) can appear beforBetect(true), and aSettle action can appear any time
after EdgelS. Therefore, the user must spegifyelS - Detect(true) - Decode(0): in-
sert {Detect(false)} in [1,2]; {Settle} in[1,3], in order to exclude all similar executions.
(The above event order with an IES is actudllythat we describe later in this section.)
With an event-order constraint for the above event orderuser obtains the following
counterexampleEdge0 - Edge0 - Edge 1S. This execution is bad since the SPM buffer
overflows. We can actually observe that this execution isatsalin terms of decoding:
the decoder completely misses the fizdtye0. Thus the prefidEdge0 - Edge 0S of the
counterexample is a bad event order. There are actually tare similar scenarios:
Edge0 - Edge 1S (Edge0 is missed by the decoder) afdgelS - Edge 1T (EdgelS

is missed). Therefore, the user wants to specify all of trevalthree event orders as
bad orders. The user can continue identifying bad scenaritEhe/she succeeds in
model-checking.

We repeated the process of bad event order identificatiamidesd above, and found
nine bad scenarios. Now we list all bad scenarios and explajnthey are bad.

The first scenario is the same as the second bad scenariibeesabove.

E1.1: Edge0-Edge0  E'1_2: EdgeO-EdgelS E'1_3: EdgelS-EdgelT
The rest of the scenarios are depicted in Figure 5.

E2.0andE2_1S describe similar scenarios: in these scenarios, the edgmgtO
or 1, respectively, is completely missed because the nge eccurs before the decoder
observes the edge.

E2_0: Decode-Edge0-Settle-Edge0: insert {Detect(false)} in [1,3]

FE2_1S: Decode-EdgelS-Settle-EdgelT: insert {Detect(false)} in [1,3]

Detect(false) is inserted in the above event orders since it can possildyrogn-
bounded number of times before an edge settles.
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We also have slightly different versions of the above twaeeeders. These differ-
ent versions basically describes the same situation agitieally described two. For
example,£2_0 can end withEdgelS instead oftdge0, as described in Figure 5. The
first Decode in E2_0 andE2_1S can be replaced by symbol, representing the same
situation as the original one just after the system exentiarts (not after at least one
Decode have already been performed). Therefore, we had four \resgincluding the
one represented above) fB2_0 and two versions foE2_15.

E3 describes the case that the sampling distance of the deisosleshort that the
decoder decodes the signal before the signal settles adjglirig for a ‘1’

FE3: EdgelS-Detect(true)-EdgelT-Decode:

insert {Detect(false)} to [1,2]; {Settle} to [1,3]
FE4 describes the case that a signal toggling for a ‘1’ has not be@e yet when the
sampling distance for the decoder elapses, and thus a ¥driectly decoded.

FE4: EdgelS-Detect(true)-Decode: insert {Detect(false)} in [1,2]; {Settle} in [1,3]

E'5 describes the case that the sampling distance is so shoth¢éhdecoding for a ‘0’
is done before the signal settles, and thus a ‘1’ can be iactiyrdecoded.

E'5: Edge0-Detect(true)-Decode: insert {Detect(false)} in [1,2]

E6.0, £6_15, E7_0 and E7_15 describe similar situations: the sampling distance is
long relative to the cell size, and thus decoding for theentrhas not been done before
the next edge occurs.

E6_0: Decode-Edge0-Settle-Detect(true)-Edge0: insert {Detect(false)} in [1,3]

E6_1S: Decode-EdgelS-Settle-Detect(true)-Edge1T-EdgeO0:

insert {Detect(false)} to [1,3]; {Settle} in [5,6]
E'7_0: Edge0-Detect(true)-Settle-Edge0: insert {Detect(false)} in [1,2]
FE7_15: EdgelS-Detect(true)-Settle-Edge1T-Edge0:

insert {Detect(false)} to [1,2]; {Settle} in [4,5]

As in the case ofF’2 event orders 6.0, £6_1S, E7.0, and E7_1S also have
slightly different versions that describes the same sitnat EdgelS instead ofEdge0
at the end ofE/6’'s and E7's, | instead ofbecode in £6_.0 and £6_1S. Therefore, we
had four event orders fdr6_0 and £6_1.5, respectively, and two foE'7_0 and £7_1S,
respectively.

In total, we had 24 event orders (F3l, 6 £2, 1 E3, 1 E4, 1 E5, 8 E6, and 4E7).

We were able to combine event order monitors for multipleneweders into one
monitor (for example, we can easily construct a monitor thanitors four event orders
of the type of £6_0 at the same time). We had 11 monitors in total for 24 eventrerde

We confirmed by untimed model-checking that the safety ptgpkescribed earlier
in this subsection holds at any reachable state of our maukdnthe assumption that
the above specified event orders do not occur in system ézasutVe also examined
how many encoded bits can exist on the wire as the same tima(byting the number
of bits in the buffer of SPM), and confirmed that under the sandering assumption,
only one bit is encoded on the wire at the same time.

Step 2. Deriving timing parameter constraints using METEOWRe specified in our
tool METEORS all of Detect(false) events in IES’s of the specified event orders as those
that must be decomposed.ENMIEORS derived (after an automatic linear arithmetic
simplification) a constraint, which is a conjunction of tlildwing three inequalities.

Q). mi>H+4;, 2.7>M +H; and (3).c>H+A+T.
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These three inequalities are equivalent to the three @inttrmanually derived in
[3]. Therefore, though we needed to identify all bad scersa(in terms of event orders),
we obtained a result equivalent to [3], without manuallyileg parameter constraints
from bad scenarios, and safety property verification underient order assumption
was conducted automatically using a conventional untimedehchecker built in SAL.

METEORS also produced the list of constraints that are sufficieextbude each
of the specified bad event orders. Table 1 shows the result.

E11,E12 c>H (subsumedby > H + A+ T)
E1.3 my > H (subsumed byn; > H + A)
E2_0 (all four versions) c>H+ A (subsumedby > H 4+ A+ 1T)
E2_15S (both versions) m; > H+ A
E3 T>M +H
E4 T > M (subsumed by > M; + H)
E5 T>H (subsumed by > M; + H)
E6-0 (all four versions)
E6_-1S (all four versions c>H+A+T
E7.0 (both versions)
E7.18 (both versions) c>H+T (subsumed by > H + A+ T)

Table 1. Sufficient constraints to exclude each bad event order

The whole synthesis process took us about 12 hours: 3-4 houn®del BMP in
SAL and find modeling (not design) bug in the model; 5-6 hoorgentify the bad
event orders and writing monitors for them; and 2-3 hoursadecup the event or-
ders as Python objects to be used bg MEORS and decompose event orders to ob-
tain reasonable constraints (this time does not includdithe we took to learn the
basic knowledge of how BMP operates). All computer expenitm@re conducted on
a machine with Intel Core™2 Quad at 2.66 GHz and 2 GB memory. Each untimed
model-checking for bad-event-order identification usidd $as well as the successful
model-checking) took less than one sec6ithe computation time for timing synthesis
using METEORS took less than one second, including simplification.

4.3 Related Work and Comparison of Approaches

In this subsection, we compare case studies of BMP using afiproaches with ours.

Fully Automated Timing-Parameter Constraint Synthesimtydlodel-CheckerA
first attempt of parametrically model-checking BMP using H:CH was reported by
Ivanov and Griffioen [8]. They succeeded to verify a model &M but the model
was restrictive compared to our model. (for example, samgptif the signal by the
decoder was only allowed at particular time points). In [y]Henzinger et al., the
application of Hr TECH to BMP is briefly reported. They succeeded to conduct partial
timing synthesis (they had to fix a subset of parameters).oleod they had to modify
a model of [3] so that only successful detections of the eggear in the execution.
This modification prevented the model from non-terminafirepoint calculation due
to unbounded number of failing detections.

Parameterized Verification Using Inductive ReasoniRgrameterized verification
is a different problem from parameter-constraint synthesnce the user has to provide
parameter constraints first. However, since our approathradeds human interaction
in order to specify bad event orders, it is interesting to pare the results using the
inductive-reasoning approach. In [3], the authors preskparametric verification of a

4 We are stating the computation time not to compare it with a fully automatic agip(since
our approach needs bad event order identification by the user), Istiote that adding an
event-order monitor does not significantly degrade the speed of nahdeking.
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biphase mark protocol using the UPPAAL model-checker aadP¥iS theorem prover.
They first used UPPAAL to identify bad scenarios by using ssvfexed combinations
of parameters. They then identified three bad scenariosctddpa diagram of them,
and manually derived linear inequality constraints frora thagram. Then, to verify
the correctness of the system under the derived constréieisconducted a mechani-
cal theorem-proving using PVS [16], by translating the URPAnodel into PVS code.
Though they succeeded in proving the correctness of thegrbtinder the derived
constraints, they required 37 inductive invariants, cstirgj of several group of invari-
ants that they needed to prove together. Their first verifinattempt needed more than
4000 steps of human interactions with PVS. From our expeei@i a similar type of
problem — inductive proof of safety properties for an I/Oaaméton (thought not timed)
using PVS [17], we estimate that the total verification pesceok them considerably
long time, probably in the order of one month.

In [6], Brown and Pike presented semi-automated paramedrification of a biphase
mark protocol using the SAL model-checker [15] and the Cddeutomata approach
([18,19]). By using the Calendar Automata approach, the cae embed the timing
constraints of the system behavior in the real-time systsimguwhat the authors of
[18] call the “calendar” which specifies the time of occurerof events in the future.
Since the model contains uninterpreted constants (timamgrpeters), the user cannot
directly model-check this model, but the verification habealone by finding inductive
properties (though the proving process is completely aated). Brown and Pike [6]
manually derived timing parameter constraints in a waylsintd [3]. They then had to
come up with five supporting inductive lemmas in order to prthe correctness of the
protocol under the derived constraints.

5 Conclusion

In this paper, we reported timing-parameter-constrainti®sis of the biphase mark
protocol (BMP) using event order abstraction (EOA). BMP hgsetitions of events
with timing constraints (repeated detections of an edgd)ldhparameters, and these
aspects of BMP disable a direct application of existing tithgbrid model-checkers.
By using EOA, we successfully synthesized the parametestints equivalent to
those manually derived in [3]. The process was machinetadsistwo ways: 1. Safety
property verification under identified event order assuamptvas automatically con-
ducted by the untimed model-checker built in SAL; and 2. Petar constraint was
automatically derived by out tool MTEORS using event order information from the
first step.

We compared the EOA approach with the inductive-reasonipgcach, which is
the only other approach that is successfully applied to BRPthe inductive-reasoning
approach, the user first needs to identify bad event orddrgkvare not necessarily all
bad orders), and then manually derive sufficient timingapeater constraints to ex-
clude all bad scenarios. In addition, the properties to lowqat or checked must be
strengthened or the user needs auxiliary properties todxeg@ror checked, so that the
reasoning becomes inductive. In general, constructingatiee properties requires hu-
man insights and some prior training on the inductive-proethodology. Indeed, the
lemmas presented in [6] include non-trivial inequalitieerovariables of the calendar.
Identifying bad event orders is, in contrast, closer to tmiesing informal operational
arguments, and needs less training than constructing tinduaroperties.

We consider that identifying bad event orders is useful mdy éor the verifica-
tion/synthesis process of EOA, but also for implementagogineers to understand
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what kind of undesirable scenarios can occur in the undeylgystem/protocol when
parameters are badly tuned. With our tooEVEORS, the user can also know what
constraint is sufficient to exclude each of the bad scenarios

For future work, we want to seek a way of automating identificaof bad event

orders. This automation requires the tool to find subseggeotcounterexamples that
are sufficient to exclude all bad executions, yet have enfghmation to derive rea-
sonable constraints.
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