
Knowledge and Distributed Computation

by

Mark R� Tuttle

B�S�� University of Nebraska�Lincoln
����	

M�S�� Massachusetts Institute of Technology
�����

Submitted to the
Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September ����

c�Massachusetts Institute of Technology� �����

Signature of Author
Department of Electrical Engineering and Computer Science

September �� ����

Certi�ed by
Nancy A� Lynch

Professor
Thesis Supervisor

Accepted by
Arthur C� Smith

Chairman� Departmental Committee on Graduate Students

Knowledge and Distributed Computation

by

Mark R� Tuttle

Submitted to the
Department of Electrical Engineering and Computer Science

on September �� �����
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

Abstract

Understanding systems of agents that interact in some way is fundamental
to many areas of science� including philosophy� linguistics� economics� game
theory� logic� arti�cial intelligence� robotics� and distributed computing� As
we try to understand these systems� we often �nd ourselves reasoning �at
least informally
 about the knowledge these agents have about other agents�
Recent work has shown that these informal notions of knowledge can be
made precise in the context of computer science� In this thesis� we pro�
vide convincing evidence that reasoning in terms of knowledge can lead to
general� unifying results about distributed computation� and we extend the
standard de�nitions of knowledge and apply them in new contexts such as
cryptography�
Many problems in the literature such as the consensus and distributed

�ring squad problems require processors in a synchronous system to per�
form some action simultaneously� yet each problem is solved in each model
of processor failure using a di�erent algorithm� We give a single algorithm
scheme with which we can transform speci�cations of such problems directly
into protocols that are optimal in a very strong sense� these protocols are
optimal in all runs� which means that given any possible input to the system
and any possible faulty processor behavior� these protocols are guaranteed to
perform the simultaneous action as soon as any other protocol would do so
in the same context� In contrast� most other protocols in the literature are
optimal only in the worst case run� This transformation is performed in two
steps� In the �rst step� we extract directly from the problem speci�cation a

�

high�level protocol programmed using explicit tests for common knowledge�
In the second step� we carefully analyze when facts become common knowl�
edge� thereby providing a method of e�ciently implementing these protocols
in the crash failure model and several variants of the omissions failure model�
In the generalized omissions model� however� our analysis shows that testing
for common knowledge is NP�hard� Given the close correspondence between
common knowledge and simultaneous actions� we are able to show that no
optimal protocol for any such problem can be computationally e�cient in
this model� Our analysis exposes many subtle di�erences between the failure
models� including the precise point at which this gap in complexity occurs�
This work shows how knowledge can be e�ectively used in protocol design
and in proving nontrivial lower bounds on computational complexity�
In areas like cryptography� probability often plays a role in understanding

interesting systems of agents� yet the standard de�nition of knowledge used
above ignores issues of probability� Recent papers have shown that more than
one de�nition of probabilistic knowledge is reasonable� but they do not tell
us how to make the choice between these de�nitions� We clarify the issues
involved in making the right choice� We show that no single de�nition is ap�
propriate in all contexts� Given a particular context� however� we show how
to construct the most appropriate de�nition for that context� where �most
appropriate� is made precise in terms of betting games against an adversary�
We show how probabilistic knowledge can be used to specify coordinated

attack� and how di�erent de�nitions of probabilistic knowledge result in dif�
ferent levels of guarantees by the problem statement� Another important
aspect of cryptography is the fact that an agent�s knowledge �of the contents
of a message� for example
 is limited by the bounds on its computational
power� yet the standard de�nition of knowledge ignores computational com�
plexity� in addition to probability� We show how such issues in cryptography
motivate the de�nition of practical knowledge� and then turn to the problem
of using probabilistic and practical knowledge to reason about cryptography�
While the intuition underlying a zero knowledge proof system �GMR���

is that no �knowledge� is leaked by the prover to the veri�er� researchers
are just beginning to analyze such cryptographic systems in terms of formal
notions of knowledge� We show how the de�nition of an interactive proof

system can be characterized directly in terms of practical knowledge� Using
this notion of knowledge� we formally capture and prove the intuition that
the prover does not leak any knowledge of any fact �other than the fact being

proven
 during a zero knowledge proof� We extend this result to show that the
prover does not leak any knowledge of how to compute any information �such
as the factorization of a number
 during a zero knowledge proof� Finally�
we show how our knowledge�theoretic characterization of interactive proof
systems can be used to prove simple properties of such systems� This work
represents a �rst step toward the ultimate goal of being able to reason about
cryptographic systems directly in terms of knowledge� reasoning at a higher
semantic level than the operational cryptographic de�nitions themselves�

Thesis supervisor� Nancy A� Lynch
Title� Professor

�

Contents

Acknowledgements �

� Introduction ��

��� Motivation �
�� Related Work �	
��� Thesis Contributions ��

� Knowledge and Common Knowledge ��

�� Systems of Agents �
� De�nition of Knowledge �
�� Logic of Knowledge �
�	 Properties of Knowledge ��

� Programming Simultaneous Actions ��

��� Introduction ��
�� Model of a System � 	�
��� Simultaneous Choice Problems � � � � � � � � � � � � � � � � � � 	�
��	 Optimal Protocols � 	�
��� Testing for Common Knowledge � � � � � � � � � � � � � � � � � ��

����� The Omissions Model ��
���� Receiving Omissions ��
����� Generalized Omissions � � � � � � � � � � � � � � � � � � �

��� Conclusions ��

� Knowledge	 Probability	 Adversaries

	�� Introduction ��
	� Probability on runs ���

	

	�� Probability at a point ���
	�	 De�nitions of probabilistic knowledge � � � � � � � � � � � � � � ���
	�� Probability in synchronous systems � � � � � � � � � � � � � � � ���
	�� Probability in asynchronous systems � � � � � � � � � � � � � � ��
	�� An application� coordinated attack � � � � � � � � � � � � � � � ���
	�� Conclusion ���
	�A Proofs of results ���
	�B Discussion �	�

	�B�� The need for protocols � � � � � � � � � � � � � � � � � � �	�
	�B� Safe bets and nonmeasurable facts � � � � � � � � � � � ���

� Knowledge and Zero Knowledge ���

��� Introduction ���
�� Interactive � Zero Knowledge Proof Systems � � � � � � � � � � ���

���� Interactive protocols ���
��� Interactive proof systems � � � � � � � � � � � � � � � � � ���
���� Zero knowledge proof systems � � � � � � � � � � � � � � ���

��� Knowledge ���
����� Knowledge and Probability � � � � � � � � � � � � � � � ���
���� Knowledge and Computation � � � � � � � � � � � � � � ���

��	 Knowledge and Interactive Proofs � � � � � � � � � � � � � � � � ��
��� Knowledge and Zero Knowledge � � � � � � � � � � � � � � � � � ���
��� Generation and Zero Knowledge � � � � � � � � � � � � � � � � � ���
��� Resource�bounded provers ���
��� An Application ��
��� Conclusion �	
��A Proofs of results ��

� Conclusion ���

Bibliography ���

Index ���

�

List of Figures

��� Communication graphs� �	
�� Runs illustrating Lemma ���� � � � � � � � � � � � � � � � � � � ��
��� Runs illustrating Lemma ����� � � � � � � � � � � � � � � � � � � ��
��	 An example of the construction when t � �� � � � � � � � � � � ��
��� Embedding a graph G in a run r� � � � � � � � � � � � � � � � � ��

	�� A �labeled
 computation tree� � � � � � � � � � � � � � � � � � � ���

�

Acknowledgements

I am grateful to have had Nancy Lynch as my thesis advisor� Exciting things
happen when Nancy is around� Her enthusiasm� tempered with a healthy
dose of skepticism� produces a very stimulating research environment� and
attracts an inspiring collection of postdoctoral and graduate students to MIT
to work with her� I am grateful to have been a part of this�

I am also grateful to the other members of my thesis committee� Sha�
Goldwasser� Joe Halpern� and Yoram Moses� for the stimulation and encour�
agement they have provided� I am particularly grateful to Joe and Yoram�
both collaborators on work in this thesis� During his stay as a visitor at MIT�
Yoram became a close friend and collaborator� and had a profound in�uence
on how I do research� what problems I choose to work on� and how I ex�
press my solutions� Later� as a visitor myself at the IBM Almaden Research
Center� a similar relationship began to develop with Joe� Their contrast�
ing approaches to research and expression have been very stimulating� I am
grateful to them both�

I thank a number of people who have contributed in signi�cant ways to
the work in this thesis� either directly through me or indirectly through Joe
and Yoram� These include Hagit Attiya� Paul Beame� Brian Coan� Cyn�
thia Dwork� Ron Fagin� Alan Fekete� Oded Goldreich� Adam Grove� Vassos
Hadzilacos� Amos Israeli� Michael Merritt� Albert Meyer� David Peleg� Larry
Stockmeyer� Moshe Vardi� and Jennifer Welch�

I thank my parents� Morrie and Amy� and my sister� Caroline� for their
love and support� Above all� I thank my wife� Margaret� who has been a
constant source of happiness and inspiration�

I have been supported during this work by a GTE Graduate Fellowship
and by an IBM Graduate Fellowship� I would also like to thank the IBM
Almaden Research Center for their support during two summer visits� and

�

the DEC Cambridge Research Lab for their support during the �nal weeks of
preparing this thesis� I have also been supported in part by the National Sci�
ence Foundation under Grant CCR������		� by the O�ce of Naval Research
under Contract N����	����K������ and by the Defense Advanced Research
Projects Agency �DARPA
 under Contract N����	����K�����

�

To Margaret

�

��

Chapter �

Introduction

Today� with the exception of home personal computers� nearly every com�
puter is part of a larger network of computers� A distributed system is a
collection of computers �or processors
 that can exchange information by
sending message to one another over some communication network� The
motivation behind building a distributed system may be as simple as the
desire to allow people working at the computers to send messages to each
other� or to share the use of a common printer� A more sophisticated reason
for doing so is to allow the computers to work together to solve a problem�

Unfortunately� writing the program to solve this problem is often quite
di�cult� This is usually because the problem is de�ned in terms of the global
system state� whereas an individual processor must base its actions solely on
the information recorded in its local state� typically a small fraction of the
information represented by the global state� As a result� a processor must
base its actions on incomplete knowledge of the global state� The limita�
tions of what a processor can know about the global state is a fundamental
source of di�culty when programming distributed systems� It often feels
quite natural� therefore� to reason informally about distributed computation
in terms of what each processor knows� The primary purpose of this work
is to explore the role of knowledge in the design and analysis of distributed
algorithms� We provide some convincing evidence that reasoning in terms of
knowledge can yield general� unifying results about distributed computation�
and we extend the standard de�nitions of knowledge in order to apply them
in new contexts�

��

� CHAPTER �� INTRODUCTION

��� Motivation

One of the most well�known examples of informal reasoning about knowledge
when thinking about distributed computing involves the coordinated attack

problem� a formulation by Gray �Gra��� of a folk theorem concerning the
impossibility of coordination in asynchronous systems� This problem is de�
�ned as follows� Two generals A and B are on opposite hills with a common
enemy encamped in the valley between them� Neither general has any initial
intention of attacking� but might at some later point decide to attack the en�
emy� The two generals must attack the enemy simultaneously� however� since
a general attacking by himself is certain to be destroyed� Unfortunately� the
only way the two generals can communicate is via messengers who may be
captured enroute by the enemy� The coordinated attack problem is the fol�
lowing� is there a protocol the two generals can follow that guarantees both
generals attack the enemy simultaneously whenever a single general attacks�

Gray shows that the only such protocol is one in which neither general
attacks� To see this� suppose P is a protocol for coordinated attack� and
suppose there is an execution of P in which the two generals attack simulta�
neously after exchanging a total of k messages �that is� after dispatching k
messengers who may or may not have successfully delivered their messages
�
Consider the last message m received by either of the generals before the at�
tack� Suppose m was sent by general A� and consider the instant the attack
begins� At this point� A doesn�t know whether B has received m or not� but
A has committed himself to the attack in either case� If we consider the exe�
cution di�ering from the current execution only in that B does not receivem�
therefore� we see that A also attacks� Since P guarantees that both generals
attack whenever a single general attacks� this must be an execution of this
protocol in which the two generals attack simultaneously after exchanging
only k � � messages� Continuing by induction� we see that if there is any
execution of P in which the two generals attack� then there is an execution
in which the two generals attack without sending any messages� But if no
messages are sent� then B cannot possibly know of A�s intention of attacking�
and a simultaneous attack is impossible� It follows that the only protocols
for coordinated attack are protocols in which neither general attacks�

This appeal to our intuition that A does not �know� whether B has re�
ceived m seems quite natural� Roughly speaking� from A�s point of view�
there are two global states consistent with the information recorded in A�s

���� MOTIVATION ��

local state� either B has received m� or the messenger carrying m was cap�
tured by the enemy and B has not received m� It follows that A cannot
know that m has been received� since it is possible that B has not received
m� Philosophers have formalized this intuition concerning knowledge as early
as ��� with Hintikka�s possible world semantics for knowledge �Hin��� The
basic idea is that� in any world or state of a�airs� a processor considers a
number of worlds to be possible in addition to the actual world� and that a
processor knows a fact if that fact is true in all worlds the processor considers
possible� In the case of coordinated attack� for example� A considers at least
two worlds possible� one in which m was received and one in which m was
not� and hence cannot be said to know m has been received since one of the
worlds it considers possible is a world in which m has not been received�
An interesting di�erence between the use of knowledge by philosophers

and by computer scientists� however� is that computer scientists tend to be
interested in the knowledge of groups of processors as well as the knowledge of
individual processors� For example� we can say that everyone knows a fact
if every processor knows the fact according to the de�nition of knowledge
given above� Another interesting state of knowledge turns out to be the
state of common knowledge� Roughly speaking� a fact is common knowledge
if everyone knows the fact� everyone knows that everyone knows the fact�
and so on� Such de�nitions of knowledge were �rst made in the context of
distributed computing by Halpern and Moses �HM�	� �and later by others
�CM��� FI��� PR���
� In fact� in that paper they give a formal proof of the
impossibility of coordinated attack directly in terms of knowledge� They show
that attaining common knowledge of a certain fact is a necessary condition for
the generals to attack� They go on to prove� using an argument very similar
to the combinatorial argument sketched above� that it is impossible to attain
common knowledge of any nontrivial fact in �asynchronous
 systems where
messages �or messengers
 can be lost or inde�nitely delayed� Combining these
results� it follows that coordinated attack is impossible in such systems�
This argument is a rigorous proof that captures much of the informal

intuition concerning knowledge in the proof sketched above� In distributed
computing� when an algorithm or an impossibility proof is sketched� it is
often the appeal to our intuition concerning knowledge that makes the pre�
sentation understandable� When this sketch is made rigorous� however� it
typically does not make explicit references to any notion of knowledge� and
this intuition that was so helpful before is now buried under complex� combi�

�	 CHAPTER �� INTRODUCTION

natorial arguments� Halpern and Moses made a fundamental contribution in
showing that it is possible to make rigorous the intuition concerning knowl�
edge we use informally when reasoning about distribute algorithms� As a
result� they made signi�cant progress toward the goal of making explicit rea�
soning about knowledge a fundamental tool for reasoning about distributed
computation� Part of the motivation for this work is to make further progress
toward this goal�

��� Related Work

By far the most common use of knowledge in distributed computation has
been to prove lower bounds and impossibility results� A fundamental tech�
nique for proving lower bounds on message complexity is given by Chandy
and Misra �CM���� where they analyze the communication complexity re�
quired for a processor to reach a given state of knowledge in an asynchronous
system� Roughly speaking� they show that if at time t processor i� does not
know a fact �� and at a later time t� processor im knows processor im��
knows � � � processor i� does know �� then some sequence �or chain
 of mes�
sages from i� to i� � � � to im must have occurred between times t and t��
Using this result� they show how to prove lower bounds on communication
complexity for various problems such as mutual exclusion and termination

detection� These proofs proceed by showing that a certain number of levels
of �processor i knows processor j knows� are required to solve the problem�
and then appealing to their main theorem to prove that any protocol solving
the problem must result in a chain of messages of a certain length�

Along the same lines� Moses and Roth have recently performed a slightly
more sophisticated analysis in �MR��� where they study the problem of mes�
sage di�usion in asynchronous systems �SFC���� the problem of di�using a
given message throughout a system in such a way that each processor �con�
sumes� the message exactly once� They show that two levels of knowledge
are su�cient if communication in the system is not required to subside� and
that any subsiding protocol must either attain three levels of knowledge or
use three di�erent types of messages� Lower bounds on message complexity
of such protocols follow immediately�
Similarly� in �Had���� Hadzilacos studies two� and three�phase atomic

commit protocols �used in the context of transaction processing in distributed

���� RELATED WORK ��

databases
 in terms of knowledge� and characterizes the levels of knowledge
required for a site to commit a transaction when following such protocols� As
corollaries of these characterizations� he is able to show that no nonblocking
atomic commit protocol can tolerate communication failures� and he is able
to derive a known lower bound �due to Dwork and Skeen �DS���
 on the
number of messages required to commit a transaction� In the same vein�
Mazer �Maz��� Maz��� performs a knowledge�theoretic analysis of commit
protocols that guarantee that all participants reach a consistent decision on
the commitment of a transaction in systems where failed sites can recover
and rejoin the system�
As with coordinated attack� a number of impossibility results for compu�

tation in asynchronous systems follow from the fact that common knowledge
cannot be attained in such systems� But some problems can be solved in
asynchronous systems� This implies that the state of common knowledge is
not relevant in the context of these problems� In order to analyze these prob�
lems� therefore� a number of other de�nitions of knowledge such as eventual
common knowledge and time�stamped common knowledge have been pro�
posed �see �HM�	�
� In �PT���� Panangaden and Taylor de�ne the notion
of concurrent common knowledge and show how several problems such as
�nding global snapshots �CL��� of the global system state can be analyzed
in terms of concurrent common knowledge�
Just as important as lower bounds and impossibility results� however� is

the use of knowledge in the actual design of protocols� The motivation for
the use of knowledge in protocol design is that a processor�s actions must
depend on what it knows� When a protocol tests for the equality of two
variables� the protocol is implicitly testing for a certain state of knowledge�
In �HF���� Halpern and Fagin generalize the standard notion of a proto�
col by de�ning knowledge�based protocols� protocols in which a processor�s
actions may explicitly depend on tests for knowledge� Such protocols typ�
ically include explicit tests for knowledge� and include statements such as
�if processor � knows processor has received message m� then perform
action a�� Translating a knowledge�based protocol into a standard pro�
tocol� therefore� requires implementing the embedded tests for conditions
such as �processor � knows processor has received m�� The advantage
of knowledge�based protocols� however� is that they often provide a simple�
high�level description and explanation of a processor�s behavior� For ex�
ample� Halpern and Zuck construct in �HZ��� a family of knowledge�based

�� CHAPTER �� INTRODUCTION

protocols solving the sequence transmission problem �the problem of trans�
mitting a sequence of bits over an unreliable channel
� and show that known
solutions �AUY��� AUWY�� BSW��� Ste��� to the sequence transmission
problem� including the alternating bit protocol� can be viewed as particular
instances of these knowledge�based protocols�

Another example of the useful level of abstraction knowledge�based pro�
tocols provide is the work of Neiger and Toueg in �NT���� They construct a
broadcast primitive that can be used to cause certain facts to become �com�
mon knowledge� in systems with asynchronous communication� systems in
which true common knowledge cannot be attained� Consequently� using this
tool �and other tools developed in the paper
� programmers are able to make
simplifying assumptions when they design protocols by assuming common
knowledge of certain facts is attainable� and are able to implement these
protocols using these broadcast primitives�

The �rst signi�cant use of knowledge in the design of new protocols� how�
ever� is the work of Dwork and Moses in �DM���� They study the problem
of simultaneous Byzantine agreement �PSL��� Fis��� in which each processor
starts with an initial input bit� and all processors are required to come to
agreement on a �nal output bit simultaneously at some later time� They
analyze this problem in synchronous systems with the crash failure model�
a simple failure model in which a processor may crash in the middle of an
execution and never again participate in that execution� They show that in
such systems common knowledge of a certain fact is a necessary and su��
cient condition for processors to reach agreement� Using this observation�
they construct a knowledge�based protocol that is optimal in a very strong
sense� this protocol is optimal in all runs� which means that given any pos�
sible input to the system and any possible faulty processor behavior� this
protocol is guaranteed to reach consensus soon as any other protocol would
do so in the same context� In contrast� most protocols in the literature
perform in every run only as well as they do in their worst case run� The
protocol constructed in �DM��� for agreement� for example� can halt in as
few as two rounds of communication� much sooner that most known proto�
cols� They then construct polynomial�time implementations of the tests for
common knowledge embedded in their knowledge�based protocol� resulting
in a standard �optimal
 protocol for agreement�

���� THESIS CONTRIBUTIONS ��

��� Thesis Contributions

The results of Dwork and Moses are the springboard for the �rst half of this
work� In Chapter �� we generalize their work in several dimensions�

While Dwork and Moses show how to construct optimal protocols for
agreement� implicit in their work is a technique for constructing optimal
protocols for many other problems such as the distributed �ring squad prob�
lem� problems in which processors are required to choose and perform the
same action simultaneously� In order to make this precise� we de�ne the gen�
eral class of simultaneous choice problems� Problems in this class� including
the agreement and distributed �ring squad problems� require processors to
choose and perform a simultaneous action� an action �such as deciding on
the value of an output bit
 that must be performed simultaneously by all
processors whenever it is performed by any processor� In the literature� each
combination of a simultaneous choice problem and a failure model results in
a di�erent algorithm� In contrast� we give a single algorithm scheme with
which we can transform speci�cations of such problems directly into protocols
that are optimal in all runs� in the sense of Dwork and Moses� in a number
of failure models� This transformation is performed in two steps� In the �rst
step� we extract directly from the problem speci�cation a high�level proto�
col programmed using explicit tests for common knowledge� In the second
step� we carefully analyze when facts become common knowledge� resulting
in e�cient implementations of the tests for common knowledge embedded in
this high�level protocol� and consequently providing a method for e�ciently
implementing these protocols�

The high�level� knowledge�based protocols we construct are similar to the
protocol given by Dwork and Moses� The technical analysis we perform in
order to implement the embedded tests for common knowledge� however�
is quite di�erent� The analysis of Dwork and Moses makes strong use of
particular properties of the crash failure model and does not extend to more
complicated failure models� In contrast� our analysis applies to both the crash
failure model and several variants of the omissions failure model� a model in
which faulty processors may intermittently fail to send messages� instead of
crashing at some point and falling silent from then on� Interestingly� our
techniques for implementing tests for common knowledge are purely combi�
natorial� As a result� our work is a nice example of how knowledge�theoretic
and combinatorial reasoning can be used together in protocol design� think�

�� CHAPTER �� INTRODUCTION

ing in terms of knowledge allows us to isolate the heart of a problem� which
can in turn be solved using combinatorial methods�
Given that similar knowledge�based protocols yield optimal protocols for

agreement in both the crash and omissions failure models� one might hope
that the same protocol would work in even more malicious models like the
Byzantine model where faulty processors are allowed to behave in an arbi�
trary fashion� We are able to show� however� that this is quite unlikely� We
consider a variant of the omissions model called the generalized omissions

model in which faulty processors may intermittently fail both to send and to
receive messages� In this model� we show that the same knowledge�based pro�
tocol is an optimal protocol for performing simultaneous actions� but that
implementing tests for common knowledge in this model is suddenly NP�
hard� In fact� using the close correspondence between common knowledge
and the performance of simultaneous actions� we are able to show that any
protocol for performing simultaneous actions in this model that is optimal
in all runs must require processors to perform NP�hard computations� This
means� for example� that there can be no optimal� polynomial�time protocol
for agreement� assuming P��NP� Our analysis exposes many subtle di�er�
ences between the failure models we consider� including the precise point at
which this gap in complexity occurs� This work shows how knowledge can be
e�ectively used in protocol design� as does the work of Dwork and Moses� but
it also shows how knowledge can be used to prove nontrivial lower bounds
on computational complexity�
One consequence of this work is that it shows for the �rst time that

de�nitions of knowledge must take computational complexity into account
even when analyzing simple problems in relatively simple failure models�
and even when issues of computational complexity have not been introduced
arti�cially via cryptographic assumptions� In general� however� there are
many situations in which the standard de�nition of knowledge does not seem
appropriate� One of the important contributions of this thesis is to improve
our understanding of how to de�ne notions of knowledge for use in these
contexts� This is the topic of the second half of this thesis�
One context in which the standard de�nition of knowledge does not seem

particularly appropriate is the context of probabilistic protocols� Such pro�
tocols are quite important in computer science since there are a number of
problems �such as testing for primality �Rab���
 that we can solve probabilis�
tically but not deterministically� and we would like to be able to reason about

���� THESIS CONTRIBUTIONS ��

these protocols in terms of knowledge� too� Probabilistic protocols� however�
typically guarantee that certain conditions hold only with high probability�
and not with certainty� Consequently� while a processor may not know a
given fact is true� it may be quite con�dent the fact is true� In �FH���� Fagin
and Halpern give a general framework in which it is possible to de�ne an
entire family of de�nitions of knowledge� called probabilistic knowledge� that
incorporate knowledge and probability� Their idea essentially depends on
being able to assign probability spaces to the various processors to use when
computing their �con�dence� that a given fact is true� They do not tell us�
however� which assignment to use�
In Chapter 	� we show how to construct the �best� assignment of prob�

ability spaces� and hence the �best� de�nition of probabilistic knowledge�
Surprisingly� however� one of our main observations is that there is no single
de�nition of probabilistic knowledge that is most appropriate in all contexts�
More precisely� we show that the various de�nitions of probabilistic knowl�
edge can best be understood in terms of betting games and betting against
di�erent adversaries� We show how di�erent adversaries lead to di�erent
de�nitions of probabilistic knowledge� and given a particular adversary� we
show how to construct the �best� de�nition of probabilistic knowledge for
this particular adversary �where �best� is made precise in terms of betting
games
� In addition� we show how de�nitions of probabilistic knowledge can
be used to analyze probabilistic protocols� we give a speci�cation of a proba�
bilistic version of coordinated attack in terms of probabilistic knowledge� and
then show how di�erent de�nitions of probabilistic knowledge �correspond�
ing to increasingly powerful adversaries
 result in problem speci�cations with
increasingly powerful correctness conditions�
Another context in which the standard de�nition of knowledge does not

seem particularly appropriate is when it is important to recognize the bounds
on processors� computational resources� The standard de�nition of knowl�
edge essentially says that a processor knows any fact that follows from the
information in its local state� regardless of the complexity of computing that
fact� In the context of cryptography� for example� the assumption that a
polynomial�time processor cannot factor a random integer and hence can�
not know its factorization is often crucial to the security of cryptographic
protocols� In fact� cryptographic protocols are interesting because they typi�
cally combine both the use of probability and the use of complexity�theoretic
assumptions� meaning that a de�nition of knowledge useful in the context

� CHAPTER �� INTRODUCTION

of cryptography will have to incorporate both probability and bounds on
processors� computational resources�
Two types of cryptographic protocols that have received an enormous

amount of attention recently are interactive and zero knowledge proof sys�

tems �GMR���� The intuition underlying a zero knowledge proof system
is that a �prover� would like to convince a �veri�er� that a certain fact is
true without leaking any �knowledge� of any other fact to the veri�er in
the process� Interestingly� while this intuition is closely related to notions of
knowledge� the cryptographic de�nitions of such proof systems do not make
any explicit reference to knowledge�
In Chapter �� we explore de�nitions of knowledge that incorporate both

probability and bounds on processors� computational powers� In particular�
we show how interactive proof systems motivate a new notion of practical
knowledge� We then characterize the de�nition of an interactive proof system
directly in terms of practical knowledge� Using this de�nition of knowledge�
we capture the intuition that the veri�er learns essentially nothing as a result
of a zero knowledge proof� other than the fact the prover initially sets out to
prove� Finally� using these characterizations� we sketch an example of how to
prove simple properties of such proof systems directly in terms of knowledge�
This work represents a �rst step toward the ultimate goal of being able to
reason about cryptographic systems directly in terms of knowledge� reason�
ing at a higher semantic level than the operational cryptographic de�nitions
themselves� In addition� this work sheds some light on issues concerning def�
initions of knowledge �like practical knowledge
 that account for processors�
limited computational resources�

Chapter �

Knowledge and

Common Knowledge

In this work� we will study systems of agents that interact in some way�
typically to solve a problem� While the precise meaning of an agent will
depend on the system under consideration �an agent may be a processor in a
distributed system or a consumer in an economic model
� the meaning should
always be clear from context� The purpose of this chapter is to review the
standard de�nitions of what it means for such an agent to �know� something�

��� Systems of Agents

We begin with a formal model of a system of agents� Our model is essentially
that of �HF���� a simpli�cation of �HM�	��

Consider a system of n interacting agents p�� � � � � pn �we will sometimes
denote agents with letters like p and q
� Loosely speaking� an interaction of
these agents is uniquely determined by the sequence of global states through
which the system passes in the course of the interaction� Formally� a global
state is an �n �
�tuple �se� s�� � � � � sn
 of local states� where si is the local
state of agent pi �also called pi�s view
 and se is the state of the environment�

Much of this chapter�s presentation comes from joint work with Yoram Moses �MT���
MT���� which was in turn patterned after �HM��� DM	
�� Although the notion of an
indexical set was �rst de�ned in �MT��� MT���� the basic ideas used in the proofs in this
chapter have appeared elsewhere �HM��� HM���

�

 CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

Intuitively� the state of the environment is intended to capture everything
relevant to the state of the system that cannot be deduced from the agents�
local states� In a message�passing system� for example� the state of the
environment might include a message bu�er for each processor in the system�
containing the messages sent to the processor but not yet delivered� A run is
an in�nite sequence of global states! numbering the states from � to in�nity�
we think of the kth global state as the global state at time k� Intuitively� a
run is a complete description of one possible interaction of the system agents�
A system is simply a set of runs� describing the set of all possible interactions
of the system agents �possibly the set of all possible executions of a given
protocol� for example
� We denote the global state at time k in run r by r�k
�
the local state of pi in r�k
 by ri�k
 �when denoting pi by q� we denote q�s
local state by rq�k

� and the state of the environment in r�k
 by re�k
� We
refer to the ordered pair �r� k
 consisting of a run r and a time k as a point�
We say that a point �r� k
 is a point of a system R i� r is a run of R� and we
frequently abuse notation and write �r� k
 � R to denote the fact that �r� k

is a point of R� Finally� for notational convenience� we often denote points
with letters like c or d�
We typically assume that all agents in a system are following some sort

of protocol which� roughly speaking� determines an agent�s behavior as some
function of its local state� This assumption is particularly important in Chap�
ters � and �� Since the systems considered in these chapters are synchronous�
we now give a general de�nition of a protocol in a synchronous system which
will be re�ned later in these chapters�
To motivate the de�nition of a protocol� consider the following informal

description of computation in a synchronous system of agents following a
protocol P � Computation begins in an initial state at time � and proceeds in
a sequence of rounds� with round k lasting from time k through k � �time
k is considered to be part of the preceding round k � �
� Round k consists
of three phases� First� each agent performs some action �such as deciding
on an output value
 and sends messages to other agents in the system as
determined by the protocol P and its local state at time k � �� Next� each
agent receives all messages sent to it during round k by other agents in the
system� Finally� each agent changes its local state as determined by the
protocol P � its local state at time k� �� and the messages it received during
round k�
Formally� therefore� a protocol is a tuple of local protocols� one for each

���� DEFINITION OF KNOWLEDGE �

agent� A local protocol for an agent consists of three components� a function
called an action protocol that maps a local state to an action a� where a is
intuitively the action the agent is to perform in the local state! a function
called a message protocol that maps a local state to a list m�� � � � �mn of
messages� where mi is intuitively the message to be sent to pi in the local
state! and a function called a state protocol that maps a local state and a list
m�� � � � �mn of n messages to another local state� where mi is intuitively the
message just received from pi� A protocol is a deterministic protocol if these
functions are deterministic� and a probabilistic protocol if these functions are
probabilistic� We implicitly associate with a protocol a collection of global
states called initial states�

A run r of a protocol P � sketched informally above� can be captured in
terms of our formal de�nition of a run as follows� The global state of r
at time � is an initial state� The local state of agent pi at time k � � is
determined as follows� �rst� for each agent pj� apply pj �s message protocol
to its local state at time k � � to determine what message pj sends to pi
during round k� and then apply pi�s state protocol to its local state at time
k � � and this set of messages to determine pi�s local state at time k� It is
technically convenient to assume that the state of the environment at each
time k � � encodes the protocol P and the history of the run through time
k� where the history is a list of k � n�tuples giving the local state of each
processor at each time from � through k� Given a protocol P and a run r as
de�ned above� we say that r is a run of P � We note� however� that in later
chapters it will be necessary to elaborate this de�nition of a run of P � For
example� in Chapter � agents will be able to receive messages from sources
outside the system in addition to agents within the system� Furthermore� in
that chapter we will consider unreliable systems in which some messages may
fail to be delivered� meaning that the global state at time k is not necessarily
uniquely determined by the global state at time k � � as de�ned above�

��� De�nition of Knowledge

Having de�ned a system of agents� let us �x a given system R for the re�
mainder of this section� We are now in a position to say what it means for
an agent of R to know that a given fact is true�
Before we do so� however� we must say what we mean by a fact� Infor�

	 CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

mally� a fact is an assertion that is either true or false at a point� Formally�
we identify a fact � with a set of points of R� intuitively the set of points at
which � is true� and we write c j� � i� � is true at c�
The basic intuition behind the de�nition of knowledge �HM�	� is that pi�s

local state at c captures all the information pi has about the system at c�
If pi has the same local state at two points c and d� then at point c agent
pi cannot distinguish between c and d and must consider both as possible
candidates for the current point� If a fact � is true at c but false at d� then
pi cannot be said to know at c that � is true since it is possible� from pi�s
point of view� that the current point is actually d where � is false� and not
c� This intuition leads us to say that pi considers d possible at c if pi has
the same local state at c and d �that is� pi considers �r�� k�
 possible at �r� k

if ri�k
 � r�i�k

�

� and that pi knows a fact � at c if � is true at all points
pi considers possible at c� In other words� pi knows � i� � is guaranteed
to hold� given the information recorded in pi�s local state� We denote �pi
considers d possible at c� by c �i d� and �pi knows � at c� by c j� Ki�� It
follows that

c j� Ki� i� d j� � for all d � R satisfying c �i d�

Notice that pi�s knowledge depends on the system R� since R restricts the
set of points pi considers possible� Typically� however� the system will be
clear from context� When the system is not clear from context� we write
R� c j� Ki� instead of c j� Ki��
Many times we are interested in the knowledge not just of an individual

agent� but groups of agents� A straightforward generalization of an individ�
ual agent�s knowledge is implicit knowledge �HM�	� �also called distributed

knowledge
� The intuition here is that� just as an individual agent considers
many points possible at c� a group of agents pooling together all the infor�
mation they have about the system may also consider a number of di�erent
points possible! and just as the individual agent knows � if � holds at all
points it considers possible� the group of agents implicitly knows � if � holds
at all points the group jointly considers possible� Formally� we de�ne the
joint view of a group G of agents at a point �r� k
 by

rG�k

def
� fhpi� ri�k
i � pi � Gg �

Roughly speaking� G�s view is simply the joint view of its members� We note
that it is important to take this joint view to be ordered pairs of the form

���� DEFINITION OF KNOWLEDGE �

hpi� ri�k
i since we have not said an agent�s local state contains its identity�
and we want rG�k
 � r�G�k

�
 to mean every agent in G has the same local
state in r�k
 and r��k�
� We say a group G considers a point d possible at

c if every agent in G considers d possible at c! that is� G considers �r�� k�

possible at �r� k
 i� rG�k
 � r�G�k

�
� We denote �G considers d possible at

c� by c �G d� and �G implicitly knows � at c� by c j� IG�� We de�ne G�s
implicit knowledge by

c j� IG� i� d j� � for all d � R satisfying c �G d�

Intuitively� G implicitly knows � if the joint view of G�s members guarantees
that � holds� If pi knows � and pj knows � � �� for example� then together
they implicitly know �� even if neither of them knows � individually�
With these de�nitions we can make formal sense of statement such as �pi

knows ��� but we can also make sense of statements such as �pj knows pi
knows �� involving multiple levels of knowledge� Continuing in this way� we
reach in the limit the state of common knowledge �HM�	�� Roughly speaking�
a fact � is common knowledge to a group of agents if everyone in the group
knows �� everyone knows everyone knows �� and so on ad in�nitum� The
state of common knowledge will be central to our analysis in Chapter ��
Its central role will result from the close correspondence between common
knowledge among the members of a group of processors in a distributed
system and the simultaneous performance of an action by members of this
group�
The �rst step in de�ning common knowledge is to de�ne what it means

for everyone in a group to know a fact� For a �xed group G of agents� the
standard de�nition �HM�	� of everyone in G knows � is given by

EG�
def
�

�
pi�G

Ki��

The de�nition �HM�	� of � is common knowledge to G� therefore� is given by

CG�
def
� EG� � EGEG� � 	 	 	 � E

k
G
� � 	 	 	 �

Here we de�ne Ek
G
� inductively by E�

G
� � � and Ek

G
� � EG�Ek��

G
�
 for

k � �� In other words� c j� CG� i� c j� Ek
G
� for all k � �� Thus� roughly

speaking� a fact is common knowledge if everyone knows it� everyone knows
that everyone knows it� and so on ad in�nitum�

� CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

In practice� however� the group of interest will not be a �xed set of agents�
For example� in Chapter � we will be most interested in facts that are common
knowledge to the group N of nonfaulty processors� The precise meaning of a
nonfaulty processor is not important here� so we do not de�ne N formally at
this point! simply observe that a processor may be considered faulty at some
points and not at others� and hence that the set of �nonfaulty processors� is
not a constant� �xed set of processors but varies from point to point� This
motivates the de�nition of common knowledge to a slightly more general
notion of groups of agents� An indexical set S of agents is a function mapping
points to sets of agents �meaning S is a set whose value is indexed by points�
so to speak
� That is� S � c
� S�c
� where S�c
 is a set of agents� The notion
of an indexical set is a direct generalization of the notion of a �xed set of
agents� In particular� we can identify a �xed set of agents with a constant
indexical set� The group N of nonfaulty processors� the group P of all
processors� the group of all processors that haven�t displayed faulty behavior
by the current time� and many other groups of interest are all indexical
sets of processors� In practice� each of these indexical sets is nonempty� For
example� since it is common in the literature to assume that the upper bound
on the number of faulty processors to be tolerated is strictly less that the
number of processors in the system� the set of nonfaulty processors is always
nonempty� Formally� an indexical set S is nonempty �in a given system R

if S�c
 is nonempty for every point c of R� For technical convenience� we
restrict our attention to nonempty indexical sets�
The �rst step in de�ning what it means for a fact � to be common knowl�

edge to agents in an indexical set is to de�ne what it means for everyone in
the indexical set to know �� In extending the standard de�nition to indexi�
cal sets� a subtle decision must be made� The immediate generalization is to
de�ne

ES�
def
�
�
pi�S

Ki��

This means that c j� ES� i� c j� Ki� for every pi � S�c
� This general�
ization� however� does not capture a subtle aspect of agents� knowledge in
unreliable systems� Consider� for example� a system with some action a in
which it is guaranteed that all nonfaulty processors perform a simultaneously
whenever any nonfaulty processor does so� �Again� the precise de�nition of
a nonfaulty processor is not important here�
 Suppose the nonfaulty proces�
sors perform a at a point c� It seems reasonable to expect that at the point

���� DEFINITION OF KNOWLEDGE �

c all nonfaulty processors know that all nonfaulty processors are performing
a! in other words� c j� EN� where � is the fact �all nonfaulty processors

are performing a�� The reasoning is as follows� each nonfaulty processor is
performing a� so each nonfaulty processor knows a is being performed by a
nonfaulty processor! and since a is guaranteed to be performed simultane�
ously by all nonfaulty processors whenever it is performed by any nonfaulty
processor� each nonfaulty processor knows all nonfaulty processors are per�
forming a� This line of reasoning� however� depends on a nonfaulty processor
knowing it is a nonfaulty processor� which need not be the case �and it cer�
tainly won�t be the case in Chapter �
� The only thing a nonfaulty processor
really knows at the point c is that if it is nonfaulty� then the action a is being
performed by all nonfaulty processors�
While it is possible for a nonfaulty processor to be a member of the

indexical set N without knowing it is a member of N � it is not hard to see
that for any �xed �or constant
 set G� an agent is a member of G i� it knows
it is a member of G� This follows directly from the de�nition of knowledge�
since if pi � G� then pi � G holds at all points �and in particular at all points
pi considers possible
� and hence pi knows pi � G� Similarly� given an agent
pi � G� it is not hard to see that pi knows � i� pi knows �pi � G
 � �� if
pi knows �� then �� and hence �pi � G
 � �� holds at all points pi considers
possible� and therefore pi knows �pi � G
 � �� An equivalent de�nition of
EG�� therefore� is

EG�
def
�

�
pi�G

Ki�pi � G � �
�

which says that EG� holds i� each agent in G knows that� if it is a member of
G� then � holds� We choose this form of �everyone knows� as the appropriate
form to generalize to indexical sets� Formally� we de�ne ES� by

ES�
def
�
�
pi�S

Ki� pi � S � �
�

We now de�ne CS� by

CS�
def
� ES� � ESES� � 	 	 	 � E

m
S � � 	 	 	 �

These de�nitions of ES and CS directly generalize the standard de�nitions
from �HM�	� and �DM����

� CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

A useful tool for thinking about Ek
S� and CS� is the similarity graph

�relative to S
� This is an undirected graph whose nodes are the points of
the system� and whose edges are de�ned as follows� two points c and d are
connected by an edge i� some agent pi that is a member of both S�c
 and
S�d
 has the same local state at both c and d �that is� c �i d
� For example�
if S is the set N of nonfaulty processors� two points are connected by an edge
in the similarity graph i� there is a processor that is nonfaulty at both points�
and has the same local state at both points� The property of the similarity
graph making is such a useful tool is that its connected components essential
characterize what facts are common knowledge at any given point� To see
this� we �rst note that an easy argument by induction on k shows that

Proposition ���� c j� Ek
S� i� d j� � for all points d of distance at most k

from c in the similarity graph relative to S�

Proof� We proceed by induction on k� The induction hypothesis clearly
holds for the case of k � � since E�

S� � � by de�nition�
Consider the case of k � �� �Our previous restriction to nonempty index�

ical sets is crucial here�
 Suppose c j� ES�� If d is of distance at most � from
c� then some pi in both S�c
 and S�d
 has the same local state at both c and
d� Since pi � S�c
 and c j� ES�� we have c j� Ki�pi � S � �
� Since d �i c�
we have d j� �pi � S
 � �! and since pi � S�d
� we have d j� �� It follows
that d j� � for all d of distance at most � from c� Suppose� conversely� that
d j� � for all d of distance at most � from c� Suppose pi � S�c
� and suppose
pi has the same local state at both c and d� If pi � S�d
� then d is of distance
at most � from c in the graph� so d j� � and hence d j� �pi � S
 � �� If
pi �� S�d
� then clearly d j� �pi � S
 � �� Since this statement holds for all
points d �i c� we have c j� Ki�pi � S � �
! and since this is true for all
pi � S�c
� we have c j� ES��
For k � �� suppose the inductive hypothesis holds for k � �� Notice that

c j� Ek
S� i� c j� ES�Ek��

S �
� By the induction hypothesis� c j� ES�Ek��
S �

i� d j� Ek��
S � for all d of distance at most � from c� and d j� Ek��

S � i� e j� �
for all e of distance at most k � � from d� It follows that c j� Ek

S� i� e j� �
for all e of distance at most k from c�

Finally� since c j� CS� i� c j� Ek
S� for all k � �� it follows that

Proposition ���� c j� CS� i� d j� � for all points d in c�s connected com�
ponent in the similarity graph relative to S�

���� LOGIC OF KNOWLEDGE �

Two points c and d are said to be similar �relative to S
� which we denote
by c

S
� d� if they are in the same connected component of the similarity graph

relative to S� Since the indexical set S is generally clear from context �in
Chapter � most often being the set N of nonfaulty processors
� we denote
similarity by � without the superscript S� We thus have�

Theorem ���� c j� CS� i� d j� � for all d satisfying c � d�

Our analysis in Chapter � will exploit this relationship between common
knowledge and the similarity graph� The similarity graph will provide us
with a useful combinatorial tool with which to study when facts become
common knowledge�

��� Logic of Knowledge

We remark at this point that the de�nitions of knowledge and common knowl�
edge we have given have been purely semantic de�nitions� We have talked
about agents knowing facts� but we have not said where these facts come
from other than to say that each fact corresponds to a set of points in a sys�
tem� It is often convenient to have a formal� logical language of knowledge
and common knowledge in which we can make statements about an agent�s
knowledge� We now show how to de�ne such a language�
Let " be some arbitrary set of primitive propositions� Intuitively� these

propositions are statements about points in the system that do not make
explicit mention of an agent�s knowledge� statements such as �the value of

register x is �� or �processor pi failed in round ��� Let L�"
 be the language
obtained by closing " under the standard boolean connectives �conjunction
and negation
 and the knowledge operators of the form Ki� IG� ES� E

k
S � and

CS �one might also consider adding some of the standard modal operators
from linear�time temporal logic such as � and �
� In other words� L�"
 is
the smallest language with the property that if � and � are contained in
L�"
� then so are � � �� ��� Ki�� etc� Strings in the language L�"
 are
called formulas� We use � � � as a shorthand for �� �� meaning that the
truth of � implies the truth of ��
So far� the formulas in L�"
 are just strings in a language with no intrinsic

meaning in themselves� In order to give these formulas meaning in a system

�� CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

R� we require a truth assignment � that maps each of the primitive proposi�
tions � � " to the set of points � ��
 of R at which � is true� Given such a
truth assignment� the truth of an arbitrary formula � � L�"
 is de�ned by
induction on the structure of � using the de�nitions given above�

c j� � i� c � � ��
 whenever � � "
c j� � � � i� c j� � and c j� �
c j� �� i� c �j� �
c j� Ki� i� d j� � for all d �i c
c j� IG� i� d j� � for all d �G c
c j� ES� i� d j� � whenever d �i c and pi � S�c
�

c j� Ek
S� i� c j� ES�Ek��

S �
 whenever k � �
c j� CS� i� c j� Ek

S� for all k � �

We assume that associated with every system R is a truth assignment �R
determining for every primitive proposition in " the points of R at which
the proposition is true� From this assumption it follows that every formula
in our language corresponds to the set of points of R at which the formula
is true� Thus it follows that every formula in our language corresponds to
a fact� a set of points of R� as previously de�ned� For this reason we will
sometimes abuse terminology and use the word �fact� in place of �formula��
We remark that in later chapters we will be adding more knowledge operators
to our language L�"
 as we re�ne our de�nitions of knowledge�
Finally� a formula � is said to be valid in the system R� which we denote

by R j� �� if � is true at all points of R �as determined by the system�s
truth assignment �R
� A formula � is said to be valid� which we denote by
j� �� if � is valid in the system R for all systems R�

��� Properties of Knowledge

The notions of knowledge� implicit knowledge� and common knowledge de�
�ned above are closely related to modal logics that have been extensively
studied by philosophers �see �Hin��
� A modal operator M is said to have

�Notice that this is equivalent to de�ning c j� ES� i� c j� Ki�pi � S � �� for all
pi � S�c�� The advantage to our de�nition is we do not have to worry about whether
pi � S� and hence pi � S � �� is a formula in our language�

���� PROPERTIES OF KNOWLEDGE ��

the properties of the modal system S� if the following inference rule is satis�ed
for every system R

�� if � is valid in the system R then M� is valid in the system R

and the following formulas are valid

� M� � ��

�� �M� �M�� � �

 �M��

	� M� �MM�� and

�� �M� �M�M��

If we take M to be the knowledge operator Ki� these statements may be
interpreted as follows� the �rst statement says an agent knows all facts �
that are necessarily true! the second says an agent can know only true facts�
since it says that if an agent knows � then � must be true! the third says
an agent knows all consequences of its knowledge� since if it knows both �
and � � �� then it also knows �! the fourth says that an agent knows what
it knows� since if an agent knows �� then it knows that it knows �! and the
�fth says that an agent knows what it doesn�t know� since if an agent does
not know �� then it knows it does not know �� It is not hard to show that
the de�nitions of knowledge� implicit knowledge� and common knowledge as
given above immediately implies the following �cf� �HM��� DM���
�

Proposition ���� The operators Ki� IG� and CS have the properties of the
modal system S��

Proof� We sketch the proof for the knowledge operator Ki� and leave the
remaining operators for the reader�

�� Suppose � is valid in the system R� For any point c of R� since � is
valid in the system it follows that d j� � for all points d �i c� and
hence that c j� Ki�� Since c j� Ki� for any point c of R� Ki� is valid
in the system R�

Let c be an arbitrary point of an arbitrary system R�

� If c j� Ki�� then d j� � for all d �i c� and in particular c j� ��

� CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

�� If c j� Ki� and c j� Ki�� � �
� then d j� � and d j� � � � for all
d �i c� It follows that d j� � for all d �i c� and hence that c j� Ki��

	� Suppose c j� Ki�� and suppose d �i c� Notice that e �i d implies
e �i c� since e �i d and d �i c imply that pi has the same local state at
all three points� Since c j� Ki� implies e j� � for all e �i c� it follows
that e j� � for all e �i d� and hence that d j� Ki�� Since this is true
for all d �i c� it follows that c j� KiKi�

�� Suppose c j� �Ki�� and suppose d �i c� Since c j� �Ki�� we have
e �j� � for some e �i c� But� as above� e �i d and hence d j� �Ki��
Since this is true for all d �i c� it follows that c j� Ki�Ki��

In addition to the properties of S	� common knowledge satis�es two addi�
tional properties that will prove essential to our analysis in Chapter �� One
of these useful properties is the so�called �xed point axiom

CS� � ES�� � CS�
�

or
CS� � ES�CS�

which states that common knowledge is a �xed point of the ES operator��

It implies that a fact�s being common knowledge is in a sense �public�� a
fact can be common knowledge to a group of agents only if all members of
the group know that it is common knowledge� This axiom also implies that
when a fact becomes common knowledge� it becomes common knowledge
to all relevant agents simultaneously� The proof that common knowledge
satis�es this �xed point axiom is instructive�

Proposition ���� The �xed point axiom �CS� � ES�� � CS�
� is valid�

Proof� Suppose c j� CS� for some arbitrary point c of some arbitrary system
R� This means c j� Ek��

S � for all k � �� Since Ek��
S � � ES�Ek

S�
� for every
d adjacent to c we have d j� Ek

S
� for all k � � by Proposition ��� and hence

for every d adjacent to c we have both d j� � and d j� CS� �remember that
E�

S� � � by de�nition
� It follows that c j� ES�� � CS�
�

�The two versions of the �xed point axiom turn out to be equivalent� The �rst version of
the axiom generalizes more easily to variants of common knowledge considered in �HM����

���� PROPERTIES OF KNOWLEDGE ��

Suppose� conversely� c j� ES�� � CS�
� By Proposition ��� this means
d j� ��CS� for all points d for distance at most � from c� and in particular
that c j� � � CS�� so c j� CS� as desired�

The second useful property of common knowledge is captured by the
following induction rule�

If � � ES� is valid in the system R�
then � � CS� is valid in the system R�

Roughly speaking� the induction rule implies that if a fact is �public� to a
group of processors� in the sense that whenever it holds it is known to all
members of the group� then whenever it holds it is in fact common knowledge�

Proposition ���� The induction rule �if � � ES� is valid in the system�
then � � CS� is valid in the system� is sound�

Proof� Suppose � � ES� is valid in the system for some arbitrary system
R� To prove � � CS� is valid in the system R� we assume c j� � and
show c j� CS�� It is enough to show c j� Ek

S� for all k � �� We proceed
by induction on k� For k � �� the fact that c j� � and that E�

S� � � by
de�nition imply c j� E�

S�� For k � �� suppose the inductive hypothesis holds
for k � �� By the induction hypothesis for k � � we have c j� Ek��

S �� so
Proposition �� guarantees d j� � for all points d of distance at most k � ��
Since� however� � � ES� is valid in the system� we have d j� ES�� and
Proposition �� guarantees e j� � for all e of distance at most � from d�
But this means e j� � for all e of distance at most k from c� and hence by
Proposition �� that c j� Ek

S� as desired�

In the remainder of this work� the notions of knowledge� implicit knowl�
edge� and common knowledge together with their properties proven in this
section will be fundamental to our study of problems in distributed comput�
ing�
We end this chapter with a short discussion of the formulas or facts an

agent is said to know� According to our de�nitions� facts are properties of
points� they are either true or false at any given point� While facts are said
to be true or false of points� many times the truth of a fact is determined
by some simple property of a point� Many times� for example� the truth at
a point of a fact �� like �the last coin �ipped landed heads� is determined
simply by the point�s global state� given two points with the same global

�	 CHAPTER �� KNOWLEDGE AND COMMON KNOWLEDGE

state� the fact is either true at both points or false at both points� Other
times� the truth of a fact �� like �all coins �ipped in this run land heads�
is determined simply by the run at the current point� given two points of
the same run� the fact is either true at both points or false at both points�
depending on whether all coins �ipped in the run land heads� Notice that it
is possible for a fact like �� to be true at one point �r� k
 and false at another
point �r�� k
� even though they have the same global state� This is the case�
for example� if all coins �ipped in r land heads� all coins �ipped in r� through
time k land heads� and all coins �ipped in r� after time k land tails�
Given a system R� let us de�ne a property to be a mapping from the

points of R into some range! for example� mapping from a point �r� k
 to the
global state r�k
 or the run r� Intuitively� such a mapping maps a point to
some property of the point that is of particular interest� Given a system R
and a property P � we say a fact � is a fact about P if �xing the value of P
determines the truth of �� given two points with the same value of P � the
fact � is either true at both points or false at both points� For example� if
we assume the global state records the sequence of coins �ipped so far in a
run �perhaps this sequence is recorded in the environment
� then the fact ��

above is a fact about the global state since the truth of �� at two points with
the same global state is the same! and �� is a fact about the run since the
truth of �� at two points of the same run is the same�
Finally� recall our comment that the set " of primitive propositions in our

language L�"
 typically consists of statements about the system that make no
explicit mention of the agents� knowledge� In particular� it is common to take
these propositions to be facts about the global state� In a given system R�
we say the language L�"
 is state�generated if each of the propositions � � "
is a fact about the global state� This means the primitive propositions � are
simply statements about the global state �which we view as a particularly
simple but fundamental kind of statement
� and not� for example� about
future events in the run�

Chapter �

Programming Simultaneous

Actions Using

Common Knowledge

In this chapter� we show how thinking about distributed computation in
terms of knowledge can aid in the design and analysis of protocols for a
number of problems appearing in the literature� and in the proof of nontrivial
lower bounds on the complexity of solving these problems in certain failure
models�

��� Introduction

The problem of ensuring proper coordination between processors in dis�
tributed systems whose components are unreliable is both important and
di�cult� There are generally two aspects to such coordination� the actions
the di�erent processors perform� and the relative timing of these actions�
Both aspects are crucial� for instance� in maintaining consistent views of a
distributed database� In particular� it is often most desirable to perform co�
ordinated actions simultaneously at di�erent sites of a system� It is therefore
of great interest to study the design of protocols involving simultaneous ac�

This chapter is joint work with Yoram Moses� Earlier versions have appeared in Pro�

ceedings of the ��th IEEE Symposium on Foundations of Computer Science �MT��� and
Algorithmica �MT����

��

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

tions� actions performed simultaneously by all processors whenever they are
performed at all�
In �DM���� Dwork and Moses study the design of protocols for simultane�

ous Byzantine agreement in the crash failure model� a failure model in which
a processor fails by simply halting� never sending any message in any round
following its halting round� Their analysis focuses on determining necessary
and su�cient conditions for reaching simultaneous Byzantine agreement in
terms of the processors� states of knowledge about the system� As a result of
this analysis� they derive a protocol for simultaneous Byzantine agreement
with the unique property of being optimal in all runs! that is� their protocol
halts as early as any protocol for the problem could� given the pattern of
faulty processor behavior that occurs� In contrast� previous protocols do not
adapt their behavior on the basis of faulty processor behavior� and hence
always perform as poorly as they do in their worst case run� Implicit in the
work of Dwork and Moses is a general method for obtaining optimal protocols
for many problems involving simultaneous actions in the crash failure model�
Their technical analysis� however� makes strong use of particular properties
of the crash failure model� and does not extend to more complicated failure
models�
This chapter presents a novel approach to the design of fault�tolerant

protocols in several variants of the more complex omissions failure model� a
failure model in which processors fail only by intermittently failing to send
some of the messages they are required by their protocol to send� but do
not necessarily halt as in the crash model� We explicitly de�ne a large class
of simultaneous choice problems� a class intended to capture the essence of
simultaneous coordination in synchronous systems� Many well�known prob�
lems� including simultaneous Byzantine agreement �PSL��� Fis��� DM����
distributed �ring squad �BL��� CDDS��� Rab�� etc�� can be formulated as
simultaneous choice problems� As the result of a delicate knowledge�based
analysis in these failure models� we derive at once protocols that are optimal

in all runs for all simultaneous choice problems� Each protocol is guaranteed
to perform the desired simultaneous actions as soon as any protocol for the
problem could� given the input to the system and the pattern of faulty pro�
cessor behavior� �We will use optimal as shorthand for optimal in all runs�

Thus� we show how a knowledge�based analysis can be used as a general tool
for the design of protocols for an entire class of problems� Our analysis ap�
plies to the crash failure model as well� and formally extends the statements

���� INTRODUCTION ��

of results in �DM��� to the whole class of simultaneous choice problems �al�
though most of the proof techniques we use are quite di�erent from those in
�DM���
�
Our approach is based on the close relationship between knowledge� com�

munication� and action in distributed systems� A number of recent works �see
�HM�	�� �DM���� and �Mos���
 show that simultaneous actions are closely
related to common knowledge� Recall that� informally� a fact is common

knowledge if it is true� everyone knows it� everyone knows that everyone
knows it� and so on ad in�nitum� Notice that every processor performing a
simultaneous action knows the action is being performed� In addition� since
such actions are performed simultaneously by all processors� every processor
knows that all processors know the action is being performed� This argument
can be �and will be
 formalized and extended to show that when a simulta�
neous action is performed� it is common knowledge that the action is being
performed� Consequently� a necessary condition for performing simultane�
ous actions is attaining common knowledge of particular facts �cf� �HF���
�
Interestingly� our work shows that in a precise sense this is also a su�cient
condition� The problem of performing simultaneous actions reduces to the
problem of attaining common knowledge of particular facts�
In deriving optimal protocols for simultaneous choice problems� we make

explicit and direct use of the relationship between common knowledge and
simultaneous actions� The derivation proceeds in two stages� In the �rst
stage� we program the optimal protocols in a high�level language where pro�
cessors� actions depend on explicit tests for common knowledge of certain
facts� These high�level protocols are extracted directly from the problem
speci�cations via a few simple manipulations� The second stage deals with
e�ectively implementing these tests for common knowledge� We give a direct
implementation of such tests in all variants of the omissions failure model we
consider� As a result� our high�level protocols have e�ective implementations
in these failure models as low�level� standard protocols that are optimal in
all runs�
Consider� for example� the following version of the distributed �ring squad

problem �cf� �BL��� CDDS��� Rab�
� An external source may send �start�
signals to some of the processors in the system at unpredictable times� pos�
sibly di�erent times for di�erent processors� It is required that �i
 if any
nonfaulty processor receives a �start� signal� then all nonfaulty processors
perform an irreversible ��ring� action at some later point �which means each

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

nonfaulty processor enters some distinguished ��ring� state it never leaves
�
�ii
 whenever any nonfaulty processor ��res�� all nonfaulty processors do so
simultaneously� and �iii
 if no processor receives a �start� signal� then no non�
faulty processor ��res�� The high�level protocol we derive for this problem
in the omissions model requires all processors to act as follows�

repeat every round

send current local state to every processor

until it is common knowledge that

some processor received a �start� signal	

�
re� and halt�

Since we exhibit an e�ective implementation of the test for common knowl�
edge embedded in this protocol� this high�level protocol can be transformed
into a standard protocol that is optimal in all runs� No previous protocol
for this problem suggested in the literature is optimal in all runs� Further�
more� in many cases this protocol ��res� much earlier than any other known
protocol for this problem� In some cases� this protocol ��res� as soon as one
round after the �rst �start� signal is received�
We show that optimal protocols for simultaneous choice problems can al�

ways be implemented in a communication e�cient way� in all variants of the
omissions model we consider� However� our direct implementation of tests
for common knowledge is not computationally e�cient� It requires proces�
sors to perform exponential�time computations between consecutive rounds
of communication� One of the major technical contributions of this chap�
ter is a method of e�ciently implementing tests for common knowledge in
several variants of the omissions failure model� In the standard omissions
model� a failure model in which processors fail only by intermittently failing
to send some of the messages they are required by their protocol to send�
we provide a clean and concise method of e�ciently implementing tests for
common knowledge� The analysis underlying this method reveals the basic
combinatorial structure underlying the omissions model� as well as crisply
characterizing the set of facts that can be common knowledge at any point
in the execution of a protocol� In the receiving omissions model� a failure
model in which processors fail only by intermittently failing to receive some
of the messages sent to them rather than failing to send messages� testing
for common knowledge is shown to be trivial� This exposes a signi�cant
di�erence between two seemingly symmetric failure models�

���� INTRODUCTION ��

We are not able to e�ciently implement tests for common knowledge in
the generalized omissions model� in which faulty processors may fail both
to send and to receive messages� In fact� we show that testing for common
knowledge in this model is NP�hard� As a result� using the close relationship
between common knowledge and simultaneous actions� we are able to show
that no optimal protocol for any reasonable simultaneous choice problem can
be computationally e�cient unless P�NP� In particular� in this model there
can be no computationally�e�cient optimal protocol for the distributed �ring
squad problem stated above� for simultaneously performing Byzantine agree�
ment �see �PSL��� DM���
� or for most any other simultaneous problem� We
consider another variant of the omissions model� called generalized omissions

with information� in which it is assumed that the intended receiver of an un�
delivered message can test �and therefore knows
 whether it or the sender is
at fault� We show that the techniques used in the standard omissions model
extend to this model as well� yielding computationally�e�cient optimal pro�
tocols� As a result� we see that optimal protocols for simultaneous choice
problems are computationally intractable in the generalized omissions model
precisely because of the fact that in this model undelivered messages do not
uniquely determine the set of faulty processors�
Thus� we show how to derive e�cient optimal protocols in the omissions

model� and we show that optimal protocols are intractable in the generalized
omissions model� Since it is unrealistic to expect conventional processors
�limited to polynomial�time computation
 to follow such intractable proto�
cols� it becomes becomes interesting to ask how well resource�bounded pro�
cessors can perform simultaneous actions in the generalized omissions model�
Analyzing this problem requires extending the theory of knowledge given in
Chapter to account for the restricted computational power of such pro�
cessors� Such an extension should give rise to notions of resource�bounded
knowledge and common knowledge that closely correspond to the ability of
resource�bounded processors to perform simultaneous actions� The need for
a theory of resource�bounded knowledge has already been demonstrated� pri�
marily by cryptographic problems �e�g�� �GM�	� GMR���
� in which compu�
tational complexity is introduced arti�cially by restricting the computational
power of the adversary� thus allowing solutions involving encryption� This
work� however� provides a more compelling indication of the need for such a
theory� even for the analysis of simple problems in distributed computation
that do not make such assumptions about the adversary� We note that some

	� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

such notions of knowledge have since been proposed �Mos��� HMT��� FZ����
and we will return to the need for such notions in Chapter � when we study
cryptographic protocols in terms of knowledge�
Since some of the proofs in this chapter are quite technical� their details

can make it di�cult to obtain a high�level understanding of this work� We
strongly recommend that the reader skip all proofs on the �rst reading� The
rest of this chapter is organized as follows� Section �� de�nes the model of
distributed systems used in the chapter� In Section ��� we de�ne the no�
tion of a simultaneous choice problem� a large class of problems involving
coordinated simultaneous actions� Section ��	 presents a uniform method of
deriving an optimal high�level protocol from the speci�cation of a simultane�
ous choice problem� using explicit tests for common knowledge� Section ���
deals with the problem of e�ciently implementing tests for common knowl�
edge of facts relevant to simultaneous choice problems in a number of failure
models� This section is the heart of the chapter� The analysis in this section
reveals interesting properties of the di�erent failure models� and exposes �ne
distinctions between them� Finally� Section ��� contains some concluding
remarks�

��� Model of a System

This section introduces a model of the distributed systems with which this
chapter is concerned� an elaboration of the model given in Chapter � Our
treatment extends and is closely related to that of �DM����
We consider synchronous systems of unreliable processors� Such a system

consists of a �nite collection P � fp�� � � � � png of n � processors� each pair
of which is connected by a two�way communication link� and each sharing
a common global clock that starts at time � and advances in increments
of one�� We model such systems by elaborating the model of computation
given in Chapter in the following ways� In addition to receiving messages
from other processors at the end of a round� a processor may also receive
requests for service from clients external to the system �think� for example�
of a distributed airline reservation system
� These external requests from the

�We assume the existence of a shared global clock for ease of exposition� The analysis
performed in this chapter applies even if the processors have their own local clocks� possibly
displaying di�erent times� as long as the clocks tick �or advance� at the same rate�

���� MODEL OF A SYSTEM 	�

clients are considered distinct from the internal messages sent by processors
in the system� Actions resulting from the servicing of such requests may
take a variety of forms� including the initiation of various activities within
the system by sending certain messages to other processors in later rounds�
Each message sent by a processor is assumed to include the identities of the
sender and intended receiver of the message� as well as the round in which it
is sent! similarly for each request� At any given time� a processor�s message

history is a set containing the messages it has received so far from the other
processors� and a processor�s input history is a set containing its initial state
together with the requests it has received so far from the system�s external
clients� A processor�s local state at any given time consists of its message
history� its input history� the time on the global clock� and the processor�s
identity� For technical reasons� it will be convenient to talk about processors�
states at negative times �before time �
� A processor�s state at a negative
time is de�ned to be a distinguished empty state�

We assume processors are following a deterministic protocol as de�ned in
Chapter � Notice� however� that the state protocol component of a proces�
sor�s local protocol is no longer of interest since we have already described
how a processor�s local state should change from round to round� and we
will ignore it for the remainder of this chapter� Consequently� an equivalent
de�nition of a protocol is a function from processor�s local state to a list of
actions the processor is required to perform� followed by a list of messages
the processor is required to send� While we assume that all processors in the
system faithfully follow their protocols� sending and receiving messages as
required� some messages may be lost due to failures in the system� A run of
a protocol in the absence of any such failure is de�ned precisely as de�ned
in Chapter � In the presence of failures� however� we must elaborate this
de�nition� given a run in which failures occur� a processor�s message history
at time k no longer records all messages sent to it during round k since some
of these messages may be lost� �Of course� the processor�s message history
at time k will record all messages recorded in its message history at time
k � ��
 We attribute lost messages to failures on the part of processors �due
to the failures of their input or output ports� say
� and the various failure
models we consider di�er only in how we assign these failures to processors�
We consider the following failure models�

� the omissions model ��MSF���
� in which a lost message indicates that

	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

the sender of the message is faulty!

� the receiving omissions model� in which a lost message indicates that
the receiver is faulty!

� the generalized omissions model ��PT���
� in which a lost message in�
dicates that either the sender or receiver is faulty! and

� generalized omissions with information� which di�ers from the general�
ized omissions model in that the intended receiver of a lost message is
told whether the sender or the receiver is faulty�

When the sender of a lost message is said to be at fault� we say the processor
failed to send the message! and when the receiver of a lost message is said to
be at fault� we say the processor failed to receive the message�
We now de�ne the notion of a failure pattern� a formal description of

faulty processor behavior during a run� The notion of a failure pattern in
each variant of the omissions model is a suitable restriction of the general
de�nition given here� Remember that a faulty processor may fail to send or
receive certain messages� It is therefore natural to de�ne the faulty behavior

of a processor p to be a pair of functions S and R mapping round numbers to
sets of processors� Intuitively� these are the processors p fails to send messages
to or receive messages from� respectively� during each round� A failure pattern

is a collection of faulty behaviors hSi� Rii� one for each processor pi� The
processor pi is said to be faulty in such a failure pattern if either of the
sets Si�k
 or Ri�k
 is nonempty for some k� in which case pi is said to fail

during round k� and pi is said to be nonfaulty otherwise� If� for example� the
set Si�k
 contains the processor pj � we say that pi is faulty since any message
pi�s protocol requires that it send to pj will be lost� Notice� however� that
a faulty processor need not actually exhibit any faulty behavior at all since
the fact that any message from pi to pj during round k is lost will never be
discovered if pi�s protocol does not require it to send any message to pj in
round k�
The failure pattern of a run is a failure pattern with the property that

in every round k each processor pi sends no messages to processors in Si�k

but sends all required messages to processors not in Si�k
� and receives no
messages from processors in Ri�k
 but receives all messages sent to it by
processors not in Ri�k
� Notice� by the way� that a run may be consistent

���� MODEL OF A SYSTEM 	�

with more than one failure pattern if the protocol being followed does not
require processors to send messages to every processor in every round� Given
a run r� if �i is the complete input history of processor pi in r� then we say
that � � ���� � � � � �n
 is the input to r�
A pair ��� �
� where � is a failure pattern and � is an input� is called an

operating environment� Notice that an operating environment is independent
of any particular protocol� An operating environment simply determines for
each processor and for each round what faulty behavior it will exhibit �if
any
 during the round and what external requests it will receive during the
round� regardless of the protocol the processor is following� Given an op�
erating environment together with a particular protocol� however� the two
uniquely determine a run of the given protocol �in the given operating envi�
ronment
� Two runs of two di�erent protocols are said to be corresponding
runs if they have the same operating environment� The fact that an oper�
ating environment is independent of the protocol will allow us to compare
di�erent protocols according to their behavior in corresponding runs�
In many systems of interest� the environment reacts to the protocol being

followed by the system� meaning that the input the system received from the
environment can depend on the output to the environment generated by the
system� One can imagine� for example� a bank customer walking up to a
teller to withdraw #���� If the teller�s �protocol� causes the teller to hand
the customer ��� one dollar bills� the customer will probably ask for two #��
bills instead� If the teller�s �protocol� causes the teller to hand the customer
a single #��� bill� the customer may not ask for two #�� bills� Because the
environment reacts di�erently to the two teller protocols� making di�erent
requests in the context of the di�erent protocols� it seems di�cult to compare
the two protocols in the context of a �xed sequence of requests by the bank
customer� In contrast� however� we are interested in protocols that react to
their environment� and not the environment�s reaction to the protocol� Our
method of comparing protocols does not allow us to study the interaction of
protocols and their environment from both points of view�
In this work� we study the behavior of protocols in the presence of a

bounded number of failures �of a particular type
 and a given setting of
possible inputs� It is therefore natural to identify a system with the set of
all possible runs of a given protocol under such circumstances� Formally� a
system is identi�ed with the set of runs of a protocol P with n � proces�
sors of which at most t � n � may be faulty �in the sense of a particular

		 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

failure model M de�ned above
� where the complete input history of each
processor pi is an element of a set $i� We denote this set of runs by the
tuple % � �n� t�P�M�$�� � � � �$n
� Our de�nition of a system ensures that
the input to the system is orthogonal to� and hence carries no information
about� the failure pattern� In addition� since the set of possible inputs in the
system has the form $� � 	 	 	 � $n� one processor�s input contains no infor�
mation about any other processor�s input� and hence the only way in which
processors obtain information about other processors� input is via messages
communicated between the processors in the system�
While a protocol may be thought of as a function of processors� states�

protocols for distributed systems �as well as protocols for sequential and
parallel computation
 are typically written uniformly in terms of the number
n of processors and the number t of failures tolerated� for values of n and
t of virtually arbitrary size �although requirements such as n � t must
sometimes be satis�ed in order for the protocol to behave correctly
� In
this sense� the protocol is parameterized by n and t� and the actions and
messages required of a processor by a protocol may be viewed as depending
on n and t as well as the processor�s state� Therefore� for the purposes
of this chapter� we assume that a protocol is a function from n� t� and a
processor�s local state to a list of actions the processor is required to perform�
followed by a list of messages the processor is required to send�� Since each
protocol is de�ned for systems of arbitrary size� it is natural to de�ne a
class of systems to be a collection of systems f%�n� t
 � n � t � �g� where
%�n� t
 � �n� t�P�M�$�� � � � �$n
 for some �xed protocol P� failure modelM�
and input sets $i�

�Notice that processors must compute this function by following some algorithm� Thus�
while we formally de�ne a protocol in terms of functions� it is convenient to maintain both
views of a protocol as a function and an algorithm�

���� SIMULTANEOUS CHOICE PROBLEMS 	�

��� Simultaneous Choice Problems

In this section we de�ne the class of simultaneous choice problems for which
we construct optimal protocols� a large class of problems that capture the
essence of coordinated simultaneous action in a distributed environment�
Roughly speaking� these problems require that one of a number of alter�
native actions be performed �or �chosen�
 simultaneously by the nonfaulty
processors� where for each action we are given conditions under which the
action must be performed and conditions under which its performance is for�
bidden� In addition to these conditions� the speci�cation of such a problem
must also determine the possible operating environments in which such a
choice is to be made� by specifying what inputs each processor may possibly
receive and what types of processor failures are possible�

We think of an action as something special that can be done by a proces�
sor� An action might be writing the value � to an output register� or entering
some distinguished state such as the ��ring� state in the distributed �ring
squad problem� Formally� an action can be modeled as a message a processor
can send to the environment� There is nothing about the action itself that
restricts its performance� say� to time k but not to time k �� A simultaneous

action a is an action with two associated conditions pro�a
 and con�a
 stat�
ing when the action a should or should not be performed� Recall that a run
is determined by a protocol and an operating environment! it follows that
the operating environment is the most general protocol�independent aspect
of a run a problem speci�cation can refer to when stating when an action
should or should not be performed� Consequently� we assume both pro�a

and con�a
 are facts about the operating environment�
A simultaneous choice problem �or simply a simultaneous choice
 C is de�

termined by a set fa�� � � � � amg of simultaneous actions and their associated
conditions� together with a failure model M� and a set $j of complete in�
put histories for each processor pj � Intuitively� we want all of the nonfaulty
processors to choose one of the actions ai that they can perform without
violating the pro�aj
 and con�aj
 conditions� and to perform ai simultane�
ously� Since the pro�aj
 and con�aj
 conditions are facts about the operating
environment� which means they depend on the input and failure patterns�
we include in the problem speci�cation the sets $j determining the possi�
ble input patterns and the failure modelM determining the possible failure
patterns� �M will always be one of the failure models de�ned in Section ���

	� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

Loosely speaking� we want every run r of a protocol implementing C
satisfy the following conditions�

�i
 each nonfaulty processor performs at most one of the ai�s�

�ii
 any ai performed by some nonfaulty� processor is performed simulta�

neously by all of them�

�iii
 ai is performed by all nonfaulty processors if r satis�es pro�ai
� and

�iv
 ai is not performed by any nonfaulty processor if r satis�es con�ai
�

More formally� a protocol P and the simultaneous choice C determine a class
of systems f%�n� t
 � n � t g� where %�n� t
 � �n� t�P�M�$�� � � � �$n
� We
say that P implements C if every run of every system in the class determined
by P and C satis�es the conditions �i
��iv
 above� A simultaneous choice is
said to be implementable �or satis�able
 if there is a protocol that implements
it� We note that both P and C are required to completely determine a system
�a set of runs
� because a run is determined by a protocol and an operating
environment� the protocol P is clearly required� and the failure modelM and
input sets $i contributed by C are required to determine the set of possible
operating environments�
This de�nition of a simultaneous choice is fairly abstract� However� many

familiar problems requiring simultaneous action by a group of processors are
instances of a simultaneous choice� In all known cases� the conditions pro�ai

and con�ai
 are facts about the input and the existence of failures� and hence
are facts about the operating environment� �By the existence of failures we
mean whether any failure whatsoever occurs during the run� Some problems
allow the nonfaulty processors to display default behavior in the presence of
failures! see �LF���
 For example� the distributed �ring squad problem is a
simultaneous choice consisting of a single ��ring� action a� with the condition
pro�a
 being the receipt of a �start� signal by a nonfaulty processor� and the
condition con�a
 being that no processor receives a �start� signal� Each set $j

�We have chosen the set N of nonfaulty processors as the set of processors required to
perform actions simultaneously� but the notion of a simultaneous choice problem may be
stated in terms of many other similar �indexical� sets of processors� including the set P of
all processors� with the analysis in this section and the next one carrying through without
change�

���� SIMULTANEOUS CHOICE PROBLEMS 	�

of possible inputs simply allows for a �start� message to be delivered to any
processor at any time�
In addition to simultaneous choice problems� we also consider the closely

related class of strict simultaneous choice problems� Both classes are speci�ed
in essentially the same way� except that runs of a protocol implementing a
strict simultaneous choice are required to satisfy the modi�ed condition

�i�
 each nonfaulty processor performs exactly one of the ai�s�

together with conditions �ii
��iv
 above� All of the results in this chapter
hold for a strict simultaneous choice as well as a simultaneous choice� and
henceforth we will mention explicitly only to a simultaneous choice�
The simultaneous Byzantine agreement problem �see �DM��� PSL���
 is

an example of a strict simultaneous choice� This problem consists of an
action a� of �deciding �� and an action a� of �deciding ��� Each set $j
of possible inputs consists of two possible inputs� one starting with initial
value � and receiving no further external input during the run� and the other
starting with initial value �� The condition pro�a�
 is that all initial values
are �� and the condition pro�a�
 is that all initial values are �� The conditions
con�a�
 and con�a�
 are both taken to be false� Simultaneous Byzantine
agreement is a strict simultaneous choice� since the processors are required
to decide either � or � in every run� Other related problems that may also be
formulated as �strict
 simultaneous choice problems include weak Byzantine
agreement and the Byzantine Generals problem �see �Fis���
�
Having formally de�ned a simultaneous choice �and a strict simultaneous

choice
� let us consider when the speci�cation of such a problem disallows
performing a simultaneous action ai� Clearly� if con�ai
 holds then perform�
ing ai is disallowed� In addition� since by condition �i
 no more than one
action may be performed by the nonfaulty processors in any given run� the
condition pro�aj
� for some j �� i� requires aj to be performed� and hence
also disallows ai� It is easy to see that these are the only conditions under
which performing ai is disallowed� This motivates the following de�nition�

enabled�ai

def
� �con�ai
 �

�
j ��i

�pro�aj
�

Our discussion above implies that the performance of an action ai is allowed
by the problem speci�cation i� the condition enabled�ai
 is satis�ed� No�
tice that it is possible for several of the conditions enabled�ai
 to hold at

	� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

once� in which case performance of any of the enabled actions is allowed by
the problem speci�cation� In addition� it is easy to see that the formulas
con�ai
 � �enabled�ai
 and pro�ai
 � �enabled�aj
 �j �� i
 are valid in any
system in which processors follow a protocol implementing a simultaneous
choice� Finally� notice that because the conditions pro�aj
 and con�aj
 are
facts about the operating environment� so is each condition enabled�ai
�
As an example� notice that the condition enabled�a
 for the distributed �r�

ing squad problem is simply that some processor receives a �start� signal� For
the simultaneous Byzantine agreement problem� the condition enabled�a�
 is
that some initial value is �� and the condition enabled�a�
 is that some initial
value is �� Since for most assignments of initial values both enabled�a�
 and
enabled�a�
 hold� it is typically the case that deciding either � or � is accept�
able� It need not be the case �and� in fact� usually will not be the case
 that
the conditions enabled�ai
 for a typical simultaneous choice will be mutually
exclusive�
Having formally de�ned the notion of a simultaneous action� we are now

in a position to carefully state the relationship between simultaneous actions
and common knowledge mentioned in the introduction� When a simultane�
ous action is performed� it is common knowledge that the action is being
performed� The statement we actually prove is that when such an action is
performed� it is common knowledge that the action is enabled� This is the
�rst �and the key
 relationship we establish between common knowledge and
the performance of simultaneous actions�

Lemma ���� Let r be a run of a protocol implementing a simultaneous
choice C� If the action ai of C is performed by a nonfaulty processor at time 	
in r� then �r� 	
 j� CNenabled�ai
�

Proof� Let � be the fact �ai is being performed by a nonfaulty processor��
A processor pj performing the action ai clearly knows that it is perform�
ing ai� This processor therefore also knows that if it is nonfaulty� then ai
is being performed by a nonfaulty processor� Since r is a run of a protocol
implementing C� the action ai is performed simultaneously by all nonfaulty
processors whenever it is performed by a single nonfaulty processor� It fol�
lows that whenever � holds� so does EN�� and hence � � EN� is valid
in the system� The induction rule implies that � � CN� is valid in the
system as well� Notice that � � enabled�ai
 is valid in the system� It

���� OPTIMAL PROTOCOLS 	�

follows that CN� � CNenabled�ai
 is valid in the system� and hence so is
� � CNenabled�ai
� Thus� �r� 	
 j� � implies �r� 	
 j� CNenabled�ai
� and we
are done�

In the above proof� the essential fact that � � EN� is valid in the system
depends crucially on our de�nition of EN�� As discussed in Chapter � a
processor p performing ai knows that ai is being performed� but since a
nonfaulty processor might not know that it is nonfaulty� p might not know
that ai is being performed by a nonfaulty processor� The processor p does

know� however� that if it �p itself
 is nonfaulty� then a nonfaulty processor
is performing ai� It is for this reason that we have been led to choose our
de�nition of EN� as we have� as discussed in Chapter �

��� Optimal Protocols

In this section� we show how to extract a high�level optimal protocol for a
simultaneous choice problem directly from its speci�cation� �As mentioned
in the introduction� we use the word optimal as shorthand for optimal in all
runs! recall that this optimality is in terms of the number of rounds required
to perform a simultaneous choice�
 We begin by considering a simple class
of protocols that will serve as a building block in the design of such optimal
protocols� Recall that we think of a protocol as having two components�
an action protocol and a message protocol� A protocol is said to be a full�

information protocol �cf� �Had��� FL�� PSL���
 if its message protocol is�

repeat every round
send current local state to all processors

forever�

Intuitively� since such a protocol requires that all processors send all of the
information available to them in every round� one would expect this protocol
to give each processor as much information about the operating environ�
ment as any protocol could� In particular� the following result shows that
if a processor cannot distinguish two operating environments during runs
of a full�information protocol� then the processor cannot distinguish these
operating environments during runs of any other protocol�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

Lemma ���� Let r and r� be runs of a full�information protocol F � and
let s and s� be runs of an arbitrary protocol P corresponding to r and r��
respectively� For all processors q and times 	� if rq�	
 � r�q�	
 then sq�	
 �
s�q�	
�

Proof� We proceed by induction on the time 	� The case of 	 � � is
immediate since q must have the same initial state in both r and r�� and
hence also in s and s�� Suppose 	 � � and the inductive hypothesis holds for
all processors p at time 	� �� The local state of q at time 	 is determined by
its local state at time 	 � �� the �external
 input it receives during round 	�
and the messages it receives during round 	� Since q has the same local state
at time 	 � � in r and r�� by the inductive hypothesis� the same is true in s
and s�� Since q receives the same input during round 	 in r and r�� the same
is true in s and s�� If q does not receive a message from p during round 	
in r and r�� then both operating environments determine that no message
from p to q during round 	 is delivered� Thus� q does not receive a message
from p during round 	 in either s or s�� If q does receive a message from p
during round 	 in r and r�� then both operating environments determine that
any message from p to q during round 	 is delivered� If q receives a message
from p during round 	 of r and r�� then since q must receive the same message
from p in both r and r�� the local state of p must be the same at time 	�� in r
and r�� By the inductive hypothesis� p�s local state at time 	�� must also be
the same in s and s�� Since P is a deterministic function of processor states�
q receives the same messages from p during round 	 in s and s�� Thus� q has
the same local state at time 	 in s and s��

Thus� roughly speaking� processors learn the most about the operating
environment during runs of full�information protocols� The following corol�
lary of Lemma �� shows that facts about the operating environment become
common knowledge during runs of such protocols at least as soon as they do
during runs of any other protocol� This result captures in a precise sense a
property of full�information protocols that is essential to our analysis�

Corollary ���� Let � be a fact about the operating environment� Let r
and s be corresponding runs of a full�information protocol F and an arbitrary
protocol P� respectively� If �s� 	
 j� CN� then �r� 	
 j� CN��

Proof� Suppose that �s� 	
 j� CN�� We will prove that �r� 	
 j� CN� by
showing that �r�� 	
 j� � for all runs r� of F such that �r� 	
 � �r�� 	
! that is�

���� OPTIMAL PROTOCOLS ��

that �r� 	
 and �r�� 	
 are in the same connected component of the similarity
graph� Fix r�� and let s� be the run of P corresponding to r�� Lemma ��
and a simple inductive argument on the distance between �r� 	
 and �r�� 	
 in
the similarity graph show that �r� 	
 � �r�� 	
 implies �s� 	
 � �s�� 	
� Since
�s� 	
 j� CN�� we have �s�� 	
 j� �� Since corresponding runs satisfy the same
facts about the operating environment� �s�� 	
 j� � implies �r�� 	
 j� �� It
follows that �r� 	
 j� CN��

We are now in a position to describe how to construct optimal proto�
cols for simultaneous choice problems� Recall that when a simultaneous
action ai is performed� Lemma ��� implies that enabled�ai
 must be com�
mon knowledge� Since enabled�ai
 is a fact about the operating environment�
Corollary ��� implies that enabled�ai
 becomes common knowledge in runs
of a full�information protocol as soon at it does in corresponding runs of
any other protocol� Thus� given an e�ective test that the nonfaulty proces�
sors can use to determine whether enabled�ai
 is common knowledge� a test
we denote by test�for�CN enabled�ai
� the following protocol FC is an optimal
protocol for C�

no action performed� true	

repeat every round

if no action performed and

test�for�CN enabled�ai
 returns true for some ai
then

j � min fi � test�for�CN enabled�ai
 returns trueg�
perform aj�
no action performed� false	

send current local state to every processor	

forever�

Before formally proving that FC is an optimal protocol� we must de�ne more
formally the tests for common knowledge that appear in FC� Recall that the
�xpoint axiom implies that CN� � ENCN� is valid� This guarantees that
CN� follows from the local state of each nonfaulty processor whenever CN�
holds� In other words� since CN� implies ENCN� which� for every nonfaulty
processor pi� implies KiCN�� each nonfaulty processor can determined from
its local state that CN� holds� This is not true for faulty processors�
It is therefore natural to de�ne a test for common knowledge of �� denoted

as above by test�for�CN�� to be a test that� given the local state of a nonfaulty

� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

processor at �r� 	
 �together with n and t
� returns true i� CN� holds at
�r� 	
� Such a test may return either true or false when given the local
state of a faulty processor� Let us denote by Aj�r� 	
 the set of actions ai
such that test�for�CNenabled�ai
 returns true when given the local state of pj
at �r� 	
� Notice that if pj is nonfaulty� then Aj�r� 	
 is precisely the set of
actions ai such that CNenabled�ai
 holds at �r� 	
� It follows that for all
nonfaulty processors pj the sets Aj are equal at all times� In particular� all
become nonempty at the same time �as soon as enabled�ai
 becomes common
knowledge for some ai
� Thus� if all processors pj choose the action of least
index from Aj as soon as this set becomes nonempty� as required by FC�
then all nonfaulty processors choose the same action simultaneously� We can
now prove that FC is an optimal protocol for C� �Recall that a simultaneous
choice problem is implementable i� there exists a protocol that implements
it�

Theorem ���� If C is an implementable simultaneous choice problem� then
FC is an optimal protocol for C�

Proof� We �rst prove that nonfaulty processors perform actions in runs
of FC as soon as they do in corresponding runs of any protocol implement�
ing C� Let r be a run of FC� and let s be the corresponding run of a
protocol implementing C� Lemma ��� implies that if ai is performed by
a nonfaulty processor at time 	 in s� then �s� 	
 j� CNenabled�ai
� Since
enabled�ai
 is a fact about the operating environment� Corollary ��� implies
that �r� 	
 j� CNenabled�ai
� As a result� Aj�r� 	
 must be nonempty for all
nonfaulty processors pj� and hence each must perform an action in r no later
that time 	� It follows that nonfaulty processors perform actions in runs of FC

as soon as they do in corresponding runs of any protocol implementing C�
We now show that FC actually implements C� Let r be a run of FC� First�

it is obvious from the de�nition of FC that each nonfaulty processor performs
at most one action in r� �If C is an implementable strict simultaneous choice�
then the preceding discussion shows that the nonfaulty processors perform
exactly one action in r�
 Second� if a nonfaulty processor pj performs an
action ai at time 	 during r� then time 	 is the �rst time at which Aj�r� k

is nonempty� and ai is the action of least index in this set� Since Aj�r� k
 �
Am�r� k
 for all nonfaulty processors pm� the same is true for all nonfaulty
processors� As a result� all nonfaulty processors must choose to perform ai

���� OPTIMAL PROTOCOLS ��

simultaneously at time 	� Third� if r satis�es pro�ai
� then the run s of
any protocol implementing C corresponding to r must satisfy pro�ai
� and
hence ai must be performed in s� As we have already seen� an action must
also be performed in r� Since pro�ai
 � �enabled�aj
 for all j �� i� the set
Aj�r� k
 of a nonfaulty processor pj must contain no action other than ai �if
it contains any action at all
� Thus� ai must be the action performed in r�
Finally� if r satis�es con�ai
� then r does not satisfy enabled�ai
� and no set
Aj�r� 	
 for any nonfaulty processor pj contains ai� Thus� ai is not performed
in r� It follows that FC implements C�

As a result of Theorem ��	� we see that full�information protocols can
be used as the basis of optimal protocols for simultaneous choice problems�
Thus� we will restrict our attention to full�information protocols in the re�
mainder of this chapter� Unless otherwise speci�ed� all protocols mentioned
will be full�information protocols� and all runs will be runs of such protocols�
More important� however� a consequence of Theorem ��	 is that designing
an optimal protocol for a simultaneous choice problem C essentially reduces
to testing for common knowledge of certain facts� In order to design an
optimal protocol for C� it is enough to construct the tests for common knowl�
edge of the facts enabled�ai
� We note that the fundamental property of
common knowledge underlying the existence of such tests is the fact that
CN� � ENCN� is valid! that is� when � becomes common knowledge� the
fact that � is common knowledge will follow from the local state of every
nonfaulty processor� The problem of implementing such tests is the subject
of the following section�

Before ending this section� however� we consider the size of messages re�
quired by a full�information protocol F � Such a protocol requires processors
to send their entire local state during every round� Since� strictly speaking�
the size of a processor�s state may be exponential in the number of rounds
elapsed� this protocol seems to require processors to send messages of expo�
nential length� We now show� however� that in the variants of the omissions
model we consider in this work there is a simple� compact representation of
a processor�s state that may be sent instead� Consequently� it will be possi�
ble to implement all full�information protocols �and in particular the optimal
protocol FC
 in a communication�e�cient way in all variants of the omissions
model� We note that this representation depends heavily on the fact that
the only faulty behavior a faulty processor may exhibit involves the loss of

�	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

 � � �

p�

p�

p� r r r r

r r r r

r r r r�
�
�

�
�
�
��ZZ

Z
J
J
J
JJ�
�
�

 � � �

p�

p�

p� r r

r r r r�
�
�
��J
J
J
JJ

a� G�r� �� b� G��r� ��

Figure ���� Communication graphs�

messages� The technique does not work in the Byzantine models where pro�
cessors may send incorrect messages in addition to losing messages� Results
of �Coa��� Mic��� Mic��� show how the size of messages in such models may
be reduced�

Given a run r of F � the communication graph of r �see Figure ���
 repre�
sents the messages delivered in r� It is a layered graph �with one layer corre�
sponding to every natural number� representing time on the global clock
 in
which each processor is represented by one node in every layer� We denote
the node representing processor p at time 	 by hp� 	i� Edges connect nodes
in adjacent layers� with an edge between hp� k � �i and hq� ki i� a message
from p is delivered to q during round k� The labeled communication graph

is obtained by labeling the layer � nodes of the communication graph with
processors� names and initial states� and by labeling the layer k nodes �for
k � �
 with the requests the processors receive from external clients during
round k� We note in passing that� since r is a run of the full�information pro�
tocol F � its labeled communication graph uniquely determines its operating
environment� For every point �r� 	
� we denote by G�r� 	
 the �rst 	 � lay�
ers of the labeled communication graph of r� representing the �rst 	 rounds
of r� For example� illustrated in Figure ����a
 is a graph G�r� �
 depicting
the �rst � rounds of a run r� We say that G�r� 	
 has length 	�

���� OPTIMAL PROTOCOLS ��

Informally� at every point �r� 	
 of a run of F � a processor pi�s local state
corresponds to a certain subgraph Gi�r� 	
 of G�r� 	
� For example� the sub�
graph G��r� �
 of G�r� �
 is illustrated in Figure ����b
� We de�ne the subgraph
Gi�r� 	
 of G�r� 	
 inductively as follows� For 	 � � the subgraph Gi�r� �
 con�
sists of the labeled node hpi� �i� For 	 � � the subgraph Gi�r� 	
 consists of
the labeled node hpi� 	i� the subgraph Gi�r� 	� �
� the edges from layer 	� �
nodes to hpi� 	i� and the subgraphs Gj�r� 	 � �
 for every layer 	 � � node
hpj� 	 � �i adjacent to hpi� 	i� Given a set S of processors� it is convenient
to denote by GS�r� 	
 the union of the graphs Gi�r� 	
 for every pi � S� We
remark that GS�r� 	
 uniquely determines Gi�r� 	
 for every pi � S� The next
lemma states that a processor�s state of the labeled communication graph
uniquely determines its view of the run�

Lemma ���� Let r and r� be runs of a full�information protocol F � For
every processor pi and time 	� ri�	
 � r�i�	
 i� Gi�r� 	
 � Gi�r

�� 	
�

Proof� We proceed by induction on 	� The case of 	 � � is immediate�
Suppose 	 � � and the inductive hypothesis holds for 	� ��
Suppose pi has the same local state at time 	 in both r and r�� This

implies� in particular� that pi has the same local state at time 	�� in r and r��
and from the inductive hypothesis it follows that Gi�r� 	� �
 � Gi�r

�� 	 � �
�
In addition� this implies that pi must receive the same input during round 	
in r and r�� and hence hpi� 	i is labeled with the same input in Gi�r� 	
 and
Gi�r�� 	
� If pi does not receive a message from a processor pj during round 	
in r and r�� then there is no edge from hpj � 	� �i to hpi� 	i in either Gi�r� 	

or Gi�r�� 	
� If pi does receive a message from a processor pj during round 	
in r and r�� then it receives the same message in both runs� and pj must
have the same local state at time 	� � in both runs� Hence� there is an edge
from hpj� 	 � �i to hpi� 	i in both Gi�r� 	
 and Gi�r�� 	
� and by the inductive
hypothesis we have that Gj�r� 	� �
 � Gj�r�� 	� �
� Thus� Gi�r� 	
 � Gi�r�� 	
�
Conversely� suppose Gi�r� 	
 � Gi�r�� 	
� It follows that Gi�r� 	 � �
 �

Gi�r�� 	 � �
� and by the inductive hypothesis pi has the same local state at
time 	�� in r and r�� The node hpi� 	i must be labeled with the same input in
Gi�r� 	
 and Gi�r�� 	
� so pi receives the same input during round 	 in r and r��
The edges from layer 	�� nodes to hpi� 	i are the same in Gi�r� 	
 and Gi�r�� 	
�
so pi receives messages from the same processors during round 	 in r and r��
Again� Gj�r� 	��
 � Gj�r�� 	��
 for every node hpj � 	� �i adjacent to hpi� 	i�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

and by the inductive hypothesis pj has the same local state at time 	 � �
in r and r�� Since F requires that every processor send its entire local state
in every round� pi receives the same messages during round 	 in r and r�� It
follows that pi has the same local state at time 	 in both r and r��

Lemma ��� implies that a processor�s local state and its view of the
corresponding labeled communication graph convey the same information�
Given either the graph Gi�r� 	
 or the local state ri�	
� reconstructing the
other is straightforward� Therefore� an equivalent implementation of a full�
information protocol is one in which the processors send the labeled commu�
nication graphs corresponding to their local states instead of sending their
entire local states� From now on� we will use the term full�information proto�

col to refer to this equivalent form� It is easy to see that the size of Gi�r� 	
 is
polynomial in the number of processors n� the global time 	� and the size of
the requests received from external clients� It follows that messages required
by a full�information protocol are of polynomial size�� Furthermore� given the
labeled communication graphs corresponding to the local states at time 	��
of the processors that send messages to a given processor pi during round 	�
it is easy to construct the labeled communication graph corresponding to pi�s
local state at time 	� Thus� the use of such compact representations of a pro�
cessor�s state is computationally e�cient as well as communication e�cient�
Finally� recall that we have formally de�ned a test for common knowledge to
be a function of processor states �as well as n and t
� In light of the preced�
ing discussion� there is no loss of generality in assuming that such a test is
a function of communication graphs corresponding to processor states� We
now turn to the problem of implementing such tests�

��� Testing for Common Knowledge

The previous section established the claim that tests for common knowledge
provide a very powerful programming technique� The design of optimal pro�
tocols for simultaneous choice problems reduces to implementing tests for
common knowledge of certain facts� In this section we investigate the prob�
lem of implementing tests for common knowledge in the di�erent variants of

�In the Byzantine failure models� however� in which processors are allowed to lie �or
maliciously deviate from the protocol�� we know of no such compact representations� See
�Coa��� for a trade�o� between message size and running time possible in such models�

���� TESTING FOR COMMON KNOWLEDGE ��

the omissions model� With such tests� we will be able to construct optimal
protocols for simultaneous choice problems in these models� As we will see�
properties of the di�erent variants of the omissions model cause dramatic dif�
ferences in the complexity of testing for common knowledge� In addition� the
optimal protocols we construct will have interesting properties that vary ac�
cording to the failure model� We will discuss these properties as we consider
each variant later in this section�
Recall that a protocol is a function that� given the number of processors n�

the bound t on the number of faulty processors� and a processor�s state� yields
a list of the actions the processor should perform� as well as the messages
it should send in the next round� �Thus� the protocols we are interested in
are uniform in n and t�
 Since the protocols we will be concerned with are
full�information protocols� processors� states will be e�ciently representable
by labeled communication graphs� We will soon restrict our attention to
simultaneous choice problems in which the external requests are of constant
size �or� equivalently� to problems involving only a constant number of possi�
ble requests from external clients
� This restriction implies that processors�
states at time 	 will be of size polynomial in n and 	� A protocol will there�
fore determine the messages and actions required at time 	 based on input
of size polynomial in n and 	� Consequently� we will measure the complexity
of computations performed by protocols at time 	 in systems of n processors
as a function of n and 	� By polynomial time� polynomial space� etc�� we will
mean polynomial in n and 	�
The de�nition of simultaneous choice problems presented in Section ���

is very general� so general� in fact� that it is possible to de�ne simultane�
ous choice problems with a variety of anomalous properties� For example�
it is possible to de�ne a simultaneous choice problem in which pro�a
 is the
fact � � �the �rst round in which p receives an external request is a round
whose number is the index of a halting Turing machine� �in some a priori
well�de�ned enumeration of Turing machines
� and con�a
 is ��� Clearly�
since it is undecidable whether � holds even given the local state of p af�
ter it receives its �rst request� it will also be undecidable which of CN� or
CN�� holds when processor p�s local state becomes common knowledge� It
follows that this simultaneous choice problem cannot be e�ectively imple�
mented by a computable protocol� Similarly� one can construct simultaneous
choice problems in which evaluation of the conditions is intractable� rather
than undecidable as in the above example� It is also possible to introduce

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

anomalies by de�ning the sets $i of external inputs in strange ways� Since
we are not interested in problems involving such inherent anomalies� we will
avoid them by making restrictions on the relevant facts and the inputs arising
in the simultaneous choice problems we will consider in the sequel�
We �rst de�ne the class of practical facts� which will be used to restrict

the conditions that specify a simultaneous choice problem� Roughly speak�
ing� one essential property of a practical fact � is that it is easy to determine
from a processor�s state whether a run satis�es �� More formally� we denote
by �GS�r� 	
� the property of being a run r� such that GS�r� 	
 � GS�r�� 	
�
Consequently� if GS�r� 	
 � � is valid in a system� then every run r� of the
system satisfying GS�r� 	
 � GS�r�� 	
 must also satisfy �� In this case� we
say that GS�r� 	
 determines �� Notice� for example� that no �nite labeled
communication graph GS�r� 	
 can determine that a run is failure�free �since
the run is in�nite� and a failure can always happen outside the �nite scope
depicted by the graph
� With this notion in mind� a fact � is said to be
practical within a class of systems f%�n� t
 � n � t g if the following con�
ditions hold� �i
 � is a fact about the input and the existence of failures�
and �ii
 there is a polynomial�time algorithm to determine� given n� t� and a
graph GS�r� 	
 of a point of %�n� t
� whether GS�r� 	
 � � is valid in %�n� t
�
The �rst condition is justi�ed by the fact that we will be testing for common
knowledge of the conditions enabled�ai
 arising from natural simultaneous
choice problems� and such conditions are typically conditions on the input
and existence of failures� The second condition ensures that it is easy to test
whether a labeled communication graph determines that the fact holds� �We
make this restriction since it would clearly be unreasonable to expect the
processors to be able to e�ciently identify and act based on facts that are
intractable to compute from the labeled communication graph�

We now consider a natural restriction on the sets $i of possible inputs�

A class of systems is said to be practical if there are two �xed �nite sets S
and M of initial states and external requests� respectively� such that each $i
in all systems of the class is the set of complete input histories whose initial
state is in S� and in which the input received in every round is a subset
of M � This condition ensures that the input sets are of a simple form� In
particular� it implies that all $i�s are identical� and that the input received
by a processor during any given round is of constant size�
Having de�ned the notions of practical facts and practical classes of sys�

tems� we say that a simultaneous choice C is practical if �i
 the class of systems

���� TESTING FOR COMMON KNOWLEDGE ��

determined by a full�information protocol and C is practical� and �ii
 each
condition enabled�ai
 is practical within this class of systems� Essentially
all natural simultaneous choice problems are practical� In particular� all si�
multaneous choice problems appearing in the literature are practical� Our
analysis will hence be restricted to testing for common knowledge of practi�
cal facts and to designing and implementing optimal protocols for practical
simultaneous choice problems� We remark� however� that our analysis will
apply to a more general class of simultaneous choice problems� whose precise
characterization is somewhat complicated�
In Section ��	 we programmed protocols for simultaneous choice problems

in a high�level language in which processors� actions depend on explicit tests
for common knowledge� Recall that test�for�CN enabled�ai
 is a test nonfaulty
processors can use to determine whether enabled�ai
 is common knowledge�
Given the graph corresponding to the local state of a nonfaulty processor at
�r� 	
 as input� test�for�CN enabled�ai
 returns true i� �r� 	
 j� CNenabled�ai
�
Theorem ��	 implies that given such a test for each condition enabled�ai
�
the protocol FC is an optimal protocol for C� Until this point� however� we
have sidestepped the issue of whether such tests actually exist� With the
next lemma we see that� for practical simultaneous choice problems� such
tests can be implemented in polynomial space�

Lemma ���� If C is a practical simultaneous choice problem� then for each
action ai the test test�for�CN enabled�ai
 can be implemented in polynomial
space�

Proof� Wemust prove the existence of an algorithm test�for�CN enabled�ai

determining in polynomial space whether enabled�ai
 is common knowledge
at �r� 	
� given as input n� t� and the graph Gj�r� 	
 corresponding to the local
state of a nonfaulty processor pj at �r� 	
� We will actually exhibit a nondeter�
ministic� polynomial�space algorithm Ai determining whether enabled�ai
 is
not common knowledge at �r� 	
� Since NPSPACE�PSPACE and PSPACE is
closed under complementation �see �HU���
� the existence of the algorithm Ai

implies the existence of an algorithm test�for�CN enabled�ai
�
Let f%�n� t
 � n � t g be a class of systems determined by a full�

information protocol and the problem C� We claim that such an algorithm Ai

need only guess a point �s� 	
 with the property that G�s� 	
 � enabled�ai

is not valid in %�n� t
� guess the path from �r� 	
 to �s� 	
 in the similarity

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

graph proving that �r� 	
 � �s� 	
� and then verify that these two conditions
hold� To see this� notice that since G�s� 	
 � enabled�ai
 is not valid in
the system� there must be a point �s�� 	
 such that G�s� 	
 � G�s�� 	
 and
�s�� 	
 �j� enabled�ai
� Construct the run with the input of s� in which pro�
cessors fail precisely as they do in s for the �rst 	 rounds� and in which no
processor fails after time 	� Let u be a run obtained by adding to this run a
single failure after time 	 i� there is a failure in s�� Since u and s� must satisfy
the same facts about the input and existence of failures� �s�� 	
 �j� enabled�ai

implies �u� 	
 �j� enabled�ai
� Since at least one nonfaulty processor in s is non�
faulty in u� and also has the same local state at time 	 since G�u� 	
 � G�s� 	
�
we have �s� 	
 � �u� 	
� Therefore� �r� 	
 � �u� 	
 and �u� 	
 �j� enabled�ai
�
and it follows that �r� 	
 �j� CNenabled�ai
�

We now describe the algorithm Ai in greater detail� Notice that since C
is practical� the input received by a processor in every round of a run of
%�n� t
 is of constant size� and hence it is possible to construct the labeled
communication graph of any point of %�n� t
 in polynomial space�

The algorithm Ai �rst guesses the point �s� 	
 and writes it down in poly�
nomial space� Since enabled�ai
 is a practical fact� Ai can show in polynomial
time �and hence in polynomial space
 that G�s� 	
 � enabled�ai
 is not valid
in the system %�n� t
�

The algorithm then guesses the path from �r� 	
 to �s� 	
 in the similarity
graph step by step� verifying each step in polynomial�space as it goes� The
algorithm Ai begins by constructing the graph G�r�� 	
 of a run r� by adding
to the graph Gj�r� 	
 received as input all edges not recorded as missing in
Gj�r� 	
� Notice that since pj is nonfaulty in r� it is nonfaulty in r� as well�
and hence �r� 	
 � �r�� 	
� The algorithm Ai then shows that �r�� 	
 � �s� 	

�and hence that �r� 	
 � �s� 	

 in polynomial space by constructing one by
one the graph G�ui� 	
 of each point �ui� 	
 in a path from �r�� 	
 to �s� 	

in the similarity graph� For each pair of points �ui��� 	
 and �ui� 	
� the
algorithm shows that some nonfaulty processor pk has the same local state
at both points by choosing pk� exhibiting for each point an assignment of
faulty processors �consistent with their respective graphs
 in which pk is
nonfaulty� and showing that pk has the same local state at both points by
verifying Gk�ui��� 	
 � Gk�ui� 	
�

It is important to realize that Lemma ��� holds in all variants of the
omissions model� The failure model is a parameter of a simultaneous choice

���� TESTING FOR COMMON KNOWLEDGE ��

problem� and we have made no assumptions restricting the failure model in
this result� We note that the proof of Lemma ��� actually shows that testing
for common knowledge of any practical fact can be done in polynomial space�
In fact� the proof shows that such tests have e�ective implementations even
when the algorithm determining whether G�r� 	
 � enabled�ai
 is valid does
not run in polynomial time �although the problem must still be decidable
�
In this case� however� the test is guaranteed to run in polynomial space only
if this computation can be performed using polynomial space� The most
important consequence of Lemma ���� however� is that practical simultaneous
choice problems have polynomial�space optimal protocols�

Theorem ���� If C is an implementable practical simultaneous choice prob�
lem� then there is a polynomial�space optimal protocol for C�

With Theorem ��� we see that practical simultaneous choice problems
do have e�ective optimal protocols� In general� however� connected com�
ponents in the similarity graph may be of exponential size� and paths in
such components may be of exponential length� It therefore follows that
the polynomial�space protocol given by Theorem ��� requires the processors
to perform exponential�time computations between consecutive rounds of
communication� The resulting protocol is therefore clearly not a reasonable
protocol to use in practice� A crucial question at this point is whether there
are e�cient optimal protocols for simultaneous choice problems� Recall that
we have already seen that optimal protocols can be implemented in a way
that makes e�cient use of communication� The rest of the chapter is de�
voted to investigating ways of implementing tests for common knowledge in
variants of the omissions model in a computationally�e�cient manner� and
therefore of implementing e�cient� optimal protocols for simultaneous choice
problems in these models�

����� The Omissions Model

Recall that in the omission model a faulty processor may fail only by failing
to send some of the messages its protocol requires it to send� In this sec�
tion we consider the problem of e�ciently implementing tests for common
knowledge in the omissions failure model� In particular� we develop a con�
struction that crisply characterizes the connected component of a point in

� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

the similarity graph� This construction determines a subgraph of the labeled
communication graph with the property that two points are similar i� their
respective subgraphs are identical� As stated in Theorem ��� the connected
component of a point in the similarity graph completely determines what
facts are common knowledge at that point� As a result� this construction
enables us to devise e�cient tests for common knowledge� and hence e�cient
protocols for simultaneous choice problems that are optimal in all runs�

Dwork and Moses address in �DM��� the problem of implementing tests
for common knowledge in the crash failure model� In the crash failure model�
processors fail by crashing! that is� faulty processors may successfully send
messages to some processors during their failing round� but will not success�
fully send any messages in any later round� As a result� a faulty processor
is �out of the game� after its failing round� and no longer contributes to the
knowledge of the remaining processors� The analysis performed by Dwork
and Moses focuses on the notion of a clean round� a round in which no pro�
cessor failure is discovered� In runs of a full�information protocol� a clean
round ensures that all nonfaulty processors receive the same set of messages�
After such a round� all nonfaulty processors have an identical view of the part
of the run that precedes the clean round� Dwork and Moses show that facts
about the initial con�guration become common knowledge exactly when it
becomes common knowledge a clean round has occurred� Dwork and Moses
complete their analysis by characterizing when this happens� In the omis�
sions model� however� because a faulty processor need not remain silent� or
crash� after �rst failing to send a message
� a faulty processor may continue
to contribute to the knowledge of the nonfaulty processors� even after its �rst
failing round� The situation is therefore more complicated� and clean rounds
no longer play the same role here as they do in the crash failure model� Fur�
thermore� to the best of our understanding� there is no direct analog to the
notion of a clean round in the omissions model� The approach used by Dwork
and Moses in the crash failure model� therefore� does not seem to extend to
this model� As a result� we are forced to take a di�erent approach��

�As mentioned in the introduction� since the technical details of the proofs in this
section may make it di�cult to obtain a high�level understanding of our approach� we
encourage the reader to skip the proofs on the �rst reading�

���� TESTING FOR COMMON KNOWLEDGE ��

The Basic Steps

We now give what will become the two basic steps of our test for common
knowledge during runs of a full�information protocol in the omissions model�
�Unless otherwise mentioned� all protocols referred to in this section will
be full�information protocols�
 Our approach to the problem of testing for
common knowledge is motivated by a careful analysis of what facts do not

become common knowledge� We begin with a technical result� similar to
Lemma �� of �DM���� saying that two points are similar if they di�er only
in the faulty behavior exhibited by a single processor in the last few rounds�
Throughout the remainder of this chapter it will be convenient to refer

to runs di�ering only in some aspect of their operating environments� Given
two runs r and r� of a protocol F � we will say that r di�ers from r� only in a
certain aspect of the operating environment if r is the result of executing F in
an operating environment that di�ers from that of r� only in the said aspect�
Notice that while their operating environments may be similar� the messages
sent in the two runs may actually be quite di�erent� We say that a processor
is silent from time k if it fails to send every message in every round following
time k�

Lemma ��� Let r and r� be runs di�ering only in the �faulty
 behavior
displayed by processor p after time k� and suppose no more than f processors
fail in either r or r�� If 	 � k � t �� f � then �r� 	
 � �r�� 	
�

Proof� If k � 	 then G�r� 	
 � G�r�� 	
� and Lemma ��� implies that
�r� 	
 � �r�� 	
� Therefore� assume k
 	� We proceed by induction on
j � 	 � k� Without loss of generality� we may assume that r and r� ac�
tually di�er in the faulty behavior of p� and hence that p fails in one of these
runs� Notice that since p already fails in one of these runs and yet no more
than f processors fail in either run� it is clear that at most f � t processors
fail in any run di�ering from either run only in the faulty behavior of p�
Suppose j � � �that is� k � 	 � �
� Since t � n � and since r and r�

di�er only in the behavior of p� there are two processors q� and q� �other
than p
 that do not fail in either run� Let r� be the run di�ering from r only
in that p sends to q� during round 	 of r� i� it does so in r� �and notice that r�
may actually be equal to r
� Since q��s local state at time 	 is independent of
whether p sends to q� during round 	� we have �r� 	
 � �r�� 	
� Since G�r�� 	

and G�r�� 	
 di�er only in the messages that p sends to processors other than q�

�	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

in round 	� and q��s local state at �r�� 	
 is independent of whether p sends
to the remaining processors during round 	� we have �r�� 	
 � �r�� 	
� Thus�
by the transitivity of ���� we have �r� 	
 � �r�� 	
�

Suppose j � � �that is� k
 	 � �
 and the inductive hypothesis holds
for j � �� Let ri be the run di�ering from r only in that for each processor q
in fp�� � � � � pig processor p sends to q during round k � in ri i� it does so
in r�� Notice that r � r�� We will show that �r� 	
 � �ri� 	
 for all i � ��
Since rn di�ers from r� only in the faulty behavior of p after time k ��
and since 	 � �k �
 � j � �� it will follow by the inductive hypothesis for
j � � that �rn� 	
 � �r�� 	
� Finally� by the transitivity of ���� we will have
�r� 	
 � �r�� 	
 as desired�

We now proceed by induction on i to show that �r� 	
 � �ri� 	
 for all i � ��
The case of i � � is trivial� Suppose i � � and the inductive hypothesis
holds for i � �! that is� �r� 	
 � �ri��� 	
� Notice ri�� and ri di�er at most
in whether p sends a message to pi during round k �� Let s be the run
di�ering from ri�� in that pi is silent from time k � in s� Suppose no more
than g processors fail in either ri�� or s� Notice that g � f �� Therefore�
since �
 	� k � t �� f we have f
 t and g � t� so at most t processors
fail in s� Furthermore� 	 � �k �
 � t � � �f �
 � t � � g� Since� in
addition� ri�� and s di�er only in the faulty behavior of pi after time k ��
the inductive hypothesis for j � � implies �ri��� 	
 � �s� 	
� Now� since pi is
silent from time k � in s� the local state of a nonfaulty processor at �s� 	

is independent of whether p sends to pi during round k �� so �s� 	
 � �s�� 	

where s� di�ers from s in that p sends to pi during round k � in s� i� it does
so in ri� Again� the inductive hypothesis for j�� implies that �s�� 	
 � �ri� 	
�
By the transitivity of ���� it follows that �r� 	
 � �ri� 	
�

While Lemma ��� is a technical lemma in the context of this work� it
has a number of interesting consequences in its own right� In particular� the
�t �
�round lower bound on the number of rounds required for simultaneous
Byzantine agreement is an immediate corollary of this lemma� The resulting
proof of this lower bound is perhaps the simplest to appear in the litera�
ture �see �DM��� for details
� More important for our purposes� however�
is the fact that two corollaries of Lemma ��� enable us to characterize the
connected components of the similarity graph� Consider the runs r� and r�
of Figure ��� where we indicate only faulty behavior� solid lines indicate
silence� and dashed lines indicate sporadic faulty behavior� Notice that f

���� TESTING FOR COMMON KNOWLEDGE ��

�

�

�

f

k �
� �

t� �� f

The run r�� The run r��

Figure ��� Runs illustrating Lemma ����

processors fail in r�� In the following lemma we show that �r�� 	
 � �r�� 	

where r� di�ers from r� only in that processors failing in r� are silent in r�
from time k� where k � 	 � �t � � f
� This is the �rst basic step of our
test for common knowledge�

Lemma ��
� Let r� be a run in which f processors fail� Let r� be the run
di�ering from r� only in that processors failing in r� are silent from time k
in r�� where k � 	 � �t � � f
� Then �r�� 	
 � �r�� 	
�

Proof� Let q�� � � � � qf be the faulty processors in r�� Let si be the run
di�ering from r� in that processors q�� � � � � qi are silent from time k in si�
Notice that r� � s� and r� � sf � We proceed by induction on i to show that
�r�� 	
 � �si� 	
 for all i� The case of i � � is trivial� Suppose i � � and the
inductive hypothesis holds for i � �! that is� �r�� 	
 � �si��� 	
� Since si��
and si di�er at most in the faulty behavior of qi after time k� it follows
by Lemma ��� that �si��� 	
 � �si� 	
� By the transitivity of ���� we have
�r�� 	
 � �si� 	
�

One interesting consequence of this result� for example� is that the states
at time k of processors failing in r� are not common knowledge at time 	�
To see this� let F be the set of processors failing in r�� and suppose it is
common knowledge at �r�� 	
 that �the joint view of F at time k is equal

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

to r�F �k
�� This means that this statement is true at all points in �r�� 	
�s
connected component� But let r�� and r�� be runs di�ering from r� and r�
only in that some already�faulty processor p � F fails to send to another
already�faulty processor q � F during round k� Notice that the joint view
of F at time k in r�� is not equal to r�F �k
� Yet according to our lemma�
�r�� 	
 � �r�� 	
 and �r��� 	
 � �r

�
�� 	
! and since the processors in F are silent

from time k� the points �r�� 	
 and �r��� 	
 are indistinguishable to all nonfaulty
processors! and so �r�� 	
 � �r��� 	
� which implies �r�� 	
 � �r

�
�� 	
� and hence

�r�� 	
 and �r��� 	
 are in the same connected component� Consequently� the
time k views of processors in the set F cannot be common knowledge at
�r�� 	
� Interestingly� our next result will show that even the identity of F
itself �the identity of the faulty processors
 may not be common knowledge
at �r�� 	
�
Before discussing the second lemma� however� we make an important

de�nition� Given a point �r� k
 and a set of processors G� let

B�G� r� k

def
� fp � �r� k
 j� IG�	p is faulty

g �

By this de�nition� B�G� r� k
 is the set of processors implicitly known by G
at �r� k
 to be faulty� An important property of the omissions failure model
is that processors fail only by failing to send messages� It follows that G
implicitly knows at �r� k
 that a processor p is faulty i� G implicitly knows
at �r� k
 of some processor q not receiving a message from p at time k or
earlier! that is� GG�r� k
 contains no edge from hp� 	 � �i to hq� 	i for some
node hq� 	i of GG�r� k
� It is therefore simple and straightforward to compute
B�G� r� k
 given GG�r� k
�
The essence of the second lemma is captured by the runs r� and r� of

Figure ���� In the run r�� the f faulty processors are silent from time k �
	��t ��f
� The setG is the set of nonfaulty processors and B � B�G� r�� k
�
The run r� di�ers from r� only in that processors in P �B do not fail in r��
The following lemma states that �r�� 	
 � �r�� 	
� This implies� for instance�
that the failure of processors in P�B cannot be common knowledge at �r�� 	

since they do not fail in r�� Formally� the second basic step of our test for
common knowledge can be stated as follows �see Figure ���
�

Lemma ����� Let r� be a run in which the f faulty processors are silent
from time k � 	 � �t � � f
� Let G be the set of nonfaulty processors in

���� TESTING FOR COMMON KNOWLEDGE ��

k �

B

G

� �

t� �� f

�

�

f

k �

�
�f �

The run r�� The run r��

Figure ���� Runs illustrating Lemma �����

r�� and let B � B�G� r�� k
� Let r� be the run di�ering from r� only in that
processors in P �B do not fail� Then �r�� 	
 � �r�� 	
�

Proof� If a processor p in P � B fails to a processor q during some round
j � k of r� �in which case it must be that p � P�B�G
� then the node hq� ji
must not be a node of GG�r�� k
 or the failure of p would be implicitly known
by G at time k and p would be in B� a contradiction� Thus� GG�r�� k
 is
independent of whether G�r�� k
 contains an edge from p to q during round j�
Let r�� be a run di�ering from r� only in that no processor in P � B fails
before time k in r��� By the previous discussion� GG�r�� k
 � GG�r��� k
� In
both r� and r�� every processor in G successfully sends every message after
time k and every processor in P �G is silent from time k� Since� in addition�
every processor in G receives the same input after time k in r� and r��� we
have GG�r�� 	
 � GG�r��� 	
� Given that G is the set of nonfaulty processors
in r�� each of which is also nonfaulty in r��� it follows by Lemma ��� that
�r�� 	
 � �r��� 	
� Since the runs r

�
� and r� di�er only in the faulty behavior of

processors in P � B after time k� by repeated application of Lemma ��� it
follows that �r��� 	
 � �r�� 	
� Hence� �r�� 	
 � �r�� 	
�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

Characterizing the Similarity Graph

Let us now consider how these two basic steps� Lemmas ��� and ����� can
be used to characterize the connected components of the similarity graph�
and hence what facts are common knowledge at a given point� Going back
to Figures �� and ���� notice that if f �
 f �which implies� referring to Fig�
ure ���� that not all f processors failing in r� are implicitly known at time
k � 	� �t �� f
 to be faulty
� then by setting r�� � r� we can apply Lem�
mas ��� and ���� again �this time starting from r�� instead of r�
� Iterating
this process� we reach a run &r satisfying �r�� 	
 � �&r� 	
� where the &f proces�
sors failing in &r are silent from time &k � 	� �t �� &f
� and where all faulty
processors are implicitly known to be faulty by the nonfaulty processors at
�&r� &k
� This run &r is a �xpoint of this iterative process! setting &r� � &r� the
runs &r� and &r� constructed in Lemmas ��� and ���� are identical to &r� It is
the joint view of the nonfaulty processors at �&r� &k
� we will show� that charac�
terizes the connected component of �r�� 	
 in the similarity graph� and hence
what facts are common knowledge at �r�� 	
� To enable ourselves to turn this
characterization into a test for common knowledge individual processors can
compute locally� we now de�ne a local version of this iterative process� illus�
trated in Figure ��	� that individual processors can use to construct locally
this joint view�
Given a point �r� 	
 and a processor p� this construction is de�ned as

follows� De�ne G� � fpg and k� � 	� and de�ne Gi�� and ki�� inductively
as follows� Denoting B�Gi� r� ki
 by Bi� let

Gi�� � P �Bi

ki�� � 	 � �t � � jBij
�

One should ask what happens to this construction when ki�� becomes nega�
tive� Recall that when ki��
 �� the local state at time ki�� of every processor
in Gi�� is the distinguished empty local state� It follows that when ki��
 ��
the set Bi�� must be empty� As a consequence� for all j � i �� we have
that Gj � P � kj � 	 � �t �
� and Bj is empty�
While we claim this is a construction each processor can perform locally�

the set B�Gi� r� ki
 is de�ned in terms of r� which individual processors can�
not possibly know� We will soon show� however� that individual processors
have enough information in their local state to compute B�Gi� r� ki
 without

���� TESTING FOR COMMON KNOWLEDGE ��

r

r

r

r

r

r

r

r

r

r

r

�k�k�

�G�G�

�B�B�

r

r

r

r

r

r

r

r

r

r

r

k�

G�

B�

r

r

r

r

r

r

r

r

r

r

r

k�

G�

B�

r

r

r

r

r

r

r

r

r

r

r

k� � �

p
G�

B�

Figure ��	� An example of the construction when t � ��

knowing the precise identity of r� and hence can perform the steps of this
construction locally�
The construction determines three �in�nite
 sequences fGig� fkig� and

fBig� In the next few pages we will see that these sequences have limits
&G� &k� and &B� and that these limits are independent of the processor with
which the construction is begun� As a result� individual processors will be
able to construct these values based solely on their local state� We will
see that the joint view of &G at time &k completely characterizes the connected
component of �r� 	
 in the similarity graph� and hence what facts are common
knowledge at �r� 	
� This construction will therefore provide an e�cient way
of determining what facts are common knowledge at a given point�
Among other things� this construction captures a number of essential

aspects of the information �ow during the run up to time 	� In particular�
one important property of this construction is the following�

Lemma ����� Every processor in Gi�� successfully sends to every processor
in Gi in every round before time ki�

Proof� Suppose some processor q of Gi�� fails to send to a processor q� of Gi

during a round before time ki� Then q�s failure to q� is implicitly known by Gi

at time ki� so q � Bi and q �� Gi��� a contradiction�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

One consequence of Lemma ���� is that the local state of the processor p
at time 	 must contain the local state of every processor in Gi at time ki
for every i � �� One property of the construction� therefore� is that the
construction depends only on the local state of processor p at �r� 	
� and
hence that p is able to perform the construction locally� This property is
essential in order to use this construction in a test for common knowledge
that p can perform locally� A second essential property of the construction is
that it converges within t � iterations� as we see with the following result�

Lemma ����� lim
i��

Gi � Gt�� and lim
i��

ki � kt���

Proof� We will show that Bi�� � Bi for all i � �� Since B� contains at
most t processors� it will then follow that there must be an i � t for which
Bi � Bi��� From the de�nition of the construction� it is easy to see that we
will have Bi � Bi�j for all j � �� In addition� we will have Gi�� � Gi���j

and ki�� � ki���j for all j � �� and we will be done� We proceed by induction
on i� If ki��
 �� thenBi�� is empty and Bi�� � Bi� so let us assume ki�� � ��
Suppose i � �� By Lemma ����� every processor in G� must send to every
processor in G� during round k� �� It follows that any failure implicitly
known by G� at time k� must be implicitly known by G� at time k�� Thus�
B� � B�� Suppose i � � and the inductive hypothesis holds for i � �! that
is� Bi � Bi��� If Bi � Bi��� then Bi�� � Bi� If Bi � Bi��� then ki��
 ki�
By Lemma ����� Gi�� sends to Gi during round ki�� �� so Bi�� � Bi�

We denote the results of the construction �the limits of the sequences
fGig� fkig� and fBig
 by &G� &k� and &B� We denote these values by &G�p� r� 	
�
&k�p� r� 	
� and &B�p� r� 	
 when the processor p and the point �r� 	
 are not clear
from context� We now show� however� that these values are independent of
the processor p�

Lemma ����� &G�p� r� 	
 � &G�q� r� 	
 and &k�p� r� 	
 � &k�q� r� 	
 for all proces�
sors p and q�

Proof� We prove the claim by showing that &B�p� r� 	
 � &B�q� r� 	
� Given
that Bi uniquely determines Gi�� and ki��� this will imply the desired result�
It su�ces to show that &B�p� r� 	
 � &B�q� r� 	
� since the other direction will
follow by symmetry� Denote the intermediate results of the construction
from the point �r� 	
 starting with the processor p by Gi� ki� and Bi� and the

���� TESTING FOR COMMON KNOWLEDGE ��

�nal results by &G� &k� and &B� Similarly� denote the intermediate results of
the construction starting with q by G�

i� k
�
i� and B �

i� and the �nal results by
&G�� &k�� and &B�� We now show that &B � &B�� If &k
 �� then &B is empty and
&B � &B�� so assume &k � �� We consider two cases� First� suppose &k � 	 � ��
In this case� &B must contain t faulty processors since &k � 	 � �t � � j &Bj
�
It follows that every processor in &G must be nonfaulty in r and hence must
send to G�

� during round
&k �� so &B � B �

�� Since� in addition� jB
�
�j � t and

j &Bj � t� we have &B � B �
�� It follows from the construction that &B � B�

i for
every i � �� and hence that &B � &B��

Now� suppose &k
 	 � �� Let q� be an �arbitrary
 nonfaulty processor
in r� We claim that every processor g in &G must send its local state to q�

during round &k �� Suppose some processor g in &G does not� Let j be the
least integer such that &G � Gj � If j � �� then q� must send to G� during

round &k � If j � �� then q� must actually be a member of Gj�� since Gj��

must contain all of the nonfaulty processors� In either case� the failure of g
to q� during round &k � must be implicitly known by Gj�� at time kj��� so

g � Bj��� Since &G � Gj � P �Bj��� we have g �� &G� a contradiction� Thus�

every processor in &G must send to q� during round &k ��

We now proceed by induction on i to show that &B � B�
i for all i � ��

Suppose i � �� Every processor in &G must send to the nonfaulty processor q�

during round &k �� and q� must send to G�
� during round

&k � so &B � B�
��

Suppose i � � and the inductive hypothesis holds for i��! that is� &B � B�
i���

If &B � B�
i��� then &B � B�

i� If &B � B�
i��� then

&k
 k�i since
&k � 	��t ��j &B j

and k�i � 	��t ��jB �
i��j
� Every processor in &G must send to the nonfaulty

processor q� during round &k �� and q� must be contained in G�
i� so &B � B�

i�
It follows that &B � B�

i for all i � �� and hence &B � &B��

As a result of Lemma ����� we see that &G� &k� and &B depend only on the
point �r� 	
� and not the processor with which the construction begins� Thus�
a third property of this construction is that every processor �and not just the
nonfaulty processors
 is able to compute locally the values of &G� &k� and &B�
The ability of the nonfaulty processors to compute these values locally will
be essential to designing a locally�computable test for common knowledge�
We will denote these values by &G�r� 	
� &k�r� 	
� and &B�r� 	
 when �r� 	
 is not
clear from context� From the de�nition of the construction it is clear that the
driving force behind the construction is the identity of the sets Bi� Notice
that these sets are uniquely determined by the failure pattern� and do not

� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

depend on the run�s input� Taking into account the input of a run� we are
now in a position to show how the construction characterizes the connected
components in the similarity graph� Denoting &G�r� 	
 by &G and &k�r� 	
 by &k�
we de�ne

&V �r� 	

def
� r 	G�

&k
�

This de�nition says that &V �r� 	
 is the joint view of the processors in &G�r� 	

at time &k�r� 	
� Our next lemma states that &V is the same at similar points�
which implies that the joint view &V �r� 	
 is common knowledge at �r� 	
�

Lemma ����� If �r� 	
 � �r�� 	
 then &V �r� 	
 � &V �r�� 	
�

Proof� We proceed by induction on the distance d between the points
�r� 	
 and �r�� 	
� The case of d � � is trivial� Suppose that d � � and the
inductive hypothesis holds for d � �� Since the distance between �r�� 	
 and
�r� 	
 is d� there must be a point �s� 	
 whose distance from �r� 	
 is d � ��
and whose distance from �r�� 	
 is �� The inductive hypothesis implies that
&V �r� 	
 � &V �s� 	
� and we have v�p� s� 	
 � v�p� r�� 	
 for some processor p� As
a consequence of Lemmas ���� and ����� the values of &V �s� 	
 and &V �r�� 	

depend only on the local state of p at �s� 	
 and �r�� 	
� respectively� Since
p has the same local state at �s� 	
 and at �r�� 	
� we have &V �s� 	
 � &V �r�� 	
�
Since &V �r� 	
 � &V �s� 	
� it follows that &V �r� 	
 � &V �r�� 	
�

One consequence of Lemma ���	� together with Lemma ��� and the def�
inition of &V above� is that if �r� 	
 � �r�� 	
� then G 	G�r�

&k
 � G 	G�r
�� &k
� We

will �nd this a useful fact when proving the converse of Lemma ���	! that
is� that all points with the same &V are similar� and hence that &V completely
characterizes the connected components of the similarity graph� Before we
do so� however� let us formalize the intuition that led us to the construction
in the �rst place �the use of the two basic steps in the construction given by
Lemmas ��� and ����
�

Lemma ����� Let r be a run� and let &G� &k� and &B be the results of the
construction from �r� 	
� Let r� be the run di�ering from r only in that
processors in &G do not fail in r� and processors in &B are silent from time &k
in r�� Then �r� 	
 � �r�� 	
�

Proof� Let Gi� ki� and Bi be the intermediate results of the construction
from �r� 	
 starting with the nonfaulty processor pj � For i � �� de�ne ri to

���� TESTING FOR COMMON KNOWLEDGE ��

be the run di�ering from the run r only in that processors in Bi are silent
from time ki in ri and the remaining processors do not fail in ri� Notice
that r� � ri for su�ciently large i� We proceed by induction on i to show
that �r� 	
 � �ri� 	
 for all i � �� Suppose i � �� Since the subgraph Gj�r� 	

must be independent of whether the graph G�r� 	
 is missing an edge from a
processor in P�B� to a processor other than pj� we have Gj�r� 	
 � Gj�r�� k�
�
Since processor pj is nonfaulty� it follows that �r� 	
 � �r�� 	
� Suppose i �
� and the inductive hypothesis holds for i � �! that is� �r� 	
 � �ri��� 	
�
Lemma ��� implies �ri��� 	
 � �r�i��� 	
 where r

�
i�� di�ers from ri�� in that

processors in Bi�� �the processors failing in ri��
 are silent from time ki
in r�i��� Lemma ���� implies �r

�
i��� 	
 � �ri� 	
� Thus� �r� 	
 � �ri� 	
�

Finally� we have the following�

Lemma ����� If &V �r� 	
 � &V �r�� 	
 then �r� 	
 � �r�� 	
�

Proof� The fact &V �r� 	
 � &V �r�� 	
 implies &G�r� 	
 � &G�r�� 	
� &k�r� 	
 �
&k�r�� 	
� and &B�r� 	
 � &B�r�� 	
� We therefore denote these values by &G� &k�
and &B� Let s be a run that di�ers from r in that processors in &G do not
fail in s� and processors in &B are silent from time &k in s� Let s� be an
analogous run with respect to r�� Lemma ���� implies that �r� 	
 � �s� 	
 and
�r�� 	
 � �s�� 	
� In order to show that �r� 	
 � �r�� 	
� it is enough to show
that �s� 	
 � �s�� 	
� Suppose &G � fq�� � � � � qmg� and let si be the run di�ering
from s in that q�� � � � � qi receive the same input after time &k in si as they do
in s�� We proceed by induction on i to show that �s� 	
 � �si� 	
 for all i � ��
Since s � s�� the case of i � � is trivial� Suppose i � � and the inductive
hypothesis holds for i� �! that is� �s� 	
 � �si��� 	
� Let ui�� and ui be runs
di�ering from si�� and si� respectively� only in that qi is silent from time &k
in ui�� and ui� Lemma ��� implies �si��� 	
 � �ui��� 	
 and �si� 	
 � �ui� 	
� In
addition� since ui�� and ui di�er only in the input received by qi after time &k�
and since qi is silent from time &k in both runs� we have �ui��� 	
 � �ui� 	
�
Thus� �s� 	
 � �si� 	
 for all i � �� In particular� �s� 	
 � �sm� 	
� In order
to complete the proof� it now su�ces to show that �sm� 	
 � �s�� 	
� Since
G 	G�r�

&k
 � G 	G�r
�� &k
� �r� 	
 � �s� 	
� and �r�� 	
 � �s�� 	
� Lemma ���	 implies

that G 	G�s�
&k
 � G 	G�s

�� &k
� Notice that G 	G�sm�
&k
 � G 	G�s�

&k
 � G 	G�s
�� &k
�

Notice� in addition� that processors in &G do not fail in either sm or s�� and that
the remaining processors �in &B
 are silent from time &k in both runs� Finally�
notice that processors in &G receive the same input after time &k in both runs�

�	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

It follows that G 	G�sm� 	
 � G 	G�s
�� 	
� and hence that �sm� 	
 � �s�� 	
� Thus�

�s� 	
 � �s�� 	
� as desired�

Combining Lemmas ���	 and ���� we see that �r� 	
 � �r�� 	
 i� &V �r� 	
 �
&V �r�� 	
� We therefore have�

Theorem ����� �r� 	
 j� CN� i� �r�� 	
 j� � for all r� satisfying &V �r� 	
 �
&V �r�� 	
�

Consequently� our local construction completely characterizes the connected
components of the similarity graph� and hence when facts become common
knowledge�

A Test for Common Knowledge

We now consider how this characterization gives rise to a test for common
knowledge that processors can compute locally�
From Theorem ����� it follows that &V �r� 	
 in a precise sense summarizes

and uniquely determines the set of facts that are common knowledge at any
given point �r� 	
� The identity of &V has two components� the failure pattern
and input pattern during some pre�x of the run� The fact that &V becomes
common knowledge implies that certain information about the failure pattern
must become common knowledge� While it is the failure pattern alone that
determines what views are contained in &V � it is di�cult to characterize what
properties of the failure pattern lead to these views being chosen by the
construction� and hence what kinds of facts about the failure pattern become
common knowledge� On the other hand� information about the input that
follows from the views in &V does characterize in a crisp way what facts about
the input are common knowledge� Furthermore� it is easy to deduce from
&V whether the existence of a failure is common knowledge� As the following
corollary will show� Theorem ���� implies that facts about the input and
existence of failures that are common knowledge at the point �r� 	
 must
follow directly from the set &V �r� 	
� We now make this statement precise� A
run r� a set of processors G� and a time k determine a joint view V � rG�k
�
We denote by �V � the property of being a run in which the processors in G
have the joint view V at time k �notice that G and k are uniquely determined
by V
� In other words� �r� k
 j� V i� rG�k
 � V � Thus� if V � � is valid in
the system� then every run r� satisfying r�G�k
 � V must also satisfy �� We
now have�

���� TESTING FOR COMMON KNOWLEDGE ��

Corollary ���� Let � be a fact about the input and the existence of fail�
ures� and let V � &V �r� 	
� Then �r� 	
 j� CN� i� V � � is valid in the
system�

Proof� Suppose V � � is valid in the system� By Lemma ���	� we
have &V �r� 	
 � &V �r�� 	
 for all runs r� such that �r� 	
 � �r�� 	
� and hence that
�r�� 	
 j� V for all such r�� Given that V � � is valid in the system� we have
�r�� 	
 j� � for all such r�� It follows that �r� 	
 j� CN��

For the other direction� suppose that V � � is not valid in the system�
Since V � � is not valid in the system� let u be a run such that �u� 	
 j� V
and yet �u� 	
 �j� �� We will construct a run s such that �r� 	
 � �s� 	
� s and u
have the same input� and s and u are the same with respect to the existence
of failures �i�e�� s will be failure�free i� u is
� Since � is a fact about the
input and the existence of failures� �u� 	
 �j� � will imply �s� 	
 �j� �� Since� in
addition� �r� 	
 � �s� 	
� we will have that �r� 	
 �j� CN��

We construct s in two steps� We �rst construct a run v with the input of u
satisfying �r� 	
 � �v� 	
� Let v be the run with the failure pattern of r and
the input of u� Given that r and v have the same failure pattern� and that &G
and &k depend only on the failure pattern� we have that &G�r� 	
 � &G�v� 	
 and
&k�r� 	
 � &k�v� 	
� Let us denote these values by &G and &k� Since �u� 	
 j� V �
we have v� &G� r� &k
 � v� &G�u� &k
� and hence G 	G�r�

&k
 � G 	G�u�
&k
� Since v and r

have the same failure pattern� the unlabeled graphs underlying G 	G�v�
&k
 and

G 	G�r�
&k
 �and hence also G 	G�u�

&k

 are the same� Furthermore� since v and u

have the same input� it follows that G 	G�v�
&k
 and G 	G�u�

&k
 �and hence also

G 	G�r�
&k

 are equal� Since G 	G�r�

&k
 � G 	G�v�
&k
 implies &V �r� 	
 � &V �v� 	
� we

have �r� 	
 � �v� 	
 by Lemma �����
We now consider the existence of failures� and construct the desired run s�

If there is a failure in u� then let s be a run di�ering from v only in that a
processor fails after time 	 in s� Clearly �v� 	
 � �s� 	
� and hence �r� 	
 �
�s� 	
� Conversely� if u is failure�free� then let s � u� Since u is failure�free�
no processor in &G knows of a failure at time &k in u� Since processors in &G
have the same local state at time &k in both u and r� the same is true of r�
It follows that &B � B� &G� r� &k
 is empty� and since &G � P � &B� we have
that &G � P � Notice that s di�ers from v only in that processors in &G � P
do not fail in s� and hence that �v� 	
 � �s� 	
 by Lemma ����� Therefore�
�r� 	
 � �s� 	
� In either case� �r� 	
 � �s� 	
� s and u have the same input�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

and are the same with respect to the existence of failures� It follows by the
above discussion that �r� 	
 �j� CN��

Corollary ���� summarizes the sense in which the construction allows us
to test whether relevant facts are common knowledge at a given point� Let
us consider the computational complexity of performing such tests� The
�rst step in applying Corollary ���� to determine whether a fact is common
knowledge at �r� 	
 is to construct &V �r� 	
� Recall that a group of proces�
sors implicitly knows that a processor is faulty i� it knows of a message the
processor failed to send� This is an easy fact to check given the communi�
cation graph corresponding to the group�s view� It follows that computing
every iteration of the construction can easily be done in polynomial time�
Furthermore� since the construction is guaranteed to converge within t �
iterations� it follows that &G and &k� and hence also &V can be computed locally
in polynomial time �as long as &V is of polynomial size
� Recall that if � is
a practical fact� then it is possible to determine in polynomial time whether
or not V � � is valid in the system� Thus� given a practical simultaneous
choice problem C� one polynomial�time implementation of a test for com�
mon knowledge of enabled�ai
 is to construct the set V � &V and determine
whether V � enabled�ai
 is valid in the system� As a result� Theorem ��	
implies the following�

Theorem ���
� If C is an implementable� practical simultaneous choice�
then there is a polynomial�time optimal protocol for C�

Discussion

We reiterate the fact that the resulting protocol for C is optimal in all runs�
actions are performed in runs of FC as soon as they could possibly be per�
formed in runs of any other protocol� given the operating environment of the
run� Thus� for example� simultaneous Byzantine agreement is performed in
anywhere between and t � rounds� depending on the pattern of failures
�as is shown in �DM��� to be the case in the crash failure model
� Similarly�
the �ring squad problem can be performed in anywhere between � and t �
rounds after a �start� signal is received� Paradoxically� in all these cases�
the simultaneous actions can be performed quickly only when many failures
become known to the nonfaulty processors� In particular� if there are no

���� TESTING FOR COMMON KNOWLEDGE ��

failures� no fact about the input is common knowledge less than t � rounds
after it is �rst determined to hold�

Recall that every processor� faulty or nonfaulty� is able to compute the
set &V �r� 	
 locally� As a result� the following proposition shows that a fact is
common knowledge to the nonfaulty processors i� it is common knowledge
to all processors�

Proposition ����� Let � be an arbitrary fact� In the omissions model�
CN� � CP� is valid in all systems running a full�information protocol�

Proof� By Theorem ��� it is enough to show that �r� 	

P
� �r�� 	
 i� �r� 	

N
�

�r�� 	
 for all runs r and r� and times 	� The 'if� direction is trivial� since N �
P � The proof of the other direction is identical to the proof of Lemma ���	�
interpreting � as

P
��

Proposition ��� implies that all processors �even the faulty processors

know exactly what actions are commonly known to be enabled in runs of FC�
Thus� in this model the protocol FC is guaranteed to satisfy a stronger version
of simultaneous choice problems� in which condition �ii
 is replaced by

�ii�
 if ai is performed by any processor �faulty or nonfaulty
� then it is
performed by all processors simultaneously�

Furthermore� since when an action is performed it is performed simultane�
ously by all processors� and since no other action is ever performed� there is
no need for processors to continue sending messages after performing actions
in runs of FC in this model� We can therefore further reduce the communica�
tion of FC by having processors halt after performing a simultaneous action�
As a result� the following is an optimal protocol for any implementable simul�
taneous choice problem C� an optimal protocol simpler than the protocol FC�

repeat every round

send current local state to every processor

until CNenabled�ai
 holds for some ai	
j � min fi � CNenabled�ai
 holdsg	
perform aj	
halt�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

The fact that in the omissions model the information in &V �r� 	
 is essen�
tially all that is common knowledge at a given point has interesting implica�
tions about the type of simultaneous actions that can be performed in this
model� For example� recall that in the traditional simultaneous Byzantine
agreement or consensus problems �see �PSL��� Fis��� DM���
� the processors
are only required to decide� say� v in case they all start with an initial value
of v� A stronger �and arguably more natural� or at least democratic
 require�
ment� however� would require they decide v whenever the majority of initial
values are v� This is clearly impossible� since some processors may be silent
throughout the run� However� consider a protocol for simultaneous Byzan�
tine agreement which is similar to FC� except that when some enabled�ai

becomes common knowledge �which happens exactly when &V becomes non�
empty
� the processors choose the value that appears in the majority of the
initial values recorded in &V �r� 	
 as their decision value� In this case� the
processors actually approximate majority fairly well� If more than �n t
�
of the initial values are v� then v will be chosen� In fact� we can show that
the approximation is bad only in runs in which agreement is obtained early�
In particular� if agreement cannot be obtained before time t � �this would
happen in runs r for which &V �r� 	
 contains only empty local states for every
	 � t
� then the value agreed upon would be the majority value in case more
than �n �
� of the processors have the same initial value� Furthermore� a
protocol for weak �exact
 majority does exist� A protocol that either decides
that there was a failure or decides on the true majority value�
Since messages from faulty processors can convey new information about

the failure pattern� such messages do a�ect the construction� Therefore� the
behavior of faulty processors� even after they have been discovered to be
faulty� plays an important role in determining what facts become common
knowledge and when� In the crash failure model� however� a failed processor
does not communicate with other processors after its failing round and has
little impact on what facts become common knowledge� This is an essen�
tial property of the omissions model distinguishing it from the crash failure
model�
We note� however� that all of the analysis in this subsection applies to the

crash failure model� with all of the proofs applying verbatim when restricted
to the crash failure model� We thus have�

Proposition ����� In the crash failure model� �r� 	
 j� CN� i� it is the case

���� TESTING FOR COMMON KNOWLEDGE ��

that �r�� 	
 j� � for all r� satisfying &V �r� 	
 � &V �r�� 	
�

Thus� the set &V �r� 	
 completely characterizes what facts are common knowl�
edge at the point �r� 	
 in the crash failure model as well� Since the same
proofs show that the construction characterizes the connected components of
the similarity graph in both the omissions and the crash failure model� the
similarity graph in the omissions model is simply an extension of the simi�
larity graph in the crash failure model obtained by adding nodes and edges
to the similarity graph in the crash failure model� not breaking up the con�
nected components appearing in the crash failure model� This implies that
in a run of the omission model having a failure pattern consistent with the
crash failure model� exactly the same facts about the input and the existence
of failures are common knowledge at any given time in both the crash failure
and the omissions model� �However� as a result of the di�erence in the types
of failures possible in the two failure models� di�erent facts about the failure
pattern are common knowledge at the corresponding points�
 Ruben Michel
has independently characterized the similarity graph in variants of the crash
failure model �see �Mic���
� For the crash failure model itself� he has an al�
ternative construction that also characterizes the connected components of
the similarity graph�
As in the omissions model� it follows from Proposition ��� that our

construction can be used to derive e�cient optimal protocols for simultaneous
choice problems in the crash failure model� thus showing that results similar
to those proven in �DM��� in the crash model can be obtained in the omissions
model� although our techniques are quite di�erent� We therefore have the
following�

Corollary ����� Let C be an implementable� practical simultaneous choice�
In the crash failure model� there is a polynomial�time optimal protocol for C�

As a �nal remark� let ki and Gi be the intermediate results of beginning
the construction at the point �r� 	
� and denote v�Gi� r� ki
 by Vi� Consider
the operator E de�ned by E�Vi
 � Vi�� for all i� We �nd it interesting that &V �
which is a �xed point of the operator E� characterizes the facts � for which
CN� holds� where we know from �HM�	� that CN� is a �xed point of EN

�see Proposition ��
� While researchers are used to thinking semantically
of common knowledge as a �xed point� this construction shows how we can
think combinatorially of common knowledge as a �xed point� as well�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

����� Receiving Omissions

In the omissions model� faulty processors fail only to send messages� In this
subsection� we consider the symmetric receiving omissions model� in which
faulty processors fail only to receive messages� While at �rst glance these
models seem quite similar� they are actually extremely di�erent� In partic�
ular� we will see that testing for common knowledge in this model becomes
trivial� As a result� e�cient optimal protocols for practical simultaneous
choice problems become completely trivial in this model�
One intriguing di�erence between the omissions model and the receiving

omissions model is the following� We have seen in the omissions model that in
some cases a fact �for example� the arrival of a �start� signal
 does not become
common knowledge until as many as t � rounds after it is �rst determined
to hold� Intuitively� the attainment of common knowledge is delayed by the
possibility that a processor might fail to send a message determining that the
fact holds� However� in the receiving omission model even faulty processors
send all messages required by the protocol� Since nonfaulty processors receive
all messages sent to them� in runs of a full�information protocol all nonfaulty
processors have a complete view of the �rst k rounds at time k �� We can
thus show the following�

Theorem ����� Let � be a fact about the �rst k rounds� In the receiving
omissions model� �r� k
 j� � i� �r� k �
 j� CN��

The proof of this result depends on the notion of a fact being valid at time k�
A fact � is said to be valid �in the system
 at time k if for all runs r we have
�r� k
 j� �� We remark that the following variant of the induction rule holds�

If � � ES� is valid at time k�
then � � CS� is valid at time k�

Proof� Since � is a fact about the �rst k rounds� �r� k
 j� � i� �r� k �
 j�
�� Thus� it is enough to show that �r� k �
 j� � i� �r� k �
 j� CN��
Notice that �r� k �
 j� CN� implies �r� k �
 j� �� Conversely� suppose
�r� k �
 j� �� During round k � in r every processor sends its entire
local state to all processors� so at time k � all nonfaulty processors have a
complete view of the �rst k rounds of r� Since � is a fact about the �rst k
rounds� �r� k �
 j� EN�� We have just shown that � � EN� is valid at

���� TESTING FOR COMMON KNOWLEDGE ��

time k �� so � � CN� is valid at time k � as well� Thus� �r� k �
 j� �
implies �r� k �
 j� CN��

As a consequence of Theorem ���� polynomial�time optimal protocols for
practical simultaneous choice problems are very simple in this model� Again�
by polynomial�time here we will mean polynomial in n� t� and the round
number 	�

Corollary ����� Let C be an implementable� practical simultaneous choice�
In the receiving omissions model� there is a polynomial�time optimal protocol
for C�

Proof� Since C is implementable� Theorem ��	 implies that FC is an optimal
protocol for C� It remains to show that FC can be implemented in polynomial
time� Since the messages sent by FC can clearly be computed in polynomial
time� we need only show how to implement the tests for common knowledge
of the conditions enabled�ai
 in polynomial time� We claim that �r� 	
 j�
CNenabled�ai
 i� G�r� 	 � �
 � enabled�ai
 is valid in the system� Since C
is a practical simultaneous choice problem� determining whether G�r� 	 �
�
 � enabled�ai
 is valid in the system can be done in polynomial time�
As G�r� 	 � �
 can be determined by all nonfaulty processors at �r� 	
 in
polynomial�time� this will yield a polynomial�time implementation of a test
for common knowledge of enabled�ai
� and we will be done� Suppose G�r� 	�
�
 � enabled�ai
 is valid in the system� Theorem ��� implies that G�r� 	��

is common knowledge at �r� 	
� and it follows that �r� 	
 j� CNenabled�ai
�
Conversely� suppose �r� 	
 j� CNenabled�ai
� Let s be a run satisfying G�r� 	�
�
� A proof similar to the base case of Lemma ��� shows that �r� 	
 � �s� 	
�
Since �r� 	
 j� CNenabled�ai
� it follows that �s� 	
 j� enabled�ai
� Thus�
G�r� 	� �
 � enabled�ai
 is valid in the system� as desired�

The results of this section point out a number of interesting di�erences
between the omissions model and the receiving omissions model� For ex�
ample� consider the distributed �ring squad problem� First� Theorem ���
implies that all nonfaulty processors are able to �re in the receiving omission
model exactly one round after the �rst �start� signal is received� Recall that
in the omissions model� �ring may delayed as many as t � rounds� Second�
since a faulty processor p might fail to receive all messages� it is not possible
to guarantee that p will ever �re following the receipt of a �start� signal
by a nonfaulty processor� In the omissions model we have shown that it is

� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

possible to guarantee that all processors perform any action �e�g�� ��ring�

performed by the nonfaulty processors� Finally� notice that faulty processors
may sometimes be unable to halt� or terminate their participation in a dis�
tributed �ring squad protocol� even long after the nonfaulty processors have
�red� A processor p receiving no messages or �start� signals at all can never
halt since at any point it is possible �according to p�s local state
 that it will
be the only processor in the system to receive a �start� signal� In this case�
optimal protocols must require the nonfaulty processors to �re one round
later� and hence p must be able to send this information to the nonfaulty
processors� In contrast� in the omissions model it is possible to guarantee
that all processors halt as soon as an action is performed in the system�
These remarks show that while at �rst glance the assignment of responsibil�
ity for undelivered messages to sending or to receiving processors may seem
arbitrary� the assignment has a dramatic e�ect on when facts become com�
mon knowledge� and hence on the behavior of optimal protocols� Since such
a simple modi�cation of the omissions model results in the collapse of the
combinatorial structure underlying the model �witness Theorem ���
� we
consider this to be an indication that the omissions model is not a robust
model of failure�

����� Generalized Omissions

We have just seen that the choice of whether sending or receiving proces�
sors are responsible for undelivered messages has a dramatic e�ect on the
structure of the omissions model� Consider� however� the generalized omis�

sions model� in which a faulty processor may fail both to send and to receive
messages� This section is concerned with the design of optimal protocols
for simultaneous choice problems in this model� We have seen that Theo�
rem ��	 implies the protocol FC is an optimal protocol in this model� and
that Theorem ��� implies this protocol can be implemented in polynomial�
space� As in previous sections� the remaining question is whether there are
e�cient optimal protocols in this model� The principal result of this section
is that testing for common knowledge in the generalized omissions model is
NP�hard� Using the close relationship between common knowledge and si�
multaneous actions� we obtain as a corollary that optimal protocols for most
any simultaneous choice problem in this model require processors to perform
NP�hard computations� Consequently� for example� in this model there can

���� TESTING FOR COMMON KNOWLEDGE ��

be no e�cient optimal protocol for simultaneous Byzantine agreement or the
distributed �ring squad problem� This is a dramatic di�erence between the
generalized omissions model and the more benign failure models� where� as
we have seen� e�cient optimal protocols do exist�
One important di�erence between the generalized omissions model and

simpler variants of the omissions model is that in the generalized omissions
model undelivered messages do not necessarily identify the set of faulty pro�
cessors� but merely place constraints on their possible identities� Either the
sender or the intended receiver of every undelivered message must be faulty�
The faulty processors must therefore induce a �vertex cover� of the unde�
livered messages� Recall that in our analysis of the omissions failure model�
determining the number and the identity of the faulty processors given the
labeled communication graph of a point played a crucial role in characterizing
the facts that are common knowledge at a point� In that model� a processor
is known to be faulty i� it is known that a message it was supposed to send
was not delivered� a fact easily determined from the labeled communication
graph� In the generalized omissions model� however� even determining the
number �and not necessarily the identities
 of processors implicitly known
to be faulty essentially involves computing the size of the minimal vertex
cover of a graph� a problem known to be NP�complete �see �GJ���
� It is
with this intuition that we now proceed to show that determining whether
certain facts are common knowledge is computationally prohibitive in the
generalized omissions model� assuming P��NP�
However� in order to study the complexity of testing for common knowl�

edge in the generalized omissions model in a meaningful way� we are once
again faced with the need to restrict our attention to a class of facts that
includes all of the facts that may arise in natural simultaneous choice prob�
lems� and excludes anomalous cases� For example� if � is valid in the system�
then so is CN�� and testing whether � is common knowledge is a trivial task�
On the other hand� one can imagine facts involving excessive computational
complexity of a type irrelevant to simultaneous choice problems� Consider�
for instance� a fact � with the property that the communication graph of any
point satisfying � encodes information allowing the solution of all problems
in NP of size smaller than the number of processors in the system� Whereas
it seems unlikely that such a fact exists� such a statement is probably very
hard to prove� and it is de�nitely not the business of this chapter to do so�
We are therefore led to make the following restriction� A fact � is said to

�	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

be admissible within a class of systems running a full�information protocol if
�i
 for all systems within this class neither � nor �� is valid in the system�
and �ii
 there is a polynomial�time algorithm explicitly constructing for each
system a labeled communication graph G�r� 	
 of minimal length having the
property that G�r� 	
 � � is valid in the system� Condition �i
 simply says
that in none of these systems is testing for � completely trivial� Condition
�ii
 says that in each of these systems it has to be easy to generate enough of a
communication graph to guarantee that � is true at any point of any run with
this communication graph� The ability to generate such a graph will be used
to generate the graph we submit to a given test for common knowledge of ��
We say that a simultaneous choice problem C is admissible if each condition
enabled�ai
 is admissible within the class of systems determined by a full�
information protocol and C� We claim that any natural simultaneous choice
is admissible� We can now state the fundamental result of this section which
says� loosely speaking� that testing for common knowledge of admissible facts
��� � � � � �b is NP�hard�
For given facts ��� � � � � �b �b � �
 and a class % � f%�n� t
 � n � t g

of systems� de�ne the decision problem of testing for common knowledge of

��� � � � � �b in % as follows� Given as input a graph Gi�r� 	
 corresponding
to pi�s local state at a point �r� 	
 of a system in % with n � t�
 does
�r� 	
 j�

W
iCN�i�

Lemma ����� Let ��� � � � � �b be admissible� practical facts within a class %
of systems running a full�information protocol in the generalized omissions
model� The problem of testing for common knowledge of ��� � � � � �b in % is
NP�hard �in n
�

The proof of Lemma ��� will follow shortly� Notice� however� that t is
variable in the statement of this lemma� and in general may be O�n
� The
proof of this result will not apply for a �xed t� nor to cases in which t is
restricted� say� to be O�log n
� In any case� it will follow that any standard
implementation of our optimal knowledge�based protocols must be compu�
tationally intractable� unless P�NP� It is natural to ask whether this ine��
ciency is merely the result of having programmed our protocols using tests

�We note that the condition n � �t seems odd� but this slightly stronger formulation of
testing for common knowledge is needed later when proving the intractability of optimal
protocols for simultaneous choice problems in this model�

���� TESTING FOR COMMON KNOWLEDGE ��

for common knowledge� It is conceivable� for instance� that there are opti�
mal protocols for admissible simultaneous choice problems in the generalized
omissions model that are computationally e�cient� Intuitively� however� in
order to perform a simultaneous action� an optimal protocol P must essen�
tially determine whether any of the conditions enabled�ai
 is common knowl�
edge� Corollary ��� implies that such a condition becomes common knowledge
during the corresponding run of a full�information protocol as soon as it does
during a run of P� Thus� an optimal protocol P must essentially determine
whether such a fact is common knowledge during the corresponding run of a
full�information protocol F � Since Lemma ��� implies that this problem is
NP�hard� computing the function P must be NP�hard as well� We now make
this argument precise�
Recall that a protocol is formally a function mapping n� t� and a proces�

sor�s state to a list of the actions the processor should perform� followed by a
list of the messages it is required to send in the following round� We say that
a protocol is communication�e�cient if in a system of n processors the size of
the messages each processor is required to send during round 	 is polynomial
in n and 	� In the following result we show that the problem of computing
the function corresponding to a communication�e�cient optimal protocol for
a simultaneous choice problem is NP�hard� Hence� no such protocol can be
computationally e�cient� unless P�NP�
For a given protocol P and class % � f%�n� t
 � n � t g of systems�

de�ne the problem of computing P in % as follows� Given as input a graph
Gi�r� 	
 corresponding to pi�s local state at a point �r� 	
 of a system in %�
output the list of messages pi is required by P to send at �r� 	
� and output
the list of actions pi is required by P to perform at �r� 	
�

Theorem ����� Let C be an admissible� practical simultaneous choice with
actions a�� � � � � ab� and let P be a communication�e�cient� optimal protocol
for C� Let % be the class of systems determined by P and C� There is
a Turing reduction from the problem of testing for common knowledge of
enabled�a�
� � � � � enabled�ab
 in % to the problem of computing P in %� In
this sense� the problem of computing P in % is NP�hard �in n
�

Proof� Notice that since P is a protocol for C� the problem C must be im�
plementable� and Theorem ��	 implies that the full�information protocol FC

must be an optimal protocol for C� Let % � f%�n� t
 � n � t g be the

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

class of systems determined by C and FC� Since C is an admissible� practi�
cal simultaneous choice� each condition enabled�ai
 must be an admissible�
practical fact within %� By Lemma ���� given the graph G�r� 	
 of a point
�r� 	
 in a system %�n� t
 with n � t� the problem of determining whether
�r� 	
 j�

W
iCNenabled�ai
 is NP�hard� We will exhibit a Turing reduction

from this problem to the problem of computing P! that is� given the graph
G�r� 	
 of a point �r� 	
 in a system %�n� t
 with n � t� we will show how
to use P to determine in polynomial time whether �r� 	
 j�

W
iCNenabled�ai
�

Having exhibited such a reduction� we will have shown that the problem of
computing P is NP�hard�
Let r be a run of FC in a system %�n� t
 with n � t� and let s be the

corresponding run of P� It follows from the de�nition of FC that �r� 	
 j�W
iCNenabled�ai
 i� the nonfaulty processors perform a simultaneous action
no later than time 	 in r� Since FC and P are both optimal protocols for C�
the nonfaulty processors perform simultaneous actions at the same times
during r and s� Since n � t� there must be at least t � nonfaulty processors
in both runs� so the nonfaulty processors simultaneously perform an action
no later than time 	 in either run i� t � processors do so� Therefore�
�r� 	
 j�

W
i CNenabled�ai
 i� t � processors perform a simultaneous action

no later than time 	 in s�
One algorithm for determining whether t � processors do perform a

simultaneous action no later than time 	 in s is to construct the local state of
each processor in s at each time k before time 	� and use P to determine when
processors are required to perform actions� Suppose we have constructed the
state of each processor at time k � � in s! let us consider the problem of
constructing the state of a processor p at time k� Processor p�s state at �s� k

consists of p�s name� the time k� a list of the messages received by p during
the �rst k rounds of s� and a list of the input received by p during the �rst k
rounds of s� Recall that since r is a run of a full�information protocol� the
graph G�r� 	
 is actually an encoding of the operating environment during
the �rst 	 rounds of r� and hence also of s� Given the states of all processors
at time k � �� the protocol P determines what message each processor is
required to send to p� and G�r� 	
 determines which of these messages are
actually delivered to p in s� Since P is communication�e�cient� each of these
messages is of size polynomial in n and k� Furthermore� the input received
by p during round k labels the node hp� ki of G�r� 	
� Since C is practical� this
input is of constant size� Thus� given each processor�s state at time k � ��

���� TESTING FOR COMMON KNOWLEDGE ��

we can use the graph G�r� 	
 and an oracle for P to construct the state of
each processor at time k of s in polynomial time� �An oracle for P is an
oracle that� given the state of a processor p at a point �r� 	
� in one step
determines what actions P requires p to perform at time 	� and constructs
the messages P requires p to send during round 	 ��

Consider the following algorithm�

action performed � false	

k � �	
repeat

for all processors p do
determine whether P requires p to perform any action at time k� and
construct the messages P requires p to send during round k �	

endfor

if t � processors perform actions at time k
then action performed� true	

k � k �	
until k � 	 or action performed	

if action performed

then halt with �yes�

else halt with �no��

From the previous discussion it is clear that given any oracle for P� this
algorithm determines in polynomial time whether t � processors perform
actions simultaneously no later than time 	 in s� and hence whether �r� 	
 j�W
iCNenabled�ai
�

As an immediate corollary of Theorem ���� we have the following�

Corollary ����� Let C be an admissible practical simultaneous choice prob�
lem� If there is a polynomial�time optimal protocol for C� then P�NP�

Corollary ��� implies that optimal protocols for simultaneous choice
problems as simple as the distributed �ring squad problem or simultane�
ous Byzantine agreement are computationally infeasible in the generalized
omissions model� assuming P �� NP� In fact� we do not know whether these
problems can be implemented in polynomial time even using an NP oracle�
The best we can do in the generalized omissions model is implement them
using polynomial�space computations� as in the proof of Theorem ���� We

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

consider the question of determining the exact complexity of implementing
admissible practical simultaneous choice problems in this model an interest�
ing open problem�
We now proceed to prove Lemma ���� First� however� we state a result

that will be very useful in the proof of Lemma ���� Roughly speaking� it says
that if a group of processors can �jointly
 prove that they are nonfaulty� then
their states become common knowledge at the end of the following round�

Lemma ���� Let S be a set of processors and let S � P � S� Let r be
a run of a full�information protocol� If the processors in S implicitly know
at �r� 	 � �
 that S contains t faulty processors� then the joint view of S at
�r� 	� �
 is common knowledge at �r� 	
�

Proof� Let � � �V is the joint view of S at time 	 � ��� where V �
v�S� r� 	 � �
� Suppose �r�� 	
 j� �� Given that S has the same joint view
at �r� 	 � �
 and at �r�� 	 � �
� and since S implicitly knows at �r� 	 � �

that S contains t faulty processors� S implicitly knows the same at �r�� 	��
�
In particular� the processors in S must be nonfaulty in r�� and each must
successfully send its state to all processors during round 	 of r�� Since all
nonfaulty processors will receive these messages� we have �r�� 	
 j� EN�� It
follows that � � EN� is valid at time 	� and the induction rule implies
� � CN� is valid at time 	 as well� Thus� �r� 	
 j� � implies �r� 	
 j� CN��

�We note in passing that a converse to Lemma ��� is also true� If the joint
view at time 	 � � of a set S of processors is common knowledge at time 	�
then the processors in some set S� � S must implicitly know at time 	 � �
that there are t faulty processors among the members of S

�
�

In addition to Lemma ���� the following result� analogous to Lemma ���
in the omissions model� will be of use in the proof of Lemma ����

Lemma ���
� Let r and r� be runs di�ering only in the �faulty
 behavior
displayed by processor p after time k� and suppose no more that f processors
fail in either r or r�� If 	� k � t � � f � then �r� 	
 � �r�� 	
�

Proof� The proof is analogous to the proof of Lemma ���� with the added
observation that if p sends no messages after �an arbitrary
 time k� in s� then
�s� 	
 � �s�� 	
 where s� di�ers from s in that p receives messages from an
arbitrary set of processors during round k��

���� TESTING FOR COMMON KNOWLEDGE ��

Finally� as previously mentioned� the proof of Lemma ��� involves a
reduction from the Vertex Cover problem� This is the problem �see �GJ���

of determining� given a graph G � �V�E
 and a positive integerM � whetherG
has a vertex cover of sizeM or less! that is� a subset V � V such that jVj �M
and� for each edge fv�wg � E� at least one of v or w belongs to V�

Theorem �Karp�� Vertex Cover is NP�complete�

We now prove Lemma ����
Proof of Lemma ����� We will exhibit a Turing reduction from Vertex
Cover to the problem of testing for common knowledge of ��� � � � � �b� and it
will follow that this problem is NP�hard�
Since every graph G � �V�E
 is jV j�coverable� the following is an algo�

rithm for Vertex Cover�

m� jV j	
while G has a vertex cover of size m� � do

m� m� �	
if m �M

then return �G has a vertex cover of size M�

else return �G has no vertex cover of size M��

To implement this test� it is enough to implement a test that� given an m�
coverable graph G� determines whether G is �m� �
�coverable� Every graph
G � �V�E
 clearly has a vertex cover of size jV j��� In addition� it is possible
to determine whether G has a vertex cover of size jV j� in polynomial time�
Similarly� it is easy to determine whether G has a vertex cover of size � in
polynomial time� We show that if � � m � jV j � and G is m�coverable�
then it is possible to construct in polynomial time a graph G�r� 	
 with the
property that �r� 	
 j�

W
iCN�i i� G is not �m � �
�coverable� The point

�r� 	
 will be a point of a system %�n� t
 with n � t from the class under
consideration �i�e�� the class of systems running a full�information protocol
in the generalized omissions model
� Thus� given an oracle for testing for
common knowledge of ��� � � � � �b� we will have a polynomial�time test for the
�m� �
�coverability of G� It will follow that testing for common knowledge
of ��� � � � � �b is NP�hard�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

k k � � � � k � �

Input of

minimal
G

determining
�i

G

r

r

r
p
p
p
p
r

S

�

�

t� �

Figure ���� Embedding a graph G in a run r�

Fix a graph G � �V�E
 and an integer m satisfying � � m � jV j � �
Let n � jV j m � and t � m � and let %�n� t
 be a system from the
class under consideration� Notice that since jV j � m � we have n � t�
Since each fact �i is admissible� for each �i we can explicitly construct in
polynomial time a labeled communication graph �of a point in %�n� t

 of
minimal length determining �i� Of these graphs� let G be one of minimal
length� say of length k� Let r be a run of %�n� t
� illustrated in Figure ����
satisfying the following conditions� �i
 the input received in the �rst k rounds
of r is the same as in G� and no input is received after time k! �ii
 all messages
in the �rst k rounds are delivered! �iii
 in round k �� the only undelivered
messages are as follows� no message is delivered from processor pv to pw in
round k � of r i� there is an edge from v to w in G �that is� the graph G
is represented by the undelivered messages during round k �
! �iv
 two
additional processors f� and f� are silent from time k � in r� and all other
messages after time k � are delivered! and �v
 a set S of t � additional
processors do not fail in r� Since G has a vertex cover V of size m� one failure
pattern consistent with the undelivered messages in r is that pv is faulty for
every v � V �accounting for the undelivered messages during round k � of r

and that both f� and f� are faulty� Given that t � m processors fail in this
failure pattern� there is a run r of %�n� t
 satisfying the required conditions�
Since the graph G determining the input of G�r� k
 can be constructed in
polynomial time� setting 	 � k �� the graph G�r� 	
 can be constructed in
polynomial time as well� It remains to show that �r� 	
 j�

W
i CN�i i� G is

not �m� �
�coverable�

���� TESTING FOR COMMON KNOWLEDGE ��

Suppose G has no vertex cover of size m � �� and let F be the set of
processors failing in r� Since f� and f� must be faulty �each fails to the

t � processors in S
� F � def� F �ff�� f�g must account for every undelivered
message during round k �� If there is an edge from v to w in G� then
no message from pv to pw is delivered in round k �� and one of pv or pw
must be in F �� It follows that F � must induce a vertex cover of G� Since G
has no vertex cover of size m � �� F � must contain at least m processors�
and F at least t � m � Thus� the processors in S implicitly know at time
k that their complement S � P � S contains t faulty processors� By
Lemma ���� their states at time k must be common knowledge at time
k �� These states contain a complete description of G�r� k
� and hence the
identity of G�r� k
 is common knowledge at �r� 	
� Recall that G was chosen
to be a graph determining �i for some i� If G does not specify a failure� then
G�r� k
 � G� and it follows that �r� 	
 j� CN�i� On the other hand� if G does

specify a failure� then �i is determined by the input to the �rst k rounds
of G and the existence of a failure� Notice that the failure of f� and f� is also
recorded in the view of S at time k � and hence is also common knowledge
at �r� 	
� Thus� both the input to the �rst k rounds of G and the existence of
a failure are common knowledge at time 	� and it follows that �r� 	
 j� CN�i�
In either case� we have �r� 	
 j�

W
iCN�i�

Conversely� suppose G does have a vertex cover of size m � �� Without
loss of generality� at most t � � processors fail in r� First� we claim that
�r� 	
 � �s� 	
 where s is a failure�free run with the input of r� Since f� and f�
fail only after time k � � 	 � � two applications of Lemma ��� imply
that �r� 	
 � �r�� 	
 where r� di�ers from r in that f� and f� do not fail in r��
Since at most t � � processors fail in r� and k � 	 � �� by Lemma ��� we
have �r�� 	
 � �s� 	
� Second� we claim that for each �i there is a run ui
not satisfying �i that di�ers from G only after time k � �� If k � �� then
since �i is admissible and hence not valid in the system� such a run must
certainly exist� On the other hand� if k � �� then since G was chosen to be a
labeled communication graph of minimal length determining �j for some �j �
such a run must exist in this case as well� Now� let u�i be a run having the
input of ui� in which no processor fails before time 	� and in which processors
become silent after time 	 i� there is a failure in ui� Since �i is a fact
about the input and existence of failures� and since ui does not satisfy �i�
neither does u�i� Let &s and &u

�
i be runs of F in the omissions model having the

� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

operating environments of s and u�i� respectively� �Notice that these operating
environments actually are operating environments of the omissions model�

Notice that no processor fails before time 	 in either &s or &u�i� It follows that
&G�&s� 	
 � &G�&u�i� 	
� and that &k�&s� 	
 � &k�&u

�
i� 	
� We denote these values by &G

and &k� respectively� Since t � m and m � �� we have that t � �� Thus�
&k � 	��t �
 � 	�	 � k��� Recall that &s and &u�i have the same input �and
no failures
 through time k � �� It follows that &V �&s� 	
 � &V �&u�i� 	
� It follows
by Lemma ���� that �&s� 	
 � �&u�i� 	
 in the omissions model� and hence that
�s� 	
 � �u�i� 	
 in the generalized omissions model as well� Since �r� 	
 � �s� 	
�
it follows that for each �i we have �r� 	
 � �u�i� 	
 and �u

�
i� 	
 �j� �i� Therefore�

for each �i we have �r� 	
 �j� CN�i� and hence �r� 	
 �j�
W
i CN�i�

We have seen that� as a result of the uncertainty about the failure pattern�
the complexity of determining whether admissible facts are common knowl�
edge is dramatically greater in this model than in more benign models� It is
conceivable� however� that this gap in complexity is due to the fact that faulty
processors may fail both to send and to receive messages� and not merely due
to the uncertainty about the failure pattern� We can show� however� that it
is precisely due to this uncertainty that we observe this complexity gap� Con�
sider the closely related failure model we have termed generalized omissions

with information� a model di�ering from the generalized omissions model in
that a processor not receiving a message can determine whether it or the
sender is at fault� We can show that the construction used in the omissions
model can also be used in this model to yield a set of states &V �r� 	
 completely
characterizing what facts are common knowledge at the point �r� 	
�

Proposition ����� In generalized omissions with information� we have �r� 	
 j�
CN� i� �r�� 	
 j� � for all r� satisfying &V �r�� 	
 � &V �r� 	
�

All of the proofs in the omissions model hold when generalized to this model�
with the exception that the construction must be started with a nonfaulty
processor� �In particular� Lemma ���� holds only when the processors p and q
are processors that do not fail to receive messages�
 This exception says that
faulty processors may not be able to perform all actions performed by the
nonfaulty processors� but this is no surprise since the same is true in the re�
ceiving omissions model� Furthermore� the computation of the sets Bi in the
construction now depends not only on the undelivered messages� but also on
the additional information that receiving processors obtain regarding blame

���� TESTING FOR COMMON KNOWLEDGE ��

for the undelivered messages� As in the omissions model� this construction
yields a method of deriving e�cient tests for common knowledge of certain
facts� Thus� it is again possible to design e�cient optimal protocols�

Theorem ����� Let C be an implementable practical simultaneous choice�
In generalized omissions with information� there is a polynomial�time optimal
protocol for C�

This shows that it is precisely the uncertainty about the failure pattern that
is responsible for the observed gap in complexity� and not merely the fact that
faulty processors may fail both by failing to send and to receive messages�

The uncertainty about the failure pattern in the generalized omissions
model adds a new combinatorial structure to the similarity graph in this
model that does not exist in other variants of the omissions model� Since
it is possible to assign failure to processors in a number of di�erent ways
consistent with a pattern of undelivered messages� it is possible to play a
solitaire version of a �pebbling game� with the failure pattern when con�
structing paths in the similarity graph� showing that one point is similar to
another point by alternatively assigning responsibility for undelivered mes�
sages to the sender and to the receiver� In fact� in addition to increasing the
di�culty of determining whether a fact is common knowledge at a point� this
new combinatorial structure has interesting e�ects on when facts become
common knowledge� Recall from the discussion at the end of Section ���
that the similarity graph in the omissions model is simply an extension of
the similarity graph in the crash failure model� two points with crash failure
patterns being similar in the crash failure model i� they are in the omissions
model� As a result� our optimal protocol FC in the omissions model is also
an optimal protocol when restricted to runs of the crash failure model� In
the generalized omissions model� however� the similarity graph is not merely
an elaboration of the similarity graph in the omissions model� A connected
component in the similarity graph of the generalized omissions model may
contain several distinct connected components from the omissions model�
As a result� optimal protocols in the generalized omissions model are not
necessarily optimal when restricted to runs of the omissions model� as the
following theorem shows is the case for simultaneous Byzantine agreement�

�	 CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

Theorem ����� No optimal protocol for simultaneous Byzantine agreement
in the generalized omissions model is optimal when restricted to runs of the
omissions model�

Proof� Let � be the failure pattern �involving at least t processors
 in
which processor pi fails to send to processor pt�i in round � �for i � �� � � � � t

and no other failures occur� Notice that � is a failure pattern of both the
omissions model and the generalized omissions model� Let r be a run of a full�
information protocol with the failure pattern �� We claim that some nonvalid
fact about the initial con�guration �in fact� the entire initial con�guration

must be common knowledge at �r�
 in the omissions model! and that no
nonvalid fact about the initial con�guration is common knowledge at �r�

in the generalized omissions model� from which it follows by Corollary ���
that no nonvalid fact about the initial con�guration is common knowledge
at time in any run with failure pattern � of a protocol in the generalized
omissions model� In the �rst case� any optimal protocol for simultaneous
Byzantine agreement in the omissions model �the protocol FC� for example

halts at time � In the second case� Lemma ��� implies that no protocol for
simultaneous Byzantine agreement in the generalized omissions model can
halt at time � Therefore� no optimal protocol for simultaneous Byzantine
agreement in the generalized omissions model is optimal when restricted to
runs of the omissions model�
To see that some nonvalid fact about the initial con�guration becomes

common knowledge at �r�
 in the omissions model� notice that the set &V �r�

is nonempty� The result follows by Corollary �����
To see that no nonvalid fact about the initial con�guration becomes com�

mon knowledge at �r�
 in the generalized omissions model� it is enough to
show that �r�
 � �s�
 for all failure�free runs s� Shifting �pebbles�� no�
tice that �r�
 � �r��
 where r� di�ers from r only in that processor p� is
nonfaulty in r� and it is processor pt�� that fails to receive the undelivered
message from p� to pt�� in round �� Using Lemma ��� we can show that
�r��
 � �r���
 where r�� di�ers from r� only in that processor pt�� does not
fail to receive the message from processor p� in round one� Repeating this
procedure we can show that �r���
 � �u�
 where u is the failure�free run
with the input of r��� It is now possible to use Lemma ��� to show that
�s�
 � �s��
 for all failure�free runs s and s�� It follows that �r�
 � �s�

for all failure�free runs s� and hence that no nonvalid fact about the initial

��� CONCLUSIONS ��

con�guration is common knowledge at �r�
�

We remark that� for most simultaneous choice problems� the counterexample
given in the proof of Theorem ��� can be used to show that no optimal
protocol for this problem in the generalized omissions model is optimal when
restricted to runs of the omissions model�
The results of this section indicate that the generalized omissions model

seems to be a natural failure model that already displays some of the complex
behavior of the more malicious models such as the Byzantine failure models�
By this we mean that� just as a processor in a Byzantine model may be
confused by which of two other processors are actually faulty processors� a
processor in the omissions model hearing of a lost message may be confused
by whether the sender or the receiver of the lost message is at fault� We
believe that this model is therefore a natural candidate for further study as
an intermediate model on the way to understanding the mysteries of fault
tolerance in truly malicious failure models�

��	 Conclusions

This chapter applies the theory of knowledge in distributed systems to the
design and analysis of fault�tolerant protocols for a large and interesting class
of problems� This is a good example of the power of applying reasoning about
knowledge to obtain general� unifying results and a high�level perspective on
issues in the study of unreliable systems�
Given the e�ectiveness of a knowledge�based analysis in the case of simul�

taneous actions �see also �DM���
� it would be interesting to know whether
such an analysis can shed similar light on the case of eventually coordinated
actions� Dolev� Reischuk� and Strong �DRS�� show that the problem of
performing eventually coordinated actions in synchronous systems is quite
di�erent from that of performing simultaneous actions� For example� they
show that while t � is a general lower bound on the number of rounds
required to reach simultaneous agreement even when the number f of pro�
cessors actually failing is less that t� eventual agreement can be reached in
as few as f rounds if the number of processors is su�ciently large� In
addition to common knowledge� an analysis of eventually coordinated actions
may be able to make good use of the notion of eventual common knowledge

�see �HM�	� Mos���
� We note that it is possible to show that for eventual

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

choice problems there do not� in general� exist protocols that are optimal

in all runs� For example� one can give two protocols for �eventual
 Byzan�
tine agreement with the property that for every operating environment one of
these protocols will reach Byzantine agreement �i�e�� all processors will decide
on a value
 by time at the latest� However� if t � �� it is well�known that
no single protocol can guarantee that agreement will be reached by time
in all runs� What is the best notion of optimality that can be achieved in
eventual coordination�

We provide a method of deriving an optimal protocol for any given im�

plementable speci�cation of a simultaneous choice problem� However� in this
work� we have completely sidestepped the interesting question of character�
izing the problems that are and are not implementable in di�erent failure
models� We believe that a general analysis of the implementability of prob�
lems involving coordinated actions in di�erent failure models will expose
many of the important operational di�erences between the models� As an
example� our speci�cation of the distributed �ring squad problem in the in�
troduction is implementable in the variants of the omissions model� but is
not implementable in more malevolent models� in which a faulty processor
can falsely claim to have received a �start� message and otherwise seem to
behave correctly �see �BL��� and �CDDS��� for de�nitions of versions of the
�ring squad problem that are implementable in the more malicious models
�

In the generalized omissions model� we have shown how to derive optimal
protocols for nontrivial simultaneous choice problems� requiring processors
to perform polynomial�space computations between consecutive rounds� We
have also shown an NP�hard lower bound for any communication�e�cient
protocol for such a problem that is optimal in all runs� Determining the
precise complexity of this task is a nontrivial open problem� due to the inter�
esting combinatorial structure underlying the generalized omissions model�
It would also be interesting to extend our study to more malicious failure
models� such as the Byzantine and the authenticated Byzantine models �see
�Fis���
� It is not immediately clear whether the notion of a failure pattern
can be de�ned in these models in a protocol�independent fashion� Thus� it
is not clear that the notion of optimality in all runs is well�de�ned in such
models�� If such de�nitions are possible� we believe that the NP�hardness

�Quite recently� Michel �Mic�	� has shown in the Byzantine model how to map runs
of one protocol to runs of another protocol in a way that respects processor failures� and

��� CONCLUSIONS ��

result from the generalized omissions model should extend to these models�
�Our proof does show that testing for common knowledge in runs of a full�
information protocol F in both models is NP�hard�
 Capturing the precise
combinatorial structure of the similarity graph in these models is bound to
expose many of the mysterious properties of the models� We believe that
this is an important �rst step in understanding these models�

As we have seen� there are no computationally�e�cient optimal protocols
for simultaneous choice problems in the generalized omissions model� Since
it is unreasonable to expect polynomial�time processors to perform NP�hard
computations� it is natural to ask what is the earliest time at which simulta�
neous actions can be performed by such processors� Are optimal protocols
for such processors guaranteed to exist� In what sense are these protocols
optimal� How can they be derived� In contrast to the simpler failure mod�
els� the answers to these questions in the generalized omissions model no
longer seems to be as closely related to the information�theoretic de�nitions
of knowledge and common knowledge given in Chapter � since they do not
account for the polynomial�time limitations on processors� computational re�
sources�

A major challenge motivated by these questions� therefore� is the elab�
oration of the theory of knowledge given in Chapter to include notions of
resource�bounded knowledge that would provide us with appropriate tools
for analyzing such questions� Such a theory would provide notions such as
polynomial�time knowledge and polynomial�time common knowledge� which
would correspond to the actions and the simultaneous actions that polynomial�
time processors can perform� Note that the fact that �suboptimal
 polynomial�
time protocols for the simultaneous Byzantine agreement problem exist even
in the more malicious failure models implies that� given the right notions�
many relevant facts should become polynomial�time common knowledge�

Recently� in �Mos���� Moses has risen to this challenge and proposed
notions of resource�bounded knowledge based on the existence of tests for
knowledge similar to the tests for common knowledge used here� Loosely
speaking� for example� a processor is said to polynomial�time know a fact
� at a point if it knows � at this point and there exists a polynomial�time
test that at all points of the system correctly determines whether the proces�
sor knows �� Using this de�nition of polynomial�time knowledge� he shows

how to de�ne a notion of optimality with respect to these mappings�

�� CHAPTER �� PROGRAMMING SIMULTANEOUS ACTIONS

that polynomial�time common knowledge of certain facts is a necessary con�
dition for processors to perform simultaneous actions� and� using this and
the construction in the proof of Theorem ���� he is able to prove that there
can be no polynomial�time protocol for simultaneous Byzantine agreement
in the generalized omissions model that is optimal in all runs with respect to
polynomial�time protocols� We note that other related notions of resource�
bounded knowledge have appeared in �HMT��� and �FZ���� While each of
these de�nitions is well�motivated in each of these works� however� under�
standing which of these de�nitions is in general the �correct� de�nition is
still an open problem� We will return to this topic again in Chapter � where
we study cryptographic protocols in terms of a form of resource�bounded
knowledge�

Chapter �

Knowledge� Probability� and

Adversaries

In this chapter� we explore the relationship between knowledge and proba�
bility in probabilistic systems�

��� Introduction

In a number of areas of research� including distributed computing� arti�cial
intelligence� and economics� we are faced with the problem of understanding
a system of agents �possibly processors in a distributed network or consumers
in an economic model
 that interact in some way� Often� probability plays a
role in this interaction� in the context of game theory� for example� an agent
might toss a coin in order to determine its next move in a game� As we try
to understand these probabilistic systems� we often �nd ourselves reasoning�
at least informally� about knowledge and probability and their interaction�
Consider� for example� a probabilistic primality�testing algorithm� Such an
algorithm might guarantee that if the input n is a composite number� then
with high probability the algorithm will �nd a �witness� that can be used to
verify that n is composite� Loosely speaking� we reason� if an agent runs this
algorithm on input n and the algorithm fails to �nd such a witness� then the

This chapter is joint work with Joe Halpern� A preliminary version of this work will
appear in Proceedings of the �th Annual ACM Symposium on Principles of Distributed

Computing� August� �	�	�

��

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

agent knows that n is almost certainly prime� since the agent is guaranteed
that the algorithm would almost certainly have found a witness had n been
composite�
A number of recent papers have tried to formalize this sort of reason�

ing about knowledge and probability� Fagin and Halpern �FH��� present an
abstract model for knowledge and probability in which they assign to each
agent and state a probability space to be used when computing the prob�
ability� according to that agent at that state� that a formula � is true� In
their framework� the problem of modeling knowledge and probability reduces
to choosing this assignment of probability spaces� Although they show that
more than one choice may be reasonable� they do not tell us how to make
this choice� One particular �and quite natural
 choice is made in �FZ��� and
some arguments are presented for its appropriateness! another is made in
�HMT��� �Chapter �
 and used to analyze interactive proof systems� It is
not initially clear� however� which choice is most appropriate�
In this chapter� we clarify the issues involved in choosing the right assign�

ment of probability spaces� We argue that no single assignment is appropriate
in all contexts� Di�erent assignments can be viewed as most appropriate in
the context of betting against di�erent adversaries� Thinking in terms of
such betting games� a statement such as �I know event E will happen with
probability at least �� is meaningless until the powers of our opponent in
the betting game have been speci�ed� A strategy that will win a game with
probability ��� against a weak adversary may win the game with probability
only ��� against a strong adversary� Consequently� even if we are told that
a certain strategy will win the game with probability ��� against a certain
adversary� we cannot tell whether it is a good strategy until we know the
powers of this certain adversary�
We �nd� however� that the notion of an opponent in a betting game

does not fully capture all the subtleties that arise when modeling knowledge
and probability in distributed systems� We present a framework with three
di�erent types of adversaries� each playing a fundamentally di�erent role�
We brie�y describe these roles here� and explore them in greater depth in
the rest of the chapter�
When we analyze probabilistic protocols� we typically do so in terms of

probability distributions on the runs or executions of the protocol� When we
say a protocol is correct with probability ���� we mean the protocol will do the
right thing in ��� of the runs� A closer analysis of the situation reveals some

���� INTRODUCTION ���

subtleties� In fact� we do not have a probability distribution on the entire
set of runs� In probabilistic algorithms for testing primality such as those
of Rabin �Rab��� and Solovay and Strassen �SS���� for example� we typically
do not assume a distribution on the inputs �the numbers to be tested
� The
only source of probability comes from the coins tossed during the execution
of the algorithm� This means that for every �xed input� there is a probability
space on the runs of the protocol on that input� rather than there being one
probability space on the set of all runs� We can view the choice of input
as a nondeterministic choice to which we do not assign a probability� Thus�
we prove the algorithm works correctly with high probability for each initial
nondeterministic choice� A similar situation arises in probabilistic protocols
that are designed to work in the presence of a nondeterministic �perhaps
adversarial
 scheduler �e�g�� �Rab��
� Again� we do not wish to assume some
probability of playing a given scheduler� Instead� we factor out the choice
of scheduler and prove that the protocol is correct with high probability for
each scheduler�
This� then� is the role played by the �rst type of adversary� to factor

out the nondeterminism in the system� allowing us to place a well�de�ned
probability on the set of runs for each �xed adversary� We remark that
this need to factor out the nondeterminism is implicit in most analyses of
probabilistic protocols� and appears explicitly in �Rab�� Var��� FZ����
The probability on the runs can be viewed as giving us an a priori prob�

ability of an event� before the protocol is run� However� the probability an
agent places on runs will in general change over time� as a function of infor�
mation received by the agent in the course of the execution of the protocol�
New subtleties arise in analyzing this probability�
Consider a situation with three agents p�� p�� and p�� Agent p� tosses a

fair coin at time � and observes the outcome at time � but agents p� and p�
never learn the outcome� What is the probability according to p� that the
coin lands heads� Clearly at time � it should be ��� What about at time �
There is one argument that says the answer should be ��� After all� agent
p� does not learn any more about the coin as a result having tossed it� so why
should its probability change� Another argument says that after the coin has
been tossed� it does not make sense to say that the probability of heads is ���
The coin has either landed heads or it hasn�t� so the probability of the coin
landing heads is either � or � �although agent p� does not know which
� This
point of view appears in a number of papers in the philosophical literature

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

�for example� �vF��� Lew���
� Interestingly� the same issue arises in quantum
mechanics� in Schr(odinger�s famous cat�in�the�box thought experiment �see
�Pag�� for a discussion
�

We claim that these two choices of probability are best explained in terms
of betting games� At time �� agent p� should certainly be willing to accept
an o�er from either p� or p� to bet #� for a payo� of # if the coin lands
heads �assuming p� is risk neutral
�

� Half the time the coin will land heads
and p� will be #� ahead� and half the time the coin will land tails and p�
will lose #�� but on average p� will come out even� On the other hand� agent
� is clearly not willing to accept such an o�er from p� at time �since p�
would presumably o�er the bet only when it is sure it will win
� although it
is still willing to accept this bet from p�� The point here is that in a betting
game� not only is your knowledge important� but also the knowledge of the
opponent o�ering the bet� Betting games are not played in isolation�

Thus� the role played by the second type of adversary in our framework is
to model the knowledge of the opponent o�ering a bet to an agent at a given
point in the run� One obvious choice is to assume you are playing against
someone whose knowledge is identical to your own� This is what decision
theorists implicitly do when talking about an agent�s posterior probabilities
�BG�	�! it is also how we can understand the choice of probability space
made in �FZ���� By way of contrast� the choice in �HMT��� corresponds to
playing someone who has complete knowledge about the past and knows the
outcome of the coin toss! this corresponds to the viewpoint that says that
when the coin has landed� the probability of heads is either � or � �although
you may not know which
�

A further complication arises when analyzing asynchronous systems� In
this case there is a precise sense in which the agent does not even know exactly
when the event to which it would like to assign a probability is being tested�
Thus we need to consider a third type of adversary in asynchronous systems�
whose role is to choose the time� To illustrate the need for this third type
of adversary� we give an example of an asynchronous system where there are
a number of plausible answers to the question �What is the probability the
most recent coin toss landed heads��� It turns out that the di�erent answers
correspond to di�erent adversaries choosing the times to perform the test

�Informally� an agent is said to be risk neutral if it is willing to accept all bets where
its expectation of winning is nonnegative�

���� PROBABILITY ON RUNS ���

in di�erent ways� We remark that the case of asynchronous systems is also
considered in �FZ���� We can understand the assignment of �con�dence�
made there as corresponding to playing against a certain class of adversaries
of this third type�

Having shown that di�erent de�nitions of probabilistic knowledge corre�
spond to di�erent classes of adversaries� we show� given a class of adversaries�
how to construct a de�nition most appropriate for this class� We formalize
our intuition concerning the probability an agent assigns to an event in terms
of a betting game between the agent and an opponent� We show that our
�most appropriate� de�nition has the property that it enables an agent to
break even in this game� and any other de�nition with this property must
correspond to an opponent even more powerful than the actual opponent�
These results form the technical core of this chapter�

The rest of the chapter is organized as follows� In the next section�
Section 	�� we consider the problem of putting a probability on the runs
of a system! this is where we need the �rst type of adversary� to factor out
the nondeterministic choices� In Section 	�� we start to consider the issue
of how probability should change over time� In Section 	�	 we consider the
choices that must be made in a general de�nition of probabilistic knowledge�
In Section 	�� we consider particular choices of probability assignments that
seem reasonable in synchronous systems� Here we consider the second type of
adversary� representing the knowledge of the opponent in the betting game�
In Section 	��� we consider asynchronous systems� where we also have to
consider the third type of adversary� In Section 	�� we apply our ideas to
analyzing the coordinated attack problem� showing how di�erent notions of
probability correspond to di�erent levels of guarantees in coordinated attack�
The chapter ends with two appendices� In Appendix 	�A we give the proofs
of the results claimed in the chapter� and in Appendix 	�B we discuss some
interesting secondary observations related to the rest of the chapter�

��� Probability on runs

In order to discuss the probability of events in a distributed system� we
must specify a probability space� In this section we show that in order to
place a reasonable probability distribution on the runs of a system� it is
necessary to postulate the existence of the �rst type of adversary sketched

��	 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

in the introduction�
Consider the simple system consisting of a single agent who tosses a fair

coin once and halts� This system consists of two runs� one in which the
coin comes up heads and one in which the coin comes up tails� The coin
toss induces a very natural distribution on the two runs� each is assigned
probability ���
Now consider the system �suggested by Moshe Vardi! a variant appears in

�FZ���
 consisting of two agents� p� and p�� where p� has an input bit and two
coins� one fair coin landing heads with probability �� and one biased coin
landing heads with probability ��� If the input bit is �� p� tosses the fair
coin once and halts� If the input bit is �� p� tosses the biased coin and halts�
This system consists of four runs of the form �b� c
� where b is the value of
the input bit and c is the outcome of the coin toss� What is the appropriate
probability distribution on the runs of this system� For example� what is the
probability of heads�
Clearly the conditional probability of heads given that the input bit is �

should be ��� while the conditional probability of heads given the input bit
is � should be ��� But what is the unconditional probability of heads� If we
are given a distribution on the inputs� then it is easy to answer this question�
If we assume� for example� that � and � are equally likely as input values�
then we can compute that the probability of heads is �

�
	 �
�
 �

�
	 �
�
� �

��
� If we

are not given a distribution on the inputs� then the question has no obvious
answer� It is tempting to assume� therefore� that such a distribution exists�
Often� however� assuming a particular �xed distribution on inputs leads to
results about a system that are simply too weak to be of any use� Knowing
an algorithm produces the correct answer in ��� of its runs when all inputs
are equally likely is of no use when the algorithm is used in the context of a
di�erent distribution on the inputs�
To overcome this problem� one might be willing to assume the existence

of some �xed but unknown distribution on the inputs� Proving that an
algorithm produces the correct answer in ��� of the runs in the context of an
unknown distribution� however� is no easier than proving that for each �xed
input the algorithm is correct in ��� of the runs� since it is always possible for
the unknown distribution to place all the probability on the input for which
the algorithm performs particularly poorly� Here the advantage of viewing
the system as a single probability space is lost� since this is precisely the
proof technique one would use when no distribution is assumed in the �rst

���� PROBABILITY ON RUNS ���

place� Moreover� assuming the existence of some unknown distribution on
the inputs simply moves all problems arising from nondeterminism up one
level� Although we have a distribution on the space of input values� we have
no distribution on the space of probability distributions�
This discussion leads us to conclude that some choices in a distributed

system must be viewed as inherently nondeterministic �or� perhaps better�
nonprobabilistic
� and that it is inappropriate� both philosophically and prag�
matically� to model probabilistically what is inherently nondeterministic� But
then how can we reason probabilistically about a system involving both non�
deterministic and probabilistic choices� Our solution)which is essentially
a formalization of the standard approach taken in the literature)is to fac�
tor out initial nondeterministic events� and view the system as a collection of
subsystems� each with its natural probability distribution� In the coin tossing
example above� we would consider two probability spaces� one corresponding
to the input bit being � and the other corresponding to the input bit being ��
The probability of heads is �� in the �rst space and �� in the second��

We want to stress that although this example may seem arti�cial� analo�
gous examples frequently arise in the literature� In a probabilistic primality�
testing algorithm �Rab��� SS���� for example� we do not want to assume

�Often� even in the presence of nondeterminism� we can impose a meaningful distribu�
tion on the runs of a system without factoring the system into subsystems� However� the
resulting distribution still may not capture all of our intuition� The problem in the preced�
ing example is that probabilistic events �the coin toss� depend on nonprobabilistic events
�the input bit�� Suppose� however� the agent tosses a fair coin regardless of the input
bit�s value� Now it is natural to assign probability ��� to each of the events f��� h�� �
� h�g
and f��� t�� �
� t�g that the coin lands head and tails� respectively� Consider� however� the
situation �discussed in �FH��� HMT���� where an agent performs a given action a i� the
input bit is � and the coin landed heads� or the input bit is
 and the coin landed tails� It
is natural to argue that the probability the agent performs the action a is also ���� if the
input bit is � then with probability ��� the coin will land heads and a will be performed�
and if the input bit is
 then with probability ��� the coin will land tails and a will be
performed� Unfortunately� our �natural� distribution on the runs of the system does not
support this line of reasoning� since this distribution does not assign a probability to the
set f��� h�� �
� t�g corresponding to the performance of a� In fact� it is not hard to see that
if we could assign this set a probability� then we would be able to assign a probability to
having the input bit set to
 or �� But the setting of the input bit was assumed to be
nondeterministic� Again� however� if we factor out this initial nondeterminism� we can
view the system as two subsystems with obvious associated probability distributions� and
within each subsystem the action a is performed with probability ���� And this is precisely
what the reasoning underlying our intuition is implicitly doing�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

a probability distribution on the inputs� We want to know that for each
choice of input� the algorithm gives the right answer with high probability�
Rabin�s primality�testing algorithm �Rab��� is based on the existence of a
polynomial�time computable predicate Pn�a
 with the following properties�
��
 if n is composite� then at least ��	 of the a � f�� � � � � n� �g cause Pn�a

to be true� and �
 if n is prime� then no such a causes n to be true� Ra�
bin�s algorithm generates a polynomial number of a�s at random� If Pn�a
 is
true for any of the a�s generated� then the algorithm outputs �composite�!
otherwise it outputs �prime�� Property �
 guarantees that if the algorithm
outputs �composite�� then n is de�nitely composite� If the algorithm out�
puts �prime�� then there is a chance that n is not prime� but property ��

guarantees that this is very rarely the case� if n is indeed composite� then
with high probability the algorithm outputs �composite�� If the algorithm
outputs �prime�� therefore� it might seem natural to say that n is prime with
high probability! but� of course� this is not quite right� The input n is either
prime or it is not! it does not make sense to say that it is prime with high
probability� On the other hand� it does make sense to say that the algorithm
gives the correct answer with high probability� The natural way to make this
statement precise is to partition the runs of the algorithm into a collection of
subsystems� one for each possible input� and prove that the algorithm gives
the right answer with high probability in each of these subsystems� where
the probability on the runs in each subsystem is generated by the random
choices for a� While for a �xed composite input n there may be a few runs
where the algorithm incorrectly outputs �prime�� in almost all runs it will
give the correct output�
In many contexts of interest� the choice of input is not the only source of

nondeterminism in the system� Later nondeterministic choices may also be
made throughout a run� In asynchronous distributed systems� for example�
it is common to view the choice of the next processor to take a step or the
next message to be delivered as a nondeterministic choice� Similar arguments
to those made above can be used to show that we need to factor out these
nondeterministic choices in order to use the probabilistic choices �coin tosses

to place a well�de�ned probability on the set of runs� A common technique
for factoring out these nondeterministic choices is to assume the existence
of a scheduler deterministically choosing �as a function of the history of the
system up to that point
 the next processor to take a step �cf� �Rab��
Var���
� It is standard practice to �x some class of schedulers� perhaps the

���� PROBABILITY ON RUNS ���

r

�
�

�
�

�
���

��

Q
Q
Q
Q
Q
QQs

��

r r

�
�

�
���

��

r

�
�
�
��R

��

r

�
�

�
���

���

r �

��

r

�
�
�
��R

���

r

Figure 	��� A �labeled
 computation tree�

class of �fair� schedulers or �polynomial�time� schedulers� and argue that for
every scheduler in this class the system satis�es some condition�

As we now show� if we view all nondeterministic choices as under the
control of some adversary from some class of adversaries� then there is a
straightforward way to view the set of runs of a system as a collection of
probability spaces� one for each adversary� By �xing an adversary we fac�
tor out the nondeterministic choices and are left with a purely probabilistic
system� with the obvious distribution on the runs determined by the proba�
bilistic choices made during the runs� This is essentially the approach taken
in �FZ����

Once we �x an adversary A� we can view the runs of the system with this
adversary as a �labeled
 computation tree TA �see Figure 	��
� Nodes of the
tree are global states and paths in the tree are runs� Now� however� edges
of the tree are labeled with positive real numbers such that for every node
the values labeling the node�s outgoing edges sum to �� Intuitively� the value
labeling an outgoing edge of node s represents the probability the system
makes the corresponding transition from node s�� Given a �nite path in the
tree� the probability of the set of runs extending this �nite path is simply

�Since all edges have positive labels� we are e�ectively ignoring transitions with proba�
bility
� and assuming that there is a discrete probability distribution on the set of possible
transitions at each node� It follows that each node can have at most a countable number
of outgoing edges� This means� for example� that we are disallowing the possibility that
the next step will be a random assignment to a variable x chosen with uniform probability
from the interval �
� ��� We could easily extend our model to deal with this situation by
assigning probabilities to sets of transitions� rather than just individual transitions� We
have chosen to consider only discrete probability distributions here for ease of exposition�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

the product of the probabilities labeling the edges in this �nite path�
It is natural to view this computation tree TA as a probability space� a

tuple �RA�XA� A
 where RA is the set of runs in TA� XA consists of subsets
of RA that are measurable �that is� the ones to which a probability can be
assigned! these are generated by starting with sets of runs with a common
�nite pre�x and closing under countable union and complementation
� and
a probability function A de�ned on sets in XA so that the probability of a
set of runs with a common pre�x is the product of the probabilities labeling
the edges of the pre�x� If we restrict attention to �nite runs �as is done
in �FZ���
� then it is easy to see that each individual run is measurable� so
that XA consists of all possible subsets of RA� Moreover� in the case of �nite
runs� the probability of a run is just the product of the transition probabilities
along the edges of the run�
It is occasionally useful to view this computation tree TA as consisting of

two components� the tree structure �that is� the unlabeled graph itself
� and
the assignment of transition probabilities to the edges of the tree� Given an
unlabeled tree TA� we de�ne a transition probability assignment for TA to be
a mapping � assigning transition probabilities to the edges of TA� We will
use the notation TA at times to refer to the unlabeled tree� to the labeled
tree� and to the induced probability space! which is meant should be clear
from context�
We de�ne a probabilistic system to consist of a collection of labeled com�

putation trees �which we view as separate probability spaces
� one for each
adversary A in some set A� We assume that the environment component in
each global state in TA encodes the adversary A and the entire past history
of the run� This technical assumption ensures that di�erent nodes in the
same computation tree have di�erent global states� and that we cannot have
the same global state in two di�erent computation trees� Given a point c� we
denote the computation tree containing c by T �c
� Our technical assumption
guarantees that T �c
 is well�de�ned�
The choice of the appropriate set A of adversaries against which the sys�

tem runs is typically made by the system designer when specifying correct�
ness conditions for the system� An adversary might be limited to choosing
the initial input of the agents �in which case the set of possible adversaries
would correspond to the set of possible inputs
 as is the case in the context
of primality�testing algorithms in which an agent receives a single number
�the number to be tested
 as input� On the other hand� an adversary may

���� PROBABILITY AT A POINT ���

also determine the order in which agents are allowed to take steps� the order
in which messages arrive� or the order in which processors fail� One might
also wish to restrict the computational power of the adversary to polynomial
time� It depends on the application�

��� Probability at a point

We are interested in understanding knowledge and probability in distributed
systems� An agent�s knowledge varies over time� as its state changes� We
would expect the probability an agent assigns to an event to vary over time
as well� Clearly an agent�s probability distribution at a given point must
somehow be related to the distribution on runs if it is to be at all meaningful�
Nevertheless� the two distributions �the overall distribution on the runs of a
system and the distribution on the runs an agent uses at a point
 are quite
di�erent! depending on which of the distributions we use� we can be led to
quite di�erent analyses of a protocol�
To understand this distinction� consider the Coordinated Attack prob�

lem �Gra���� Two generals A and B must decide whether to attack a common
enemy� but we require that any attack be a coordinated attack! that is� A
attacks i� B attacks� Unfortunately� they can communicate only by messen�
gers who may be captured by the enemy� It is known that it is impossible for
the generals to coordinate an attack under such conditions �Gra��� HM�	��
Suppose� however� we relax this condition and require only that the generals
coordinate their attack with high probability �FH��� FZ���� To eliminate
all nondeterminism� let us assume general A tosses a fair coin to determine
whether to attack� and let us assume the probability a messenger is lost to
the enemy is ��� Our new correctness condition is that the condition �A
attacks i� B attacks� holds with probability ����

Consider the following two�step solution CA� to the problem� At round
�� A tosses a coin and sends �� messengers to B i� the coin landed heads� At
round �� B sends a messenger to tell A whether it has learned the outcome
of the coin toss� At round � A attacks i� the coin landed heads �regardless
of what it hears from B
 and B attacks i� at round � it learned that the coin
landed heads� It is not hard to see that if we put the natural probability
space on the set of runs� then with probability at least ��� �taken over the
runs
 A attacks i� B attacks� if the coin lands tails then neither attacks�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

and if the coin lands heads then with probability at least ��� at least one of
the ten messengers sent from A to B at round � avoids capture and both
generals attack�
This is very di�erent� however� from saying that at all times both generals

know that with probability at least ��� the attack will be coordinated� To
see this� consider the state just before attacking in which A has decided to
attack but has received a message from B saying that B has not learned
the outcome of the coin toss� At this point� A is certain the attack will not
be coordinated� Although we have not yet given a formal de�nition of how
to compute an agent�s probability at a given point� it seems unreasonable
for an agent to believe with high probability that an event will occur when
information available to the agent guarantees it will not occur�
On the other hand� consider the solution CA� di�ering from the preced�

ing one only in that B does not try to send a messenger to A at round �
informing A about whether B has learned the outcome of the coin toss� An
easy argument shows that in this protocol� at all times both generals have
con�dence �in some sense of the word
 at least ��� that the attack will be co�
ordinated� Consider B� for example� after having failed to receive a message
from A� B reasons that either A�s coin landed tails and neither general will
attack� which would happen with probability ��� or A�s coin landed heads
and all messengers were lost� which would happen with probability ����!
and hence the conditional probability that the attack will be coordinated
given that B received no messages from A is at least ����
As the preceding discussion shows� in a protocol which has a certain

property P with high probability taken over the runs� an agent may still
�nd itself in a state where it knows perfectly well that P does not �and will
not
 hold� While correctness conditions P for problems arising in computer
science have typically been stated in terms of a probability distribution on
the runs� it might be of interest to consider protocols where an agent knows
P with high probability at all points� As we shall show� the probability
distribution on the runs typically corresponds to each agent�s probability
distribution at time �� Thus� we can view the probability on the runs as an
a priori probability distribution� To require a fact �or a condition P
 to hold
with high probability from each agent�s point of view at all times is typically
a much stronger requirement than requiring it to hold with high probability
over the set of runs� Arguably� in many cases� it is also a more natural
requirement� It seems quite natural� for example� to require of a coordinated

���� DEFINITIONS OF PROBABILISTIC KNOWLEDGE ���

attack protocol that A have high con�dence at all points that the attack will
be coordinated� rather than allowing A to attack even when it is certain the
attack will be uncoordinated�

��� De�nitions of probabilistic knowledge

We want to make sense of statements such as �at the point c� agent pi knows
� holds with probability ��� The problem is that� although we typically have
a well�de�ned probability distribution on the set of runs in each computa�
tion tree� in order to make sense of such statements we need a probability
distribution on the points pi considers possible at c� The reason we need a
distribution on points and not just on runs is that many interesting facts are
facts about points and not about runs� Consider� for example� the fact �the
most recent coin tossed landed heads�� If a coin is tossed many times in a
single run� this fact may be true at some points of the run and false at others�
and hence is a fact about points and not about runs� When reasoning about
probabilistic protocols� it seems quite natural to want to make formal state�
ments of the form �agent p knows with probability �� that the most recent
coin tossed by agent q landed heads�� It is possible to reformulate this state�
ment so that it becomes a fact about runs� The fact �the kth coin tossed by
agent q landed heads� is a fact about runs! and the statement above can be
reformulated as �for all times k� if the current time is k� then agent p knows
with probability �� that the kth coin tossed by agent q landed heads�� In
our opinion� the former statement more naturally corresponds to the way we
think about such protocols� If we are willing to restrict our attention to facts
about the run� then we can make do simply with a distribution on runs� but
this precludes �or at least complicates
 the discussion of many interesting
events in a system�

We begin by reviewing the general framework of �FH��� in which� given
a particular assignment of probability spaces to points and agents� we can
make sense of such statements about an agent�s probabilistic knowledge�
The remainder of the chapter will focus on the construction of appropriate
probability assignments�

De�ne a probability assignment P to be a mapping from an agent pi and
point c to a probability space Pi�c � �Si�c�Xi�c� i�c
� Here Si�c is a set of
points� Xi�c is the set of measurable subsets of Si�c� and i�c is a probability

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

function assigning a probability to the sets in Xi�c�� In most cases of interest�
one can think of Si�c as a subset of the points agent pi considers possible
at c� and of i�c as indicating the relative likelihood according to pi that a
particular point in Si�c is actually the current point c��

Given such an assignment� let Si�c��
 be the set of the points in Si�c
satisfying �! that is� Si�c��
 � fd � Si�c � d j� �g� It is natural to interpret
i�c�Si�c��

 as the probability � is true� according to agent pi at the point
c� One problem with this interpretation� of course� is that the set Si�c��
 is
not guaranteed to be measurable� and hence i�c�Si�c��

 is not guaranteed to
be well�de�ned� In order to deal with this problem� we follow the approach
of �FH���� and make use of inner and outer measures� Given a probability
space �S�X �
� the inner measure � and outer measure � are de�ned by

��S�
 � sup f�T
 � T � S� and T � Xg
��S�
 � inf f�T
 � T � S� and T � Xg

for all subsets S� of S� Roughly speaking� the inner �resp� outer
 measure
of Si�c��
 is the best lower �resp� upper
 bound on the probability � is true�
according to pi at c� It is easy to see that ��T
 � � � ��T c
 for any set
T � where T c is the complement of T � Given a probability assignment P� we
write P� c j� Pri��
 � � to mean i�c��Si�c��

 � ��
 Note that we need
the probability assignment P to make sense of Pri� We take K�

i � to be an
abbreviation for Ki�Pri��
 � �
! thus K�

i � means that agent pi knows that
the probability of � is at least � since Pri��
 � � holds at all points pi
considers possible�
We now have all the de�nitions needed to give semantics to a logical

language of knowledge and probability� In particular� the language of most
interest to us in the remainder of this chapter is the language L�"
 obtained

�We often follow the standard practice �Hal
� p� ��� of identifying the probability space
Pi�c with the sample space Si�c� the intention should be clear from context�

�Returning to the question of distributions on runs versus points� notice that as long
as the set Si�c does not contain more than one point per run� there is a natural bijection
from the probability on the points in Si�c to the probability on the runs going through Si�c�
In general� however� we allow more than one point on the same run to appear in Si�c� As
we shall see in the next section� this generality is useful when dealing with asynchronous
systems�

�We remark that we can easily extend these de�nitions to more complicated formulas
such as Pri��� � �Pri���� see �FH����

���� DEFINITIONS OF PROBABILISTIC KNOWLEDGE ���

by �xing a set " of primitive propositions and closing under the standard
boolean connectives �conjunction and negation
� the knowledge operators Ki�
probability formulas of the form Pri��
 � �� and the standard �linear time

temporal logic operators next � and until U � Note that L�"
 is su�ciently
powerful to express the operators K�

i and the temporal operators henceforth
� and eventually ��� In the context of a given system� we say that L�"

is state�generated if each of the primitive propositions in " is a fact about
the global state! and we say that L�"
 is su�ciently rich if for every global
state g there is a primitive proposition in " true at precisely those points
with global state g� This condition ensures that the language L�"
 is rich
enough to allow us to talk about individual global states� The assumption
that L�"
 is state�generated is quite reasonable in practice� we typically take
the primitive propositions to represent facts such as �the coin landed heads��
�the message was received�� or �the value of variable x is ��� Each of these
facts is a fact about the global state� assuming certain aspects of the history
are recorded in the global state� Su�cient richness is a technical condition
required for a few of our results� We can always make a language su�ciently
rich by adding primitive propositions�

We now have a natural way of making sense of knowledge and probability�
given a probability assignment P� Unfortunately� we still do not know how
to choose P� but our choices are somewhat more constrained than they may
at �rst appear� We are given the computation trees and the associated
distributions on runs� and we clearly want the distribution on the sample
space Si�c of points we associate with agent pi at point c to be related somehow
to these distributions on runs� We next show that once we choose the sample
spaces Si�c� there is a straightforward way to use the distribution on runs to
induce a distribution on Si�c� Thus� once we are given an appropriate choice of
sample spaces and the distributions on runs of the computation trees� we can
construct the probability assignment� The problem of choosing a probability
assignment� therefore� essentially reduces to choosing the sample spaces� This

�We de�ne �r� k� j��� i� �r� k� �� j� �� so �� is true at time k in a run i� it is true
at time k � �� after the next step� We de�ne �r� k� j� �U � to mean there exists � � k
such that �r� �� j� � and �r� ��� j� � for all �� with k � �� � �� Thus �U � is true at �r� k� if
� is true at some point in the future� and � is true until then� Recall that ��� which says
that � is true at some point in the future� can be taken as an abbreviation of trueU ��
and that ��� which says that � is true now and forever in the future� is an abbreviation
for �����

��	 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

reduction will clarify important issues in determining the appropriate choice
of probability assignments�
The idea of our construction is quite straightforward� given a sample

space Si�c and a subset S � Si�c� the probability of S �relative to Si�c
 is just
the probability of the runs going through S normalized by the probability
of the set of runs going through Si�c� In other words� the probability of S is
the conditional probability a run passes through S� given that the run passes
through Si�c�
In order for this simple idea to work� however� the set Si�c must satisfy

a few requirements� One natural choice for Si�c is the set Ki�c
 of all points
agent pi considers possible at c� In general� however� this set contains points
from many di�erent computation trees� and attempting to impose a distri�
bution on this set of points leads to the same di�culties that led us to factor
out nondeterminism and view a system as a collection of computation trees
in the �rst place� Recall the example from Section � in which p� tosses a fair
or biased coin� depending on whether its input is � or �� Before �and after

the coin is tossed� p� considers four worlds possible� one from each possible
run� We can no more place a probability on these points than we could place
a probability on the four runs� On the other hand� given a point c from a
run with input bit � �corresponding to the biased coin
� if we restrict S��c

to consist of the two points in the computation tree with input �� then we
can put a probability on the two points in the obvious way and compute the
probability of heads as ��� This intuition leads us to require that each set
Si�c be contained entirely within a single computation tree�

REQ�� All points of Si�c are in T �c
�

We remark that� while REQ� does not allow us to take Si�c to be all of
Ki�c
� it still seems natural to choose Si�c � Ki�c
� We say that a probability
assignment is consistent if it satis�es this condition� As pointed out in �FH����
a consequence of this is that if pi knows �� then � holds with probability �!
that is� Ki��
 � �Pri��
 � �
�� With a consistent assignment� it cannot
be the case that agent pi both knows � and at the same time assigns ��
positive probability�
The single condition REQ�� however� is not enough for our idea for impos�

ing a distribution on the set Si�c of points to work� Because this idea involves

	In fact� as pointed out in �FH���� this axiom characterizes the property that the
probability space used by pi is a subset of the points that pi considers possible�

���� DEFINITIONS OF PROBABILISTIC KNOWLEDGE ���

conditioning on the set of runs passing through Si�c� the de�nition of condi�
tional probability forces us to require that that this set of runs is a measurable
set with positive measure� Suppose T �c
 � �RA�XA� A
� for some adversary
A� Given a set S of points contained in T �c
� denote by R�S
 the set of
runs passing through S! that is� R�S
 � fr � RA � �r� k
 � S for some kg�
We require that

REQ�� R�Si�c
 � XA and A�R�Si�c

 � ��

REQ� is a relatively weak requirement� The following lemma shows that�
in practice� REQ� is typically satis�ed� A set S of points is said to be state�
generated if �r� k
 � S and r�k
 � r��k�
 imply �r�� k�
 � S! in other words� S
contains all points with the same global state as �r� k
�

Proposition ���� If Si�c is state�generated and satis�es REQ�� then Si�c
satis�es REQ��

The proof of Proposition 	�� �and all other technical results in this chap�
ter
 can be found in Appendix 	�A� We remark that this statement is actually
independent of the transition probability assignment � assigning probabili�
ties to the edges of TA� While REQ� seems to depend on both Si�c and � �
Proposition 	�� tells us we can choose Si�c without regard for � and be con��
dent REQ� will be satis�ed for whatever � we eventually choose� as long as
Si�c is state�generated�
Given a set of points Si�c satisfying REQ� and REQ�� we now make

precise our idea for imposing a distribution on Si�c� Intuitively� to construct
the collection Xi�c of measurable subsets of Si�c� we project the measurable
subsets of the runs of T �c
 onto Si�c� Formally� given a set R� of runs and a
set S of points� we de�ne Proj�R�� S
 � f�r� k
 � S � r � R�g� We de�ne

Xi�c � fProj�R
�� Si�c
 � R

� � XAg�

Finally� we de�ne the probability function i�c on the measurable subsets of
Si�c via conditional probability�

i�c�S
 � A�R�S
 j R�Si�c

 �
A�R�S

A�R�Si�c

for all S � Xi�c� Let Pi�c � �Si�c�Xi�c� i�c
�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

Proposition ���� If Si�c satis�es REQ� and REQ�� then Pi�c is a probability
space�

We can now formalize our intuition that the construction of probability
assignments reduces to the choice of sample spaces� Given a system �i�e� a
collection of labeled computation trees
� de�ne a sample space assignment

to be a function S that assigns to each agent pi and point c a sample space
S�i� c
 � Si�c satisfying REQ� and REQ�� Given a sample space assignment
S� our construction shows how to obtain a probability space Pi�c for all agents
pi and all points c� This naturally determines a probability assignment P�
which we call the the probability assignment induced by S� We note that the
de�nition of P actually depends on both the sample space assignment S and
the transition probability assignment � �implicitly determined by the fact
that we have labeled computation trees
� There are times when it is conve�
nient to start with an unlabeled computation tree� labeled by some transition
probability assignment � � In this case� we refer to P as the probability as�

signment induced by S and � � For future reference� we de�ne a fact � to be
measurable with respect to S if Si�c��
 � Xi�c for all agents pi and points c�
The preceding discussion makes precise the idea that choosing a proba�

bility assignment reduces to choosing a sample space assignment� but still
does not help us choose the sample space assignment� Di�erent choices re�
sult in probability assignments with quite di�erent properties� Let us return
to the example in the introduction� where p� tosses a fair coin� and neither
p� nor p� observe the outcome� Clearly� at time �after the coin has been
tossed
� p� considers two points possible� say h �the coin landed heads
 and
t �the coin landed tails
� Consider the sample space assignment S� such that
S��� h
 � S��� t
 � fh� tg� Thus� at both of the points h and t� the same
sample space is being used� In this case� at both points� the probability of
heads is ��� Thus� with respect to the induced probability assignment� p�
knows that the probability of heads is ��� On the other hand� consider
assignment S� such that S��� h
 � fhg and S��� t
 � ftg� With respect to
the induced probability assignment� the probability of heads at h according
to p� is �� while the probability of heads at t is �� In this case� all that p�
can say is that it knows that the probability of heads is either � or �� but
it doesn�t know which� Which is the right probability assignment� As we
hinted in the introduction� the answer depends on another type of adversary�
the one that p� views itself as playing against� This is the focal point of the

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ���

next section�

We conclude this section with one further example� Consider a system
where a fair die is tossed by p� and p� does not know the outcome� Suppose
that at time the die has already been tossed� Let c�� � � � c
 be the six
points corresponding to the possible outcomes of the die� What sample
space assignment should we use for p�� One obvious choice is to take the
assignment S� which assigns the same sample space at all six points� the
space consisting of all the points� With respect to this sample space� each
point will have probability ���� Let � be the statement �the die landed on an
even number�� Clearly� in the probability space induced by this sample space�
� holds with probability ��� Since p� uses the same sample space at all six
points� agent p� knows that the probability of � is ��� A second possibility
is to consider two sample spaces S� � fc�� c�� c�g and S� � fc�� c�� c
g! let the
assignment S� assign the sample space S� to agent p� at all the points in S��
and the sample space S� at all the points in S�� Thus� at all the points in
S�� the probability of � is ���� while at all the points in S�� the probability
of � is ��� All p� can say is that it knows that the probability of � is either
��� or ��� but it does not know which�
Clearly we can subdivide the six points into even smaller subspaces� It

is not too hard to show that the more we subdivide� the less precise is p��s
knowledge of the probability� �We prove a formal version of this statement
in the next section�
 But why bother subdividing� Why not stick to the
�rst sample space assignment� which gives the most precise �and seemingly
natural
 answer� Our reply is that� again� this may not be the appropriate
answer when playing against certain adversaries�

��� Probability in synchronous systems

We �rst consider the problem of selecting appropriate probability assign�
ments in completely synchronous systems� Intuitively� a system is syn�
chronous if all agents e�ectively have access to a global clock� Recall from
Chapter that a system is synchronous �HV��� if for all points �r� k
 and
�r�� k�
 and all agents pi� if ri�k
 � r�i�k

�
 then k � k�� Again� this means that
no two points an agent pi considers indistinguishable can lie on the same run�
When considering probability� it turns out that many things become much

easier in the context of synchronous systems� For example� it turns out

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

that� in practice� sample space assignments satisfy three natural properties�
�a
 they are state�generated! �b
 they are inclusive� which means c � Si�c
for all agents pi and points c! and �c
 they are uniform� which means that
d � Si�c implies Si�d � Si�c for all agents pi and points c and d� We say that
S �and its induced probability assignment
 is standard if it satis�es these
three properties� For the remainder of this section we consider only standard
assignments�
One convenient feature of synchronous systems is that all facts of interest

are measurable� Recall that L�"
 is state�generated with respect to a system
R if all the primitive propositions in " are facts about the global state�

Proposition ���� In a synchronous system� if S is a consistent standard
assignment and L�"
 is state�generated� then � is measurable with respect
to S for all facts � � L�"
�

This result says that for all practical purposes we do not have to concern
ourselves with nonmeasurable sets and inner measures in synchronous sys�
tems� The proof is by induction on the structure of �� and can be found in
Appendix 	�A�
We begin our examination of probability assignments in synchronous sys�

tems by de�ning four sample space assignments and their induced probability
assignments� Each of these assignments can be understood in terms of a bet�
ting game against an appropriate opponent� �This is the second type of
adversary mentioned in the introduction�
 We make this intuition precise
after we have de�ned the probability assignments�
The �rst of these assignments corresponds to what decision theorists

would call an agent�s posterior probability� This is essentially the proba�
bility an agent would assign to an event given everything the agent knows�
This intuitively corresponds to the bet an agent would be willing to accept
from a copy of itself� someone with precisely the same knowledge that it has�
We make this relationship between probability and betting precise shortly�
What probability space corresponds to an agent�s conditioning on its

knowledge in this way� Since we have identi�ed an agent pi�s knowledge with
the set of points pi considers possible at c� this set of points seems the most

Condition �c� is essentially the de�nition of a uniform probability assignment from
�FH���� A probability assignment induced by a uniform sample space assignment as we
have de�ned it here is a uniform probability assignment in the sense of �FH����

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ���

natural choice for the space� As we have seen� however� this set of points is
not in general contained in one computation tree� Thus� we consider instead
the set of points in c�s computation tree T �c
 that pi considers possible at
c� This is just the set Treei�c � fd � T �c
 � c �i dg� It is clear that Treei�c
satis�es REQ�! that it satis�es REQ� follows by Proposition 	�� since it is
state�generated� By Proposition 	�� therefore� the induced probability space
�Treei�c�Xi�c� i�c
 is indeed a probability space� Let Spost be the sample space
assignment that assigns the space Treei�c to agent pi at the point c� and let
Ppost be the probability assignment induced by Spost�
The probability space Ppost

i�c has a natural interpretation� It is generated
by conditioning on everything pi knows at the point c and the fact that it is
playing against the adversary A that generated the tree TA in which c lies� Of
course� the agent considers many adversaries possible� Thus� the statement
Ppost� c j� K�

i � means that for all adversaries pi considers possible at c �given
its information at c
� the probability of � given all pi knows is at least ��
Ppost is precisely the assignment advocated in �FZ��� in the synchronous case�
Suppose now that pi were considering accepting a bet from someone �not

necessarily an agent in the system
 with complete knowledge of the past
history of the system� In this case� we claim that the appropriate choice of
probability space for pi at the point c � �r� k
 is all the other points �r�� k

that have the same pre�x as �r� k
 up to time k! in other words� all points
with the global state r�k
� Call this set of points Pref i�c� Note that Pref i�c
is independent of pi� and depends only on the point c� Moreover� Pref i�c
is clearly state�generated �by r�k
 itself
� so by Propositions 	�� and 	�
we can again induce a natural probability distribution on this set of points
by conditioning on the runs passing through Pref i�c� Let S

fut denote the
sample space assignment that assigns Pref i�c to pi at c� and let P

fut denote
the probability assignment induced by Sfut� We remark that this is the
probability assignment used in �HMT���� as well as �LS���
In the probability space Pfut

i�c � any event that has already happened by
the point c will have probability �� Future events �that get decided further
down the computation tree
 still have nontrivial probabilities� which is why
we have termed it a future probability assignment�
Let us reconsider yet again the coin tossing example from the introduc�

tion� where agent p� tosses a fair coin at time � but agents p� and p� do not
learn the outcome� Since the coin has already landed at time � it is easy to
check that we have Pfut� c j� K��Pr��heads
 � � Pr��heads
 � �
� On the

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

other hand� we have Ppost� c j� K��Pr��heads
 � ��
� Thus� Ppost and Pfut

correspond to the two natural answers we considered for the probability of
heads� They capture the intuition that the answer depends on the knowledge
of the opponent p� is betting against� Pfut corresponds to betting against p��
and Ppost corresponds to betting against p��
Notice that in both the cases of Ppost and Pfut� the probability space

associated with an agent at a point corresponds to the set of points the
agent and its opponent both consider possible� Suppose� in general� that
pi is considering what an appropriate bet to accept from pj would be� We
claim �and show below
 that in this case the probability assignment should
be generated by the joint knowledge of agents pi and pj � as represented by
the intersection of the points they both consider possible! that is� by the
set Treeji�c � Treei�c � Treej�c� �Note that Treeii�c � Treei�c� so that this
construction can be viewed as a generalization of the previous one�
 Again it
is easy to see that Treeji�c is state�generated� so by Propositions 	�� and 	� we
can induce the natural distribution on this set of points by conditioning on
the runs passing through Treeji�c� Let S

j be the sample space assignment that
assigns Tree ji�c to pi at c� and let P

j be the probability assignment induced
by S j�
All the examples we have seen up to now)Spost� Sfut� S j� and Sprior)

have had the property that Si�c � Ki�c
� which means they are consistent�
As mentioned in Section 	�	� such assignments are characterized by the in�
tuitively desirable condition Ki��
 � �Pri��
 � �
! when we return to the
coordinated attack problem in Section 	��� we will see an example of an
inconsistent assignment which causes an agent to know the attack will be
coordinated with high probability� while knowing that the attack will not
be coordinated��
� While consistency seems a natural restriction on prob�
ability assignments� it is not a requirement of our framework� There may
be be technical reasons for considering inconsistent assignments� One obvi�
ous �although inconsistent
 probability assignment associates with the point
�r� k
 the set of all time k points in its computation tree� Call this set All i�c�
�All i�c is in fact independent of pi�
 The probability space induced by the
construction of Proposition 	� in this case simulates the probability on the
runs� Let us denote the associated sample space and probability assignments
by Sprior and Pprior� Notice that if pi uses the probability space P

prior

i�c � it is
essentially ignoring all that it has learned up to the point c� which is why we
have termed it a prior probability�

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ��

All four of the sample space assignments we have constructed are standard
assignments� It is not di�cult to see� in fact� that any assignment constructed
on the basis of some opponent�s knowledge will be standard� This lends some
justi�cation to our restriction to standard assignments� We can view these
four assignments as points in a lattice of all possible standard sample space
assignments� We de�ne an ordering � on this lattice by S � � S i� S�i�c � Si�c
for every agent pi and point c� An important property of this ordering is the
following�

Proposition ���� If S and S � are standard assignments satisfying S � � S�
then for every agent pi and point c� the set Si�c can be partitioned into sets
of the form S �i�d with d � Si�c�

Intuitively� this means that the sets S�i�c are re�nements of the sets Si�c� since
the sets S�i�c are obtained by carving the sets Si�c into pieces� Consider S

post

and Sfut� for example� Every set Treei�c of Spost can be partitioned into the
sets Treeji�d of S

fut with d � Tree i�c� In fact� it is clear that

Sfut � S j � Spost � Sprior�

Furthermore� notice that Spost is greatest �with respect to �
 among all
consistent sample space assignments�
In the case of consistent assignments� if we interpret Si�c as the intersection

of pi�s knowledge with its opponent�s knowledge� we can think of S � � S
as roughly meaning that the opponent corresponding to S � considers fewer
points possible and hence knows more than the opponent corresponding to S�
This means� for example� that Spost� as the maximal consistent assignment�
corresponds to playing against the least powerful opponent�
The ordering on sample spaces assignments induces an obvious ordering

on probability assignments� given two sample space assignments S � and S
and their induced probability assignments P � and P� respectively� we de�ne
P � � P i� S � � S� An important point to note is that if P � and P are
consistent assignments satisfying P � � P� then �i�c can be obtained from i�c
by conditioning with respect to S�i�c�

Proposition ���� In a synchronous system� if P � and P are consistent stan�
dard assignments satisfying P � � P� then for all agents pi� all points c� and
all measurable subsets S � � X �

i�c

� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

�a
 S � � Xi�c �so that� in particular� S�i�c itself is a measurable subset of
Si�c
�

�b
 i�c�S �i�c
 � ��

�c
 �i�c�S
�
 � i�c�S�jS �i�c
 �

�i�c�S��

�i�c�S
�
i�c�
�

It follows that any consistent probability assignment can be obtained from
Ppost by conditioning�
We are now able to make precise the sense in which Ppost� P j� and Pfut are

the �right� probability assignments for an agent to use when playing against
an opponent who knows exactly as much as it does� when playing against pj�
and when playing against an opponent who has complete information about
the past� We focus on P j here� but the arguments are the same in all cases�
Consider the following betting game between agents pi and pj at a point

c� Agent pj o�ers pi a payo� of � for a bet on �� Agent pi either accepts or
rejects the bet� If pi accepts the bet� pi pays one dollar to pj in order to play
the game� and pj pays � dollars to pi if � is true at c� Thus� if pi accepts
this bet at the point c� then pi�s net gain is either �� � or �� depending on
whether � is true or false at c! if pi rejects the bet� we say its gain is ��
Intuitively� assuming that pi is risk neutral� pi can always be convinced

to accept a bet on � no matter how low the probability of � is� as long
as pi believes there is some nontrivial chance � is true and the payo� � is
high enough� Our intuition says there must be some relationship between
the probability � with which pi knows � and this acceptable payo� � that
would induce pi to accept a bet on �� If � is close to � then pi might require
a high payo� to make the bet�s risk acceptable� while if � is close to � then
pi might be willing to accept a much lower payo� since the chance of losing
is so remote� Our claim that P j is the right probability assignment is based
on the fact that P j determines for an agent pi the lowest acceptable payo�
for a bet with pj on a fact �� In other words� P j determines precisely how
an agent pi should bet when betting against pj � In fact� P j is in a sense the
unique such probability assignment� We now make this intuition precise�
What should pi consider an acceptable payo� for a bet on �� assuming

pi does not want to lose money on the bet� Since pj is presumably following
some strategy for o�ering bets to pi� the acceptable payo� should take this
strategy into account� Consider� for example� the system in which pj secretly

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ��

tosses a fair coin at time �� and o�ers at time � to bet pi that the coin
landed heads� If pj is following the strategy of always o�ering a payo� of #�
independent of the outcome of the coin toss� then pi can always safely accept
the bet since� on average� it will not lose any money �that is� pi�s expected
pro�t is zero
� If pj o�ers a payo� of # only when the coin lands tails� then
pi is certain to lose money� On the other hand� if pj o�ers a payo� of # only
when the coin lands heads� then it is pj who is certain to lose money� While
we expect that pj will not follow a strategy that will cause it to lose money�
we assume only that pj�s strategy for o�ering bets depends only on its local
state� In other words� given two points pj is unable to distinguish� pj must
o�er the same payo� for a bet on � at both points� Formally� a strategy for
pj is a function from pj�s local state at a point c to the payo� pj should o�er
pi for a bet on � at c� Similarly� we assume that pi�s strategy for accepting
or rejecting bets �that is� for computing acceptable payo�s
 is also a function
of its local state�
Again� what should pi consider an acceptable payo� for a bet on ��

Suppose pi decides it will accept any bet on � with a payo� of at least
��� when its local state is si �remember that pi�s strategy for accepting
bets must be a function of its local state
� Denoting by Bet����
 the rule
�accept any bet on � with a payo� of at least ����� how well does pi do
by following Bet ����
 when its local state is si� Clearly pi will win some
bets and lose others� so we are interested in computing pi�s expected pro�t�
This in turn depends on pj �s strategy� This leads us to compute� for each
of pj �s strategies f � agent pi�s expected pro�t when pi follows Bet ����
 and
pj follows f � Intuitively� if� for each of pj �s strategies f � agent pi�s expected
pro�t is nonnegative� then pi does not lose money on average by following
Bet ����
� regardless of pj�s strategy�
Before we can compute pi�s expected pro�t� however� there is an impor�

tant question to answer� What probability space should we use to compute
this expectation at a point c� One reasonable choice is to take Treei�c! this
would correspond to computing this expectation with respect to everything
pi knows� Another reasonable choice would be to take Tree

j

i�c� The intuition
would be that pi wants to do well for every possible choice of what pj could
do to pi� The sets Tree

j

i�c correspond to the di�erent things pj could do� since
pj �s strategy is a function of its local state� For de�niteness� we take the
expectation with respect to the probability space Treeji�c here� and then show
that our results would not have been a�ected �at least in the synchronous

�	 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

setting
 if we had chosen the space Treei�c instead�
Let the value of the random variable Wf � Wf ����
 at a point d denote

pi�s pro�t �or winnings
 at d� assuming pi is following Bet ����
 and pj is
following f � Assume that � is measurable with respect to S j� Let Ei�c�Wf � �
E

Tree
j

i�c
�Wf � denote the expected value of Wf with respect to the probability

space Treeji�c� We say pi breaks even with Bet ����
 at c if Ei�c�Wf � � � for
every strategy f for pj � We say the rule Bet ����
 is safe for pi at c if pi
breaks even with Bet ����
 at all points pi considers possible at c�
To justify our de�nition of safe bets� we now prove that the de�nition

remains unchanged if we take the expectation with respect to Tree i�c instead
of Treeji�c� We de�ne Tree

j

i�c�safe to mean safe as de�ned above� and Treei�c�
safe just as we de�ned safe� except that now we take the expectation with
respect to Tree i�c instead of Tree

j

i�c�

Proposition ���� In a synchronous system� for all facts �� all agents pi�
and all points c� the rule Bet����
 is Treei�c�safe for pi at c i� Bet ����
 is
Treeji�c�safe for pi at c�

Our claim that P j is the right probability assignment to use when playing
against pj is made concrete by the following result which states that P j de�
termines for every agent pi precisely what bets are safe when betting against
pj �

Theorem ���� For all facts � measurable with respect to P j� all agents pi�
and all points c� the rule Bet ����
 is safe for pi at c i� P j� c j� K�

i ��

We view this as the main result of this chapter� It says that that P j

determines precisely what bets are safe for pi to accept� If� using the proba�
bility assignment P j� agent pi knows the probability of � is at least �� then
pi will at least break even betting on � when the payo� is ���� On the
other hand� if� using P j� agent pi considers it possible that the probability
of � is less than �� then there is a strategy pj can use that causes pi to lose
money betting on � when the payo� is ���� In other words� P j is the right
probability assignment to use when betting against pj �
While this theorem is stated only for measurable facts �� remember that

Proposition 	�� assures us that facts of interest are typically measurable in
synchronous systems� In fact� the same theorem holds even for nonmeasur�
able facts� once we de�ne an appropriate notion of expectation for such facts!
we consider this notion in Appendix 	�B�

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ��

The proof of Theorem 	�� depends only on the fact that P j is induced
by S j� and is actually independent of the particular transition probability
assignment � determining the distribution on runs� In this sense it is really
S j that is determining what bets are safe for pi to accept� We can formalize
this intuition as follows� We say that a standard sample space assignment S
determines safe bets against pj in a system consisting of unlabeled computa�
tion trees if� for all transition probability assignments � assigning transition
probabilities to edges of the computation trees� the following condition holds
for the probability assignment P induced by S and � �

P� c j� K�
i � implies Bet����
 is safe for pi at c

for all facts � � L�"
� all agents pi� and all points c� Notice that this
de�nition quanti�es over all transition probability assignments � � requiring
that the probability assignment induced by S determines safe bets regardless
of the actual choice of � � Our intuition says that the �right� way to go about
constructing a probability assignment should not depend on the details of
the transition probabilities� We would like some uniform way of choosing the
probability space that does not change if there are small perturbations in the
probability! Theorem 	�� shows us that it is always possible to construct an
assignment P j in this way�
While the proof of Theorem 	�� shows that S j determines safe bets against

pj � it turns out that there are other assignments that determine safe bets
against pj � If the language L�"
 is su�ciently rich� however� so that there
are a lot of possible events that can be bet on� then S j enjoys the distinction
of being the maximum such assignment�

Theorem ��� In a synchronous system� if S is a consistent standard as�
signment� then

�a
 if S � S j� then S determines safe bets against pj� and

�b
 if S determines safe bets against pj and L�"
 is su�ciently rich� then
S � S j�

We interpret Theorems 	�� and 	�� as providing strong evidence that S j is
the right sample space assignment� and hence that P j is the right probability
assignment� to use when playing against an opponent with pj�s knowledge�
It says that the only way for pi to be guaranteed it is using a safe betting

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

strategy against pj is by assuming the opponent is at least as powerful as
pj � Intuitively� the more powerful the opponent the less con�dent the agent
is that it will be able to win a bet with this opponent� and the higher the
payo� the agent will require before accepting a bet� Consequently� pi is being
unduly conservative if it takes a probability assignment that corresponds to
an agent that is more powerful than pj since it may pass up bets it should
accept���

In the process of making this intuition precise� we can prove a theorem
that gives us further insight into relationships between sample space assign�
ments on the lattice� Recall that we have de�ned K�

i � to mean agent pi
knows � is a lower bound on the probability of �� We can extend this def�
inition to deal with intervals in a straightforward way� We would like to
de�ne K �����

i � to mean Ki�� � Pri��
 � �
� which should mean agent pi
knows the probability of � is somewhere between � and �� Since � may
not correspond to a measurable set� what we really mean is that the inner
measure of � is at least � and the outer measure is at most �� Since we
interpret Pri as inner measure when � does not correspond to a measurable
set� and since ��T
 � � � ��T c
 for any set T � we can capture this in�
tuition in terms of our language by interpreting K �����

i � as an abbreviation
for Ki��Pri��

 � �
 � �Pri���
 � � � �
�� To relate this de�nition to our
earlier de�nition of K�

i �� notice that K
�
i � is equivalent to K

�����

i �� We can
now prove the following�

Theorem ��
� In a synchronous system� if P � and P are consistent standard
assignments satisfying P �
 P� then

�a
 for every fact �� every agent pi� every point c� and all �� � with � �
� � � � �� we have

P �� c j� K �����

i � implies P� c j� K �����

i ��

��Strictly speaking� we should justify the fact that pi should use a rule of the form
Bet��� 	� in order to determine when to accept a bet� After all� why should such a simple
threshold function be appropriate� It is conceivable that a better money�making strategy
might tell pi� say� to accept a bet on � if the o�ered payo� is in the interval ��� � or ��� �
��
and reject the bet otherwise� It is not hard to show� however� that because we make no
assumption about the strategy being followed by pj �other than requiring that it be a
function of pj�s local state�� this second strategy is safe for pi at c i� it is safe for pi at
c to accept a bet on � if the o�ered payo� is in the interval ���	�� i�e� if Bet��� ���� is
safe for pi at c� Consequently an optimal strategy may as well be taken to be a threshold
function like Bet��� 	��

���� PROBABILITY IN SYNCHRONOUS SYSTEMS ��

�b
 there exist a fact �� an agent pi� a point c� and �� � with � � � � � � �
such that

P �� c �j� K �����

i � and yet P� c j� K �����

i �

P �� c �j� K �����

j �� and yet P� c j� K �����

j ���

If L�"
 is su�ciently rich� then � � L�"
�

Part �a
 shows that an agent�s con�dence interval does not increase in the
presence of a more powerful opponent! part �b
 shows that it might actually
decrease� The formula � from part �b
 gives an example of a case that
agent pi might be unduly conservative by using an inappropriate probability
assignment� using P �� agent pi would reject bets on � with payo� ��� even
though it should be accepting all such bets�
Our results show that Ppost has a special status among probability assign�

ments� It is a maximum assignment among consistent assignments in the lat�
tice with the � ordering� and so� by Theorem 	��� gives the sharpest bounds
on the probability interval among all consistent probability assignments� In
addition� any other consistent probability assignment can be obtained from
Ppost by a process of conditioning� Finally� Ppost is the probability assign�
ment that corresponds to what decision theorists seem to use when referring
to an agent�s subjective �or posterior
 probability� However� as we have seen�
Ppost may not always be the �right� probability assignment to use� The right
choice depends on the knowledge of the opponent o�ering us the bet in the
system we wish to analyze� Although Ppost may give a smaller interval than
P j �intuitively giving sharper bounds on an agent�s belief a fact is true
� if
pi uses the better lower bound from Ppost as a guide to deciding what bet
to accept from pj� it may wind up losing money� In fact� it follows from
Theorems 	�� and 	�� that P j is the probability assignment that gives an
agent the best interval and still guarantees a good betting strategy�
Even in cases where Ppost is the �right� choice� it is not necessarily the

probability we want to use in computations� It may not always be necessary
to obtain the sharpest interval of con�dence possible� A rough bound may
be su�cient� Theorem 	�� shows that proving a lower bound on an agent�s
con�dence using a certain choice of probability space implies the same bound
holds with any de�nition higher in the lattice� The advantage of using a
probability assignment that lies lower in lattice is that� because the individual
probability spaces are smaller� the computations may be simpler� Consider

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

the de�nition Pfut� for example� Here the probability space we associate with
a point �r� k
 consists only of points �r�� k
 having the same global state as
�r� k
� The runs r� are the runs extending the global state r�k
� This means
we can reason about the probability of a future event given a �xed global
state� In contrast a de�nition such as Ppost allows for the possibility that the
runs r� may extend any of a collection of global states� which may mean we
no longer have the luxury of arguing about the probability of a future event
given a �xed global state� When arguing about the level of con�dence of an
agent� it seems best to choose a de�nition as low in the lattice as possible to
make the proof as simple as possible� but high enough to enable one to prove
a su�ciently high level of con�dence�

��	 Probability in asynchronous systems

We now turn our attention to choosing appropriate probability assignments
in asynchronous systems� We remark that even in the context of asyn�
chronous systems� the four sample space assignments discussed in the previ�
ous section)Spost� Sfut� S j� and Sprior)still make perfect sense� The intuition
motivating these de�nitions remains the same! in particular� Theorem 	��
which says that S j determines safe bets against pj still holds�
A number of things do change� however� For one thing� Proposition 	��

no longer holds� so many facts of interest become nonmeasurable� Equally
important� Proposition 	��� which says that probability assignments further
down in the lattice can all be obtained by conditioning from probability
assignments higher in the lattice� also fails in general� The reason it may fail
is that if S � � S� we are no longer guaranteed that S�i�c is a measurable subset
of Si�c� For example� although P j � Ppost� Treeji�c need not be a measurable
subset of Treei�c� If pj can distinguish time � points from time points but
pi cannot� and if c is a time � point� then Treeji�c consists only of the time �
points while Treei�c consists of the time � and points! in this case� Tree

j

i�c

is not a measurable subset of Tree i�c� All our conditioning arguments used
this measurability assumption� Consequently� it is no longer true that all
consistent assignments can be obtained by conditioning on Ppost� For similar
reasons� in general asynchronous systems� using Tree i�c and using Tree ji�c in
the de�nition of a safe bet does not necessarily give the same results� �The
conditional probability argument used in the proof of Proposition 	�� depends

��� PROBABILITY IN ASYNCHRONOUS SYSTEMS ��

on the fact that the sets Treeji�c are measurable subsets of Tree i�c�
 We can
prove analogues of Propositions 	�� and 	�� as well as Theorem 	��� provided
we assume that S � � S and that S�i�c is a measurable subset of Si�c for all
agents pi and points c��� Unfortunately� as we shall see� this measurability
requirement does not hold in many cases of interest�
The situation is perhaps best illustrated by an example� Consider a simple

asynchronous system in which agent p� tosses a fair coin �� times and halts!
agents p� and p� do nothing and never learn the outcome of the coin tosses�
This system consists of a single computation tree� a complete binary tree of
depth �� with every transition labeled ��� Suppose agent p� does not have
access to a clock� and so is unable to distinguish any of the global states in
the tree� On the other hand� p� does have a clock� and so can tell each time
apart�
There are clearly �� possible runs in the system� one corresponding to

each of the possible sequences of coin tosses� Since p� cannot distinguish
any point on any of these runs� for every point c� the set Spost

��c consists of
every point in the system� Which subsets of Spost

��c are measurable� Since
the computation tree is �nite� each individual run is a measurable set� so all
sets of runs are measurable� And since the measurable subsets of Spost

��c are
obtained by projecting measurable subsets of runs onto Spost

��c � the sets in X
post

��c

are those consisting of all the points on some set of runs in the computation
tree�
Let � be the fact �the most recent coin toss landed heads�� Although

this is a fact about the global state� the set of points where it is true is not
a measurable subset of Spost

��c � since it does not consist of all the points on
some subset of runs� This already shows that Proposition 	�� fails in this
case� Thus� we cannot talk about the probability that p� knows � at a point
c in the tree� We can talk about the inner and outer measure of Spost

��c ��
�
however� Since the only nontrivial measurable set contained in S��c��
 is the
set of points on the single run in which the coin lands heads every time� the
inner measure of this set is ����! similarly� the outer measure is �� �����
�
While values such as ���� and � � �����
 may seem somewhat strange

��In part �b� of this analogue of Theorem ��	� we must also strengthen the de�nition of
su�ciently rich to mean that for every global state there is a primitive proposition in
true at all points of all runs passing through this global state� This is due to the fact that
consistent assignments in asynchronous systems allow a set Si�c to contain more than one
point of a given run�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

at �rst glance� they are not totally unmotivated� Consider the situation of
agent p� at a point c trying to �gure out the probability of heads� given only
the probability on the runs� Agent p� has no idea which run it is in� The
only run in which it is always the case that the most recent coin toss landed
heads is the run where the coin lands heads on every toss� this run occurs
with probability ����� On the other hand� in all the runs except for the one
in which the coin lands tails on every toss� it is possible that the most recent
coin toss landed heads� Thus� in a set of runs of probability �� �����
� it is
possible that the most recent coin toss landed heads� This means that ����

and � � ����)the inner and outer measure of Spost

��c ��
)provide lower and
upper bounds on the probability of being in a run where the most recent coin
toss landed heads�

Now suppose that agent p� is betting against p�� Since p� knows what
the time is� the sets S�

���r�k� consist of all the time k points� With respect

to the sample space assignment S�� the fact � is measurable� In fact� it�s
easy to see that ��S��c��

 � �� for all points c� To sum up� we have

Ppost� c j� K
�����������������
� � and Ppost� c j� �K

���
� �� while P�� c j� K

���
� ����

This may seem somewhat counterintuitive� since it seems to suggest that
p� must play more conservatively against a copy of itself than against p��
who knows more� This is especially so since there is another line of reasoning
about this situation which would lead p� to conclude that it knows that
the probability that the most recent coin toss landed heads is ��� even
without considering p�� Agent p� reasons as follows� �The current time is k�
although I do not know what k is� Regardless of the particular value of k�
the probability that the kth coin toss lands heads is ��� and hence I know
the most recent coin toss landed heads with probability ���� The sample
space assignment that captures this intuition would associate with the point
�r� k
 and agent p� the set of time k points in �r� k
�s computation tree agent
p� considers possible at �r� k
 �as opposed to considering all the points in the
computation tree that p� considers possible� as is done by Ppost
� But this is
precisely the assignment S��

In order to understand this situation a little better� let us reconsider the
assignment Ppost� We claim that the reason the interval ������ �� � ����
�

��Note that this does not contradict Theorem ��	� since Theorem ��	 would hold only
if S�i�c is a measurable subset of Si�c for all pi and c� which we have already noted is not

the case�

��� PROBABILITY IN ASYNCHRONOUS SYSTEMS ���

arises here is di�erent from the reason intervals arise in the context of the
synchronous systems studied in the preceding section� In the context of
synchronous systems� because pj�s strategy depends on its local state and
pi does not know which local state pj is currently in� pi has to partition
Ki�c
 and view each element of the partition as an independent probability
space� computing the probability of � separately in each one� A formula
such as K �����

i � holds when the probability of � can range from � to � in the
di�erent probability spaces� In our current example� however� there is only
one probability space! the interval arises because of the nonmeasurability of
�� Depending on how �lucky� p� is in the choice of where in each run it
tests for heads� the probability of getting heads could range from ���� to
� � �����
�

We can view the nonmeasurability that arises due to asynchrony as a new
element of uncertainty that an adversary can exploit� Intuitively� in the coin
tossing example� when p� plays against �a copy of
 itself� since p� does not
know where in the run it is� an adversary gets to choose that� On the other
hand� when playing against p�� at least p� knows that all the worlds in a given
sample space are time k points� for some �xed k� We can view our analysis
where we obtain the answer �� without invoking p� as implicitly assuming
an adversary who chooses the time k the test for � is to be performed� Such
an adversary is an adversary of the third type mentioned in the introduction�
Given any time k chosen by this adversary� the probability of � is ���

We can formalize this analysis as follows� With each time k we associate
a separate computation tree corresponding to the adversary Ak choosing
time k to test for �� The probability space for p� at each point in the tree
corresponding to Ak consists of the time k points in the tree� each of which is
assigned equal probability� In each of these probability spaces the probability
of heads is ��� so p� knows that the most recent coin toss landed heads with
probability ���

There is no reason� however� to restrict this third type of adversary to
simply making an initial choice of the stopping time� Suppose we have �xed
a collection of adversaries of the �rst type �the computation trees
 and an
adversary of the second type �say pj
� We de�ne a cut through Treeji�c to
be a subset of Treeji�c containing precisely one point from every run passing
through Treeji�c� every run passing through Tree ji�c is cut precisely once by
such a set of points� We de�ne a type three adversary to be a function

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

mapping an agent pi and a point c to a cut through Tree ji�c� Intuitively� pi
and pj are betting on a fact �� but neither knows precisely where in the
run the bet is taking place! it is the third type of adversary who determines
where in the run the bet is actually made� The cut through Treeji�c chosen
by the adversary is the set of points at which the adversary will cause the
bet to take place when the local states of pi and pj are given by c�
In the example above� when p� plays against a copy of itself� the adversary

chooses one cut per computation tree� since p� considers all points in the
computation tree possible� In the case of p� playing against p� �who knows
the time
� the adversary chooses one cut for every time k! this cut must in
fact consist of all time k points in the tree� �In general� if we are considering a
set of time k points� the only allowable cut is the one consisting of all points�
This is why the issue of an adversary choosing such cuts does not arise when
considering synchronous systems�

To make formal sense of this� suppose we are given a set A of type one

adversaries �determining the possible initial nondeterministic choices
� This
determines a set of computation trees� as we have already discussed� Fix a
type two adversary� say pj� Let C be a set of type three adversaries in this
collection of computation trees �so that the adversaries in C choose stopping
times
� Notice that the de�nition of C depends on A and pj � We can then
construct one computation tree TA�C for each A � A and C � C� For a �xed
A � A� the computation trees TA�C look identical �essentially just like TA

for all choices of C � C except that we put C into the environment state at
each point in TA�C � The sample space assignment SC maps an agent pi and
a point c of a tree TA�C to a sample space SCi�c � Treeji�c such that for each
run r � R�Tree ji�c
� exactly one point �r� k
 � Treeji�c is in SCi�c� Intuitively�
this is the point in r where the test is performed� Note that if we consider
two adversaries C�C � � C and two corresponding points c and c� in TA�C and
TA�C� � the sample spaces Si�c and Si�c� used by pi at these two points will in
general be di�erent� at c� it is C that determines at which point in each run
in the tree that pi considers possible at c the test will be performed� while
at c� it is C � that makes this determination� Notice that� in the presence of
this third type of adversary� it is no longer the case that all sample space
assignments de�ned in asynchronous systems are standard assignments as
they are in synchronous systems� For example� it no longer need be the case
that c � SCi�c�
Intuitively� playing against a copy of yourself places no constraints on this

��� PROBABILITY IN ASYNCHRONOUS SYSTEMS ���

third type of adversary� To make this precise� once we �x a set of adversaries
of the �rst type A and consider the resulting system� we can take pts�A
 to
be the set of all possible adversaries of the third type in this system�

Proposition ����� Ppost� c j� K
�����
i � i� Ppts� c j� K

�����
i �� for every fact ��

agent pi� and point c�

The proof of this result shows that Ppost can be understood in asynchronous
systems in terms of an adversary that chooses as the time for the test to be
performed the worst possible time from pi�s point of view���

Of course� there is no reason to assume that a type three adversary must
either be restricted to choosing horizontal cuts of time k points or be allowed
to choose completely arbitrary cuts of points� Other intermediate de�nitions
seem plausible as well� One can imagine a partially synchronous model in
which processors cannot tell time but are guaranteed that� for every k� all
processors take their kth step within some time interval of width �� It would
seem reasonable to require the adversary of the third type� rather than se�
lecting horizontal time k cuts or totally arbitrary cuts� to select cuts with
the property that every point in the cut is a time k point for some k falling
in some interval of width �� We can also generalize the notion of type three
adversary slightly so as not to require that it choose a cut� but rather have it
choose at most one point per run� The intuition here is that this adversary
simply does not give pi the chance to bet in certain runs� In our coin tossing
example� such an adversary could allow pi to bet on heads only when the
coin has landed tails� The issue of de�ning reasonable adversaries of the third
type deserves further study�
We close this section with a comparison of our de�nition of probability in

asynchronous systems with that of �FZ���� The probability assignment used
in �FZ��� in the asynchronous setting has much the same �avor as that of our
Ppts� Rather than assuming that the adversary chooses at a point c a cut of
points through Treei�c� however� Fischer and Zuck assume that the adversary
chooses a cut of global states through Tree i�c! that is� a set of global states
appearing in Tree i�c with the property that no two global states lie on the the
same run� Intuitively� this means that if the adversary performs the test at

��Another interpretation of this result is that the language obtained by closing a set
of formulas under the standard boolean connectives and the modal operators K�

i cannot
distinguish the assignments Ppost and Ppts � We note that the richer language of �FH���
can distinguish these assignments�

��	 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

one point� it performs the test at all other points with the same global state�
This seems like a reasonable restriction� but it leads to some unexpected
consequences�

Let us call the class of adversaries considered in �FZ��� state � and let the
corresponding probability assignment be Pstate � Rather than giving formal
de�nitions here� we give an example to show how Pstate di�ers from Ppts�
Consider a system in which p� tosses a biased coin which lands heads with
probability ��� and tails with probability ���� The system consists of two
runs we can denote by h and t and four points corresponding to times �
and � in runs h and t� The computation tree has only three nodes� a root
a� encoding the points �h� �
 and �t� �
� a node b corresponding to the point
�h� �
� and a node c corresponding to �t� �
� Suppose p� is able to distinguish
only the point �h� �
 from the remaining three points and suppose that � is
the fact �the coin lands heads� �so that � is true at �h� �
 and �h� �
� and false
elsewhere
� Let c be a time � point� say �t� �
� and consider the probability
with which pi knows � with respect to Ppts and Pstate� An adversary in
pts can either choose f�h� �
� �t� �
g or f�h� �
� �t� �
g as the set of points to
perform the experiment! � is true with probability ��� with respect to both
sets� It follows that Ppts� c j� K �

� �! in fact we have Ppts� c j� K
�����
� ��

Similarly� an adversary in state can choose either the node a or the node c as
a state at which to perform the experiment� since these are the cuts of global
states contained in fa� cg� The choice of a corresponds to the adversary in
pts that chooses f�h� �
� �t� �
g� However� the choice of c does not correspond
to f�h� �
� �t� �
g� In fact� there is no adversary in state corresponding to
this adversary in pts� since it would amount to choosing the nodes a and c�
both of which lie on the same run� With respect to the choice a� � holds
with probability ���! with respect to the choice c� � holds with probability ��
Thus� we get Pstate� c j� K

�����
� �� In some sense it seems that Ppts is giving

the more reasonable answer here� Since p� knows that� a priori� the coin
will land heads with high probability� and its information has not eliminated
either run� it should still consider heads extremely probable���

��Note that this example also shows that the adversaries in state are examples of the
more general adversaries discussed above� that do not necessarily choose one point per
run� For example� the adversary choosing the global state c does not choose a point in the
run h�

���� AN APPLICATION� COORDINATED ATTACK ���

��
 An application� coordinated attack

As an example of how probabilistic knowledge can be used to analyze pro�
tocols� and of how heavily statements made about protocols depend on the
particular de�nition of probabilistic knowledge used� we now apply the dif�
ferent probability assignments de�ned in the context of synchronous systems
to understanding probabilistic coordinated attack as de�ned in Section 	���
In �HM�	� it is shown that a state of knowledge called common knowledge is
a necessary condition for coordinated attack� Recall that a formula � is com�
mon knowledge if all agents know �� all agents know all agents know �� and
so on ad in�nitum� In the same paper it is shown that common knowledge
of nontrivial facts cannot be attained in systems where there is no upper
bound on message delivery time �and� in particular� in asynchronous sys�
tems
� and hence that coordinated attack is not possible in such systems�
We now examine the relationship between probabilistic common knowledge
and probabilistic coordinated attack�
Recall from Chapter that common knowledge is de�ned as follows�

Given a set G � fp�� � � � � png of agents� we de�ne everyone in G knows

� by EG� �
V
pi�GKi�� De�ning Ek

G
� inductively by E�

G
� � � and Ek

G
� �

EGE
k��
G

�� we de�ne � is common knowledge to G by CG� �
V
k�� E

k
G
��

Recall that common knowledge satis�es the following statements�

�� the �xed point axiom� CG� � EG�� � CG�
�

� the induction rule� From � � EG�� � �
 infer � � CG��

The �rst statement says that CG� is a �xed point of the equation X �
EG�� �X
� In fact� it can be shown to follow from the induction rule that
CG� is the greatest �xed point� and thus is implied by all other �xed points
of this equation �HM����
By direct analogy� probabilistic common knowledge is de�ned in �FH���

as the greatest �xed point of the equation X � E�
G
�� � X
� where E�

G
� �V

pi�GK
�
i ��

�� It is easy to show that the de�nition of C�
G
� satis�es the

obvious analogues of the �xed point axiom and induction rule given above�

��As is shown in �FH���� this de�nition is not equivalent to the in�nite conjunction of
�E�

G
�k�� k �
� however it is equivalent to the in�nite conjunction of �F�

G
�k�� k �
�

where we de�ne �F�
G
�k� inductively by unwinding the �xed point equation� �F�

G
��� � �

and �F�
G
�k� � E�

G
��
 �F�

G
�k����

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

Now consider the probabilistic attack problem� and suppose � is the fact
�A attacks i� B attacks�� In the original coordinated attack problem� since
� is true at all points� the induction rule implies CG� holds at all points�
Are there implementations of the probabilistic attack problem where C�

G
�

holds at all points� The answer depends on the choice of probability assign�
ment� Stronger assignments yield stronger notions of probabilistic common
knowledge which make stronger requirements of the implementation�
Consider the assignment Pfut� Here the opponent o�ering an agent a bet

knows the entire global state at every point� If there is any point where
the attack is uncoordinated� then no run extending this point can satisfy
�� At this point � holds with probability � �according to Pfut
� so it easily
follows that C�

G
� cannot hold at all points� This says that an algorithm

achieves probabilistic coordinated attack with respect to Pfut i� it achieves
coordinated attack� Since coordinated attack is known to be unattainable in
asynchronous systems� we cannot get probabilistic coordinated attack either
with respect to such a strong opponent�
Next consider the assignment Ppost� Here the opponent o�ering the bet

has precisely the same knowledge as the agent itself� Consequently� if it is
possible to reach a point at which the agent can determine from its local state
that no run extending the point can satisfy �� the agent knows � does not
hold� and hence neither does C�

G
�� Consequently� our �rst implementation

CA� of the probabilistic attack problem does not have the property that C�
G
�

holds at all points �with respect to Ppost
� but our second implementation CA�

does� This can be proved by �rst observing that E�
G
� holds at all points �with

respect to Ppost
 and hence by the induction rule �taking the formula � in
the rule to be true
� so does C�

G
��

Notice that with respect to any consistent probability assignment� if at
some point an agent in G knows � does not hold� then C�

G
� cannot hold

at this point �since C�
G
� implies E�

G
� by the �xed point axiom� while Ki��

implies �E�
G
� for all i � G
� Consequently� it cannot be the case that C�

G
�

holds at all points of CA� with respect to any consistent assignment� Is it
possible for C�

G
� to hold at all points of CA� with respect to any probability

assignment� Since this algorithm guarantees � holds with probability ��
taken over the runs� the obvious solution is to make the assignment mimic
the probability distribution on the runs� In particular� consider Pprior� It is
easy to see that with this assignment� every agent knows � with probability
� at all points of the system� Since E�

G
� holds at all points� it follows by the

���� AN APPLICATION� COORDINATED ATTACK ���

induction rule that C�
G
� holds at all points as well�

We summarize our discussion in the following proposition�

Proposition �����

�� CA� achieves probabilistic coordinated attack with respect to Pprior

but not Ppost�

� CA� achieves probabilistic coordinated attack with respect to Ppost �and
Pprior
 but not Pfut�

�� A protocol achieves probabilistic coordinated attack with respect to
Pfut i� it achieves coordinated attack� and hence no such protocol exists
in which the generals actually attack�

This proposition shows how increasing the power of the opponent �moving
down in the lattice
 strengthens the kind of guarantees that can be made for
probabilistic attack� Note that all of the probability assignments agree at
time �� and the probability they assign to a set of points is identical to the
probability of the set of runs going through those points! i�e� if c is a time �
point in TA and RA��
 is the set of runs in TA satisfying a fact � about the
run� then

A�R��

 � post

i�c �Tree i�c��

 � j

i�c�Tree
j

i�c��

� fut

i�c �Pref i�c��

 � prior

i�c �All i�c��

�

However� at later times� it is only Pprior that agrees with the initial probability
on runs� Thus� for the other probability assignments� saying that � holds
with probability greater than � at all points �r� k
 in TA according to pi will
generally be a stronger statement than saying it holds with probability �
taken over the runs of TA�
Of course� it is perfectly conceivable we might want to consider probabil�

ity assignments besides those that we have discussed above� which will make
yet more guarantees� Considering such intermediate assignments might be
particularly appropriate in protocols where security is a major considera�
tion� such as cryptographic protocols� There it becomes quite important to
consider the knowledge of the agent we are betting against�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

We remark that a slightly di�erent de�nition of probabilistic coordinated
attack is considered in �FZ���� it is required only that the conditional proba�
bility that both parties attack together� given that one of the parties attacks�
is at least ���
 It is then shown in �FZ��� that this form of probabilistic co�
ordinated attack corresponds to all the agents having average belief of �
that the attack will be coordinated� We can reinterpret these results in our
language as showing that this notion of coordinated attack is equivalent to
probabilistic common knowledge with respect to another probability assign�
ment� much in the spirit of Pprior� In particular� the probability space used
by �FZ��� for this analysis is not Ppost� but an inconsistent probability assign�
ment� However� it should be noted that one can be led to counterintuitive
results using an inconsistent probability assignment� Consider Pprior in the
context of CA�� Since there is a point at which the information in agent A�s
local state guarantees the attack will not be coordinated� according to Pprior

both K�
A� and KA�� hold at this point� In other words� the choice of Pprior

has the e�ect of saying that at a point an agent can have high con�dence in
a fact it knows to be false�

The preceding discussion raises another interesting point� While it is typ�
ically the case that computer science applications consider only probabilities
over runs �such applications typically require only that a condition P hold
throughout a large fraction of the runs� which corresponds to Pprior
� it is
not clear that this is always appropriate� If an agent running a probabilistic
coordinated attack algorithm that is guaranteed to work with high proba�
bility over the runs �nds itself in a state where it knows that the attack
will not be coordinated� then it seems clear that it should not proceed with
the attack� It may be worth reconsidering a number of algorithms to see if
they can be redesigned to give stronger guarantees� This may be particularly
appropriate in the context of zero�knowledge protocols �GMR���� where the
current de�nitions allow a prover to continue playing against a veri�er even
when the prover knows perfectly well that it has already leaked information
to the veri�er� and may continue to do so� Although it is extremely unlikely
that the prover will �nd itself in this situation� it may be worth trying to
redesign the protocol to deal with this possibility� While adaptive protocols�

��Although it is not clear from the de�nition of probabilistic attack given in �FZ��� over
what the probability is being taken� the results given clearly assume that the probability
is being taken over the runs�

���� CONCLUSION ���

where processors modify their actions in light of what they have learned� are
common in the control theory literature� the probabilistic algorithms that
are used in distributed systems typically are not adaptive� It seems that a
number of algorithms can be converted to adaptive algorithms with relatively
little overhead� We hope to study this issue more carefully in the future�

��� Conclusion

We have provided a framework for capturing knowledge and probability in
distributed systems� Our framework makes it clear that in order for an
agent to evaluate the probability of a formula � at a given point� we need
to specify the adversary �or� more accurately� adversaries
 that determines
the probability space� We have described how to choose the appropriate
probability space as a function of the adversary� making no assumptions
about the strategy the adversary is following� One potentially fruitful line of
research is to understand how our results are e�ected if we make assumptions
about the strategies the adversary pj is allowed to follow �such as assuming
that pj is trying to maximize its payo�
�
This use of adversaries may help clear up a number of subtle issues in the

study of probability� such as what the probability that a coin lands heads
is after the coin has been tossed� In addition� our approach allows us to
unify the di�erent approaches to probability in distributed systems that have
appeared in earlier works� Of course� what needs to be done now is to use
these de�nitions to analyze probabilistic �especially cryptographic
 protocols�

��A Proofs of results

This appendix contains the proofs of all results claimed in the chapter�

Proposition ���� If Si�c is state�generated and satis�es REQ�� then Si�c
satis�es REQ��

Proof� Given a global state g� let Gg be the set of points �r� k
 with r�k
 �
g� and let Rg be the set of runs through g� By our technical assumption
that the global state encodes the adversary� each global state is contained in
precisely one computation tree� Thus� Gg and Rg are contained in a single

�	� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

computation tree� and Rg � R�Gg
� Since S is state�generated� Si�c is the
union of a collection of sets of the form Gg� Since Si�c satis�es REQ�� it is
contained in a single computation tree TA � �RA�XA� A
! and since a single
computation tree contains at most a countable number of global states� Si�c
is a countable union of sets of the form Gg� Thus� R�Si�c
 is the countable
union of sets of the form Rg � R�Gg
 with g a global state in TA� By
the de�nition of TA� each set Rg is a measurable set of runs with positive
measure� and hence their countable union R�Si�c
 must also be a measurable
set with positive measure� It follows that Si�c satis�es REQ��

Proposition ���� If Si�c satis�es REQ� and REQ�� then Pi�c is a probability
space�

Proof� We must show �see �Hal���
 that Xi�c is a set of subsets of Si�c in�
cluding Si�c that is closed under the formation of complements and countable
unions� and that i�c is a nonnegative� countably additive function on Xi�c

satisfying i�c��
 � ��
Let T �c
 � �RA�XA� A
� Since Si�c � Proj�RA� Si�c
 and RA � XA� we

have Si�c � Xi�c� If X � Xi�c� then X � Proj�R�Si�c
 for some R � XA! since
XA is closed under complementation� Rc � XA and Xc � Proj�Rc� Si�c
 �
Xi�c� and hence Xi�c is closed under complementation� If X��X�� � � � is a
countable collection of sets from Xi�c� then Xj � Proj�Rj � Si�c
 for some
Rj � XA for each j� Since XA is closed under countable union� R � �jRj �
XA� It follows that

X � �jXj � �jProj�Rj � Si�c
 � Proj��jRj� Si�c
 � Proj�R�Si�c
�

so X � Xi�c and Xi�c is closed under countable union�
Since Si�c is contained in a single computation tree by REQ�� and since

R�Si�c
 � XA and A�R�Si�c

 � � by REQ�� conditional probability with
respect to R�Si�c
 is well�de�ned� and hence i�c is well�de�ned� Clearly� i�c
is nonnegative since A is� Furthermore� i�c��
 � A��
�A�R�Si�c

 � ��
Finally� suppose X��X�� � � � is a countable collection of pairwise�disjoint sets
in Xi�c� We know that Xj � Proj�Rj � Si�c
 for some Rj � XA� We can assume
every run in Rj passes through Si�c� or we can replace Rj with the measurable
set R�Si�c
 � Rj! and we can assume the Rj are pairwise disjoint� since if r
is contained in both Rj and Rk then some point on r is contained in both

��A� PROOFS OF RESULTS �	�

Xj � Proj�Rj � Si�c
 and Xk � Proj�Rk� Si�c
� contradicting the pairwise�
disjointness of Xj and Xk� It follows from the pairwise�disjointness of the
Rj � R�Xj
 that

i�c��jXj
 �
A�R��jXj

A�R�Si�c

�
A��jR�Xj

A�R�Si�c

�
X
j

A�R�Xj

A�R�Si�c

�
X
j

i�c�Xj
�

and hence i�c is countably additive�

Proposition ���� In a synchronous system� if S is a consistent standard
assignment and L�"
 is state�generated� then � is measurable with respect
to S for all facts � � L�"
�

Proof� Recall that L�"
 is state�generated if all the primitive propositions
in " are facts about the global state� Recall also that � is measurable with
respect to S if Si�c��
 � Xi�c for all agents pi and points c� Fix an agent pi
and a point c� Let Sk denote the set of time k points in the computation tree
containing c� We claim it is enough to show that

��
 R�Sk��

 is a measurable set of runs for all times k and all formulas
� � L�"
�

To see this� notice that since S is a consistent assignment in a synchronous
system� Si�c contains only time k points for some k� Consequently� we have
R�Si�c��

 � R�Si�c
 � R�Sk��

� Since R�Si�c
 is measurable by REQ��
condition ��
 will imply R�Si�c��

 is measurable� It will follow that Si�c��

is a measurable subset of Si�c�
The proof of ��
 proceeds by induction on the structure of �� If � is a

primitive proposition in "� then since L�"
 is state�generated we know that
� must be a fact about the global state� Arguments similar to those used for
Proposition 	��� therefore� su�ce to show that R�Sk��

 is a measurable set
of runs� The cases of negation and conjunction follow immediately from the
fact that measurable sets are closed under negation and intersection� Since

�	 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

Ki� is a fact about the global state� the arguments for such a formula is
identical to the argument for primitive propositions above�
For a probability formula � of the form Pri��
 � �� since we consider only

uniform sample space assignments� it is easy to check that � is true at either
all or none of the points in Si�c! hence R�Si�c��

 must be measurable since
R�Si�c
 itself is guaranteed to be measurable by REQ�� Since S is inclusive�
we know that d � Si�d for every time k point d� Since S is consistent� we
know that Si�d contains only time k points from T �d
� It follows that Sk is the
union of sets of time k points of the form Si�d� Moreover� since S is uniform�
the Si�d actually partition Sk� Finally� since each Si�d is state�generated and
since there are at most a countable number of time k global states in any
given tree� we see that Sk is partitioned into a countable collection of sets of
the form Si�d� and hence the same is true for Sk��
� It follows that R�Sk��

is partitioned into a countable collection of sets of the form R�Si�d
� and since
the sets R�Si�d
 are measurable� so is their countable union R�Sk��

�
For��� notice that � is true at �r� k �
 i��� is true at �r� k
� It follows

that R�Sk���

 � R�Sk����

� and hence by the inductive hypothesis for
� that R�Sk���

 is a measurable set of runs� In fact� a simple extension
of this argument �by induction on 	
 shows that if R�Sk��

 is measurable
then so is R�Sk��	�

�
For �U �� de�ne �U� � to be the formula �� and de�ne �U	 � for

	 � � to be the formula � � � � � � �	��� � �	�� It is easy to see that
�U � is true at a point d i� �U	 � is true at d for some 	 � �� Thus�
Sk��U �
 �

S
	�� Sk��U	 �
 and hence R�Sk��U �

 �

S
	��R�Sk��U	 �

�

Since the induction hypothesis holds for the subformulas � and �� the pre�
ceding paragraph shows that each set R�Sk��U	 �

 is also measurable� and
hence so is their countable union R�Sk��U �

�

Proposition ���� If S and S � are standard assignments satisfying S � � S�
then for every agent pi and point c� the set Si�c can be partitioned into sets
of the form S�i�d with d � Si�c�

Proof� Suppose that S and S � are standard assignments satisfying S � � S�
Since S � is inclusive� we have d � S�i�d � Si�d � Si�c for every d � Si�c� and
hence Si�c is the union of the S�i�d with d � Si�c� Furthermore� since S � is
uniform� two sets S�i�d and S

�
i�e are either equal or disjoint� and hence Si�c can

be partitioned into sets of the form S�i�d with d � Si�c�

��A� PROOFS OF RESULTS �	�

Proposition ���� In a synchronous system� if P � and P are consistent� stan�
dard assignments satisfying P � � P� then for all agents pi� all points c� and
all measurable subsets S � � X �

i�c

�a
 S� � Xi�c �so that� in particular� S�i�c itself is a measurable subset of
Si�c
�

�b
 i�c�S�i�c
 � ��

�c
 �i�c�S
�
 � i�c�S�jS�i�c
 �

�i�c�S
��

�i�c�S�i�c�
�

Proof� Fix an agent pi� a time k point c of TA � �RA�XA� A
� and a set
S� � X �

i�c�

�a
 Since S� � X �
i�c� there must exist some subset R

� � XA such that S� �
Proj�R�� S�i�c
� Without loss of generality� we can assume that R

� �
R�S �i�c
 �since we can replace R

� with R� � R�S�i�c
� which must also
be measurable since REQ� guarantees R�S�i�c
 is measurable
� Since
S �i�c � Si�c and both S�i�c and Si�c consist of time k points �since P and
P � are consistent assignments
� we have

Proj�R�� S�i�c
 � f�r�� k
 � S�i�c � r � R
�g � f�r�� k
 � Si�c � r � R

�g

� Proj�R�� Si�c
�

Thus S� � Proj�R�� Si�c
� which shows that S� is a measurable subset
of Si�c�

�b
 By part �a
� it follows that S�i�c is a measurable subset of Si�c� Since
we have restricted to standard assignments S �� we know that S�i�c is
state�generated� and arguments similar to the proof of Proposition 	��
show that i�c�S �i�c
 � ��

�c
 Tracing through de�nitions� we see

�i�c�S
�
 �

A�R�S�

A�R�S�i�c

�

A�R�S�

�A�R�Si�c

A�R�S�i�c

�A�R�Si�c

�
i�c�S�

i�c�S�i�c

� i�c�S
�jS�i�c
�

�		 CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

Proposition ���� In a synchronous system� for all facts �� all agents pi�
and all points c� the rule Bet����
 is Treei�c�safe for pi at c i� Bet ����
 is
Treeji�c�safe for pi at c�

Proof� Since P j � Ppost� the sample space Treei�c can be partitioned into the
sample spaces Tree ji�d with d � Tree i�c� and each such Tree

j

i�d is a measurable
subset of Tree i�c by Proposition 	��� The law of conditional expectation�
therefore� states that

ETreei�c �Wf � �
X

ETree i�c�Wf jTree
j

i�d�i�c�Tree
j

i�d
�

where the summation is taken over all sets of the form Tree ji�d contained in
Treei�c� Since P j � Ppost� we can use part �c
 of Proposition 	�� to prove that
ETreei�c �Wf jTree

j

i�d� � E
Tree

j

i�d
�Wf �� and hence that

ETree i�c �Wf � �
X

E
Tree

j

i�d
�Wf �i�c�Tree

j

i�d
�

Suppose Bet����
 is Treeji�c�safe for pi at c� Then ETree
j

i�d
�Wf � � � for all

points d agent pi considers possible at c and all f � which implies ETreei�e�Wf � �
� for all points e agent pi considers possible at c and all f � and hence that
Bet ����
 is Treei�c�safe for pi at c�
Conversely� suppose Bet ����
 is not Treeji�c�safe for pi at c� Then ETree

j

i�d

�Wf �

� for some point d agent pi considers possible at c and some f � Let f � be the
strategy identical to f on Treej�d� and hence on Tree ji�d� but o�ering a payo�
of � everywhere else� If pj uses strategy f �� there is clearly no way for pi to
win o� of Treej�d �the best pi can do is break even
� so that ETree

j
i�e
�Wf �� � �

for e �� d� Moreover� by choice of d� E
Tree

j

i�d
�Wf ��
 �� It follows that

ETreei�c �Wf ��
 �� and hence that Bet ����
 is not Treei�c�safe for pi at c�

Theorem ���� For all facts � measurable with respect to P j� all agents pi�
and all points c� the rule Bet ����
 is safe for pi at c i� P j� c j� K�

i ��

Proof� Consider the evaluation of Ec�Wf � � E
Tree

j
i�c
�Wf ����
� for arbitrary

points c and strategies f � Since pj has the same local state at all points of
Treeji�c and f is a function of pj �s local state� pj o�ers the same payo� � for a
bet on � at all points of Tree ji�c� Since pi is following Bet ����
 at all points

��A� PROOFS OF RESULTS �	�

of Treeji�c� agent pi accepts the bet at all points of Tree
j

i�c or rejects the bet at
all such points� depending on whether � � ���� If pi rejects� then Ec�Wf � is
obviously �� If pi accepts� then pi�s pro�t is � � � at points satisfying � and
�� at all other points� and hence Ec�Wf � � �j

i�c�Tree
j

i�c��

��� �Notice that
because � is measurable with respect to P j� we are guaranteed that Treeji�c��

is a measurable subset of Treeji�c� and hence

j

i�c�Tree
j

i�c��

 is well�de�ned�

Suppose P j� c j� K�

i �� This means that j

i�d�Tree
j

i�d��

 � � for all
points d agent pi considers possible at c� For every point d agent pi considers
possible at c and every strategy f for pj � therefore� we have Ed�Wf � � �
since �j

i�d�Tree
j

i�d��

� � � ����
� � � � � when � � ���� It follows that
Bet ����
 is safe for pi at c�
Suppose P j� c �j� K�

i �� This means that
j

i�d�Tree
j

i�d��

 � for some
point d agent pi considers possible at c� Let f be the strategy for pj o�ering
a payo� of ��� for a bet on � at all points pj considers possible at d� and
hence at all points of Treeji�d� and � elsewhere� It follows that Ed�Wf �

����
� � � � � for the given strategy f and the given point d agent pi
considers possible at c� and hence that Bet ����
 is not safe for pi at c�

Theorem ��� In a synchronous system� if S is a consistent standard as�
signment� then

�a
 if S � S j� then S determines safe bets against pj� and

�b
 if S determines safe bets against pj and L�"
 is su�ciently rich� then
S � S j�

Proof� Theorem 	�� tells us that S j determines safe bets! from Theo�
rem 	���a
 �proved below
� it follows that if S � S j� then S determines
safe bets too� This proves part �a
�
To prove part �b
� suppose S �� S j� which means Si�c �� Tree ji�c for

some agent pi and point c� It is easy to construct a transition proba�
bility assignment � inducing a distribution on the runs of T satisfying
�R�Si�c

 � �R�Tree ji�c

� To see this� notice that Si�c �� Tree ji�c implies
d � Si�c and d �� Treeji�c for some time k point d in T ! and if Gd is the
set of points with d�s global state� then Gd � Si�c and Gd � Tree ji�c � �
since S and S j are state�generated �they are standard
� By causing � to
assign high probabilities to the edges in the path from the root of T to d�s
global state in T � we can guarantee that �R�Gd

 � ��� This guarantees

�	� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

that �R�Si�c

 � �R�Gd

 � ��� and since Gd and Treeji�c are disjoint�
that �R�Tree ji�c

 � � �R�Gd

 ��! so �R�Si�c

 � �R�Treeji�c

 as
desired�
Now let P be the probability assignment induced by S and � � and let

P � be the probability assignment induced by S � and � � Furthermore� let
Gc be the set of points with global state c� let � be the fact which is true
precisely of the points in Gc� and let � � ��� Since L�"
 is su�ciently rich�
it follows that � � "! since L�"
 is closed under negation� it follows that
� � �� � L�"
�
Since both S and S j are standard� and hence both inclusive and state�

generated� it follows that Gc � Si�c � Tree ji�c� Since � is false only at points
in Gc� and since Gc is contained in both Si�c and Tree

j

i�c� it is easy to see that

� � i�c�Si�c��

 �
�R�Si�c

� �R�Gc

�R�Si�c

and

� � j

i�c�Tree
j

i�c��

 �
�R�Treeji�c

� �R�Gc

�R�Tree ji�c

�

Furthermore� since S is uniform �it is standard
� any set Si�e not equal to Si�c
is disjoint from Si�c and hence from Gc� so i�e�Si�e��

 � i�e�Si�e
 � � for all
such sets Si�e� It follows that P� c j� K�

i ��
On the other hand� since �R�Si�c

 � �R�Tree ji�c

 and since �R�Gc

 �

�� it is easy to see that � � �� Let f be the strategy in which pj o�ers a
payo� of ��� on Treej�c� and suppose pi uses the rule Bet����
� Clearly
Wf � Wf ����
 is ��� � � on Treeji�c��
 and �� o� this set� Thus�

E�Wf
 �
�
�

�
� �
�
� ���
��� �

�
�

�
� �

�
� � �� � �
 � ��

which means Bet����
 is not safe for pi at c�

Note that the universal quanti�cation over transition probability assign�
ments is crucial in this proof� Given a fact � false only at points in the
intersection of Si�c and Tree

j

i�c� the proof shows that a necessary condition for
P� c j� K�

i � to imply Bet ����
 is safe for pi at c is that the measure of the
runs through Si�c is less than or equal to the measure of the runs through
Treeji�c� In fact� this is a su�cient condition as well� For a given � it may
be possible to construct a set Si�c �� Treeji�c satisfying this condition! but the
only way to satisfy this condition for all � is to take Si�c � Treeji�c�

��A� PROOFS OF RESULTS �	�

Theorem ��
� In a synchronous system� if P � and P are consistent standard
assignments satisfying P �
 P� then

�a
 for every fact �� every agent pi� every point c� and all �� � with � �
� � � � �� we have

P �� c j� K �����

i � implies P� c j� K �����

i ��

�b
 there exist a fact �� an agent pi� a point c� and �� � with � � � � � � �
such that

P �� c �j� K �����

i � and yet P� c j� K �����

i �

P �� c �j� K �����

j �� and yet P� c j� K �����

j ���

If L�"
 is su�ciently rich� then � � L�"
�

Proof� First we prove part �a
� Suppose P �� c j� K �����

i �� This means � �
�i�d��S

�
i�d��

 � �i�d

��S �i�d��

 � � for all points d � Ki�c
� Choose d � Ki�c
�
Since P � and P are consistent �and uniform
 and satisfy P � � P� the set Si�d
is the disjoint union of a collection of probability spaces S�i�d� � � � � � S

�
i�d�
with

dj � Si�d � Ki�c
� each a measurable subset of Si�d� It follows that Si�d��
 is
the disjoint union of S �i�d���
� � � � � S

�
i�d�
��
� An easy computation shows thatP

j i�d��S
�
i�dj
��

 � i�d��Si�d��

� Since P

� � P� Proposition 	�� shows that
�i�dj can be obtained from i�d by conditioning on S�i�dj � It follows that

i�d��S
�
i�dj
��

 � sup

n
i�d�T

�
 � T � � S�i�dj��
� T
� � X �

i�dj

o
� sup

n
�i�dj �T

�
i�d�S
�
i�dj

 � T � � S�i�dj��
� T

� � X �
i�dj

o
� sup

n
�i�dj �T

�
 � T � � S�i�dj ��
� T
� � X �

i�dj

o
i�d�S

�
i�dj

� �i�dj ��S
�
i�dj
��

i�d�S

�
i�dj

�

Combining the preceding statements� we have

� �
X
j

� i�d�S
�
i�dj

�
X
j

�i�dj ��S
�
i�dj
��

 i�d�S

�
i�dj

�
X
j

i�d��S
�
i�dj
��

� i�d��Si�d��

�	� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

A similar argument shows i�d��Si�d��

 � �� Since these arguments hold for
all d � Ki�c
� it follows that P� c j� K �����

i ��
We now prove part �b
� Since P �
 P� it follows that Si�c contains two

distinct sets S�i�c and S
�
i�d for some agent pi and points c and d� Let � be the

fact true at precisely the points in the set Gc of points with c�s global state�
and let � � ��� Notice that since P � is standard and hence state�generated�
Gc is contained in S�i�c and disjoint from S�i�d� If L�"
 is su�ciently rich� then
� � "� and hence � � �� � L�"
�
Since Gc � S�i�c � Si�c� the fact � holds with probability � with respect to

all probability spaces determined by P � and P except S�i�c and Si�c� Since P
� �

P� Proposition 	�� tells us that �i�c can be obtained from i�c by conditioning
on S�i�c� It is easy to see� therefore� that � holds with probability

�� � �i�c�S
�
i�c��

 �

i�c�S�i�c
 � i�c�Gc

i�c�S�i�c

with respect to S�i�c� and probability

� � i�c�Si�c��

 �
i�c�Si�c
� i�c�Gc

i�c�Si�c

with respect to Si�c� Since i�c�S�i�c

 i�c�Si�c
 � �� however� it is easy to see

that ��
 �� It follows that P� c j� K �����

i � but P �� c �j� K �����

i ��
On the other hand� �� holds with probability � with respect to all proba�

bility spaces determined by P � and P except S�i�c and Si�c� The fact �� holds
with probability ���� with respect to S�i�c and probability ��� with respect
to Si�c� Since �

�
 �� we have � � �
 � � ��! setting � � � � �� it follows
that P� c j� K �����

i �� but P �� c �j� K �����

i ���

Proposition ����� Ppost� c j� K
�����
i � i� Ppts� c j� K

�����
i �� for every fact ��

agent pi� and point c�

Proof� Consider the adversary A � pts mapping an agent pi and a point d
to the set SA

i�d of points de�ned as follows� for every run r passing through
Treeji�d� there is a point �r� k
 � Treei�d satisfying �� in SA

i�d if such a point
exists� and an arbitrary point �r� k
 � Treei�d if all such points satisfy �� It is
easy to see that the same set of runs pass through SA

i�d and Tree
j

i�d� and that a

��B� DISCUSSION �	�

run r passes through SA

i�d��
 i� � is true at all points of r contained in Tree i�d�
It follows that SA

i�d��
 and Treei�d��
 have the same inner measure� On the
other hand� consider an arbitrary adversary B � pts mapping pi and d to
the set SB

i�d �contained in Tree ji�d
� Suppose the run r passes through S
A

i�d��
�
It follows from the de�nition of SA

i�d��
 that � must hold at every point
�r� k
 � Treeji�d� Since S

B

i�d must contain precisely one such point� r must pass
through SB

i�d��
 as well� It follows that the inner measure of S
B

i�d��
 must be
at least the inner measure of SA

i�d��
! and hence that the in�mum �taken over
all adversaries B � pts
 of �B

i�d
��S
B

i�d��

 is precisely �
post

i�d
��Tree
j

i�d��

� A
similar construction shows that the supremum �taken over all adversaries B �
pts
 of �B

i�d

��SB

i�d��

 is precisely �
post

i�d

��Treeji�d��

� Since these statements

are true for all points d agent pi considers possible at c� we have Ppts� c j�
K �����

i � i� Ppost� c j� K �����

i ��

��B Discussion

In this appendix� we discuss a few issues related to observations made in this
chapter�

��B�� The need for protocols

Although from a computer scientist�s point of view� it seems quite natural
to assume� as we do� that all agents in a system follow some kind of a proto�
col� protocols are not quite so standard in the probability theory literature�
Interestingly� Shafer observes �Sha��� that it is necessary for us to think in
terms of protocols if we are to make sense of �conditioning on everything an
agent knows� as is done by Ppost� His argument� which we reproduce here�
is based on Freund�s puzzle of the two aces �see �Fre���! other references are
given in �Sha���
�
Consider a deck with four cards� the ace and deuce of hearts and spaces�

After a fair shu*e of the deck� two cards are dealt to p�� Now what is the
probability� according to p�� that p� holds both aces� First� notice that if A�
B� C� and D denote the events that p� holds two aces� at least one ace� the
ace of spaces� and the ace of hearts� respectively� then

Pr�A
 � Pr�A �B
 � Pr�A � C
 �
�

�
� P r�B
 �

�

�
� P r�C
 � Pr�D
 �

�

�

��� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

Suppose p� �rst says it holds an ace� Conditioning on this information�
p� computes the probability p� holds both aces to be

Pr�AjB
 �
���

���
�
�

�
�

As a result of learning p� holds at least one ace� the probability according to
p� that p� holds both aces increases�
Suppose p� then says it holds the ace of spades� Conditioning on this

additional information� p� computes the probability p� holds both aces to be

Pr�AjC
 �
���

��
�
�

�
�

As a result of learning p� holds not just an ace of spades but actually holds
the ace of spades� the probability according to p� that p� holds both aces
increases even more� Similarly� Pr�AjD
 � ����
But is this second computation reasonable� When p� learns B� then p�

knows that p� has either the ace of spades or the ace of hearts� When p� learns
C� then p� knows that p� de�nitely has the ace of spades� Is it reasonable
for the probability p� places on event A� that p� holds two aces� to increase
from ��� to ��� simply as a result of learning which of the two aces p� has�
It seems just as reasonable to argue that the information about which ace
p� actually has is useless� and p��s probability of A shouldn�t change upon
hearing that C �or D
 holds�
As Shafer points out� the right way for p� to update its probability of A

depends on what protocol the agents are following� If the agents had agreed
p� would �rst reveal whether it held an ace� and then whether it held the ace
of spades� then the increase seems reasonable� if p� says it holds an ace� then
p��s learning p� does not hold the ace of spades causes p��s probability that
p� holds both aces goes down to �! so learning that p� does hold the ace of
spades should make p��s probability go up� On the other hand� if the agents
were following a protocol whereby p� �rst reveals whether it has an ace� and
then� if it does� reveals the suit of one of the aces it holds� choosing between
hearts and spades at random if it has both aces� then p��s probability should
not change as a result of hearing that p� holds the ace of spades��� We leave
it to the reader to construct the computation trees corresponding to the two

��Although Shafer does not mention this point� the need to assume that p� chooses

��B� DISCUSSION ���

protocols described above� and to check that using Ppost� we do indeed get
the right probabilities in each case� Again� the key point here is that we need
the protocol to be completely speci�ed in order to appropriately compute the
conditional probabilities�

��B�� Safe bets and nonmeasurable facts

Recall that the statement of Theorem 	�� says that for measurable facts� P j

determines safe bets against pj � The condition of measurability is required in
order for the use of expectation in the de�nition of a safe bet to make sense�
Remember that Bet ����
 is safe for pi at c if Ed�Wf
 � E

Tree
j

i�d
�Wf ����

is nonnegative for all points d agent pi considers possible at c� and for all
strategies f for pj � We computed in the proof of Theorem 	�� that Ed�Wf
 �
�i�d�Si�d��

��� where � is the payo� o�ered by pj in Si�d �Si�d was actually
Treeji�d
� In order for i�d�Si�d��

 to be well de�ned� however� Si�d��
 must
be a measurable subset of Si�d� which means � must be measurable�

In fact� Theorem 	�� holds for nonmeasurable facts as well� but we must
�rst give a meaningful de�nition of expectation for nonmeasurable events�
The intuition behind the inner and outer measures � and � of a measure
space �S�X �
 is that ��S�
 and ��S�
 give upper and lower bounds on the
probability of S �! if S� is actually a measurable set� of course� these bounds
are equal to the actual probability� This is made precise by a classical result
�Hal��� which says that if �S�X �� �
 extends �S�X �
 �in that X � � X and
and � agree on X
� then for all sets X � X �� we have ��X
 � ��X
 � ��X
�
Moreover� the bounds described by the inner and outer measure are actually
attainable� in that for all subsets X � S� there is a probability space �S�X �� �

extending �S�X �
 such that X � X � and ��X
 � ��X
! a similar result
holds in the case of outer measure�

We want to extend these ideas to expected value� More precisely� we
would like to de�ne a notions of inner expected value and outer expected
value for a �nonmeasurable� random variable X which give� respectively�
lower and upper bounds on what should be the expected value of X if we

between hearts and spades at random if it holds both aces is crucial here� For example�
suppose p� always tells p� it holds the ace of hearts when it holds both aces� In this case�
p��s probability p� holds both aces should decrease to
 when p� says it holds the ace of
spades�

�� CHAPTER �� KNOWLEDGE� PROBABILITY� ADVERSARIES

were to extend the measure space as above to make X measurable� This
requires some work in general� but in the special case where X takes on
only two values� it can be done in a straightforward way� If the two values
taken on by X are x and y� with x � y� then we de�ne the inner and outer
expectations of a random variable X by

E��X
 � x��X � x
 y��X � y
 and
E��X
 � x��X � x
 y��X � y
�

It is not hard to show that these de�nitions agree with the expected value
if the set X � x is measurable� and that these values are attainable if we
extend the probability space in the right way to make X � x measurable�
Notice that the random variable Wf in which we are interested in fact

takes on only two values �depending on whether � is true or false
� Thus�
applying these de�nitions� we get�

E��Wf
 � �� � �
��Si�d��

 ���

��Si�d���

� �� � �
��Si�d��

� ��� ��Si�d��

� ���Si�d��

� ��

which looks very similar to the formula computed for measurable facts� Fol�
lowing the last two paragraphs of the proof of Theorem 	�� using this formula�
it is easy to see the rest of the proof holds� and hence that Theorem 	�� is
true using inner expectation in place of expectation in the de�nition of a safe
bet�

Chapter �

A Knowledge�Based Analysis of

Zero Knowledge

In this chapter we study the relationship between knowledge and cryptogra�
phy� In particular� we de�ne notions of knowledge for use in the context of
cryptography� and analyze interactive and zero knowledge proof systems in
terms of these notions of knowledge�

��� Introduction

Much of our intuition concerning cryptography depends heavily on the con�
cept of knowledge� For example� various methods of encryption �RSA���
GM�	� allow two agents to communicate via encrypted messages knowing
that other polynomial�time agents will know little or nothing about the con�
tents of their communication �subject to certain complexity�theoretic as�
sumptions
� Just as we argue informally about distributed computation in
terms of the knowledge processors have about their environment� the same
is true of cryptography� In fact� the whole point of cryptography is either
to transfer knowledge to or to withhold knowledge from various agents in
a system� While our intuition concerning cryptography depends heavily on
knowledge� researchers have yet to make this intuition precise in terms of

This chapter is joint work with Joe Halpern and Yoram Moses� An earlier version of
this work appeared in Proceedings of the ��th ACM Symposium on Theory of Computing

�HMT����

���

��	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

formal de�nitions of knowledge� The purpose of this chapter is to develop
de�nitions of knowledge that we hope will be useful in the general construc�
tion� analysis� and understanding of cryptographic protocols�
When developing such de�nitions� it is helpful to keep in mind concrete

examples of cryptographic protocols� One class of protocols� the class of
interactive and zero knowledge proof systems �GMR���� has received a great
deal of attention from the cryptographic community� Loosely speaking� an
interactive proof is a conversation between an in�nitely powerful prover and a
polynomial�time veri�er in which the prover tries to convince the veri�er that
a certain fact � is true� typically a fact of the form x � L� The proof consists
of a sequence of rounds in which the veri�er asks the prover a question� and
the prover answers the question� Loosely speaking� such a proof is said to
be zero knowledge if the prover does not leak any �knowledge� to the veri�er�
that is� anything the veri�er knows �or knows how to compute
 at the end of
the proof the veri�er already knows at the beginning of the proof �with the
exception� of course� of the fact � being proven
�
The reason these protocols have received so much attention is that they

seem to be fundamental building blocks in the construction of other crypto�
graphic protocols� To see why this is true� consider two agents p and q both
of whom want to use a certain resource in the system� and suppose they agree
to �ip a coin to determine which of them gets to use the resource �rst� Since
neither wants the other to be able to in�uence the outcome of the coin in its
own favor� how should p and q go about �ipping this coin�
One such coin �ipping scheme based on oblivious transfer is given by

Rabin in �Rab��� �see also �Blu� FMR�	�
� This coin �ipping scheme consists
of four steps�

�� Agent p �rst selects two distinct� odd primes and sends their product
n to agent q�

� Agent q then selects an integer x at random from the group Z�
n of

integers between � and n relatively prime to n� and sends x� to p�

It is not hard to show� since n is the product of two distinct� odd primes� that
x� will have four distinct square roots of the form x� �x� y� and �y� Agent
p is able to compute these square roots since it knows the factorization of n�

�� Agent p randomly chooses a square root of x� and sends it to q�

���� INTRODUCTION ���

Given one of x or �x and one of y or �y� it is not hard to show that the
greatest common divisor of x y and n or of x � y and n is a nontrivial
divisor of n� Agent q can easily compute the greatest common divisor of two
numbers�

	� Agent q computes a nontrivial divisor of n and sends it to p�

Agent q wins the coin �ip i� it sends a nontrivial divisor of n to p�
Suppose that p and q are honest and follow this protocol exactly �that is�

they do not cheat in any way
� In this case� it is not hard to convince oneself
that agent q wins the coin toss with probability exactly ��� roughly speak�
ing� since p chooses the square root to send to q at random� with probability
�� agent p sends either y or �y� in which case q can compute a divisor of
n and win the coin toss! and with probability �� agent p sends either x or
�x� in which case q gains no new information to help it compute a divisor
of n and presumably loses the coin toss� If p or q cheat in some way during
the protocol� however� then it is possible for q to win the coin toss with some
probability other than ��� The protocol depends� for example� on the fact
that the integer n constructed by p is really the product of two distinct� odd
primes as required� Since it seems possible p could construct an n not of
this form that would skew the outcome of the coin �ip in p�s favor� q should
demand to be convinced that n is of the correct form before continuing with
the coin �ip� On the other hand� p does not want q to know any more about
the factorization of n after being convinced n is of the right form� since this
could skew the outcome of the coin �ip in q�s favor� If q can compute one of
the prime factors after being convinced n is of the correct form� for example�
then q can always win the coin toss� What we need here is a way for p to
convince q that n is of the right form without giving q any additional infor�
mation about n� and this is precisely what zero knowledge proof systems are
designed to do��

Because interactive and zero knowledge proof systems serve as building
blocks in the design of cryptographic protocols� and because the concept of
knowledge is so fundamental to our understanding of these proof systems�
we choose to begin our study of knowledge and cryptography with interac�
tive and zero knowledge proof systems� In this work� we will concentrate

�As shown in �FMR���� zero knowledge proofs can also be used to avoid problems
arising when q tries to cheat�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

on developing de�nitions of knowledge that let us formalize our intuition
concerning such proof systems� The notions of knowledge most appropriate
in this context� however� are far more subtle than the standard notions of
knowledge used so often in the analysis of distributed computation �and� in
particular� the notions de�ned in Chapter
� Since cryptographic protocols
are typically probabilistic protocols that guarantee only that correctness con�
ditions are satis�ed with high probability� de�nitions of knowledge such as
probabilistic knowledge discussed in Chapter 	 that incorporate knowledge
and probability will almost certainly be useful� More perplexing� however� is
the fact that the computational power of agents in cryptographic systems is
typically assumed to be restricted to polynomial�time� Recall that� accord�
ing to the standard information�theoretic de�nition of knowledge� an agent is
said to know all facts that follow from its local state� regardless of the com�
putational complexity of determining that these facts hold� In the context of
cryptography� however� the computational intractability of a problem is used
to keep secret certain pieces information� Cryptography is concerned with
what an agent can compute that it knows in polynomial time� and cryp�
tographic protocols typically make guarantees such as no polynomial�time

agent knows any more after eavesdropping on a conversation between two
other agents than it did beforehand� In this context� the standard de�nition
of knowledge is clearly inappropriate�
Our fundamental contribution is the de�nition of practical knowledge�

which incorporates knowledge and probability with restrictions on agents�
computational powers� This de�nition is based on the de�nition of resource�
bounded knowledge given in �Mos���� which de�nes knowledge in terms of
polynomial�time tests an agent can use to determine whether it knows a fact�
Using the de�nition of practical knowledge� we characterize interactive proof
systems in terms of a formal statement about knowledge� This statement
essentially says �at the end of a proof of x � L� the veri�er knows x �
L�� which is precisely what our intuition demands of an interactive proof
system� Furthermore� using the de�nition of practical knowledge� we state
a property of zero knowledge we call knowledge security� and prove that any
zero knowledge proof system satis�es this property� Loosely speaking� this
property says �the prover in a zero knowledge proof of x � L knows� with
high probability� that if the veri�er knows a fact � at the end of the proof�
then the veri�er already knows x � L � � at the beginning of the proof��
This captures our intuition that a zero knowledge proof does not �leak�

���� INTRODUCTION ���

knowledge of any fact other than facts following from x � L� the fact the
prover initially set out to prove�
Related to the concept of knowing a fact is knowing how to do something

�how to perform a given operation
� There is a di�erence� for example�
between knowing the fact that an integer is composite and knowing how to

generate a prime factor of the integer� Zero knowledge proofs are intended not
to leak any knowledge of this kind as well as any knowledge of facts� While
this concept of �knowing how� has also been of great interest in philosophy
and AI �see �Moo���
� standard notions of knowledge do not capture this
aspect of knowledge� We de�ne a notion of knowing how to generate a y
satisfying a relation R�x� y
� again incorporating knowledge and probability
with bounds on agents� computational resources� In the context of a proof
of x � L� for example� we might take the relation R�x� y
 to mean �y is a
prime factor of x�� With this de�nition� we can again state a property of zero
knowledge proof systems we call generation security� and prove that any zero
knowledge proof system satis�es this property� This property essentially says
�the prover in a zero knowledge proof of x � L knows� with high probability�
that if the veri�er knows how to generate a y satisfying R�x� y
 at the end
of the proof� then the veri�er knows how to do so at the beginning of the
proof�� This captures our intuition that during a zero knowledge proof the
prover does not �leak� to the veri�er any knowledge of how to do anything�
let alone any knowledge of facts�
We �nd it interesting that� while these two properties �knowledge and

generation security
 capture everything the popular intuition says we want
from zero knowledge proof systems� we are unable to prove that any proof
system satisfying these properties is zero knowledge� This raises the inter�
esting question of whether the cryptographic de�nition of a zero knowledge
proof system is one of several possible implementations of what we should be
calling zero knowledge� or whether there is some crucial aspect of this clever
de�nition of zero knowledge the popular intuition is missing�
Other questions about zero knowledge proof systems also arise in this

framework� For example� recall that interactive and zero knowledge proof
systems are de�ned in the context of in�nitely powerful provers� but only
polynomial�time veri�ers� In practice� however� both the prover and the veri�
�er are polynomial�time agents� Although most of the proof systems de�ned
in the context of in�nitely powerful provers can be followed by polynomial�
time provers if these weak provers are supplied with some secret information

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

�such as the factorization of n in the coin �ipping example above
� an in�
teresting question to ask is whether any properties of these proof systems
change as a result of the fact that the prover is a polynomial�time agent and
not in�nitely powerful� For example� suppose we are given an interactive
proof system for membership in a language L de�ned in the context of in�
�nitely powerful provers� and suppose we run this protocol in the context of
weak provers� Is this protocol still a proof system for membership in L� or
does it actually prove more or less than simple membership in L�
In order to answer such questions� we de�ne weak interactive proof sys�

tems in which the prover �as well as the veri�er
 is restricted to probabilistic�
polynomial�time computation� We prove that if L has a weak interactive
proof system� then L must be contained in BPP �and hence that the ver�
i�er can determine whether x � L on its own without even consulting the
prover
� Since the interesting languages having proof systems in the context
of in�nitely powerful provers are not known to be contained in BPP �see
�GMR��� GMW���
� these proof systems must prove more to the veri�er
than simple language membership when run by polynomial�time provers� In
fact� we can prove in a precise sense that such proof systems must actually
be proofs about the prover�s knowledge� Furthermore� we show that� under
natural conditions� the notions of interactive proofs of knowledge de�ned in
�FFS��� and �TW��� are instances of such weak interactive proofs of knowl�
edge� In this framework� using the language of knowledge� we can make
precise several di�erences between these two notions of proofs of knowledge�
Finally� we show that zero knowledge weak interactive proofs guarantee the
same type of security with respect to the facts they prove as zero knowledge
interactive proofs guarantee with respect to language membership�
We believe that our analysis provides a great deal of insight into �and

support for
 the de�nitions in �GMR��� and their extensions to the case of
proofs about knowledge in �FFS��� TW���� None of our technical results
about the de�nitions themselves is very deep! the di�culty was in coming up
with the right notions of knowledge to use when thinking about them� While
the de�nitions of knowledge we give here are motivated by interactive and
zero knowledge proof systems� we believe they are potentially useful when
thinking about cryptographic protocols in general� We note that Fischer and
Zuck �FZ��� also consider notions of knowledge �closely related to our notion
of knowing how to generate
 for use in the context of interactive and zero
knowledge proof systems� and use their de�nitions of knowledge to analyze

���� INTERACTIVE � ZERO KNOWLEDGE PROOF SYSTEMS ���

an interactive proof of quadratic residuosity� We believe that thinking about
interactive and zero knowledge proof systems �and cryptography in general

in terms of knowledge provides a good framework within which to think
about cryptographic de�nitions and their appropriateness�

The rest of the chapter is organized as follows� In the next section� Section
��� we give the cryptographic de�nitions of interactive and zero knowledge
proof systems� In Section ���� we show how these de�nitions motivate the the
de�nition of practical knowledge� In the following Sections ��	 and ���� we
show how practical knowledge can be used to characterize interactive proof
systems in terms of knowledge� and how practical knowledge can be used to
make precise the intuition that the veri�er in a zero knowledge proof does
not know any more at the end of the proof than it did at the beginning� In
Section ��� we de�ne the notion of �knowing how�� and show that� in a precise
sense� the veri�er cannot do any more at the end of a zero knowledge proof
than it could at the beginning� Section ��� introduces weak interactive proofs�
relates them to the proofs of knowledge of �FFS��� TW���� and proves that
zero knowledge weak interactive proofs are secure in the senses de�ned above�
Finally� in Section ���� having characterized the de�nition of an interactive
proof system in terms of knowledge� we sketch an example of how we can
use this characterization to reason about interactive proof systems� More
precisely� we prove the familiar result that the sequential composition of
two interactive proofs is itself an interactive proof� The chapter ends with
Appendix ��A� in which we give the proofs of the results claimed in this
chapter�

��� Interactive and Zero Knowledge

Proof Systems

We begin with the formal cryptographic de�nitions of interactive and zero
knowledge proof systems� and a few informal examples�

����� Interactive protocols

Recall that� loosely speaking� an interactive proof is a conversation between
a prover and a veri�er in which the prover tries to convince the veri�er that

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

a certain fact is true� This idea of a conversation between two agents is made
precise by the de�nition of an interactive protocol�

Formally� an interactive protocol �GMR��� is an ordered pair �P� V
 of
probabilistic Turing machines� where P and V are intuitively descriptions of
the protocols to be followed by the prover p and the veri�er v� respectively�
The Turing machines P and V share a read�only input tape! each has a private
one�way� read�only random tape! each has a private work tape! and P and V
share a pair of one�way communication tapes� one from P to V being write�
only for P and read�only for V � and the other from V to P being write�only
for V and read�only for P �

A run of the protocol �P� V
 proceeds as follows� Initially� the common
input tape is initialized with some string x� the two random tapes are ini�
tialized with in�nite strings of independent� random bits� the two work tapes
are initialized with strings s and t�� and the two communication tapes are
blank�� The remainder of the run consists of a sequence of rounds� During
any given round� V �rst performs some internal computation making use of
its work tape and other readable tapes� and then sends a message to P by
writing on V �s write�only communication tape �which is P �s read�only tape
!
P then performs a similar computation� It is not hard to see� for example�
that we can view the coin �ipping example given in the introduction as a
two�round interactive protocol�

At any time during a run of an interactive protocol �P� V
� either P or V
can halt the interaction by entering a halt state� V can accept or reject an
interaction by entering an accepting or rejecting halt state� respectively� in
which case we refer to the resulting run as either an accepting or rejecting
run� The running time of P or V during a run of �P� V
 is the total number
of steps taken by P or V � respectively� during the run� We assume that V is
a probabilistic Turing machine running in time polynomial in jxj� and hence
that it can perform only probabilistic� polynomial�time computations during
each round� and participate in only a polynomial number of rounds� Conse�
quently� we can assume that V always halts the interaction after a polynomial

�The the need for allowing initial values on the work tapes was �rst observed in �Ore���
TW���� we will return to this issue when we de�ne zero knowledge in Section ���� and
weak interactive proof systems in Section ���

�Actually� since we want to run interactive protocols as subroutines of other protocols�
it is enough to assume the unread cells on the communication tapes� the cells to the right
to the tape heads� are blank�

���� INTERACTIVE � ZERO KNOWLEDGE PROOF SYSTEMS ���

number of rounds� and always enters either an accepting or rejecting state�
We will make no assumption about the running time of P for the moment�
although in Section ��� �when we consider weak provers
 we will assume that
P runs in probabilistic� polynomial�time as well�
In terms of the model of computation de�ned in Chapter � the system

corresponding to the interactive protocol �P� V
 consists of two agents� the
prover p and the veri�er v� Notice that we distinguish the agents p and v
from the protocols P and V they follow� A run of this interactive protocol is
an in�nite sequence of global states� where each global state consists of one
local state for the prover p and one for the veri�er v� Agent p�s local state is a
tuple consisting of a description of the Turing machine P � the current round
number �an interactive protocol is a synchronous protocol
� the contents of
the input tape� the �nite pre�x of its random tape read up to this point� the
contents of its work tape� the contents of the two communication tapes� and
the position of the tape heads on each of these tapes! agent v�s local state
is de�ned in a similar fashion� We assume for the sake of convenience that
prover and veri�er each encode their complete history on their work tapes�
Since we think of the prover and veri�er as alternating steps� we think of
the veri�er as being active at even times� and the prover being active at
odd times� It is not hard to see that the protocols described by the Turing
machines P and V can be captured in terms of the de�nition of a protocol
given in Chapter � We denote the system consisting of all possible runs
of �P� V
 by P � V � The following systems will also be useful later in this
chapter� P � Vpp� the system consisting of the union of the systems P � V �

for all probabilistic� polynomial�time V �! P�V � the system consisting of the
union of the systems P � � V for all Turing machines P �! and Ppp � V � the
system consisting of the union of the systems P � � V for all probabilistic�
polynomial�time P ��

����� Interactive proof systems

The next step in the de�nition of a zero knowledge proof system is to de�ne
what it means for an interactive protocol to be a proof system� Loosely
speaking� an interactive protocol is a proof system for a language L if the
veri�er accepts the common input x with high probability when x � L and
rejects with high probability when x �� L�
Given an interactive protocol �P� V
� we denote by �P �s
� V �t

�x
 the

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

random variable assuming as values runs of the protocol �P� V
 in which the
input tape is initialized with x and the prover and veri�er work tapes are
initialized with s and t� More precisely� we denote by �P �s
� V �t

�x
 the
random variable mapping a sequence � of coin �ips to the run of �P� V
 in
which the common input tape is initialized with x� the prover�s work tape
with s� and the veri�er�s work tape with t� and � is the sequence of coins
�ipped by the prover and veri�er during this run�� We write '�P �s
� V �t

�x

accepts� to denote the fact that the run assumed by �P �s
� V �t

�x
 as a value
is an accepting run� An interactive protocol �P� V
 is said to be an interactive
proof system for a language L if the following conditions are satis�ed�

� Completeness� For every k � � and su�ciently large x� and for every s
and t�

if x � L� then pr ��P �s
� V �t

�x
 accepts� � �� jxj�k �

� Soundness� For every k � � and su�ciently large x� for every P �� and
for every s and t�

if x �� L� then pr ��P ��s
� V �t

�x
 accepts� � jxj�k �

We use �su�ciently large x� as a shorthand for �there exists Nk � � such
that for every x satisfying jxj � Nk�� The subscript k in Nk re�ects the fact
that the notion of �su�ciently large� depends on the size of k� Without loss
of generality� we can always assume that the same value Nk is used in both
the soundness and completeness conditions�
We refer to p as the �good prover� when it is running P � and to v as

the �good veri�er� when it is running V � The completeness condition is a
guarantee to both the good prover and the good veri�er that if x � L� then
with overwhelming probability the good prover will be able to convince the
good veri�er that x � L� The soundness condition is a guarantee to the
good veri�er that if x �� L� then the probability that an arbitrary �possibly
malicious
 prover P � is able to convince the good veri�er that x � L is very

�We sometimes refer to a run assumed as a value by �P �s�� V �t���x� as �a run of �P� V �
on input x with s and t�� We often abuse notation and use �P �s�� V �t���x� to denote an
arbitrary such run� or even the set of all such runs� The meaning will always be clear from
context�

���� INTERACTIVE � ZERO KNOWLEDGE PROOF SYSTEMS ���

low� Intuitively� therefore� the veri�er �knows� that x � L when it accepts�
since the chance of accepting when x �� L is so low�
We note that this de�nition of an interactive proof system is stated in

terms of a distribution over coin �ips� This de�nition can be translated
immediately into a statement in terms of a distribution over runs using the
framework given in Chapter 	 as follows� Notice that once we �x the initial
state �meaning that we �x P � V � s� t� and x
� we can view the runs with this
initial state as a single computation tree as de�ned in Chapter 	� Recall that
P �V is the system consisting of all possible runs of �P� V
� and that P �V
is the system consisting of the union of the systems P � � V for all Turing
machines P �� In terms of the assignment Pfut� the soundness condition
says that the formula Pr ��accept � � � � jxj�k is true at all initial points of
P �V satisfying x � L� and the completeness condition says that the formula
Pr ��accept � � jxj�k is true at all initial points of P�V satisfying x �� L� In
this chapter� we are careful to write pr ��� � � when the probability space is
a set of coin �ips� and to write Pr ��� � � when the probability space is a set
of runs �and� in particular� when Pr ��� � � is to be interpreted as a formula
in our logic of knowledge and probability
�
One of the best known examples of an interactive proof system is the

proof system for graph isomorphism from �GMW���� Two graphs G� and G�

are said to be isomorphic if there is a bijection h between the nodes of G� and
G� with the property that �u� v
 is an edge of G� i� �h�u
� h�v

 is an edge of
G�� The graph isomorphism problem is formulated in terms of membership
in the language of ordered pairs �G�� G�
� where G� and G� are isomorphic
graphs� One simple interactive proof system for graph isomorphism is for the
prover� on input �G�� G�
� to send the veri�er an isomorphism h between G�

and G�� and have the veri�er check that h is indeed an isomorphism! but this
clearly gives the veri�er more information than the simple fact that the two
graphs are isomorphic� it actually gives the veri�er an isomorphism� The
protocol of �GMW��� is not this explicit� Suppose h is an isomorphism from
G� to G�� which can either be computed by an in�nitely powerful prover or
supplied as auxiliary input to the prover as an initial value on its work tape�
The protocol consists of n � j�G�� G�
j rounds� where each round consists of
the following sequence of steps�

�� The prover

�a
 chooses a random permutation � of the vertices of G� � �V�� E�
�

��	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

�b
 computes H � �V�� E
� where H is the graph isomorphic to G�

de�ned by ���u
� ��v

 � E i� �u� v
 � E�� and

�c
 sends H to the veri�er�

� The veri�er chooses a bit � at random and sends � to the prover�

�� The prover sends the veri�er an isomorphism from G� to H� if � � ��
the prover sends h! if � � �� the prover sends �h���

	� The veri�er checks that the mapping received from the prover is indeed
an isomorphism from G� to H�

The veri�er accepts at the end of n rounds i� all n iterations of the protocol
are successfully completed�
It is not hard to show that this interactive protocol is indeed an inter�

active proof system for graph isomorphism� If the two graphs G� and G�

are isomorphic� then the prover will always be able to send the veri�er an
isomorphism � or �h�� from G� or G� to H� depending on which is requested
by the veri�er� and hence will always cause the veri�er to accept� Thus� the
completeness condition is satis�ed� If the two graphs G� and G� are not iso�
morphic� then the graph H sent to the veri�er by the prover �by any prover�
in fact
 cannot be isomorphic to both G� and G�� and the fact that the veri�
�er chooses the bit � at random means that with probability �� the veri�er
will ask the prover for an isomorphism between H and the graph to which
H is not isomorphic� which the prover will certainly be unable to do� The
probability� therefore� that a prover �any prover
 will be able to supply the
requested isomorphism on each iteration� and hence cause the veri�er to ac�
cept incorrectly� is at most ��n� Thus� the soundness condition is satis�ed�
and the protocol is an interactive proof system for graph isomorphism�
This discussion shows that the veri�er can use the protocol above to

determine �with the prover�s help
 whether two graphs are isomorphic� It
is not initially clear� however� that the veri�er cannot use this protocol in
some �unauthorized� way to determine whether some other fact is true� For
example� suppose that the veri�er chooses the ��s in some way depending on
the graphs H sent by the prover� rather than choosing the ��s at random as
required by the protocol� Is it possible for the veri�er to use the protocol in
this way� and then compute whether a certain value x is a quadratic residue
modulo n� where n is the number of vertices in the two graphs! or then

���� INTERACTIVE � ZERO KNOWLEDGE PROOF SYSTEMS ���

determine whether one of G� or G� is isomorphic to a third graph G� The
intuition behind zero knowledge is that such use of the protocol should be
impossible�

����� Zero knowledge proof systems

This intuition that the veri�er cannot use the graph isomorphism protocol
to determine the truth of facts other than whether the two input graphs G�

and G� are isomorphic is captured as follows� Loosely speaking� we say that
an interactive proof system �P� V
 is zero knowledge if� whenever x � L� the
veri�er is able to generate on its own the conversations it could have had
with the prover during an interactive proof of x � L� Consequently� the fact
x � L is the only knowledge gained by the veri�er as a result of the proof
of x � L� if the veri�er is able to determine the truth of some other fact
after conversations with the prover� then the veri�er is able to determine the
truth of the fact on its own by generating these conversations on its own�
In particular� if it is possible for the veri�er to use the graph isomorphism
protocol to determine whether one of G� or G� is isomorphic to a third graph
G� then it is possible for the veri�er to determine the truth of this fact on its
own without even talking to the prover�

The intuition that the veri�er can generate these conversations on its own
is captured as follows� Consider runs of the protocol �P� V
 with input x and
work tapes s and t� From the veri�er�s point of view� a conversation with the
prover �that is� a run
 is uniquely determined by the veri�er�s local history
of the run� where the veri�er�s local history is the sequence of local states
the veri�er assumes during the run� Intuitively� when we say that the veri�er
can generate on its own the conversations it has with the prover� we mean
there is a Turing machine M that on input x and t generates local histories
with the same distribution the veri�er would see these local histories during
runs of �P �s
� V �t

�x
��

�This intuition is formulated slightly di�erently in �GMR�	�� They note that� given x
and t� the veri�er�s view of a conversation with the prover is uniquely determined by the
�nite sequence � of random bits it uses during the conversation together with the �nite
sequence 	��

 � 	n of messages it receives from the prover� everything else the veri�er
sees during the conversation �e�g�� the messages it sends� can be e�ciently computed given
this information� They call the tuple ��� 	��

 � 	n� the veri�er�s view of the run� and say
that the veri�er can generate on its own the conversations it has with the prover if there

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

This is made precise as follows �cf� �GMR��� GMW��� Ore���
� Suppose
we have some domain Dom whose elements are of the form �x� +y
� where x is
a string and +y is a vector of strings� Suppose for each �x� +y
 � Dom we have
two random variables Ux��y and Vx��y together with their associated probability
distributions� The families fUx��y � �x� +y
 � Domg and fVx��y � �x� +y
 � Domg
are said to be perfectly indistinguishable if the distributions of Ux��y and Vx��y
are identical for all �x� +y
 � Dom�
Given an interactive protocol �P� V �
� we denote by �P �s
� V ��t

�x
 the

random variable assuming as values the veri�er�s local histories of runs of
�P �s
� V ��t

�x
� where the distribution is determined by the coins �ipped
by the prover and the veri�er� More precisely� we de�ne �P �s
� V ��t

�x
 to
be the function mapping a sequence � of coin �ips to the the veri�er�s local
history of that run of �P �s
� V ��t

�x
 in which � is the sequence of coins
�ipped by the prover and the veri�er� Given a probabilistic Turing machine
M � we denote byM�t� x
 the random variable assuming as values the outputs
generated by M on inputs t and x� where the distribution is determined by
the coins �ipped by M � An interactive proof system �P� V
 for L is said to
be perfect zero knowledge �cf� �GMR���
 if for every veri�er V � there is a
probabilistic Turing machine MV � such that

�� MV ��t� x
 runs in expected time polynomial in jxj� and

� the families

f�P �s
� V ��t

�x
 � �x� s� t
 � Domg and fMV ��t� x
 � �x� s� t
 � Domg

are perfectly indistinguishable� where �x� s� t
 � Dom i� x � L� s is a
possible input for P � and t is a possible input for V ��

This de�nition says an interactive proof system is perfect zero knowledge
if the veri�er V � can generate local histories on its own� using MV � � with
precisely the same distribution it would see these local histories during runs
of �P� V �
 on input x with s and t�

is a Turing machine M that on input x and t generates views with the same distribution
the veri�er would see these views during runs of �P� V � on input x with s and t� The
two formulations are equivalent� of course� since the local history is e�ciently computable
from the view� and vice versa�

���� INTERACTIVE � ZERO KNOWLEDGE PROOF SYSTEMS ���

It is not too hard to show� for example� that the interactive protocol for
graph isomorphism given above is actually zero knowledge �GMW���� To
see this� �x a veri�er protocol V �� and let us construct a simulating Turing
machine MV � that generates local histories �one local state at a time
 with
the same distribution the veri�er would observe during runs of �P� V �
� The
Turing machine MV � is de�ned as follows� for each round i � �� � � � � n�

�� MV � �rst tries to guess the bit �i that V � will choose� MV � chooses a
random bit ��

� MV � then chooses a random permutation �i of the nodes of G� � and
writes on V ��s input communication tape the isomorphic copy Hi of
G� de�ned by ��i�u
� �i�v

 is an edge of Hi i� �u� v
 is an edge of G� �

�� MV � simulates the Turing machine V � until V � writes a bit �i on its
output communication tape�

	� MV � reads �i�

�a
 If �i � �� then MV � writes �i on V ��s input communication tape
and outputs the veri�er�s local state� More precisely�MV � outputs
three local local states� the state after the prover sends Hi� the
state after the veri�er sends �i� and the state after the prover
sends �i�

�b
 If �i �� �� then MV � rewinds V � to its con�guration at the be�
ginning of this iteration �this includes erasing Hi from V ��s input
communication tape
 and repeats steps ��	�

The �rst key observation here is that� when the two graphs G� and G�

are isomorphic� a random permutation of G� is a random permutation of G��
It follows that the probability of generating H by choosing G� at random
and choosing a permutation of G� at random is equal to the probability
of generating H by choosing a permutation of G� at random� The second
key observation is that� although MV � may have to try a number of times
before it can �nish the ith iteration and generate the graph Hi� the tries
are independent� It follows that the conditional probability a graph H is
generated on the kth try for the ith iteration� given that the �rst k � �
tries have failed� is the same for all k! and hence that the probability H is

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

generated by MV � on the ith iteration is equal to the probability the prover
outputs H in the ith round� Since the remainder of the ith round is simply
a simulation of �P� V �
� it follows that the distributions generated by �P� V �

and MV � are identical� �We leave it to the reader to verify that the expected
number of tries required forMV � to complete the ith iteration is � and hence
that MV � runs in expected polynomial time! see �GMW����

The requirement that MV � generates local histories with precisely the
same distribution with which they occur during runs of �P� V �
� however� is
a very strong requirement� Since we are interested in what a polynomial�time
veri�er can learn as a result of a conversation with the prover� it should be
su�cient if �cf� �GM�	�
 no polynomial�time test �meaning no test that can
be used by a polynomial�time veri�er
 can detect any di�erence between the
distributions generated by MV � and �P� V �
�

This intuition is formalized as follows �cf� �GMR��� GMW��� TW���
Ore���
� Two families fUx��y � �x� +y
 � Domg and fVx��y � �x� +y
 � Domg of
random variables are said to be polynomially indistinguishable if for every
probabilistic� polynomial�time algorithm M and every constant k � � there
exists a constant NM�k � � such that for all x with jxj � NM�k and all +y with
�x� +y
 � Dom we have

jpr �M accepts Ux��y�� pr �M accepts Vx��y�j � jxj�k �

It is important to notice that the probability is being taken over both the
coin �ips of M and the distributions of Ux��y and Vx��y� It is also important
to notice that the quanti�cation over x �e�g�� the common input
 is not the
same as the quanti�cation over +y �e�g�� the auxiliary inputs to the prover and
veri�er
�

The de�nition of what it means for an interactive proof system �P� V

for L to be �polynomially
 zero knowledge is obtained by replacing perfect
indistinguishability with polynomial indistinguishability in the de�nition of
perfect zero knowledge� This de�nition of zero knowledge is actually the def�
inition given in �GMW��� �and also in �Ore���
� This is the de�nition of zero
knowledge we use in the remainder of this chapter� Other notions of zero
knowledge based on other notions of indistinguishability �statistical indistin�
guishability and computational indistinguishability
 are de�ned in �GMR����
Since these notions of indistinguishability imply polynomial indistinguisha�
bility� and since our results are proven in the context of polynomial indistin�

���� KNOWLEDGE ���

guishability� our results �Theorems ���� ���� and ���
 hold in the context of
these other notions of indistinguishability as well�

��� Knowledge

With these examples in mind� we now de�ne notions of knowledge for use in
the analysis of cryptographic protocols� Among other things� these examples
have two distinguishing features�

First� they are probabilistic� Correctness conditions �such as the sound�
ness and completeness conditions for an interactive proof
 guarantee that
given properties hold with high probability� but not with certainty� Thus�
while agents are justi�ed in having a high degree of con�dence that these
properties hold� agents do not know they hold� Clearly� some de�nition of
knowledge incorporating probability such as probabilistic knowledge de�ned
in Chapter 	 will be useful here�
Second� and most important� the security of a zero knowledge proto�

col depends on the fact that the veri�er�s computational power is restricted
to polynomial time� since the protocol�s security depends on the fact that a
polynomial�time agent cannot distinguish distributions on local histories gen�
erated by MV � and �P� V �
� In general� a common feature of cryptographic
protocols is the use of computational intractability to keep information se�
cret� While we are willing to accept the fact that an in�nitely powerful
veri�er might be able to make unexpected use of a zero knowledge proof�
we are not willing to accept the possibility a polynomial�time agent could
increase its knowledge in the same way� To study such protocols in terms
of knowledge� therefore� requires a de�nition of knowledge that accounts for
bounds on an agent�s computational power�

Recall that� while the need for such de�nitions of knowledge accounting
for an agent�s computational powers is acutely apparent in the context of
cryptography� we have already seen the need for such de�nitions in Chapter
�� even in the absence of cryptography� In the sending or receiving omis�
sions models� the tests for common knowledge used by an agent to determine
whether a fact is common knowledge are easily�computable functions of the
agent�s local state� The same is typically true for most work in the literature
using knowledge to analyze distributed computation� For this reason� using
information�theoretic de�nitions of knowledge �de�nitions that do not take

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

into account agents� limited computational power
 does not lead to trou�
ble� In the generalized omissions model� however� the same tests for common
knowledge are no longer easily computable� We therefore concluded in Chap�
ter � that information�theoretic de�nitions do no capture all relevant aspects
of simultaneous coordination in this model� A major challenge presented
here� therefore� is to de�ne knowledge in a way that accounts for bounds on
agents� computational powers�

����� Knowledge and Probability

As we saw in Chapter 	� there are a number of meaningful de�nitions of
probabilistic knowledge in the context of synchronous systems� systems such
as the ones we consider here� Since the prover p seems to be the natural
choice for the veri�er�s �opponent� in an interactive proof system� arguments
in Chapter 	 imply that Pp� the assignment that conditions on the joint
knowledge of both the prover and the veri�er� is the �right� assignment for
the veri�er to use� In this chapter� however� we will use the assignment Pfut�
the assignment that assigns to an agent and a point c the probability space
of all points with c�s global state�
The choice of this assignment is due to the fact that we will be interested

in the truth of formulas of the form K�
i � at time � points� In Chapter 	�

we noted that all of the assignments Pfut� Pp� Ppost� and even Pprior are
equivalent at time �! that is� the probability spaces they assign to a given
agent at a given point are identical� This means that a formula K�

i � is true
at time � with respect to one of these assignments i� it is true with respect to
all of them� Consequently� from a semantic point of view� the exact choice of
the assignment is irrelevant� From a computational point of view� however�
Pfut has several advantages� First� the probability spaces assigned by Pfut

are independent of the agent �they depend only on the current global state
�
Second� the probability space assigned to a point is uniquely determined by
the distribution on the runs extending this point� Since interactive and zero
knowledge proof systems are de�ned in terms a distribution on runs �that is�
the distribution on the runs extending initial points
� the de�nition of Pfut

seems most closely related to the de�nition of such proof systems� Finally�
the simple nature of Pfut�s de�nition will simplify our analysis slightly�
With these observations in mind �that we can prove our results in terms

of Pfut and know they will know in terms of any other assignment of interest�

���� KNOWLEDGE ���

and that Pfut simpli�es our analysis
� we �x Pfut as the probability assign�
ment used in our analysis� Having �xed the assignment Pfut� we can safely
omit Pfut from the left side of the turnstyle 'j�� in formulas involving prob�
abilistic knowledge without introducing any ambiguity� Furthermore� since
the operators Pri are identical for all agents pi� we can omit the subscript
i� We reiterate the point made in Section ���� concerning the formulas
'pr ��� � �� and 'Pr ��� � ��� we write 'pr ��� � �� when the underlying
probability distribution is sequences of coin �ips� and 'Pr ��� � �� when this
distribution is points or runs �and� in particular� when 'Pr ��� � �� is meant
to be interpreted as a formula in our language of knowledge and probability
�

����� Knowledge and Computation

We now turn our attention to de�nitions of knowledge that account for
an agent�s limited computational power� Intuitively� we want to restrict an
agent�s knowledge to what it can compute� As Moses discusses in �Mos����
however� there is more than one way to do this� The motivation for our
de�nition is that we want to use our de�nition of knowledge to construct and
analyze protocols� The tests an agent uses to determine what it knows �and
hence what actions to perform
 in the course of a protocol are allowed to be
virtually any function of the agent�s local state� The only thing that restricts
the tests an agent can perform is the agent�s limited computational power�
This is the fundamental intuition underlying our de�nition of practical knowl�
edge� a de�nition of knowledge incorporating both probability and bounds
on an agent�s computational resources� The exact de�nition of practical
knowledge is best motivated by way a sequence of intermediate de�nitions�

Resource�bounded knowledge

The de�nition of resource�bounded knowledge given in �Mos��� succinctly
captures this intuition that it is the bounds on an agent�s computational
resources that restrict the tests the agent can perform� and hence what the
agent can know� Loosely speaking� this de�nition says that a polynomial�
time agent knows a fact only if there is a polynomial�time test the agent can
use to determine that it knows this fact� This intuition can be generalized to
any complexity class �see �Mos���
� and not just polynomial�time� However�
since cryptography is typically concerned with what an agent can learn using

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

probabilistic tests running in time polynomial in some parameter determined
by its local state �a parameter such as jxj� the length of the common input
�
the class BPP seems to be the complexity class of most relevance to cryp�
tography� We therefore restrict our attention to knowledge with respect to
the class BPP�
The notion of a BPP test an agent can use to determine whether it knows

a fact � can be made precise as follows� Given a system R� a probabilistic
algorithm M is said to be a BPP test for Kq� in R if� for all points �r�m

of R�

�� M �s input is q�s local state rq�m
�

� M runs in time polynomial in jxj� where x is the common input recorded
in rq�m
�

�� M accepts with probability at least ,� if �r�m
 j� Kq�� and rejects
with probability at least ,� if �r�m
 �j� Kq��

This de�nition essentially says that the language of local states rq�m
 sat�
isfying �r�m
 j� Kq� is in BPP� the only di�erence being that the BPP test
is required to run in time polynomial in jxj and not jrq�m
j� We choose jxj
instead of jrq�m
j because it seems to be the preferred parameter in the con�
text of interactive proofs� Interactive protocols �P� V
 and simulating Turing
machines MV �� for example� are both required to run in time polynomial in
jxj� and not� say� in jxj� jsj� and jtj� In all interactive proofs we are aware of�
however� the size jrv�m
j of the veri�er�s local state is polynomial in jxj�
We can now make precise the intuition that an agent knows a fact only if

it can compute that it knows this fact� Given a system R� an agent q is said
to BPP�know � at a point c of R� denoted by c j� KBPP

q �� if

�� �r�m
 j� Kq�� and

� there is a BPP test for Kq� in R�

�The probability� of course� is being taken over M �s coin !ips� We note that there
is nothing special about the value ���� We can use any value bounded above and away
from ���� In fact� it is easy to replace any such value with �� ��jxj by using the standard
trick of running the original test M many times to estimate the probability with which M
accepts or rejects�

���� KNOWLEDGE ���

Thus� a processor BPP�knows � if it knows � and there is a BPP test it can
use to compute that it knows ��
To get a better feeling for how this de�nition behaves� consider a system

in which an agent�s local state includes two integer�valued variables m and
n �the value of these variables might be determined by the contents of the
input tape� for example
� and suppose that for every pair of integers im and
in there is a run of the system in which the values of m and n are im and
in� respectively� Consider a point c at which m � �n � �
� �mod n
� Since
it is very easy for an agent to check that m � �n � �
� �mod n
� it is
clear that the agent BPP�knows the fact � that 'm � �n� �
� �mod n
� at
the point c� Notice that if m � �n � �
� �mod n
� then m is a quadratic
residue modulo n �that is� a square modulo n
� Since the agent BPP�knows
that m � �n � �
� �mod n
 at c� it is natural to assume that the agent
must also BPP�know the fact � that 'm is a quadratic residue modulo n�
at c� But recall that in order for the agent to BPP�know the fact 'm is
a quadratic residue modulo n� at a point� there must be a BPP test that
determines whether m is a quadratic residue for arbitrary m and n! and
assuming quadratic residuosity is hard� this is impossible� It follows that the
agent does not BPP�know the fact 'm is a quadratic residue modulo n� at c
after all� Notice that the agent BPP�knows the fact m � �n� �
� �mod n

at the point c� and since the implication �if m � �n � �
� �mod n
� then
m is a quadratic residue modulo n� is a tautology� the agent clearly BPP�
knows this fact as well �the simple test that always accepts is a BPP�test
for this fact
� Consequently� this example shows that� unlike the information
theoretic de�nition of knowledge� it is possible for an agent to BPP�know
both facts � and � � � without BPP�knowing the fact �� The agent does
know � � �� but it need not know � itself� In this sense� an agent no longer
knows all consequences of its knowledge �that is� everything that logically
follows from the information recorded in its local state
� This is a result of
the fact that this de�nition restricts an agent�s knowledge to what it can
compute� The reader is referred to �Mos��� for an interesting discussion of
this and other properties of this de�nition�

A notion of learning

The de�nition of BPP knowledge restricts an agent�s knowledge to what it
can compute by requiring the existence of a test the agent can use at all

��	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

points of a system to compute whether it knows a given fact� In this sense�
BPP knowledge captures what an agent can compute on its own� Some�
times� however� it is possible for an agent to obtain some extra information
�possibly from another agent in the system
� and with this extra information
the agent is able to learn things it couldn�t have computed on its own� This
informal notion of �learning� is of great importance to cryptography �and�
in particular� to zero knowledge proof systems
� Unfortunately� it does not
seem possible to capture this notion of learning directly in terms of resource�
bounded knowledge�
To understand this situation more clearly� consider again the system in

which an agent�s local state contains the two integer�valued variables m and
n� and consider again the fact � that 'm is a quadratic residue modulo n��
As we have seen� it is impossible for an agent to BPP�know � since there
is no BPP test to determine whether m is a quadratic residue modulo n for
arbitrary m and n� There are� however� situations in which it does seem
to make sense to say that an agent knows �� One example is the special
case in which m � �n � �
� �mod n
� A more interesting situation is one
in which an agent somehow obtains the factorization of n� and hence the
agent is easily able to compute whether � holds� There are a number of ways
in which the agent might obtain this factorization� The agent might �nd
the factorization in one of the messages it has received from other agents in
the system �e�g�� from the prover in an interactive proof system
! or� more
generally� it might be able to deduce the factorization from the contents of
these messages rather than �nding the factorization explicitly contained in
one of the messages� In either case it seems reasonable to say that� although
the agent cannot always determine whether � holds� in these cases it clearly
can� and hence can be said to know �� More generally� for any di�cult to
compute fact� once an agent has seen a proof of the fact� it no longer seems to
make sense to say the agent does not know the fact �although it certainly did
not know the fact before seeing the proof
� Since an agent cannot BPP�know
a fact like �� however� this notion of learning cannot be captured directly in
terms of resource�bounded knowledge�

Knowledge given facts

How� then� can one capture this notion of learning� We note that there are a
number of ways of doing so� and at the end of this section we discuss several

���� KNOWLEDGE ���

alternatives to the method we propose� Our approach� however� is a very
direct one� Recall the reason we felt resource�bounded knowledge could not
capture this intuition� some agent may fortuitously obtain some information
�� such as the factorization of an integer� that is enough for the agent to be
able to determine that it knows a fact �� Our idea is to de�ne a notion of
BPP knowledge of � relative to a fact �� Roughly speaking� this means we
have a BPP test M that correctly determines whether q knows � when �
is true� but is not necessarily correct when � is false� However� we do not
want the results of this test to be completely arbitrary when � is false� In
particular� we want to be able to trust this test whenever it says that q knows
��
One way to capture this intuition is to make two requirements of the test

M � the �rst is that M be a sound test for Kq�� meaning that Kq� holds at
a point if M accepts with high probability at that point! the second is that
M be a complete test for Kq� at all points satisfying �� meaning that M
will accept with high probability at such a point if Kq� holds at that point�
These properties together guarantee that M is an accurate test for Kq� at
points satisfying �! and soundness guarantees that� regardless of the truth
of �� we can trust M when it says Kq� is true�
To make this precise� we proceed as follows� We say that a test M is a

sound test for a fact � at a point c if c j� �� implies that M rejects at c
with probability at least ��� We write c j� sound�M��
 if M is a sound
test for � at c� Similarly� we say that M is a complete test for � at c if
c j� � implies that M accepts at c with probability at least ��� We write
c j� complete�M��
 if M is a complete test for � at c�
We capture the intuition that M is a good test for Kq� when � holds as

follows� Given a system R� a probabilistic algorithm M is said to be a BPP
test for Kq� given � in R if� for all points �r�m
 of R�

�� M �s input is q�s local state rq�m
�

� M runs in time polynomial in jxj� where x is the common input recorded
in rq�m
�

�� M satis�es the following properties�

�a
 M is a sound test for Kq� on R� R j� sound�M�Kq�
�

�b
 M is a complete test forKq� given �� R j� � � complete�M�Kq�
�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

We remark that such a test is very similar to the solution of a promise

problem as de�ned in �ESY�	�� A promise problem �A�B
 is a partial de�
cision problem determined by two predicates� a promise A and a property
B� A Turing machine N solves �A�B
 if� for every x satisfying the promise
A�x
� the machine N halts on input x and accepts on input x i� x satis�es
the property B�x
� So N is a partial decision procedure for the language
L � fx � B�x
g� it correctly determines whether x � L when the promise
A�x
 is satis�ed� but may behave arbitrarily when the promise A�x
 is not
satis�ed� Similarly� M is a decision procedure for Kq� when restricted to
points satisfying the �promise� �� but may behave rather arbitrarily on the
remaining points� The di�erence between a solution to a promise problem
and such a test M is that M is required to be a sound test for Kq� even
when � fails to hold�
We de�ne knowledge of a fact � given � as follows� Given a system R�

we say that �q knows � given �� at a point c� denoted by c j� K

q �� i�

�� c j� ��

� c j� Kq�� and

�� there is a BPP test for Kq� given � in R�

The last two conditions� as in the de�nition of BPP knowledge� require that
q actually knows � and that there exists a feasible test M for Kq� that is
sound in general� and complete given �� The �rst condition says knowledge
given � holds only at points satisfying �� Intuitively� these points are the
only points of interest since these are the only points where the promise � is
true� the only points where q has learned the information su�cient for q to
correctly determine whether it know �� The fact that di�erent tests M are
allowed to behave di�erently at points failing to satisfy � is another reason
we must require that K

q � hold only at points satisfying �� we want K

q �

to be well�de�ned at all points� even points failing to satisfy � where the
required behavior of our tests M is only loosely speci�ed�
To understand the relationship between this de�nition of knowledge and

resource�bounded knowledge� notice that if � is the fact true� then K

q �

is equivalent to KBPP
q �� In this sense� knowledge given a fact � is a direct

generalization of resource�bounded knowledge� Furthermore� notice that if
� is testable in BPP given only agent q�s local state as input� then K

q � is

���� KNOWLEDGE ���

equivalent to KBPP
q �� � �
� In general� however� we do not restrict the facts

� to be testable in BPP� and in this case it does not appear that knowledge
given � can be captured directly in terms of BPP�knowledge�
To see how this notion of knowledge enables us to capture our intuition

concerning learning� let us return to our initial example in which an agent
q�s local state includes two integer�valued variables m and n� Let � be the
fact that m is a quadratic residue modulo n� and let � be the fact that the
factorization of n is explicitly given in the messages on q�s communication
tape� Let M be the test that accepts i� the factorization of n is explicitly
given in the messages on q�s communication tape and m is a quadratic residue
modulo n� This test M for � is clearly sound and clearly complete given ��
Thus� when q learns from the factorization of n on its communication tape
that � is true� then q does indeed know � given ��
We note� however that while the intuition motivating the de�nition of

K

q � is that � is some additional information an agent might obtain that

will enable it to determine whether it knows �� the de�nition of K

q � is

more general than this� Suppose� for example� that � is the fact that the
prover in an interactive proof is the good prover� Intuitively� given that the
veri�er is talking to the good prover� the veri�er knows x �� L when it rejects�
The fact �� however� is a fact whose truth can never be determined given
only the veri�er�s local state� and hence does not represent some information
the veri�er might somehow be able to learn� and therefore determine that it
knows x �� L� In this case� the right way to view � is not as a fact the veri�er
can learn� but as a condition or �promise� whose truth guarantees that the
veri�er�s test M accurately determines whether it knows ��
Finally� because the behavior of a test M is relatively unrestricted when

the condition � is false� and because an agent may not be able to determine
whether � is true or false� an important question is how an agent q is to
interpret the result of running the test M � What meaning should q assign
to the probability with which M accepts� Notice that M can accept either
with probability less than ��� or with probability greater than ��� �and�
in particular� with probability greater than ��
� In the latter case� M �s
soundness guarantees to q that Kq� must hold� since M would accept with
probability less than ��� if Kq� did not hold� On the other hand� q�s ability
to assign meaning to M �s accepting with probability less that ��� depends
on q�s ability to determine whether � is true� If it can determine that � is
true� then it is guaranteed that �Kq� holds� Otherwise� the test M gives q

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

no useful information about whether it does or does not know ��

This discussion illustrates the asymmetry of the de�nition of K

q �� In

particular� since the test M may say Kq� does not hold when in fact it does
�this can happen at a point failing to satisfy �
� the tests associated with
K

q � feel more like tests for Kq� than they do tests for �Kq�� It seems�
however� that positive tests about knowledge tend to be more important
that negative tests in the context of cryptography� In the case of zero knowl�
edge� for example� our intuition does not say that the veri�er does not know
a fact � at the end of a proof of x � L� but rather that if the veri�er does
know � at the end of a proof� then it also knows � at the beginning� No�
tice that proving a polynomial�time agent does not know a fact �say a fact
it knows in the information�theoretic sense
 would probably involve proving
something about issues involving P versus NP� On the other hand� prov�
ing positive statements about a polynomial�time agent�s knowledge involves
the construction of polynomial�time tests� which is typically a much more
tractable task� This probably explains the prevalence of positive statements
about knowledge in cryptography�

Practical Knowledge

The de�nition of practical knowledge itself� the ultimate objective of this
section� is obtained as a result of the following observation� a probabilistic
test that fails on a negligible portion of its inputs is typically considered to
be just as good as one that never fails� Similarly� in the context of zero
knowledge� the fact that the distributions of �P �s
� V ��t

�x
 and MV ��t� x

can be distinguished by a polynomial�time test with only negligible proba�
bility is considered to be just as good as if the two distributions cannot be
distinguished at all� The soundness and completeness conditions required by
the de�nition of knowledge given �� however� do not allow for the possibility
that a given test M might fail to be sound or complete at a negligible frac�
tion of the points where we want it to be sound or complete� It is natural
to consider relaxing these conditions in some way� In order to do this� we
must �rst determine how we are going to go about measuring the size of the
set of points where the test M fails� Since the only distribution available
during probabilistic computation is the distribution on runs induced by the
coins tossed during the runs� it seems most natural to require that the test
behaves correctly at all points of all but a negligible fraction of the runs�

���� KNOWLEDGE ���

Formally� let init be the fact holding only at points at the beginning of
a run �that is� at time � points
� Given a system R� we say that M is a
practically sound test for � if for all k there exists � such that

R j� init � Pr��sound �M�Kq�

 � �� � jxj�k �

Similarly� given a fact �� we say M is a practically complete test for Kq�
given � if for all k there exists � such that

R j� init � Pr���� � complete�M�Kq�
�
 � � � � jxj�k �

Notice that� since we want to consider tests that behave correctly on all but a
small fraction of the runs� we have used the antecedent init in the de�nition of
practical soundness and practical completeness to ensure that the probability
is being taken over the runs of the system� These de�nitions are equivalent
to saying that for every initial global state of the system� the conditions
sound �M�Kq�
 and � � complete�M�Kq�
 hold at all points of almost all
runs extending this initial global state� That is� these conditions are state�
ments about prior probabilities� We could have considered instead tests with
the stronger property that they behave correctly at all but a small fraction
of the points extending any given global state �by deleting the antecedent
init
� This latter notion can lead to dramatically di�erent results �recall the
analysis of the probabilistic coordinated attack problem given in Chapter 	
�
but does not seem appropriate for most computer science applications� In
particular� it does not seem appropriate in the context of interactive proofs�
at a point where the veri�er has already accepted� it no longer makes sense
to expected the veri�er to reject with high probability� even when x �� L�
We now de�ne �q practically knows � given �� at a point c� which we

denote by c j� -K

q �� in precisely the same way as we de�ned �q knows � given

��� except that the soundness and completeness conditions are replaced by
practical soundness and practical completeness� Formally� c j� -K

q � i�

�� c j� ��

� c j� Kq�� and

�� there is a test M that is practically sound for Kq� and practically
complete for Kq� given ��

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

The tilde in the notation -K

q � is intended to denote the approximate nature

of the tests M guaranteed by the de�nition of practical knowledge� To say
that an agent practically knows � given �� therefore� means that the agent
knows � and has a test that quite accurately determines whether it knows
� at points satisfying �� although on rare occasions �that is� in a negligible
fraction of the runs
 it may make mistakes�

Alternate de�nitions

As we have mentioned� there are several alternatives to the de�nition of
practical knowledge� Before proceeding to show how practical knowledge can
be used to analyze interactive and zero knowledge proof systems� we discuss
several of these alternatives� The reader interested only in the application
of practical knowledge to interactive and zero knowledge proof systems can
safely skip ahead to the beginning of the next section�
Recall once again the intuition motivating the de�nition of practical

knowledge� as a result of learning the fact � that m � �n � �
� �mod n
�
an agent can deduce that it knows the fact � that m is a quadratic residue
modulo n� Notice that in this case the fact � is actually a proof of the fact ��
In general� knowing a proof of a fact � is equivalent to knowing a stronger
fact � that implies �� Thus� since � is presumably easy to verify and �
is not� instead of talking about knowing �� we could talk about knowing �
�and hence �
 instead� But this is not very satisfactory� Returning to our
quadratic residuosity example� what interests us is whether the agent knows
this fact � that m is a quadratic residue modulo n� and not the particular
proof of � the agent knows� We want to be able to describe protocols in terms
of knowledge� such as �if q knows � then q should halt and accept�� If all
we can talk about are the various proofs � of �� however� then we are forced
to describe this protocol indirectly with �if for any proof � of � agent q
knows � then q should halt and accept�� Such descriptions seem much less
desirable than the �rst�
To avoid this problem� one might be tempted to de�ne a notion of learning

in which an agent learns � at a point if at this point it BPP�knows a fact �
that implies �� implicitly existentially quantifying over all possible proofs �
of �� Unfortunately� this notion of learning is not very useful to a resource�
bounded agent� It could be� for example� that at every point c the agent BPP�
knows a di�erent fact �c implying � �and hence has �learned� � everywhere

���� KNOWLEDGE ���

and yet is unable to determine at a particular point which fact �c it should
test for in order to determine that it knows ��
Another approach one might be tempted to take is to de�ne a notion of

knowing � with respect to a particular test M where� informally� an agent
knows � with respect to M if using the test M the agent can determine
that it knows �� We remark that Fischer and Zuck de�ne a similar notion
of knowledge in �FZ���� but based on RP tests instead of BPP tests� No�
tice� however� that in some sense this idea is very similar to BPP�knowing
a particular proof � of �� since we can always take the proof � to be the
fact that M accepts with high probability �and hence tells us that � holds
�
This approach consequently shares the disadvantages discussed above� On
the other hand� instead of being forced to quantify over all possible proofs �
of � when describing protocols as we did above� we are now forced to quan�
tify over all proofs � and all testsM verifying such proofs� compounding our
original complaint� Most important� however� we want to be able to specify
and analyze protocols in terms of knowledge precisely because we want to be
able to abstract away the particular tests being used when we think about
computation� We note that the de�nition of resource�bounded knowledge
already existentially quanti�es over such tests �so these tests do not appear
in the notation used
� and we do not want to reintroduce them here�
The reader may still wonder about the asymmetry of our de�nition� Why

do we require soundness at all points� but completeness only at points satisfy�
ing �� Notice that if we strengthen the de�nition to require both soundness
and completeness at all points� then we have essentially returned to the de��
nition of BPP knowledge� On the other hand� suppose we weaken the de�ni�
tion to require soundness only at points satisfying �� If � is easily testable�
then such a notion of knowledge may be of interest� As we have mentioned�
however� we want to be able to consider facts � that are not easily testable�
and in this context this weakening of our de�nition becomes rather uninter�
esting� For in contrast to our de�nition� q�s ability to assign any meaning to
M �s probability of acceptance would now depend on q�s ability to determine
whether � is true� which makes M of little use if testing for � is hard� We
could instead have required completeness at all points and soundness only a
points satisfying �� but this would change the �avor of M �s behavior from
being primarily a test for Kq� to being a test for �Kq�� which �as we have
said
 seems less relevant in the context of cryptography�
Finally� we note that in an earlier version of this work �HMT��� we de�ned

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

knowledge with respect to sets of points A instead of de�ning knowledge with
respect to facts �� Intuitively� the set A consisted of the points in the system
�for example� the points satisfying some fact �A
 where an agent has obtained
enough information to be able to determine whether it knows a fact �� The
primary disadvantage of this way of de�ning knowledge is that the logic of
knowledge used to analyze a system is no longer independent of the system
being analyzed� It is no longer possible� for example� to argue that since the
formula �� � K

q � is valid in one system� it is valid in a second� Instead
we must argue that since a formula like �� � KA

q � is valid in one system� a
formula like �� � KB

q � is valid in a second for some set B of points related
to the set A in some way that must be explicitly speci�ed� Introducing
such sets of points into our logic results in losing the abstraction from the
operational nature of the system being studied that motivated us to avoid
de�ning knowledge with respect to particular tests M in the �rst place�

��� Knowledge and Interactive Proofs

We now return to the study of knowledge and interactive proof systems� No�
tice that the cryptographic de�nition of an interactive proof system really
has nothing to do with knowledge or computational complexity� It is simply
a statement about probability� It is not surprising� therefore� that we can
immediately translate the statements of soundness and completeness in the
de�nition of an interactive proof system directly into our language of prob�
ability� Recall that init is the fact holding only at points at the beginning
of a run �that is� time � points
� and let accept be the fact holding only at
points at which the veri�er has accepted�

Proposition ���� An interactive protocol �P� V
 is an interactive proof sys�
tem for a language L i� the following conditions are satis�ed�

� Completeness� For every k � � there exists � � � such that

P � V j� init � Pr �x � L � �accept � � �� � jxj�k �

� Soundness� For every k � � there exists � � � such that

P � V j� init � Pr ��accept � x � L� � �� � jxj�k �

���� KNOWLEDGE AND INTERACTIVE PROOFS ���

The proof of Proposition ��� �and all other results in this chapter
 can be
found in Appendix ��A� The constant � used above is necessary due to the
fact that the probabilistic guarantees made by the de�nition of an interactive
proof system hold only for su�ciently large x� Notice that if � � � jxj�k is
negative� then Pr��
 � ��� jxj�k is equivalent to Pr��
 � �� which is valid
for every fact �� Consequently� by choosing � so that � � � jxj�k
 � for
insu�ciently large x we obtain a formula holding for all x� and hence valid
at all points of the system� While this constant � does not appear in the
formal de�nition of an interactive proof system� an equivalent de�nition of
interactive proof systems can be formulated making use of such constants
just as we do in Proposition ����
According to Proposition ���� a formula such as Pr �x � L � �accept � �

� � � jxj�k holds at time � but not necessarily at later points� After the
veri�er has rejected� for example� it is clearly not the case that with high
probability the veri�er will eventually accept� In general� even before the
veri�er has actually decided to accept or reject� a particularly bad sequence of
coin �ips can signi�cantly lower the veri�er�s chances of eventually accepting�
Consequently� the antecedent init is crucial in the formulas above� Intuitively�
this is due to the fact that the veri�er�s probability space is changing with
every step� Since we have chosen the assignment Pfut as the basis for our
de�nition of probabilistic knowledge� an assignment associating with a point
the set of points having the same global state� an agent�s probability space
decreases in size with every step� The same would often be true if we had
chosen any other consistent assignment such as Ppost or Pj�
Since the facts appearing in Proposition ��� are valid� all agents know

these facts at all points� Furthermore� all agents know the fact init whenever
it holds� Since from Kqinit and Kq�init � �
 we can deduce Kq�� we can
immediately deduce the following corollary to Proposition ����

Corollary ���� An interactive protocol �P� V
 is an interactive proof system
for a language L i� the following conditions are satis�ed�

� Completeness� For every k � � there exists � � � such that

P � V j� init � E���jxj�k�x � L � �accept
�

� Soundness� For every k � � there exists � � � such that

P � V j� init � K���jxj�k

v ��accept � x � L
�

��	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

This corollary says that �P� V
 is complete if both the good prover and the
good veri�er know with high probability that if x � L� then the good prover
will convince the good veri�er to accept! and �P� V
 is sound if the good
veri�er knows with high probability that� no matter what protocol the prover
is running� if the veri�er accepts x then x � L�
One important di�erence to notice between the two statements is that

completeness is stated with respect to the system P � V consisting of the
good prover and the good veri�er� while soundness is statement with respect
to P�V consisting of arbitrary provers and the good veri�er� In the a system
P � � V � the prover P � is �xed and hence the veri�er knows which prover it
is talking to� In the system P � V � however� the veri�er may consider any
prover possible� and hence cannot know the identity of the prover� In this
way we are able to capture quite simply the intuition that the veri�er can be
con�dent that x � L whenever it accepts� regardless of which prover it has
been talking to�
A second observation worth making here is that if �P� V
 is sound� then it

is actually the case that �in addition to the veri�er
 every prover also knows
with high probability that x � L whenever the veri�er accepts! that is� we
could have replaced K���jxj�k

v by E���jxj�k in the statement of soundness
above� We have chosen to formulate this statement in terms of the veri�er�s
knowledge since our intuition says that soundness is intended to be primarily
a guarantee to the veri�er �just as zero knowledge is intended to be primarily
a guarantee to the prover
�
While Corollary �� shows that it is possible to characterize interactive

proof systems in terms of knowledge and probability� this characterization is a
reformulation of the original cryptographic de�nition in terms of very similar
concepts� It does not signi�cantly clarify our intuition concerning interactive
proof systems� other than making explicit this distinction between what is
intended to be a guarantee to the prover and what is a guarantee to the
veri�er� It does not capture� for example� the intuition that at the end of an
interactive proof of x � L with the good prover� the good veri�er knows that
x � L despite its limited computational power�
In what way can the veri�er be said to know whether x � L at the

end of a proof of x � L� If our intuition is correct� the veri�er knows
x � L whenever it accepts� Consider the test M that takes as its input the
veri�er�s local state and accepts at a point if the veri�er has accepted at that
point and rejects otherwise� Loosely speaking� the soundness condition for

���� KNOWLEDGE AND INTERACTIVE PROOFS ���

an interactive proof implies that M will not accept when x �� L� and the
completeness condition implies that M will accept when x � L if M is run
at the end of a proof with the good prover� Let us denote by halted the fact
holding at a point i� at that point the veri�er has either accepted� rejected�
or otherwise halted� We refer to a point satisfying halted as a �nal point� Let
us denote by 'p running P � the fact holding at a point i� at that point the
prover is following the protocol P � Let � be the fact halted � 'p running P ��
Intuitively� we would like to say that the good veri�er knows x � L given �
at the end of a proof of x � L with the good veri�er� Of course� the testM is
not a sound test for x � L since on rare occasions the veri�er may incorrectly
accept when x �� L� and M is not complete given � for similar reasons� On
the other hand� it is practically sound and is practically complete given �� As
a consequence� we can prove the following�

Proposition ���� If �P� V
 is an interactive proof system for L� then

P � V j� �x � L � 'p running P �
 � � -K

v �x � L
�

where �
def
� halted � 'p running P ��

In fact� we can essentially prove a converse of this proposition as well�
which shows that we can characterize the notion of an interactive proof sys�
tem using practical knowledge�

Proposition ���� If

P � V � j� �x � L � 'p running P �
 � � -K

v �x � L
�

where �
def
� halted � 'p running P �� then we can e�ectively modify V � to

obtain V such that �P� V
 is an interactive proof system for L�

The protocol V is simply the protocol V � at the end of which the veri�er
uses its test for practical knowledge of x � L to decide whether to accept or
reject�
These results tell us that an interactive proof system for L is precisely

one that guarantees that the veri�er will practically know x � L at the end
of a proof of x � L with the good prover� and will practically never be fooled
�by any prover
� We remark that� having reformulated the cryptographic

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

de�nition of an interactive proof system in terms of our logic of knowledge
and probability �recall Proposition ���
� the proof of this new characteriza�
tion of interactive proof systems has been done entirely by reasoning about
formulas in our logic of knowledge and probability� We consider this to be
quite important� since one of the major reasons for studying cryptography in
terms of knowledge is to be able to reason at a semantic level about crypto�
graphic systems without delving into the �often complex
 operational nature
cryptographic de�nitions and computation�

��� Knowledge and Zero Knowledge

We now turn our attention to zero knowledge proof systems� and show how
to capture the intuition that if the veri�er knows a fact � at the end of a
zero knowledge proof of x � L� then the veri�er knows x � L � � at the
beginning of the proof as well� Since this intuition requires that � be true
at the beginning of a proof whenever it is true at the end of a proof� it must
be a fact that depends only on the information contained in the initial state
and cannot be a fact like �the proof is over�� Recall that� given a system
R� a fact � is said to be a fact about the initial state if �r�m
 j� � implies
�r��m�
 j� � for all points �r��m�
 in R with r��
 � r���
� That is� � is a
fact about the initial state if the truth of � at a point of a run depends only
on the run�s initial state� Restricting our attention to facts about the initial
state is not much of a restriction in practice since we are typically concerned
that the prover will leak some information about the common input x to the
veri�er� and any fact about x is in particular a fact about the initial state
�since x is encoded in the initial state
�

The following theorem captures the intuition mentioned above� Roughly
speaking� it says that if x � L and the veri�er has a nontrivial chance of
learning a fact � at the end of a proof of x � L� then the veri�er can
already deduce � from x � L on its own at the beginning of the proof
without interacting with the prover� Consequently� provided x � L� the only
information that a prover leaks to the veri�er in a zero knowledge proof of
x � L are facts that follow from x � L� In this sense� the veri�er learns
essentially nothing as a result of the proof other than the fact x � L the
prover set out to prove� However� the proviso that x � L is crucial here�
There is nothing in the de�nition of a zero knowledge proof to stop the

���� KNOWLEDGE AND ZERO KNOWLEDGE ���

prover from leaking all sorts of information when x �� L�

Theorem ���� Let �P� V
 be a zero knowledge proof system for L� let V �

be an arbitrary veri�er� and let � be a fact about the initial state� For every
fact � and constant k � � there is a fact �� and a constant � � � such that

P � V � j� �x � L � init
 � K���jxj�k

p �� -K

v � � -K
�

v �x � L � �
��

The statement of this theorem is one of the major motivations for the
de�nition of practical knowledge� We want to capture the idea that if the
veri�er is able to compute something on its own as a result of obtaining
some extra information �represented by the fact �
 from the prover during
the course of a proof� then the veri�er is already able to compute this on its
own at the beginning of the proof� BPP�knowledge does not seem to let us
capture this intuition� We note� however� that the same result holds when
we replace practical knowledge given � by BPP�knowledge given �� but this
strengthening of the hypothesis �that the veri�er knows � given � at the end
of the proof
 weakens the statement of the theorem� Furthermore� the char�
acterization of interactive proof systems in terms of practical knowledge given
by Propositions ��� and ��	 in Section ���� indicates that practical knowl�
edge is of greater relevance to interactive proof protocols� Loosely speaking�
the fact �� represents the condition that the current point is an initial point
with x � L� and that from this initial point there is a nonnegligible chance
that -K

v � will hold at the end of the run� The test for x � L � � that the
veri�er uses at such points essentially runs the simulating Turing machine
repeatedly to generate local histories �since x � L� this simulation is guaran�
teed to be quite accurate
� and runs the test for � at the end of each of these
histories� Since this test will succeed at the end of a nonnegligible fraction
of these histories� by generating enough of them the veri�er is almost certain
to generate one such history� at which point it can accept�
Stepping back and looking at the statement of Theorem ���� however� we

see that the result is slightly unsatisfactory� The reason is that it is stated
in terms of the system P � V �� and in this system the veri�er�s protocol V �

is �xed and hence known to the prover� In contrast� the intuition behind
zero knowledge is that even though the prover does not know the identity of
the veri�er� the prover knows that the veri�er learns nothing at the end of
the proof other than x � L� In other words� our intuition suggests that the
statement of Theorem ��� should also hold in the system P �Vpp�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

Unfortunately� we cannot prove such a result� Given a test N for Kv�
at the end of a proof of x � L in the system P � V �� our proof of Theorem
��� constructed a test M for Kv�x � L � �
 at the beginning of the proof
by repeatedly running MV � to generate runs of P � V � and running the test
N at the end of the generated run� In order to do the same thing in the
system P � Vpp� because we require that our test M behave correctly at all
points of the system� M must �rst be able to determine the identity of the
simulating Turing machine MV � given the identity of the veri�er�s protocol
V �� But since the order of quanti�cation in the de�nition of zero knowledge
guarantees only that for every veri�er V � there is a Turing machineMV ��t� x

approximating the distribution of �P �s
� V ��t

�x
� there is no guarantee that
there is a uniform way of choosing MV �� This is a rather subtle point brought
out by our framework�
Since the source of this trouble seems to be the nonuniformity of MV ��

a natural solution is simply to require that the simulating Turing machine
is indeed uniform in the veri�er�s protocol! that is� require that one Turing
machineM using V � as a subroutine can simulate the runs of �P� V �
 for every
veri�er protocol V �� We remark that most known zero knowledge protocols
already have this property� This property is captured by the notion of black�
box zero knowledge� An interactive proof system �P� V
 for L is said to
be strongly black�box zero knowledge �cf� �Ore���
 if there is a probabilistic
Turing machine M such that

�� M�V �� t� x
 runs in expected time polynomial in jxj� and

� the families

f�P �s
� V ��t

�x
 � �x� s� t
 � Domg and fMV ��t� x
 � �x� s� t
 � Domg

are polynomially indistinguishable� where �x� V �� s� t
 � Dom i� x � L�
V � is a possible veri�er protocol� s is a possible input for P � and t is a
possible input for V ��

If �P� V
 is a strongly black�box zero knowledge proof system for L� then we
can prove the analogue of Theorem ��� �with virtually the same proof
 in
the system P � Vpp instead of P � V ��

��� GENERATION AND ZERO KNOWLEDGE ���

Theorem ���� Let �P� V
 be a strongly black�box zero knowledge proof sys�
tem for L� and let � be a fact about the initial state� For every fact � and
constant k � � there is a fact �� and a constant � � � such that

P � Vpp j� �x � L � init
 � K���jxj�k

p �� -K

v � � -K
�

v �x � L � �
��

Unfortunately� as the name suggests� the notion of strongly black�box
zero knowledge is stronger than one might expect most protocols to satisfy�
The problem is that in practiceM�V �� t� x
 runs V � as a subroutine on input
x� Even if M runs V � only once� the running time of M is at least as great
as the running time of V �� Consequently� even if we restrict our attention
to polynomial�time V � as input to M � since the polynomial bound on the
running time of V � is di�erent for every V �� the running time ofM will not be
bounded by any single polynomial� Oren avoids this problem in his de�nition
of black�box zero knowledge by charging only one time step for a call to V ��
Thus� he is essentially viewing M as an oracle machine �rather than a purely
polynomial�time Turing machine
� We could modify our de�nitions to allow
for knowledge with respect to oracle machines� but a more natural solution is
to modify the measure we use of a test�s complexity� In particular� suppose
we consider tests for facts that run at a point �r�m
 in time polynomial
in jxj� the running time of V �� and the description of V �� where r is a run
with input x in which the veri�er is running the protocol V �� Then� de�ning
a notion of practical knowledge with respect to such tests� the analogue of
Theorem ��� follows with precisely the same proof� We note that all zero
knowledge protocols we are aware of satisfy this notion of black�box zero
knowledge�

��	 Generation and Zero Knowledge

In the previous section we formalized the idea that the veri�er in a zero
knowledge proof learns essentially nothing but the fact the prover sets out
to prove� This is not� however� the strongest notion of security one could
hope for� It would also be desirable to show that� as a result of interacting
with the prover� the veri�er cannot do anything that it could not do before
the interaction� As mentioned in the introduction� for example� there is a
big di�erence between knowing an integer n is composite and being able to
generate a factor of n�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

We abstract the idea of the veri�er being able to do something as knowing
how to generate a y such that R�x� y
 where R is simply a binary relation�
For example� if R�x� y
 holds precisely when y is a prime factor of a number
x on the input tape� then being able to generate a y such that R�x� y
 means
being able to �nd a prime factor of x� Notice that� as in the case of factoring�
many natural relations R are testable in BPP given both x and y as input�
even though generating a y satisfying R�x� y
 given only x as input may be
intractable� The assumption that a relation R is testable in BPP� therefore�
is generally not a severe restriction� Formally� a relation R is testable in

BPP if there is a probabilistic algorithm running in time polynomial in jxj�
accepting �x� y
 with probability at least ,� if R�x� y
� and rejecting �x� y

with probability ,� if �R�x� y
�
Just as we have said that the veri�er knows a fact � if it has an algorithm

to test for �� we would like to say that the veri�er knows how to generate
a y satisfying R�x� y
 if it has an algorithm to generate such a y� When
de�ning knowledge of facts� we have considered tests for facts � that were
sound and were correct given that a certain other fact � was true� Here�
although there are no conditions analogous to soundness and completeness�
we consider algorithms that do a �good job� of generating y�s such that
R�x� y
 at points satisfying �� but may not perform as well at other points�
Given a system R� we say that a probabilistic algorithm M is a generator for
R given � for an agent q if for every point �r�m
 of R

�� M takes as input q�s local state rq�m
 at �r�m
�

� M runs in time polynomial in jxj� where x is the common input recorded
in rq�m
� and

�� ifM outputs a string y then R�x� y
 holds� and if �r�m
 satis�es � then
M outputs such a string with probability at least ���

This requirement thatM never incorrectly outputs a string y failing to satisfy
R�x� y
 is easy to enforce when R is testable in BPP�
Given a system R� we say that the veri�er knows how to generate a y

satisfying R�x� y
 given � at a point c� which we denote by c j� G

v y�R�x� y
�

if

�� c j� �� and

��� GENERATION AND ZERO KNOWLEDGE ���

� there is a generator for R given � for v�

Before we continue� it is helpful to consider the relationship between this
de�nition of knowing how to generate and the de�nition of knowing a fact�
It is natural to suppose that knowing a fact can be characterized in terms
of knowing how to generate� For example� suppose ��x
 is a fact about x�
and suppose R is the relation de�ned by R�x� �
 if ��x
 is true and R�x� �

if ��x
 is false� Knowing how to generate a y such that R�x� y
 given �
implies knowing ��x
 given �� To see this� suppose N is a generator for R
given �� and suppose M is the test for ��x
 that accepts at a point i� N
outputs �� and rejects otherwise� M must be sound� since N never outputs
an incorrect string y� and hence N outputs � if it outputs anything at all
when ��x
 is false� On the other hand� M must be complete given �� since
at points satisfying � the generator N outputs � with probability �� when
��x
 is true� and henceM accepts with probability ��� But what about the
other direction� Does knowing ��x
 given � imply knowing how to generate
a y satisfying R�x� y
 given �� If R is testable in BPP� then an agent actually
knows how to generate a y satisfying R�x� y
 given the fact true� and hence
also given the fact �� But if R is testable in BPP� then so is ��x
 and
hence so is membership in the language L� For more interesting languages L�
namely languages not contained in BPP� it seems possible that an agent can
know ��x
 given � without knowing how to generate a y satisfying R�x� y

given �� In other words� knowing the existence of a proof that x � L seems
to be di�erent from knowing how to generate a proof that x � L� Intuitively�
the reason for this is that a BPP test M for knowledge of ��x
 given �
is allowed to make mistakes� whereas a generator N for R�x� y
 given � is
not� For example� given such a test M � suppose we try to construct such
a test N in the obvious way by having N output � if M accepts and �
otherwise� M can reject outright at any point not satisfying � regardless of
whether ��x
 is true� and at such points N incorrectly outputs �� We note�
however� knowing how to generate is most interesting in contexts other than
language membership� contexts such as factorization sketched above� and in
these contexts the relations R are testable in BPP�
In any case� we can prove the following analogue to Theorem ��� �with

virtually the same proof
�

Theorem ���� Let �P� V
 be a zero knowledge proof system for L� let V �

be an arbitrary veri�er� and let R�x� y
 be a relation testable in BPP� For

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

every fact � and constant k � � there is a fact �� and a constant � � � such
that

P � V � j� �x � L � init
 � K���jxj�k

p ��G

v y�R�x� y
 � G
�

v y�R�x� y
 ��

Intuitively� this statement says that if the veri�er has a nonnegligible chance
of being able to generate a y satisfying R�x� y
 by talking to the prover� then
the veri�er can generate such a y on its own� We note that this theorem
has a number of natural extensions� One simple extension is from generat�
ing y�s satisfying relations R�x� y
 to generating y�s satisfying facts � about
the veri�er�s entire initial state� Another simple extension� along the lines
of practical knowledge� is a notion of practically knowing how to generate�
denoted by -G

q y�R�x� y
� where the algorithm may on a small fraction of the
points satisfying � fail to generate y such that R�x� y
� A �nal extension�
using black�box zero knowledge� allows us to prove an analogous result in the
system P � Vpp�

We note that the ability to test the relation R in BPP is crucial to the
proof of Theorem ���� Recall that in the proof of Theorem ��� the veri�er
tests for the fact � by repeatedly generating runs and testing for � at the
end of each run� Since this test for � is sound� the veri�er can accept as soon
as this test for � accepts� Here� however� since there is no notion analogous
to soundness� the veri�er has no way of knowing which of the many y�s it
generates satis�es R�x� y
 and should be output unless the relation R�x� y

can be tested in BPP� As we have said� however� most relations R of interest
are testable in BPP�

Finally� we note that our de�nition of knowing how to generate given � is
somewhat similar to the de�nition of probabilistic relative knowledge de�ned
in �FZ���� The only signi�cant di�erence is that they de�ne knowing how
to generate relative to a particular Turning machine M � whereas we de�ne
knowing how to generate relative to a fact �� Roughly speaking� taking �M

to be the fact true at points where the testM outputs with probability �� a
y satisfying R�x� y
� knowing how to generate relative toM and knowing how
to generate given �M coincide� The natural generalization of our de�nition to
practically knowing how to generate �where we allow the generator to make
mistakes� but only on a negligible fraction of the runs
 di�ers in subtle ways�
however� from the generalization given by Fischer and Zuck�

���� RESOURCE�BOUNDED PROVERS ���

��
 Resourcebounded provers

In an interactive proof system as de�ned in �GMR���� the prover is assumed
to be in�nitely powerful� In practice� however� a prover is not in�nitely
powerful and may have no more computational power than the veri�er� For�
tunately� a probabilistic� polynomial�time prover with some �secret informa�
tion� on its work tape is able to carry out many of the interesting interactive
protocols� In the case of the graph isomorphism protocol from �GMW��� dis�
cussed in the introduction� for example� this secret information is an isomor�
phism between the graphs on the input tape� Since the context of such weak
�polynomial�time
 provers is actually the context of most practical interest�
the type of security a�orded by zero knowledge protocols in this context is
an important question� and the subject of our �nal section�
In order to study zero knowledge proofs in this context� we de�ne the no�

tion of a weak interactive proof system� a direct modi�cation of the de�nition
of an interactive proof system for L� We de�ne a weak interactive protocol

to be an interactive protocol �P� V
 where both P and V run in probabilis�
tic� polynomial�time� We de�ne a weak interactive proof system �P� V
 for
a language L just as we de�ned an interactive proof system for L except
that we require �P� V
 to be a weak interactive protocol and we restrict the
quanti�cation of P � in the soundness condition to be only over probabilistic�
polynomial�time machines� rather than over all machines� As the following
lemma shows� however� weak interactive proofs of language membership are
not very interesting�

Lemma ��� There is a weak interactive proof system for L i� L is in BPP�

Thus� an interesting weak interactive proof cannot be simply a proof
of language membership! it must reveal something about the prover�s local
state� and hence must reveal something about the prover�s knowledge since
the prover�s knowledge is determined by its local state� Consider again the
zero knowledge proof of graph isomorphism from �GMW��� discussed in the
introduction� or the zero knowledge proof of three�colorability also given in
�GMW���� Both proofs can be carried out by a weak prover with the appro�
priate information on its work tape� and in both cases the veri�er obtains
some information about the prover�s knowledge as well as about language
membership� In the case of graph isomorphism� the veri�er learns that with

��	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

high probability the prover can generate an isomorphism between the graphs
in question� Similarly� in the case of three�colorability� the veri�er learns that
with high probability the prover can generate a three coloring of the graph in
question� It is well�known �see �HM�	� MDH���
 that information about the
prover�s knowledge can dramatically a�ect the veri�er�s knowledge about the
world� For example� in the case of three�colorability� information about the
prover�s knowledge may indicate to the veri�er that the prover has with high
probability communicated with the entity that generated the three�colorable
graph�
In order to study proofs of the prover�s knowledge� we extend the de�ni�

tion of a weak interactive proof of language membership to that of a weak
interactive proof about the prover�s initial state� where a fact is a fact about
the prover�s initial state if it depends only on the prover�s initial state as
de�ned in Chapter � Since the prover�s initial state is determined by its
protocol P �� its initial work tape s� and the common input x� it is conve�
nient to think of these components as parameters and denote facts about
the prover�s initial state by ��P �� x� s
� The de�nition of a weak interactive
proof of ��P �� x� s
 is obtained simply by replacing all occurrences of x � L
by ��P �� x� s
 in the de�nition of a weak interactive proof of language mem�
bership� Formally� we de�ne a weak interactive proof system for a fact �
about the prover�s initial state to be a weak interactive protocol �P� V
 such
that

� Completeness� For every k and su�ciently large x� and for every s
and t� if ��P� x� s
 then

pr ��P �s
� V �t

�x
 accepts� � � � jxj�k �

� Soundness� For every k and su�ciently large x� for every probabilistic�
polynomial�time P �� and for every s and t� if ���P �� x� s
 then

pr ��P ��s
� V �t

�x
 accepts� � jxj�k �

The reader may wonder why we consider weak interactive proofs of facts
about the prover�s initial state that depend on the prover�s protocol as well
as its work tape� To see why� suppose ��x� s
 is a fact about the prover�s
work tape and the common input! that is� the truth of ��x� s
 depends only
on the prover�s work tape s and the common input x �and not on the prover�s
protocol
� Let us de�ne dom��
 to be the set fx � ��x� s
 for some sg�

���� RESOURCE�BOUNDED PROVERS ���

Lemma ��
� A weak interactive protocol �P� V
 is a weak interactive proof
system for a fact � about the prover�s work tape and the common input i�

�� for all su�ciently large x and for all s� we have ��x� s
 i� x � dom��
!
and

� dom��
 is in BPP�

This lemma says that if there is a weak interactive proof of a fact R about
the prover�s work tape and the common input� then R is essentially uninter�
esting� In particular� with the exception of a few small values of x� ��x� s

holds for all s whenever it holds for any s� Consequently� R is essentially
determined by dom��
� Since dom��
 is in BPP� the prover can determine
whether R holds �for su�ciently large x
 without even interacting with the
prover� Consequently� a fact R about the prover�s initial state having only
nontrivial weak interactive proofs must necessarily be a fact depending on
the prover�s protocol� and hence on the prover�s entire initial state� Since the
prover�s knowledge is determined by its local state� such a weak interactive
proof may be viewed as a proof of the prover�s knowledge� In fact� we note
that even in the context of in�nitely powerful provers an interactive proof of
x � L is not just a proof of x � L but a proof the prover knows x � L �i�e��
a proof of the prover�s knowledge
� The fact that all interesting interactive
proofs must be proofs of the prover�s knowledge is obscured in the context
of in�nitely powerful provers since x � L holds i� the prover knows x � L�
In the context of weak prover� however� these facts are not equivalent�

We have de�ned a natural notion of interactive proof in the context of
weak provers� and we have shown that the only nontrivial interactive proofs
in this context are proofs about the prover�s knowledge� While our de�nition
is a direct modi�cation of the de�nition in the case of strong provers� it
is not initially clear that our de�nition is the most appropriate �or at all
appropriate
 in the context of weak provers� it is possible that our results
are merely artifacts of our de�nition� As evidence supporting our de�nition�
we now show that� under certain natural conditions� both interactive proof
systems involving weak provers that have appeared in the literature �FFS���
TW��� are instances of weak interactive proofs� Not surprisingly� in light
of our previous results� these proof systems concern proofs of the prover�s
knowledge�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

In �TW��� we �nd the following de�nition �modi�ed slightly for the sake
of consistency with the rest of this chapter
� Given a binary relation R� a
weak interactive protocol �P� V
 is said to be an interactive proof that the

prover can generate some y satisfying R�x� y
 if the following conditions are
satis�ed�

� Completeness� For every k � � and su�ciently large x and for every s
and t� if R�x� s
� then

pr ��P �s
� V �t

�x
 accepts� � � � jxj�k �

� Soundness� For every probabilistic� polynomial�time P � there is a prob�
abilistic Turing machine MP � running in time polynomial in jxj such
that for every k � � and su�ciently large x and for all s and t�

pr �V accepts at �r�m
 � R�x�MP ��rp�m

� � �� jxj
�k

where the probability is taken over the runs r of �P ��s
� V �t

�x
 and
the coin �ips of MP ���

While we would like to show that every interactive proof that the prover
can generate some y satisfying R�x� y
 is a weak interactive proof� this is not
quite true� To see this� notice that the de�nition of a weak interactive proof
requires that the probability with which �P �s
� V �t

�x
 accepts is very close
to � when R�x� s
 fails to hold� while an interactive proof of �TW��� allows
the probability with which �P �s
� V �t

�x
 accepts to be arbitrary as long as
the prover P is able to generate a y satisfying R�x� y
� For example� if P is
able to generate a y satisfying R�x� y
 with probability � at all points of the
system� then pr �V accepts at �r�m
 � R�x�MP ��rp�m

� � � regardless of
the probability with which the veri�er accepts� We will prove below� however�
that the following is a necessary and su�cient condition for an interactive
proof of �TW��� to be a weak interactive proof�

� Correctness� For every k � � and su�ciently large x and for every s
and t� if R�x� s
 does not hold� then pr ��P �s
� V �t

�x
 accepts� � jxj�k�

�We note that the soundness condition in �TW��� actually quanti�es over all Turing
machines P � and not just over polynomial�time P �� This is done for technical complexity�
theoretic reasons� Since� however� the motivation for considering weak provers is that
in practice all agents are restricted to polynomial�time� our restriction does not seem
unnatural�

���� RESOURCE�BOUNDED PROVERS ���

Intuitively� the good prover �tries� to convince the veri�er to accept only
when R�x� s
 holds� It is easy to show that� given an interactive proof of
�TW���� this interactive proof can be modi�ed to satisfy the correctness
condition i� R�x� y
 is testable in BPP� the modi�cation simply has the
prover run the BPP test in order to determine whether is should attempt
to convince the veri�er to accept� Since this seems to be the most relevant
context in practice �the relations used in the examples in �TW��� are testable
in BPP� and �FFS��� explicitly restricts to deterministic polynomial�time
relations�
� this seems to imply that the correctness condition is a natural
restriction� In the following proposition we show that �P� V
 is an interactive
proof of �TW��� for a relation R satisfying the correctness condition i� it is
a weak interactive proof of the fact �R de�ned by

�R�P
�� x� s

def
� �P � � P �R�x� s

�P � �� P � 'the soundness condition holds for P ��

Note that �R depends on the prover�s protocol as well as the work tape� and
is a fact about the prover�s initial state� Of course� �R is not necessarily
testable in BPP�

Proposition ����� �P� V
 is an interactive proof satisfying the correctness
condition that the prover can generate a y such that R�x� y
 i� �P� V
 is a
weak interactive proof system for �R�

We can show� in addition� that the proof systems of �FFS��� satisfying
the correctness condition above are also instances of a weak interactive proof
system� The following is an interpretation of the quite informal de�nition of
an interactive proof given in �FFS����

� Completeness� For every k � � and su�ciently large x and for every s
and t� if R�x� s
� then

pr ��P �s
� V �t

�x
 accepts� � � � jxj�k �

	�Slo�	� shows that certain anomalies in the de�nition of an interactive proof in �FFS���
disappear when the deterministic restriction is removed�

��� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

� Soundness� For every k � � there exists a probabilistic Turing machine
Mk such that for every P � and 	 � � and su�ciently large x� and all s
and t�

pr ��P �� V
 accepts� � jxj�k

implies
pr �R�x�Mk�P �� x

� � �� jxj�	 �

Here Mk is given the �code� for P � and is allowed to run in time
polynomial in x� the running time of P �� and the length of the �code�
for P ��

It is not hard to show that such an interactive proof is also an interactive
proof of a fact similar to �R� We leave the proof to the reader�
In light of the preceding propositions� our de�nition of a weak interactive

proof system seems to be an appropriate de�nition! it can at least capture
the de�nitions of other proof systems de�ned in the context of polynomial�
time provers� We now turn to the study of the security a�orded by such
protocols� Our de�nition of a weak interactive proof is a direct modi�cation
of the de�nition of an interactive proof of language membership� We can
also directly modify the de�nition of a zero knowledge proof of language
membership to obtain a de�nition of a zero knowledge weak interactive proof�
a weak interactive proof �P� V
 is said to be zero knowledge if for every V �

there exists a Turing machine MV � such that the families

f�P �s
� V ��t

�x
 � �P� s� V �� t� x
 � Domg

and
fMV ��t� x
 � �P� s� V �� t� x
 � Domg

are polynomially indistinguishable� where �P� s� V �� t� x
 � Dom i� V � is a
possible veri�er protocol� s and t are possible work tapes� and ��P� s� x
�
Not surprisingly� analogues of all our previous results for interactive proofs

hold in the case of weak interactive proofs� with essentially the same proofs�
Rather than restating all the results here� we focus on one of them� the
analogue of Proposition ���� If � is a fact about the prover�s initial state�
then we say �r�m
 j� � if ��P �� x� s
� where P � is the protocol that p is
running in r� x is the common input in the initial state r��
� and s is the
contents of p�s work tape in r��
�

���� RESOURCE�BOUNDED PROVERS ���

Proposition ����� A weak interactive protocol �P� V
 is a weak interactive
proof system for a fact � about the prover�s initial state i� the following
conditions are satis�ed�

� Completeness� For every k there exists � such that

P � V j� init � Pr �� � �accept � � �� � jxj�k

� Soundness� For every k there exists � such that

Ppp � V j� init � Pr ��accept � �� � �� � jxj�k �

Thus� we have replaced the occurrences of x � L in Proposition ��� by �� and
used Ppp rather than P in the soundness condition since we are restricting
to weak provers�
At this point� we can make an interesting observation about the de�nition

of interactive proof systems� Notice that in our soundness condition� the
meaning of �su�ciently large x� �that is� the value of Nk
 depends only
on the value of k and not on the choice of P �� In early versions of the
de�nition of an interactive proof given in �GMR���� it is not clear whether
the dependence is on k alone or on both k and P �� But as Sha� Goldwasser
pointed out to us� in the case of in�nitely powerful provers� it doesn�t matter
what choice we make� More formally� in the context of language recognition�
an interactive proof system �P� V
 is sound with respect to one choice i�
it is sound with respect to the other� The proof of this observation is a
consequence of Feldman�s proof technique for proving that it is su�cient
to assume the prover�s computational powers are limited to PSPACE �Fel��
we can construct a cheating PSPACE prover that� at any point during a
conversation with the veri�er V � can try all possible answers to the veri�er�s
latest question� compute which answer will cause the veri�er to accept with
the greatest probability� and send this answer to the veri�er�
In the case of weak provers� however� the order of quanti�cation in the

statement of soundness is important� In particular� if we had stated our
soundness condition so that the choice of �su�ciently large x� might depend
on the protocol P �� all we would be able to prove is that for every k and
every protocol P �� there exists � such that

P � � V j� init � Pr ��accept � �� � �� � jxj�k �

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

Instead� we can prove that for every k there exists an � such that

Ppp � V j� init � Pr ��accept � �� � �� � jxj�k �

The �rst statement says that� for every prover� as long as the veri�er knows
the identity of the prover� � is true whenever the veri�er accepts� The second
statement� on the other hand� says that no matter who the prover is� � is
true whenever the veri�er accepts� which is clearly the desired statement�
We remark that the weak interactive protocols resulting from the interactive
proofs and zero knowledge proofs we are aware of satisfy the stronger notion
of soundness we have used in our de�nition� and the revised de�nition of an
interactive proof appearing in �GMR��� is consistent with the de�nition we
use�
In addition to proving the analogues of results holding in the context of

strong provers� we can reason about the interactive proofs of �FFS��� TW���
directly in terms of the notions of knowledge and generation we have de�ned
in previous sections� For example� we can characterize proofs that the prover
can generate some y satisfying R�x� y
 just as we characterized interactive
proofs� in the case that R�x� y
 is testable in BPP�

Proposition ����� Given a relation R�x� y
 testable in BPP� a weak inter�
active protocol �P� V
 is a weak interactive proof that the prover can generate
some y satisfying R�x� y
 i� the following conditions are satis�ed�

� Completeness� For every k there exists � such that

P � V j� init � Pr �R�x� s
 � �accept � � �� � jxj�k

� Soundness� For every probabilistic� polynomial�time P ��

P � � V j� accept � -G

p y�R�x� y

where � is the fact halted that the veri�er has halted�

Notice that in the soundness condition� we have accept � -G

p y�R�x� y
 rather

than �accept � -G

p y�R�x� y
� The �rst condition says that the prover can

generate some y such that R�x� y
 at the point when the veri�er accepts� as
required by �TW���� and not at the initial point as would be the case with
the second clause� This is one of the di�erences between the de�nitions of

���� AN APPLICATION ��

�TW��� and �FFS���� A second di�erence between the two de�nitions is that
the soundness condition of �FFS��� is such that we can state the soundness
condition above in terms of the system Ppp � V instead of P � � V � We
remark that because the machineM�P �� x
 guaranteed by the de�nition of an
interactive proof in �FFS��� runs in time polynomial in jxj� the running time
of P �� and the length of the encoding of P �� we must modify the de�nition
of -G

p y�R�x� y
 to say that the generating Turing machine also runs in these
parameters in order to reason about this de�nition of an interactive proof�
This modi�cation is the same modi�cation needed to reason about notions
of zero knowledge other than strong black�box zero knowledge�

��� An Application

In preceding sections we have characterized interactive proof systems in terms
of knowledge� As an example of how to reason about interactive proof sys�
tems in terms of knowledge� we show how to prove the familiar result that
the sequential composition of an interactive proof of x � L followed by an
interactive proof of x� � L� is an interactive proof of �x� x�
 � L � L��

For expository simplicity� we have been studying interactive protocols
�P� V
 in isolation� However� as shown by the coin �ipping example in the
introduction motivating interest in zero knowledge in the �rst place� inter�
active protocols are not used in isolation� They are intended to be used as
subroutines or building blocks in the construction of other protocols� Pro�
viding a general de�nition of what it means for one protocol to be used as a
subroutine in another protocol is a di�cult problem� It is not too di�cult�
however� to de�ne the sequential composition of two protocols�
Loosely speaking� if P and Q are two protocols� their sequential compo�

sition P !Q should correspond to �rst running the protocol P until it halts
�if ever
 and then running the protocol Q� Recall that a protocol is actually
a tuple of local protocols� one for each agent in the system� and that a local
protocol consists of state� message� and action protocols� We will de�ne the
composition of two message protocols A and B� The composition of message
and action protocols is similar� and the composition of local protocols and
protocols will immediately follow�
We can assume without loss of generality that the domains dom�A
 and

dom�B
 of A and B �that is� the sets of local states on which the functions

� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

A and B are de�ned
 are disjoint� Let halt�A
 and start�B
 be the halt
states of A and start states of B� respectively� The only real problem in the
de�nition of A!B is how the composition should move from a halt state of
A to a start state of B� In the case of interactive protocols� for example� it
seems most natural to require that the states of the communication tapes�
work tapes� and random tapes encoded in a local state remain the same�
and that the only thing that changes is that the state of the Turing machine
describing the prover or veri�er�s protocol changes from a halt state of the
�rst protocol to the start state of the second� This can be described by a
function f from halt �A
 to start�B
� The sequential composition A!B of A
and B� given f � is de�ned by

A!B�s� �m
 �

���
��
A�s� �m
 if s � dom�A
� halt�A

f�s
 if s � halt�A

B�s� �m
 if s � dom�B

�Remember that a state protocol A maps a local state s and a vector �m of
messages received from other protocols to a local state A�s� �m
�

Having de�ned sequential composition� we now show that the sequential

composition of two interactive proofs is an interactive proof� Suppose �P�� V�

and �P�� V�
 are interactive proofs for L� and L�� respectively� Recall that
we assume the prover and veri�er maintain on their work tapes a complete
history of the local states they pass through during the course of a run�
Notice that a trivial modi�cation of these proof systems results in proof
systems for the languages &L� � L� � %� and &L� � %� � L�� respectively�
where % � f�� �g� Let us abuse notation and denote these new proof systems
by �P�� V�
 and �P�� V�
 as well� Finally� let � &P � &V
 � �P�!P�� V�!V�
 be the
sequential composition of the two proof systems� We now sketch a proof that
� &P � &V
 is an interactive proof system for &L � L� � L��
First� we note that it is easy to prove the following�

Claim �����

P � &V j� �x � &L� � 'p running &P �
 � � -K

v �x � &L�

where �
def
� halted � 'p running &P ��

To see this� notice that since �P�� V�
 is an interactive proof for &L�� Proposi�
tion ��� says

P � V� j� �x � &L� � 'p running P��
 � � -K

�
v �x � &L�

���� AN APPLICATION ��

where ��
def
� halted � 'p running P��� It is clear that any test M in P � V�

for x � &L� that is practically sound and practically complete given �� can be
extended to a test &M in P � &V that is sound and practically complete given
�� the test &M simply searches its work tape for the most recent local state
in which the veri�er was running V�� runs M in this state� and accepts i� M
accepts�
It is a bit harder to prove that

Claim �����

P � &V j� �x � &L� � 'p running &P �
 � � -K

v �x � &L�
�

where �
def
� halted � 'p running &P ��

To prove this� we observe that since �P�� V�
 is an interactive proof for &L��
Proposition ��� says

P � V� j� �x � &L� � 'p running P��
 � � -K

�
v �x � &L�

where ��
def
� halted � 'p running P��� We want to say that any test M in

P � V� for x � &L� that is sound and complete given �� can be extended
to a test &M in P � &V for x � &L�� The test &M is de�ned as follows� Since
&V � V�!V�� it is easy to see that there is a natural mapping h mapping a
point c of P � &V in which the veri�er is running V� to a point d of P � V��
This mapping essentially discards that portion of a run of P � &V up to the
point V� is started� erasing everything on the communication and random
tapes that is written before the beginning of V�� leaving the input and work
tapes unchanged� The test &M rejects at a point if the veri�er is still following
V�� and at all other points c runs the test M on the point h�c
� The problem
is showing that &M is practically sound and practically complete given ��
To do this� we have to relate the probability spaces used in P � &V to

evaluate formulas like pr ��� � � to the probability spaces used in P � V��
It is easy to see that� extending h to sets in the obvious way� h maps Si�c to
Si�d �where d � h�c

 and measurable sets of Si�c to measurable sets of Si�d
with the same measure� Furthermore� the fact x � L holds at c i� it does at
h�c
� and the test M accepts with the same probability at both c and h�c
�
Consequently� the fact that init � pr ��� � � is valid in P � V�� where � is
of the form sound�M�Kv�x � L

� implies that init � ��pr ��� � �
 is valid

�	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

in P � &V � and hence that init � pr ��� � � is valid in P � &V � Consequently�
the fact that M is practically sound in P � V� implies that &M is practically
sound in P� &V � and similarly for practical completeness given �� This proves
Claim ���	�
Given the two Claims ���� and ���	� we know that the two formulas

�x � &L� � 'p running &P �
 � � -K

v �x � &L�

and
�x � &L� � 'p running &P �
 � � -K

v �x � &L�

are valid in P � &V � Notice that x � &L implies x � &L� and x � &L�� and that�
since K

v �x � &L�
 and K

v �x � &L�
 are stable formulas �once they become

true they remain true
� �K

v �x � &L�
 � �K

v �x � &L�
 implies �K

v �x � &L
�

It follows that

Corollary �����

P � &V j� �x � &L � 'p running &P �
 � � -K
	

v �x � &L
�

where �
def
� halted � 'p running &P ��

Finally� by Proposition ��	 we have

Proposition ����� The interactive protocol � &P � &V
 can be e�ectively mod�
i�ed to obtain an interactive proof for the language &L�

��� Conclusion

The main contribution of this work lies in suggesting notions of knowledge
appropriate for interactive proofs� characterizing interactive proofs in terms
of these notions� and proving� again in terms of these notions� that the prover
in a zero knowledge proof system does not leak any information other than
the fact it set out to prove� Roughly speaking� we have shown that a zero
knowledge proof system for x � L satis�es the following property� which we
call knowledge security� the prover is guaranteed that� with high probability�
if the veri�er will practically know a fact � at the end of the proof� it prac�
tically knows x � L � � at the start� We have also formalized the notion of

���� CONCLUSION ��

knowing how to generate� and shown that zero knowledge proofs also satisfy
an analogous property of generation security� �The precise formulations of
knowledge and generation security are provided by the statements of Theo�
rems ��� and ����
 It is currently an open question whether either of these
notions of security characterizes zero knowledge �that is� say� whether an
interactive proof that satis�es the property of knowledge security is also a
zero knowledge proof
� We can show� however� that� in the context of �nite
state protocols� any protocol that satis�es the knowledge security property
is recognition zero knowledge� as de�ned in �DS���� We consider the prob�
lem of characterizing zero knowledge in terms of knowledge instead of simply
stating necessary conditions for zero knowledge �knowledge and generation
security
 to be an important problem�
We have sketched in Section ��� an example of how practical knowledge

can be used to reason about cryptographic protocols like interactive proof
systems� A second important problem left unsolved by this chapter is that
of developing more sophisticated tools for reasoning about practical knowl�
edge �and� for that matter� knowing how to generate
 that will be needed
in order to be able to prove more sophisticated results about cryptography
in terms of knowledge� In Chapter � we were able to use fairly powerful
proof rules like the induction rule to reason about information�theoretic def�
initions of knowledge� a rule that is essentially the translation of theorems
from recursion theory into statements about knowledge� In the case of prob�
abilistic knowledge� it is possible to translate many results theorems about
measure theory into proof rules for probabilistic knowledge �see �FH��� for
a number of examples
� But because the de�nition of practical knowledge
depends on Turing machines� powerful proof rules for reasoning about prac�
tical knowledge are going to require general results about computation and
computational complexity� Some simple proof rules such as �From K
�

q ��

and K
�
q �� infer K
�	
�

q ��� � ��
� are quite easy to prove valid� But we
have seen in Section ���� and the work of �Mos��� that proof rules such as
�From K

q � and K

q �� � ��
 infer K

q �
�� are not necessarily valid� Un�

der what conditions are such rules valid� It is not clear at the moment
how di�erent reasoning about such conditions and using the resulting proof
rules will be from making such inferences by reasoning directly in terms of
the operational� cryptographic de�nitions in the �rst place� Moreover� we
want to be able to reason about interactive protocols in isolation� and use
these results to reason about protocols making use of interactive protocols

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

as subroutines� This means that we want to be able to prove that certain
statements about knowledge are valid in a system corresponding to running
an interactive protocol in isolation� and prove that these same statements are
true in another system at all points at which the interactive proof is being
run as a subroutine� But we do not seem to have at the moment very so�
phisticated techniques for translating statements about knowledge from one
system to another� although the mapping h used in Section ��� and the re�
lated notions of implementation de�ned by Halpern and Fagin in �HF��� and
elaborated by Mazer in �Maz��� are a good initial step toward this goal�
Nonetheless� we feel that these security results shed some light on the type

of security that zero knowledge proofs provide� Our theorems provide support
for the de�nitions of interactive proofs and zero knowledge and our model
provides a good semantic setting for such an analysis� Some of the de�nitions�
chie�y that of practical knowledge� are quite subtle� Many straightforward
de�nitions one may try fail by being inappropriate for the cryptographic set�
ting and not providing a useful sense in which zero knowledge proof systems
provide security� As Feige� Fiat� and Shamir write in �FFS���� �the notion of
'knowledge� is very fuzzy� and a priori it is not clear what proofs of knowl�
edge actually prove�� We hope to have established a framework within which
such questions can now be answered�

��A Proofs of results

We end this chapter with an appendix in which we prove most of the results
claimed in this chapter� As stated in the text� the proofs of the remain�
ing results either follow immediately from preceding results� or are virtually
identical to the proofs of the preceding results�

Proposition ���� An interactive protocol �P� V
 is an interactive proof sys�
tem for a language L i� the following conditions are satis�ed�

� Completeness� For every k � � there exists � � � such that

P � V j� init � Pr �x � L � �accept � � �� � jxj�k �

� Soundness� For every k � � there exists � � � such that

P � V j� init � Pr ��accept � x � L� � �� � jxj�k �

��A� PROOFS OF RESULTS ��

Proof� First� given an interactive proof system �P� V
 for a language L� we
prove that the two conditions above are satis�ed� Fix k � �� let Nk � � be
the constant guaranteed by the de�nition of an interactive proof system� and
take � � �Nk
k! notice that �� � jxj�k � � when jxj
 Nk�
We �rst prove that the completeness condition is satis�ed� It is enough to

show that for any initial point c of P �V � the point c satis�es the formula ��

de�ned by Pr �x � L � �accept � � �� � jxj�k� Fix one such point c� Notice
that �xing c implies �xing an initial global state� and hence �xing values for
x� s� and t� If x �� L� then all points with c�s global state satisfy the formula
x � L � �accept � and hence c satis�es ��� Suppose x � L� If jxj
 Nk� then
by the choice of � we have � � � jxj�k
 �� and c trivially satis�es ��� If
jxj � Nk� then by the completeness condition for interactive proof systems
we have that the veri�er accepts in � � jxj�k � � � � jxj�k of the runs of
�P �s
� V �t

�x
! in other words� �accept holds at � � � jxj�k of the points
with c�s global state� and c satis�es ���
We now show the soundness condition is satis�ed� Again� it is enough to

show that for any initial point c of P � V � the point c satis�es the formula
�� de�ned by Pr ��accept � x � L� � � � � jxj�k� Fix one such point c�
Again� notice that �xing c implies �xing an initial global state� and hence
�xing values for P �� x� s� and t� If x � L� then all points with c�s global
state satisfy the formula �accept � x � L� and hence c satis�es ��� Suppose
x �� L� If jxj
 Nk� then by the choice of � we have � � � jxj�k
 �� and c
trivially satis�es ��� If jxj � Nk� by the soundness condition for interactive
proof systems it follows that the veri�er accepts in at most jxj�k of the runs
of P � and V on input x with work tapes s and t� This means that at least
� � jxj�k � � � � jxj�k of the points with c�s global state fail to satisfy
�accept � and hence must satisfy �accept � x � L� It follows that c satis�es
���
Conversely� given �P� V
 satisfying the two conditions above� we prove

�P� V
 is an interactive proof system for L� Fix k � �� let � � � be the
constant guaranteed by the two conditions above for k� and take Nk � � to
be large enough that �
 �Nk
k! notice that �
 jxjk when jxj � Nk�
We �rst show the completeness condition for an interactive proof system

is satis�ed� Consider any x� s� and t satisfying x � L and jxj � Nk� The
completeness condition above guarantees� in particular� that the veri�er ac�
cepts in at least � � � jxj��k of the runs of P and V on input x with work
tapes s and t� Since the choice of � guarantees � � � jxj��k � �� jxj�k� we

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

have Pr ��P �s
� V �t

�x
 accepts� � � � jxj�k�
We now prove the soundness condition for an interactive proof system is

satis�ed� Consider any P �� x� s� and t satisfying x �� L and jxj � Nk� Since
x �� L� the soundness condition above guarantees that the veri�er fails to
accept in at least ��� jxj��k of the runs with P � and V on input x with work
tapes s and t� which means the veri�er accepts in at most � jxj��k � jxj�k

runs� so Pr ��P ��s
� V �t

�x
 accepts� � jxj�k�

Proposition ���� If �P� V
 is an interactive proof system for L� then

P � V j� �x � L � 'p running P �
 � � -K

v �x � L
�

where �
def
� halted � 'p running P ��

Proof� LetM be the test that accepts at a point if the veri�er has accepted
at that point� and rejects otherwise� Suppose we can show that M is practi�
cally sound for Kv�x � L
� and practically complete for Kv�x � L
 given ��
Then we can complete the proof of this proposition as follows� Consider any
point �r� k
 of P�V satisfying x � L� 'p running P �� and consider any �nal
point �r� k�
 of r with k� � k� Notice that �r� k�
 j� � and �r� k
 j� Kv�x � L
�
Since M is a test for Kv�x � L
 that is sound and is complete given �� we
have �r� k�
 j� -K

v �x � L
� and hence �r� k
 j� � -K

v �x � L
� It follows that

P � V j� �x � L � 'p running P �
 � � -K

v �x � L
�

as desired� Thus� all we need to prove is that M is practically sound for
Kv�x � L
� and practically complete forKv�x � L
 given �� SinceKv�x � L

is equivalent to x � L� it is enough to prove that M is practically sound for
x � L� and practically complete for x � L given ��
To see that M is practically sound for x � L� �x k � � and take � � �

to be the constant guaranteed by Proposition ��� to satisfy

P � V j� init � Pr ��accept � x � L� � �� � jxj�k �

Notice that the formula �accept � x � L implies x �� L � �accept � which
in turn implies sound �M�x � L
� Since �accept � x � L is a fact about the
run� �accept � x � L implies ���accept � x � L
� which in turn implies
�sound �M�x � L
� It follows that

P � V j� init � Pr ��sound�M�x � L
� � �� � jxj�k �

��A� PROOFS OF RESULTS ��

and hence M is sound for x � L�
To see that M is practically complete for x � L given �� �x k � � and

take � � � be the constant guaranteed by Proposition ��� to satisfy

P � V j� init � Pr �x � L � �accept � � �� � jxj�k �

Notice that the formula x � L � �accept implies � � �x � L � �� �
�accept

� Since the formula � � �accept is equivalent to accept �the ver�
i�er has already accepted or rejected at points satisfying �� namely �nal
points
� and since x � L � accept implies complete�M�x � L
� we have
� � complete�M�x � L
� Finally� since x � L � �accept is a fact about
the run� x � L � �accept implies ��x � L � �accept �� which implies
��� � complete�M�x � L
�� It follows that

P � V j� init � Pr ���� � complete�M�x � L
�� � �� � jxj�k �

But we want to prove that this formula is valid in the system P � V � and
not P � V � Since a point of P � V satisfying � is a point of P � V �recall
that � � 'p running P �
� we have

P � V j� init � Pr ���� � complete�M�x � L
�� � �� � jxj�k �

as desired� and hence M is complete for x � L given ��

Proposition ���� If

P � V � j� �x � L � 'p running P �
 � � -K

v �x � L
�

where �
def
� halted � 'p running P �� then we can e�ectively modify V � to

obtain V such that �P� V
 is an interactive proof system for L�

Proof� Let M be a test for Kv�x � L
� and hence for x � L� that is practi�
cally sound� and practically complete given �� Such a test M is guaranteed
to exist by the de�nition of practical knowledge given �� We assume without
loss of generality thatM accepts with probabilities �jxj and ���jxj instead
of ��� and ��� Let V be the protocol in which the veri�er �i
 runs the

We can always transform a test M accepting with probabilities ��� and ��� into a test
M � accepting with probabilities ��jxj and �� ��jxj by using the standard trick of running
the test M many times to estimate the probability with which M accepts or rejects�

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

protocol V �� �ii
 runs the test M once V � halts� and �iii
 accepts i� M ac�
cepts� We now show that �P� V
 satis�es the soundness and completeness of
Proposition ���� and hence must be an interactive proof system for L� Given
a run r of P � V and a run r� of P � V �� we say that r and r� are corre�
sponding runs if the two runs have the same initial state� and the sequences
of coins �ipped in the two runs are the same� We say that �r� k
 and �r�� k

are corresponding points�
We �rst prove that �P� V
 satis�es the soundness condition

P � V j� init � Pr ��accept � x � L� � �� � jxj�k �

of Proposition ���� Since M is practically sound for x � L in P � V �� we
have

P � V � j� init � Pr��sound �M�x � L

 � �� � jxj�k �

Recall that sound�M�x � L
 holds at a point if at that point x �� L implies
pr �M rejects� � ���jxj� Remember that the probability here is being taken
overM �s coin �ips �and not over runs
� and that this condition is a fact about
the global state �even a fact about the veri�er�s local state� the input to the
testM
� If we take this condition as a primitive proposition in our language�
then sound �M�x � L
 is equivalent to the formula x �� L � pr �M rejects� �
�� �jxj� It follows that

�sound �M�x � L

implies
��x �� L � pr �M rejects� � �� �jxj
�

We claim that� given corresponding runs r and r� of P � V and P � V ��
if the initial point �r�� �
 satis�es �sound �M�x � L
 and hence satis�es

��x �� L � pr �M rejects� � �� �jxj
�

then the initial point �r� �
 satis�es

x �� L � ��Pr ��reject� � � � �jxj
�

To see this� let 	 be the time at which the veri�er has �nished the protocol
V � in r and r� and starts the test M in r� If �r�� �
 j� x �� L� then �r�� 	
 j�
pr �M rejects� � � � �jxj� Consequently� if �r� �
 j� x �� L� then �r� 	
 j�

��A� PROOFS OF RESULTS ��

Pr ��reject � � �� �jxj� �Remember that the probability is being taken over
M �s coin �ips at �r�� 	
 and over runs at �r� 	
�
 It follows that �r� �
 satis�es
the formula x �� L � ��Pr ��reject� � � � �jxj
� as desired�
Now let �r� �
 be any initial point of P � V � and let �r�� �
 be the corre�

sponding initial point of P � V �� Since the soundness of M guarantees that
the initial point �r�� �
 must satisfy the formula Pr ��sound�M�x � L

� �
� � � jxj�k� the preceding argument shows that the initial point �r� �
 must
satisfy the formula

Pr �x �� L � ��Pr ��reject� � � � �jxj
� � �� � jxj�k �

It follows that �r� �
 satis�es

Pr �x �� L � �reject � � ��� �jxj
�� � � jxj�k
�

which implies

Pr ��accept � x � L� � ��� �jxj
�� � � jxj�k
�

Since

�� � �jxj
��� � jxj�k
 � �� � jxj�k � �jxj

� �� � jxj�k ��
�jxj

� jxj�k

� �� �� jxj�k

for some � � �� it follows that �r� �
 satis�es

Pr ��accept � x � L� � � � � jxj�k

for some � � �� Thus� �P� V
 satis�es the soundness condition�
We now prove that �P� V
 satis�es the completeness condition

P � V j� init � Pr �x � L � �accept � � �� � jxj�k

of Proposition ���� Since M is complete for x � L given � in P � V �� we
have

P � V � j� init � Pr ���� � complete�M�x � L

� � � � � jxj�k �

� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

As above� taking pr �M accepts � � � � �jxj as a primitive proposition in
our language� the condition complete�M�x � L
 is equivalent to the formula
x � L � pr �M accepts � � � � �jxj� It follows that

��� � complete�M�x � L

implies
��� � �x � L � pr �M accepts� � � � �jxj

which implies

x � L � ��� � pr �M accepts� � � � �jxj

since x � L is a fact about the run�
We claim that� given corresponding runs r and r� of P � V and P � V ��

if the initial point �r�� �
 satis�es ��� � complete�M�x � L

 and hence
satis�es

x � L � ��� � pr �M accepts � � �� �jxj
�

then the initial point �r� �
 satis�es

x � L � ��Pr ��accept � � �� �jxj
�

To see this� let 	 be the time at which the veri�er has �nished the protocol
V � in r and r� and starts the test M in r� If �r�� �
 j� x � L� then �r�� 	
 j�
pr �M accepts� � � � �jxj since �r�� 	
 j� �� Consequently� if �r� �
 j� x � L�
then �r� 	
 j� Pr ��accept � � � � �jxj� and hence �r� �
 satis�es the formula
x � L � ��Pr ��accept � � �� �jxj
�
Now let �r� �
 be any initial point of P � V � and let �r�� �
 be the cor�

responding initial point of P � V �� Since the completeness of M given �
guarantees that the initial point �r�� �
 must satisfy the formula

Pr ���� � complete�M�x � L

� � �� � jxj�k �

the preceding argument shows that the initial point �r� �
 must satisfy

Pr �x � L � ��Pr ��accept � � � � �jxj
� � �� � jxj�k �

It follows that �r� �
 satis�es

Pr �x � L � �accept � � �� � �jxj
��� � jxj�k
�

��A� PROOFS OF RESULTS ��

and hence
Pr �x � L � �accept � � � � � jxj�k

for some � � � as above� Thus� �P� V
 satis�es the completeness condition�

Theorem ���� Let �P� V
 be a zero knowledge proof system for L� let V �

be an arbitrary veri�er� and let � be a fact about the initial state� For every
fact � and constant k � � there is a fact �� and a constant � � � such that

P � V � j� �x � L � init
 � K���jxj�k

p �� -K

v � � -K
�

v �x � L � �
��

Proof� Given a fact � and a constant k� we construct a fact �� and constant
� satisfying the formula above�
Notice that we can assume -K

v � holds at some point of P � V � �the
theorem is trivially true if it does not
� and hence the existence of a test
M for Kv� that is practically sound and is practically complete given ��
Without loss of generality we can assume two things about this test� First�
we can assume that M accepts with probabilities �jxj or �� �jxj instead of
��� or ��� Second� since we assume that the veri�er�s local state encodes
the veri�er�s local history� and since � is a fact about the initial state� if Kv�
holds at any point of a proof then it holds at the end of the proof as well�
Consequently� since the veri�er�s local state does encode the veri�er�s history�
we can assume thatM accepts with probability �� at the end of a proof if it
does so at any point in the middle of the proof� Neither assumption a�ects the
fact that M is practically sound for Kv�� and practically complete for Kv�
given �� Given the constant k �xed above� let ��k be the constant guaranteed
for �k by the de�nition of the practical soundness and completeness of M �
We can also assume the existence of a Turing machineMV ��t� x
 that ap�

proximates the distribution of local histories generated by �P �s
� V ��t

�x
�
In particular� the following modi�cation Mh of the test M is able to dis�
tinguish these distributions with only negligible probability� Notice that the
input toM is the veri�er�s local state� We can modifyM to obtain a testMh

that accepts as input the veri�er�s local history and runs the test M at the
�nal local state in the local history� accepting i� the test M accepts� Since
the length of the interactive proof is bounded by some polynomial in jxj� we
can guarantee thatMh still runs in time polynomial in jxj on arbitrary inputs
by having it reject outright when presented with a history that is too long�
Consider now the test T � de�ned as follows�

�	 CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

T ��t� x
� accepted �� false

repeat � jxjk times
run MV ��t� x
 to generate a local history H
if Mh accepts H then

accepted �� true

end repeat!
if accepted then accept else reject�

In a few moments we will prove that T � is a test for Kv�x � L � �
 that� for
some constant X� is sound at all points with jxj � X� and is complete at all
points with jxj � X that satisfy

��x
def
� init � x � L � Pr �� -K

v �� � jxj�k �

In fact� we will show that T � accepts with probability �� at all points with
jxj � X that satisfy ��x� Taking �

� to be the fact holding at points satisfying
jxj � X and ��x� and taking T to be the test obtained by modifying T

� to
reject outright if jxj
 X� it will follow that T is a test for Kv�x � L � �

that is sound and is complete given ��� In fact� T will accept with probability
�� at all points satisfying ���
Given such a test T � the rest of the proof is completed as follows� Take

� � Xk so that � � � jxj�k � � when jxj
 X� Consider an initial point c
satisfying x � L� If c satis�es Pr �� -K

v ��
 jxj�k� then c trivially satis�es
Pr �� -K

v � � -K
�

v �x � L � �
� � � � jxj�k� If c satis�es jxj
 X� then � �
� jxj�k
 �� and c trivially satis�es Pr �� -K

v � � -K
�

v �x � L � �
� � � �
� jxj�k� So suppose c satis�es Pr �� -K

v �� � jxj�k and jxj � X� Notice that
c satis�es ��� and hence that T accepts with probability �� at c� Since T is
sound forKv�x � L � �
� it follows that c satis�es Kv�x � L � �
� and hence
that c satis�es Pr �� -K

v � � -K
�

v �x � L � �
� � �� Consequently� all initial
points c with x � L satisfy Pr �� -K

v � � -K
�

v �x � L � �
� � ��� jxj�k� and
hence satisfy K���jxj�k

p �� -K

v � � -K
�

v �x � L � �
� as desired�
It remains only to prove that� for some constant X� the test T � is sound

at points with jxj � X and is complete at points with jxj � X satisfying ��x�
We �rst prove that T � is sound at all points with su�ciently large x� given

a point c of P � V � satisfying �Kv�x � L � �
 with su�ciently large x� we
prove that T � rejects with probability �� at c�
Since c satis�es �Kv�x � L � �
� some point c� of P � V with c �v c

�

satis�es ��x � L � �
� Since T � takes as input only x and t found in the v�s

��A� PROOFS OF RESULTS ��

local state� which is the same at both c and c�� the test T � must reject with
the same probability at both points� Without loss of generality� therefore�
we can assume c satis�es ��x � L � �
� or equivalently that c satis�es x � L
but not ��

T � rejects at c i�� on each iteration� Mh rejects a history generated by
MV �� What is the probability that Mh rejects a history generated by MV ��
Suppose the point c �xed above is the initial point of a run of �P �s
� V ��t

�x
�
Since �P� V
 is a zero�knowledge proof system� we know that� for su�ciently
large x� the probability Mh rejects a history generated byMV ��t� x
 is within
jxj��k of the probability Mh rejects a history generated by �P �s
� V

��t

�x
�
But this latter probability is just the probability the original test M rejects
at the end of a run of �P �s
� V ��t

�x
� Since c satis�es ��� and since �
is a fact about the initial state� we know that ��� and hence �Kv�� holds
at all points of every run of �P �s
� V ��t

�x
� Since M is practically sound
for Kv�� we know that� for su�ciently large x� the test M rejects with
probability at least �� �jxj at the end of at least ����k jxj

��k � �� jxj��k

of the runs of �P �s
� V ��t

�x
� Consequently� the probability Mh rejects a
history generated by MV ��t� x
� and hence the probability a given iteration
of T � rejects at c� is at least

��� �jxj
�� � jxj��k
� jxj��k � �� jxj��k � �jxj

� �� jxj��k
�

�jxj

jxj��k

	

� �� � jxj��k

for su�ciently large x! and hence the probability T � rejects at c �that is� that

all � jxjk iterations of T � reject
 is at least ��� � jxj��k

jxj
k

� which goes to �
as jxj goes to in�nity� It follows that T � rejects with probability �� at c for
su�ciently large x�
We now prove that T � is complete at all points satisfying ��x with su��

ciently large x� given a point c of P �V � satisfying ��x with su�ciently large
x� we prove that T � accepts with probability �� at c�
First consider the probability a given iteration of T � accepts at c� Suppose

the given point c is an initial point of a run of �P �s
� V ��t

�x
� Since �P� V

is a zero�knowledge proof system� we know that� for su�ciently large x� the
probability Mh accepts a history generated by MV ��t� x
 is within jxj��k of
the probability Mh accepts a history generated by �P �s
� V

��t

�x
� which is

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

precisely the probability the original test M accepts at the end of a run of
�P �s
� V ��t

�x
� Since c satis�es ��x� c satis�es Pr �� -K

v �� � jxj�k� This

means that at least jxj�k of the runs of �P �s
� V ��t

�x
 pass through a point
satisfying � and Kv�� and that M accepts with probability at least �� at
such points in at least � � ��k jxj

��k � � � jxj�k of these runs� Since we
assume M accepts with probability �� at the end of a run if it does so in
the middle of a run� the same is true at the end of these runs� This means
one iteration of T � accepts with probability at least

�
jxj�k ��� jxj�k
� jxj��k � jxj�k

�

�
�

�
jxj�k � jxj�k

�

�
�

�
jxj�k �

It follows that a given iteration of T � rejects with probability at most � �
jxj�k ��� that all iterations of T � reject �in which case T � itself rejects
 with

probability at most �� � jxj�k ��

jxj
k

� and hence that T � accepts with prob�
ability at least

� �

�
� �

���

jxjk

	
jxjk

� �� �e����

 �

�

for su�ciently large x� �Here we are using the fact that �� c�n
n tends to
ec as n tends to in�nity�
 It follows that T � accepts with probability �� at
c satisfying ��x with su�ciently large x�

Lemma ��� There is a weak interactive proof system for L i� L is in BPP�

Proof� Suppose �P� V
 is a weak interactive proof for L� Consider the
Turing machine M that on input x simulates �P� V
�x
 with empty work
tapes� Notice that since both P and V run in polynomial time� so does the
Turing machine M � By the de�nition of a �weak
 interactive proof system�
if x � L and x is su�ciently large� then �P� V
�x
 and hence M�x
 accepts
with probability ��! and if x �� L and x is su�ciently large� then �P� V
�x

and henceM�x
 rejects with probability ��� Since we can hardwire into M
whether M should accept or reject x for the �nite number of insu�ciently
large x�s� we can assume M is a BPP Turing machine� and hence that L is
in BPP�

��A� PROOFS OF RESULTS ��

Conversely� suppose L is in BPP� LetM be a BPP Turing machine for L�
and let �P� V
 be the interactive protocol de�ned as follows� on input x� the
prover�s protocol P does nothing� and the veri�er�s protocol V runsM�x
 and
accepts i� M�x
 accepts� Since the veri�er ignores both the prover and the
work tapes� it is clear that for any P �� s� and t� if x � L� then �P ��s
� V �t

�x

accepts with probability ��! and if x �� L� then �P ��s
� V �t

�x
 rejects with
probability ��� It follows that �P� V
 is a weak interactive proof system for
L�

Lemma ��
� A weak interactive protocol �P� V
 is a weak interactive proof
system for a fact � about the prover�s work tape and the common input i�

�� for all su�ciently large x and for all s� we have ��x� s
 i� x � dom��
!
and

� dom��
 is in BPP�

Proof� Suppose �P� V
 is a weak interactive proof system for a fact � about
the prover�s work tape and the common input� Fix k and let Nk be the con�
stant given by the soundness and complete conditions for a weak interactive
proof system�
To prove part �� suppose for some x with jxj � Nk we have ��x� s
 and

���x� s�
� and consider the prover Ps that ignores its work tape and simulates
the protocol P on work tape s� Since ��x� s
� we know the veri�er must accept
in �P �s
� V �t

�x
 with probability at least � � jxj�k� Since ���x� s�
� we
know the veri�er must accept in �Ps�s�
� V �t

�x
 with probability at most
jxj�k� Notice� however� that the prover Ps on work tape s� simulates the
prover P on work tape s� and hence the two distributions �P �s
� V �t

�x

and �Ps�s�
� V �t

�x
 are identical� Consequently� the veri�er must accept
with the same probability in both �P �s
� V �t

�x
 and �Ps�s�
� V �t

�x
� a
contradiction� It follows that� for all su�ciently large x with jxj � Nk� we
have x � dom��
 i� ��x� s�
 for some s� i� ��x� s
 for all s�
To prove part � let M be the Turing machine that on input x simulates

�P� V
�x
 with empty work tapes� Since P and V run in polynomial time�
so does M � By part � and the de�nition of a weak interactive proof system
�P� V
� if jxj � Nk and x � dom��
� then ��x� �
 is satis�ed �where � is the
empty string
� so �P� V
�x
 and hence M�x
 accepts with probability ��!
and if jxj � Nk and x �� dom��
� then ��x� �
 is not satis�ed� so �P� V
�x

�� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

and henceM�x
 rejects with probability ��� Since we can hardwire into M
whether M should accept or reject x for the �nite number of insu�ciently
large x�s� we can assumeM is a BPP Turing machine� and hence that dom��

is in BPP�
Conversely� suppose parts � and are satis�ed� Since dom��
 is in BPP�

we know by Lemma ��� that there is a weak interactive proof system �P� V

for dom��
� By part �� for every k and su�ciently large x� if ��x� s
 then
x � dom��
 and �P �s
� V �t

�x
 accepts with probability at least � � jxj�k!
and if ���x� s
 then x �� dom��
 �P ��s
� V �t

�x
 accepts with probability
at most jxj�k for all provers P �� It follows that �P� V
 is a weak interactive
proof system for R as well�

Proposition ����� �P� V
 is an interactive proof satisfying the correctness
condition that the prover can generate a y such that R�x� y
 i� �P� V
 is a
weak interactive proof system for �R�

Proof� Suppose �P� V
 is an interactive proof satisfying the correctness con�
dition that the prover can generate a y such that R�x� y
� We prove that
�P� V
 is a weak interactive proof for �R� For completeness� if �R�P� x� s

holds then R�x� s
 holds� and �P �s
� V �t

�x
 accepts with high probability
by the completeness condition for an interactive proof of �TW���� so �P� V

satis�es the completeness condition for a weak interactive proof of �R� For
soundness� suppose ��R�P �� x� s
 holds� Since the de�nition of an interac�
tive proof of �TW��� guarantees that the soundness condition holds for all
prover protocols P �� it is impossible for the fact �R�P �� x� s
 to be false when
P � �� P � The only way for �R�P �� x� s
 to be false is when P � � P � in which
case the only way for �R�P �� x� s
 to be false is if R�x� s
 is false� In this
case� the correctness condition guarantees �P �s
� V �t

�x
 accepts with low
probability� and hence �P� V
 satis�es the soundness condition for a weak
interactive proof of �R�
Conversely� suppose �P� V
 is a weak interactive proof for �R� We prove

that �P� V
 is an interactive proof satisfying the correctness condition that
the prover can generate a y such that R�x� y
� The correctness condition is
clearly satis�ed� since �R�x� s
 implies ��R�P� x� s
� in which case the sound�
ness condition for a weak interactive proof guarantees �P �s
� V �t

�x
 accepts
with low probability� The completeness condition is also clearly satis�ed�
since R�x� s
 implies �R�P� x� s
� in which case the completeness condition

��A� PROOFS OF RESULTS ��

for a weak interactive proof guarantees �P �s
� V �t

�x
 accepts with high
probability� The de�nition of �R shows the soundness condition is satis�ed
for prover protocols P � �� P � so consider the protocol P � Since the complete�
ness condition guarantees that �P �s
� V �t

�x
 accepts with low probability
when �R�x� s
 holds� the trivial generator MP that simply returns s shows
that the soundness condition is satis�ed for the prover protocol P as well�
Thus� �P� V
 is an interactive proof the prover can generate a y such that
R�x� y
�

� CHAPTER �� KNOWLEDGE AND ZERO KNOWLEDGE

Chapter 	

Conclusion

Since the work of Halpern and Moses �HM�	�� a number of papers have
analyzed problems in distributed computation in terms of knowledge� Our
goal has been to apply knowledge to new problems� and to expand the domain
of problems to which knowledge can be applied�

The work in Chapter � shows how powerful reasoning about knowledge
can be� Using the close relationship between common knowledge and si�
multaneity� we have obtained general� unifying results about computation in
unreliable systems� We have identi�ed a general class of problems� including
the well�known consensus and distributed �ring squad problems� and shown
how to transform the speci�cation of such problems into protocols that are
optimal in a very strong sense� The state of common knowledge has played
a central role in the derivation of these protocols� In the process of imple�
menting tests for common knowledge we have exposed a number of subtle
di�erences between variants of the well�known omissions failure model� This
work has shown how knowledge can be used in both protocol design and in
the derivation of nontrivial lower bounds on computational complexity� It
is not at all clear how the observations leading to these results would have
been obtained had we not been thinking about these problems in terms of
knowledge�

While this work shows that reasoning about knowledge can be bene�cial�
we have observed that in some contexts the standard de�nition of knowledge
does not appear to be the most appropriate de�nition� In the second half of
this thesis� we have studied de�nitions of knowledge for use in two of these
contexts�

�

 CHAPTER � CONCLUSION

In the context of probabilistic protocols� the standard de�nition of knowl�
edge does not enable us to capture a notion of con�dence that can be useful
when reasoning about such protocols� In Chapter 	� using the framework de�
veloped by Fagin and Halpern �FH���� we have examined various de�nitions
of probabilistic knowledge that let us capture several di�erent notions of con�
�dence� We have observed that there is no one notion of con�dence that is
most appropriate in all contexts� The best way to think about the various
de�nitions is in terms of betting games and betting against di�erent types
of adversaries� We have shown� for every given adversary� how to construct
the de�nition of probabilistic knowledge that is provably the best de�nition
in the context of that particular adversary� We have shown how these de�ni�
tions can be used to analyze a probabilistic variant of the coordinated attack
problem�
Cryptography is another context in which the standard de�nition of

knowledge does not capture all relevant aspects of the problems at hand�
This is due primarily to the fact that the standard de�nition does not allow
us to express the fact that the bounds on an agent�s computational powers af�
fect what that agent can know� In Chapter � we have shown how the context
of cryptography motivates the de�nition of practical knowledge� a de�nition
of knowledge incorporating both probability and limitations on agents� com�
putational powers� We have show how the de�nition of practical knowledge
can be used to characterize interactive proof systems� and to capture the in�
tuition that a veri�er learns essentially nothing as a result of a zero knowledge
proof other than the fact the prover initially sets out to prove� Finally� we
have sketched how it is possible to reason about such proof systems directly
in terms of knowledge� rather than in terms of the operational cryptographic
de�nitions�
While we feel that our work represents signi�cant progress in the attempt

to extend the standard de�nitions of knowledge into other contexts� a number
of problems remain� In particular� while we have shown that our de�nition
of practical knowledge can be useful in contexts where agents� computational
limitations are of interest� it is by no means clear that it is the most appro�
priate de�nition� In fact� it is not even clear what criteria one should use
when judging the suitability of a de�nition in this context� Further progress
in this area is of great importance�
While we have noted at the end of each chapter a number of open prob�

lems that remain to be resolved� we note that there are two general areas in

�

which knowledge could possibly play a larger role than it has so far� First�
notice that the majority of the results in this thesis have been in the context
of synchronous systems� This is generally true in the literature as a whole�
The role of knowledge in the context of asynchronous systems has been pri�
marily as a tool for proving lower bounds� but not so much as a tool for
the design of new protocols� This is somewhat surprising� since one of the
commonly mentioned motivations for formulating de�nitions of knowledge in
the �rst place is to capture informal statements such as �since p has received
message m from q� p knows the task started at q has terminated�� Such
statements often arise in the context of communications protocols� for exam�
ple� These protocols are often quite complex� and it would be interesting to
know whether a knowledge�based analysis could make such protocols easier
to understand� and easier to construct�
Finally� we note that it is becoming increasingly important to be able to

reason explicitly about time when designing protocols� For example� timeouts
play an important role in the protocols designed for asynchronous systems�
Designers often explain these protocols as if the processors themselves must
explicitly reason about how their knowledge of the system changes as a re�
sult of whether a given timeout occurs or not� It would be interesting to
understand how to reason about timeouts �and time in general
 directly in
terms of formal notions of knowledge� Much remains to be done�

	 CHAPTER � CONCLUSION

Bibliography

�AUWY�� A� V� Aho� J� D� Ullman� A� D� Wyner� and M� Yannakakis�
Bounds on the size and transmission rate of communication pro�
tocols� Computers and Mathematics with Applications� ���
����
�	� ���� This is a later version of �AUY����

�AUY��� A� V� Aho� J� D� Ullman� and M� Yannakakis� Modeling com�
munication protocols by automata� In Proceedings of the ��th

IEEE Symposium on Foundations of Computer Science� pages
������ �����

�BG�	� David Blackwell and M� A� Girshick� Theory of Games and Sta�

tistical Decisions� John Wiley and Sons� Inc�� New York� ���	�

�BL��� James E� Burns and Nancy A� Lynch� The Byzantine �ring
squad problem� Advances in Computing Research� Parallel and

Distributed Computing� 	��	������ ����� Available as Techni�
cal Report MIT,LCS,TM���� MIT Laboratory for Computer
Science�

�Blu� Manuel Blum� Three applications of the oblivious transfer� Uni�
versity of California at Berkeley� �����

�BSW��� K� A� Bartlett� R� A� Scantlebury� and P� T� Wilkinson� A note
on reliable full�duplex transmission over half�duplex links� Com�

munications of the ACM� �������� �����

�CDDS��� Brian Coan� Danny Dolev� Cynthia Dwork� and Larry Stock�
meyer� The distributed �ring squad problem� In Proceedings of

�

� BIBLIOGRAPHY

the ��th ACM Symposium on Theory of Computing� pages ����
�	�� May ����� Available as IBM Research Report RJ ��	��
�����

�CL��� K� Mani Chandy and Leslie Lamport� Distributed snapshots�
determining global states of distributed systems� ACM Transac�

tions on Computer Systems� ���
������� February �����

�CM��� K� Mani Chandy and Jayadev Misra� How processes learn� Dis�
tributed Computing� ���
�	���� �����

�Coa��� Brian Coan� A communication�e�cient canonical form for fault�
tolerant distributed protocols� In Proceedings of the �th Annual

ACM Symposium on Principles of Distributed Computing� pages
����� August �����

�DM��� Cynthia Dwork and Yoram Moses� Knowledge and common
knowledge in a Byzantine environment� Crash failures� Infor�

mation and Computation� ���
��������� October �����

�DRS�� Danny Dolev� Ruediger Reischuk� and H� Raymond Strong�
'Eventual� is earlier than 'Immediate�� In Proceedings of the ��rd
IEEE Symposium on Foundations of Computer Science� pages
������� IEEE� November ����

�DS��� Cynthia Dwork and Dale Skeen� The inherent cost of nonblocking
commitment� In Proceedings of the �nd Annual ACM Symposium

on Principles of Distributed Computing� pages ����� �����

�DS��� Cynthia Dwork and Larry Stockmeyer� Interactive proof sys�
tems with �nite state veri�ers� Research Report RJ ��� IBM
Almaden Research Center� May �����

�ESY�	� Shimon Even� Alan L� Selman� and Yacov Yacobi� The complex�
ity of promise problems with applications to public�key cryptog�
raphy� Information and Control� ����������� ���	�

�Fel� Paul Feldman� The optimal prover lives in pspace� Unpublished
manuscript�

BIBLIOGRAPHY �

�FFS��� Uriel Feige� Amos Fiat� and Adi Shamir� Zero knowledge proofs
of identity� In Proceedings of the ��th ACM Symposium on The�

ory of Computing� pages ������ �����

�FH��� Ronald Fagin and Joseph Y� Halpern� Reasoning about knowl�
edge and probability� preliminary report� In Moshe Y� Vardi� ed�
itor� Proceedings of the Second Conference on Theoretical Aspects

of Reasoning about Knowledge� pages ������ Morgan Kauf�
mann� �����

�FI��� Michael J� Fischer and Neil Immerman� Foundations of knowl�
edge for distributed systems� In Joseph Y� Halpern� editor� The�
oretical Aspects of Reasoning about Knowledge� Proceedings of

the ���� Conference� pages �������� Morgan Kaufmann� �����

�Fis��� Michael J� Fischer� The consensus problem in unreliable dis�
tributed systems �a brief survey
� In Marek Karpinsky� editor�
Proceedings of the ��th International Colloquium on Automata

Languages and Programming� pages ����	�� Springer�Verlag�
����� A preliminary version appeared as Yale Technical Report
YALEU,DCS,RR����

�FL�� Michael J� Fischer and Nancy A� Lynch� A lower bound for the
time to assure interactive consistency� Information Processing

Letters� �	�	
��������� June ����

�FMR�	� Michael J� Fischer� Silvio Micali� and Charles Racko�� A secure
protocol for the oblivious transfer� In Eurocrypt� ���	� This
work was presented at the conference� but not published in the
proceedings�

�Fre��� J� E� Freund� Puzzle or paradox� American Statistician�
���	
���		� �����

�FZ��� Michael J� Fischer and Lenore D� Zuck� Relative knowledge and
belief �extended abstract
� Technical Report YALEU,DCS,TR�
���� Yale University� December �����

� BIBLIOGRAPHY

�FZ��� Michael J� Fischer and Lenore D� Zuck� Reasoning about un�
certainty in fault�tolerant distributed systems� Technical Report
YALEU,DCS,TR��	�� Yale University� August �����

�GJ��� Michael R� Garey and David S� Johnson� Computers and In�

tractability� A guide to the Theory of NP�Completeness� W� H�
Freeman and Company� San Francisco� �����

�GM�	� Sha� Goldwasser and Silvio Micali� Probabilistic encryption�
Journal of Computer and System Sciences� ��
������� April
���	�

�GMR��� Sha� Goldwasser� Silvio Micali� and Charles Racko�� The knowl�
edge complexity of interactive proof systems� SIAM Journal on

Computing� ����
�������� February �����

�GMW��� Oded Goldreich� Silvio Micali� and Avi Wigderson� Proofs that
yield nothing but their validity and a methodology of crypot�
graphic design� In Proceedings of the ��th IEEE Symposium on

Foundations of Computer Science� ����� Expanded version avail�
able as Technical Report 	��� Technion� Haifa� Israel�

�Gra��� Jim Gray� Notes on database operating systems� In R� Bayer�
R� M� Graham� and G� Seegmuller� editors� Operating Systems�

An Advanced Course� Lecture Notes in Computer Science� Vol�
��� Springer�Verlag� ����� Also appears as IBM Research Report

RJ ����� �����

�Had��� Vassos Hadzilacos� A lower bound for Byzantine agreement with
fail�stop processors� Technical Report TR������ Harvard Uni�
versity� �����

�Had��� Vassos Hadzilacos� A knowledge�theoretic analysis of atomic
commitment protocols� In Proceedings of the �th Annual ACM

Symposium on Principles of Database Systems� ����� Revised
version available� submitted for publication�

�Hal��� Paul Halmos� Measure Theory� Van Nostrand� �����

BIBLIOGRAPHY �

�HF��� Joseph Y� Halpern and Ronald Fagin� A formal model of knowl�
edge� action� and communication in distributed systems� prelim�
inary report� In Proceedings of the �th Annual ACM Symposium

on Principles of Distributed Computing� pages 	���� �����

�HF��� Joesph Y� Halpern and Ronald Fagin� Modelling knowledge and
action in distributed systems� Distributed Computing� ��	
�����
���� �����

�Hin�� J� Hintikka� Knowledge and Belief� Cornell University Press�
����

�HM�	� Joseph Y� Halpern and Yoram Moses� Knowledge and common
knowledge in a distributed environment� In Proceedings of the

�rd Annual ACM Symposium on Principles of Distributed Com�

puting� pages ������ ���	� To appear in JACM� A revised ver�
sion appears as IBM Research Report RJ ����� Third Revision�
September� �����

�HM��� Joseph Y� Halpern and YoramMoses� A guide to the modal logics
of knowledge and belief� In Proceedings of the �th International

Joint Conference on Arti�cial Intelligence� pages 	���	��� �����

�HMT��� Joseph Y� Halpern� Yoram Moses� and Mark R� Tuttle� A
knowledge�based analysis of zero knowledge� In Proceedings of

the ��th ACM Symposium on Theory of Computing� pages ���
�	�� May �����

�HU��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Au�

tomata Theory Languages and Computation� Addison�Wesley
Publishing Company� Reading� Massachusetts� �����

�HV��� Joseph Y� Halpern and Moshe Y� Vardi� The complexity of rea�
soning about knowledge and time� I� Lower bounds� Journal of
Computer and System Sciences� ����
�������� �����

�HZ��� Joseph Y� Halpern and Lenore D� Zuck� A little knowledge goes
a long way� Simple knowledge�based derivations and correctness
proofs for a family of protocols� In Proceedings of the �th Annual

�� BIBLIOGRAPHY

ACM Symposium on Principles of Distributed Computing� pages
������ August ����� To appear in Journal of the ACM�

�Lew��� David Lewis� A subjectivist�s guide to objective chance� In W� L�
Harper� R� Stalnaker� and G� Pearce� editors� Ifs� pages ������
D� Reidel Publishing Company� �����

�LF�� Leslie Lamport and Michael J� Fischer� Byzantine generals and
transaction commit protocols� Technical Report Op� �� SRI�
����

�LS�� D� J� Lehmann and S� Shelah� Reasoning about time and chance�
Information and Control� ����������� ����

�Maz��� Murray S� Mazer� A knowledge theoretic account of recover in
distributed systems� The case of negotiated commitment� In
Proceedings of the Second Conference on Theoretical Aspects of

Reasoning about Knowledge� pages �����	� March �����

�Maz��� Murray S� Mazer� A Knowledge Theoretic Account of Negotiated

Commitment� PhD thesis� Department of Computer Science�
University of Toronto� �����

�MDH��� Yoram Moses� Danny Dolev� and Joseph Y� Halpern� Cheating
husbands and other stories� a case study of knowledge� action�
and communication� Distributed Computing� ���
��������� Au�
gust �����

�Mic��� Ruben Michel� E�cient protocols for attaining common knowl�
edge and simultaneous byzantine agreement� Technical Report
YALEU,DCS,TR����� Yale University� February �����

�Mic��� Ruben Michel� A categorical approach to distrbuted systems
expressibility and knowledge� In Proceedings of the �th Annual

ACM Symposium on Principles of Distributed Computing� pages
����		� ACM� August �����

�Moo��� Robert C� Moore� A formal theory of knowledge and action�
In J� Hobbs and R� C� Moore� editors� Formal Theories of the

Commonsense World� Ablex Publishing Corp�� �����

BIBLIOGRAPHY ��

�Mos��� Yoram Moses� Knowledge in a Distributed Environment� PhD
thesis� Stanford University� March ����� Available as Stanford
University Technical Report STAN�CS�����

�Mos��� Yoram Moses� Resource�bounded knowledge� In Moshe Y� Vardi�
editor� Proceedings of the Second Conference on Theoretical As�

pects of Reasoning about Knowledge� pages ������ Morgan
Kaufmann� March �����

�MR��� Yoram Moses and Gil Roth� On reliable message di�usion� In
Proceedings of the �th Annual ACM Symposium on Principles of

Distributed Computing� pages ������� ACM� August �����

�MSF��� C� Mohan� H� Raymond Strong� and Shel Finkelstein� Methods
for distributed transaction commit and recovery using byzantine
agreement within clusters of processors� In Proceedings of the

�nd Annual ACM Symposium on Principles of Distributed Com�

puting� pages ������� ACM� August �����

�MT��� Yoram Moses and Mark R� Tuttle� Programming simultaneous
actions using common knowledge� In Proceedings of the ��th

IEEE Symposium on Foundations of Computer Science� pages
����� IEEE� October ����� This is a preliminary version of
�MT����

�MT��� Yoram Moses and Mark R� Tuttle� Programming simultaneous
actions using common knowledge� Algorithmica� ���
��������
�����

�NT��� Gil Neiger and Sam Toueg� Substituting for real time and com�
mon knowledge in asynchronous distributed systems� In Pro�

ceedings of the �th Annual ACM Symposium on Principles of

Distributed Computing� pages ������ August ����� Available
as Cornell Technical Report TR ������� November� �����

�Ore��� Yair Oren� On the cunning power of cheating veri�ers� some
observations about zero knowledge proofs� In Proceedings of

the ��th IEEE Symposium on Foundations of Computer Science�
pages 	��	��� IEEE� �����

� BIBLIOGRAPHY

�Pag�� H� R� Pagels� The Cosmic Code� Quantum Mechanics as the

Language of Nature� Simon and Schuster� ����

�PR��� R� Parikh and R� Ramanujam� Distributed processes and the
logic of knowledge� In Proceedings of the Workshop on Logics of

Programs� pages ������ �����

�PSL��� Marshall Pease� Robert Shostak� and Leslie Lamport� Reach�
ing agreement in the presence of faults� Journal of the ACM�
��
����	� �����

�PT��� Kenneth J� Perry and Sam Toueg� Distributed agreement in the
presence of processor and communication faults� IEEE Transac�

tions on Software Engineering� SE����
�	���	�� March �����

�PT��� Prakash Panangaden and Kim Taylor� Concurrent common
knowledge� A new de�nition of agreement for asynchronous
systems� In Proceedings of the �th Annual ACM Symposium

on Principles of Distributed Computing� pages ������� August
�����

�Rab� Michael O� Rabin� E�cient solutions to the distributed �ring
squad problem� Private communication�

�Rab��� Michael O� Rabin� Probabilistic algorithm for testing primality�
Journal of Number Theory� ��������� �����

�Rab��� Michael O� Rabin� How to exchange secrets by oblivious trans�
fer� Technical Memo TR���� Aiken Computation Laboratory�
Harvard University� �����

�Rab�� Michael O� Rabin� N�process mutual exclusion with bounded
waiting by 	 	 log n�valued shared variable� Journal of Computer

and System Sciences� ���
������� August ����

�RSA��� R� L� Rivest� A� Shamir� and L� Adleman� A method for obtain�
ing digital signatures and public key cryptosystems� Communi�

cations of the ACM� February �����

BIBLIOGRAPHY ��

�SFC��� Dale Skeen� Shel Finkelstein� and Flaviu Cristian� Reliable mes�
sage di�usion� Unpublished manuscript� �����

�Sha��� Glen Shafer� Conditional probability� International Statistical

Review� ����
������� �����

�Slo��� Robert Sloan� All zero�knowledge proofs are proofs of language
membership� Technical Memo MIT,LCS,TM����� Massachu�
setts Institute of Technology� February �����

�SS��� R� Solovay and V� Strassen� A fast Monte Carlo test for primality�
SIAM Journal on Computing� ���
��	���� March �����

�Ste��� M� V� Stenning� A data transfer protocol� Comput� Networks�
��������� �����

�TW��� Martin Tompa and Heather Woll� Random self�reducibility and
zero knowledge interactive proofs of possession of information�
In Proceedings of the ��th IEEE Symposium on Foundations of

Computer Science� pages 	��	�� May �����

�Var��� Moshe Y� Vardi� Automatic veri�cation of probabilistic con�
current �nite�state programs� In Proceedings of the ��th IEEE

Symposium on Foundations of Computer Science� pages �������
IEEE� October �����

�vF��� Bas C� van Fraassen� A temporal framework for conditionals and
chance� In W� L� Harper� R� Stalnaker� and G� Pearce� editors�
Ifs� pages ����	�� D� Reidel Publishing Company� �����

�	 BIBLIOGRAPHY

Index

accepting run� ���

action� ��

action protocol� ��

admissible facts� 	�

breaks even� ���

class of system� ��

clients� ��

common knowledge� ��
��� ��

probabilistic� ���

communication graph� ��

communication tape� ���

communicatione�cient protocols� 	�

complete test� ���

computation tree� ���

computing a protocol� 	�

considers possible� ��
��

consistent probability assignment� ���

corresponding runs� ��

crash failure model� ��

cut� ���

determines� ��� �	

determines safe bets� ���

di�ering runs� ��

distributed �ring squad� ��
��� ���

	�� 	�� 	�� ��

empty state� ��

everyone knows� ��
�	

existence of failures� ��

fact about P � ��

fact about the global state� ��

fact about the initial state� �	�

fact about the run� ��

failure models� ��

failure pattern� ��

faulty processor� ��

�xed point axiom� ��

formula� ��

fullinformation protocol� ��� ��

generalized omissions model� ��� 	�

��

generalized omissions with informa

tion� ��� ��
��

global state� ��

history� ��

implementable� ��� ��

implements� ��

implicit knowledge� ��
��

inclusive assignments� ��	

indexical set� ��

nonempty� ��

induction rule� ��

initial state� ��

inner measure� ���

input history� ��

input tape� ���

input to a run� ��

interactive proof systems� ���
���

interactive protocols� ���
���

joint view� ��

knowing how to generate� �	�
���

knowledge� ��
��

knowledge given facts� ���
��	

��

�� INDEX

labeled communication graph� ��

local history� ���

local protocol� ��

local state� ��� ��

measurable sets� ��	

measurable with respect to� ���

message history� ��

message protocol� ��

nonfaulty processor� ��

omissions model� ��� ��
��

operating environment� ��

optimal� ��

optimal in all runs� ��

outer measure� ���

perfectly indistinguishable� ���

point� ��

polynomially indistinguishable� ��	

practical facts� �	

practical knowledge� ��	
�	�

practical simultaneous choice� �	

practical systems� �	

practically complete tests� ���

practically sound test� ���

probabilistic system� ��	

probability assignment� ���

induced� ���

property� ��

protocol� ��
��

deterministic� ��

probabilistic� ��

prover� ���

Ppost� ���

Pfut� ���

P j� ���

Pprior� ���

random tape� ���

receiving omissions model� ��� 	�
	�

rejecting run� ���

resource bounded knowledge� ���
���

resourcebounded knowledge� ��
�	

run� ��� ���

run of a protocol� ��

safe bets� ���

sample space assignment� ���

satis�able� ��

silent processor� ��

similar points� ��

similarity graph� ��
��

simultaneous action� ��

simultaneous Byzantine agreement� ���

��
�	� ��� ��� �	� 	�� 	�� ��

��� ��
�	

simultaneous choice� ��

simultaneous choice problems� ��

simultaneous choice

strict� ��

sound test� ���

standard assignment� ��	

state protocol� ��

stategenerated� ��� ���� ���

strategy� ���

strict simultaneous choice� ��

su�ciently rich� ���

system� ��� ��

S�� ��

S
post� ���

Sfut� ���

Sj� ���

Sprior � ���

test for common knowledge� ��

transition probability assignment� ��	

Treei�csafe� ���

Tree
j

i�csafe� ���

uniform assignments� ��	

valid� ��

valid at time k� 	�

valid in the system� ��

veri�er� ���

INDEX ��

view� ��

weak interactive proof system� ���

���

weak interactive protocol� ���

work tape� ���

zero knowledge proof systems� ���

���

