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Abstract

This thesis introduces a new model for distributed computation in asynchronous net�
works� the input�output automaton� This simple� powerful model captures in a novel way
the game�theoretic interaction between a system and its environment� and allows funda�
mental properties of distributed computation such as fair computation to be naturally
expressed� Furthermore� this model can be used to construct modular� hierarchical cor�
rectness proofs of distributed algorithms� This thesis de�nes the input�output automaton
model� and presents an interesting example of how this model can be used to construct
such proofs�
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Chapter �

Introduction

A major obstacle to progress in the �eld of distributed computation is that many of the
important algorithms� especially communications algorithms� seem to be too complex
for rigorous understanding� Although the designers of these algorithms are often able to
convey an intuitive understanding of how their algorithms work� it is often di�cult to
make this intuition formal and precise� When these algorithms are rigorously analyzed�
the work is generally carried out at a very low level of abstraction� involving messages
and local process variables� Reasoning precisely about the interaction between these
messages and variables can be extremely di�cult� and the resulting proofs of correctness
are generally quite di�cult to understand�

An indication that the situation is not completely hopeless is the fact that the design�
ers are able to give high�level� although informal� descriptions of the key ideas behind their
algorithms� For instance� the distributed minimum spanning tree algorithm of �GHS�
�
can be interpreted as several familiar manipulations of a graph� What is needed is a way
of formalizing these high�level ideas� and incorporating them into a proof of the detailed
algorithm�s correctness�

One promising approach is to begin by constructing a high�level description of the al�
gorithm� This description could itself be an algorithm in which high�level data structures
�such as graphs
 serve as states� and process actions manipulate these data structures�
This algorithm could then be proven correct using rigorous versions of the high�level�
intuitive arguments given by the algorithm�s designers� Successive re�nements of this
algorithm could then be de�ned at successively lower levels of detail� and each shown
�rigorously
 to simulate the preceding algorithm� Ideally� this approach would allow us
to use in the proof of simulation any property that has already been proven for preceding
levels� In this way� the high�level intuition used to explain the algorithm would become
part of a rigorous proof of the full algorithm�s correctness�

Two years ago� we began to consider this approach for a fairly simple but interesting
algorithm for resource allocation in an asynchronous network� an algorithm originally
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suggested by Sch�onhage in �Sch���� Correctness conditions for this resource arbitration
problem include both safety and liveness conditions�� themutual exclusion condition that
at most one user is using the resource at any given time� and the no lockout condition
that if every user holding the resource eventually returns the resource to the arbiter� then
the arbiter will eventually grant the resource to every requesting user� The algorithm
can be described at three levels of abstraction� At the top level is a simple� set�theoretic
statement of the problem� itself described as an algorithm� At the second level is a graph�
theoretic description of the arbiter� and how it moves the resource around the network�
At the third and lowest level is a distributed implementation of the arbiter� describing
in terms of messages and local process variables the protocol individual processors must
follow�

It soon became apparent� however� that traditional models and proof techniques �see
�OG���� �LS�	b�� and �Hoa���� for example
 are not adequate to describe interesting as�
pects of the problem statement� algorithm� and correctness proofs� In particular� while
the problem seems most naturally formulated in terms of the game�theoretic interac�
tion between the users of the arbiter and the arbiter itself� these models require that
the problem be formulated in terms of system states� and do not capture this game�
theoretic aspect of the problem in a natural way� Furthermore� the interaction between
the users and the arbiter clearly distinguishes the arbiter�s input actions from its output
actions� Input to the arbiter �a request for the resource
 can occur at any time� regard�
less of whether the arbiter is in a position to grant the resource� Output �the granting
of requests
 occurs only under the control of the arbiter� This notion of control� the
notion that one system component may completely determine when a particular action
is performed� is not easily expressed in these models� We note that satisfaction of the
no lockout condition requires that the arbiter be given �fair turns� to produce output�
rather than simply being overwhelmed by a �ood of input� The ability to express this
notion of �fair turns� depends heavily on the ability to express the notion of one process
controlling the performance of an action�

We were therefore led to the development of a new model of distributed computation
in asynchronous systems� the input�output automaton� This model is based on �possibly
in�nite�state
 nondeterministic automata� Automaton transitions are labeled with the
names of process actions they represent� These actions are partitioned into sets of input
and output actions� as well as internal actions representing internal process actions� Input
actions have the unique property of being enabled from every state� that is� for every input
action there is a transition labeled with this action from every state� In other words� the
system must be able to accept any input at any time� Thus� a very strong distinction is

�Informally� properties required of a program can be partitioned into safety properties and liveness

properties� A safety property �such as mutual exclusion �Dij���	 says that nothing 
bad� will ever hap�
pen� and a liveness property �such as termination	 says that something 
good� will eventually happen�
Alternatively� safety properties describe allowed behavior� and liveness properties describe required be�
havior� Alpern and Schneider give formal de
nitions of safety and liveness in �AS��� in terms of B�uchi
automata�
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made between actions locally�controlled by the system �output and internal actions
 and
actions controlled by the system�s external environment �input actions
� This distinction
captures the game�theoretic interaction between the system and its environment alluded
to above� and gives our model an event�driven �avor characteristic of many asynchronous
distributed algorithms�

In order to construct models of complex systems from models of simpler system
components� we de�ne a simple notion of automaton composition� Loosely speaking�
the composition of a collection of automata is their Cartesian product� with a state of
the composition being a tuple of states from the component automata� one from each
component� In order to model communication� we require that automata synchronize
the performance of common �shared
 actions� If � is an output action of A and an input
action of B� then performance of � by both automata models communication from A

to B� With simple syntactic restrictions on the composition of automata� we ensure that
composition preserves the notion of control mentioned above� No system component may
block the performance of an output action by any other component�

Since automata are able to receive every input in every state� it is possible for an
automaton to be �ooded with input without having the opportunity to perform actions
required in response to the input received� The satisfaction of most interesting liveness
conditions� however� requires that this does not happen� The notion of fair computation
therefore plays a fundamental role in our model� Informally� a computation of a system
is said to be fair if every system component is always eventually given the chance to
take a step� Since an automaton may model an entire system as well as a single system
component� it is necessary to retain certain information about the structure of the system
being modeled� In particular� it is necessary to retain information about which actions
are controlled by the same system component� With this information it is possible to
determine from a given system behavior whether each system component has been given
the chance to make computational progress in�nitely often� We therefore associate with
every automaton a partition of its locally�controlled actions �i�e�� its internal and output
actions
� The interpretation of this partition is that each class consists of the locally�
controlled actions of one system component� With this partition� we are able to de�ne a
simple notion of fair computation in our model�

Since our model concentrates on the input�output interaction between a system and
its environment �rather than system states
� our notion of a problem to be solved is a
collection of system behaviors �sequences of input and output actions
 considered ac�
ceptable �rather than conditions on system states
� An automaton may be considered a
solution to such a problem if every behavior exhibited by the automaton is contained in
this set of acceptable behaviors� The automaton solves the problem in the sense that any
correctness condition satis�ed by each behavior in this set is satis�ed by each behavior
of the automaton� As previously mentioned� however� fair computation is crucial to the
satisfaction of most interesting liveness conditions� We therefore require only that the
fair behaviors of an automaton solving the problem be contained in the set of acceptable
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behaviors� We note that it is easy to fall into trivial correctness de�nitions� allowing
trivial or uninteresting solutions to a problem� Our condition that an automaton be
required to accept any input in any state� together with our notion of fairness� avoids
this problem� The requirement that input be constantly enabled ensures that our solu�
tions are able to respond to all patterns of input� The use of fairness ensures that the
correctness of an solution will be judged only by those behaviors in which the system is
actually given the chance to make progress�

Our simple correctness condition� the requirement that the fair behaviors of an au�
tomaton be contained in some set of acceptable behaviors� is not a new style of correctness
conditions� It can be found� for instance� in the work of Lynch and Fischer in �LF����
and is similar to Hoare�s notion of speci�cation satisfaction in �Hoa���� The simplicity of
such correctness conditions do� however� lend a uniform structure to correctness proofs
in our model� Recall that our notion of a well�structured correctness proof involves a
sequence of models M�� � � � �Mn� each modeling an algorithm at successively lower levels
of detail� The proof of the algorithm�s correctness involves showing that each model
�simulates� the previous model in the sequence� That is� that the set of �fair
 behaviors
exhibited by Mi are contained in the set of �fair
 behaviors exhibited by Mi��� In this
sense� each model Mi�� determines a problem that the model Mi is required to satisfy�
The problem of showing that Mi �simulates� Mi�� is therefore the problem of showing
that Mi solves the problem determined by Mi��� As an aid in doing so� we develop the
notion of possibilities mappings that enable us to relate behaviors of one automaton to
another�

We note that our model may be considered a special case of other models such as
Milner�s CCS and Hoare�s CSP �see �Mil��� and �Hoa���
� Neither of these models�
however� is entirely suitable for our purposes� In the �rst place� although Milner has
found them to be mathematically super�uous in CCS� we �nd the notion of a process
state a convenient descriptive tool when describing algorithms� More important� however�
is the fact that fairness is di�cult to express in CCS� Notions of fairness that have
been studied in connection with CCS can be classi�ed as either weak fairness or strong
fairness �see �CS�	�� �Par���� and �Fra���
� Weak fairness requires that if an action �

is continuously enabled� then it must be performed in�nitely often� Strong fairness� on
the other hand� requires that � be performed in�nitely often even if it is enabled only
in�nitely often� These notions of fairness� however� are not satisfactory in event�driven
systems� In such a system� for example� a process is always able to accept interrupts�
but should not be required to interrupt itself unless some external source requests the
interrupt� The problem is again the notion of control discussed above� There is no notion
in CCS of an interface between processes from which we can deduce which which process
controls the performance of a given action� By making a clear distinction between input
and output actions� and by restricting ourselves to a simple notion of composition� we
�nd that fairness is very simple to describe in our model�

Similar comments can also be made for CSP with respect to fairness �see �KdR�
��
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�Rei�	�� and �Fra���
� In fact� CSP further complicates the problem by identifying a
process with �among other things
 all �nite behaviors of the process� Since it is impossible
to deduce the in�nite behavior of a process from its �nite behaviors� CSP precludes the
study of in�nitary properties such as fairness without extending the semantics of a CSP
process�

We note further that the complexity of the operations de�ned in CSP dooms the
language to a complex semantics� making reasoning about systems of processes unin�
tuitive and cumbersome� Reading between the lines of Hoare�s book �Hoa���� it seems
that Hoare himself would prefer to retain for nondeterministic processes the automata�
theoretic �trace�theoretic�
 semantics he develops for deterministic processes� However�
the �rst nondeterministic operation introduced by Hoare is the nondeterministic OR� u�
an operation combining two processes P and Q to form a process P uQ that nondetermin�
istically chooses �itself
 to behave either like P or Q� A second operation� �� combines P
and Q to form a process P�Q allowing the environment to determine whether P�Q
behaves like P or Q� Both P u Q and P�Q have the same traces �since each behaves
either like P or Q
� but di�er subtly in the fact that the environment has no control or
knowledge of the choice P u Q makes between P and Q� Thus� it is possible for P u Q

and P�Q to be placed in an environment o�ering an action � as input� causing P u Q

to deadlock while P�Q does not� This forces Hoare to make his �rst break from the
trace�theoretic semantics of deterministic processes and de�ne the notion of a refusal�
a set of actions a process might refuse to perform� In our model� however� due to the
unique property of input actions� a process will not block if its environment o�ers �
as input� Thus� by suitably restricting our model� we are able to retain the intuitive�
mathematically�tractable semantics of automata�

We note that there are systems of processes that can not be expressed in our model�
Clearly� one such example is a system in which one process can block the progress of
another as in CSP� These omissions� however� are the result of deliberate decisions� since�
for example� it would be easy to de�ne a notion of composition that allows us to express
the process blocking of CSP� The simplicity of our model and its ease of use are the
result of a careful limitation of its scope� Our experience has been that our model is
su�ciently general to allow description of a signi�cant number of interesting systems�
We note that our model has already been found expressive enough to describe work
in network algorithms �see �LLW��� and the third chapter of this thesis
� concurrency
control algorithms �see �LM���� �HLMW���� �FLMW���� and �GL���
� mutual exclusion
algorithms �see �Wel���
� hardware register algorithms �see �Blo���
� and data�ow com�
putation �see �Lyn���
� Furthermore� in many of these papers our model has been found
to be extremely useful when identifying the interface between system components� and
discovering a system�s natural decomposition�

Just as popular models of computation do not seem appropriate for our work� popular
proof techniques also seem inappropriate� For example� �Hoare logics� are a well�known

�A trace is a sequence of actions performed by a system or process�
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method for proving that programs satisfy partial correctness assertions� Loosely speaking�
a partial correctness assertion is a statement about the behavior of a terminating program�
A program is said to satisfy such an assertion if it is satis�ed by every terminating
execution of the program� Therefore� a partial correctness assertion says nothing about
program termination� but describes what will be true if and when the program halts�
Hoare describes in �Hoa��� a method for proving that sequential programs satisfy partial
correctness assertions� His method makes use of the observation� �rst noted by Floyd
in �Flo���� that partial correctness assertions satis�ed by a program S can be expressed in
terms of predicates P and Q describing the program state before and after the execution
of S� More formally� if P andQ are assertions about program variables and S is a program
statement� PfSgQ denotes the assertion that if P is true before the execution of S begins�
then Q will be true if and when S terminates� Given a few simple axioms� Hoare shows
how to derive partial correctness assertions PfSgQ for arbitrary programs S� In the �rst
step of the derivation� each statement Si of S is annotated with assertions Pi and Qi� In
the second step� each assertion PifSigQi is proven using axioms describing the various
programming language constructs� Finally� general rules of inference �independent of any
programming language
 are used to combine these assertions into a proof of PfSgQ�

Hoare�s method has proven to be a very e�ective method of verifying sequential
programs� Most interestingly� it is possible to write hierarchical correctness proofs� Each
program module S can be speci�ed by a partial correctness assertion PfSgQ� Having
proven each assertion PfSgQ� these assertions can be used in the proof of the larger
program without reference to the implementation of S� Furthermore� since reasoning
begins with a collection of partial correctness assertions characterizing program behavior
and proceeds via rules of inference� this process can be automated if programmers are
willing to supply certain intermediate assertions� Compilers for the language Euclid� for
example� attempt to construct as much of the proof as possible �see �LGH����
� Apt has
written a comprehensive survey of Hoare logics in �Apt��� and �Apt�	��

In �OG���� Owicki and Gries extend Hoare�s method to distributed and parallel pro�
grams� Here� too� each statement Si of each process S is annotated with assertions Pi
and Qi� and partial correctness assertions PfSgQ� are proven for each process S in
isolation using a sequential programming logic similar to Hoare�s� Unlike sequential al�
gorithms� however� it is possible for one process action to a�ect the state of another� In
order to prove partial correctness of an entire system of process� it is necessary to prove
that no process can invalidate assertions appearing in the sequential proof of another
process�s partial correctness� Owicki and Gries refer to this condition as noninterference�
For example� if PfSgQ appears in the proof of one process and the assertion R labels
one statement appearing in another process� noninterference requires that the assertion
�P �R
fSg�Q�R
 hold� that is� the execution of S does not invalidate R� This method
of Owicki and Gries has been found to be quite successful� just as Hoare�s method has
been found to be successful for sequential programs� Gries has constructed a nice proof

�Owicki and Gries actually use the notation fPgSfQg�
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of Dijkstra�s on�the��y garbage collector in �Gri���� an algorithm with such �ne inter�
leaving that the only atomic action required is memory reference� Levin and Gries show
in �LG��� how the method of Owicki and Gries can be used to verify CSP processes�
Furthermore� Schlichting and Schneider show in �SS�	� how message passing primitives
can be incorporated into this framework�

As with sequential programs� the partial correctness of systems may be speci�ed with
partial correctness assertions of the form PfSgQ� Due to the possibility of process inter�
ference� however� it is not possible to specify the partial correctness of individual processes
in terms of such assertions� The speci�cation of a process must also describe its envi�
ronment if such assertions are to be used� Without a description of its environment� it
is impossible to prove that a process satis�es most partial correctness assertions� Fur�
thermore� modi�cation of a single process requires redoing a major portion of a system�s
proof of correctness since it must be shown that this modi�cation does not violate par�
tial correctness assertions appearing in the correctness proofs of other processes� Thus�
both speci�cations and correctness proofs using partial correctness assertions of the form
PfSgQ lack an important modularity� We consider this lack of modularity to be a major
problem in protocol veri�cation�

Lamport attempts to resolve this lack of modularity in �Lam���� Here Lamport rede�
�nes the assertion PfSgQ to mean that if execution is begun anywhere inside S with P
true� then executing S will leave P true while control is inside S� and will make Q
true if and when S terminates� Such a de�nition is possible for Lamport since he al�
lows the predicates P and Q to refer to program locations� whereas Owicki and Gries
restricted P and Q to program variables� The advantage of Lamport�s scheme is that
partial correctness assertions for an entire system can be veri�ed given partial correct�
ness assertions specifying each system component� After system correctness has been
proven from component speci�cations� any implementation of the components satisfying
their speci�cations can be used in the system�s implementation� Lamport�s method� how�
ever� is not without its di�culties� For example� suppose that S is a system component
making heavy use of shared variables� It seems di�cult to construct assertions P that
are invariant throughout the execution of S without knowing how S uses these shared
variables�

In our method� the problem of modular speci�cation disappears since an environment
is implicitly speci�ed by the fact that input actions are continuously enabled� �In other
words� anything can happen in the environment of a process�
 As a result� if a partial
correctness assertion can be proven about process behavior� the partial correctness as�
sertion holds regardless of the process�s actual environment� Thus in our method it is
no longer necessary to prove noninterference after proving the correctness of individual
processes� Furthermore� it is no longer necessary to redo any part of a correctness proof
when a process is modi�ed� other than the correctness of the modi�ed process itself�
�A similar consequence of such input requirements can be found in �MCS���� �Sta�	��
and �LM����
 Also� notice that Hoare�style speci�cations do not make clear the interface
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between a system component and its environment� As previously mentioned� this inter�
face is crucial to the de�nition of fair computation� In contrast� our model clearly de�nes
this interface as the set of actions the process can perform� together with information
about which actions denote input and output of the process�

We note that due to the generality of automaton transitions� partial correctness as�
sertions describing automaton transitions similar to those of Hoare describing common
programming language constructs may not always be easy to �nd� However� if transi�
tions are described in terms of preconditions that must be satis�ed before an action can
be performed� and the e�ect of an action on an automaton state� then partial correct�
ness assertions can be constructed for each action� Furthermore� the general� language�
independent rules of inference used in Hoare�like systems are clearly valid in our model
of computation� Thus� while we do not make use of such arguments in our work� it is
possible to construct Hoare�like proofs of partial correctness assertions in our model�

Notice that partial correctness assertions describe safety properties� and not liveness
properties� Since there is no notion of system computation in these Hoare logics� there is
no notion of eventuality� We note that safety properties can often be used to prove liveness
properties� For example� Owicki and Gries show in �OG��� how well�foundedness argu�
ments can be incorporated into Hoare logics to prove termination of programs� Alpern
and Schneider go farther in �AS��� and show that the veri�cation of both liveness and
safety properties can be reduced to proving what are essentially partial correctness as�
sertions� However� the speci�cation of a liveness condition in terms of partial correctness
assertions is often an unintuitive formulation�

A more natural expression of such properties is possible with temporal logic� Temporal
logic was introduced by Pnueli in �Pnu��� as an adaptation of classical modal logic suitable
for reasoning about concurrent programs� The two paper series �MP��b� and �MP��a� by
Manna and Pnueli is a thorough introduction to the expression of properties of concurrent
programs� and the veri�cation of these properties� using temporal logic� Here the meaning
of a system computation is a sequence of system states� The fundamental temporal
operators are the unary operator � and its dual �� Loosely speaking� a computation
satis�es the expression �P � pronounced �henceforth P �� if P is true throughout the
computation� and a computation satis�es the expression �P � pronounced �eventually P ��
if there is a point during the computation at which P is true� Many interesting properties
of computation may be speci�ed with these simple operators� For instance� the expression
��P � �Q
 states that the property P causes the property Q to hold� the expression
��P states that the property P holds in�nitely often�

Temporal logic is a useful abstraction with which to specify and reason about program
behavior� Since the meaning of a computation is a sequence of states� temporal logic is
able to express liveness properties as well as safety properties� and these expressions
are typically quite concise� Since reasoning in temporal logic begins with a collection
of axioms characterizing program behavior� and proceeds via general rules of inference�
reasoning in temporal logic has potential for automation� Furthermore� while Hoare logics

�




make use of inference rules that are independent of any programming language� most of
the work in a Hoare�style proof deals with language�speci�c semantics� In contrast�
reasoning in temporal logic is valid for all programs� The di�culty� of course� is in
abstracting from an implementation to a temporal logic characterization of its behavior�
and this problem is often swept under the rug�

A great deal of work in temporal logic concerns reasoning about system correctness
after system components have been speci�ed in terms of temporal logic �see� for example�
�HO���� �SMS���� �OL���� �Lam�
�� �Sta�	� and �NGO���
� The most dramatic distinc�
tion between these works is the way in which temporal logic is used to describe system
behavior� Schwartz and Melliar�Smith give purely temporal speci�cations of programs
in �SMS���� In these speci�cations� even the notion of a process state has been replaced
by temporal speci�cations� Consequently� the resulting speci�cations are quite complex�
involving nested �until� operators in addition to the temporal operators described above�
These speci�cations are often di�cult to understand� and di�cult to reason about� On
the other hand� Hailpern and Owicki make great use of the notion of program state
in �HO���� They add history variables to the program state that describe the history
of events over communication links� and reason about the values assumed by these vari�
ables� History variables are a convenient descriptive tool found in many proof styles� and
the speci�cations produced by Hailpern and Owicki are generally easy to understand�
The history variables� however� do not a�ect program behavior� and in proofs reasoning
about history variables the history variables themselves seem extraneous� Between the
extremes of �SMS��� and �HO��� is the work of Lamport in �Lam�
�� Here the process
state modeled consists only of program variables� and temporal logic assertions describe
the sequence of values these variable assume� Although an automaton state can be seen
as a natural extension of history variables� our proofs tend to have a �avor similar to
those of Lamport�s in �Lam�
��

While a great deal of work has studied the problem of reasoning about systems after
system components have been speci�ed in terms of temporal logic� less has been devoted
to proving that an implementation actually meets its temporal logic speci�cation� One
attempt is that of Owicki and Lamport in �OL���� improving on the work of Lamport
in �Lam���� Since safety properties can be proven using methods of Owicki and Gries� of
particular interest is the style of proving liveness properties Owicki and Lamport describe�
Owicki and Lamport construct diagrams called proof lattices that outline the structure of
a proof of a liveness property� Informally� a proof lattice is an acyclic directed graph with
a single entry node having no incoming edges� and a single exit node having no outgoing
edges� Nodes of the graph are labeled with assertions� A node labeled A with outgoing
edges to nodes labeled A�� � � � � An denotes the assertion that if A holds� then one of the
assertions A�� � � � � An must eventually hold� that is A � ��A� � � � � �An
� Suppose each
such assertion can be proven for a program� If the entry node is labeled with A and the
exit with B� then the proof lattice amounts to a proof of the liveness property A � �B
for the program� Manna and Pnueli extend the use of proof lattices in �MP�	�� In this
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work� however� an automata�theoretic model of computation is explicitly de�ned� and
proof rules are given for proving that each assertion denoted by edges of the proof lattice
is satis�ed by the system modeled by an automaton� We �nd this work a very satisfying
example of how an automata�theoretic model of computation and temporal logic can
be used together� Given an automata�theoretic description of system implementation�
temporal logic provides a useful abstraction for reasoning about system behavior� While
we have not �xed on one particular speci�cation language� we feel that temporal logic
and our automata�theoretic model of computation can work well together� In particular�
through the use of automata we are able to incorporate temporal logic into hierarchical
correctness proofs�

The use of abstraction is an important aspect of our style of algorithm veri�cation�
Most work in the literature claiming to produce proofs with a hierarchical structure
actually allow system components to be veri�ed independently� and then combined to
verify the correctness of the system� This notion of hierarchical veri�cation is a restricted
version of the notion we use in this work� Here we actually construct models of the entire
system at conceptually di�erent levels of abstraction� rather than merely combining local
process states into global system states�

Our work most closely resembles that of Lamport in �Lam�
�� Here Lamport speci�
�es a program with a collection of state functions mapping program states into sets of
values� a collection of initial conditions essentially de�ning the set of states in which
the system may begin computation� and a collection of properties describing safety and
liveness conditions� We note that the values to which states are mapped by state func�
tions can be thought of as state variables describing relevant aspects of the system to
be implemented� Furthermore� the properties included in the system speci�cation de�ne
allowed and required changes in the values these variables assume� If these variables are
collected into states� then the variables together with the properties essentially de�ne an
automaton together with a collection of eventuality conditions restricting the computa�
tions of the automaton� If the program implementing the speci�ed system is considered
to be an automaton� as is implicitly the case in Lamport�s work� then the state functions
can be thought of as mappings from an automaton describing the system at one level of
abstraction to an automaton describing the system at a higher level of abstraction� This
is the technique used in our work� Our work is an improvement on that of Lamport�s
in the sense that we carry his style of speci�cations to its natural conclusion� making
the automata�theoretic �avor of his work explicit� Furthermore� we make explicit his un�
derlying assumption that what is important about a process is the externally observable
behavior of the process� His work seems to imply that the variables and state functions
must be describing some aspect of the system that must appear in the implementation�
We feel� however� that they are to be considered merely descriptive tools� and that the
notion of subset containment used as the notion of correctness in this work is the notion
of correctness actually underlying Lamport�s work�

Other work similar to ours is that of Stark in �Sta�	�� Many of the aims and ideas
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underlying his work are the same as ours� but his model is much more general than ours�
We �nd our model to be simpler and easier to use than Stark�s� and expressive enough
to describe most systems of interest� Work on hierarchical veri�cation also includes
that of Lam and Shankar in �LS�	a�� Harel in �Har���� and Lamport� Lynch� and Welch
in �LLW���� Each of these techniques analyzes an algorithm by abstracting away certain
portions of the algorithm �rather than mapping to an entirely di�erent level of conceptual
abstraction as we do here
 and studying the remaining �image� of the original algorithm�
To Lam and Shankar� the advantage of this method seems to be that it allows highly
interdependent modules of a system to be studied in isolation� Lamport� Lynch� and
Welch seem to be taking this notion of �projection� one step further� They show how
projections onto di�erent modules can be combined into a proof of the entire system�
giving the proof a lattice�like structure� While still work in progress� their work seems
to be shedding new light on the intellectual organization of protocol veri�cation� The
progress being made in their research can certainly be incorporated into ours�

The remainder of this thesis consists of two parts� First� in Chapter �� we formally
de�ne our model of computation and develop the machinery needed to use our model in
the construction of hierarchical correctness proofs� Then� in Chapter 
� we illustrate the
use of our model by proving the correctness of Sch�onhage�s distributed resource arbiter�
Finally� in Chapter 	� we end with some concluding remarks� including some ideas for
future work�
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Chapter �

The Input�Output Automaton

Model

In this chapter we de�ne the input�output automaton model� We begin with a formal
de�nition of an input�output automaton� and de�ne operations that may be performed
on automata� including the composition of automata� We then show how fairness can be
modeled with automata� Finally� we develop the machinery necessary to use automata in
the construction of modular� hierarchical correctness proofs for distributed algorithms�

��� Input�Output Automata

Having informally described our model in the introduction� we now formally de�ne an
input�output automaton� Since the actions of an automaton de�ne the interface between
an automaton and its environment� it is convenient to be able to refer to this interface
explicitly� Given three disjoint sets in� out� and int of input� output� and internal actions�
respectively� we refer to the triple �in� out� int
 as an action signature S� We denote the
sets in� out� and int by in�S
� out�S
� and int �S
� respectively� and we denote the entire
set of actions in � out � int by acts�S
� Since int is the set of internal actions� it is
natural to refer to in � out as the set of external actions� denoted by ext�S
� Finally� we
denote the set int � out of locally�controlled actions by local�S
�

An input�output automaton �or automaton
 A consists of �ve components�

�� a set states�A
 of states�

�� a set start�A
 � states�A
 of start states�


� an action signature sig�A
�

��



	� a transition relation steps�A
 � states�A
 � acts�sig�A

 � states�A
� with the
property that for every state a and input action � there is a transition �a� �� a�
 in
steps�A
� and

�� an equivalence relation part�A
 on local �sig�A

�

Notice that the transition relation steps�A
 has the property that input actions are con�
tinuously enabled� as mentioned in the introduction� Notice� also� that the equivalence
relation part�A
 is the partition of the locally�controlled actions alluded to in the intro�
duction� This partition will be used when we de�ne the notion of fair computation in
Section ����

We refer to an element �a� �� a�
 of steps�A
 as a ��step from a to a�� It will occasionally
be convenient to denote the step �a� �� a�
 by a

�
� a�� and to denote the sequence of steps

a�
��� a� 	 	 	

�n� an by a�
������n� an� The step �a� �� a�
 is called an input step if � is an

input action� and output steps� internal steps� external steps� and locally�controlled steps

are similarly de�ned� If �a� �� a�
 is a step of A� then � is said to be enabled from a� Since
every input action is enabled from every state� automata are said to be input�enabled�

An execution fragment of A is a �nite sequence a���a� � � � �kak or in�nite sequence
a���a���a� � � � of alternating states and actions such that �ai� �i��� ai��
 is a step of A
for every i� An execution fragment beginning with a start state is called an execution�
We denote the set of executions of A by execs�A
� A state is said to be reachable if it is
the �nal state of a �nite execution� The schedule of an execution x is the subsequence
of actions appearing in x� denoted by sched�x
� We denote the set of schedules of A by
scheds�A
�

We will soon consider certain subsets of an automaton�s executions or schedules �such
as the set of fair computations
 to be of particular interest� Since we will compose au�
tomata� it will be necessary to have ways of composing sets of executions or schedules
as well� If these compositions are to be meaningfully related� however� certain informa�
tion about the structure of the original automata must be retained� In particular� it is
important to retain information about the action signatures of these automata� We are
therefore led to de�ne the notions of execution modules and schedule modules� essentially
sets of executions or schedules� respectively� together with an action signature�

An execution module E consists of a set states�E
 of states� an action signature sig�E
�
and a set execs�E
 of executions� Each execution of E is an alternating sequence of states
and actions of E beginning with a state� and ending with a state if the sequence is �nite�
Each execution x has an associated schedule sched�x
 that consists of the subsequence of
actions appearing in x� We denote the set of schedules of E by scheds�E
� An execution
module E is said to be an execution module of an automaton A if E and A have the
same states� the same action signature� and the executions of E are contained in the
executions of A� Notice that an execution module E is always an execution module of
some automaton� In particular� E is an execution module of the automaton having the
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states and action signature of E� and the transition relation states�E
� acts�sig�E

�
states�E
� We denote the execution module of the automaton A having execs�A
 as its
set of executions by Execs�A
� �We follow the convention of denoting sets with lower
case names and modules with capitalized names�


A schedule module S consists of an action signature sig�S
 together with a set
scheds�S
 of schedules� Each schedule of S is a �nite or in�nite sequence of the ac�
tions of S� Given an execution module E� there is a natural schedule module associated
with E consisting of the action signature and schedules of E� We denote this schedule
module by Scheds�E
� and write Scheds�A
 as shorthand for Scheds�Execs�A

�

We refer collectively to automata� execution modules� and schedule modules as objects�
the type of an object determining whether it is an automaton� execution module� or
schedule module� For notational convenience� given an object O we often omit reference
to its action signature and write� for example� in�O
 for in�sig�O

�

Since it is typically the case that more than one automaton can model the same
process� some notion of equivalence is needed� Intuitively� the external observer of a
process �a user of the process� for instance
 can detect only the sequence of actions
performed by the process� In fact� the only actions detectable by such an observer are
the external actions of the process� We are therefore led to de�ne a notion of equivalence
determined by the externally visible sequences of actions produced by an object� Since
we will consider in Section ����� a second notion of equivalence based on the fair behavior
of an object� we refer the the current notion of equivalence as unfair equivalence�

We begin by de�ning an operation that essentially extracts the externally visible
behavior of an object� An external action signature is an action signature consisting
entirely of external actions� that is� having no internal actions� The external action
signature of an object O is the action signature obtained by removing the internal actions
from the action signature of O� An external schedule module is a schedule module with
an external action signature� Given a sequence y of actions and a set � of actions� we
denote by yj� the subsequence of y consisting of actions from �� The external schedule
module of an object O� denoted by External �O
� is the external schedule module with the
external action signature of O and the schedules fyjext�O
 � y 
 scheds�O
g obtained by
removing the internal actions from the schedules of O� We de�ne the unfair behavior of O�
denoted by Ubeh�O
� to be the external schedule module External �O
�

Two objects O and P of the same type are said to be unfairly equivalent� denoted by

O
unfair
� P � if Ubeh�O
 � Ubeh�P 
� This equivalence is clearly an equivalence relation�

and we will see that it is also a congruence with respect to the operations we now de�ne
on objects�
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����� Composition

To build models of complex systems� we compose models of simpler system components�
In this section we show how to compose objects to construct such models�

Composition of Automata

Informally� the composition of a collection of automata is their Cartesian product� with
the added requirement that automata synchronize the performance of shared actions�
That is� each automaton is allowed to take steps independently� with the restriction that
if one automaton takes a ��step� then all automata sharing � as an action must also take
a ��step� This synchronization models communication between system components� If �
is an output action of A and an input action of B� then the simultaneous performance
of � models communication from A to B� Since synchronization is meant only to model
communication� however� two automata sharing � as an output action should not be
required to perform � simultaneously� We note that two processors cannot be expected
to perform an output action simultaneously in an asynchronous system� Rather than
complicate the notion of composition� we require instead that the output actions of
composed automata be disjoint� Since internal actions are meant to model externally
undetectable actions� we are faced with the need for a similar restriction for internal
actions� We require that the internal actions of each automaton in a composition be
disjoint from the actions of the remaining automata�

Having restricted the composition of automata to those with suitably compatible
action signatures� determining the type of an action in a composition is fairly simple�
Output actions of the component automata become output actions of the composition�
internal actions of component automata become internal actions of the composition� and
all remaining �input
 actions of the component automata become input actions of the
composition� Notice that the composition of automata does not hide communication
between component automata� To hide such communication will require the use of a
hiding operation de�ned later in Section ������

Finally� recall that associated with every automaton �in particular� with a composition
of automata
 is a partition of its locally�controlled actions� Our intuitive understanding
of this partition is that each class represents the locally�controlled actions of one system
component� A natural partition of a composition�s locally�controlled actions is to place
the locally�controlled actions of each component automaton in a separate class� Since the
restrictions we impose on the composition of automata ensure that the locally�controlled
actions of the component automata are disjoint� this is indeed a partition� However�
each component automaton may model many system components� We therefore parti�
tion a composition�s locally�controlled actions by taking each class of each component
automaton as a separate class of the composition�s partition� That is� the partition of a
composition�s locally�controlled actions is the union of its components� partitions�
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We are now in a position to formally de�ne the composition of automata� We begin
by de�ning a composition of action signatures� Previous discussion suggests that the
action signatures fSi � i 
 Ig be called compatible if for all i� j 
 I we have

�� out�Si
 � out�Sj
 � �� and

�� int�Si
 � acts�Sj
 � ��

In general� we say that the objects fOi � i 
 Ig are compatible if their action signa�
tures are compatible� The composition S �

Q
i�I Si of compatible action signatures

fSi � i 
 Ig is de�ned to be the action signature with

�� in�S
 �
S
i�I

in�Si
 

S
i�I

out�Si
�

�� out�S
 �
S
i�I

out�Si
� and


� int�S
 �
S
i�I

int �Si
�

Notice that this composition is commutative and associative�

The composition A �
Q

i�I Ai of compatible automata fAi � i 
 Ig is de�ned to be
the automaton with

�� states�A
 �
Q
i�I

states�Ai
�

�� start�A
 �
Q
i�I

start�Ai
�


� sig�A
 �
Q
i�I

sig�Ai
�

	� part�A
 �
S
i�I

part�Ai
� and

�� steps�A
 equal to the set of triples �faig � �� fa�ig
 such that for all i 
 I

�a
 if � 
 acts�Ai
 then �ai� �� a�i
 
 steps�Ai
� and

�b
 if � �
 acts�Ai
 then ai � a�i�

Notice that since the automata Ai are input�enabled� so is their composition� and hence
their composition is an automaton� When I is a �nite set f�� � � � � ng� we will frequently
denote the composition

Q
iAi by A� 	 � � � 	An�

As a simple example of automaton composition� consider the two automata A and B
shown at the top of Figure ���� and their composition A 	B shown at the bottom of the
same �gure� �A caret points to the single initial state of each automaton�
 The action �
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�
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�
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�
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�

�
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�

s�a�� b�	

s�a�� b�	 s �a�� b�	
s

�a�� b�	

A �B �

AA��

�
�

��

� 	
	
	R

�

�
�

� �
 �

Figure ���� An example of automaton composition�

is an output action of A and an input action of B� and the action � is an output action
of B and and input action of A� Notice that since each waits for the other to take an
output step before taking an output step itself� the automata A and B alternate output
steps in executions of the composition A 	B� Notice� furthermore� that since � and � are
output actions of A and B� respectively� all actions of the composition A 	B are output
actions� Finally� notice that the partition of the composition�s locally�controlled actions
�in this case� the output actions
 places � and � in separate equivalence classes�

The composition of automata has two simple properties� First� an execution of a
composition A �

Q
iAi always induces executions in the component automata Ai� If

a � faig is a state of A� let ajAi � ai� If x � a���a� � � � is an execution of A� let xjAi be
the sequence obtained by deleting �jaj when �j is not an action of Ai� and replacing the
remaining aj with ajjAi� We now have the following�

Lemma �
 If x 
 execs�
Q
i�I

Ai
� then xjAi 
 execs �Ai
 for all i 
 I�

Proof
 Let A �
Q

iAi� and suppose that x � a���a� � � �� By the de�nition of an
execution� a� is a start state of A� and every triple �ak��� �k� ak
 is a step of A� Two facts
follow from the de�nition of the composition A� First� a�jAi must be a start state of Ai�
Second� if �k is an action of Ai then �ak��jAi� �k� akjAi
 is a step of Ai� If �k is not an
action of Ai then ak��jAi � akjAi� Thus� if xjAi � s���s� � � �� then s� is a start state
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of Ai� and every triple �sj��� �j� sj
 is a step of Ai� Therefore� xjAi is an execution of Ai�

Conversely� under certain conditions an execution of a composition is induced by exe�
cutions of its components� Here and elsewhere� we denote yjacts�O
 by yjO for arbitrary
objects O�

Lemma �
 Let fAi � i 
 Ig be a collection of compatible automata� Let xi be an ex�
ecution of Ai for every i 
 I� and let y be a sequence of actions from the Ai� If
yjAi � sched�xi
 for every i 
 I� then there is an execution x of

Q
i�I Ai such that

y � sched�x
� and xi � xjAi for every i 
 I�

Proof
 Let A �
Q

iAi� Suppose that y � ���� � � �� Since yjAi � sched �xi
� we can write
xi � ai��i�a

i
��i�a

i
� � � �� Let i� � �� Let x � a���a� � � � where aj is de�ned as follows� If

ik � j � ik��� then ajjAi � aik� That is� the automaton Ai remains in state aik between
the performance of actions �ik and �ik�� � and changes state to a

i
k�� upon the performance

of �ik��� First� we claim that a� is a start state of A� Since for all i we have that i� � �
implies a�jAi � ai�� a start state of Ai� we are done� Second� we claim that �aj��� �j� aj

is a step of A for all j� Suppose �j 
 acts�Ai
� Then �j � �ik for some k� It follows
that aj��jAi � aik�� and ajjAi � aik since ik�� � j � ik� Thus� �aj��jAi� �j� ajjAi
 is a
step of Ai� Conversely� suppose �j �
 acts�Ai
� Then ik � j � ik��� and it follows that
aj��jAi � aik � ajjAi� In either case� �aj��� �j� aj
 is a step of A for all j� It follows that x
is an execution of A� and furthermore that y � sched�x
 and xjAi � xi for all i�

The following corollary� essentially Lemma 	 from �LM���� ensures that composition
preserves the notion that a system component controls the performance of its own locally�
controlled actions� As a result� when reasoning about the enabling of an action in a
composition� it is enough to reason about the enabling of the action at one component�

Corollary �
 Let y be a �nite schedule of a composition A �
Q

i�I Ai� Let � be a
locally�controlled action of Ai� and let y� � y�� If y�jAi is a schedule of Ai� then y� is a
schedule of A�

Proof
 Since y is a �nite schedule of A� there is a �nite execution x of A such that
y � sched�x
� By Lemma �� xjAj is an execution of Aj for every j 
 I� Since � is a
locally�controlled action of Ai� if � is an action of Aj �for any j �� i
� then � is an input
action of Aj� Since the Aj are input�enabled� and since y�jAi is a schedule of Ai� for every
j 
 I there is an execution x�j of Aj such that y�jAj � sched�x�j
� By Lemma �� there is
an execution x� of A such that y � sched�x�
� and hence y is an execution of A�
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Composition of Execution Modules

We now de�ne the composition of execution modules� The composition E �
Q

i�I Ei of
compatible execution modules fEi � i 
 Ig is de�ned as follows� The states of E areQ

i�I states�Ei
� and the action signature is
Q

i�I sig�Ei
� Given a state s � fsig of the
composition� we de�ne sjEi � si� Given a sequence x � s���s� � � � of states and actions
of E� we de�ne xjEi to be the sequence obtained by removing �jsj if �j is not an action
of Ei� and replacing the remaining sj by sjjEi� The executions of E are those sequences
s���s� � � � such that for every i 
 I we have that xjEi is an execution of Ei� and that
sj��jEi � sjjEi whenever �j is not an action of Ei� The next lemma gives an alternative
characterization of the composition of execution modules�

Lemma �
 Let fEi � i 
 Ig be a collection of compatible execution modules� Sup�
pose Ei is an execution module of an automaton Ai for every i 
 I� Then

Q
i�I Ei is the

execution module of
Q

i�I Ai with executions x such that xjAi is an execution of Ei for
every i 
 I�

Proof
 Let E �
Q

iEi and A �
Q

iAi� Since Ei is an execution module of Ai� it
follows that Ei and Ai have the same states and action signature� and hence so do E
and A� We need only check that the executions of E are the executions x of A such
that xjAi is an execution of Ei� Suppose x is an execution of E� The execution x is a
sequence s���s� � � � of states and actions of E such that xjEi is an execution of Ei� and
sj��jEi � sjjEi whenever �j is not an action of Ei� Since Ei is an execution module of Ai�
�sj��jAi� �j� sjjAi
 is a step of Ai whenever �j is an action of Ai� and sj��jAi � sj jAi

whenever �j is not an action of Ai� It follows that x is an execution of A� and furthermore
that xjAi is an execution of Ei for every i 
 I� Conversely� suppose x is an execution
of A such that xjAi is an execution of Ei for every i 
 I� Clearly� x is a sequence
s���s� � � � of states and actions of E such that xjEi is an execution of Ei for every
i 
 I� Furthermore� from the de�nition of the composition of automata we see that
sj��jEi � sjjEi whenever �j is not an action of Ei� It follows that x is an execution of E�
as desired�

This composition is de�ned so that the following result holds�

Lemma �
 For all compatible automata fAi � i 
 Ig�

Execs�
Y

i�I

Ai
 �
Y

i�I

Execs�Ai
�

Proof
 Let A �
Q

iAi� Furthermore� let EC � Execs�
Q

iAi
 and CE �
Q

i Execs�Ai
�
Notice that EC is an execution module of A� Furthermore� since Execs�Ai
 is an execu�
tion module of Ai for every i 
 I� Lemma 	 implies that CE is also an execution module

�	



of A� It follows that EC and CE have the same states and action signature� We need
only show that they have the same executions� By Lemmas � and 	� x is an execution of
EC i� x is an execution of A such that xjAi is an execution of Ai for every i 
 I i� x is
an execution of CE� Thus� EC and CE have the same executions� and hence are equal�

Composition of Schedule Modules

We now de�ne the composition of schedule modules� The composition
Q

i�I Si of com�
patible schedule modules fSi � i 
 Ig is de�ned to be the schedule module with action
signature

Q
i�I sig�Si
� and schedules y such that yjSi is a schedule of Si for every i 
 I�

This composition is de�ned so that the following result holds�

Lemma �
 For all compatible execution modules fEi � i 
 Ig�

Scheds�
Y

i�I

Ei
 �
Y

i�I

Scheds�Ei
�

Proof
 Let SC � Scheds�
Q

i Ei
 and CS �
Q

i Scheds�Ei
� Since SC and CS clearly
have the same action signatures� we need only show that they have the same schedules�
Suppose Ei is an execution module of an automaton Ai for every i 
 I� Notice that y
is a schedule of SC i� y is the schedule of an execution x of

Q
iEi� Lemma 	 implies

this is the case i� y is the schedule of an execution x of
Q

iAi such that xjEi � xi is an
execution of Ei for every i 
 I� Lemma � implies this is the case i� yjEi is the schedule
of an execution xi of Ei� From the de�nition of schedule module composition we see this
is the case i� y is a schedule of CS� Thus� SC and CS have the same schedules� and
hence are equal�

In addition� we have the following�

Lemma �
 For all compatible schedule modules fSi � i 
 Ig�

External �
Y

i�I

Si
 �
Y

i�I

External �Si
�

Proof
 Let S �
Q

i Si� and let EC � External �
Q

i Si
 and CE �
Q

i External �Si
� Since
the schedule modules Si are compatible� int�Si
 � acts�Sj
 � � for all i �� j� That is�
the internal actions of each schedule module are disjoint from the actions of the others�
With this observation� it follows from the de�nition of action signature composition that
EC and CE have the same action signature� We need only show they have the same
schedules� If y is a schedule of EC� then y � y�jext�S
 for some schedule y� of S� Since
y�jSi is a schedule of Si� yjExternal �Si
 � y�jExternal �Si
 is a schedule of External �Si
�

��



and hence y is a schedule of CE� Conversely� suppose y is a schedule of CE� Then
yjExternal �Si
 � yijext �Si
 for some schedule yi of Si� Suppose y � ���� � � �� Let us write
yi � �i��

i
��

i
� � � � where �

i
j is a �possibly empty
 sequence of internal actions of Si� and �

i
j

is �j if �j is an external action of Si and the empty string otherwise� Let y� � ������ � � �

where �j is an arbitrary interleaving of the actions appearing in the �ij � Then y� is a
sequence of actions of S such that y�jSi � yi is a schedule of Si� so y� is a schedule of S�
Since y � y�jext�S
� y is a schedule of EC�

Lemmas �� �� and � can be summarized as follows�

Corollary 	
 Let A denote the class of automata� E denote the class of execution mod�
ules� and S denote the class of schedule modules� The following diagram commutes�

A

A

E

E

S

S

S

S
�

Q

�

Q

�

Q

�

Q

�Execs

�Execs

�Scheds

�Scheds

�External

�External

One important consequence of Corollary � is the following result� which says that
the �unfair
 behavior of a composition is the composition of its components� �unfair

behaviors�

Lemma �
 Ubeh�
Q
i�I

Oi
 �
Q
i�I

Ubeh�Oi
 for all compatible objects fOi � i 
 Ig�

It is now possible to see that composition satis�es a number of natural axioms� We
note that the following result is an immediate consequence of the de�nition of schedule
module composition�

Lemma ��
 Suppose S �
Q

i Si� T �
Q

i Ti� U �
Q

i Ui� and V �
Q

i Vi where the Si�
Ti� Ui� and Vi are schedule modules�

�� S 	 T � T 	 S�

�� �S 	 T 
 	 U � S 	 �T 	 U
�


� If S � T and U � V � then S 	U � T 	V whenever the compositions S 	U and T 	V
are de�ned�

��



As a consequence of Lemmas � and ��� we have the following�

Lemma ��
 Suppose O �
Q

iOi� P �
Q

i Pi� Q �
Q

iQi� and R �
Q

iRi where the Oi�
Pi� Qi� and Ri are objects�

�� O 	 P
unfair
� P 	O�

�� �O 	 P 
 	Q
unfair
� O 	 �P 	Q
�


� If O
unfair
� P and Q

unfair
� R� then O 	 Q

unfair
� P 	 R whenever the compositions

O 	Q and P 	R are de�ned�

Proof
 Recall that O 	 P
unfair
� P 	O i� the external schedule modules Ubeh�O 	 P 
 and

Ubeh�P 	 O
 are equal� By Lemma � we see that Ubeh�O 	 P 
 � Ubeh�O
 	 Ubeh�P 

and Ubeh�P 	O
 � Ubeh�P 
 	Ubeh�O
� However� Lemma �� implies that these schedule

modules are equal� Therefore� O 	 P
unfair
� P 	O� The remaining parts are similar�

Conditions � and � say that composition is commutative and associative up to equiv�
alence� Condition 
 says that composition is a almost congruence with respect to compo�
sition� However� since the external behavior of O and Q contains no information about
the internal actions of O and Q� their external behaviors do not determine whether they
are compatible� and hence whether their composition is de�ned� Thus� equivalence is
not quite a congruence� We call an equivalence satisfying condition 
 a weak congruence�
Notice that this weakness is due only to con�icting internal actions names� actions not
a�ecting the external behavior of an object� In Section ����
 we will see how to perform
a syntactic renaming of internal action names to avoid this con�ict without a�ecting the
external behavior of the object� This is reminiscent of variable renaming to avoid con�ict
during substitution in predicate calculus�

����� Action Hiding

Recall that composition does not hide actions modeling interprocess communication� In
particular� if � is an output action of A and an input action of B modeling communi�
cation from A to B� then � becomes an �external
 output action of A 	 B� Since this
communication is really internal to the system A 	B� we would like to be able to hide �
from external view� to transform � into an internal action of A 	B�

Given an object O and a set of actions  � we de�ne the object Hide��O
 to be the
object di�ering from O only in that

�� in�Hide��O

 � in�O
 
 �

��



�� out�Hide��O

 � out�O

  � and


� int�Hide��O

 � int�O
 � �acts�O
 �  
�

Since the hiding operation modi�es only the action signature of an object �without mod�
ifying its executions or schedules
� we have the following�

Lemma ��
 For all automata A� execution modules E� schedule modules S� and sets of
actions  �

�� Execs�Hide��A

 � Hide��Execs�A



�� Scheds�Hide��E

 � Hide��Scheds�E




� External �Hide��S

 � External �Hide��External �S




Proof
 Parts � and � are immediate from the de�nition of the hiding operation� Part 

follows from the fact that yj�ext �S

 
 � �yjext�S

j�ext �S

 
 for every schedule y�

As a corollary of Lemma ��� we have the following�

Corollary ��
 Let A denote the class of automata� E denote the class of execution
modules� and S denote the class of schedule modules� The following diagram commutes�

A

A

E

E

S

S

S

S

S

�

Hide�

�

Hide�

�

Hide�

	
	
	R

Hide�

�
�

�� External

�Execs

�Execs

�Scheds

�Scheds

�External

�External

Suppose fOi � i 
 Ig are compatible objects� and consider their composition O� Sup�
pose that � is an action of Oi not shared by Oj for every i �� j� Intuitively� if � models
some communication internal to the system component modeled by Oi� then whether � is
hidden before or after forming the composition O should not a�ect the resulting object�
This intuition is formalized in the following result�

��



Lemma ��
 Let fOi � i 
 Ig be a collection of compatible objects� and let f i � i 
 Ig
be a collection of sets of actions� If acts�Oi
 and  j are disjoint for all i �� j� then
Hide�i�i

�
Q
i�I

Oi
 �
Q
i�I

Hide�i
�Oi
�

Proof
 Let HC � Hide�i�i
�
Q

iOi
 and CH �
Q

iHide�i
�Oi
� First� we claim that

the composition HC is de�ned i� CH is de�ned� Since for all i �� j the intersection
acts�Oi
 �  j is empty� for all i �� j we have

out�Oi
 � out�Oj
 � �out�Oi

  i
 � �out�Oj

  j


� out�Hide�i
�Oi

 � out�Hide�j

�Oj



and

int�Oi
 � acts�Oj
 � �int�Oi
 � � i � acts�Oi

� � �acts�Oj

 j �

� int �Hide�i
�Oi

 � acts�Hide�j

�Oj

�

It follows that the objects Oi are compatible i� the objects Hide�i
�Oi
 are compatible�

and hence that HC is de�ned i� CH is de�ned�

Next� we claim that HC and CH have the same action signatures� and it will follow
that HC and CH are equal� Notice that

in�HC
 � in�
Y

i�I

Oi
 

�

j�I

 j

� �
�

i�I

in�Oi


�

j�I

out�Oj

 

�

k�I

 k

� �
�

i�I

in�Oi


�

j�I

 j
 
 �
�

i�I

out�Oi


�

j�I

 j


�
�

i�I

�in�Oi

 i
 

�

j�I

�out�Oj

  j


�
�

i�I

in�Hide�i
�Oi

 


�

j�I

out�Hide�j
�Oj



� in�
Y

i�I

Hide�i
�Oi

 � in�CH
�

The fourth equality holds since acts�Oi
 �  j is empty for all i �� j� Similar arguments
show that out�HC
 � out�CH
 and int�HC
 � int �CH
� Therefore� HC and CH have
the same action signature� and hence are equal�

����� Action Renaming

Our de�nition of composition makes the names of actions quite important� In particular�
the notion of object compatibility depends entirely on the names of actions shared by

��



the objects� In this section� we de�ne an operation that renames actions� With this
operation� objects can be made compatible by renaming con�icting actions�

An action mapping f is an injective mapping between sets of actions� Such a mapping
is said to be applicable to an object O if the domain of f contains the actions of O� Action
mappings are extended to objects in the obvious way� If the action mapping f is applica�
ble to an automaton A� then the automaton f�A
 is the automaton with the states and
start states of A� with the input� output� and internal actions f�in�A

� f�out �A

� and
f�int �A

� respectively� with the transition relation f�a� f��
� a�
 � �a� �� a�
 
 steps�A
g�
and with the equivalence relation f�f��
� f���

 � ��� ��
 
 part�A
g� Since f is injective�
the partition of the locally�controlled actions of f�A
 is guaranteed to be an equivalence
relation� Objects f�O
 are de�ned similarly for other types of objects� Such an object
f�O
 is said to be a renaming of O� Since renaming a�ects only action names� the
following result is easy to see�

Lemma ��
 Let f be an action mapping applicable to the automaton A� the execution
module E� and the schedule module S�

�� Execs�f�A

 � f�Execs�A



�� Scheds�f�E

 � f�Scheds�E




� External �f�S

 � f�External �S



In addition� since action mappings are injective� it is easy to see that actions may be
hidden before or after renaming�

Lemma ��
 Hidef��	�f�O

 � f�Hide��O

 for any object O and applicable action
mapping f �

Let us consider how renaming interacts with composition� Suppose an action map�
ping fi is applicable to the object Oi for every i 
 I� First� notice that if each fi maps
some output action �i of Oi to the action �� then the fi�Oi
 are incompatible� andQ

i fi�Oi
 is not be de�ned even though
Q

iOi may be� Furthermore� if each fi maps an
action � to a di�erent action �i� then executions of

Q
i fi�Oi
 may have no relationship

to the executions of
Q

iOi since the objects fi�Oi
 may no longer be required to synchro�
nize on the actions �i� We are therefore led to de�ne a collection ffi � i 
 Ig of action
mappings to be compatible if for all actions �i and �j we have fi��i
 � fj��j
 i� �i � �j�
We de�ne their composition f �

Q
i fi to be the action mapping having as its domain the

union of the domains of the fi� and mapping the action � to fi��
 if � is in the domain
of fi� The fact that the fi are compatible ensures that f is well�de�ned� It is obvious
that if each fi is applicable to an object Oi� then f is applicable to their composition� In
addition� the following result veri�es that the renaming of such objects may occur either
before or after the formation of their composition without a�ecting the resulting object�
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Lemma ��
 Let fOi � i 
 Ig be compatible objects� and let ffi � i 
 Ig be compatible
action mappings� If fi is applicable to Oi for every i 
 I� then �

Q
i�I

fi
�
Q
i�I

Oi
 �
Q
i�I

fi�Oi
�

Proof
 We prove the result for automata Ai� the proofs for other types of objects are
similar� Let f �

Q
i fi� A �

Q
iAi� and A� �

Q
i fi�Ai
� We show that f�A
 is de�ned

i� A� is de�ned� and that in this case f�A
 � A�� To do so� we must verify the following�
�i
 that the Ai are compatible i� the fi�Ai
 are compatible� �ii
 that f�A
 and A� have
the same states and start states� �iii
 that f�A
 and A� have the same action signature�
�iv
 that f�A
 and A� have the same transition relation� and �v
 that f�A
 and A� have
the same partition of locally�controlled actions� Since the fi are injective mappings such
that fi��i
 � fj��j
 i� �i � �j� the only nontrivial part of this proof to check is part �iv
�
Suppose that �a� �� a�
 is a step of f�A
� For some action � we must have that �a� �� a�

is a step of A� and that f��
 � �� Furthermore� for each i� the action � is an action
of Ai i� � is an action of fi�Ai
� If � is an action of fi�Ai
� then � is an action of Ai� so
�ajAi� �� a

�jAi
 is a step of Ai and �ajfi�Ai
� �� ajfi�Ai

 is a step of fi�Ai
� If � is not an
action of fi�Ai
� then � is not an action of Ai� so ajAi � a�jAi and ajfi�Ai
 � a�jfi�Ai
�
In either case� �a� �� a�
 is a step of A� �

Q
i fi�Ai
� A similar argument shows that if

�a� �� a�
 is a step of A�� then it is a step of f�A
� It follows that f�A
 and A� have the
same transition relation� and hence are equal�

����� Remarks

Since the de�nitions given so far have been independent of such considerations� we have
chosen to ignore until this point issues of cardinality that appear in most models of
computation� For example� we have not restricted our model to automata with countable
sets of states and actions� and hence to countable nondeterminism� Furthermore� we have
not restricted our theory to the composition of a �nite �or even countable
 number of
automata� While these are natural restrictions �and all of the results presented thus far
still hold when these restrictions are imposed
� we note that Lynch and Merritt have
made e�ective use of the composition of a countable number of automata in �LM���� In
the remainder of this thesis� we restrict our attention to automata modeling systems with
a countable number of components� In particular� we restrict our attention to countable
compositions� and to automata A for which part�A
 partitions A�s locally�controlled
actions into a countable number of equivalence classes� This restriction becomes relevant
in the following section where we de�ne the notion of fair computation�

��� Fairness

Fair computation is of central importance to distributed computation� The mutual ex�
clusion problem� for example� has been formulated in �EM��� with the �no lockout�


�



condition that if every process is allowed to take steps in�nitely often� then every process
trying to enter its critical region will eventually do so� That is� during fair computation�
every process wishing to enter its critical region will eventually do so� More generally�
the speci�cation of a distributed system typically includes conditions of the form �if con�
dition P holds� then eventually condition Q will hold�� The ability of a process to satisfy
such conditions clearly depends on fair computation� In this section we show how fair
computation can be described in our model� and we show how fair computation induces
an interesting equivalence of automata�

����� Fair Executions

As previously mentioned� computation in a system of processes is said to be fair if every
process is given the chance to make computational progress in�nitely often� The phrase
�given the chance� is important� since a process may not be in a position to make
progress every time it is given the chance� Recall that associated with an automaton
A is a partition part�A
 of its locally�controlled actions� Intuitively� each class of this
partition consists of the locally�controlled action of a process in the system being modeled
by A� A fair execution of an automaton A is de�ned to be an execution x such that the
following conditions hold for each class C of part�A
�

�� If x is a �nite execution� then no action of C is enabled from the �nal state of x�

�� If x is an in�nite execution� then either actions from C appear in�nitely often in x�
or states from which no action of C is enabled appear in�nitely often in x�

These conditions may be interpreted as follows� If x is �nite� then computation in the
system has halted since no process is able to take another step� If x is in�nite� then every
process has been given the chance to take a step in�nitely often� although it may be that
some process was unable to make computational progress every time it was given the
chance to do so� Notice that this de�nition of fairness is essentially what is called weak

fairness in the literature �see �Fra���� for example
� As mentioned in the introduction�
however� our de�nition is di�erent in an important way in that it takes into consideration
the notion of one process controlling the performance of an action� In particular� it is
possible for an �input
 action to be continuously enabled� and yet never be performed� We
note in passing that our notion of fairness de�nes the notion of a �nite fair computation
without the usual requirement that �nite computations be extended in some trivial way
to in�nite computations�

The set fair�A
 is the set of fair executions of the automaton A� and Fair�A
 is the
execution module of A having fair�A
 as its set of executions�

One simple consequence of this de�nition of fair executions is the following�
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Lemma �	
 If x is a �nite execution of an automaton A� then x can be extended to a
fair execution x��a� � � � of A �in which every �i is a locally�controlled action of A
�

Proof
 Let f be a function mapping the natural numbers to the classes of part�A
� with
the property that every class of part�A
 appears in the range of f in�nitely often� There
is an execution x� � x��a� � � � of A with the property that �i is an action from the class
f�i
 if such and action is enabled from ai��� and an arbitrary locally�controlled action
of A otherwise� �If from some state ai�� no locally�controlled action of A is enabled�
then x� is a �nite execution ending in state ai���
 The execution x� is a fair execution
of A�

More important� however� is the next lemma which says that the fair executions of a
composition are a composition of the fair executions of its components� It is for the sake
of this result that we associate a partition of an automaton�s locally�controlled actions
with an automaton�

Lemma ��
 Fair�
Q
i�I

Ai
 �
Q
i�I

Fair�Ai
 for all compatible automata fAi � i 
 Ig�

Proof
 Let FC � Fair�
Q

iAi
 and CF �
Q

i Fair�Ai
� Since both are execution modules
of A �

Q
iAi� both have the same states and action signature� We need only show that

they have the same executions� First� however� notice that since the Ai are compatible�
their locally�controlled actions are disjoint� Furthermore� notice that each Ai is input�
enabled� It follows that eachAi determines when its locally�controlled actions are enabled
in the composition A� If � is a locally�controlled action of Ai and a is a state of A� then �
is enabled from a in A i� � is enabled from ajAi in Ai�

Suppose x is a fair execution of A� and let us show that x is an execution of CF �
We must show that xjAi is a fair execution of Ai for all i� Let C be a class of locally�
controlled actions of Ai� and hence a class of A� Suppose x is �nite� Since x is a fair
execution of A� no action of C is enabled in A from the �nal state a of x� and hence
no action of C is enabled in Ai from the �nal state ajAi of xjAi� Suppose x is in�nite�
If actions from C appear in�nitely often in x� they do so in xjAi� On the other hand�
suppose states appear in�nitely often in x from which no action of C is enabled in A�
It follows that either xjAi is �nite and no action of C is enabled from the �nal state of
xjAi in Ai� or else in�nitely many states of Ai appear in xjAi from which no action of C
is enabled� In any case� xjAi is a fair execution of Ai� It follows that x is an execution
of CF �

Conversely� suppose x is an execution of CF � and let us show that x is a fair execution
of A� Let C be a class of locally�controlled actions of A� and therefore a class of Ai for
some i� Since x is an execution of CF � the execution xjAi is a fair execution of Ai�
Suppose x is �nite� and therefore that xjAi is �nite� Since xjAi is fair� no action of C is
enabled from the �nal state of xjAi� and hence no action of C is enabled from the �nal







state of x� Suppose x is in�nite� If actions from C appear in�nitely often in xjAi� the
same is true of x� If states appear in�nitely often in xjAi from which no action of C is
enabled� the same is true in x� However� xjAi may be �nite� In this case� no action of C
is enabled from the �nal state of xjAi� Since x is in�nite� there is a state appearing in x
after which no action of C is ever enabled� In any case� x must be a fair execution of A�
It follows that FC � CF �

����� Fair Equivalence

In Section ��� we de�ned a notion of equivalence based on the external behavior of an
object� We now de�ne a similar notion of equivalence based on fair external behavior�
The fair behavior of an automaton A� denoted by Fbeh�A
� is de�ned to be the schedule
module External �Fair�A

� We extend this de�nition to objects of other types �execution
modules and schedule modules
 by setting Fbeh�O
 � Ubeh�O
� It is convenient to denote
the set of schedules of Fbeh�O
 by fbeh�O
� for any object O� In light of Corollary � and
Lemma ��� we see that the fair behavior of a composition is the composition of the fair
behavior of its components�

Lemma ��
 Fbeh�
Q
i�I

Oi
 �
Q
i�I

Fbeh�Oi
 for compatible objects fOi � i 
 Ig�

We say that two objects O and O� are fairly equivalent� denoted O
fair
� O�� if they have

the same fair behavior� that is� if Fbeh�O
 � Fbeh�O�
� In light of Lemmas �� and ���
fair equivalence satis�es the axioms stated for unfair equivalence in Lemma ���

Lemma ��
 Suppose O �
Q

iOi� P �
Q

i Pi� Q �
Q

iQi� and R �
Q

iRi where the Oi�
Pi� Qi� and Ri are objects�

�� O 	 P
fair
� P 	O�

�� �O 	 P 
 	Q
fair
� O 	 �P 	Q
�


� If O
fair
� P and Q

fair
� R� then O 	Q

fair
� P 	R whenever the compositions O 	Q and

P 	R are de�ned�

Thus� composition is commutative and associative up to fair equivalence� and fair equiv�
alence is a weak congruence with respect to composition� With this we conclude that
discussion of fairness directly related to program veri�cation� In the remainder of this
section we consider several interesting questions about how fairness is modeled in our
model�
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Figure ���� The importance of the partition of locally�controlled actions�

����� Fairness and System Decomposition

Having seen the de�nition of a fair execution� the role of the equivalence relation part�A

associated with an automaton A is clear� The automaton models a system� and the
locally�controlled actions of each system component form a separate class of the partition�
It is worth considering� however� whether this partition is really of any importance� We
claim that if relationships such as those stated in Lemma �� are of importance �and we
think they are
� then the information about the system structure encoded in the partition
of an automaton�s locally�controlled actions must be retained� Suppose for a moment
that we do away with the partition� so that all we know about an automaton�s locally�
controlled action is whether it is an internal or output action� Consider the automata A
and B given in Figure ���� and consider their composition A 	 B� Here � is an input
action� and � and � are output actions� In both automata A and B� the execution
with the in�nite sequence of ��s as its schedule may be considered a fair execution since
in�nitely often each automaton passes through a state from which no locally�controlled
action �either � or �
 is enabled� In the composition� however� a locally�controlled action
is enabled from every state through which such an execution must pass� and yet none
of these actions appear in the execution� This execution cannot be considered a fair
execution of the system since the system is never allowed to make progress� even though
it is able to do so at each stage of the execution� If� on the other hand� we recognize
that � and � are output actions of separate system components� we see that in�nitely
often each component passes through a state from which none of its locally�controlled
actions is enabled� We therefore conclude that this is an execution of the system that is
fair to all components� and hence can be considered a fair execution of the system� The
partition of locally�controlled actions therefore seems to be an important component of
an input�output automaton�
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It is conceivable� however� that an automaton�s actions can be partitioned in such a
way that it is impossible for the automaton to model a system whose components have as
their locally�controlled actions one class of the partition� It therefore seems possible for
our intuitive understanding of an automaton�s partition of its locally�controlled actions
to be violated� Let us say that an automaton A is primitive if part�A
 consists of a single
class� Intuitively� such an automaton can model only an �atomic� system component� It
would be nice to know that every automaton A is �fairly
 equivalent to a composition
of primitive automata� where the locally�controlled actions of each primitive automaton
form a class of A�s partition� This would in e�ect be saying that every automaton does
model a system in a way satisfying our intuition� What we can prove is the following�
An automaton is said to be deterministic if it has one start state� and for every action �
there is at most one ��step from every state�

Lemma ��
 Let A be an automaton whose equivalence relation part�A
 partitions its
locally�controlled actions into the classes fCi � i 
 Ig� If A is deterministic� then there
are primitive automata Ai such that Ci is the set of locally�controlled actions of Ai� and

A
fair
� Hide int�A	�

Q
i�I

Ai
�

Proof
 Since A
fair
� Hide int�A	�A

�
 where A� is the automaton di�ering from A only in
that the internal actions of A are output actions of A�� we may assume without loss of

generality that A has no internal actions� and show that A
fair
�
Q

iAi� Let Ai be the
primitive automaton obtained from A as follows� First� set in�Ai
 � acts�A
 
 Ci and
out�Ai
 � Ci� Second� add to Ai a dead state d� Finally� to ensure that Ai is input�
enabled� if � is an input action that is not enabled from a state a� add the transition

a
�
� d from a to the dead state d� Let B �

Q
iAi� We claim that A

fair
� B�

Suppose x is a fair execution of A� Since x is also an execution of each Ai� there is
an execution y of B such that yjAi � x for every i� We claim that y is a fair execution
of B� If actions from Ci appear in�nitely often in x� then the same is true of y� On the
other hand� suppose that � is an action of Ci that is not enabled from a state a of A�
Then � is an �output
 action of Ai that is not enabled from the state a in Ai� and hence
not from the state fag in B� It follows that if x is �nite and no action from Ci is enabled
from the �nal state of x� then the same is true of y� and that if x is in�nite and there
are in�nitely many states appearing in x from which no action of Ci is enabled� then the
same is true of y� Therefore� y is a fair execution of B�

Conversely� suppose y is a fair execution of B� We claim that x � yjAi is a fair
execution of A for every i� We will soon show that if b is a reachable state of B� then
all components bjAi of b are equal� and equal to a state other than d� From this it will
follow that all yjAi are equal� Furthermore� since x � yjAi� the state d must not appear
in x� Since transitions to d were the only transitions added in the construction of Ai� x
is an execution of A� Furthermore� since x is fair in Ai� either x is �nite and no action
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of Ci is enabled from the �nal state of x� or x is in�nite and either actions of Ci appear
in�nitely often in x� or states appear in�nitely often in x from which no action of Ci is
enabled� Since this is true for every class Ci� x is must be a fair execution of A�

We now proceed by induction on the length 	 of an execution required to reach b to
show that bjAi � bjAj �� d for all i and j� Since A has a single start state� each Ai has
the same �unique
 start state� and the case of 	 � � is trivial� Suppose 	 
 � and the
inductive hypothesis holds for 	 
 �� Suppose b is reachable by an execution of length 	

whose last transition is b�
�
� b� Since b� is reachable by an execution of length 	 
 ��

the inductive hypothesis implies that b�jAi � b�jAj �� d for all i and j� Since � is either
an input action of A or an output action of A �and hence of some Ai
� there must be
an automaton Ai for which no transition b�jAi

�
� d was added during its construction�

It follows that b�jAi
�
� bjAi must be a transition of A� and hence that no dead state

transition was added from b�jAj during the construction of any Aj� Therefore� every step
b�jAi

�
� bjAi is a step of A� Since A is deterministic� there is only one such step� so

bjAi � bjAj �� d for all i and j�

This result says that our intuition �our understanding of an automaton�s partition of
its locally�controlled actions
 is satis�ed by a very restricted class of automata� It does
not seem to be true� however� for arbitrary automata �although Lemma �� does hold for
arbitrary automata if fair equivalence is replaced by unfair equivalence� the proof of this
using the same construction as in the proof of Lemma ��
� The reason the construction
given above will not work for nondeterministic automata is clear� The existence of nonde�
terminism allows the components to diverge during computation� Each component may
then pass through states from which none of its locally�controlled actions are enabled�
from which it follows that no locally�controlled actions appear in the executions gener�
ated by any of the components� Since� however� each component may pass through states
from which all locally�controlled actions of all remaining components are always enabled�
none of the executions generated by any of the components are fair executions of the
original automaton A� whose classes are the output actions of the component automata�
What is obviously required is a coordinator or scheduler S to ensure that all automata
choose the same transition at every step� With this intuition in mind� we now prepare
to show the following�

Theorem ��
 Let A be an automaton whose equivalence relation part�A
 partitions its
locally�controlled actions into the classes fCi � i 
 Ig� There are primitive automata Ai

and S such that Ci is the set of locally�controlled actions of Ai�  is the set of locally�

controlled actions of S� and A
fair
� Hide int�A	���

Q
i�I

Ai 	 S
�

The primitive automata Ai used in this construction are essentially the primitive
automata used in the proof of Lemma ��� However� when the Ai perform an action� the
scheduler S must be able to direct all of them to take the same step� These directions
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take the form of certain input actions of the Ai� where the performance of such an action
by the scheduler tells the component automata which transition they are supposed to
make� We add these actions to the Ai �although initially as internal actions
 with the
following result�

Lemma ��
 For every automaton A� there is a deterministic automaton B such that

A
fair
� B� The locally�controlled actions of B are partitioned into the classes ofA� together

with an additional class  of internal actions�

Proof
 For ease of exposition� we construct a nondeterministic automaton B� and then
show how it can be transformed into an equivalent deterministic automaton� The states
of B are of the form �a� �
 where a is a state and � is a �possibly empty
 sequence of
actions� The start state of B is �s� �
� where s is a distinguished state �not a state of A

and � is the empty sequence of actions� The states of B are �a� �
 and �s� �
� where a is
a state of A and � is a �possibly empty
 sequence of actions of A� The action signature
and partition of B are precisely those of A� except that an additional scheduling action �

�an internal action
 forms its own class of B�s partition� The transitions of B from a
state �a� �
� where a is a state of A� are as follows�

�a� �

�
� �a�� �
 in B i� a

�
� a� in A

�a� �

�
� �a� ��
 in B i� a

��
� a� in A for some a�

That is� � determines what transitions A actually makes from the state a when the
sequence of actions � is actually performed� All other actions are simply recorded as
actions to be performed by A at a later time� The transitions of B from a state �s� �

are as follows�

�s� �

�
� �a� �
 in B i� a�

�
� a in A for some start state a�

�s� �

�
� �s� ��
 in B i� � is an input action of A

In this case� only input actions and � are enabled from a state of the form �s� �
� In this
way� fair computation will guarantee that � is eventually performed� and hence that an
initial state is chosen for A� Thus� the scheduling action � chooses the initial state of A�

as well as the steps taken by A during computation� We claim that A
fair
� B� Suppose

that A�s locally�controlled actions are partitioned into the classes fCi � i 
 Ig� These
classes together with the class f�g are the classes of B�

Let x be a fair execution of A� Let y be the execution of B obtained by replacing
each transition a

�
� a� of x by the transitions �a� �


�
� �a� �


�
� �a�� �
� followed by the

in�nite sequence of transitions �a� �

�
� �a� �


�
� 	 	 	 in the case that x is a �nite execution

ending in the state a� Suppose x is �nite� Since x is fair� no locally�controlled action is
enabled in A from the �nal state a of x� It follows that no locally�controlled action of B


�



is enabled from any of the in�nite occurrences of �a� �
 in y� except for � which occurs
in�nitely often� Hence� y is a fair execution of B� Conversely� suppose that x is in�nite�
Since x is fair� for each class Ci either actions from Ci appear in�nitely often in x� or
from in�nitely many states appearing in x no action from Ci is enabled� In the �rst case�
actions from Ci appear in�nitely often in y� In the second case� since an action � is
enabled from a state a of A i� it is enabled from �a� �
 in B� in�nitely many states appear
in y from which no action of Ci is enabled� Since� in addition� � appears in�nitely often
in the execution� y must be a fair execution of B�

Conversely� let y be a fair execution of B� From the de�nition of B we see that
if �a� �


��� �a� ��
 	 	 	
�n� �a� �� 	 	 	�n


�
� �a�� �
 is a sequence of transitions in B� then

a
��� a� 	 	 	

�n� a� is a sequence of transitions of A� In addition� if �s� �

��� �s� ��
 	 	 	

�n�
�s� �� 	 	 	�n


�
� �a� �
 is a sequence of transitions in B� then a�

��� a� 	 	 	
�n� a is a sequence

of transitions of A for some start state a� of A� Let x be the execution of A obtained
by replacing every such sequence in y by the corresponding sequence of transitions of A�
Since y is fair� the action � must appear in�nitely often in y� and hence y must be in�nite�
If actions from Ci appear in�nitely often in y� then the same is true in x� If not� then
there are in�nitely many states appearing in y from which no action of Ci is enabled�
Notice that if an action � other than � is not enabled from from the state �a� �
 in B�
then for all states a� of A such that a

�
� a� it must be that � is not enabled from a�� It

follows that either x is �nite and no action of Ci is enabled from the �nal state of x� or
there are in�nitely many states appearing in x from which no action of Ci is enabled� In
either case� x must be a fair execution of A�

We have just shown that A
fair
� B� However� we are not yet done since B is not yet

deterministic� There are potentially many ��steps from every state of B� However� we
can assign to each ��step a unique identi�er� and tag the � labeling the step with this
identi�er� Replacing the action � with the set  of newly�tagged ��s� it is easy to see
that this automaton is fairly equivalent to B� and hence also to A� Since this automaton
is a deterministic automaton �with an extra class  of internal actions
� we are done�

We are now able to prove Theorem �
�

Proof of Theorem ��
 Given the automaton A� construct the automaton B of Lemma �	�
The automaton B is fairly equivalent to A� and its locally�controlled actions are parti�
tioned into the same classes as those into which A�s actions are partitioned� together
with an additional class  of internal actions� Furthermore� B is a deterministic au�
tomaton� Lemma �� says there are primitive automata Ai and S with local �Ai
 � Ci

and local�S
 �  such that B �and hence A
 is fairly equivalent to Hide int�B	�
Q

iAi 	 S
�
which is just Hide int�A	���

Q
iAi 	 S
�
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Figure ��
� Fair equivalence and unfair equivalence are incomparable�

����� Comparing Fair and Unfair Equivalence

Having de�ned two types of equivalence� fair equivalence and unfair equivalence� it is
natural to ask how they are related� Since Fbeh�O
 � Ubeh�O
 when O is an execu�
tion module or schedule module� fair and unfair equivalence are identical for execution
modules and schedule modules� For automata� however� they are incomparable�

Consider� for example� the automata of Figure ��
� The �primitive
 automata A and B
each have an input action � and an output action �� The unfair behavior of both A and B
consists of all sequences of � and �� so A and B are unfairly equivalent� The fair behavior
of A� however� includes the in�nite sequence of ��s� Since the fair behavior of B does not�
A and B are fairly inequivalent� On the other hand� C and D are two �nonprimitive

automata with output actions � and �� each forming a separate class in the partition of
the locally�controlled actions� The fair behavior of C and D consist of �nite sequences
of ��s followed by a � and an in�nite sequence of ��s� so C and D are fairly equivalent�
The unfair behavior of C� however� includes the in�nite sequence of ��s� Since the unfair
behavior of D does not� C and D are unfairly inequivalent�

Thus� in general� fair equivalence and unfair equivalence are incomparable� The
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following lemma� however� indicates that fair equivalence implies unfair equivalence in
the case of primitive automata� Since the primitive automata A and B of Figure ��
 are
unfairly equivalent but not fairly equivalent� we see that fair equivalence is a stronger
equivalence that unfair equivalence in the case of primitive automata�

Lemma ��
 Let A and B be two primitive automata� If A and B are fairly equivalent�
then A and B are unfairly equivalent�

Proof
 It is enough to check that scheds�A
jext�A
 � scheds�B
jext�B
� Suppose x is
an execution of A� If an in�nite number of locally�controlled actions appear in x� then
since A is a primitive automaton �with a single class of locally�controlled actions
� x is
a fair execution of A� Since A and B are fairly equivalent� there is a fair execution y

of B such that sched�x
jext�A
 � sched�y
jext�B
� On the other hand� if only a �nite
number of locally�controlled actions appear in x� then we may write x � x�x�� where x�

is a �nite execution of A� and every locally�controlled action appearing in x appears
in x�� By Lemma ��� the �nite execution x� can be extended to a fair execution z

of A� Since A and B are fairly equivalent there is a fair execution y of B such that
sched�z
jext �A
 � sched�y
jext�B
� Thus� there is a �nite execution y� of B� a pre�x of y�
such that sched�x�
jext�A
 � sched�y�
jext �B
� Since B is input enabled and no locally�
controlled action appears in x after x�� y� may be extended to an execution y�� of B such
that sched �x
jext�A
 � sched�y��
jext�B
� Thus� scheds�A
jext�A
 � scheds�B
jext�B
�
Since the opposite containment follows by a symmetric argument� we are done�

��� Hierarchical Correctness Proofs

The problem motivating this thesis is the construction of hierarchical correctness proofs
for distributed algorithms� We have already mentioned in the introduction how such a
proof might be constructed� First� a sequence of models O�� � � � � On are de�ned� objects
of some type modeling the algorithm at decreasing levels of abstraction� Each model Oi

is then shown to �simulate� Oi�� in some appropriate sense of the word �simulate�� In
such a proof� each Oi�� can be viewed as the statement of a problem Oi is required to
solve� Oi may be said to solve the problem speci�ed by Oi�� if every behavior of Oi

is a behavior of Oi��� Oi solves the problem speci�ed by Oi�� in the sense that every
correctness condition satis�ed by each behavior of Oi�� is also satis�ed by each behavior
of Oi� However� as previously mentioned� the satisfaction of certain liveness conditions
depends on fair computation� We therefore require only that every fair behavior of Oi

be a fair behavior of Oi��� That is� Oi is said to satisfy Oi�� if fbeh�Oi
 � fbeh�Oi��
�
We also require that Oi and Oi�� have the same external action signature�

Notice� however� that this notion of correctness is not completely satisfactory� In
particular� a schedule module Oi with no schedules trivially satis�es every problem Oi��
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�with the same external action signature
� Furthermore� since the schedules of Oi are
allowed to be arbitrary sequences of actions� it is conceivable that they may encode in�
formation allowing the solution of undecidable problems� and hence not be behaviors
of an implementable system� In an attempt to avoid such anomalies� we say that the
object Oi�� is implementable if there is an automaton satisfying Oi��� The object Oi�� is
implementable in the sense that there is a system satisfying every correctness condition
satis�ed by Oi��� Furthermore� since Oi�� is satis�ed by an automaton� and since every
automaton is input�enabled� the object Oi�� must describe a response to every possible
pattern of input� That is� the behavior of Oi�� is nontrivial� We say that Oi�� solves Oi

if Oi�� is an implementable object satisfying Oi� In the context of constructing hierar�
chical correctness proofs� such a proof consists of a sequence O�� � � � � On of objects� and
the veri�cation that each Oi solves Oi���

Clearly� the notion of satisfaction is the basis of each of these de�nitions� The remain�
der of this section concerns techniques for verifying that one object satis�es another� Two
properties of satisfaction are very easy to see� The �rst is that satisfaction is transitive�
and a weak congruence with respect to composition�

Lemma ��
 Consider the objects Oi� Pi� and Qi� for i 
 I�

�� If Oi satis�es Pi and Pi satis�es Qi� then Oi satis�es Qi�

�� IfOi satis�es Pi for every i 
 I� then
Q

iOi satis�es
Q

i Pi whenever the compositionsQ
iOi and

Q
i Pi are de�ned�

Proof
 The proof of the �rst part is immediate from the de�nition of satisfaction� The
second part requires some proof� As a result of Corollary �� the external action signature
of
Q

iOi is the composition of the external action signatures of the Oi� and similarly
for
Q

i Pi� Since Oi and Pi have the same external action signature for all i 
 I� so doQ
iOi and

Q
i Pi� Since fbeh�Oi
 � fbeh�Pi
 for all i 
 I� it follows by Lemma �� that

fbeh�
Q

iOi
 � fbeh�
Q

i Pi
� Therefore�
Q

iOi satis�es
Q

i Pi�

A second property of satisfaction is its invariance under action renaming�

Lemma ��
 Let f be an action mapping applicable to the objects O and P � If O
satis�es P � then f�O
 satis�es f�P 
�

Proof
 Since O and P have the same external action signature and since f is injective�
f�O
 and f�P 
 have the same external action signature� Using Lemma �� we see that
fbeh�f�O

 � fbeh�f�P 

� Thus� f�O
 satis�es f�P 
�

While we have repeatedly indicated that our hierarchical correctness proofs consist of
a sequence of objects O�� � � � � On modeling an algorithm at di�erent levels of abstraction�
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our proofs typically have more structure than this� In the proof of Sch�onhage�s resource
arbiter �in the next chapter
� for example� we actually construct for each level of abstrac�
tion an automaton Ai describing the algorithm at the appropriate level of abstraction�
This automaton describes as much of the algorithm as can be described by its static na�
ture� In particular� the automaton Ai encodes all safety conditions required� If liveness
conditions are required� we construct an execution module Ei of Ai with those execu�
tions of Ai satisfying the desired liveness conditions� The objects Oi referred to above
are actually the execution modules Ei� We note� however� that the execution module En

at the lowest level of abstraction typically consists of the fair executions of An� Thus�
at the lowest level of abstraction the protocol is completely described by an automaton�
and we could use the object An in place of the execution module En in the correctness
proof� Since automata and execution modules are the types of objects most frequently
used in correctness proofs� in the remainder of this section we give techniques for proving
the satisfaction of one automaton or execution module by another�

����� Automaton Satisfaction

We now describe one method for proving that an automaton A satis�es an automaton B�
This method makes use of the notion of a possibilities mapping� a correspondence between
the states of the two automata that can be used to prove that A satis�es B�

Suppose A and B are automata with the same external action signature� and sup�
pose h is a mapping from states�A
 to the power set of states�B
� The mapping h is said
to be a possibilities mapping from A to B if the following conditions hold�

�� For every start state a of A� there is a start state b of B such that b 
 h�a
�

�� For every reachable state a of A� every step �a� �� a�
 of A� and every reachable state
b 
 h�a
 of B�

�a
 If � 
 acts�B
� then there is a step �b� �� b�
 of B such that b� 
 h�a�
�

�b
 If � �
 acts�B
� then b 
 h�a�
�

If a is a state ofA� then a state b 
 h�a
 ofB is referred to as a possibility for a� Informally�
b is an abstract state corresponding to the less abstract state a� The fact that h maps a
to a set of possibilities allows for the chance that many abstract states may correspond to
the single concrete state a� The �rst condition of a possibilities mapping says that every
start state of A has as one of its possibilities a start state of B� The second condition
says that steps A and B preserve possibilities� If b is a possibility for a� then for every
step �a� �� a�
 of A either b is also a possibility for a�� or there is a step �b� �� b�
 of B
with the property that b� is a possibility for a� This de�nition generalizes the de�nition
of a possibilities mapping used in the context of Event�State Algebras in �Lyn�
�� It is

	




also reminiscent of the notion of bisimulation from CCS presented in �Mil���� Roughly
speaking� a possibilities mapping from A to B is a mapping from the states of A to the
states of B with the property that if a corresponds to b� and if A can make a transition
via the action � from a to a�� then B can make a transition via the action � from b

to a state b� corresponding to a�� Milner�s notion of bisimulation is essentially a pair of
possibilities mappings� one from A to B and another from B to A�

We now show how to use a possibilities mapping to prove that A satis�es B� Our
�rst step is to show how such a mapping relates the executions of A to the executions
of B� Given two �nite executions x and y of A and B� respectively� we say that y �nitely

corresponds to x under h if sched�y
 � sched �x
jB and the �nal state of y is a possibility
for the �nal state of x� In general� if x and y are two executions of A and B� we say
that y corresponds to x under h if for every �nite pre�x xi � a���a� � � � ai of x there
is a �nite pre�x yi of y �nitely corresponding to xi under h such that y is the limit of
the yi� Informally� the executions x and y model the same computation at di�erent levels
of abstraction� Our next result shows that by inductively constructing the yi it is always
possible to construct such an execution y�

Lemma �	
 Let h be a possibilities mapping from A to B� If x is an execution of A�
then there is an execution y of B corresponding to x under h�

Proof
 Let x � a���a� � � �� For each i � �� let xi � a���a� � � � ai� We construct the
�nitely corresponding yi inductively� and take y to be the limit of the yi� Since a� is
a start state of A� the set h�a�
 must contain a start state of B� and hence it is easy
to choose an execution y� �nitely corresponding to x� under h� Suppose yi�� �nitely
corresponds to xi�� under h� and let us construct yi� First� ai�� is a reachable state
of A� and �ai��� �i� ai
 is a step of A� Second� the �nal state b of yi�� is a reachable state
of B in h�ai��
� If �i 
 acts�B
� then by the de�nition of h there is a state b� in h�ai

such that �b� �i� b

�
 is a step of B� If yi � yi���ib
�� then the �nal state of yi is in h�ai


and sched�xi
jB � sched�yi
� If �i �
 acts�B
� then from the de�nition of h we see that
b 
 h�ai
� If yi � yi��� then the �nal state of yi is in h�ai
 and sched�xi
jB � sched �yi
�
In either case� yi �nitely corresponds to xi under h�

Since each pair of pre�xes xi and yi satis�es the condition sched�xi
jB � sched �yi
�
it is easy to see that the executions x and y do so as well�

Lemma ��
 Let h be a possibilities mapping from A to B� If the execution y of B
corresponds to the execution x of A under h� then sched�x
jB � sched�y
�

Proof
 Suppose that sched �x
jB �� sched�y
� Since x and y are the limits of �nitely
corresponding pre�xes xi and yi� respectively� there must be an i such that sched�xi
jB ��
sched�yi
� However� since yi �nitely corresponds to xi under h� this is impossible� Thus�
sched�x
jB � sched�y
�

		



Having established a correspondence between the executions of A and B� we show
with the following result how this correspondence can be used to show that A satis�es B�
We say that one equivalence relation is a contained in a second if every class of the �rst
is contained in a class of the second�

Lemma ��
 Let A and B be automata such that part�B
 is contained in part�A
� Let h
be a possibilities mapping from A to B� Suppose the following condition holds for all
reachable states a of A and for all classes C and D of part�A
 and part�B
� respectively�
such that C � D� If an action of D is enabled from a reachable state of h�a
� then an
action of D is enabled from a and no action of C 
D is enabled from a�

Proof
 Since h is a possibilities mapping from A to B� both automata have the same
external action signature� We need only show that fbeh�A
 � fbeh�B
� Let x be a fair
execution of A� and let y be an execution of B corresponding to x under h� We claim
that y is a fair execution of B� Since sched�x
jB � sched�y
 and ext �A
 � ext�B
� we
will have that sched�x
jext�A
 � sched�y
jext�B
� and hence that fbeh�A
 � fbeh�B
�
For each i � �� let xi be the pre�x a���a� � � � ai of x� and let yi be the pre�x of y �nitely
corresponding to xi under h�

Suppose y is �nite� Suppose there is a class D of B such that an action of D is
enabled from the �nal state of y� Since y is �nite� y � yi for some i� Since an action
of D is enabled in B from a reachable state in h�aj
 for all j � i �namely� the �nal state
of y
� for all j � i an action from D is enabled in A from aj� and no action from C 
D

is enabled in A from aj� If x is �nite� then an action of C is enabled from the �nal state
of x� If x is in�nite� then from every state aj �j � i
 an action of C is enabled and yet
no action of C is performed �or it would appear in y
� In either case� this contradicts our
initial assumption that x is a fair execution� so y must be a fair execution of B�

Conversely� suppose y is in�nite� Suppose there is a class D such that an action
from D is enabled from all but �nitely many states appearing in y� It follows that for
all but �nitely many i� an action of D is enabled from a reachable state of h�ai
 in B�
Therefore� for all but �nitely many i� there is an action of D enabled from ai in A� and
no action from C 
D enabled from ai� Since x is a fair execution of A� there must be
in�nitely many actions from D appearing in x� and hence in y� Therefore� y must be a
fair execution of B�

We remark that the requirement that part�B
 be contained in part�A
 is not unreason�
able when B models an algorithm at a higher level of abstraction than A� The restriction
implies that the actions of B are a subset of the actions of A� Since A and B have the
same external action signature �h is a possibilities mapping from A to B
� this implies
that some low�level internal actions of A may not be internal actions of B� Even when
this requirement is not met� however� the correspondence between states established by a
possibilities mapping is still a useful correspondence when reasoning about the behavior
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of the automaton� For example� in Section ��
�� we will see how this correspondence can
be used to verify that one execution module �of an automaton
 satis�es a second�

Our �nal result concerning possibilities mappings shows that possibilities mappings
have a very nice local behavior� Given two automata A �

Q
iAi and B �

Q
iBi together

with a possibilities mapping from Ai to Bi for every i� these possibilities mappings induce
a possibilities mapping from A to B�

Lemma ��
 Suppose for all i 
 I that hi is a possibilities mapping from Ai to Bi� and
that acts�Ai
 � acts�Bi
� Let A �

Q
iAi and B �

Q
iBi� If h is the mapping from

states�A
 to the power set of states�B
 de�ned by h�a
 � fb � bjBi 
 hi�ajAi
g� then h
is a possibilities mapping from A to B�

Proof
 As a result of Corollary �� the external action signature of a composition is the
composition of the external action signatures of its components� Since the Ai and Bi have
the same external action signatures� A and B must also have the same external action
signature� Thus� we need only check that conditions � and � of a possibilities mapping
hold� For the �rst condition� for every ai 
 start�Ai
 there is a bi 
 states�Bi
 such that
bi 
 hi�ai
� Thus� for every a 
 start�A
 there is a b 
 start�B
 such that b 
 h�a
� For
the second condition� suppose that a is a reachable state of A� �a� �� a�
 is a step of A�
and b 
 h�a
 is a reachable state of B� Let ai � ajAi� a�i � a�jAi� and bi � bjBi for every
i 
 I� Notice that� since a and b are reachable states of A and B� ai and bi must be
reachable states of Ai and Bi�

Suppose that � 
 acts�B
� We must construct a step �b� �� b�
 of B with b� 
 h�a�
�
Suppose � 
 acts�Bi
� Then � 
 acts�Ai
� so �ai� �� a�i
 must be a step of Ai� Since hi
is a possibilities mapping from Ai to Bi� there is a step �bi� �� b

�

i
 of Bi with b�i 
 hi�a
�

i
�
Suppose � �
 acts�Bi
� If � 
 acts�Ai
� then �ai� �� a�i
 is a step of Ai� and bi 
 hi�a�i
 by
de�nition of hi� If � �
 acts�Ai
� then ai � a�i� and so bi 
 hi�ai
 � hi�a�i
� In either case�
let b�i � bi� It follows that �bi� �� b�i
 is a step of Bi if � 
 acts�Bi
� and that bi � b�i if
� �
 acts�Bi
� If b is the state of B such that b�i � b�jBi for all i� then �b� �� b�
 is a step
of B� Furthermore� b� 
 h�a�
 as desired�

Suppose that � �
 acts�B
� Then � �
 acts�Bi
 for all i� As above� bi 
 hi�a�i
 for all i�
and so b 
 h�a�
 as desired� Thus� h is a possibilities mapping from A to B�

����� Execution Module Satisfaction

As previously mentioned� when constructing the correctness proof of an algorithm� we
�rst construct automata A�� � � � � An describing the algorithm at several levels of abstrac�
tion� If the algorithm is required to satisfy certain liveness conditions� we also construct
execution modules Ei of Ai describing these liveness conditions� The remainder of the
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correctness proof consists of proving that each Ei satis�es Ei��� We now show how pos�
sibilities mappings can be used to prove that certain execution modules satisfy other
execution modules�

We remark that one correctness condition common to many system speci�cations
is a condition of the form �if condition P holds� then eventually condition Q holds��
Lamport denotes this temporal logic statement ��P � �Q
 by P � Q in �Lam���� read
�P leads to Q�� Given an automaton A� a set of states S� and a set of actions T � a
simple correctness condition common to speci�cations in our model �see Chapter 
� for
instance
 is the condition �if the current state of A is contained in S� then eventually
an action of T will be performed�� With Lamport�s notation in mind� we denote this
condition by S �� T �� Given two execution modules E and F satisfying a collection of
such conditions� we now show how a possibilities mapping can be used to show that E
satis�es F � We begin with a result relating individual executions�

Lemma ��
 Let h be a possibilities mapping from A to B� Let x be an execution of A�
and let y be an execution of B corresponding to x under h�

�� If y satis�es U �� V � and if h�S
 � U and T � V � then x satis�es S �� T �

�� If x satis�es S �� T � and if S � h���U
 and T � V � then y satis�es U �� V �

Proof
 Let x � a���a� � � �� and let y � b�
�b� � � �� For each i 
 I� let xi � a���a� � � � ai�
and let yi be the pre�x of y �nitely corresponding to xi under h�

Suppose y satis�es U �� V � and let us show that x satis�es S �� T � It is enough to
show that if ak 
 S� then �� 
 T for some 	 
 k� Since yk �nitely corresponds to xk
under h� we have yk � b�
�b� � � � bm with bm 
 h�ak
 for some m� Since ak 
 S and
h�S
 � U � we have bm 
 U � Since y satis�es U �� V � we have 
n 
 V for some n 
 m�
Since V � T � for some 	 
 k we have sched�x�
jB � sched�yn
 where sched �x�
jB and
sched�yn
 both end with 
n� Therefore� for some 	 
 k we have �� � 
m 
 T � as desired�

Conversely� suppose x satis�es S �� T � and let us show that U �� V is satis�ed by y�
It is enough to show that if bk 
 U � then 
� 
 V for some 	 
 k� Since ym � b�
� � � � bk
�nitely corresponds to xm � a��� � � � am for some m� we have bk 
 h�am
� Since bk 
 U

and h���U
 � S� we have am 
 S� Since x satis�es S �� T � for some n 
 m we have
�n 
 T � Since sched�xn
jB � sched�yn
 and T � V � acts�B
� we see that the �nal
action of yn is �n� If yn � b� � � � 
�b�� then 
� � �n 
 V for some 	 
 k as desired�

With this result� we are now able to give the following su�cient condition for the
satisfaction of one execution module by another�

�The statement S �� T is essentially a statement in temporal logic� as is ��P � �Q	� The fact that
executions are sequences of states and actions� instead of simply in
nite sequences of states� means the
standard model for temporal logic must be slightly modi
ed if the condition S �� T is to be expressed
in temporal logic�
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Lemma ��
 Let h be a possibilities mapping from A to B� Let E be the execution
module of A with the executions of A satisfying the conditions Si �� Ti for every i 
 I�
and let F be the execution module of B with the executions of B satisfying the conditions
Ui �� Vi for every i 
 I� If for every i 
 I we have that Si � h���Ui
 and Ti � Vi� then E
satis�es F �

Proof
 Since h is a possibilities mapping from A to B� these automata �and hence
the execution modules E and F 
 have the same external action signature� Let x be an
execution of E� and let y be an execution of B corresponding to x under h� Since x
satis�es Si �� Ti for every i� Lemma 
� implies that y satis�es Ui �� Vi for every i� It
follows that y is an execution of F � Therefore� fbeh�E
 � fbeh�F 
� and E satis�es F �

We conclude with a simple result relating conditions of the form S �� T satis�ed by
executions of a composition of automata to conditions of the form S� �� T � satis�ed by
executions of an individual component�

Lemma ��
 Let A � Hide��
Q

iAi
� Let S � states�A
� and let Sj � fsjAj � s 
 Sg�
If x is an execution of A� then x satis�es the S �� T i� xjAj satis�es Sj �� T �
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Chapter �

An Example

As an example of the hierarchical organization of correctness proofs proposed in the
preceding chapter� in this chapter we prove the correctness of Sch�onhage�s distributed
resource allocation algorithm described in the introduction� The problem is to design
an arbiter allocating a resource among a collection of users that guarantees the mutual
exclusion condition that at most one user is using the resource at any given time� and
the no lockout condition that if users holding the resource eventually return the resource�
then the arbiter will eventually satisfy every requesting user� The distributed system in
which this arbiter is to be used is completely asynchronous� processor speeds may be
independent� messages may take an arbitrary� �nite amount of time to be delivered� and
messages may be delivered in any order�

The arbiter itself is described in parallel with the proof of its correctness� We begin
with a high�level model serving as a simple speci�cation of the problem the arbiter is
to solve� We then give a graph�theoretic description of the algorithm�s global behavior�
Finally� the arbiter is distributed and described in terms of a low�level protocol to be
followed by the processors comprising the arbiter� We show that this low�level model
solves the high�level problem speci�cation� and hence that the given protocol is a correct
solution to the arbiter�s problem speci�cation�

��� The Automaton A�

Our high�level model of the arbiter� the automaton A�� is a very simple speci�cation of
the arbiter�s correctness conditions� We refer to the arbiter itself as a� and to the users
of the arbiter as u�� � � � � un��

�In general� we will denote entities associated with the arbiter by the letter a� and entities associated
with the users by letter u� Letters near the end of the alphabet such as v and w will be used to denote
entities associated with either the arbiter or the users�
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Input Actions�
request�u�

e�ects�
requesters � requesters � fug

return�u�
e�ects�

if holder � u then
holder � a

Output Actions�
grant�u�

preconditions�
u � requesters

holder � a

e�ects�
requesters � requesters � fug
holder � u

Figure 
��� The actions of A��

����� The States of A�

A state of A� consists of a set requesters � fu�� � � � � ung of requesting processes� together
with a value holder 
 fu�� � � � � un� ag indicating the entity currently holding the resource
�either a user or the arbiter itself
� The start state of A� is the state in which the set
requesters of requesting users is empty� and the initial holder is the arbiter a itself� We
note that all states of A� are reachable� as will become clear when the actions of A� have
been introduced�

����� The Actions of A�

The actions of A� are given in Figure 
��� We specify the transition relation of an
automaton by giving for each action a list of preconditions and e�ects� An action is
enabled from any state s satisfying the action�s preconditions� and the action takes s to
the state t if t can be obtained by modifying s as indicated by the action�s e�ects� Since
input actions are enabled from every state� we omit the preconditions of input actions�

The input actions of A� are of the form request�u
 and return�u
� where u is a user�
The action request�u
 simply places the user u in the set requesters of requesting users�
Since automata are input�enabled� a user is able to request the resource at any time� even
when it is currently holding the resource� The e�ect of a user�s requesting the resource
while holding the resource is that the request is recorded for later use �later servicing
of the user
� The action return�u
 returns the resource to the arbiter by making the
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arbiter the new holder of the resource� Notice that if a �faulty
 user tries to return the
resource when it does not actually hold it� the arbiter simply ignores the �return�� The
automaton A� has no internal actions� The output actions of A� are of the form grant�u
�
where u is again a user� The arbiter grants the resource to u with the action grant�u
�
which removes u from the set of requesting users and makes u the new holder of the
resource� Notice that the arbiter grants the resource only when the arbiter actually holds
the resource� Consequently� at most one user is using the resource at any time�

����� The Execution Module E�

While the executions of A� satisfy the mutual exclusion condition that at most one user
is using the resource at any given time� we must still ensure the no lockout condition is
satis�ed by the arbiter� If users using the resource eventually return the resource to the
arbiter� then the arbiter eventually satis�es every request for the resource� Let u be a
user node� and let us de�ne the following sets of states and actions��

RtnRess��u
 � fs 
 states�A�
 � holder � u in sg

RtnResa��u
 � freturn�u
g

GrRess��u
 � fs 
 states�A�
 � u 
 requesters in sg

GrResa��u
 � fgrant�u
g

The condition
RtnRes� �

�

u

RtnRess��u
 �� RtnResa��u


says that any user holding the resource will eventually return the resource to the arbiter�
The condition

GrRes� �
�

u

GrRess��u
 �� GrResa��u


says that any user requesting the resource will eventually be granted the resource� The
correctness condition

C� � RtnRes� � GrRes�

says that if users holding the resource always return the resource� then users requesting
the resource will always be granted the resource� This is precisely the no lockout condition
we require the arbiter to satisfy� We denote by E� the execution module of A� with the
executions of A� satisfying the condition C�� The execution module E� serves as the
speci�cation of the arbiter�

�We will be de
ning several correctness conditions for each of the models we study� We will subscript
these conditions to indicate the level of abstraction with which they are associated� Furthermore� the
sets of states and actions used to construct these conditions will be superscripted with the letters s or a�
respectively�
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Figure 
��� One state of the arbiter modeled by A��

��� The Automaton A�

Our next model reveals the distributed structure of the arbiter� but still at a high level
of abstraction� a level at which one might describe the algorithm at the blackboard� In
this model� illustrated in Figure 
��� the arbiter and its environment are modeled by a
connected� acyclic graph G� The leaves of G are user nodes representing the users� labeled
u�� � � � � un� The arbiter itself consists of the remaining arbiter nodes� labeled a�� � � � � am�
The �directed
 edge of G from the node v to w is denoted by hv�wi� An edge hv�wi is
said to point toward a node x if hv�wi is an edge in the path from v to x� Arrows are
placed on edges of the graph to indicate either a request for the resource or the granting
of the resource� In general� the resource is considered to be held by a node at the head of
a grant arrow� Such a node is called a root of the graph� A user u requests the resource
by placing a request arrow on the edge hu� ai from itself to the adjacent arbiter node a�
The arbiter grants the resource to u by removing this arrow and placing a grant arrow on
ha� ui� The user then returns the resource by moving the grant arrow from the edge ha� ui
to the edge hu� ai� The arbiter itself� however� is an acyclic graph of arbiter nodes� When
the head of a request arrow is placed at an arbiter node a� the arbiter node�s response
depends on whether it is holding the resource� If the arbiter node a holds the resource�
then it must be at the head of a grant arrow� and so there must be a grant arrow on some
edge hv� ai� The arbiter selects the �rst node w in some �xed ordering of its adjacent
nodes having a request arrow on hw� ai� The arbiter then grants the resource to this
node by removing the request arrow and moving the grant arrow to the edge ha�wi� In
this case we say that the resource has been forwarded by a to w� If the arbiter node a
does not hold the resource� then the arbiter forwards the request in the direction of a
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node holding the resource by placing a request on the edge pointing toward a root� The
work in this section holds for arbitrary connected� acyclic graphs� When we consider the
model A� in the following section� however� we will restrict our attention to graphs with
a particular structure�

����� The States of A�

In order to refer conveniently to the arrows on an edge of the graph� we associate with
each edge hv�wi an arrow set� arrows�v�w
� containing all of the arrows on the edge
hv�wi� A state of A� therefore consists of one arrow set� arrows�v�w
� for every edge
hv�wi of the graph G� The start states of A� are taken from the set of states in which
a single arrow set arrows�v� a
 contains only a grant arrow� and all other arrow sets are
empty� where a is an arbiter node of the graph G� In such a state� the arbiter holds
the resource and no requests for the resource are pending� We will soon restrict our
attention to a particular set of such start states in the next section� but the work of this
section is independent of the particular set chosen� We note that some states of A� are
unreachable� For technical convenience� we remove these states from A� so that all states
of A� are reachable�

����� The Actions of A�

Fix for each node of G an �arbitrary
 ordering of its adjacent nodes� Let �v�w
 denote the
set of nodes properly between the nodes v and w in this ordering� and let �v�w� denote
the set nodes properly between v and w together with the node w� The actions of A� are
given in Figure 
�
� The input actions are of the form request�u� a
 and grant�u� a
� and
the output actions are of the form grant�a� u
� where u is a user node and a is an adjacent
arbiter node� The internal actions are of the form request�a� u
 where u is a user node
and a is an adjacent arbiter node� and of the form request�a� a�
 and grant�a� a�
 where a
and a� are adjacent arbiter nodes� As in the previous model� users may request or grant
the ticket at any time� but grants by users not actually holding the ticket are e�ectively
ignored� Note we have added internal actions with which the arbiter may request that
the user return the resource� The arbiter had no such ability in the previous model�
These actions have been added for the sake of symmetry� Having been added as internal
actions� they have no e�ect on the arbiter�s interface with its users�

The next few results state certain invariants that hold during executions of A�� The
�rst guarantees that every state contains at most one root� and hence that at most one
user is using the resource at any time�

Lemma ��
 If s is a state of A�� there is exactly one root in s�
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Input Actions�
request�u� a�

e�ects�
arrows�u� a�� arrows�u� a�� frequestg

grant�u� a�
e�ects�

if grant � arrows�a� u� then
arrows�a� u�� arrows�a� u�� frequestg
arrows�a� u�� arrows�a� u�� fgrantg
arrows�u� a�� arrows�u� a�� fgrantg

Internal and Output Actions�
request�a� v�

preconditions�
request � arrows�w� a� for some w

ha� vi points toward a root
request �� arrows�a� v�

e�ects�
arrows�a� v�� arrows�a� v�� frequestg

grant�a� v�
preconditions�

request � arrows�v� a�
grant � arrows�w� a� for some w

request �� arrows�y� a� for y � �w� v�

e�ects�
arrows�v� a�� arrows�v� a�� frequestg
arrows�w� a�� arrows�w� a�� fgrantg
arrows�a� v�� arrows�a� v�� fgrantg

Figure 
�
� The actions of A��
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Proof
 In every start states of A�� precisely one arrow set contains a grant arrow�
Furthermore� every action that adds a grant arrow to an arrow set also removes a grant
arrow from an arrow set� The result follows by a simple inductive argument� since all
states of A� are reachable�

The second invariant states that every request arrow placed on the graph by the
arbiter points toward the root of the graph� In other words� the arbiter correctly forwards
requests in the direction of the resource�

Lemma ��
 Let s be a state of A�� and let a be an arbiter node of G� If arrows�a� v

contains a request arrow� then ha� vi points toward the root of G�

Proof
 No arrow set of any start state contains a request arrow� so the start states of A�

certainly satisfy the hypothesis� Suppose s is a state of A� satisfying the hypothesis�
and suppose that s

�
� t is a step of A�� We claim that t satis�es the hypothesis as well�

Suppose � is of the form request�x� y
� Notice that � does not modify the position of the
grant arrow� and that � adds a request arrow to arrows�a� v
 only if ha� vi points toward
the root in s� and hence in t� It follows that t must satisfy the hypothesis� Suppose
� � grant�v� a
� In this case� � removes any request arrow from arrows�a� v
� and so t
must satisfy the hypothesis� Finally� suppose � � grant�x� y
 �� grant�v� a
� Since � does
not add or remove a request arrow from arrows�a� v
� if the set arrows�a� v
 contains a
request arrow in t� the same is true in s� The fact that � is enabled from s implies that x
is the root in s� The hypothesis implies that the edge ha� vi must point toward the root x
in s� Since � forwards the resource from x to y �and since y �� a
 the edge ha� vi must
point toward the root y in t� Therefore� t must satisfy the hypothesis� The lemma now
follows by a simple inductive argument� since all states of A� are reachable�

����� The Execution Module E�

To ensure that the arbiter satis�es all user requests� it is obviously important that the
internal arbiter nodes forward all requests in the direction of the root� and that arbiter
nodes holding the resource eventually grant the resource to adjacent requesting nodes�
Let a be an arbiter node adjacent to nodes v and w� and let us de�ne the following sets
of states and actions�

FwdReqs��a� v
 � fs 
 states�A�
 � request 
 arrows�w� a
 for some w�

ha� vi points toward the root� and

request �
 arrows�a� v
 in sg

FwdReqa��a� v
 � fgrant�v� a
� request�a� v
g

FwdGrs��a� v� w
 � fs 
 states�A�
 � request 
 arrows�v� a
 and
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The correctness condition FwdGr��

Figure 
�	� Arbiter correctness conditions�

grant 
 arrows�w� a
 in sg

FwdGra��a� v� w
 � fgrant�a� y
 � y 
 �w� v�g

The �rst arbiter correctness condition

FwdReq� �
�

a�v

FwdReqs��a� v
 �� FwdReqa��a� v
�

illustrated at the top of Figure 
�	� states that if an arbiter node a is at the head of a
request arrow and has not forwarded the request in the direction of the root� then either a
becomes the root �possibly because v is a user node� and v has placed a grant arrow on
hv� ai
� or a eventually forwards the request in the direction of the root� The second
arbiter correctness condition

FwdGr� �
�

a�v�w

FwdGrs��a� v� w
 �� FwdGra��a� v� w
�

illustrated at the bottom of Figure 
�	� states that if an arbiter node a is a root at the
head of a request arrow� then it eventually forwards the resource to an adjacent requesting
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node� The correctness condition

C� � FwdReq� � FwdGr�

ensures that arbiter nodes always forward requests in the direction of the root� and that
arbiter nodes holding the resource always grant it to adjacent requesting nodes� We let E�

be the execution module of A� with the executions of A� satisfying the condition C��

While Lemma 
� states that at most one user is using the resource at any given time�
and while condition C� ensures that arbiter nodes holding the resource always grant the
resource to requesting nodes� we have not yet shown that the arbiter always satis�es user
requests� As before� this requires cooperation on the part of the users� Let u be a user
node adjacent to the arbiter node a� and let us de�ne the following sets of states and
actions�

RtnRess��u
 � fs 
 states�A�
 � grant 
 arrows�a� u
 in sg

RtnResa��u
 � fgrant�u� a
g

GrRess��u
 � fs 
 states�A�
 � request 
 arrows�u� a
 in sg

GrResa��u
 � fgrant�a� u
g

The condition
RtnRes� �

�

u

RtnRess��u
 �� RtnResa��u


says user nodes holding the resource always return the resource� and the condition

GrRes� �
�

u

GrRess��u
 �� GrResa��u


says the arbiter eventually satis�es requesting users� The condition RtnRes� � GrRes�
says that if users return the resource� then the arbiter satis�es all requests� We now show
that every execution of E� satis�es the condition RtnRes� � GrRes�� First� however� we
prove the following result� the inductive statement in the argument that E� satis�es the
condition RtnRes� � GrRes��

Lemma ��
 Let s be a state of A� having a request arrow in arrows�v�w
� Let x be an
execution fragment of A� from s satisfying the condition C� �RtnRes�� Then the action
grant�w� v
 must appear in x�

Proof
 If the graph G is viewed as a tree rooted at v� then w can be viewed as the root
of a subtree of v� We proceed by induction on the height h of the subtree of v rooted
at w�
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Suppose h � �� In this case� w must be a leaf of G� and therefore w must be a
user node and v an arbiter node� Since v is an arbiter node and arrows�v�w
 contains
a request arrow� Lemma 
� implies the edge hv�wi points toward the root� Therefore�
arrows�v�w
 must contain a grant arrow� Since x satis�es RtnRes�� the user w must
eventually return the resource to the arbiter� and hence grant�w� v
 must appear in x�

Suppose h 
 � and the inductive hypothesis holds for h 
 �� We �rst show that x
can be written as �x� where x� is an execution fragment satisfying C��RtnRes� in whose
initial state request 
 arrows�v�w
 and w is the root �that is� grant 
 arrows�w�� w
 for
some node w�
� We consider two cases� First� suppose hv�wi does not point toward the
root in s� Since arrows�v�w
 contains a request arrow� Lemma 
� implies that v must be
a user node� Since user nodes are leaves� and since hv�wi does not point toward the root�
the root must be at v� that is� arrows�w� v
 must contain a grant arrow� Since x satis�es
RtnRes�� the user v must eventually return the resource to the arbiter� so grant�v�w
 must
appear in x� Therefore� x � �grant�v�w
x� as desired� Now� suppose hv�wi does point
toward the root� If w itself is the root� then setting x� � x we are done� so suppose w
is not the root� If for some node w� the set arrows�w�w�
 contains a request arrow�
then since the height of the subtree of w rooted at w� must be less than h� the inductive
hypothesis for h
� implies that grant�w�� w
 appears in x� Therefore� x � �grant�w�� w
x�

as desired� On the other hand� suppose no arrow set arrows�w�w�
 contains a request

arrow� Note that the fact that h 
 � implies that w is not a leaf� and hence that w is
an arbiter node� Since x satis�es C�� we see that for some node w

� either grant�w�� w

or request�w�w�
 appears in x� If grant�w�� w
 appears in x� then x � �grant�w�� w
x� as
desired� If request�w�w�
 appears in x� then a request arrow is placed in arrows�w�w�
�
and again the inductive hypothesis for h
 � implies that x � �grant�w�� w
x� as above�

We now show that if x� is an execution fragment satisfying C� � RtnRes� in whose
initial state request 
 arrows�v�w
 and grant 
 arrows�w�� w
 for some node w�� then
grant�w� v
 appears in x�� From this it will follow that grant�w� v
 appears in x as well� We
proceed by induction on d� the distance from w� to v in the ordering of the nodes adjacent
to w in G� Suppose d � �� Since request 
 arrows�v�w
 and grant 
 arrows�w�� w
�
condition C� implies that grant�w� y
 must appear in x� for some y 
 �w�� v� � fvg�
Thus� grant�w� v
 must appear in x�� Suppose d 
 � and the inductive hypothesis holds
for d
�� Suppose the inductive hypothesis does not hold for x�� Suppose that grant�w� v

does not appear in x�� and hence that request 
 arrows�v�w
 in every state appearing
in x�� As in the case of d � �� the action grant�w� y
 must appear in x� for some
y 
 �w�� v�� If y � v then we are done� so suppose y �� v� If arrows�w� y
 contains a
request � then the inductive hypothesis for h
� implies that grant�w� y
 appears in x�� and
the inductive hypothesis for d
� implies that grant�w� v
 must also appear in x�� On the
other hand� suppose arrows�w� y
 does not contain a request arrow� Condition C� implies
that either grant�y�w
 or request�w� y
 appears in x�� If grant�y�w
 appears in x�� then a
grant arrow is placed in arrows�y�w
� and the inductive hypothesis for d
� implies that
grant�w� v
 appears in x�� If request�w� y
 appears in x�� then a request arrow is placed
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in arrows�w� y
� and grant�w� v
 must appear in x� as we have seen above�

An immediate corollary of Lemma 
� is the following�

Corollary �	
 Every execution of E� satis�es the condition RtnRes� � GrRes��

����� The Execution Module E �
�

For the sake of exposition� we have given the actions of A� names suitable to its level
of abstraction� rather than using names from A�� It is therefore necessary to rename
these actions before showing that E� solves E�� The action mapping f� from A� to A� is
de�ned to map

request�u� a
 to request�u
�
grant�u� a
 to return�u
�
grant�a� u
 to grant�u
�

and all remaining �internal
 actions to themselves� We will denote by A�

� the automaton
f��A�
� and in general we will denote by a�xing a prime to its name the entity obtained
by renaming its actions according to f��

����� The Satisfaction of E� by E
�
�

We begin the proof that E�

� satis�es E� by exhibiting a possibilities mapping from A�

�

to A�� The mapping h� maps the state s of A�

� to the state t of A� such that

u 
 requesters in t i� request 
 arrows�u� a
 in s
holder � u in t i� grant 
 arrows�a� u
 in s
holder � a in t i� grant �
 arrows�a� u
 for every user u in s

These conditions ensure that a user is a requesting user in t i� it is in s� and that a user
is holding the resource in t i� it is in s� Since all states of A�

� are reachable� and since in
all reachable states of A�

� there is exactly one root� this mapping takes each state of A
�

�

to a singleton set of states of A��

Lemma ��
 The mapping h� is a possibilities mapping from A�

� to A��

Proof
 The automata A�

� and A� clearly have the same external action signature� If s
is a start state of A�� then a single arrow set arrows�v� a
 contains a grant arrow and all
other arrow sets are empty� In particular� no arrow set arrows�u� a
 contains a request

arrow� and no arrow set arrows�a� u
 contains a grant arrow� Therefore� in every state
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of h��s
 the set requesters of requesting users is empty� and holder � a� Since this is
the start state of A�� we see that if s is a start state of A�

�� then a start state of A� is
contained in h��s
�

Consider the action � � request�u
 of A�

�� originally the action request�u� a
 of A��
Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
� The
action � is an input action of both automata� and hence is enabled from both s and t�
Suppose s

�
� s� and t

�
� t�� Since � adds a request arrow to arrows�u� a
 in s�� and adds u

to requesters of requesting users in t�� we see that t� 
 h��s�
�

Consider the action � � return�u
 of A�

�� originally the action return�u� a
 of A��
Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
Again� � is an input action of both automata� and hence is enabled from both s and t�
Suppose s

�
� s� and t

�
� t�� The de�nition of h� implies that grant 
 arrows�a� u
 in s

i� holder � u in t� If both conditions are false� then � has no e�ect on either s or t�
so t 
 h��s
 implies t� 
 h��s�
� Suppose both conditions are true� Notice that u is the
unique root in s� The action � moves the grant arrow from arrows�a� u
 to arrows�u� a

in s�� and � sets holder to a in t�� Thus� t� 
 h��s�
�

Consider the action � � grant�u
 of A�

�� originally the action grant�a� u
 of A�� Sup�
pose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
� If � is
enabled from s� then request 
 arrows�u� a
 and grant 
 arrows�w� a
 for some node w�
Since request 
 arrows�u� a
 in s� the set requesters of requesting users contains u in t�
Since a is the unique root in s� holder � a in t� Thus� � is enabled from t� Suppose s

�
� s�

and t
�
� t�� The action � removes the request arrow from arrows�u� a
 and moves the

grant arrow to arrows�a� u
 in s�� and � removes u from the set requesters of requesting
users and sets holder to u in t�� Therefore� t� 
 h��s�
�

Finally� the remaining actions request�a� u
� request�a� a�
� and grant�a� a�
 of A�

� are
not actions of A�� These actions do not a�ect request arrows in the arrow sets arrows�u� a

or grant arrows in the arrow sets arrows�a� u
� Therefore� suppose s and t are reachable
states of A�

� and A� such that t 
 h��s
� If s
�
� s� is a step of A�

�� then t 
 h��s�
� It
follows that h� is indeed a possibilities mapping from A�

� to A��

We can now show that E�

� satis�es E��

Lemma ��
 E�

� satis�es E��

Proof
 Let x be an execution of E�

�� and let y be an execution of A� correspond�
ing to y under h�� First� we claim that �i
 if y satis�es RtnRess��u
 �� RtnResa��u
�
then x satis�es RtnRess��u
 �� RtnResa��u


�� Suppose s is a state of RtnRess��u
� Since
grant 
 arrows�a� u
 in s� we see that holder � u in every state of h��s
� and hence that
h��RtnRes

s
��u

 � RtnRess��u
� Since� in addition� RtnRes

a
��u
 � RtnResa��u


�� the claim
follows by Lemma 
�� Second� we claim that �ii
 if x satis�es GrRess��u
 �� GrResa��u


��
then y satis�es GrRess��u
 �� GrResa��u
� Suppose t 
 h��s
 is a state of GrRes

s
��u
�
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Since u 
 requesters in t� we see that request 
 arrows�u� a
 in s� and hence that
h��� �GrRes

s
��u

 � GrRess��u
� Since� in addition� GrRes

a
��u


� � GrResa��u
� the claim
follows by Lemma 
�� From observations �i
 and �ii
 it follows that if y satis�es RtnRes��
then x satis�es RtnRes�� and that if x satis�es GrRes�� then y satis�es GrRes�� Since x
satis�es RtnRes� � GrRes�� it follows that y satis�es RtnRes� � GrRes�� and hence
that y is an execution of E�� Since sched�x
jA� � sched�y
� and since E�

� and E� have
the same external action signature� it follows that fbeh�E�

�
 � fbeh�E�
� and hence that
E�

� will satisfy E��

��� The Automaton A


In the description of the arbiter given by the previous model� the arbiter nodes are
intended to represent processes in a distributed network implementing the arbiter� Pre�
vious models have given global descriptions of the arbiter�s behavior� In this model
we actually distribute the arbiter by modeling each process as a separate automaton�
These automata describe the low�level protocol followed by each process in the arbiter�s
implementation� Notice that while previous models have acknowledged the asynchrony
of processor step times� they have essentially ignored the asynchrony of the network�s
message system by assuming instantaneous message delivery� We now introduce this
asynchrony into the model� modeling the message delivery system as an independent
automaton� By composing the automata modeling arbiter processes with the automaton
modeling the message delivery system� we obtain a global model of the arbiter�

In order to model asynchronous message delivery� it is convenient to add to the
graph G an extra arbiter node ba�a� �or ba��a
 between every pair of adjacent arbiter
nodes a and a�� The node ba�a� acts as a message bu�er between a and a�� The node a
sends a message to a� by placing an arrow on the edge ha� ba�a�i� and the message system
delivers the message to a� by placing an arrow on the edge hba�a�� a�i� Since they function as
message bu�ers� we will hereafter refer to the nodes ba�a� as bu�er nodes� We denote by G
the graph obtained from G by the addition of such bu�er nodes� Two nodes �processes

are said to be adjacent in G if they are separated by at most a bu�er node� that is� if
they are user or arbiter nodes adjacent in the graph G� Since the results of the previous
section hold for arbitrary connected� acyclic graphs� and since G is such a graph� these
results hold for the graph G� We therefore �x G as the graph underlying the model A��
Furthermore� we �x as the set of start states of A� those start states in which no bu�er
node is a root� In such states� the arbiter holds the resource� and no undelivered messages
are pending� We note that with the added structure of G� we can prove the following
result about bu�er nodes during executions of A��

Lemma ��
 Let a and a� be adjacent arbiter nodes� and let s be a state of A�� If
request 
 arrows�ba�a�� a�
 or grant 
 arrows�a�� ba�a�
� then request 
 arrows�a� ba�a�
�
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Proof
 The sets arrows�ba�a�� a�
 and arrows�a�� ba�a�
 do not contain request or grant
arrows� respectively� in any start state of A�� and hence every start state satis�es the
hypothesis� Suppose s is a reachable state of A� satisfying the hypothesis� and suppose
s

�
� t is a step of A�� We claim that t satis�es the hypothesis was well� If � �

request�x� y
� then � places a request arrow in arrows�x� y
� The only case we need
consider is the case of hx� yi � hba�a�� a�i� In this case� � is enabled only if hba�a�� a�i points
toward the root� and there is a request in arrows�v� ba�a�
 for some v� If v � a�� then
Lemma 
� implies that the edge ha�� ba�a�i also points toward the root� Since Lemma 
�
states that there is only one root� this is clearly impossible� Therefore� we must have
v � a� and hence that t satis�es the hypothesis� If � � grant�x� y
� then � places a
grant arrow in arrows�x� y
� The only case we need consider is the case of hx� yi �
ha�� ba�a�i� In this case� � is enabled only if there is a request arrow in arrows�ba�a�� a�

in s� By hypothesis� there must be a request arrow in arrows�a� ba�a�
 in s� and hence
in t� Therefore� t must satisfy the hypothesis� The lemma follows by a simple inductive
argument�

Note that we do not model any message asynchrony between users and the arbiter� User
nodes are to be interpreted as ports to the arbiter through which the users communicate
with the arbiter� and not the user processes themselves� If the arbiter is to be used in
a larger system� then the responsibility of modeling the message delivery between the
arbiter and the rest of the system falls on the model of the larger system�s message
delivery�

The previous models have given some indication of the behavior required of arbiter
processes� In the �rst place� arbiter processes must always forward a request for the
resource in the direction of the resource� Since the network is acyclic� the process is
able to determine the direction of the resource by remembering the direction in which
it last forwarded the resource� Furthermore� arbiter processes holding the resource must
forward the resource to a requesting process� In particular� if arbiter process a receives
the resource from process v� then a must grant the resource to the �rst requesting process
after v in a �xed ordering of its neighbors� Therefore� the state of an arbiter process is
determined by a set of processes from which it has received a request� the link over which
the resource was last sent� whether or not the process is holding the resource� and whether
or not a request has been forwarded in the direction of the resource� For each arbiter
process a �each arbiter node of the graph G
� we construct an automaton Aa modeling
the process a�

The behavior required of the message system is very simple� The system must be able
to accept messages for delivery� and ensure that every message sent is eventually delivered�
The state of the message system is simply a collection of undelivered messages� together
with their destinations� We construct an automaton M to model the asynchronous
message communication system�

��



����� The States of Aa and M

As mentioned above� a state ofAa is determined by a set requesting of requesting processes
adjacent to a� a variable lastforward indicating the adjacent process to which a last
forwarded the resource� a binary �ag holding indicating whether or not a is holding
the resource� and a binary �ag requested indicated whether or not a has requested the
resource since last holding the resource� To de�ne the start state of Aa� we designate one
of the arbiter processes and the initial holder of the resource� The start state of Aa is a
state in which the set requesting of requesting processes is empty� the variable lastforward
is set to the process adjacent to a on the path from a to the process currently holding
the resource� or to any adjacent process if a is the initial holder� the �ag holding is set
depending on whether a is the initial holder� and the �ag requested is set to false� Notice
that there are several possible initial states for the initial holder since lastforward may be
set to any of its adjacent processes� but that the initial state of the remaining processes
is unique�

As indicated above� the state of M is determined by a set messages of messages
to deliver �either request or grant messages
 together with the identity of the sender
and receiver of the message� More formally� messages is a set of triples of the form
�v�w� request
 or �v�w� grant
 denoting messages to be delivered from v to w� The initial
state of M is the state in which messages is empty� the state in which no messages are
undelivered�

����� The Actions of Aa and M

The actions of Aa are given in Figure 
��� The input actions are those actions of the
form receiverequest�v� a
 and receivegrant�v� a
� and the output actions are of the form
sendrequest�a� v
 and sendgrant �a� v
� where v is a node �process
 adjacent to a in the
graph G� These actions behave just as described above� There are no internal actions
of Aa�

The actions of M are given in Figure 
��� The input actions are those actions of
the form sendrequest �a� a�
 and sendgrant�a� a�
� and the output actions are of the form
receiverequest�a� a�
 and receivegrant�a� a�
� where a and a� are adjacent arbiter nodes
of G� These actions accept messages to be delivered by placing them in the message
bu�er messages � and deliver them by removing them from the bu�er� There are no
internal actions of M �

����� The Automaton A�

The composition of the automata Aa modeling the arbiter processes together with the
automatonM modeling the message system yields a global model of the arbiter� However�
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Input Actions�
receiverequest�v� a�

e�ects�
requesting � requesting � fvg

receivegrant�v� a�
e�ects�

if holding � false and lastforward � v then
holding � true

requested � false

Output Actions�
sendrequest�a� v�

preconditions�
requesting �� �
requested � false

holding � false

lastforward � v

e�ects�
requested � true

sendgrant�a� v�
preconditions�

v � requesting

holding � true

lastforward � w

y �� requesting for all y � �w� v�

e�ects�
requesting � requesting � fvg
lastforward � v

holding � false

Figure 
��� The Actions of Aa�
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Input Actions�
sendrequest�a� a�


e�ects�
messages � messages � f�a� a�� request
g

sendgrant�a� a�

e�ects�

messages � messages � f�a� a�� grant
g
Output Actions�

receiverequest�a� a�

preconditions�

�a� a�� request
 
 messages

e�ects�
messages � messages 
 f�a� a�� request
g

receivegrant�a� a�

preconditions�

�a� a�� grant
 
 messages

e�ects�
messages � messages 
 f�a� a�� grant
g

Figure 
��� The actions of M�

��



we must hide actions that are inherently internal to the arbiter� Therefore� we de�ne the
automaton A� to be the composition of the automata Aa together with the automatonM �
after hiding all output actions of the composition except those of the form sendgrant �a� u

�where a and u are adjacent arbiter and user nodes� respectively
�

����� The Execution Module E�

As mentioned in the introduction to this model� an arbiter process a is required to forward
all requests� and to grant the resource to a requesting process if the arbiter process holds
the resource� Let v and w be two nodes adjacent to the arbiter node a� and let us de�ne
the following sets of states and actions�

FwdReqsa�v
 � fs 
 states�Aa
 � requesting �� ��
requested � false �

holding � false� and
lastforward � v in sg

FwdReqaa�v
 � freceivegrant�v� a
� sendrequest�a� v
g

FwdGrsa�v�w
 � fs 
 states�Aa
 � v 
 requesting

holding � true� and
lastforward � w in sg

FwdGraa�v�w
 � fsendgrant �a� y
 � y 
 �w� v�g

The condition
FwdReqa �

�

v

FwdReqsa�v
 �� FwdReqaa�v


says that the arbiter process a having received a request and not holding the resource
will either forward a request for the resource or receive the resource �without having
requested it� perhaps from a user
� The condition

FwdGra �
�

v

FwdGrsa�v
 �� FwdGraa�v


says that the arbiter process a holding the resource and having received a request will
eventually forward the resource to a requesting process� The condition

Ca � FwdReqa � FwdGra

is the desired correctness condition for the arbiter process a� We note the following�

Lemma ��
 Every fair execution of Aa satis�es Ca�
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Proof
 Let s be a state of FwdReqsa�v
 and let x be an execution fragment of Aa from s�
If neither receivegrant�v� a
 nor sendrequest �a� v
 appear in x� then sendrequest �a� v
 is
enabled from every state appearing in x� Therefore� every fair execution of Aa satis�es
FwdReqa� Similarly� let s be a state of FwdGr

s
a�v�w
 and let x be an execution fragment

of Aa from s� If no action of FwdGraa�v�w
 appears in x� then again an action from this
set is enabled from every state appearing in x� Therefore� every fair execution of Aa

satis�es FwdGra� It follows that every fair execution of Aa satis�es Ca�

We let the execution module Ea � Fair�Aa
� Recall that an object O solves �the
problem speci�ed by
 an object O� only if it is implementable� Since Ea is part of our
solution to the arbiter�s problem speci�cation� it is necessary to show that Ea �as well as
every other execution module de�ned at this low level of abstraction
 is implementable�

Lemma ��
 Ea is implementable�

We must also require that the message system deliver all messages sent� Let a and a�

be two adjacent arbiter processes� and let us de�ne the following sets of states and actions�

DelReqsM�a� a
�
 � fs 
 states�M
 � �a� a�� request
 
 messages in sg

DelReqaM�a� a
�
 � freceiverequest�a� a�
g

DelGrsM�a� a
�
 � fs 
 states�M
 � �a� a�� grant
 
 messages in sg

DelGraM�a� a
�
 � freceivegrant�a� a�
g

If we let
DelReqM �

�

a�a�

DelReqaM �a� a
�
 �� DelReqsM �a� a

�


and
DelGrM �

�

a�a�

DelGraM �a� a
�
 �� DelGrsM�a� a

�
�

then the condition
CM � DelReqM � DelGrM

says that messages sent are always delivered� We denote by EM the execution module
of M with the executions satisfying CM �

Lemma ��
 EM is implementable�

Proof
 It is easy to construct an automaton M � with the action signature of EM whose
fair executions are executions of EM � The automaton M � keeps messages to be delivered
in a fifo bu�er� and delivers them in the order in which they are received for delivery�

Finally� we de�ne E� to be the composition of the execution modules Ea and EM

after hiding the internal actions of A�� As a result of Lemma ��� we have the following�

Lemma ��
 E� is implementable�
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����� The Execution Module E �
�

As with the execution module E�� it is necessary to rename the actions of E� to be
consistent with the names of E�� As mentioned when we de�ned the bu�er nodes ba�a��
the arbiter node a sends a message to the arbiter node a� by placing an arrow on the
edge ha� ba�a�i between a and the bu�er node ba�a�� and the message system delivers the
message by placing an arrow on the edge hba�a�� a�i between the bu�er node and a�� An
arbiter node and user node communicate by placing an arrow on the edge between them�
Therefore� if a is an arbiter node and a� and u are arbiter and user nodes� respectively�
adjacent to a in G� we de�ne the action mapping f� to map

receiverequest�u� a
 to request�u� a

receivegrant�u� a
 to grant�u� a

sendrequest �a� u
 to request�a� u

sendgrant �a� u
 to grant�a� u


receiverequest�a�� a
 to request�ba��a� a

receivegrant�a�� a
 to grant�ba��a� a

sendrequest�a� a�
 to request�a� ba�a�

sendgrant�a� a�
 to grant�a� ba�a�


We will denote by A�

� the automaton f��A�
� and in general we will denote by a�xing a
prime to its name the entity obtained by renaming its actions according to f��

����� The Solution of E� by E
�
�

We begin the proof that E�

� satis�es E� by exhibiting a possibilities mapping from A�

�

to A�� In order to de�ne this mapping� it will be necessary to refer to state variables
from each of the components of A�

�� While the name of the state variable messages

of M � is unique to M �� the remaining components share variable names� In order to
avoid ambiguity� we will indicate the component to which a state variable belongs by
subscripting the variable with an appropriate identi�er� For example� the set requesting
of requesting processes in A�

a will be denoted by requesting a� The mapping h� maps the
state s of A�

� to the set of states t of A� satisfying the following conditions�

��



U� request 
 arrows�u� a
 i� u 
 requestinga
U� grant 
 arrows�u� a
 i� holdinga � true and lastforwarda � u

U
 request 
 arrows�a� u
 i� requesteda � true and lastforwarda � u

U	 grant 
 arrows�a� u
 i� holdinga � false and lastforwarda � u

A� request 
 arrows�ba��a� a
 i� a� 
 requestinga
A� grant 
 arrows�ba��a� a
 i� holdinga � true and lastforwarda � a�

A
 request 
 arrows�a� ba�a�
 i� requesteda � true and lastforwarda � a�

A	 grant 
 arrows�a� ba�a�
 i� �a� a�� grant
 
 messages

I� request 
 arrows�a� ba�a�
�
request �
 arrows�ba�a�� a�
�

and grant �
 arrows�a�� ba�a�
 i� �a� a�� request
 
 messages

I� ha� ba�a�i points toward the root i� holdinga � false and lastforwarda � a�

The conditions U� 
 U� and A� 
 A	 are straightforward� They say that the arbiter
process a has received a request from a process v in t i� v is in a�s set requesting of
requesting processes in s� and that a has received the resource from v in t i� a holds the
resource in s and last sent �and hence received
 the resource from v� Similarly� a has
forwarded a request for the resource in t i� a has sent a request in the direction it last
forwarded the resource in s� A	 says that the resource is in transit between a and a�

in t i� there is a grant message from a to a� in the message bu�er messages in s� U	
says that the user u has the resource in t if in s the node a last forwarded the resource
to u and has not received the resource since� Conditions I� and I� are invariants that
must be preserved by the mapping� I� says that a state with a request in transit must
map only to states satisfying Lemma 	�� I� says that the value of lastforward correctly
records the direction of the resource in the network� We now have the following�

Lemma ��
 The mapping h� is a possibilities mapping from A�

� to A��

Proof
 The action mapping f� has renamed the actions of A� so that A�

� and A� have the
same external action signature� Let s be a start state of A�

�� For every arbiter process a
in s� the set requesting a of requesting processes is empty� and requesteda is set to false� It
follows by U�� U
� A�� and A
 that no arrow set of any state in h��s
 contains a request
arrow� Furthermore� the initial holder a in s has set its �ag holding a to true� all other
processes a� have set holdinga� to false� and lastforwarda� to the node in the direction of
the resource� and no grant message is pending in the message bu�er messages� It follows
by U�� U	� A�� and A	 that there is precisely one root in every state of h��s
� Therefore�
h��s
 contains a start state of A� as desired�

Consider the action � � request�u� a
 of A�

�� originally the action receiverequest�u� a

of A�� Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
The action � is an input action of both automata� and hence is enabled from both s

��



and t� Suppose s
�
� s� and t

�
� t�� To show that t� 
 h��s�
� we must show that U� holds�

However� � adds u to the set requestinga of requesting processes is s
�� and adds a request

arrow to the set arrows�u� a
 in t�� and hence U� holds� Therefore� t� 
 h��s�
�

Consider the action � � grant�u� a
 of A�

�� originally the action receivegrant�u� a

of A�� Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
Since � is an input action in both automata� � is enabled from both s and t� Suppose
s

�
� s� and t

�
� t�� We see by U	 that there is a grant arrow in the set arrows�a� u
 of t

i� holdinga � false and lastforwarda � u in s� If both conditions are false� then � has no
e�ect on either state� and hence t 
 h��s
 implies t� 
 h��s�
� On the other hand� suppose
both conditions are true� To show t� 
 h��s�
� we must show that U�� U
� and U	 hold�
Notice that lastforwarda � u in s�� First� � sets holdinga to true in s

�� and adds a grant
arrow to arrows�u� a
 in t�� so U� holds� Second� � sets requesteda to false in s�� and
removes any request arrow from the set arrows�a� u
 in t�� so U
 holds� Finally� since �
sets holdinga to true in s�� the fact that � moves the grant arrow from arrows�a� u
 to
arrows�u� a
 implies that U	 holds� Therefore� t� 
 h��s�
�

Consider the action � � request�a� u
 of A�

�� originally the action sendrequest �a� u

of A�� Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
If � is enabled from s� then the set requestinga of requesting processes is nonempty
in s� so U� and A� implies that some set arrows�w� a
 contains a request arrow in t�
Furthermore� since holdinga � false and lastforwarda � u in s� we have by U	 that
arrows�a� u
 contains a grant arrow in t� and hence that the edge ha� ui points toward
the root in t� Finally� since requesteda � false in s� by U
 we have that arrows�a� u
 does
not contain a request arrow� Therefore� � is enabled from t� Suppose s

�
� s� and t

�
� t��

To see that t� 
 hs�s�
� we must show that U
 holds� Notice that � sets requesteda to
true in s�� and that lastforwarda � u in s�� Since � adds a request arrow to arrows�a� u

in t�� we see that U
 holds� Therefore� t� 
 h��s�
�

Consider the action � � grant�a� u
 of A�

�� originally the action sendgrant�a� u
 of A��
Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
� If �
is enabled from s� then u is contained in the set requestinga of requesting processes in s�
and U� implies that arrows�u� a
 contains a request arrow� Furthermore� holding a � true

and lastforwarda � w in s� so U� and A� imply that arrows�bw�a� a
 �or arrows�w� a
 if w
is a user node
 contains a grant arrow in t� In addition� since y �
 requesting a for all
y 
 �w� u
 in s� U� and A� imply that in t no set arrows�by�a� a
 �or arrows�y� a
 if y is
a user node
 contains a request arrow for any y 
 �w� u
� Therefore� � is enabled from t�
Suppose s

�
� s� and t

�
� t�� To show that t� 
 h��s�
� we must show that U�� U� and

A�� U
 and A
� and U	 hold� First� the action � removes u from requestinga in s
�� and

removes a request arrow from arrows�v� a
 in t�� so U� holds� Second� since holdinga is set
to false in s�� and since a is not a root in t�� U� and A� hold� Third� since holding a � true

in s� we see that requesteda � false in s and hence in s�� so U
 and A
 hold� Finally�
since � sets holdinga to false and lastforwarda to u in s

�� and since � adds a grant arrow
to arrows�a� u
 in t�� we see that U	 holds� Therefore� t� 
 h��s�
�

��



Consider the action � � request�ba��a� a
 of A�

�� originally receiverequest�a�� a
 of A��
Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
If � is enabled from s� the set messages of undelivered messages in s must contain a
request message from a� to a� It follows by I� that in t the set arrows�a�� ba��a
 contains
a request arrow� the set arrows�ba��a� a
 does not contain a request arrow� and the set
arrows�a� ba�a�
 does not contain a grant arrow� Since arrows�a�� ba��a
 contains a request
arrow� Lemma 
� implies that ha�� ba��ai points toward a root� This together with the fact
that arrows�a� ba��a
 does not contain a grant arrow implies that hba��a� ai points toward
the root as well� Therefore� the action � is enabled from t� Suppose s

�
� s� and t

�
� t�� In

order to see that t� 
 h��s
�
� we must show that A� and I� hold� First� � adds a� to the

set requestinga of requesting processes in s
�� and � adds a request arrow to arrows�ba��a� a


in t�� so A� holds� Second� � removes a request message from a� to a from the set messages
of undelivered messages in s�� and � adds a request arrow to arrows�ba��a� a
� so I� holds�
Therefore� t� 
 h��s�
�

Consider the action � � grant�ba��a� a
 of A�

�� originally the action receivegrant�a�� a

of A�� Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
�
If � is enabled from s� the set messages of undelivered messages in s must contain a grant
message from a� to a� By A	 we see that the set arrows�a�� ba��a
 contains a grant arrow
in t� Lemma 	� implies that the set arrows�a� ba�a�
 must contain a request arrow� Since
the degree of the bu�er node ba�a� is �� we see that � is enabled from t� Suppose s

�
� s�

and t
�
� t�� Since the set arrows�a� ba�a�
 contains a request arrow in t� Lemma 
� implies

that the edge ha� ba�a�i points toward the root� By I� we see that holdinga � false and
lastforwarda � a� in s� Therefore� to see that t� 
 h��s�
� we must show that A�� A
�
A	� and I� hold� First� � sets holdinga to true in s

�� Notice that lastforwarda � a� in s�
and therefore in s� as well� Since � adds a grant arrow to arrows�ba��a� a
 in t�� we see
that A� holds� Second� � sets requesteda to false in s�� and � removes a request arrow
from arrows�a� ba�a�
 in t�� so A
 holds� Third� � removes a grant message from a� to a
from the set messages of undelivered messages in s�� and � removes a grant arrow from
arrows�a�� ba��a
 in t�� so A	 holds� Finally� since holdinga is set to true in s

�� it is easy to
see that I� holds� Therefore� t� 
 h��s�
�

Consider the action � � request�a� ba�a�
 of A�

�� originally the action sendrequest�a� a�

of A�� Suppose s and t are reachable states of A

�

� and A�� respectively� such that t 
 h��s
�
If � is enabled from s� then the set requestinga of requesting processes is nonempty
in s� and hence by U� and A� some set arrows�w� a
 of t contains a request arrow�
Furthermore� since holdinga � false and lastforwarda � a� in s� by I� we see that the
edge ha� ba�a�i points toward the root in t� Finally� since requesting a � false in s� by
A
 we see that there is no request arrow in arrows�a� ba�a�
 in t� Therefore� � is enabled
from t� Suppose s

�
� s� and t

�
� t�� To see that t� 
 h��s�
� we must show that A


and I� hold� Notice that � sets requesteda to true in s�� and places a request arrow
in arrows�a� ba�a�
 in t�� Since lastforwarda � a� in s and hence in s�� we see that A

holds� Notice that requesteda � false in s� Since lastforwarda � a� in s� A
 implies that

��



arrows�a� ba�a�
 does not contain a request arrow in t� Lemma 	� implies that there is no
request arrow in arrows�ba�a�� a�
 and no grant arrow in arrows�a�� ba�a�
 in t� and hence
the same is true in t�� Since � adds a request arrow to arrows�a� ba�a�
 in t�� and adds a
request message from a to a� to the set messages of undelivered messages in s�� we see
that I� holds� Therefore� t� 
 h��s�
�

Finally� consider the action � � grant�a� ba�a�
 of A�

�� originally sendgrant�a� a�
 of A��
Suppose s and t are reachable states of A�

� and A�� respectively� such that t 
 h��s
� If �
is enabled from s� then since a� 
 requestinga in s� we see by A� that arrows�ba��a� a

contains a request arrow in t� Since holdinga � true and lastforwarda � w in s� we see by
U� and A� that a grant arrow must be contained in arrows�bw�a� a
 �or arrows�w� a
 if w
is a user node
 in t� Furthermore� since y �
 requestinga for all y 
 �w� a

�
 in s� we see by
U
 and A
 that no request arrow is contained in arrows�by�a� a
 �or arrows�y� a
 if y is a
user node
 in t� Therefore� � is enabled from t� Suppose s

�
� s� and t

�
� t�� To see that

t� 
 h��s�
� we must show that A�� A� and I�� A	� I�� and I� hold� All except I� are
straightforward� so we show I�� Notice that arrows�ba��a� a
 contains a request arrow in t�
By I�� there is no undelivered request message from a� to a in the set messages of s� and
hence in s�� However� � puts a grant arrow in arrows�a� ba�a�
� so I� holds� Therefore�
t� 
 h��s�
�

Having exhibited a possibilities mapping h� from A�

� to A�� we now use this mapping
together with Lemma 

 to show that E�

� satis�es E�� Before using Lemma 

� however�
we must translate the local correctness conditions C �

a and CM for E�

a and E
�

M � respectively�
into a global correctness condition for E�

�� We use Lemma 
	 to recharacterize E
�

� in this
way� Let a and a� be adjacent arbiter nodes� and let v be an arbitrary �user or arbiter

node adjacent to a in G� Let

FwdReqsa�v

� � fa 
 states�A�

�
 � ajA
�

a 
 FwdReqsa�v
g

FwdGrsa�v

� � fa 
 states�A�

�
 � ajA
�

a 
 FwdGrsa�v
g

DelReqsM�a� a
�
� � fa 
 states�A�

�
 � ajM
� 
 DelReqsM �a� a

�
g

DelGrsM�a� a
�
� � fa 
 states�A�

�
 � ajM
� 
 DelGrsM �a� a

�
g �

Furthermore� let
FwdReq�a �

�

v

FwdReqsa�v

� �� FwdReqaa�v


�

FwdGr�a �
�

v

FwdGrsa�v

� �� FwdGraa�v


��

DelReq�M �
�

a�a�

DelReqsM�a� a
�
� �� DelReqaM �a� a

�
�

DelGr�M �
�

a�a�

DelGrsM �a� a
�
� �� DelGraM�a� a

�
��

��



Finally� let
C �

a � FwdReq�a � FwdGr�a

C �

M � DelReq�M �DelGr�M �

If
C �

� �
�

a

C �

a � C �

M

then the following is an immediate result of Lemma 
	�

Lemma ��
 E�

� is the execution module of A
�

� with the executions of A
�

� satisfying C
�

��

Having made this transformation from local to global correctness conditions� we now
use Lemma 

 to show that E�

� satis�es E��

Lemma �	
 E�

� satis�es E��

Proof
 Let a and a� be adjacent arbiter nodes� and let v and w be arbitrary nodes
adjacent to a� If v is an arbiter node� then let v� be the bu�er node ba�v between a and v�
and let v� be the node v itself if v is a user node� The node v� is simply the node of G
adjacent to a such that the edge ha� v�i points toward v� Let w� be the analogous node
with respect to w� We will show that

�� h��� �FwdReq
s
��a� v

�

 � FwdReqsa�v

�

�� h��� �FwdReq
s
��ba�a�� a�

 � DelReqsM �a� a

�
�


� h��� �FwdGr
s
��a� v

�� w�

 � FwdGrsa�v�w

�� and

	� h��� �FwdGr
s
��ba�a�� a� a�

 � DelGrsM �a

�� a
�

Since it is easy to see from the de�nition of f� and the following sets that

�� FwdGraa�v

� � FwdReqa��a� v

�
�

�� DelReqaM�a
�a
� � FwdReqa��ba��a� a
�


� FwdGraa�v�w

� � FwdGra��a� v

�� w�
� and

	� DelGraM�a
�� a
� � FwdGra��ba��a� a
�

�




it will follow by Lemma 

 that E �

� satis�es E��

First� suppose t 
 h��s
 is a state of FwdReq
s
��a� v

�
� and let us show that s is a state
of FwdReqsa�v


�� Since some set arrows�w� a
 of t contains a request � we see by U� and A�
that the set requestinga of requesting processes is nonempty� Since ha� v

�i points toward
the root in t� we see by U	 and I� that holding a � false and lastforwarda � v in s� Since
the set arrows�a� v�
 does not contain a request arrow in t� the fact that lastforwarda � v

together with U
 and A
 imply that requesteda � false� Therefore� s 
 FwdReqsa�v

��

Second� suppose t 
 h��s
 is a state of FwdReq
s
��ba�a�� a�
� and let us show that s is a

state of DelReqsM �a� a
�
�� Since in t there is a request arrow in arrows�w� ba�a�
 for some w�

the edge hw� ba�a�i must point toward the root � Since hba�a�� a�i also points toward the
root in t� and since this root is unique� this request arrow must be in arrows�a� ba�a�
�
Furthermore� since hba�a�� a�i points toward the root� we see that there can be no grant

arrow in arrows�a�� ba�a�
 and no request arrow in arrows�ba�a�� a�
� It follows by I� that
there is a request message from a to a� in the set messages of undelivered messages in s�
Therefore� s 
 DelReqsM �a� a

�
��

Third� suppose t 
 h��s
 is a state of FwdGr
s
��a� v

�� w�
� and let us show that s is a state
of FwdGrsa�v�w


�� Since there is a request arrow in arrows�v�� a
 in t� U� and A� imply
that v is contained in the set requestinga of requesting processes� Since there is a grant
arrow in arrows�w�� a
 in t� U� and A� imply that holdinga � true and lastforwarda � w

in s� Therefore� s 
 FwdGrsa�v�w

��

Finally� suppose t 
 h��s
 is a state of FwdGr
s
��ba�a�� a� a�
� and let us show that s is

a state of DelGrsM�a
�� a
� Since there is a grant arrow in arrows�a�� ba�a�
 in t� A	 implies

that there is a grant message from a� to a in the set messages of undelivered messages
in s� Therefore� s 
 DelGrsM �a

�� a
��

Finally� combining the work of the last few section� we have the following result�
Let E��

� be the execution module obtained by renaming the actions of E� according to
the action mapping f�f��

Theorem ��
 E��

� solves E��

Proof
 Since E�

� satis�es E�� it follows by Lemma �� that E��

� satis�es E
�

�� Since E
�

�

satis�es E�� it follows by Lemma �� that E��

� satis�es E�� Since E�

� is implementable�
Lemma �� implies that E��

� is implementable� Therefore� E
��

� solves E��

With this we have proven the correctness of a fully�detailed protocol for resource
allocation in an asynchronous network�

��� Time Complexity

The primary concern motivating Sch�onhage�s arbiter is its time performance� For ex�
ample� Lynch and Fischer consider two simple resource arbiters in �LF���� allocating a

�	



resource among n users� One arbiter is a process that simple polls each user in round�
robin order� granting the resource to each requesting user in turn� Given that each user
uses the resource for a bounded amount of time� the response time for this arbiter �the
maximum time a user must wait for the resource
 is O�n
 regardless of the number of
users requesting the resource� A second arbiter is a binary tree �a tournament tree
 with
the users at the leaves of the tree� Each internal node of the tree repeatedly polls its
children until one of its children requests the resource� at which point it stops and passes
the name of the child up to the internal node�s parent� The root of the tree actually
determines which user is granted the resource� When only one user is requesting the re�
source at a time� this arbiter�s response time is only O�log n
� In the worst case� however�
�when every user is requesting the resource
 this arbiter�s response time is O�n log n
�
Sch�onhage�s algorithm� in contrast� combines favorable aspects of both these arbiters� In
particular� �in the case that the graph G is a binary tree
 the arbiter�s response time is
O�log n
 if only one user requests the resource at a time� and O�n
 in the worst case� In
this section we perform the complexity analysis needed to make these claims precise�

For convenience� we perform our complexity analysis at the middle level of abstraction�
with the automaton A�� We have not yet introduced the notion of time into our model�
While we have not yet decided on how time should be incorporated into our model� one
alternative is to assign times to states �or equivalently to actions
 denoting the time at
which an automaton transition causes the automaton to enter this state� Let us refer
to such an execution as a timed execution� In order to perform any time analysis� it is
necessary to place bounds on the time between automaton transitions� Recall that all
liveness conditions required of the automaton A� in the construction of E� are of the
form S �� T � meaning that if A� enters a state of S� then eventually an action of T is

performed� Let us denote by S
b
�� T the condition that if A� enters a state s of S� the

within time b an action � of T will be performed� That is� following state s in a timed

execution satisfying S
b
�� T there is a ��step to a state s� such that the di�erence in

times assigned to s and s� is at most b� Let

BndedFwdReq� �
�

a�v

FwdReqs��a� v

b
�� FwdReqa��a� v


BndedFwdGr� �
�

a�v�w

FwdGrs��a� v� w

b
�� FwdGra��a� v� w


BndedRtnRes� �
�

u

RtnRess��u

b
�� RtnResa��u


Let us say that a timed execution ofA� is b�bounded if it satis�es the conditions BndedFwdReq��
BndedFwdGr�� and BndedRtnRes�� We de�ne the response time in a b�bounded execu�
tion x of A� to be a time r such that for all states s with request 
 arrows�u� a
 �where u
is a user node
 appearing in x� the di�erence in times assigned to s and the �rst state
with grant 
 arrows�a� u
 appearing after s in x is less than r�

��



Suppose the graph G has diameter d� It is easy to see that the response time for
b�bounded executions of A� is �bd when only one user request the resource at a time�
The request must travel the diameter of the graph to the root� and the root must be
moved the diameter of the graph to the user� Thus� we have the following�

Theorem ��
 If the diameter of the graph G is d� then the response time in b�bounded
executions of A� in which at most one user requests the resource at a time is �bd�

Conversely� suppose the graph G has e edges� We now show that the worst�case
response time �when the arbiter is heavily loaded
 is 
be
b� We begin with the following
preliminary lemma� the inductive statement in the proof that the arbiter�s response time
is 
be 
 b� Given an edge hv�wi� we de�ne e�v�w
 to be the number of edges in the
subtree of v rooted at w�

Lemma ��
 Let s be a state of A� in which request 
 arrows�v�w
 and the edge hv�wi
points toward the root� In any b�bounded execution fragment of A� from s� grant 

arrows�w� v
 within time 
be�v�w
 ! b�

Proof
 We proceed by induction on e � e�v�w
� Suppose e � �� In this case� w
must be a leaf� and hence a user node� Since the edge hv�wi points toward the root�
grant 
 arrows�v�w
� Since w is a user node� condition BndedRtnRes� implies that
grant 
 arrows�w� v
 within time b � 
be! b�

Suppose e 
 � and the inductive hypothesis holds for numbers of edges less that e�
By assumption� the edge hv�wi points toward the root� If w itself is the root� since
request 
 arrows�v�w
� condition BndedFwdGr� implies that within time b we have
grant 
 arrows�w� x
 for some node x� Notice that if x � v� then we are done� so let
us assume that x �� v� Then in either case� regardless of whether w itself is the root�
the edge hw� xi points toward the root within time b for some node x other than v�
Let x � xi� � � � � x�� v be the nodes between x and v in the ordering of nodes adjacent
to w� Let ej � e�w� xj
� and notice that e �

Pi
j���ej ! �
� We proceed by induction

on i to show that if request 
 arrows�v�w
 and hw� xii points toward the root� the
grant 
 arrows�w� v
 within time

Pi
j�� 
b�ej!�
� It will follow that grant 
 arrows�w� v


within time b !
Pi

j�� 
b�ej ! �
 � 
be ! b of the time request 
 arrows�v�w
� The case
of i � � is vacuously true� Suppose i 
 � and the inductive hypothesis holds for i 
 ��
Since request 
 arrows�v�w
� the edge hw� xii points toward the root� and request �

arrows�w� xi
� condition BndedFwdReq� implies that either request 
 arrows�w� xi
 or
grant 
 arrows�xi� w
 within time b� In the case that request 
 arrows�v�w
� since the
edge hw� xii points toward the root� the inductive hypothesis for e
� implies that grant 

arrows�xi� w
 within time 
bei!b� In either case� grant 
 arrows�xi� w
 within time 
bei!
�b� Since request 
 arrows�v�w
 and grant 
 arrows�xi� w
� condition BndedFwdGr�
implies that grant 
 arrows�w� xj
 within time b for some xj 
 fxi��� � � � � x�� vg� The
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inductive hypothesis for i
� implies that grant 
 arrows�w� v
 within time
Pi��

j�� 
b�ej!

�
� for a total of time
Pi

j�� 
b�ej ! �
 as desired�

Finally� we have the following�

Theorem ��
 If the graph G has e edges� then the response time in any b�bounded
execution of A� is 
be
 b�

Proof
 Let s be a state of A� in which request 
 arrows�u� a
 for some user node u�
Either grant 
 arrows�a� u
 or the edge hu� ai points toward the root� In the case that
grant 
 arrows�a� u
� the condition BndedRtnRes� implies that grant 
 arrows�u� a

within time b� In either case� request 
 arrows�u� a
 and the edge hu� ai points toward the
root within time b� Lemma �� implies that grant 
 arrows�a� u
 within time 
be�u� a
 !
b � 
be
 �b for a total of time 
be
 b�

Thus� as claimed� the response time in b�bounded executions is linear in the diameter
of the network when the load on the arbiter is light� and linear in the size of the network
when the load is heavy� We note that when an arbiter node grants the resource to an
adjacent node� if it has received a request for the resource� it later forwards a request
in the direction of the resource� As a result� three messages are sent over the edge to
the adjacent node� the grant and request messages sent by the arbiter node� and a grant
message sent to the arbiter node when the node receives the resource� Hence� the worst
case response time of about 
be� If� however� the arbiter node were to combine the grant
and request messages sent to the adjacent node� then only two messages would traverse
the edge between them� We note that in this case the worst case response time is �be� We
have chosen to separate the messages in order to make the algorithm easier to describe�
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Chapter �

Conclusions

In this thesis we have introduced a new model of distributed computation in asynchronous
systems� We �nd this model to be quite expressive� and �nd that the transparent�
automata�theoretic semantics make reasoning about system behavior relatively simple�
We have shown how the strong distinction between input and output actions captures
the game�theoretic interplay between a system and its environment� This distinction has
been found to be useful when describing the interface between system components� and
when decomposing a system into modular components �see �Blo���
� We have found that
the clarity of the interface between system components described by automata allows
us to express the notion of fair computation quite simply and naturally� Finally� we
have seen that automata may be used to construct hierarchical correctness proofs for
distributed algorithms� allowing intuitive reasoning about key high�level ideas behind an
algorithm�s behavior to be incorporated into a formal proof of its correctness� While the
framework developed in this thesis has proven to be quite useful� there are a number of
ways in which it could be enhanced� We now consider a few of these enhancements�

First of all� it would be nice to �nd a more compact notation� a programming language�
for de�ning automata than the precondition"e�ects style of presentation used in this
thesis� In particular� since our work is in several ways similar to CCS� it would be nice to
develop a CCS�like calculus having input�output automata as its underlying operational
semantics� We note that one aspect of CCS that has not been developed for input�output
automata is a powerful theory of equational reasoning� We do not know if such a theory
can be associated with our model� Any results in this direction will certainly be valuable�
for they will allow us to combine the transparent operational semantics of input�output
automata with powerful semantic techniques for reasoning about system behavior�

As of yet� we have not attempted to characterize the expressive power of input�output
automata� Our feeling that our model is generally quite powerful is the result of expe�
rience� and our feeling that certain aspects of the model �such as the requirement that
an automaton be input�enabled
 capture important aspects of asynchronous distributed
computation� Bloom has made some initial attempts at characterizing the expressive
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power of our model in �Blo���� In particular� he has characterized the languages that
can be expressed as the set of schedules of an automaton �resulting from arbitrary ex�
ecutions
� Left uncharacterized are the languages that can be expressed as the set of
schedules resulting from fair executions� Another possible characterization of interest is
the relationship between the expressive power of temporal logic and our model� Wolper�
Vardi� and Sistla show in �WVS�
� that given a formula in a particular extension of
temporal logic� it is possible to construct a B�uchi automaton accepting precisely those
sequences satisfying the given formula� It might be possible that these techniques can be
adapted to prove a similar result for input�output automata�

We note that our model includes a single� simple notion of automaton composition�
In particular� our composition requires that automata sharing an action � perform �

simultaneously whenever � is performed by their composition� The intention is that if �
is an output action of A and an input action of B� then the simultaneous performance of �
models communication from A to B� We think of the performance of � as a computational
step of A causing B to be noti�ed of the arrival of input� However� since two processes in
an asynchronous system cannot be expected to perform an action simultaneously� rather
than complicating our notion of composition� we have chosen to require that the output
actions of automata in a composition be disjoint� This has a number of e�ects on how
systems are modeled with automata� For instance� to use Hoare�s example of a vending
machine �see �Hoa���
� suppose that we construct automata modeling humans� and an
automaton modeling a vending machine� Humans can insert coins into the vending
machine �output from humans and input to the vending machine
� Since we require that
the output actions of automata in a composition be disjoint� if we compose a collection of
humans with the vending machine� each human�s output action of inserting a coin must
be tagged with an identi�er� Thus� the vending machine is e�ectively able to determine
which human is inserting a coin� which is not necessarily a realistic model of this simple
interaction� It might be interesting to study other notions of composition that would
avoid this problem� One such composition might require all automata having � as an
input action to synchronize with precisely one automaton �the same for all
 having � as
an output action� While this is a natural notion of composition� the semantics of this
composition complicate our model quite a bit� We feel that one virtue of our composition
is that� as a consequence of Corollary 
� reasoning about the enabling of an action in a
composition can be carried out by reasoning about the state of a single component� This
has been found to be very convenient in �LM����

While fair computation important to us� we have not made an explicit study of the
nature of fairness in our model� In fact� we have de�ned only one of several possible
notions of fairness �see �Fra���
� We feel that it should be possible to express many other
notions of fairness in our model� and the study of these de�nitions in our model are of
interest to us�

However� since the primary emphasis of this thesis has been the decomposition of
correctness proofs� both hierarchically and modularly� we are naturally interested in
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continuing the study of how automata can be used in new techniques of decomposition�
We have already mentioned the work of �LS�	a� and �LLW���� The authors of these
papers seem to be using a horizontal decomposition di�erent from any considered in our
work� In our work we have attempted to decompose systems into modular units that can
be composed to yield the desired system� Once this decomposition has been made� each
component can be examined in isolation� simplifying the veri�cation process� In some
systems� however� the system components are so heavily interdependent that no clean
decomposition appears possible� �LS�	a� and �LLW��� use the technique of �projecting�
onto one system component �or algorithm component
� abstracting the remaining system
components to a high�level black box� and reasoning about the remaining �images��
Notice that these images cannot be composed to yield a model of the system since each
is a model of the complete system� The work of �LLW��� concerns how correctness proofs
for each image can be combined into a correctness proof for the entire system� This work
appears to be quite promising�

Finally� while this thesis has essentially ignored the notion of time� time is a very
important part of modern distributed systems� Timeouts� for instance� are a crucial
part of the fault�tolerance of many communication algorithms� Furthermore� complexity
analysis of algorithms requires some notion of bounds on processor step times and message
delivery times� We have shown� using rather ad hoc techniques� how rigorous reasoning
about time complexity can be performed n our model� A very important problem is that
of incorporating time into our model more naturally� and investigating useful properties
about time that can be used to reason about time complexity of algorithms in our model�
For instance� what does it mean to compose the timed equivalent of execution modules#
Another important problem is that of relating complexity results obtained at di�erent
levels of abstraction� In our example� we analyzed the complexity of Sch�onhage�s arbiter
at a level of abstraction higher than the fully�detailed protocol� but it is not hard to see
how this complexity result translates down to the lower level of abstraction� In general�
however� relating time complexities at di�erent levels of abstraction is a di�cult problem�
Such problems certainly deserve further study�
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