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This thesis introduces a new model for distributed computation in asynchronous net-
works, the input-output automaton. This simple, powerful model captures in a novel way
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mental properties of distributed computation such as fair computation to be naturally
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Chapter 1

Introduction

A major obstacle to progress in the field of distributed computation is that many of the
important algorithms, especially communications algorithms, seem to be too complex
for rigorous understanding. Although the designers of these algorithms are often able to
convey an intuitive understanding of how their algorithms work, it is often difficult to
make this intuition formal and precise. When these algorithms are rigorously analyzed,
the work is generally carried out at a very low level of abstraction, involving messages
and local process variables. Reasoning precisely about the interaction between these
messages and variables can be extremely difficult, and the resulting proofs of correctness
are generally quite difficult to understand.

An indication that the situation is not completely hopeless is the fact that the design-
ers are able to give high-level, although informal, descriptions of the key ideas behind their
algorithms. For instance, the distributed minimum spanning tree algorithm of [GHS83]
can be interpreted as several familiar manipulations of a graph. What is needed is a way
of formalizing these high-level ideas, and incorporating them into a proof of the detailed
algorithm’s correctness.

One promising approach is to begin by constructing a high-level description of the al-
gorithm. This description could #tself be an algorithm in which high-level data structures
(such as graphs) serve as states, and process actions manipulate these data structures.
This algorithm could then be proven correct using rigorous versions of the high-level,
intuitive arguments given by the algorithm’s designers. Successive refinements of this
algorithm could then be defined at successively lower levels of detail, and each shown
(rigorously) to simulate the preceding algorithm. Ideally, this approach would allow us
to use in the proof of simulation any property that has already been proven for preceding
levels. In this way, the high-level intuition used to explain the algorithm would become
part of a rigorous proof of the full algorithm’s correctness.

Two years ago, we began to consider this approach for a fairly simple but interesting
algorithm for resource allocation in an asynchronous network, an algorithm originally



suggested by Schonhage in [Sch80]. Correctness conditions for this resource arbitration
problem include both safety and liveness conditions:! the mutual exclusion condition that
at most one user is using the resource at any given time; and the no lockout condition
that if every user holding the resource eventually returns the resource to the arbiter, then
the arbiter will eventually grant the resource to every requesting user. The algorithm
can be described at three levels of abstraction. At the top level is a simple, set-theoretic
statement of the problem, itself described as an algorithm. At the second level is a graph-
theoretic description of the arbiter, and how it moves the resource around the network.
At the third and lowest level is a distributed implementation of the arbiter, describing
in terms of messages and local process variables the protocol individual processors must
follow.

It soon became apparent, however, that traditional models and proof techniques (see
[OGT76], [LS84b], and [Hoa85], for example) are not adequate to describe interesting as-
pects of the problem statement, algorithm, and correctness proofs. In particular, while
the problem seems most naturally formulated in terms of the game-theoretic interac-
tion between the users of the arbiter and the arbiter itself, these models require that
the problem be formulated in terms of system states, and do not capture this game-
theoretic aspect of the problem in a natural way. Furthermore, the interaction between
the users and the arbiter clearly distinguishes the arbiter’s input actions from its output
actions. Input to the arbiter (a request for the resource) can occur at any time, regard-
less of whether the arbiter is in a position to grant the resource. Output (the granting
of requests) occurs only under the control of the arbiter. This notion of control, the
notion that one system component may completely determine when a particular action
is performed, is not easily expressed in these models. We note that satisfaction of the
no lockout condition requires that the arbiter be given “fair turns” to produce output,
rather than simply being overwhelmed by a flood of input. The ability to express this
notion of “fair turns” depends heavily on the ability to express the notion of one process
controlling the performance of an action.

We were therefore led to the development of a new model of distributed computation
in asynchronous systems, the input-output automaton. This model is based on (possibly
infinite-state) nondeterministic automata. Automaton transitions are labeled with the
names of process actions they represent. These actions are partitioned into sets of input
and output actions, as well as internal actions representing internal process actions. Input
actions have the unique property of being enabled from every state; that is, for every input
action there is a transition labeled with this action from every state. In other words, the
system must be able to accept any input at any time. Thus, a very strong distinction is

!Informally, properties required of a program can be partitioned into safety properties and liveness
properties. A safety property (such as mutual exclusion [Dij65]) says that nothing “bad” will ever hap-
pen, and a liveness property (such as termination) says that something “good” will eventually happen.
Alternatively, safety properties describe allowed behavior, and liveness properties describe required be-
havior. Alpern and Schneider give formal definitions of safety and liveness in [AS86] in terms of Biichi
automata.



made between actions locally-controlled by the system (output and internal actions) and
actions controlled by the system’s external environment (input actions). This distinction
captures the game-theoretic interaction between the system and its environment alluded
to above, and gives our model an event-driven flavor characteristic of many asynchronous
distributed algorithms.

In order to construct models of complex systems from models of simpler system
components, we define a simple notion of automaton composition. Loosely speaking,
the composition of a collection of automata is their Cartesian product, with a state of
the composition being a tuple of states from the component automata, one from each
component. In order to model communication, we require that automata synchronize
the performance of common (shared) actions. If 7 is an output action of A and an input
action of B, then performance of m by both automata models communication from A
to B. With simple syntactic restrictions on the composition of automata, we ensure that
composition preserves the notion of control mentioned above: No system component may
block the performance of an output action by any other component.

Since automata are able to receive every input in every state, it is possible for an
automaton to be flooded with input without having the opportunity to perform actions
required in response to the input received. The satisfaction of most interesting liveness
conditions, however, requires that this does not happen. The notion of fair computation
therefore plays a fundamental role in our model. Informally, a computation of a system
is said to be fair if every system component is always eventually given the chance to
take a step. Since an automaton may model an entire system as well as a single system
component, it is necessary to retain certain information about the structure of the system
being modeled. In particular, it is necessary to retain information about which actions
are controlled by the same system component. With this information it is possible to
determine from a given system behavior whether each system component has been given
the chance to make computational progress infinitely often. We therefore associate with
every automaton a partition of its locally-controlled actions (i.e., its internal and output
actions). The interpretation of this partition is that each class consists of the locally-
controlled actions of one system component. With this partition, we are able to define a
simple notion of fair computation in our model.

Since our model concentrates on the input-output interaction between a system and
its environment (rather than system states), our notion of a problem to be solved is a
collection of system behaviors (sequences of input and output actions) considered ac-
ceptable (rather than conditions on system states). An automaton may be considered a
solution to such a problem if every behavior exhibited by the automaton is contained in
this set of acceptable behaviors. The automaton solves the problem in the sense that any
correctness condition satisfied by each behavior in this set is satisfied by each behavior
of the automaton. As previously mentioned, however, fair computation is crucial to the
satisfaction of most interesting liveness conditions. We therefore require only that the
fair behaviors of an automaton solving the problem be contained in the set of acceptable



behaviors. We note that it is easy to fall into trivial correctness definitions, allowing
trivial or uninteresting solutions to a problem. Our condition that an automaton be
required to accept any input in any state, together with our notion of fairness, avoids
this problem. The requirement that input be constantly enabled ensures that our solu-
tions are able to respond to all patterns of input. The use of fairness ensures that the
correctness of an solution will be judged only by those behaviors in which the system is
actually given the chance to make progress.

Our simple correctness condition, the requirement that the fair behaviors of an au-
tomaton be contained in some set of acceptable behaviors, is not a new style of correctness
conditions. It can be found, for instance, in the work of Lynch and Fischer in [LF81],
and is similar to Hoare’s notion of specification satisfaction in [Hoa85]. The simplicity of
such correctness conditions do, however, lend a uniform structure to correctness proofs
in our model. Recall that our notion of a well-structured correctness proof involves a
sequence of models My, ..., M,, each modeling an algorithm at successively lower levels
of detail. The proof of the algorithm’s correctness involves showing that each model
“simulates” the previous model in the sequence. That is, that the set of (fair) behaviors
exhibited by M; are contained in the set of (fair) behaviors exhibited by M;_;. In this
sense, each model M;_; determines a problem that the model M; is required to satisfy.
The problem of showing that M; “simulates” M;_; is therefore the problem of showing
that M; solves the problem determined by M; ;. As an aid in doing so, we develop the
notion of possibilities mappings that enable us to relate behaviors of one automaton to
another.

We note that our model may be considered a special case of other models such as
Milner’s CCS and Hoare’s CSP (see [Mil80] and [Hoa85]). Neither of these models,
however, is entirely suitable for our purposes. In the first place, although Milner has
found them to be mathematically superfluous in CCS, we find the notion of a process
state a convenient descriptive tool when describing algorithms. More important, however,
is the fact that fairness is difficult to express in CCS. Notions of fairness that have
been studied in connection with CCS can be classified as either weak fairness or strong
fairness (see [CS84], [Par85], and [Fra86]). Weak fairness requires that if an action =
is continuously enabled, then it must be performed infinitely often. Strong fairness, on
the other hand, requires that = be performed infinitely often even if it is enabled only
infinitely often. These notions of fairness, however, are not satisfactory in event-driven
systems. In such a system, for example, a process is always able to accept interrupts,
but should not be required to interrupt itself unless some external source requests the
interrupt. The problem is again the notion of control discussed above. There is no notion
in CCS of an interface between processes from which we can deduce which which process
controls the performance of a given action. By making a clear distinction between input
and output actions, and by restricting ourselves to a simple notion of composition, we
find that fairness is very simple to describe in our model.

Similar comments can also be made for CSP with respect to fairness (see [KdR83],



[Rei84], and [Fra86]). In fact, CSP further complicates the problem by identifying a
process with (among other things) all finite behaviors of the process. Since it is impossible
to deduce the infinite behavior of a process from its finite behaviors, CSP precludes the
study of infinitary properties such as fairness without extending the semantics of a CSP
process.

We note further that the complexity of the operations defined in CSP dooms the
language to a complex semantics, making reasoning about systems of processes unin-
tuitive and cumbersome. Reading between the lines of Hoare’s book [Hoa85], it seems
that Hoare himself would prefer to retain for nondeterministic processes the automata-
theoretic (trace-theoretic?) semantics he develops for deterministic processes. However,
the first nondeterministic operation introduced by Hoare is the nondeterministic OR, 1,
an operation combining two processes P and @) to form a process Pl1¢) that nondetermin-
istically chooses (itself) to behave either like P or ). A second operation, O, combines P
and ) to form a process POQ) allowing the environment to determine whether POQ)
behaves like P or Q. Both P Q and POQ have the same traces (since each behaves
either like P or @), but differ subtly in the fact that the environment has no control or
knowledge of the choice P () makes between P and (). Thus, it is possible for P 11 @)
and POQ to be placed in an environment offering an action 7 as input, causing P ' Q)
to deadlock while PO does not. This forces Hoare to make his first break from the
trace-theoretic semantics of deterministic processes and define the notion of a refusal,
a set of actions a process might refuse to perform. In our model, however, due to the
unique property of input actions, a process will not block if its environment offers =
as input. Thus, by suitably restricting our model, we are able to retain the intuitive,
mathematically-tractable semantics of automata.

We note that there are systems of processes that can not be expressed in our model.
Clearly, one such example is a system in which one process can block the progress of
another as in CSP. These omissions, however, are the result of deliberate decisions, since,
for example, it would be easy to define a notion of composition that allows us to express
the process blocking of CSP. The simplicity of our model and its ease of use are the
result of a careful limitation of its scope. Our experience has been that our model is
sufficiently general to allow description of a significant number of interesting systems.
We note that our model has already been found expressive enough to describe work
in network algorithms (see [LLW87| and the third chapter of this thesis), concurrency
control algorithms (see [LM86], [HLMW87], [FLMW87], and [GL87]), mutual exclusion
algorithms (see [Wel87]), hardware register algorithms (see [Blo87]), and dataflow com-
putation (see [Lyn86]). Furthermore, in many of these papers our model has been found
to be extremely useful when identifying the interface between system components, and
discovering a system’s natural decomposition.

Just as popular models of computation do not seem appropriate for our work, popular
proof techniques also seem inappropriate. For example, “Hoare logics” are a well-known

ZA trace is a sequence of actions performed by a system or process.
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method for proving that programs satisfy partial correctness assertions. Loosely speaking,
a partial correctness assertionis a statement about the behavior of a terminating program.
A program is said to satisfy such an assertion if it is satisfied by every terminating
execution of the program. Therefore, a partial correctness assertion says nothing about
program termination, but describes what will be true if and when the program halts.
Hoare describes in [Hoa69] a method for proving that sequential programs satisfy partial
correctness assertions. His method makes use of the observation, first noted by Floyd
in [Flo67], that partial correctness assertions satisfied by a program S can be expressed in
terms of predicates P and @) describing the program state before and after the execution
of S. More formally, if P and () are assertions about program variables and S is a program
statement, P{S} @ denotes the assertion that if P is true before the execution of S begins,
then ) will be true if and when S terminates. Given a few simple axioms, Hoare shows
how to derive partial correctness assertions P{S}@ for arbitrary programs S. In the first
step of the derivation, each statement S; of S is annotated with assertions P; and @);. In
the second step, each assertion P;{S;}Q); is proven using axioms describing the various
programming language constructs. Finally, general rules of inference (independent of any
programming language) are used to combine these assertions into a proof of P{S}Q.

Hoare’s method has proven to be a very effective method of verifying sequential
programs. Most interestingly, it is possible to write hierarchical correctness proofs. Each
program module S can be specified by a partial correctness assertion P{S}@. Having
proven each assertion P{S}(Q), these assertions can be used in the proof of the larger
program without reference to the implementation of S. Furthermore, since reasoning
begins with a collection of partial correctness assertions characterizing program behavior
and proceeds via rules of inference, this process can be automated if programmers are
willing to supply certain intermediate assertions. Compilers for the language Euclid, for
example, attempt to construct as much of the proof as possible (see [LGH*78]). Apt has
written a comprehensive survey of Hoare logics in [Apt81] and [Apt84].

In [OGT76], Owicki and Gries extend Hoare’s method to distributed and parallel pro-
grams. Here, too, each statement 5; of each process S is annotated with assertions P;
and @;, and partial correctness assertions P{S}Q*® are proven for each process S in
isolation using a sequential programming logic similar to Hoare’s. Unlike sequential al-
gorithms, however, it is possible for one process action to affect the state of another. In
order to prove partial correctness of an entire system of process, it is necessary to prove
that no process can invalidate assertions appearing in the sequential proof of another
process’s partial correctness. Owicki and Gries refer to this condition as noninterference.
For example, if P{S}Q appears in the proof of one process and the assertion R labels
one statement appearing in another process, noninterference requires that the assertion
(P A R){S}@Q A R) hold; that is, the execution of S does not invalidate R. This method
of Owicki and Gries has been found to be quite successful, just as Hoare’s method has
been found to be successful for sequential programs. Gries has constructed a nice proof

30wicki and Gries actually use the notation {P}S{Q}.
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of Dijkstra’s on-the-fly garbage collector in [Gri77], an algorithm with such fine inter-
leaving that the only atomic action required is memory reference. Levin and Gries show
in [LG81] how the method of Owicki and Gries can be used to verify CSP processes.
Furthermore, Schlichting and Schneider show in [SS84] how message passing primitives
can be incorporated into this framework.

As with sequential programs, the partial correctness of systems may be specified with
partial correctness assertions of the form P{S}Q. Due to the possibility of process inter-
ference, however, it is not possible to specify the partial correctness of individual processes
in terms of such assertions. The specification of a process must also describe its envi-
ronment if such assertions are to be used. Without a description of its environment, it
is impossible to prove that a process satisfies most partial correctness assertions. Fur-
thermore, modification of a single process requires redoing a major portion of a system’s
proof of correctness since it must be shown that this modification does not violate par-
tial correctness assertions appearing in the correctness proofs of other processes. Thus,
both specifications and correctness proofs using partial correctness assertions of the form
P{S5}Q lack an important modularity. We consider this lack of modularity to be a major
problem in protocol verification.

Lamport attempts to resolve this lack of modularity in [Lam80]. Here Lamport rede-
fines the assertion P{S}@ to mean that if execution is begun anywhere inside S with P
true, then executing S will leave P true while control is inside S, and will make @
true if and when S terminates. Such a definition is possible for Lamport since he al-
lows the predicates P and @) to refer to program locations, whereas Owicki and Gries
restricted P and () to program variables. The advantage of Lamport’s scheme is that
partial correctness assertions for an entire system can be verified given partial correct-
ness assertions specifying each system component. After system correctness has been
proven from component specifications, any implementation of the components satisfying
their specifications can be used in the system’s implementation. Lamport’s method, how-
ever, is not without its difficulties. For example, suppose that S is a system component
making heavy use of shared variables. It seems difficult to construct assertions P that
are invariant throughout the execution of S without knowing how S uses these shared
variables.

In our method, the problem of modular specification disappears since an environment
is implicitly specified by the fact that input actions are continuously enabled. (In other
words, anything can happen in the environment of a process.) As a result, if a partial
correctness assertion can be proven about process behavior, the partial correctness as-
sertion holds regardless of the process’s actual environment. Thus in our method it is
no longer necessary to prove noninterference after proving the correctness of individual
processes. Furthermore, it is no longer necessary to redo any part of a correctness proof
when a process is modified, other than the correctness of the modified process itself.
(A similar consequence of such input requirements can be found in [MCS82], [Sta84],
and [LM86].) Also, notice that Hoare-style specifications do not make clear the interface
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between a system component and its environment. As previously mentioned, this inter-
face is crucial to the definition of fair computation. In contrast, our model clearly defines
this interface as the set of actions the process can perform, together with information
about which actions denote input and output of the process.

We note that due to the generality of automaton transitions, partial correctness as-
sertions describing automaton transitions similar to those of Hoare describing common
programming language constructs may not always be easy to find. However, if transi-
tions are described in terms of preconditions that must be satisfied before an action can
be performed, and the effect of an action on an automaton state, then partial correct-
ness assertions can be constructed for each action. Furthermore, the general, language-
independent rules of inference used in Hoare-like systems are clearly valid in our model
of computation. Thus, while we do not make use of such arguments in our work, it zs
possible to construct Hoare-like proofs of partial correctness assertions in our model.

Notice that partial correctness assertions describe safety properties, and not liveness
properties. Since there is no notion of system computation in these Hoare logics, there is
no notion of eventuality. We note that safety properties can often be used to prove liveness
properties. For example, Owicki and Gries show in [OG76] how well-foundedness argu-
ments can be incorporated into Hoare logics to prove termination of programs. Alpern
and Schneider go farther in [AS85] and show that the verification of both liveness and
safety properties can be reduced to proving what are essentially partial correctness as-
sertions. However, the specification of a liveness condition in terms of partial correctness
assertions is often an unintuitive formulation.

A more natural expression of such properties is possible with temporal logic. Temporal
logic was introduced by Pnueli in [Pnu77] as an adaptation of classical modal logic suitable
for reasoning about concurrent programs. The two paper series [MP81b| and [MP81a] by
Manna and Pnueli is a thorough introduction to the expression of properties of concurrent
programs, and the verification of these properties, using temporal logic. Here the meaning
of a system computation is a sequence of system states. The fundamental temporal
operators are the unary operator O and its dual <. Loosely speaking, a computation
satisfies the expression OP, pronounced “henceforth P,” if P is true throughout the
computation; and a computation satisfies the expression O P, pronounced “eventually P,”
if there is a point during the computation at which P is true. Many interesting properties
of computation may be specified with these simple operators. For instance, the expression
O(P D OQ) states that the property P causes the property @ to hold; the expression
OO P states that the property P holds infinitely often.

Temporal logic is a useful abstraction with which to specify and reason about program
behavior. Since the meaning of a computation is a sequence of states, temporal logic is
able to express liveness properties as well as safety properties, and these expressions
are typically quite concise. Since reasoning in temporal logic begins with a collection
of axioms characterizing program behavior, and proceeds via general rules of inference,
reasoning in temporal logic has potential for automation. Furthermore, while Hoare logics
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make use of inference rules that are independent of any programming language, most of
the work in a Hoare-style proof deals with language-specific semantics. In contrast,
reasoning in temporal logic is valid for all programs. The difficulty, of course, is in
abstracting from an implementation to a temporal logic characterization of its behavior,
and this problem is often swept under the rug.

A great deal of work in temporal logic concerns reasoning about system correctness
after system components have been specified in terms of temporal logic (see, for example,
[HO80], [SMS81], [OL82], [Lam83], [Sta84] and [NGO85]). The most dramatic distinc-
tion between these works is the way in which temporal logic is used to describe system
behavior. Schwartz and Melliar-Smith give purely temporal specifications of programs
in [SMS81]. In these specifications, even the notion of a process state has been replaced
by temporal specifications. Consequently, the resulting specifications are quite complex,
involving nested “until” operators in addition to the temporal operators described above.
These specifications are often difficult to understand, and difficult to reason about. On
the other hand, Hailpern and Owicki make great use of the notion of program state
in [HO80]. They add history variables to the program state that describe the history
of events over communication links, and reason about the values assumed by these vari-
ables. History variables are a convenient descriptive tool found in many proof styles, and
the specifications produced by Hailpern and Owicki are generally easy to understand.
The history variables, however, do not affect program behavior, and in proofs reasoning
about history variables the history variables themselves seem extraneous. Between the
extremes of [SMS81] and [HO80] is the work of Lamport in [Lam83]. Here the process
state modeled consists only of program variables, and temporal logic assertions describe
the sequence of values these variable assume. Although an automaton state can be seen
as a natural extension of history variables, our proofs tend to have a flavor similar to
those of Lamport’s in [Lam83].

While a great deal of work has studied the problem of reasoning about systems after
system components have been specified in terms of temporal logic, less has been devoted
to proving that an implementation actually meets its temporal logic specification. One
attempt is that of Owicki and Lamport in [OL82], improving on the work of Lamport
in [Lam77]. Since safety properties can be proven using methods of Owicki and Gries, of
particular interest is the style of proving liveness properties Owicki and Lamport describe.
Owicki and Lamport construct diagrams called proof lattices that outline the structure of
a proof of a liveness property. Informally, a proof lattice is an acyclic directed graph with
a single entry node having no incoming edges, and a single ezit node having no outgoing
edges. Nodes of the graph are labeled with assertions. A node labeled A with outgoing
edges to nodes labeled A,,..., A, denotes the assertion that if A holds, then one of the
assertions Aj,..., A, must eventually hold; that is A D O(A; V...V A,). Suppose each
such assertion can be proven for a program. If the entry node is labeled with A and the
exit with B, then the proof lattice amounts to a proof of the liveness property A D OB
for the program. Manna and Pnueli extend the use of proof lattices in [MP84]. In this
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work, however, an automata-theoretic model of computation is explicitly defined, and
proof rules are given for proving that each assertion denoted by edges of the proof lattice
is satisfied by the system modeled by an automaton. We find this work a very satisfying
example of how an automata-theoretic model of computation and temporal logic can
be used together. Given an automata-theoretic description of system implementation,
temporal logic provides a useful abstraction for reasoning about system behavior. While
we have not fixed on one particular specification language, we feel that temporal logic
and our automata-theoretic model of computation can work well together. In particular,
through the use of automata we are able to incorporate temporal logic into hierarchical
correctness proofs.

The use of abstraction is an important aspect of our style of algorithm verification.
Most work in the literature claiming to produce proofs with a hierarchical structure
actually allow system components to be verified independently, and then combined to
verify the correctness of the system. This notion of hierarchical verification is a restricted
version of the notion we use in this work. Here we actually construct models of the entire
system at conceptually different levels of abstraction, rather than merely combining local
process states into global system states.

Our work most closely resembles that of Lamport in [Lam83]. Here Lamport speci-
fies a program with a collection of state functions mapping program states into sets of
values, a collection of initeal conditions essentially defining the set of states in which
the system may begin computation, and a collection of properties describing safety and
liveness conditions. We note that the values to which states are mapped by state func-
tions can be thought of as state variables describing relevant aspects of the system to
be implemented. Furthermore, the properties included in the system specification define
allowed and required changes in the values these variables assume. If these variables are
collected into states, then the variables together with the properties essentially define an
automaton together with a collection of eventuality conditions restricting the computa-
tions of the automaton. If the program implementing the specified system is considered
to be an automaton, as is implicitly the case in Lamport’s work, then the state functions
can be thought of as mappings from an automaton describing the system at one level of
abstraction to an automaton describing the system at a higher level of abstraction. This
is the technique used in our work. Our work is an improvement on that of Lamport’s
in the sense that we carry his style of specifications to its natural conclusion, making
the automata-theoretic flavor of his work explicit. Furthermore, we make explicit his un-
derlying assumption that what is important about a process is the externally observable
behavior of the process. His work seems to imply that the variables and state functions
must be describing some aspect of the system that must appear in the implementation.
We feel, however, that they are to be considered merely descriptive tools, and that the
notion of subset containment used as the notion of correctness in this work is the notion
of correctness actually underlying Lamport’s work.

Other work similar to ours is that of Stark in [Sta84]. Many of the aims and ideas

15



underlying his work are the same as ours, but his model is much more general than ours.
We find our model to be simpler and easier to use than Stark’s, and expressive enough
to describe most systems of interest. Work on hierarchical verification also includes
that of Lam and Shankar in [L.S84a]; Harel in [Har87]; and Lamport, Lynch, and Welch
in [LLW8T7]. Each of these techniques analyzes an algorithm by abstracting away certain
portions of the algorithm (rather than mapping to an entirely different level of conceptual
abstraction as we do here) and studying the remaining “image” of the original algorithm.
To Lam and Shankar, the advantage of this method seems to be that it allows highly
interdependent modules of a system to be studied in isolation. Lamport, Lynch, and
Welch seem to be taking this notion of “projection” one step further. They show how
projections onto different modules can be combined into a proof of the entire system,
giving the proof a lattice-like structure. While still work in progress, their work seems
to be shedding new light on the intellectual organization of protocol verification. The
progress being made in their research can certainly be incorporated into ours.

The remainder of this thesis consists of two parts. First, in Chapter 2, we formally
define our model of computation and develop the machinery needed to use our model in
the construction of hierarchical correctness proofs. Then, in Chapter 3, we illustrate the
use of our model by proving the correctness of Schonhage’s distributed resource arbiter.
Finally, in Chapter 4, we end with some concluding remarks, including some ideas for
future work.
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Chapter 2

The Input-Output Automaton
Model

In this chapter we define the input-output automaton model. We begin with a formal
definition of an input-output automaton, and define operations that may be performed
on automata, including the composition of automata. We then show how fairness can be
modeled with automata. Finally, we develop the machinery necessary to use automata in
the construction of modular, hierarchical correctness proofs for distributed algorithms.

2.1 Input-Output Automata

Having informally described our model in the introduction, we now formally define an
input-output automaton. Since the actions of an automaton define the interface between
an automaton and its environment, it is convenient to be able to refer to this interface
explicitly. Given three disjoint sets ¢n, out, and wnt of input, output, and internal actions,
respectively, we refer to the triple (in, out, int) as an action signature S. We denote the
sets in, out, and int by in(S), out(S), and int(S), respectively; and we denote the entire
set of actions in U out U int by acts(S). Since int is the set of internal actions, it is
natural to refer to in U out as the set of ezternal actions, denoted by ezt(S). Finally, we
denote the set int U out of locally-controlled actions by local(S).

An input-output automaton (or automaton) A consists of five components:

1. a set states(A) of states,
2. a set start(A) C states(A) of start states,

3. an action signature sig(A),
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4. a transition relation steps(A) C states(A) X acts(sig(A)) X states(A), with the
property that for every state a and input action 7 there is a transition (a,7,a’) in
steps(A), and

5. an equivalence relation part(A) on local(sig(A)).

Notice that the transition relation steps(A) has the property that input actions are con-
tinuously enabled, as mentioned in the introduction. Notice, also, that the equivalence
relation part(A) is the partition of the locally-controlled actions alluded to in the intro-
duction. This partition will be used when we define the notion of fair computation in
Section 2.2.

We refer to an element (a, 7, a') of steps(A) as a w-step from a to a’. It will occasionally
be convenient to denote the step (a,7,a’) by a = ', and to denote the sequence of steps
a0 > ay-- 2 a, by ap """ a,. The step (a,m,a’) is called an input step if 7 is an
input action, and output steps, internal steps, external steps, and locally-controlled steps
are similarly defined. If (a, 7, a’) is a step of A, then 7 is said to be enabled from a. Since
every input action is enabled from every state, automata are said to be input-enabled.

An ezecution fragment of A is a finite sequence agmia; ... mra, or infinite sequence
aom1a1m2a; . .. of alternating states and actions such that (a;, m;41,a:41) is a step of A
for every i. An execution fragment beginning with a start state is called an ezecution.
We denote the set of executions of A by ezecs(A). A state is said to be reachable if it is
the final state of a finite execution. The schedule of an execution z is the subsequence
of actions appearing in z, denoted by sched(z). We denote the set of schedules of A by
scheds(A).

We will soon consider certain subsets of an automaton’s executions or schedules (such
as the set of fair computations) to be of particular interest. Since we will compose au-
tomata, it will be necessary to have ways of composing sets of executions or schedules
as well. If these compositions are to be meaningfully related, however, certain informa-
tion about the structure of the original automata must be retained. In particular, it is
important to retain information about the action signatures of these automata. We are
therefore led to define the notions of execution modules and schedule modules, essentially
sets of executions or schedules, respectively, together with an action signature.

An ezecution module E consists of a set states(E) of states, an action signature sig(E),
and a set ezecs(E) of executions. Each execution of E is an alternating sequence of states
and actions of E beginning with a state, and ending with a state if the sequence is finite.
Each execution z has an associated schedule sched(z) that consists of the subsequence of
actions appearing in #. We denote the set of schedules of E by scheds(E). An execution
module E is said to be an execution module of an automaton A if £ and A have the
same states, the same action signature, and the executions of E are contained in the
executions of A. Notice that an execution module E is always an execution module of
some automaton. In particular, £ is an execution module of the automaton having the
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states and action signature of E, and the transition relation states(E) X acts(sig(E)) x
states(E). We denote the execution module of the automaton A having ezecs(A) as its
set of executions by Ezecs(A). (We follow the convention of denoting sets with lower
case names and modules with capitalized names.)

A schedule module S consists of an action signature sig(S) together with a set
scheds(S) of schedules. Each schedule of S is a finite or infinite sequence of the ac-
tions of S. Given an execution module E, there is a natural schedule module associated
with E consisting of the action signature and schedules of £. We denote this schedule
module by Scheds(E), and write Scheds(A) as shorthand for Scheds(Ezecs(A)).

We refer collectively to automata, execution modules, and schedule modules as objects,
the type of an object determining whether it is an automaton, execution module, or
schedule module. For notational convenience, given an object O we often omit reference
to its action signature and write, for example, in(O) for in(sig(O)).

Since it is typically the case that more than one automaton can model the same
process, some notion of equivalence is needed. Intuitively, the external observer of a
process (a user of the process, for instance) can detect only the sequence of actions
performed by the process. In fact, the only actions detectable by such an observer are
the external actions of the process. We are therefore led to define a notion of equivalence
determined by the externally visible sequences of actions produced by an object. Since
we will consider in Section 2.2.2 a second notion of equivalence based on the fair behavior
of an object, we refer the the current notion of equivalence as unfair equivalence.

We begin by defining an operation that essentially extracts the externally visible
behavior of an object. An ezternal action signature is an action signature consisting
entirely of external actions; that is, having no internal actions. The external action
signature of an object O is the action signature obtained by removing the internal actions
from the action signature of O. An external schedule module is a schedule module with
an external action signature. Given a sequence y of actions and a set II of actions, we
denote by y|II the subsequence of y consisting of actions from II. The external schedule
module of an object O, denoted by Ezternal(O), is the external schedule module with the
external action signature of O and the schedules {y|ezt(O) : y € scheds(O)} obtained by
removing the internal actions from the schedules of O. We define the unfair behavior of O,

denoted by Ubeh(O), to be the external schedule module Ezternal(O).

Two objects O and P of the same type are said to be unfairly equivalent, denoted by

o e P, if Ubeh(O) = Ubeh(P). This equivalence is clearly an equivalence relation,
and we will see that it is also a congruence with respect to the operations we now define
on objects.
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2.1.1 Composition

To build models of complex systems, we compose models of simpler system components.
In this section we show how to compose objects to construct such models.

Composition of Automata

Informally, the composition of a collection of automata is their Cartesian product, with
the added requirement that automata synchronize the performance of shared actions.
That is, each automaton is allowed to take steps independently, with the restriction that
if one automaton takes a 7-step, then all automata sharing = as an action must also take
a m-step. This synchronization models communication between system components: If
is an output action of A and an input action of B, then the simultaneous performance
of m models communication from A to B. Since synchronization is meant only to model
communication, however, two automata sharing 7© as an output action should not be
required to perform 7 simultaneously. We note that two processors cannot be expected
to perform an output action simultaneously in an asynchronous system. Rather than
complicate the notion of composition, we require instead that the output actions of
composed automata be disjoint. Since internal actions are meant to model externally
undetectable actions, we are faced with the need for a similar restriction for internal
actions. We require that the internal actions of each automaton in a composition be
disjoint from the actions of the remaining automata.

Having restricted the composition of automata to those with suitably compatible
action signatures, determining the type of an action in a composition is fairly simple:
Output actions of the component automata become output actions of the composition,
internal actions of component automata become internal actions of the composition, and
all remaining (input) actions of the component automata become input actions of the
composition. Notice that the composition of automata does mot hide communication
between component automata. To hide such communication will require the use of a
hiding operation defined later in Section 2.1.2.

Finally, recall that associated with every automaton (in particular, with a composition
of automata) is a partition of its locally-controlled actions. Our intuitive understanding
of this partition is that each class represents the locally-controlled actions of one system
component. A natural partition of a composition’s locally-controlled actions is to place
the locally-controlled actions of each component automaton in a separate class. Since the
restrictions we impose on the composition of automata ensure that the locally-controlled
actions of the component automata are disjoint, this is indeed a partition. However,
each component automaton may model many system components. We therefore parti-
tion a composition’s locally-controlled actions by taking each class of each component
automaton as a separate class of the composition’s partition. That is, the partition of a
composition’s locally-controlled actions is the union of its components’ partitions.
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We are now in a position to formally define the composition of automata. We begin
by defining a composition of action signatures. Previous discussion suggests that the
action signatures {S; : 7 € I} be called compatible if for all 7, j € I we have

1. out(S;) N out(S;) = 0, and
2. nt(S;) N acts(S;) = 0.

In general, we say that the objects {O; : 1 € I} are compatible if their action signa-
tures are compatible. The composition S = [l;c;S; of compatible action signatures
{S; : i € I} is defined to be the action signature with

L. an(S) = U n(S:) — U out(S;),

el iel
2. out(S) = U out(S;), and
el

3. nt(S) = U int(S;).

el
Notice that this composition is commutative and associative.

The composition A = [[;c; A; of compatible automata {A4; : 7 € I} is defined to be
the automaton with

1. states(A) = [] states(A;),

el
2. start(A) = ] start(A;),

il

3. sig(A) = 1T sig(4:),

il

4. part(A) = U part(A;), and

el
5. steps(A) equal to the set of triples ({a;}, 7, {al}) such that for all z € [
(a) if m € acts(A;) then (a;,7,a}) € steps(A;), and
(b) if m & acts(A;) then a; = al.

Notice that since the automata A; are input-enabled, so is their composition, and hence
their composition is an automaton. When [ is a finite set {1,...,n}, we will frequently
denote the composition [[; 4; by A;-...- A,.

As a simple example of automaton composition, consider the two automata A and B
shown at the top of Figure 2.1, and their composition A - B shown at the bottom of the
same figure. (A caret points to the single initial state of each automaton.) The action a
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«a

(a1,b1)

Figure 2.1: An example of automaton composition.

is an output action of A and an input action of B, and the action  is an output action
of B and and input action of A. Notice that since each waits for the other to take an
output step before taking an output step itself, the automata A and B alternate output
steps in executions of the composition A - B. Notice, furthermore, that since a and 3 are
output actions of A and B, respectively, all actions of the composition A - B are output
actions. Finally, notice that the partition of the composition’s locally-controlled actions
(in this case, the output actions) places a and 8 in separate equivalence classes.

The composition of automata has two simple properties. First, an execution of a
composition A = []; A; always induces executions in the component automata A;. If
a = {a;} is a state of A, let a|A; = a;. If ¢ = apmia; ... is an execution of A, let z|A; be
the sequence obtained by deleting 7;a; when 7; is not an action of A;, and replacing the
remaining a; with a;|A4;. We now have the following:

Lemma 1: If ¢ € ezecs(]] A;), then z|A; € execs(A;) for all 1 € 1.
el

Proof: Let A = J]; A;, and suppose that # = aoma;.... By the definition of an
execution, ag is a start state of A, and every triple (ag_1, 7¢, ax) is a step of A. Two facts
follow from the definition of the composition A. First, ao|A; must be a start state of A;.
Second, if 7 is an action of A; then (agx_1|A;, 7k, ax|4;) is a step of A;. If 74 is not an
action of A; then ag_;|A; = ai|A;. Thus, if z|A; = se015; ..., then s¢ is a start state
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of A;, and every triple (s;_1,0;,s;) is a step of A;. Therefore, z|A; is an execution of A;.

O

Conversely, under certain conditions an execution of a composition is induced by exe-
cutions of its components. Here and elsewhere, we denote y|acts(O) by y|O for arbitrary
objects O.

Lemma 2: Let {4; : ¢ € I} be a collection of compatible automata. Let z; be an ex-
ecution of A; for every + € I, and let y be a sequence of actions from the A;. If
y|A; = sched(z;) for every ¢ € I, then there is an execution @ of [[;c; A; such that
y = sched(z), and z; = z|A; for every i € I.

Proof: Let A =[I; A;. Suppose that y = mi7my.... Since y|A; = sched(z;), we can write
T; — aéml a’imzaé .... Let 1o = 0. Let z = aomia; ... where a; is defined as follows: If
ik < J < igy1, then a;|A; = a};. That is, the automaton A; remains in state a}'c between
the performance of actions m;, and m;,_,, and changes state to a}'c_l_l upon the performance
of m;,,,. First, we claim that ao is a start state of A. Since for all 7 we have that io = 0
implies ao|4; = a, a start state of A;, we are done. Second, we claim that (a;_;,7;, a;)
is a step of A for all j. Suppose 7; € acts(A;). Then n; = m;, for some k. It follows
that a; ;|4; = ai_, and a;|4; = a, since ix_; < j = 1. Thus, (a;_;|4;, 7;,a;]A;) is a
step of A;. Conversely, suppose 7; ¢ acts(A4;). Then i < j < tg41, and it follows that
a;_1|A; = ai = a;|A;. In either case, (a;_1,7;, a;) is a step of A for all j. It follows that =
is an execution of A, and furthermore that y = sched(z) and z|A; = z; for all 3. L]

The following corollary, essentially Lemma 4 from [LM86], ensures that composition
preserves the notion that a system component controls the performance of its own locally-
controlled actions. As a result, when reasoning about the enabling of an action in a
composition, it is enough to reason about the enabling of the action at one component.

Corollary 3: Let y be a finite schedule of a composition A = [[;c; Ai. Let 7 be a
locally-controlled action of A;, and let y' = ym. If y'|A; is a schedule of A;, then ¢’ is a
schedule of A.

Proof: Since y is a finite schedule of A, there is a finite execution z of A such that
y = sched(z). By Lemma 1, z|A; is an execution of A; for every j € I. Since 7 is a
locally-controlled action of A;, if 7 is an action of A; (for any j # ), then 7 is an input
action of A;. Since the A; are input-enabled, and since y'| A; is a schedule of 4;, for every
j € I there is an execution z’ of A; such that y'|A; = sched(z}). By Lemma 2, there is
an execution z’ of A such that y = sched(z'), and hence y is an execution of A. (]
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Composition of Execution Modules

We now define the composition of execution modules. The composition E = [[;c; E; of
compatible execution modules {E; : 7 € I} is defined as follows. The states of E are
[Licr states(E;), and the action signature is [];c; sig(E;). Given a state s = {s;} of the
composition, we define s|E; = s;. Given a sequence ¢ = som;s; ... of states and actions
of E, we define z|E; to be the sequence obtained by removing 7;s; if 7; is not an action
of E;, and replacing the remaining s; by s;|E;. The executions of E are those sequences
Som181 - . . such that for every i € I we have that z|E; is an execution of E;, and that
sj—1|E; = s;|E; whenever 7; is not an action of E;. The next lemma gives an alternative
characterization of the composition of execution modules.

Lemma 4: Let {E; : ¢ € I} be a collection of compatible execution modules. Sup-
pose E; is an execution module of an automaton A; for every 2 € I. Then [];c; E; is the
execution module of [];c; A; with executions = such that z|A; is an execution of E; for
every 1 € I.

Proof: Let E = [[; E; and A = [[; 4;. Since E; is an execution module of A4;, it
follows that E; and A; have the same states and action signature, and hence so do E
and A. We need only check that the executions of E are the executions z of A such
that x|A; is an execution of E;. Suppose z is an execution of E. The execution z is a
sequence som1S; . .. of states and actions of E such that z|E; is an execution of E;, and
sj—1|E; = s;|E; whenever 7 is not an action of E;. Since E; is an execution module of 4;,
(sj_1|Ai, 7, 85| A4;) is a step of A; whenever =; is an action of A;, and s;_1|4; = s;|4;
whenever 7, is not an action of A;. It follows that z is an execution of A, and furthermore
that z|A; is an execution of E; for every : € I. Conversely, suppose z is an execution
of A such that z|A; is an execution of E; for every i € [. Clearly, = is a sequence
Som181 ... of states and actions of E such that z|E; is an execution of E; for every
1 € I. Furthermore, from the definition of the composition of automata we see that
sj—1|E; = s;|E; whenever 7; is not an action of E;. It follows that z is an execution of E,

as desired. ]

This composition is defined so that the following result holds.

Lemma 5: For all compatible automata {4; : 1 € I},

E'zecs(H A;) = H FEzecs(A;).

el iel
Proof: Let A = [[; A;. Furthermore, let EC = Ezecs(I]; A;) and CE = []; Ezecs(A;).

Notice that EC is an execution module of A. Furthermore, since Ezecs(A4;) is an execu-
tion module of A; for every ¢z € I, Lemma 4 implies that C'E is also an execution module
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of A. It follows that EC and CE have the same states and action signature. We need
only show that they have the same executions. By Lemmas 1 and 4, z is an execution of
EC iff z is an execution of A such that z|A; is an execution of A; for every i € [ iff z is
an execution of CE. Thus, EC and C'E have the same executions, and hence are equal.

[

Composition of Schedule Modules

We now define the composition of schedule modules. The composition [];c; S; of com-
patible schedule modules {S; : i € I} is defined to be the schedule module with action
signature [[;c; stg(S;), and schedules y such that y|S; is a schedule of S; for every ¢ € I.
This composition is defined so that the following result holds.

Lemma 6: For all compatible execution modules {E; : ¢ € I},

Scheds(H E;)) = H Scheds(E;).

il el

Proof: Let SC = Scheds(I]; E;) and CS = [I; Scheds(E;). Since SC and CS clearly
have the same action signatures, we need only show that they have the same schedules.
Suppose E; is an execution module of an automaton A; for every ¢+ € I. Notice that y
i1s a schedule of SC iff y is the schedule of an execution z of []; ;. Lemma 4 implies
this is the case iff y is the schedule of an execution z of []; A; such that z|E; = =; is an
execution of E; for every 1 € I. Lemma 2 implies this is the case iff y|E; is the schedule
of an execution z; of E;. From the definition of schedule module composition we see this
is the case iff y 1s a schedule of C'S. Thus, SC and CS have the same schedules, and

hence are equal. L]

In addition, we have the following.

Lemma 7: For all compatible schedule modules {S; : i € I},

E'zternal(H Si) = H FExternal (S;).

i€l il

Proof: Let S =[I; S;, and let EC = FEaternal([]; S;) and CE = []; Fzternal(S;). Since
the schedule modules S; are compatible, int(S;) N acts(S;) = 0 for all 7 # j. That is,
the internal actions of each schedule module are disjoint from the actions of the others.
With this observation, it follows from the definition of action signature composition that
EC and CFE have the same action signature. We need only show they have the same
schedules. If y is a schedule of EC, then y = y’|ext(S) for some schedule y’ of S. Since
y'|S; is a schedule of S;, y|Ezternal(S;) = y'|Fxternal(S;) is a schedule of Ezternal(S;),
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and hence y i1s a schedule of CE. Conversely, suppose y is a schedule of CE. Then
y|Ezternal (S;) = y;|ext(S;) for some schedule y; of S;. Suppose y = w17y . ... Let us write
y; = abBiat ... where aj- is a (possibly empty) sequence of internal actions of S;, and ﬂ;
is m; if 7; is an external action of S; and the empty string otherwise. Let y' = vom171 . ..
where 7; is an arbitrary interleaving of the actions appearing in the aé-. Then y' is a
sequence of actions of S such that y'|S; = y; is a schedule of S;, so y' is a schedule of S.

Since y = y'|ext(S), y is a schedule of EC. ]

Lemmas 5, 6, and 7 can be summarized as follows.

Corollary 8: Let A denote the class of automata, £ denote the class of execution mod-
ules, and S denote the class of schedule modules. The following diagram commutes:

FEzecs Scheds FExternal

A E S S
II II II II
M FEzecs P4 Scheds & FExternal :S’

One important consequence of Corollary 8 is the following result, which says that
the (unfair) behavior of a composition is the composition of its components’ (unfair)
behaviors.

Lemma 9: Ubeh([] O;) = [I Ubeh(O;) for all compatible objects {O; : ¢ € I}.

il el

It is now possible to see that composition satisfies a number of natural axioms. We
note that the following result is an immediate consequence of the definition of schedule
module composition.

Lemma 10: Suppose S =11;S;, T =1LT;, U =11;U;, and V =[], V; where the S;,
T;, U;, and V; are schedule modules.

1.5 T=T-85.
2.(8S-T)-U=8-(T-U).
3. S =Tand U =V, then S-U =T -V whenever the compositions S-U and T-V

are defined.
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As a consequence of Lemmas 9 and 10, we have the following.

Lemma 11: Suppose O =1[;0;, P=1; F;, @ =11;Q:, and R = [[; R; where the O;,
P;, @;, and R; are objects.

1. 0-P* p.o,
2. (0-P)- Q" 0.(P-Q).

3. If O “™* P and Q undeir R, then O - @ “1%T p . R whenever the compositions
O - @ and P - R are defined.

Proof: Recall that O - P “™£*" P . O iff the external schedule modules Ubeh(O - P) and
Ubeh(P - O) are equal. By Lemma 9 we see that Ubeh(O - P) = Ubeh(O) - Ubeh(P)
and Ubeh(P - O) = Ubeh(P) - Ubeh(O). However, Lemma 10 implies that these schedule

modules are equal. Therefore, O - P “%T PO, The remaining parts are similar. []

Conditions 1 and 2 say that composition is commutative and associative up to equiv-
alence. Condition 3 says that composition is a almost congruence with respect to compo-
sition. However, since the external behavior of O and ¢ contains no information about
the internal actions of O and @), their external behaviors do not determine whether they
are compatible, and hence whether their composition is defined. Thus, equivalence is
not quite a congruence. We call an equivalence satisfying condition 3 a weak congruence.
Notice that this weakness is due only to conflicting #nternal actions names, actions not
affecting the external behavior of an object. In Section 2.1.3 we will see how to perform
a syntactic renaming of internal action names to avoid this conflict without affecting the
external behavior of the object. This is reminiscent of variable renaming to avoid conflict
during substitution in predicate calculus.

2.1.2 Action Hiding

Recall that composition does not hide actions modeling interprocess communication: In
particular, if 7 is an output action of A and an input action of B modeling communi-
cation from A to B, then = becomes an (external) output action of A - B. Since this
communication is really internal to the system A - B, we would like to be able to hide «
from external view, to transform 7 into an internal action of A - B.

Given an object O and a set of actions X, we define the object Hides(O) to be the
object differing from O only in that

1. in(Hidex(0)) = in(0) — X,

27



2. out(Hides(0)) = out(O) — %, and
3. int(Hides(0)) = int(0) U (acts(0) N X).

Since the hiding operation modifies only the action signature of an object (without mod-
ifying its executions or schedules), we have the following:

Lemma 12: For all automata A, execution modules E, schedule modules S, and sets of
actions X,

1. Ezecs(Hidex(A)) = Hides(FEzecs(A))
2. Scheds(Hidex(E)) = Hides(Scheds(E))
3. Eaxternal(Hides(S)) = FEaternal(Hides (Faternal(S)))

Proof: Parts 1 and 2 are immediate from the definition of the hiding operation. Part 3
follows from the fact that y|(ezt(S) — X) = (y|ezt(S))|(ezt(S) — X) for every schedule y.
0

As a corollary of Lemma 12, we have the following:

Corollary 13: Let A denote the class of automata, £ denote the class of execution
modules, and S denote the class of schedule modules. The following diagram commutes:

A FEzecs < Scheds S FExternal S
Hiden
Hiden Hiden Hiden 8
Aﬂternal
) FEzecs pS Scheds & FExternal S

Suppose {O; : i € I} are compatible objects, and consider their composition O. Sup-
pose that 7 is an action of O; not shared by O; for every ¢ # j. Intuitively, if 7 models
some communication internal to the system component modeled by O;, then whether 7 is
hidden before or after forming the composition O should not affect the resulting object.
This intuition is formalized in the following result.
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Lemma 14: Let {O; : ¢ € I} be a collection of compatible objects, and let {%; : ¢ € I'}
be a collection of sets of actions. If acts(0;) and X, are disjoint for all 7 # j, then
Hideuigi(n OZ) == H Hldegl(oz)

i€l

el

Proof: Let HC = Hidey;s,(II; 0;) and CH = []; Hides,(O;). First, we claim that
the composition HC is defined iff CH is defined. Since for all 7+ # j the intersection
acts(0;) N X, is empty, for all ¢ # j we have

out(0;) Nout(0;) = (out(0;) — ;) N (out(0;) — X;)
= out(Hides,(0;)) N out(Hides;(0;))
and
int(0;) Nacts(0;) = [imt(0;) U (8; N acts(0;))] N [acts(0;) — Xj]
= nt(Hides;(0;)) N acts(Hides, (0;)).

It follows that the objects O; are compatible iff the objects Hides,(O;) are compatible,
and hence that HC is defined iff C'H is defined.

Next, we claim that HC and C H have the same action signatures, and it will follow

that HC and C' H are equal. Notice that

_ (LGJ;Z(OZ-)— gout(oj)) - kLGJIzk

- (:LGJIin(Oi)—JLGJIEj) — (ZLGJIOUt(Oi)_ LGJIEJ')
— iEUI(m(OZ-)—;i) — LEJI(out(Oj)—Ej)J

— gm([{idezi(Oi)) _J gout(Hidegj(Oj))
_ m(g Hides, (0;)) = i?Jz(CH).

The fourth equality holds since acts(O;) N X; is empty for all 7 # j. Similar arguments
show that out(HC) = out(CH) and int(HC) = int(CH). Therefore, HC and C H have

the same action signature, and hence are equal. (]

2.1.3 Action Renaming

Our definition of composition makes the names of actions quite important. In particular,
the notion of object compatibility depends entirely on the names of actions shared by
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the objects. In this section, we define an operation that renames actions. With this
operation, objects can be made compatible by renaming conflicting actions.

An action mapping f is an injective mapping between sets of actions. Such a mapping
1s said to be applicable to an object O if the domain of f contains the actions of O. Action
mappings are extended to objects in the obvious way. If the action mapping f is applica-
ble to an automaton A, then the automaton f(A) is the automaton with the states and
start states of A; with the input, output, and internal actions f(in(A)), f(out(A)), and
f(ent(A)), respectively; with the transition relation {(a, f(7),a’) : (a,w,a’) € steps(A)};
and with the equivalence relation {(f(x), f(#')) : (7, n') € part(A)}. Since f is injective,
the partition of the locally-controlled actions of f(A) is guaranteed to be an equivalence
relation. Objects f(O) are defined similarly for other types of objects. Such an object
f(O) is said to be a renaming of O. Since renaming affects only action names, the
following result is easy to see.

Lemma 15: Let f be an action mapping applicable to the automaton A, the execution
module E, and the schedule module S.

1. Ezecs(f(A)) = f(Ezecs(A))
2. Scheds(f(E)) = f(Scheds(E))
3. Eaxternal(f(S)) = f(Fzternal(S))

In addition, since action mappings are injective, it is easy to see that actions may be
hidden before or after renaming;:

Lemma 16: Hideys)(f(0)) = f(Hidex(O)) for any object O and applicable action
mapping f.

Let us consider how renaming interacts with composition. Suppose an action map-
ping f; is applicable to the object O; for every ¢ € I. First, notice that if each f; maps
some output action m; of O; to the action m, then the f;(O;) are incompatible; and
I1; fi(O;) is not be defined even though []; O; may be. Furthermore, if each f; maps an
action 7 to a different action 7;, then executions of []; f;(O;) may have no relationship
to the executions of []; O; since the objects f;(O;) may no longer be required to synchro-
nize on the actions m;. We are therefore led to define a collection {f; : ¢ € I} of action
mappings to be compatible if for all actions m; and 7; we have f;(m;) = f;(7;) iff m; = 7;.
We define their composition f = []; f; to be the action mapping having as its domain the
union of the domains of the f;, and mapping the action = to fi(m) if 7 is in the domain
of f;. The fact that the f; are compatible ensures that f is well-defined. It is obvious
that if each f; is applicable to an object O;, then f is applicable to their composition. In
addition, the following result verifies that the renaming of such objects may occur either
before or after the formation of their composition without affecting the resulting object.
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Lemma 17: Let {O; : ¢ € I} be compatible objects, and let {f; : i € I} be compatible
action mappings. If f; is applicable to O; for every 7 € I, then (IT £:)(II O;) = I1I £:(O;).
iel” el iel

Proof: We prove the result for automata A;; the proofs for other types of objects are
similar. Let f =TI, fi, A = [1; 4, and A’ =TI, fi(A4;). We show that f(A) is defined
iff A’ is defined, and that in this case f(A) = A’. To do so, we must verify the following:
(1) that the A; are compatible iff the f;(A;) are compatible, (ii) that f(A) and A’ have
the same states and start states, (iii) that f(A) and A’ have the same action signature,
(iv) that f(A) and A’ have the same transition relation, and (v) that f(A) and A’ have
the same partition of locally-controlled actions. Since the f; are injective mappings such
that fi(m;) = f;(n;) iff m; = m;, the only nontrivial part of this proof to check is part (iv).
Suppose that (a,w,a’) is a step of f(A). For some action o we must have that (a,o,a’)
is a step of A, and that f(o) = m. Furthermore, for each i, the action o is an action
of A; iff w is an action of f;(4;). If w is an action of f;(A;), then o is an action of A;, so
(alA;, 0,a'| A;) is a step of A; and (a|fi(A;), 7, alfi(A;)) is a step of f;(A4;). If w is not an
action of f;(A;), then o is not an action of A;, so a|A; = d'|4; and a|f;(A;) = o'|fi(4:).
In either case, (a,7,a’) is a step of A’ = [I; fi(A4;). A similar argument shows that if
(a,m,a') is a step of A’, then it is a step of f(A). It follows that f(A) and A’ have the

same transition relation, and hence are equal. L]

2.1.4 Remarks

Since the definitions given so far have been independent of such considerations, we have
chosen to ignore until this point issues of cardinality that appear in most models of
computation. For example, we have not restricted our model to automata with countable
sets of states and actions, and hence to countable nondeterminism. Furthermore, we have
not restricted our theory to the composition of a finite (or even countable) number of
automata. While these are natural restrictions (and all of the results presented thus far
still hold when these restrictions are imposed), we note that Lynch and Merritt have
made effective use of the composition of a countable number of automata in [LM86]. In
the remainder of this thesis, we restrict our attention to automata modeling systems with
a countable number of components. In particular, we restrict our attention to countable
compositions, and to automata A for which part(A) partitions A’s locally-controlled
actions into a countable number of equivalence classes. This restriction becomes relevant
in the following section where we define the notion of fair computation.

2.2 Fairness

Fair computation is of central importance to distributed computation. The mutual ex-
clusion problem, for example, has been formulated in [EM72] with the “no lockout”
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condition that if every process is allowed to take steps infinitely often, then every process
trying to enter its critical region will eventually do so. That is, during fair computation,
every process wishing to enter its critical region will eventually do so. More generally,
the specification of a distributed system typically includes conditions of the form “if con-
dition P holds, then eventually condition ¢ will hold.” The ability of a process to satisfy
such conditions clearly depends on fair computation. In this section we show how fair
computation can be described in our model, and we show how fair computation induces
an interesting equivalence of automata.

2.2.1 Fair Executions

As previously mentioned, computation in a system of processes is said to be fair if every
process is given the chance to make computational progress infinitely often. The phrase
“given the chance” is important, since a process may not be in a position to make
progress every time it is given the chance. Recall that associated with an automaton
A is a partition part(A) of its locally-controlled actions. Intuitively, each class of this
partition consists of the locally-controlled action of a process in the system being modeled
by A. A fair ezecution of an automaton A is defined to be an execution x such that the
following conditions hold for each class C of part(A):

1. If z is a finite execution, then no action of C is enabled from the final state of x.

2. If z is an infinite execution, then either actions from C appear infinitely often in ,
or states from which no action of C is enabled appear infinitely often in .

These conditions may be interpreted as follows. If z is finite, then computation in the
system has halted since no process is able to take another step. If  is infinite, then every
process has been given the chance to take a step infinitely often, although it may be that
some process was unable to make computational progress every time it was given the
chance to do so. Notice that this definition of fairness is essentially what is called weak
fairness in the literature (see [Fra86], for example). As mentioned in the introduction,
however, our definition is different in an important way in that it takes into consideration
the notion of one process controlling the performance of an action. In particular, it is
possible for an (input) action to be continuously enabled, and yet never be performed. We
note in passing that our notion of fairness defines the notion of a finste fair computation
without the usual requirement that finite computations be extended in some trivial way
to infinite computations.

The set fair(A) is the set of fair executions of the automaton A, and Fair(A) is the
execution module of A having fair(A) as its set of executions.

One simple consequence of this definition of fair executions is the following.
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Lemma 18: If z is a finite execution of an automaton A, then z can be extended to a
fair execution zma; ... of A (in which every =; is a locally-controlled action of A).

Proof: Let f be a function mapping the natural numbers to the classes of part(A), with
the property that every class of part(A) appears in the range of f infinitely often. There
is an execution ' = zma; ... of A with the property that m; is an action from the class
f(2) if such and action is enabled from a;_;, and an arbitrary locally-controlled action
of A otherwise. (If from some state a;_; no locally-controlled action of A is enabled,
then 2’ is a finite execution ending in state a;_;.) The execution 2’ is a fair execution

of A. ]

More important, however, is the next lemma which says that the fair executions of a
composition are a composition of the fair executions of its components. It is for the sake
of this result that we associate a partition of an automaton’s locally-controlled actions
with an automaton.

Lemma 19: Fair([] A;) = [] Fair(A;) for all compatible automata {A; : 7 € I'}.
i€l icl

Proof: Let FC = Fair(I]; A;) and CF = []; Fair(A;). Since both are execution modules
of A =TI, A;, both have the same states and action signature. We need only show that
they have the same executions. First, however, notice that since the A; are compatible,
their locally-controlled actions are disjoint. Furthermore, notice that each A; is input-
enabled. It follows that each A; determines when its locally-controlled actions are enabled
in the composition A: If 7 is a locally-controlled action of A; and a is a state of A, then 7
is enabled from a in A iff 7 is enabled from a|A; in A;.

Suppose z is a fair execution of A, and let us show that z is an execution of CF'.
We must show that z|A; is a fair execution of A; for all i. Let C be a class of locally-
controlled actions of A;, and hence a class of A. Suppose z is finite. Since z is a fair
execution of A, no action of C is enabled in A from the final state a of z, and hence
no action of C is enabled in A; from the final state a|A; of z|A;. Suppose z is infinite.
If actions from C appear infinitely often in z, they do so in z|A4;. On the other hand,
suppose states appear infinitely often in  from which no action of C is enabled in A.
It follows that either z|A; is finite and no action of C is enabled from the final state of
z|A; in A;, or else infinitely many states of A; appear in z|A; from which no action of C
is enabled. In any case, z|A; is a fair execution of A;. It follows that = is an execution

of CF.

Conversely, suppose z i1s an execution of C'F, and let us show that z is a fair execution
of A. Let C be a class of locally-controlled actions of A, and therefore a class of A; for
some 1. Since z is an execution of C'F, the execution z|A; is a fair execution of A;.
Suppose z is finite, and therefore that z|A; is finite. Since z|A; is fair, no action of C is
enabled from the final state of z|A;, and hence no action of C is enabled from the final
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state of . Suppose z is infinite. If actions from C appear infinitely often in z|A;, the
same is true of z. If states appear infinitely often in z|A; from which no action of C is
enabled, the same is true in z. However, z|A; may be finite. In this case, no action of C
is enabled from the final state of z|A;. Since z is infinite, there is a state appearing in z
after which no action of C is ever enabled. In any case, x must be a fair execution of A.

It follows that F'C = CF.. ]

2.2.2 Fair Equivalence

In Section 2.1 we defined a notion of equivalence based on the external behavior of an
object. We now define a similar notion of equivalence based on fair external behavior.
The fair behavior of an automaton A, denoted by Fbeh(A), is defined to be the schedule
module Ezternal(Fair(A)). We extend this definition to objects of other types (execution
modules and schedule modules) by setting Fbeh(O) = Ubeh(O). It is convenient to denote
the set of schedules of Fbeh(O) by fbeh(O), for any object O. In light of Corollary 8 and
Lemma 19, we see that the fair behavior of a composition is the composition of the fair
behavior of its components.

Lemma 20: Fbeh(]] O;) = [] Fbeh(O;) for compatible objects {O; : i € I}.

il el

We say that two objects O and O’ are fairly equivalent, denoted O fair O', if they have
the same fair behavior; that is, if Fbeh(O) = Fbeh(O'). In light of Lemmas 10 and 20,

fair equivalence satisfies the axioms stated for unfair equivalence in Lemma 11.

Lemma 21: Suppose O =1[;0;, P=1; F;, @ =11;Q:, and R = [[; R; where the O;,
P;, @;, and R; are objects.

1.o-P™E p.o.

fair

2. (0-P)- Q= 0.(P-Q).

3. f0 "% P and Q fair R, then O-Q 18" p. R whenever the compositions O - ) and
P - R are defined.

Thus, composition is commutative and associative up to fair equivalence, and fair equiv-
alence is a weak congruence with respect to composition. With this we conclude that
discussion of fairness directly related to program verification. In the remainder of this
section we consider several interesting questions about how fairness is modeled in our
model.
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Figure 2.2: The importance of the partition of locally-controlled actions.

2.2.3 Fairness and System Decomposition

Having seen the definition of a fair execution, the role of the equivalence relation part(A)
associated with an automaton A is clear: The automaton models a system, and the
locally-controlled actions of each system component form a separate class of the partition.
It is worth considering, however, whether this partition is really of any importance. We
claim that if relationships such as those stated in Lemma 20 are of importance (and we
think they are), then the information about the system structure encoded in the partition
of an automaton’s locally-controlled actions must be retained. Suppose for a moment
that we do away with the partition, so that all we know about an automaton’s locally-
controlled action is whether it is an internal or output action. Consider the automata A
and B given in Figure 2.2, and consider their composition A - B. Here a is an input
action, and § and v are output actions. In both automata A and B, the execution
with the infinite sequence of a’s as its schedule may be considered a fair execution since
infinitely often each automaton passes through a state from which no locally-controlled
action (either 8 or ) is enabled. In the composition, however, a locally-controlled action
is enabled from every state through which such an execution must pass, and yet none
of these actions appear in the execution. This execution cannot be considered a fair
execution of the system since the system is never allowed to make progress, even though
it is able to do so at each stage of the execution. If, on the other hand, we recognize
that 8 and 5 are output actions of separate system components, we see that infinitely
often each component passes through a state from which none of its locally-controlled
actions is enabled. We therefore conclude that this zs an execution of the system that is
fair to all components, and hence can be considered a fair execution of the system. The
partition of locally-controlled actions therefore seems to be an important component of
an input-output automaton.
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It is conceivable, however, that an automaton’s actions can be partitioned in such a
way that it is impossible for the automaton to model a system whose components have as
their locally-controlled actions one class of the partition. It therefore seems possible for
our intuitive understanding of an automaton’s partition of its locally-controlled actions
to be violated. Let us say that an automaton A is primitive if part(A) consists of a single
class. Intuitively, such an automaton can model only an “atomic” system component. It
would be nice to know that every automaton A is (fairly) equivalent to a composition
of primitive automata, where the locally-controlled actions of each primitive automaton
form a class of A’s partition. This would in effect be saying that every automaton does
model a system in a way satisfying our intuition. What we can prove is the following.
An automaton is said to be deterministic if it has one start state, and for every action «
there is at most one m-step from every state.

Lemma 22: Let A be an automaton whose equivalence relation part(A) partitions its
locally-controlled actions into the classes {C; : i € I'}. If A is deterministic, then there
are primitive automata A; such that C; is the set of locally-controlled actions of A;, and

ATE Hide gy ay (11 A)).

il

Proof: Since A &’ Hideint(A)(A') where A’ is the automaton differing from A only in
that the internal actions of A are output actions of A’, we may assume without loss of

generality that A has no internal actions, and show that A fair [1; A;. Let A; be the
primitive automaton obtained from A as follows. First, set in(4;) = acts(A) — C; and
out(A;) = C;. Second, add to A; a dead state d. Finally, to ensure that A; is input-
enabled, if 7 is an input action that is not enabled from a state a, add the transition

a 5 d from a to the dead state d. Let B = []; A;. We claim that A e B.

Suppose z is a fair execution of A. Since z is also an execution of each A;, there is
an execution y of B such that y|A; = z for every i. We claim that y is a fair execution
of B. If actions from C; appear infinitely often in z, then the same is true of y. On the
other hand, suppose that = is an action of C; that is not enabled from a state a of A.
Then = is an (output) action of A; that is not enabled from the state a in A;, and hence
not from the state {a} in B. It follows that if z is finite and no action from C; is enabled
from the final state of x, then the same is true of y; and that if  is infinite and there
are infinitely many states appearing in  from which no action of C; is enabled, then the
same is true of y. Therefore, y is a fair execution of B.

Conversely, suppose y is a fair execution of B. We claim that z = y|A4; is a fair
execution of A for every i. We will soon show that if b is a reachable state of B, then
all components b|A; of b are equal, and equal to a state other than d. From this it will
follow that all y|A; are equal. Furthermore, since z = y|A;, the state d must not appear
in z. Since transitions to d were the only transitions added in the construction of A;, =
is an execution of A. Furthermore, since z is fair in A;, either z is finite and no action
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of C; is enabled from the final state of z; or « is infinite and either actions of C; appear
infinitely often in @, or states appear infinitely often in  from which no action of Cj is
enabled. Since this is true for every class C;, z is must be a fair execution of A.

We now proceed by induction on the length £ of an execution required to reach b to
show that b|A; = b|A4; # d for all z and j. Since A has a single start state, each A; has
the same (unique) start state, and the case of £ = 0 is trivial. Suppose £ > 0 and the
inductive hypothesis holds for £ — 1. Suppose b is reachable by an execution of length £
whose last transition is &' — b. Since b’ is reachable by an execution of length £ — 1,
the inductive hypothesis implies that b'|A; = b/|A; # d for all 7 and j. Since 7 is either
an input action of A or an output action of A (and hence of some A;), there must be
an automaton A; for which no transition b'|A4; % d was added during its construction.
It follows that &'|A; = b|A; must be a transition of A, and hence that no dead state
transition was added from b'|A; during the construction of any A;. Therefore, every step

b'|A; = b|A; is a step of A. Since A is deterministic, there is only one such step, so
b|A; = b|A; # d for all ¢ and j. L]

This result says that our intuition (our understanding of an automaton’s partition of
its locally-controlled actions) is satisfied by a very restricted class of automata. It does
not seem to be true, however, for arbitrary automata (although Lemma 22 does hold for
arbitrary automata if fair equivalence is replaced by unfair equivalence, the proof of this
using the same construction as in the proof of Lemma 22). The reason the construction
given above will not work for nondeterministic automata is clear: The existence of nonde-
terminism allows the components to diverge during computation. Each component may
then pass through states from which none of its locally-controlled actions are enabled,
from which it follows that no locally-controlled actions appear in the executions gener-
ated by any of the components. Since, however, each component may pass through states
from which all locally-controlled actions of all remaining components are always enabled,
none of the executions generated by any of the components are fair executions of the
original automaton A, whose classes are the output actions of the component automata.
What is obviously required is a coordinator or scheduler S to ensure that all automata
choose the same transition at every step. With this intuition in mind, we now prepare
to show the following.

Theorem 23: Let A be an automaton whose equivalence relation part(A) partitions its
locally-controlled actions into the classes {C; : 7 € I'}. There are primitive automata A;
and S such that C; is the set of locally-controlled actions of A;, ¥ is the set of locally-

controlled actions of S, and A fair Hide ;nyayus (11 Ai - S).
el

The primitive automata A; used in this construction are essentially the primitive

automata used in the proof of Lemma 22. However, when the A; perform an action, the
scheduler S must be able to direct all of them to take the same step. These directions
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take the form of certain input actions of the A;, where the performance of such an action
by the scheduler tells the component automata which transition they are supposed to
make. We add these actions to the A; (although initially as internal actions) with the
following result.

Lemma 24: For every automaton A, there is a deterministic automaton B such that

AE B The locally-controlled actions of B are partitioned into the classes of A, together
with an additional class ¥ of internal actions.

Proof: For ease of exposition, we construct a nondeterministic automaton B, and then
show how it can be transformed into an equivalent deterministic automaton. The states
of B are of the form (a,a) where a is a state and a is a (possibly empty) sequence of
actions. The start state of B is (s, €), where s is a distinguished state (not a state of A)
and e is the empty sequence of actions. The states of B are (a,a) and (s, a), where a is
a state of A and a is a (possibly empty) sequence of actions of A. The action signature
and partition of B are precisely those of A, except that an additional scheduling action
(an internal action) forms its own class of B’s partition. The transitions of B from a
state (a, @), where a is a state of A, are as follows:

(a,0) 5 (a'ye)in B iff a3 a'in A
(a,a) % (a,a0) in B iff a 2% a'in A for some o

That is, m determines what transitions A actually makes from the state a when the
sequence of actions a is actually performed. All other actions are simply recorded as
actions to be performed by A at a later time. The transitions of B from a state (s, @)
are as follows:

(s,a) = (a,€)in B iff ag > ain A for some start state ag

s,a) 5 (s,ac)in B iff o is an input action of A
? ? P

In this case, only input actions and 7 are enabled from a state of the form (s, a). In this
way, fair computation will guarantee that 7 is eventually performed, and hence that an
initial state is chosen for A. Thus, the scheduling action = chooses the initial state of A,

as well as the steps taken by A during computation. We claim that A fer g, Suppose
that A’s locally-controlled actions are partitioned into the classes {C; : 1 € I}. These
classes together with the class {w} are the classes of B.

Let = be a fair execution of A. Let y be the execution of B obtained by replacing
each transition @ = a’ of = by the transitions (a,€e) = (a,0) = (a’,€), followed by the
infinite sequence of transitions (a, €) > (a,€) — - - in the case that z is a finite execution
ending in the state a. Suppose z is finite. Since z is fair, no locally-controlled action is
enabled in A from the final state a of . It follows that no locally-controlled action of B
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is enabled from any of the infinite occurrences of (a,¢€) in y, except for m which occurs
infinitely often. Hence, y is a fair execution of B. Conversely, suppose that z is infinite.
Since z is fair, for each class C; either actions from C; appear infinitely often in z, or
from infinitely many states appearing in  no action from C; is enabled. In the first case,
actions from C; appear infinitely often in y. In the second case, since an action o is
enabled from a state a of A iff it is enabled from (a, €) in B, infinitely many states appear
in y from which no action of C; is enabled. Since, in addition, 7 appears infinitely often
in the execution, y must be a fair execution of B.

Conversely, let y be a fair execution of B. From the definition of B we see that
if (a,€) 3 (a,01) -+ 3 (a,01--0,) = (a,€) is a sequence of transitions in B, then
a® a;--- 22 d is a sequence of transitions of A. In addition, if (s,€) 2> (s,00) -+ 22
(5,01 0n) = (a,€) is a sequence of transitions in B, then ag = a; - - - 72 a is a sequence
of transitions of A for some start state ag of A. Let = be the execution of A obtained
by replacing every such sequence in y by the corresponding sequence of transitions of A.
Since y is fair, the action # must appear infinitely often in y, and hence y must be infinite.
If actions from C; appear infinitely often in y, then the same is true in z. If not, then
there are infinitely many states appearing in y from which no action of C; is enabled.
Notice that if an action o other than 7 is not enabled from from the state (a,a) in B,
then for all states a’ of A such that a % a’ it must be that o is not enabled from a’. It
follows that either z is finite and no action of C; is enabled from the final state of z, or
there are infinitely many states appearing in  from which no action of C; is enabled. In
either case, € must be a fair execution of A.

We have just shown that A fer B, However, we are not yet done since B is not yet
deterministic: There are potentially many w-steps from every state of B. However, we
can assign to each m-step a unique identifier, and tag the = labeling the step with this
identifier. Replacing the action 7 with the set ¥ of newly-tagged «’s, it is easy to see
that this automaton is fairly equivalent to B, and hence also to A. Since this automaton
is a deterministic automaton (with an extra class ¥ of internal actions), we are done. [

We are now able to prove Theorem 23.

Proof of Theorem 23: Given the automaton A, construct the automaton B of Lemma 24.
The automaton B is fairly equivalent to A, and its locally-controlled actions are parti-
tioned into the same classes as those into which A’s actions are partitioned, together
with an additional class Y of internal actions. Furthermore, B is a deterministic au-
tomaton. Lemma 22 says there are primitive automata A; and S with local(4;) = C;
and local(S) = X such that B (and hence A) is fairly equivalent to Hide;nyp)(I1; 4i - S),
which is just Hide;ny(ayus(I1; 4i - S). U]
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Figure 2.3: Fair equivalence and unfair equivalence are incomparable.

2.2.4 Comparing Fair and Unfair Equivalence

Having defined two types of equivalence, fair equivalence and unfair equivalence, it is
natural to ask how they are related. Since Fbeh(O) = Ubeh(O) when O is an execu-
tion module or schedule module, fair and unfair equivalence are identical for execution
modules and schedule modules. For automata, however, they are incomparable.

Consider, for example, the automata of Figure 2.3. The (primitive) automata A and B
each have an input action a and an output action 8. The unfair behavior of both A and B
consists of all sequences of a and 3, so A and B are unfairly equivalent. The fair behavior
of A, however, includes the infinite sequence of a’s. Since the fair behavior of B does not,
A and B are fairly inequivalent. On the other hand, C and D are two (nonprimitive)
automata with output actions a and 3, each forming a separate class in the partition of
the locally-controlled actions. The fair behavior of C' and D consist of finite sequences
of a’s followed by a 8 and an infinite sequence of a’s, so C' and D are fairly equivalent.
The unfair behavior of C', however, includes the infinite sequence of a’s. Since the unfair
behavior of D does not, C and D are unfairly inequivalent.

Thus, in general, fair equivalence and unfair equivalence are incomparable. The
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following lemma, however, indicates that fair equivalence implies unfair equivalence in
the case of primitive automata. Since the primitive automata A and B of Figure 2.3 are
unfairly equivalent but not fairly equivalent, we see that fair equivalence is a stronger
equivalence that unfair equivalence in the case of primitive automata.

Lemma 25: Let A and B be two primitive automata. If A and B are fairly equivalent,
then A and B are unfairly equivalent.

Proof: It is enough to check that scheds(A)|ezt(A) = scheds(B)|ezt(B). Suppose z is
an execution of A. If an infinite number of locally-controlled actions appear in z, then
since A is a primitive automaton (with a single class of locally-controlled actions), z is
a fair execution of A. Since A and B are fairly equivalent, there is a fair execution y
of B such that sched(z)|ezt(A) = sched(y)|ext(B). On the other hand, if only a finite
number of locally-controlled actions appear in z, then we may write ¢ = z'z"” where '
i1s a finite execution of A, and every locally-controlled action appearing in = appears
in 2. By Lemma 18, the finite execution #' can be extended to a fair execution z
of A. Since A and B are fairly equivalent there is a fair execution y of B such that
sched(z)|ext(A) = sched(y)|ezt(B). Thus, there is a finite execution y’ of B, a prefix of y,
such that sched(z')|ext(A) = sched(y')|ext(B). Since B is input enabled and no locally-
controlled action appears in z after ', y' may be extended to an execution y” of B such
that sched(z)|ext(A) = sched(y")|ext(B). Thus, scheds(A)|ext(A) C scheds(B)|ext(B).

Since the opposite containment follows by a symmetric argument, we are done. L]

2.3 Hierarchical Correctness Proofs

The problem motivating this thesis is the construction of hierarchical correctness proofs
for distributed algorithms. We have already mentioned in the introduction how such a
proof might be constructed. First, a sequence of models Oy, ..., O, are defined, objects
of some type modeling the algorithm at decreasing levels of abstraction. Each model O;
is then shown to “simulate” O;_; in some appropriate sense of the word “simulate.” In
such a proof, each O;_; can be viewed as the statement of a problem O; is required to
solve. O; may be said to solve the problem specified by O;_; if every behavior of O;
is a behavior of O;_;. O; solves the problem specified by O;_; in the sense that every
correctness condition satisfied by each behavior of O;_; is also satisfied by each behavior
of O;. However, as previously mentioned, the satisfaction of certain liveness conditions
depends on fair computation. We therefore require only that every fair behavior of O;
be a fair behavior of O;_;. That is, O; is said to satisfy O;_; if foeh(O;) C foeh(O;_1).

We also require that O; and O;_; have the same external action signature.

Notice, however, that this notion of correctness is not completely satisfactory. In
particular, a schedule module O; with no schedules trivially satisfies every problem O;_,
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(with the same external action signature). Furthermore, since the schedules of O; are
allowed to be arbitrary sequences of actions, it is conceivable that they may encode in-
formation allowing the solution of undecidable problems, and hence not be behaviors
of an implementable system. In an attempt to avoid such anomalies, we say that the
object O;_; 1s tmplementable if there is an automaton satisfying O;_;. The object O;_; 1s
implementable in the sense that there is a system satisfying every correctness condition
satisfied by O;_;. Furthermore, since O;_; is satisfied by an automaton, and since every
automaton is input-enabled, the object O;_; must describe a response to every possible
pattern of input. That is, the behavior of O;_; is nontrivial. We say that O;_; solves O;
if O;_; 1s an implementable object satisfying O;. In the context of constructing hierar-
chical correctness proofs, such a proof consists of a sequence Oy, ..., 0, of objects, and
the verification that each O; solves O;_;.

Clearly, the notion of satisfaction is the basis of each of these definitions. The remain-
der of this section concerns techniques for verifying that one object satisfies another. Two
properties of satisfaction are very easy to see. The first is that satisfaction is transitive,
and a weak congruence with respect to composition.

Lemma 26: Consider the objects O;, P;, and @;, for ¢ € I.

1. If O; satisfies P; and P; satisfies ();, then O; satisfies Q);.

2. If O; satisfies P; for every i € I, then []; O; satisfies [[; P; whenever the compositions
[1; O; and II; P; are defined.

Proof: The proof of the first part is immediate from the definition of satisfaction. The
second part requires some proof. As a result of Corollary 8, the external action signature
of I]; O; is the composition of the external action signatures of the O;, and similarly
for II; P;. Since O; and P; have the same external action signature for all 7+ € I, so do
[1; O; and II; P;. Since fbeh(O;) C foeh(P;) for all ¢ € I, it follows by Lemma 20 that
foeh(I1; O;) C foeh(I1; P;). Therefore, []; O; satisfies []; P;. ]

A second property of satisfaction is its invariance under action renaming.

Lemma 27: Let f be an action mapping applicable to the objects O and P. If O
satisfies P, then f(O) satisfies f(P).

Proof: Since O and P have the same external action signature and since f is injective,
f(O) and f(P) have the same external action signature. Using Lemma 15 we see that

foeh(f(O)) C foeh(f(P)). Thus, f(O) satisfies f(P). ]

While we have repeatedly indicated that our hierarchical correctness proofs consist of
a sequence of objects Oy, ..., 0, modeling an algorithm at different levels of abstraction,
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our proofs typically have more structure than this. In the proof of Schonhage’s resource
arbiter (in the next chapter), for example, we actually construct for each level of abstrac-
tion an automaton A; describing the algorithm at the appropriate level of abstraction.
This automaton describes as much of the algorithm as can be described by its static na-
ture. In particular, the automaton A; encodes all safety conditions required. If liveness
conditions are required, we construct an execution module E; of A; with those execu-
tions of A; satisfying the desired liveness conditions. The objects O; referred to above
are actually the execution modules E;. We note, however, that the execution module E,
at the lowest level of abstraction typically consists of the fair executions of A,. Thus,
at the lowest level of abstraction the protocol is completely described by an automaton,
and we could use the object A, in place of the execution module E, in the correctness
proof. Since automata and execution modules are the types of objects most frequently
used in correctness proofs, in the remainder of this section we give techniques for proving
the satisfaction of one automaton or execution module by another.

2.3.1 Automaton Satisfaction

We now describe one method for proving that an automaton A satisfies an automaton B.
This method makes use of the notion of a possibilities mapping, a correspondence between
the states of the two automata that can be used to prove that A satisfies B.

Suppose A and B are automata with the same external action signature, and sup-
pose h is a mapping from states(A) to the power set of states(B). The mapping h is said
to be a possibilities mapping from A to B if the following conditions hold:

1. For every start state a of A, there is a start state b of B such that b € h(a).

2. For every reachable state a of A, every step (a,w,a’) of A, and every reachable state

b€ h(a) of B:

(a) If m € acts(B), then there is a step (b, 7, ') of B such that b’ € h(a').
(b) If # & acts(B), then b € h(a’').

If a is a state of A, then a state b € h(a) of B is referred to as a possibility for a. Informally,
b is an abstract state corresponding to the less abstract state a. The fact that h maps a
to a set of possibilities allows for the chance that many abstract states may correspond to
the single concrete state a. The first condition of a possibilities mapping says that every
start state of A has as one of its possibilities a start state of B. The second condition
says that steps A and B preserve possibilities: If b is a possibility for a, then for every
step (a,m,a’) of A either b is also a possibility for a’, or there is a step (b, 7,b') of B
with the property that b’ is a possibility for a. This definition generalizes the definition
of a possibilities mapping used in the context of Event-State Algebras in [Lyn83]. It is
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also reminiscent of the notion of bisimulation from CCS presented in [Mil80]. Roughly
speaking, a possibilities mapping from A to B is a mapping from the states of A to the
states of B with the property that if a corresponds to b, and if A can make a transition
via the action w from a to a’, then B can make a transition via the action w from b
to a state b’ corresponding to a’. Milner’s notion of bisimulation is essentially a pair of
possibilities mappings, one from A to B and another from B to A.

We now show how to use a possibilities mapping to prove that A satisfies B. Our
first step is to show how such a mapping relates the executions of A to the executions
of B. Given two finite executions = and y of A and B, respectively, we say that y finitely
corresponds to  under h if sched(y) = sched(z)|B and the final state of y is a possibility
for the final state of . In general, if z and y are two executions of A and B, we say
that y corresponds to ¢ under h if for every finite prefix z; = aoma;...a; of x there
is a finite prefix y; of y finitely corresponding to z; under A such that y is the limit of
the y;. Informally, the executions  and y model the same computation at different levels
of abstraction. Our next result shows that by inductively constructing the y; it is always
possible to construct such an execution y.

Lemma 28: Let h be a possibilities mapping from A to B. If z is an execution of A,
then there is an execution y of B corresponding to z under h.

Proof: Let # = agma;.... For each 1 > 0, let ; = agmia;...a;. We construct the
finitely corresponding y; inductively, and take y to be the limit of the y;. Since ag is
a start state of A, the set h(ag) must contain a start state of B, and hence it is easy
to choose an execution yo finitely corresponding to zo under h. Suppose y;_; finitely
corresponds to z;_; under h, and let us construct y;. First, a;_; is a reachable state
of A, and (a;_1,m;,a;) is a step of A. Second, the final state b of y;_; is a reachable state
of B in h(a;—1). If m; € acts(B), then by the definition of h there is a state b’ in h(a;)
such that (b,;,b") is a step of B. If y; = y;_;m;b, then the final state of y; is in h(a;)
and sched(z;)|B = sched(y;). If m; & acts(B), then from the definition of h we see that
b € h(a;). If y; = y;_1, then the final state of y; is in h(a;) and sched(z;)|B = sched(y;).

In either case, y; finitely corresponds to z; under h. (]

Since each pair of prefixes z; and y; satisfies the condition sched(z;)|B = sched(y;),
it is easy to see that the executions # and y do so as well.

Lemma 29: Let h be a possibilities mapping from A to B. If the execution y of B
corresponds to the execution  of A under h, then sched(z)|B = sched(y).

Proof: Suppose that sched(z)|B # sched(y). Since z and y are the limits of finitely
corresponding prefixes #; and y;, respectively, there must be an 7 such that sched(z;)|B #
sched(y;). However, since y; finitely corresponds to z; under h, this is impossible. Thus,

sched(z)|B = sched(y). O]
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Having established a correspondence between the executions of A and B, we show
with the following result how this correspondence can be used to show that A satisfies B.
We say that one equivalence relation is a contained in a second if every class of the first
is contained in a class of the second.

Lemma 30: Let A and B be automata such that part(B) is contained in part(A). Let h
be a possibilities mapping from A to B. Suppose the following condition holds for all
reachable states a of A and for all classes C and D of part(A) and part(B), respectively,
such that C DO D: If an action of D is enabled from a reachable state of h(a), then an
action of D is enabled from a and no action of C' — D is enabled from a.

Proof: Since h is a possibilities mapping from A to B, both automata have the same
external action signature. We need only show that fbeh(A) C foeh(B). Let z be a fair
execution of A, and let y be an execution of B corresponding to z under h. We claim
that y is a fair execution of B. Since sched(z)|B = sched(y) and ext(A) = ext(B), we
will have that sched(z)|ezt(A) = sched(y)|ext(B), and hence that foeh(A) C foeh(B).
For each 7 > 0, let @; be the prefix aomia; ... a; of , and let y; be the prefix of y finitely
corresponding to z; under h.

Suppose y is finite. Suppose there is a class D of B such that an action of D is
enabled from the final state of y. Since y is finite, y = y; for some . Since an action
of D is enabled in B from a reachable state in h(a;) for all j > 7 (namely, the final state
of y), for all 7 > 4 an action from D is enabled in A from a;, and no action from C — D
is enabled in A from a;. If z is finite, then an action of C is enabled from the final state
of . If z is infinite, then from every state a; (j > %) an action of C is enabled and yet
no action of C is performed (or it would appear in y). In either case, this contradicts our
initial assumption that z is a fair execution, so y must be a fair execution of B.

Conversely, suppose y is infinite. Suppose there is a class D such that an action
from D is enabled from all but finitely many states appearing in y. It follows that for
all but finitely many 7, an action of D is enabled from a reachable state of h(a;) in B.
Therefore, for all but finitely many 2, there is an action of D enabled from a; in A, and
no action from C — D enabled from a;. Since z is a fair execution of A, there must be
infinitely many actions from D appearing in z, and hence in y. Therefore, y must be a
fair execution of B. []

We remark that the requirement that part(B) be contained in part(A) is not unreason-
able when B models an algorithm at a higher level of abstraction than A. The restriction
implies that the actions of B are a subset of the actions of A. Since A and B have the
same external action signature (h is a possibilities mapping from A to B), this implies
that some low-level internal actions of A may not be internal actions of B. Even when
this requirement is not met, however, the correspondence between states established by a
possibilities mapping is still a useful correspondence when reasoning about the behavior
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of the automaton. For example, in Section 2.3.2 we will see how this correspondence can
be used to verify that one execution module (of an automaton) satisfies a second.

Our final result concerning possibilities mappings shows that possibilities mappings
have a very nice local behavior: Given two automata A = [[; A; and B = []; B; together
with a possibilities mapping from A; to B; for every i, these possibilities mappings induce
a possibilities mapping from A to B.

Lemma 31: Suppose for all 2 € I that h; is a possibilities mapping from A; to B;, and
that acts(A;) O acts(B;). Let A = [1; A; and B = [[; B;. If h is the mapping from
states(A) to the power set of states(B) defined by h(a) = {b : b|B; € h;(a|A;)}, then h
is a possibilities mapping from A to B.

Proof: As a result of Corollary 8, the external action signature of a composition is the
composition of the external action signatures of its components. Since the A; and B; have
the same external action signatures, A and B must also have the same external action
signature. Thus, we need only check that conditions 1 and 2 of a possibilities mapping
hold. For the first condition, for every a; € start(A;) there is a b; € states(B;) such that
b; € hi(a;). Thus, for every a € start(A) there is a b € start(B) such that b € h(a). For
the second condition, suppose that a is a reachable state of A, (a,m,a’) is a step of A,
and b € h(a) is a reachable state of B. Let a; = a|A;, a} = a’|A;, and b; = b|B; for every
1 € I. Notice that, since a and b are reachable states of A and B, a; and b; must be
reachable states of A; and B;.

Suppose that 7 € acts(B). We must construct a step (b, 7,d') of B with b' € h(d').
Suppose m € acts(B;). Then 7 € acts(4;), so (a;,7,a.) must be a step of A;. Since h;
is a possibilities mapping from A; to B;, there is a step (b;, 7, b}) of B; with b, € h;(a}).
Suppose 7w ¢ acts(B;). If m € acts(A4;), then (a;, 7, al) is a step of A;, and b; € h;(a) by
definition of h;. If # & acts(A;), then a; = af, and so b; € h;(a;) = hi(a}). In either case,
let b} = b;. It follows that (b;,7,b}) is a step of B; if # € acts(B;), and that b; = b} if
7 & acts(B;). If b is the state of B such that b, = | B; for all 4, then (b, 7,b') is a step
of B. Furthermore, b’ € h(a') as desired.

Suppose that = ¢ acts(B). Then 7 ¢ acts(B;) for all :. As above, b; € h;(a}) for all ¢,
and so b € h(a’) as desired. Thus, h is a possibilities mapping from A to B. (]

2.3.2 Execution Module Satisfaction

As previously mentioned, when constructing the correctness proof of an algorithm, we
first construct automata A, ..., A, describing the algorithm at several levels of abstrac-
tion. If the algorithm is required to satisfy certain liveness conditions, we also construct
execution modules E; of A; describing these liveness conditions. The remainder of the
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correctness proof consists of proving that each E; satisfies E; ;. We now show how pos-
sibilities mappings can be used to prove that certain execution modules satisfy other
execution modules.

We remark that one correctness condition common to many system specifications
is a condition of the form “if condition P holds, then eventually condition ¢ holds.”
Lamport denotes this temporal logic statement O(P D $Q) by P ~ @ in [Lam77], read
“P leads to @.” Given an automaton A, a set of states S, and a set of actions T, a
simple correctness condition common to specifications in our model (see Chapter 3, for
instance) is the condition “if the current state of A is contained in S, then eventually
an action of T will be performed.” With Lamport’s notation in mind, we denote this
condition by S <+ T.! Given two execution modules E and F satisfying a collection of
such conditions, we now show how a possibilities mapping can be used to show that £
satisfies /. We begin with a result relating individual executions.

Lemma 32: Let h be a possibilities mapping from A to B. Let ¢ be an execution of A,
and let y be an execution of B corresponding to  under h.

1. If y satisfies U < V, and if A(S) C U and T O V, then z satisfies S — T.
2. If z satisfies S — T, and if S D A~ (U) and T C V, then y satisfies U — V.

Proof: Let ¢ = aomia; ..., and let y = bop1b; .... For each 7 € I, let z; = apmia; ... a;,
and let y; be the prefix of y finitely corresponding to z; under h.

Suppose y satisfies U — V, and let us show that z satisfies S — T. It is enough to
show that if ar € S, then m, € T for some £ > k. Since y; finitely corresponds to
under h, we have y, = bip1b; ... b, with b, € h(ag) for some m. Since ar € S and
h(S) C U, we have b,, € U. Since y satisfies U — V, we have ¢,, € V for some n > m.
Since V C T, for some £ > k we have sched(z;)|B = sched(y,) where sched(z;)|B and

sched(yn) both end with ¢,. Therefore, for some £ > k we have 7, = ¢, € T, as desired.

Conversely, suppose z satisfies S < T', and let us show that U — V is satisfied by y.
It is enough to show that if by € U, then ¢, € V for some £ > k. Since y,, = bops - .. by
finitely corresponds to z,, = aom; ... an, for some m, we have b, € h(a,,). Since by € U
and A~ (U) C S, we have a,, € S. Since z satisfies S — T, for some n > m we have
7, € T. Since sched(z,)|B = sched(y,) and T C V C acts(B), we see that the final

action of y, is m,. If y,, = b . .. @by, then ¢, = 7, € V for some £ > k as desired. U]

With this result, we are now able to give the following sufficient condition for the
satisfaction of one execution module by another.

!The statement S < T is essentially a statement in temporal logic, as is O(P D <@). The fact that
executions are sequences of states and actions, instead of simply infinite sequences of states, means the
standard model for temporal logic must be slightly modified if the condition S < T is to be expressed
in temporal logic.
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Lemma 33: Let h be a possibilities mapping from A to B. Let E be the execution
module of A with the executions of A satisfying the conditions S; — T; for every i € I,
and let F' be the execution module of B with the executions of B satisfying the conditions
U; — V; for every i € I. If for every : € I we have that S; D A™'(U;) and T; C V;, then F
satisfies F'.

Proof: Since h is a possibilities mapping from A to B, these automata (and hence
the execution modules £ and F') have the same external action signature. Let  be an
execution of E, and let y be an execution of B corresponding to  under h. Since z
satisfies S; — T; for every i, Lemma 32 implies that y satisfies U; — V; for every z. It
follows that y is an execution of F. Therefore, fbeh(E) C fbeh(F), and E satisfies F. []

We conclude with a simple result relating conditions of the form S — T satisfied by
executions of a composition of automata to conditions of the form S’ — T satisfied by
executions of an individual component.

Lemma 34: Let A = Hidex([]; A;). Let S C states(A), and let S; = {s|4; : s € S}
If z is an execution of A, then z satisfies the S — T iff z|A; satisfies S; — T
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Chapter 3

An Example

As an example of the hierarchical organization of correctness proofs proposed in the
preceding chapter, in this chapter we prove the correctness of Schonhage’s distributed
resource allocation algorithm described in the introduction. The problem is to design
an arbiter allocating a resource among a collection of users that guarantees the mutual
excluston condition that at most one user is using the resource at any given time; and
the no lockout condition that if users holding the resource eventually return the resource,
then the arbiter will eventually satisfy every requesting user. The distributed system in
which this arbiter is to be used is completely asynchronous: processor speeds may be
independent; messages may take an arbitrary, finite amount of time to be delivered; and
messages may be delivered in any order.

The arbiter itself is described in parallel with the proof of its correctness. We begin
with a high-level model serving as a simple specification of the problem the arbiter is
to solve. We then give a graph-theoretic description of the algorithm’s global behavior.
Finally, the arbiter is distributed and described in terms of a low-level protocol to be
followed by the processors comprising the arbiter. We show that this low-level model
solves the high-level problem specification, and hence that the given protocol is a correct
solution to the arbiter’s problem specification.

3.1 The Automaton A,

Our high-level model of the arbiter, the automaton A;, is a very simple specification of

the arbiter’s correctness conditions. We refer to the arbiter itself as a, and to the users

of the arbiter as uq,...,u,.!

'In general, we will denote entities associated with the arbiter by the letter @, and entities associated
with the users by letter u. Letters near the end of the alphabet such as v and w will be used to denote
entities associated with either the arbiter or the users.
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Input Actions:
request(u)
effects:
requesters <— requesters U {u}

return(u)
effects:
if holder = u then
holder < a
Output Actions:
grant(u)
preconditions:
U € requesters

holder = a

effects:
requesters < requesters — {u}
holder < u

Figure 3.1: The actions of A;.

3.1.1 The States of 4,

A state of A; consists of a set requesters C {uy, ..., u,} of requesting processes, together
with a value holder € {uy,...,u,,a} indicating the entity currently holding the resource
(either a user or the arbiter itself). The start state of A; is the state in which the set
requesters of requesting users is empty, and the initial holder is the arbiter a itself. We
note that all states of A; are reachable, as will become clear when the actions of A; have
been introduced.

3.1.2 The Actions of A4,

The actions of A; are given in Figure 3.1. We specify the transition relation of an
automaton by giving for each action a list of preconditions and effects. An action is
enabled from any state s satisfying the action’s preconditions, and the action takes s to
the state ¢ if ¢ can be obtained by modifying s as indicated by the action’s effects. Since
input actions are enabled from every state, we omit the preconditions of input actions.

The input actions of A; are of the form request(u) and return(u), where u is a user.
The action request(u) simply places the user u in the set requesters of requesting users.
Since automata are input-enabled, a user is able to request the resource at any time, even
when it is currently holding the resource. The effect of a user’s requesting the resource
while holding the resource is that the request is recorded for later use (later servicing
of the user). The action return(u) returns the resource to the arbiter by making the
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arbiter the new holder of the resource. Notice that if a (faulty) user tries to return the
resource when it does not actually hold it, the arbiter simply ignores the “return.” The
automaton A; has no internal actions. The output actions of A; are of the form grant(u),
where u is again a user. The arbiter grants the resource to u with the action grant(u),
which removes u from the set of requesting users and makes u the new holder of the
resource. Notice that the arbiter grants the resource only when the arbiter actually holds
the resource. Consequently, at most one user is using the resource at any time.

3.1.3 The Execution Module E;

While the executions of A; satisfy the mutual exclusion condition that at most one user
is using the resource at any given time, we must still ensure the no lockout condition is
satisfied by the arbiter: If users using the resource eventually return the resource to the
arbiter, then the arbiter eventually satisfies every request for the resource. Let u be a
user node, and let us define the following sets of states and actions.?

RtnResi(u) = {s € states(A;) : holder = u in s}
RtnRes{(u) = {return(u)}

GrResi(u) = {s € states(A1) : u € requesters in s}
GrResi(u) = {grant(u)}

The condition

RinRes; = /\ RinRes](u) — RinRes}(u)

says that any user holding the resource will eventually return the resource to the arbiter.
The condition

GrRes; = |\ GrRes](u) — GrRes}(u)

says that any user requesting the resource will eventually be granted the resource. The
correctness condition

Ci = RitnRes; O GrRes;

says that if users holding the resource always return the resource, then users requesting
the resource will always be granted the resource. This is precisely the no lockout condition
we require the arbiter to satisfy. We denote by E; the execution module of A; with the
executions of A; satisfying the condition C;. The execution module E; serves as the
specification of the arbiter.

2We will be defining several correctness conditions for each of the models we study. We will subscript
these conditions to indicate the level of abstraction with which they are associated. Furthermore, the
sets of states and actions used to construct these conditions will be superscripted with the letters s or a,
respectively.
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Figure 3.2: One state of the arbiter modeled by A,.
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3.2 The Automaton A,

Our next model reveals the distributed structure of the arbiter, but still at a high level
of abstraction, a level at which one might describe the algorithm at the blackboard. In
this model, illustrated in Figure 3.2, the arbiter and its environment are modeled by a
connected, acyclic graph G. The leaves of GG are user nodes representing the users, labeled
Uy, ...,Un. The arbiter itself consists of the remaining arbiter nodes, labeled a4, ..., a,.
The (directed) edge of G from the node v to w is denoted by (v, w). An edge (v,w) is
said to point toward a node z if (v, w) is an edge in the path from v to z. Arrows are
placed on edges of the graph to indicate either a request for the resource or the granting
of the resource. In general, the resource is considered to be held by a node at the head of
a grant arrow. Such a node is called a root of the graph. A user u requests the resource
by placing a request arrow on the edge (u,a) from itself to the adjacent arbiter node a.
The arbiter grants the resource to u by removing this arrow and placing a grant arrow on
(a,u). The user then returns the resource by moving the grant arrow from the edge (a, u)
to the edge (u,a). The arbiter itself, however, is an acyclic graph of arbiter nodes. When
the head of a request arrow is placed at an arbiter node a, the arbiter node’s response
depends on whether it is holding the resource. If the arbiter node a holds the resource,
then it must be at the head of a grant arrow, and so there must be a grant arrow on some
edge (v,a). The arbiter selects the first node w in some fixed ordering of its adjacent
nodes having a request arrow on (w,a). The arbiter then grants the resource to this
node by removing the request arrow and moving the grant arrow to the edge (a,w). In
this case we say that the resource has been forwarded by a to w. If the arbiter node a
does not hold the resource, then the arbiter forwards the request in the direction of a
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node holding the resource by placing a request on the edge pointing toward a root. The
work in this section holds for arbitrary connected, acyclic graphs. When we consider the
model As in the following section, however, we will restrict our attention to graphs with
a particular structure.

3.2.1 The States of A,

In order to refer conveniently to the arrows on an edge of the graph, we associate with
each edge (v,w) an arrow set, arrows(v,w), containing all of the arrows on the edge
(v,w). A state of A, therefore consists of one arrow set, arrows(v,w), for every edge
(v,w) of the graph G. The start states of A, are taken from the set of states in which
a single arrow set arrows(v, a) contains only a grant arrow, and all other arrow sets are
empty, where a is an arbiter node of the graph G. In such a state, the arbiter holds
the resource and no requests for the resource are pending. We will soon restrict our
attention to a particular set of such start states in the next section, but the work of this
section is independent of the particular set chosen. We note that some states of A, are
unreachable. For technical convenience, we remove these states from A, so that all states
of A, are reachable.

3.2.2 The Actions of A,

Fix for each node of G an (arbitrary) ordering of its adjacent nodes. Let (v, w) denote the
set of nodes properly between the nodes v and w in this ordering, and let (v, w| denote
the set nodes properly between v and w together with the node w. The actions of A, are
given in Figure 3.3. The input actions are of the form request(u,a) and grant(u,a), and
the output actions are of the form grant(a,u), where u is a user node and a is an adjacent
arbiter node. The internal actions are of the form request(a,u) where u is a user node
and a is an adjacent arbiter node; and of the form request(a, a’) and grant(a,a’) where a
and a' are adjacent arbiter nodes. As in the previous model, users may request or grant
the ticket at any time, but grants by users not actually holding the ticket are effectively
ignored. Note we have added internal actions with which the arbiter may request that
the user return the resource. The arbiter had no such ability in the previous model.
These actions have been added for the sake of symmetry. Having been added as internal
actions, they have no effect on the arbiter’s interface with its users.

The next few results state certain invariants that hold during executions of A,. The
first guarantees that every state contains at most one root, and hence that at most one
user is using the resource at any time.

Lemma 35: If s is a state of A,, there is exactly one root in s.
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Input Actions:
request(u, a)
effects:
arrows(u, a) < arrows(u, a) U {request}

grant(u, a)
effects:
if grant € arrows(a, ) then
arrows(a, u) < arrows(a,u) — {request}
arrows(a, u) < arrows(a,u) — {grant}
arrows(u, a) < arrows(u, a) U {grant}
Internal and Output Actions:
request(a, v)
preconditions:
request € arrows(w, a) for some w
(a,v) points toward a root
request ¢ arrows(a, v)
effects:
arrows(a, v) < arrows(a,v) U {request}

grant(a,v)

preconditions:
request € arrows(v, a)
grant € arrows(w, a) for some w
request ¢ arrows(y, a) for y € (w,v)

effects:
arrows (v, a) < arrows(v, a) — {request}
arrows(w, a) < arrows(w, a) — {grant}
arrows(a, v) < arrows(a,v) U {grant}

Figure 3.3: The actions of A,.
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Proof: In every start states of A, precisely one arrow set contains a grant arrow.
Furthermore, every action that adds a grant arrow to an arrow set also removes a grant
arrow from an arrow set. The result follows by a simple inductive argument, since all
states of A, are reachable. U]

The second invariant states that every request arrow placed on the graph by the
arbiter points toward the root of the graph. In other words, the arbiter correctly forwards
requests in the direction of the resource.

Lemma 36: Let s be a state of A, and let a be an arbiter node of G. If arrows(a,v)
contains a request arrow, then (a,v) points toward the root of G.

Proof: No arrow set of any start state contains a request arrow, so the start states of A,
certainly satisfy the hypothesis. Suppose s is a state of A, satisfying the hypothesis,
and suppose that s ™ ¢ is a step of A,. We claim that ¢ satisfies the hypothesis as well.
Suppose 7 is of the form request(z,y). Notice that = does not modify the position of the
grant arrow, and that = adds a request arrow to arrows(a,v) only if (a,v) points toward
the root in s, and hence in ¢t. It follows that ¢ must satisfy the hypothesis. Suppose
7 = grant(v,a). In this case, 7 removes any request arrow from arrows(a,v), and so ¢
must satisfy the hypothesis. Finally, suppose m = grant(z,y) # grant(v, a). Since 7 does
not add or remove a request arrow from arrows(a,v), if the set arrows(a,v) contains a
request arrow in t, the same is true in s. The fact that = is enabled from s implies that
is the root in s. The hypothesis implies that the edge (a,v) must point toward the root z
in s. Since m forwards the resource from z to y (and since y # a) the edge (a,v) must
point toward the root y in ¢. Therefore, ¢ must satisfy the hypothesis. The lemma now
follows by a simple inductive argument, since all states of A, are reachable. L]

3.2.3 The Execution Module E,

To ensure that the arbiter satisfies all user requests, it is obviously important that the
internal arbiter nodes forward all requests in the direction of the root, and that arbiter
nodes holding the resource eventually grant the resource to adjacent requesting nodes.
Let a be an arbiter node adjacent to nodes v and w, and let us define the following sets
of states and actions.

FwdRegy(a,v) = {s € states(A,) : request € arrows(w, a) for some w,
{(a,v) points toward the root, and
request ¢ arrows(a,v) in s}

FwdReg;(a,v) = {grant(v,a), request(a,v)}

FuwdGry(a,v,w) = {s € states(As) : request € arrows(v,a) and
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s

The correctness condition FuwdGry.

Figure 3.4: Arbiter correctness conditions.

grant € arrows(w,a) in s}

FudGri(a,0,w) = {grant(a,y):y € (w,o]}
The first arbiter correctness condition

FwdReg, = \ FwdReg(a,v) — FwdReg;(a,v),

a,v

illustrated at the top of Figure 3.4, states that if an arbiter node a is at the head of a
request arrow and has not forwarded the request in the direction of the root, then either a
becomes the root (possibly because v is a user node, and v has placed a grant arrow on
(v,a)), or a eventually forwards the request in the direction of the root. The second
arbiter correctness condition

FwdGr, = N\ FwdGry(a,v,w) = FwdGry(a,v,w),

a,v,w

illustrated at the bottom of Figure 3.4, states that if an arbiter node a is a root at the
head of a request arrow, then it eventually forwards the resource to an adjacent requesting
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node. The correctness condition
Cy = FwdReg, N FwdGry

ensures that arbiter nodes always forward requests in the direction of the root; and that
arbiter nodes holding the resource always grant it to adjacent requesting nodes. We let E,
be the execution module of Ay with the executions of A, satisfying the condition Cl,.

While Lemma 35 states that at most one user is using the resource at any given time,
and while condition C, ensures that arbiter nodes holding the resource always grant the
resource to requesting nodes, we have not yet shown that the arbiter always satisfies user
requests. As before, this requires cooperation on the part of the users. Let u be a user
node adjacent to the arbiter node a, and let us define the following sets of states and
actions.

RtnResy(u) = {s € states(A,) : grant € arrows(a,u) in s}
RtnResy(u) = {grant(u,a)}

GrResy(u) = {s € states(As) : request € arrows(u,a) in s}
GrResy(u) = {grant(a,u)}

The condition

RinRes, = |\ RtnResy(u) — RtnResy(u)
says user nodes holding the resource always return the resource, and the condition

GrRes, = /\ GrResy(u) — GrResy(u)

says the arbiter eventually satisfies requesting users. The condition RinResy; O GrRes,
says that if users return the resource, then the arbiter satisfies all requests. We now show
that every execution of F, satisfies the condition RitnRes, O GrRes,. First, however, we
prove the following result, the inductive statement in the argument that E, satisfies the
condition RinResy, O GrRes,.

Lemma 37: Let s be a state of A, having a request arrow in arrows(v,w). Let = be an
execution fragment of A, from s satisfying the condition Cy A RinRes;. Then the action
grant(w,v) must appear in .

Proof: If the graph G is viewed as a tree rooted at v, then w can be viewed as the root
of a subtree of v. We proceed by induction on the height A of the subtree of v rooted
at w.
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Suppose h = 0. In this case, w must be a leaf of GG, and therefore w must be a
user node and v an arbiter node. Since v is an arbiter node and arrows(v,w) contains
a request arrow, Lemma 36 implies the edge (v, w) points toward the root. Therefore,
arrows(v,w) must contain a grant arrow. Since z satisfies RinRes,, the user w must
eventually return the resource to the arbiter, and hence grant(w,v) must appear in z.

Suppose h > 0 and the inductive hypothesis holds for A — 1. We first show that =
can be written as az’ where z’ is an execution fragment satisfying Cy A RtnRes, in whose
initial state request € arrows(v,w) and w is the root (that is, grant € arrows(w’,w) for
some node w'). We consider two cases. First, suppose (v, w) does not point toward the
root in s. Since arrows(v,w) contains a request arrow, Lemma 36 implies that v must be
a user node. Since user nodes are leaves, and since (v, w) does not point toward the root,
the root must be at v; that is, arrows(w,v) must contain a grant arrow. Since z satisfies
RitnRes,, the user v must eventually return the resource to the arbiter, so grant(v, w) must
appear in z. Therefore, z = Bgrant(v,w)z’ as desired. Now, suppose (v, w) does point
toward the root. If w itself is the root, then setting ' = ¢ we are done, so suppose w
is not the root. If for some node w' the set arrows(w,w’) contains a request arrow,
then since the height of the subtree of w rooted at w' must be less than A, the inductive
hypothesis for h—1 implies that grant(w’, w) appears in . Therefore, z = Bgrant(w’, w)z’
as desired. On the other hand, suppose no arrow set arrows(w,w’) contains a request
arrow. Note that the fact that A > 0 implies that w is not a leaf, and hence that w is
an arbiter node. Since z satisfies C, we see that for some node w’ either grant(w', w)
or request(w,w') appears in z. If grant(w’, w) appears in , then ¢ = Bgrant(w’,w)z’ as
desired. If request(w,w') appears in z, then a request arrow is placed in arrows(w,w’),
and again the inductive hypothesis for A — 1 implies that ¢ = Bgrant(w’,w)z' as above.

We now show that if 2’ is an execution fragment satisfying Cy A RinRes; in whose
initial state request € arrows(v,w) and grant € arrows(w’,w) for some node w', then
grant(w,v) appears in z’. From this it will follow that grant(w,v) appears in z as well. We
proceed by induction on d, the distance from w’ to v in the ordering of the nodes adjacent
to w in G. Suppose d = 1. Since request € arrows(v,w) and grant € arrows(w',w),
condition C, implies that grant(w,y) must appear in @’ for some y € (w',v] = {v}.
Thus, grant(w,v) must appear in #'. Suppose d > 1 and the inductive hypothesis holds
for d—1. Suppose the inductive hypothesis does not hold for z’: Suppose that grant(w,v)
does not appear in #', and hence that request € arrows(v,w) in every state appearing
in ’. As in the case of d = 1, the action grant(w,y) must appear in z’' for some
y € (w',v]. If y = v then we are done, so suppose y # v. If arrows(w,y) contains a
request, then the inductive hypothesis for A—1 implies that grant(w,y) appears in ', and
the inductive hypothesis for d — 1 implies that grant(w,v) must also appear in z’. On the
other hand, suppose arrows(w,y) does not contain a request arrow. Condition Cj implies
that either grant(y,w) or request(w,y) appears in z'. If grant(y, w) appears in z’, then a
grant arrow is placed in arrows(y,w), and the inductive hypothesis for d — 1 implies that
grant(w,v) appears in @'. If request(w,y) appears in 2, then a request arrow is placed
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in arrows(w,y), and grant(w,v) must appear in 2’ as we have seen above. ]

An immediate corollary of Lemma 37 is the following.

Corollary 38: Every execution of F, satisfies the condition RinResy O GrRess.

3.2.4 The Execution Module Fj

For the sake of exposition, we have given the actions of A, names suitable to its level
of abstraction, rather than using names from A;. It is therefore necessary to rename
these actions before showing that E, solves E;. The action mapping f; from A, to A; is
defined to map

request(u,a) to request(u),
grant(u,a) to return(u),
grant(a,u) to grant(u),

and all remaining (internal) actions to themselves. We will denote by A the automaton
f1(As), and in general we will denote by affixing a prime to its name the entity obtained
by renaming its actions according to f;.

3.2.5 The Satisfaction of F; by E}

We begin the proof that E; satisfies E; by exhibiting a possibilities mapping from A}
to A;. The mapping h; maps the state s of A} to the state ¢ of A; such that

u € requesters in t iff request € arrows(u,a) in s
holder =wint iff grant € arrows(a,u) in s
holder =aint iff grant ¢ arrows(a,u) for every user u in s

These conditions ensure that a user is a requesting user in ¢ iff it is in s, and that a user
is holding the resource in ¢ iff it is in s. Since all states of A} are reachable, and since in
all reachable states of A} there is exactly one root, this mapping takes each state of A,
to a singleton set of states of A;.

Lemma 39: The mapping h, is a possibilities mapping from A; to A;.

Proof: The automata A}, and A; clearly have the same external action signature. If s
is a start state of A,, then a single arrow set arrows(v,a) contains a grant arrow and all
other arrow sets are empty. In particular, no arrow set arrows(u,a) contains a request
arrow, and no arrow set arrows(a,u) contains a grant arrow. Therefore, in every state

59



of hi(s) the set requesters of requesting users is empty, and holder = a. Since this is
the start state of A;, we see that if s is a start state of A}, then a start state of A; is

contained in A4 (s).

Consider the action m = request(u) of Aj, originally the action request(u,a) of A,.
Suppose s and ¢ are reachable states of A, and Aj, respectively, such that ¢t € hi(s). The
action 7 is an input action of both automata, and hence is enabled from both s and ¢.
Suppose s - s’ and ¢t > . Since 7 adds a request arrow to arrows(u,a) in s', and adds u
to requesters of requesting users in t', we see that ¢’ € hy(s').

Consider the action © = return(u) of A), originally the action return(u,a) of A,.
Suppose s and t are reachable states of A} and A;, respectively, such that ¢t € hy(s).
Again, 7 is an input action of both automata, and hence is enabled from both s and ¢.
Suppose s -+ &' and t > t'. The definition of h; implies that grant € arrows(a,u) in s
iff holder = w in t. If both conditions are false, then 7w has no effect on either s or t,
so t € hy(s) implies t' € hi(s’). Suppose both conditions are true. Notice that u is the
unique root in s. The action = moves the grant arrow from arrows(a,u) to arrows(u, a)
in &', and 7 sets holder to a in t'. Thus, t' € hy(s').

Consider the action = = grant(u) of Aj, originally the action grant(a,u) of As. Sup-
pose s and t are reachable states of A} and A;, respectively, such that ¢t € hy(s). If 7 is
enabled from s, then request € arrows(u,a) and grant € arrows(w, a) for some node w.
Since request € arrows(u,a) in s, the set requesters of requesting users contains u in ¢.
Since a is the unique root in s, holder = a in t. Thus, 7 is enabled from ¢. Suppose s = s’
and t > t'. The action 7 removes the request arrow from arrows(u,a) and moves the
grant arrow to arrows(a,w) in s', and 7w removes u from the set requesters of requesting
users and sets holder to uw in t'. Therefore, t' € hy(s').

Finally, the remaining actions request(a,u), request(a,a’), and grant(a,a’) of A, are
not actions of A;. These actions do not affect request arrows in the arrow sets arrows(u, a)
or grant arrows in the arrow sets arrows(a,u). Therefore, suppose s and ¢ are reachable
states of A} and A; such that ¢t € hy(s). If s = s’ is a step of A}, then t € hy(s'). Tt
follows that h; is indeed a possibilities mapping from A to A;. L]

We can now show that E, satisfies E;.
Lemma 40: E) satisfies E;.

Proof: Let # be an execution of E,, and let y be an execution of A; correspond-
ing to y under h;. First, we claim that (i) if y satisfies RitnRes{(u) — RtnRes}(u),
then z satisfies RtnResy(u) — RinResy(u)’. Suppose s is a state of RinRes;(u). Since
grant € arrows(a,u) in s, we see that holder = u in every state of h;(s), and hence that
hi(RtnResy(u)) C RtnResi(u). Since, in addition, RtnResi(u) C RitnRes;(u)’, the claim
follows by Lemma 32. Second, we claim that (ii) if = satisfies GrRes;(u) — GrRes;(u)’,
then y satisfies GrResj(u) — GrResj(u). Suppose t € hi(s) is a state of GrRes](u).
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Since u € requesters in t, we see that request € arrows(u,a) in s, and hence that
hi*(GrRes}(u)) C GrRes}(u). Since, in addition, GrResj(u)’ C GrRes}(u), the claim
follows by Lemma 32. From observations (i) and (ii) it follows that if y satisfies RinRes,
then z satisfies RinResy; and that if = satisfies GrRes,, then y satisfies GrRes;. Since z
satisfies RtnRess O GrRes,, it follows that y satisfies RitnRes; O GrRes;, and hence
that y is an execution of E;. Since sched(z)|A; = sched(y), and since Ej and E; have
the same external action signature, it follows that foeh(E;) C fbeh(E;), and hence that
E, will satisfy E;. 0

3.3 The Automaton Aj

In the description of the arbiter given by the previous model, the arbiter nodes are
intended to represent processes in a distributed network implementing the arbiter. Pre-
vious models have given global descriptions of the arbiter’s behavior. In this model
we actually distribute the arbiter by modeling each process as a separate automaton.
These automata describe the low-level protocol followed by each process in the arbiter’s
implementation. Notice that while previous models have acknowledged the asynchrony
of processor step times, they have essentially ignored the asynchrony of the network’s
message system by assuming instantaneous message delivery. We now introduce this
asynchrony into the model, modeling the message delivery system as an independent
automaton. By composing the automata modeling arbiter processes with the automaton
modeling the message delivery system, we obtain a global model of the arbiter.

In order to model asynchronous message delivery, it is convenient to add to the
graph G an extra arbiter node b, 4 (or by o) between every pair of adjacent arbiter
nodes a and a’. The node b, 4 acts as a message buffer between a and a’: The node a
sends a message to a' by placing an arrow on the edge (a, b, o/), and the message system
delivers the message to a’ by placing an arrow on the edge (b, o, a’). Since they function as
message buffers, we will hereafter refer to the nodes b, o+ as buffer nodes. We denote by G
the graph obtained from G by the addition of such buffer nodes. Two nodes (processes)
are said to be adjacent in G if they are separated by at most a buffer node; that is, if
they are user or arbiter nodes adjacent in the graph G. Since the results of the previous
section hold for arbitrary connected, acyclic graphs, and since G is such a graph, these
results hold for the graph G. We therefore fix G as the graph underlying the model A,.
Furthermore, we fix as the set of start states of A, those start states in which no buffer
node is a root. In such states, the arbiter holds the resource, and no undelivered messages
are pending. We note that with the added structure of G, we can prove the following
result about buffer nodes during executions of A,.

Lemma 41: Let a and o' be adjacent arbiter nodes, and let s be a state of A,. If
request € arrows(by o1, a’) or grant € arrows(a’, by 1), then request € arrows(a, b, o).
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Proof: The sets arrows(byq,a’) and arrows(a’,bs ) do not contain request or grant
arrows, respectively, in any start state of A,, and hence every start state satisfies the
hypothesis. Suppose s is a reachable state of A, satisfying the hypothesis, and suppose
s 5 tis a step of Ay. We claim that t satisfies the hypothesis was well. If 7 =
request(z,y), then m places a request arrow in arrows(z,y). The only case we need
consider is the case of (z,y) = (bga,a’). In this case, 7 is enabled only if (by 41, a’) points
toward the root, and there is a request in arrows(v, b, 1) for some v. If v = a’, then
Lemma 36 implies that the edge (a’, b, 1) also points toward the root. Since Lemma 35
states that there is only one root, this is clearly impossible. Therefore, we must have
v = a, and hence that ¢ satisfies the hypothesis. If # = grant(z,y), then 7 places a
grant arrow in arrows(z,y). The only case we need consider is the case of (z,y) =
(a',bgq). In this case, 7 is enabled only if there is a request arrow in arrows(b, o, a’)
in s. By hypothesis, there must be a request arrow in arrows(a, b, q) in s, and hence
in t. Therefore, t must satisfy the hypothesis. The lemma follows by a simple inductive
argument. ]

Note that we do not model any message asynchrony between users and the arbiter: User
nodes are to be interpreted as ports to the arbiter through which the users communicate
with the arbiter, and not the user processes themselves. If the arbiter is to be used in
a larger system, then the responsibility of modeling the message delivery between the
arbiter and the rest of the system falls on the model of the larger system’s message
delivery.

The previous models have given some indication of the behavior required of arbiter
processes. In the first place, arbiter processes must always forward a request for the
resource in the direction of the resource. Since the network is acyclic, the process is
able to determine the direction of the resource by remembering the direction in which
it last forwarded the resource. Furthermore, arbiter processes holding the resource must
forward the resource to a requesting process. In particular, if arbiter process a receives
the resource from process v, then a must grant the resource to the first requesting process
after v in a fixed ordering of its neighbors. Therefore, the state of an arbiter process is
determined by a set of processes from which it has received a request, the link over which
the resource was last sent, whether or not the process is holding the resource, and whether
or not a request has been forwarded in the direction of the resource. For each arbiter
process a (each arbiter node of the graph G), we construct an automaton A, modeling
the process a.

The behavior required of the message system is very simple. The system must be able
to accept messages for delivery, and ensure that every message sent is eventually delivered.
The state of the message system is simply a collection of undelivered messages, together
with their destinations. We construct an automaton M to model the asynchronous
message communication system.
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3.3.1 The States of A, and M

As mentioned above, a state of A, is determined by a set requesting of requesting processes
adjacent to a, a variable lastforward indicating the adjacent process to which a last
forwarded the resource, a binary flag holding indicating whether or not a is holding
the resource, and a binary flag requested indicated whether or not a has requested the
resource since last holding the resource. To define the start state of A,, we designate one
of the arbiter processes and the initzal holder of the resource. The start state of A, is a
state in which the set requesting of requesting processes is empty; the variable lastforward
is set to the process adjacent to a on the path from a to the process currently holding
the resource, or to any adjacent process if a is the initial holder; the flag holding is set
depending on whether a is the initial holder; and the flag requested is set to false. Notice
that there are several possible initial states for the initial holder since lastforward may be
set to any of its adjacent processes, but that the initial state of the remaining processes
i1s unique.

As indicated above, the state of M is determined by a set messages of messages
to deliver (either request or grant messages) together with the identity of the sender
and receiver of the message. More formally, messages is a set of triples of the form
(v, w, request) or (v, w, grant) denoting messages to be delivered from v to w. The initial
state of M is the state in which messages is empty, the state in which no messages are
undelivered.

3.3.2 The Actions of A, and M

The actions of A, are given in Figure 3.5. The input actions are those actions of the
form receiverequest(v,a) and receivegrant(v,a), and the output actions are of the form
sendrequest(a,v) and sendgrant(a,v), where v is a node (process) adjacent to a in the
graph G. These actions behave just as described above. There are no internal actions

of A4,.

The actions of M are given in Figure 3.6. The input actions are those actions of
the form sendrequest(a,a’) and sendgrant(a,a’), and the output actions are of the form
recetverequest(a, a’) and receivegrant(a,a’), where a and a' are adjacent arbiter nodes
of G. These actions accept messages to be delivered by placing them in the message
buffer messages, and deliver them by removing them from the buffer. There are no
internal actions of M.

3.3.3 The Automaton A;

The composition of the automata A, modeling the arbiter processes together with the
automaton M modeling the message system yields a global model of the arbiter. However,

63



Input Actions:
receiverequest(v, a)
effects:
requesting +— requesting U {v}

receivegrant(v, a)
effects:
if holding = false and lastforward = v then
holding + true
requested <+ false
Output Actions:
sendrequest(a, v)
preconditions:
requesting # ()
requested = false
holding = false
lastforward = v

effects:
requested + true

sendgrant(a, v)
preconditions:
v € requesting
holding = true
lastforward = w
y & requesting for all y € (w,v)
effects:
requesting + requesting — {v}
lastforward = v
holding + false

Figure 3.5: The Actions of A,.
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Input Actions:
sendrequest(a, a')
effects:
messages < messages U {(a, a’, request)}
sendgrant(a, a’)
effects:
messages < messages U {(a, a’, grant)}
Output Actions:
recetverequest(a, a’)
preconditions:
(a,a’, request) € messages
effects:
messages < messages — {(a, a’, request)}
recetvegrant(a, a’)
preconditions:
(a,a’, grant) € messages
effects:
messages < messages — {(a, a’, grant)}

Figure 3.6: The actions of M.
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we must hide actions that are inherently internal to the arbiter. Therefore, we define the
automaton Az to be the composition of the automata A, together with the automaton M,
after hiding all output actions of the composition except those of the form sendgrant(a,v)
(where a and u are adjacent arbiter and user nodes, respectively).

3.3.4 The Execution Module Ej;

As mentioned in the introduction to this model, an arbiter process a is required to forward
all requests, and to grant the resource to a requesting process if the arbiter process holds
the resource. Let v and w be two nodes adjacent to the arbiter node a, and let us define
the following sets of states and actions.

FuwdReq;(v) = {s € states(A,) : requesting # 0,
requested = false,
holding = false, and
lastforward = v in s}

FwdReq(v) = {receivegrant(v,a), sendrequest(a,v)}

FuwdGri(v,w) = {s € states(A,) : v € requesting
holding = true, and

lastforward = w in s}
FuwdGri(v,w) = {sendgrant(a,y):y € (w,v]}

The condition

FwdReq, = )\ FwdReg}(v) — FwdRed(v)

says that the arbiter process a having received a request and not holding the resource
will either forward a request for the resource or receive the resource (without having
requested it, perhaps from a user). The condition

FwdGr, = )\ FwdGrS(v) — FwdGre(v)

says that the arbiter process a holding the resource and having received a request will
eventually forward the resource to a requesting process. The condition

C, = FwdReg, N\ FwdGr,

1s the desired correctness condition for the arbiter process a. We note the following.

Lemma 42: Every fair execution of A, satisfies C,,.
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Proof: Let s be a state of FwdReg](v) and let  be an execution fragment of A4, from s.
If neither receivegrant(v,a) nor sendrequest(a,v) appear in z, then sendrequest(a,v) is
enabled from every state appearing in . Therefore, every fair execution of A, satisfies
FwdReq,. Similarly, let s be a state of FwdGri(v,w) and let z be an execution fragment
of A, from s. If no action of FwdGri(v,w) appears in z, then again an action from this
set 1s enabled from every state appearing in . Therefore, every fair execution of A,
satisfies FwdGr,. It follows that every fair execution of A, satisfies Cj,. U]

We let the execution module E, = Fair(A4,). Recall that an object O solves (the
problem specified by) an object O’ only if it is implementable. Since E, is part of our
solution to the arbiter’s problem specification, it is necessary to show that E, (as well as
every other execution module defined at this low level of abstraction) is implementable.

Lemma 43: E, is implementable.

We must also require that the message system deliver all messages sent. Let a and o’
be two adjacent arbiter processes, and let us define the following sets of states and actions.

DelRegy(a,a’) = {s € states(M) : (a,a’, request) € messages in s}
DelReqy(a,a’) = {receiverequest(a,a’)}
DelGrys(a,a’) = {s € states(M) : (a,d’, grant) € messages in s}
DelGri (a,a’) = {receivegrant(a,a’)}

If we let

DelReqy; = )\ DelReg}(a,a’) — DelRegy(a,a’)
and

DelGry = \ DelGry(a,a') = DelGry(a,d’),
then the condition

Cu = DelRegy; N DelGry

says that messages sent are always delivered. We denote by Ejs the execution module
of M with the executions satisfying Cyy.

Lemma 44: Ej; is implementable.

Proof: It is easy to construct an automaton M’ with the action signature of Ejp; whose
fair executions are executions of Fpr: The automaton M’ keeps messages to be delivered
in a FIFO buffer, and delivers them in the order in which they are received for delivery.

[

Finally, we define FE3 to be the composition of the execution modules E, and Ejs
after hiding the internal actions of A;. As a result of Lemma 26, we have the following.

Lemma 45: FEj3 is implementable.

67



3.3.5 The Execution Module FEj

As with the execution module FE,, it is necessary to rename the actions of F3 to be
consistent with the names of E,. As mentioned when we defined the buffer nodes b, 4,
the arbiter node a sends a message to the arbiter node a’ by placing an arrow on the
edge (a,b, o) between a and the buffer node b, ./, and the message system delivers the
message by placing an arrow on the edge (b, o, a’) between the buffer node and a'. An
arbiter node and user node communicate by placing an arrow on the edge between them.
Therefore, if a is an arbiter node and a' and u are arbiter and user nodes, respectively,
adjacent to a in G, we define the action mapping f, to map

recetverequest(u,a) to request(u,a)
recetvegrant(u,a) to grant(u,a)
sendrequest(a,u) to request(a,u)
(a,u)

sendgrant(a,u) to grant(a,u)

~

to request(by q,a)
to grant(by q,a)
to request(a, by qr)
to grant(a, bsq)

recetverequest(a’, a)
recetvegrant(a’, a)
sendrequest(a, a')

sendgrant(a, a’)

We will denote by A} the automaton f2(Ajs), and in general we will denote by affixing a

prime to its name the entity obtained by renaming its actions according to f;.

3.3.6 The Solution of E; by FEj

We begin the proof that Ej satisfies E5 by exhibiting a possibilities mapping from Aj
to Ay. In order to define this mapping, it will be necessary to refer to state variables
from each of the components of A;. While the name of the state variable messages
of M' is unique to M’, the remaining components share variable names. In order to
avoid ambiguity, we will indicate the component to which a state variable belongs by
subscripting the variable with an appropriate identifier. For example, the set requesting
of requesting processes in A/ will be denoted by requesting,. The mapping h, maps the
state s of Aj to the set of states t of A, satisfying the following conditions:
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Ul request € arrows(u,a) iff u € requesting,

U2 grant € arrows(u,a) iff holding, = true and lastforward, = u
U3 request € arrows(a,u) iff requested, = true and lastforward, = u
U4 grant € arrows(a,u) iff holding, = false and lastforward, = u
Al request € arrows(bgr 4,a) iff d' € requesting,

A2 grant € arrows(bg q,a) iff  holding, = true and lastforward, = o
A3 request € arrows(a,bq o) iff requested, = true and lastforward, = d’
A4 grant € arrows(a,by,q) iff (a,a’, grant) € messages

I1 request € arrows(a, by 1),
request & arrows(bg o1, a'),
and grant ¢ arrows(a’, b, ) iff (a,a’, request) € messages
I2  {(a,byq) points toward the root iff holding, = false and lastforward, = o

The conditions Ul — U2 and Al — A4 are straightforward. They say that the arbiter
process a has received a request from a process v in ¢ iff v is in a’s set requesting of
requesting processes in s, and that a has received the resource from v in ¢ iff a holds the
resource in s and last sent (and hence received) the resource from v. Similarly, a has
forwarded a request for the resource in ¢t iff a has sent a request in the direction it last
forwarded the resource in s. A4 says that the resource is in transit between a and o’
in ¢ iff there is a grant message from a to @’ in the message buffer messages in s. U4
says that the user u has the resource in ¢ if in s the node a last forwarded the resource
to u and has not received the resource since. Conditions /1 and /2 are invariants that
must be preserved by the mapping. /1 says that a state with a request in transit must
map only to states satisfying Lemma 41. /2 says that the value of lastforward correctly
records the direction of the resource in the network. We now have the following.

Lemma 46: The mapping h, is a possibilities mapping from Aj; to A,.

Proof: The action mapping f, has renamed the actions of Az so that A} and A, have the
same external action signature. Let s be a start state of A}. For every arbiter process a
in s, the set requesting,, of requesting processes is empty, and requested,, is set to false. It
follows by U1, U3, Al, and A3 that no arrow set of any state in hy(s) contains a request
arrow. Furthermore, the initial holder a in s has set its flag holding, to true; all other
processes a’ have set holding, to false, and lastforward, to the node in the direction of
the resource; and no grant message is pending in the message buffer messages. It follows
by U2, U4, A2, and A4 that there is precisely one root in every state of hs(s). Therefore,
ha(s) contains a start state of A, as desired.

Consider the action 7 = request(u, a) of Aj, originally the action receiverequest(u,a)
of A3. Suppose s and t are reachable states of A; and A, respectively, such that ¢t € hy(s).
The action 7 is an input action of both automata, and hence is enabled from both s
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and t. Suppose s —» s’ and t — #'. To show that ¢’ € hy(s’), we must show that U1 holds.
However, m adds u to the set requesting, of requesting processes is s’, and adds a request
arrow to the set arrows(u,a) in ¢, and hence U1 holds. Therefore, t' € hy(s').

Consider the action m = grant(u,a) of A}, originally the action receivegrant(u,a)
of A3. Suppose s and t are reachable states of A} and A, respectively, such that ¢ € hy(s).
Since 7 is an input action in both automata, 7 is enabled from both s and ¢. Suppose
s = s' and t > t'. We see by U4 that there is a grant arrow in the set arrows(a,u) of ¢
iff holding, = false and lastforward, = v in s. If both conditions are false, then 7 has no
effect on either state, and hence ¢t € hy(s) implies ¢’ € hy(s’). On the other hand, suppose
both conditions are true. To show t' € hy(s’), we must show that U2, U3, and U4 hold.
Notice that lastforward, = u in s'. First, = sets holding, to true in s', and adds a grant
arrow to arrows(u,a) in t', so U2 holds. Second, 7 sets requested, to false in s', and
removes any request arrow from the set arrows(a,u) in t', so U3 holds. Finally, since =
sets holding, to true in s', the fact that = moves the grant arrow from arrows(a,u) to
arrows(u, a) implies that U4 holds. Therefore, t' € hy(s').

Consider the action m = request(a,u) of A}, originally the action sendrequest(a,u)
of A3. Suppose s and t are reachable states of A; and A, respectively, such that ¢t € hy(s).
If = is enabled from s, then the set requesting, of requesting processes is nonempty
in s, so Ul and Al implies that some set arrows(w,a) contains a request arrow in t.
Furthermore, since holding, = false and lastforward, = u in s, we have by U4 that
arrows(a,u) contains a grant arrow in t, and hence that the edge (a,u) points toward
the root in ¢t. Finally, since requested, = false in s, by U3 we have that arrows(a,u) does
not contain a request arrow. Therefore, 7 is enabled from ¢. Suppose s = s’ and ¢ = ¢'.
To see that t' € hy(s'), we must show that U3 holds. Notice that 7 sets requested, to
true in s', and that lastforward, = uw in s'. Since m adds a request arrow to arrows(a,u)
in t', we see that U3 holds. Therefore, t' € hy(s').

Consider the action m = grant(a,u) of A}, originally the action sendgrant(a,u) of As.
Suppose s and ¢ are reachable states of A; and A, respectively, such that ¢t € hy(s). If 7
1s enabled from s, then w is contained in the set requesting, of requesting processes in s,
and U1 implies that arrows(u, a) contains a request arrow. Furthermore, holding, = true
and lastforward, = win s, so U2 and A2 imply that arrows(by 4, a) (or arrows(w, a) if w
is a user node) contains a grant arrow in ¢t. In addition, since y ¢ requesting, for all
y € (w,u) in s, Ul and Al imply that in ¢ no set arrows(b,q,a) (or arrows(y,a) if y is
a user node) contains a request arrow for any y € (w,u). Therefore, 7 is enabled from ¢.
Suppose s — s’ and t > #'. To show that t' € hy(s'), we must show that U1, U2 and
A2, U3 and A3, and U4 hold. First, the action m removes u from requesting, in s', and
removes a request arrow from arrows(v,a)in t', so U1 holds. Second, since holding,, is set
to false in s', and since a is not a root in ¢/, U2 and A2 hold. Third, since holding, = true
in s, we see that requested, = false in s and hence in s’, so U3 and A3 hold. Finally,
since 7 sets holding, to false and lastforward, to w in s/, and since 7 adds a grant arrow
to arrows(a,u) in t', we see that U4 holds. Therefore, t' € hy(s').
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Consider the action m = request(byr 4, a) of Aj, originally receiverequest(a’,a) of As.
Suppose s and t are reachable states of A} and A,, respectively, such that ¢t € ha(s).
If = is enabled from s, the set messages of undelivered messages in s must contain a
request message from a’ to a. It follows by I1 that in ¢ the set arrows(a’, by o) contains
a request arrow, the set arrows(by q,a) does not contain a request arrow, and the set
arrows(a, by o) does not contain a grant arrow. Since arrows(a’, by o) contains a request
arrow, Lemma 36 implies that (@', by ,) points toward a root. This together with the fact
that arrows(a, by ) does not contain a grant arrow implies that (byr 4, a) points toward
the root as well. Therefore, the action 7 is enabled from ¢. Suppose s = s’ and t > ¢'. In
order to see that ¢’ € hy(s'), we must show that Al and I1 hold. First, = adds a’ to the
set requesting, of requesting processes in s', and 7 adds a request arrow to arrows(bys 4, a)
in t’, so Al holds. Second, 7 removes a request message from a’ to a from the set messages

of undelivered messages in s’, and 7w adds a request arrow to arrows(bgs 4, a), so I1 holds.
Therefore, t' € hay(s').

Consider the action m = grant(by 4, a) of A}, originally the action receivegrant(a’, a)
of A3. Suppose s and t are reachable states of A; and A, respectively, such that ¢t € hy(s).
If 7 is enabled from s, the set messages of undelivered messages in s must contain a grant
message from a’ to a. By A4 we see that the set arrows(a’, by ,) contains a grant arrow
in ¢t. Lemma 41 implies that the set arrows(a, b, 4) must contain a request arrow. Since
the degree of the buffer node b, o is 2, we see that 7 is enabled from ¢. Suppose s — s’
and t = t'. Since the set arrows(a,b, o) contains a request arrow in ¢, Lemma 36 implies
that the edge (a,b, o) points toward the root. By I2 we see that holding, = false and
lastforward, = a' in s. Therefore, to see that t' € hy(s’), we must show that A2, A3,
A4, and 12 hold. First, 7 sets holding, to true in s’. Notice that lastforward, = o’ in s,
and therefore in s’ as well. Since 7 adds a grant arrow to arrows(b, 4,a) in t', we see
that A2 holds. Second, 7 sets requested, to false in s', and 7 removes a request arrow
from arrows(a,b, o) in t', so A3 holds. Third, = removes a grant message from a' to a
from the set messages of undelivered messages in s’, and = removes a grant arrow from
arrows(a’, by 4) in t', so A4 holds. Finally, since holding, is set to true in s, it is easy to

see that /2 holds. Therefore, t' € ha(s').

Consider the action m = request(a, bg o1) of A}, originally the action sendrequest(a, a’)
of A3. Suppose s and t are reachable states of A; and A, respectively, such that ¢ € hy(s).
If 7 is enabled from s, then the set requesting, of requesting processes is nonempty
in s, and hence by Ul and Al some set arrows(w,a) of t contains a request arrow.
Furthermore, since holding, = false and lastforward, = o' in s, by I2 we see that the
edge (a, by q) points toward the root in ¢. Finally, since requesting, = false in s, by
A3 we see that there is no request arrow in arrows(a, b, o) in t. Therefore, 7 is enabled
from ¢. Suppose s > s’ and t > . To see that ¢ € hy(s'), we must show that A3
and I1 hold. Notice that = sets requested, to true in s, and places a request arrow
in arrows(a,beq) in t'. Since lastforward, = a' in s and hence in s', we see that A3
holds. Notice that requested, = false in s. Since lastforward, = a’ in s, A3 implies that
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arrows(a, by o1) does not contain a request arrow in ¢. Lemma 41 implies that there is no
request arrow in arrows(b, o, a’) and no grant arrow in arrows(a’,b, ) in ¢, and hence
the same is true in ¢'. Since m adds a request arrow to arrows(a,b,qs) in t/, and adds a
request message from a to a' to the set messages of undelivered messages in s’, we see

that 71 holds. Therefore, t' € hay(s').

Finally, consider the action m = grant(a, b, or) of Aj, originally sendgrant(a,a’) of As.
Suppose s and ¢ are reachable states of A; and A, respectively, such that ¢t € hy(s). If 7
is enabled from s, then since a’ € requesting, in s, we see by Al that arrows(b, 4, a)
contains a request arrow in t. Since holding, = true and lastforward, = w in s, we see by
U2 and A2 that a grant arrow must be contained in arrows(by 4, a) (or arrows(w, a) if w
is a user node) in t. Furthermore, since y ¢ requesting, for all y € (w,a’) in s, we see by
U3 and A3 that no request arrow is contained in arrows(byq,a) (or arrows(y,a) if y is a
user node) in ¢. Therefore, 7 is enabled from ¢. Suppose s > s’ and ¢t > ¢. To see that
t' € hy(s'), we must show that Al, A2 and 2, A4, I1, and I2 hold. All except I1 are
straightforward, so we show I1. Notice that arrows(bs q,a) contains a request arrow in ¢.
By I1, there is no undelivered request message from a’ to a in the set messages of s, and
hence in s'. However, m puts a grant arrow in arrows(a,bgq), so I1 holds. Therefore,

t' € hy(s). 0

Having exhibited a possibilities mapping hy from Aj to A,, we now use this mapping
together with Lemma 33 to show that Ej satisfies F,. Before using Lemma 33, however,
we must translate the local correctness conditions C! and Cyy for E! and Ej,, respectively,
into a global correctness condition for £5. We use Lemma 34 to recharacterize Ej in this
way. Let a and a' be adjacent arbiter nodes, and let v be an arbitrary (user or arbiter)
node adjacent to a in G. Let

FuwdRed’(v) = {a € states(A3) : a|A] € FwdReq’(v)}

FuwdGri(v) = {a € states(A}) : a|A, € FwdGri(v)}
DelReqys(a,a’) = {a € states(43) : a|M' € DelRegy;(a,a’)}
DelGrys(a,a’)' = {a € states(A3) : a|M' € DelGrys(a,a’)}.

Furthermore, let
FwdReq, = )\ FwdReg(v) — FwdRed(v)’
FwdGrl, = \ FwdGrs(v) — FwdGri(v)'.

DelReqy; = )\ DelReqy(a,a’)’ — DelRegy,(a,a’)’

a,a’

DelGrly; = \ DelGriy(a,d') — DelGry(a,a’)".

a,a’
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Finally, let
C! = FwdReq, N FwdGr,,

Cyr = DelRegy N DelGr)y,.
If
=A\C. A Cy
then the following is an immediate result of Lemma 34.

Lemma 47: Ej is the execution module of A} with the executions of A} satisfying Cj.

Having made this transformation from local to global correctness conditions, we now
use Lemma 33 to show that Ej satisfies E,.

Lemma 48: Ej satisfies E,.

Proof: Let a and a’ be adjacent arbiter nodes, and let v and w be arbitrary nodes
adjacent to a. If v is an arbiter node, then let v’ be the buffer node b, , between a and v;
and let v’ be the node v itself if v is a user node. The node v’ is simply the node of G
adjacent to a such that the edge (a,v’) points toward v. Let w’ be the analogous node
with respect to w. We will show that

1. hy*(FwdReg(a,v')) C FwdReg:(v)’

2. hy'(FwdReg;(baar,a')) C DelRegy(a,a’)

3. hy'(FwdGri(a,v',w')) C FwdGri(v,w)', and
4. hy (FwdGri(bea, a,a’)) C DelGri,(a’, a)’

Since it is easy to see from the definition of f, and the following sets that

1. FwdGri(v)' C FwdReg;(a,v'),

[Nl

. DelReqy(a’a)’ € FwdRegs(by 4, a),
3. FwdGri(v,w) C FwdGry(a,v',w'), and
4. DelGry (d’,a) C FwdGrs(by 4, a),
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it will follow by Lemma 33 that E} satisfies E,.

First, suppose t € hy(s) is a state of FwdReg;(a,v’), and let us show that s is a state
of FwdReq(v)'. Since some set arrows(w, a) of t contains a request, we see by Ul and Al
that the set requesting, of requesting processes is nonempty. Since (a,v’) points toward
the root in ¢, we see by U4 and 12 that holding, = false and lastforward, = v in s. Since
the set arrows(a,v’) does not contain a request arrow in t, the fact that lastforward, = v
together with U3 and A3 imply that requested, = false. Therefore, s € FwdReg (v)'.

Second, suppose t € hy(s) is a state of FwdReg;(bg o1, a’), and let us show that s is a
state of DelReqy,(a,a’)’. Since in ¢ there is a request arrow in arrows(w, b, 1) for some w,
the edge (w, b, or) must point toward the root . Since (b, s, a’) also points toward the
root in ¢, and since this root is unique, this request arrow must be in arrows(a, bg o).
Furthermore, since (b, o1, a’) points toward the root, we see that there can be no grant
arrow in arrows(a’, b, /) and no request arrow in arrows(bg o1, a’). It follows by 71 that
there is a request message from a to a' in the set messages of undelivered messages in s.
Therefore, s € DelRegy,(a,a’).

Third, suppose t € hy(s) is a state of FwdGrj(a,v’,w'), and let us show that s is a state
of FwdGri(v,w)’. Since there is a request arrow in arrows(v’,a) in ¢, Ul and Al imply
that v is contained in the set requesting, of requesting processes. Since there is a grant
arrow in arrows(w’,a) in t, U2 and A2 imply that holding, = true and lastforward, = w
in s. Therefore, s € FwdGri (v, w)'.

Finally, suppose t € hs(s) is a state of FwdGr}(bg e, a,a’), and let us show that s is
a state of DelGry,;(a’,a). Since there is a grant arrow in arrows(a’,b, o) in t, A4 implies
that there is a grant message from a' to a in the set messages of undelivered messages

in s. Therefore, s € DelGry,(d’, a)’. L]

Finally, combining the work of the last few section, we have the following result.
Let E} be the execution module obtained by renaming the actions of E3 according to
the action mapping fi fs.

Theorem 49: E; solves E;.

Proof: Since Ej satisfies E,, it follows by Lemma 27 that Ej satisfies Ej. Since Ej
satisfies Fp, it follows by Lemma 26 that E} satisfies E;. Since Ej is implementable,
Lemma 27 implies that Ej is implementable. Therefore, Ef solves Ej. (]

With this we have proven the correctness of a fully-detailed protocol for resource
allocation in an asynchronous network.

3.4 Time Complexity

The primary concern motivating Schonhage’s arbiter is its time performance. For ex-
ample, Lynch and Fischer consider two simple resource arbiters in [LF81], allocating a
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resource among n users. One arbiter is a process that simple polls each user in round-
robin order, granting the resource to each requesting user in turn. Given that each user
uses the resource for a bounded amount of time, the response time for this arbiter (the
maximum time a user must wait for the resource) is O(n) regardless of the number of
users requesting the resource. A second arbiter is a binary tree (a tournament tree) with
the users at the leaves of the tree. Each internal node of the tree repeatedly polls its
children until one of its children requests the resource, at which point it stops and passes
the name of the child up to the internal node’s parent. The root of the tree actually
determines which user is granted the resource. When only one user is requesting the re-
source at a time, this arbiter’s response time is only O(logn). In the worst case, however,
(when every user is requesting the resource) this arbiter’s response time is O(nlogn).
Schonhage’s algorithm, in contrast, combines favorable aspects of both these arbiters. In
particular, (in the case that the graph G is a binary tree) the arbiter’s response time is
O(log n) if only one user requests the resource at a time, and O(n) in the worst case. In
this section we perform the complexity analysis needed to make these claims precise.

For convenience, we perform our complexity analysis at the middle level of abstraction,
with the automaton A,. We have not yet introduced the notion of time into our model.
While we have not yet decided on how time should be incorporated into our model, one
alternative is to assign times to states (or equivalently to actions) denoting the time at
which an automaton transition causes the automaton to enter this state. Let us refer
to such an execution as a timed execution. In order to perform any time analysis, it is
necessary to place bounds on the time between automaton transitions. Recall that all
liveness conditions required of the automaton A, in the construction of F, are of the
form S < T, meaning that if A, enters a state of S, then eventually an action of T is

performed. Let us denote by S &, T the condition that if A, enters a state s of S, the
within time b an action 7 of T" will be performed. That is, following state s in a timed

. . . b . . .
execution satisfying S < T there is a m-step to a state s’ such that the difference in
times assigned to s and s’ is at most b. Let

BndedFwdReg, = [\ FwdRegj(a,v) LN FwdReg;(a,v)

a,v

BndedFwdGr, = )\ FwdGri(a,v,w) N FuwdGry(a,v,w)

a,v,w

BndedRtnRes, = [\ RtnRes)(u) SN RtnRes;(u)

Let us say that a timed execution of A, is b-bounded if it satisfies the conditions Bnded FwdReg,,
BndedFwdGry, and BndedRtnRes,. We define the response time in a b-bounded execu-
tion z of A, to be a time r such that for all states s with request € arrows(u, a) (where u

is a user node) appearing in , the difference in times assigned to s and the first state
with grant € arrows(a,u) appearing after s in z is less than r.
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Suppose the graph G has diameter d. It is easy to see that the response time for
b-bounded executions of A, is 2bd when only one user request the resource at a time:
The request must travel the diameter of the graph to the root, and the root must be
moved the diameter of the graph to the user. Thus, we have the following.

Theorem 50: If the diameter of the graph G is d, then the response time in b-bounded
executions of A, in which at most one user requests the resource at a time is 2bd.

Conversely, suppose the graph G has e edges. We now show that the worst-case
response time (when the arbiter is heavily loaded) is 3be —b. We begin with the following
preliminary lemma, the inductive statement in the proof that the arbiter’s response time
is 3be — b. Given an edge (v,w), we define e(v,w) to be the number of edges in the
subtree of v rooted at w.

Lemma 51: Let s be a state of A, in which request € arrows(v,w) and the edge (v, w)
points toward the root. In any b-bounded execution fragment of A, from s, grant €
arrows(w,v) within time 3be(v,w) + b.

Proof: We proceed by induction on e = e(v,w). Suppose e = 0. In this case, w
must be a leaf, and hence a user node. Since the edge (v,w) points toward the root,
grant € arrows(v,w). Since w is a user node, condition BndedRtnRes, implies that
grant € arrows(w,v) within time b = 3be + b.

Suppose e > 0 and the inductive hypothesis holds for numbers of edges less that e.
By assumption, the edge (v,w) points toward the root. If w itself is the root, since
request € arrows(v,w), condition BndedFwdGry implies that within time b we have
grant € arrows(w,z) for some node z. Notice that if # = v, then we are done, so let
us assume that ¢ # v. Then in either case, regardless of whether w itself is the root,
the edge (w,z) points toward the root within time b for some node z other than v.
Let ¢ = z;,...,21,v be the nodes between = and v in the ordering of nodes adjacent
to w. Let e; = e(w,z;), and notice that e > Z;Zl(ej + 1). We proceed by induction
on 7 to show that if request € arrows(v,w) and (w,z;) points toward the root, the
grant € arrows(w,v) within time Zé-:l 3b(e;+1). It will follow that grant € arrows(w,v)
within time b + Zé-:l 3b(e; + 1) < 3be + b of the time request € arrows(v,w). The case
of 2+ = 0 is vacuously true. Suppose ¢ > 0 and the inductive hypothesis holds for 7 — 1.
Since request € arrows(v,w), the edge (w, ;) points toward the root, and request ¢
arrows(w, ;), condition BndedFwdRegq, implies that either request € arrows(w,e;) or
grant € arrows(z;,w) within time b. In the case that request € arrows(v,w), since the
edge (w, ;) points toward the root, the inductive hypothesis for e—1 implies that grant €
arrows(z;,w) within time 3be;+b. In either case, grant € arrows(z;, w) within time 3be; +
2b. Since request € arrows(v,w) and grant € arrows(z;,w), condition BndedFwdGry
implies that grant € arrows(w,z;) within time b for some z; € {®;_1,...,z1,v}. The
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inductive hypothesis for 7 — 1 implies that grant € arrows(w, v) within time 23;11 3b(e; +

1), for a total of time Zé-:l 3b(e; + 1) as desired. (]

Finally, we have the following.

Theorem 52: If the graph G has e edges, then the response time in any b-bounded
execution of A, is 3be — b.

Proof: Let s be a state of Ay in which request € arrows(u,a) for some user node u.
Either grant € arrows(a,u) or the edge (u,a) points toward the root. In the case that
grant € arrows(a,u), the condition BndedRtnRes, implies that grant € arrows(u,a)
within time b. In either case, request € arrows(u, a) and the edge (u, a) points toward the
root within time b. Lemma 51 implies that grant € arrows(a,w) within time 3be(u, a) +

b = 3be — 2b for a total of time 3be — b. L]

Thus, as claimed, the response time in b-bounded executions is linear in the diameter
of the network when the load on the arbiter is light, and linear in the size of the network
when the load is heavy. We note that when an arbiter node grants the resource to an
adjacent node, if it has received a request for the resource, it later forwards a request
in the direction of the resource. As a result, three messages are sent over the edge to
the adjacent node: the grant and request messages sent by the arbiter node, and a grant
message sent to the arbiter node when the node receives the resource. Hence, the worst
case response time of about 3be. If, however, the arbiter node were to combine the grant
and request messages sent to the adjacent node, then only two messages would traverse
the edge between them. We note that in this case the worst case response time is 2be. We
have chosen to separate the messages in order to make the algorithm easier to describe.
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Chapter 4

Conclusions

In this thesis we have introduced a new model of distributed computation in asynchronous
systems. We find this model to be quite expressive, and find that the transparent,
automata-theoretic semantics make reasoning about system behavior relatively simple.
We have shown how the strong distinction between input and output actions captures
the game-theoretic interplay between a system and its environment. This distinction has
been found to be useful when describing the interface between system components, and
when decomposing a system into modular components (see [Blo87]). We have found that
the clarity of the interface between system components described by automata allows
us to express the notion of fair computation quite simply and naturally. Finally, we
have seen that automata may be used to construct hierarchical correctness proofs for
distributed algorithms, allowing intuitive reasoning about key high-level ideas behind an
algorithm’s behavior to be incorporated into a formal proof of its correctness. While the
framework developed in this thesis has proven to be quite useful, there are a number of
ways in which it could be enhanced. We now consider a few of these enhancements.

First of all, it would be nice to find a more compact notation, a programming language,
for defining automata than the precondition/effects style of presentation used in this
thesis. In particular, since our work is in several ways similar to CCS, it would be nice to
develop a CCS-like calculus having input-output automata as its underlying operational
semantics. We note that one aspect of CCS that has not been developed for input-output
automata is a powerful theory of equational reasoning. We do not know if such a theory
can be associated with our model. Any results in this direction will certainly be valuable,
for they will allow us to combine the transparent operational semantics of input-output
automata with powerful semantic techniques for reasoning about system behavior.

As of yet, we have not attempted to characterize the expressive power of input-output
automata. Our feeling that our model is generally quite powerful is the result of expe-
rience, and our feeling that certain aspects of the model (such as the requirement that
an automaton be input-enabled) capture important aspects of asynchronous distributed
computation. Bloom has made some initial attempts at characterizing the expressive
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power of our model in [Blo86]. In particular, he has characterized the languages that
can be expressed as the set of schedules of an automaton (resulting from arbitrary ex-
ecutions). Left uncharacterized are the languages that can be expressed as the set of
schedules resulting from fair executions. Another possible characterization of interest is
the relationship between the expressive power of temporal logic and our model. Wolper,
Vardi, and Sistla show in [WVS83| that given a formula in a particular extension of
temporal logic, it is possible to construct a Bichi automaton accepting precisely those
sequences satisfying the given formula. It might be possible that these techniques can be
adapted to prove a similar result for input-output automata.

We note that our model includes a single, simple notion of automaton composition.
In particular, our composition requires that automata sharing an action 7 perform =«
simultaneously whenever 7 is performed by their composition. The intention is that if 7
is an output action of A and an input action of B, then the simultaneous performance of 7
models communication from A to B. We think of the performance of 7 as a computational
step of A causing B to be notified of the arrival of input. However, since two processes in
an asynchronous system cannot be expected to perform an action simultaneously, rather
than complicating our notion of composition, we have chosen to require that the output
actions of automata in a composition be disjoint. This has a number of effects on how
systems are modeled with automata. For instance, to use Hoare’s example of a vending
machine (see [Hoa85]), suppose that we construct automata modeling humans, and an
automaton modeling a vending machine. Humans can insert coins into the vending
machine (output from humans and input to the vending machine). Since we require that
the output actions of automata in a composition be disjoint, if we compose a collection of
humans with the vending machine, each human’s output action of inserting a coin must
be tagged with an identifier. Thus, the vending machine is effectively able to determine
which human is inserting a coin, which is not necessarily a realistic model of this simple
interaction. It might be interesting to study other notions of composition that would
avoid this problem. One such composition might require all automata having = as an
input action to synchronize with precisely one automaton (the same for all) having 7 as
an output action. While this is a natural notion of composition, the semantics of this
composition complicate our model quite a bit. We feel that one virtue of our composition
is that, as a consequence of Corollary 3, reasoning about the enabling of an action in a
composition can be carried out by reasoning about the state of a single component. This
has been found to be very convenient in [LM86].

While fair computation important to us, we have not made an explicit study of the
nature of fairness in our model. In fact, we have defined only one of several possible
notions of fairness (see [Fra86]). We feel that it should be possible to express many other
notions of fairness in our model, and the study of these definitions in our model are of
interest to us.

However, since the primary emphasis of this thesis has been the decomposition of
correctness proofs, both hierarchically and modularly, we are naturally interested in
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continuing the study of how automata can be used in new techniques of decomposition.
We have already mentioned the work of [LS84a] and [LLW87]. The authors of these
papers seem to be using a horizontal decomposition different from any considered in our
work. In our work we have attempted to decompose systems into modular units that can
be composed to yield the desired system. Once this decomposition has been made, each
component can be examined in isolation, simplifying the verification process. In some
systems, however, the system components are so heavily interdependent that no clean
decomposition appears possible. [LS84a] and [LLW8T7] use the technique of “projecting”
onto one system component (or algorithm component), abstracting the remaining system
components to a high-level black box, and reasoning about the remaining “images.”
Notice that these images cannot be composed to yield a model of the system since each
is a model of the complete system. The work of [LLW87] concerns how correctness proofs
for each image can be combined into a correctness proof for the entire system. This work
appears to be quite promising.

Finally, while this thesis has essentially ignored the notion of time, time is a very
important part of modern distributed systems. Timeouts, for instance, are a crucial
part of the fault-tolerance of many communication algorithms. Furthermore, complexity
analysis of algorithms requires some notion of bounds on processor step times and message
delivery times. We have shown, using rather ad hoc techniques, how rigorous reasoning
about time complexity can be performed n our model. A very important problem is that
of incorporating time into our model more naturally, and investigating useful properties
about time that can be used to reason about time complexity of algorithms in our model.
For instance, what does it mean to compose the timed equivalent of execution modules?
Another important problem is that of relating complexity results obtained at different
levels of abstraction. In our example, we analyzed the complexity of Schonhage’s arbiter
at a level of abstraction higher than the fully-detailed protocol, but it is not hard to see
how this complexity result translates down to the lower level of abstraction. In general,
however, relating time complexities at different levels of abstraction is a difficult problem.
Such problems certainly deserve further study.
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