
A Knowle:dge-Based Analysis of Zero Knowledge
(Preliminary Report)

Joseph Y. Hal.pern
IBM Almaden Resea:rch Center

San Jose, CA 95120

Yoram Moses
Weizmann Institute

Rehovot, 76100
Israel

Mark R. Tuttle
MIT Laboratory for Computer Science

Cambridge, MA 02139

Abstract: While the intuition underlying a zero
knowledge proof system [GMR85] is that no “knowl-
dge” is leaked by the prover to the verifier, re-
bnarchers are just heginning to analyze such proof sys-
~.crnu in herrm of formal notions of knowledge. III this
paper, we show how interactive proof systems mo-
tivate a new notion of praciical knowledge, and we
capture the definition of an interactive proof system
in terms of practical knowledge. Using this notion of
knowledge, we formally capture and prove the intu-
ition that the prover does not leak any knowledge of
any fact (other than the fact being proven.) during a
zero knowledge proof. We extend this result to show
that the prover does not leak any knowledge of how to
compute any information (such as the factorization of
a number) during a zero knowledge proof. Finally, we
define the notion of a weak interactive proof in which
the prover is limited to probabilistic, polynomial-time
computations, and we prove analogous security results
for such proof systems. We show that, in a precise
sense, any nontrivial weak interactive proof must be
a proof about the prover’s knowledge, and show that,
under natural conditions, the notions of interactive
proofs of knowledge defined in [TW87] and [FFS87]
are instances of weak interactive proofs.

The work of the second author was supported in part by a Sir
Charles Chlore fellowship. Tlhe work of the third author was
supported in part by the Oflice of Naval Research under Con-
tract NO001485-K-0168, by t.he National Science Foundation
under Grants DCR83-02391 and CCR-8611442, and by the
Defense Advanced Research F’rojects Agency (DA.RPA) under
Contract N00014-83-K-0125.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish. requires a fee and/or speck
permission.

0 1988 ACM-O-89791-264..O/88/0005/0132 $1.50

1 Introduction

The notions of interactive proof and :evo knozrl1-
edge, introduced by Goldwasser, Micah, and Rack-
off in [GMR85], have been the subject, of ext,ensivc
research (see, for example, [BC86, FFS87, F&37,
GHY85, GM W86, GS87, Ore87, TW87]). Informally,
an interactive proof is a two-party conversation in
which an infinitely powerful “prover” tries to con-
vince a polynomial-time “verifier” of the truth of some
fact cp (typically of the form 3: E L) through a se-
quence of interactions. Roughly speaking, such an
interactive proof is said to be zero knowledge if, when-
ever cp holds, the verifier is able to generate on its own
the conversations it could have had with the prover
during an interactive proof of cp. Intuitively, the ver-
ifier does not learn anything from such conversations
with the prover (other than the fact ‘p) that it could
not have learned on its own by generating these con-
versations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is
that which the prover initially set out to prove.

This informal discussion makes it quite clear that
our intuition concerning interactive proofs and zero
knowledge is intimately related to a notion of knowl-
edge. While this intuition is quite compelling, it is
based on an operational notion of being able to gen-
erate whose formal relationship to knowledge is not
immediately obvious. It is this relationship that is
the focus of our paper.

The formal notions of knowledge needed to cap-
ture our understanding of interactive proofs and zero
knowledge are far more subtle than the standard
information-theoretic notion of knowledge that has
been used successfully in the analysis of distributed
systems (see, for example, [CM86, DM86, FI86,
Had87, HM84, HZ87, LR86, MT88, NT87, PR85]; see
[Hal871 for an overview). Since both probability and
the computational power of the prover and verifier

play crucial roles in the definition of zero knowledge,
the notions of knowledge used to reason about zero
knowledge must take these issues into account. It is
relatively straightforward to extend the standard no-
l.ion of knowledge to include probability. Our defini-
t ion of probabilist.ic knowledge is b,ased OIL definitions
given by Fa.gin a.nd Halpern in [F1188]. Dealing with
colnpI(~sity, however, is more difficult. ‘I‘hc approach
wc uw is based on the notion of rc,so~ircc:-I)o~~ntlf:d
knowlctlge introduced by Moses in [Mos88]. While a
number of extensions of resource-bounded knowledge
;tre possible, we believe ours are well-suihed to the
context of cryptographic protocols, as well as other
contexts.

An issue related to the notion of knowing a fact is
that of knowing how to perform various operations.
For example, there is a difference between knowing
the fact that a certain number is a product of two
primes and knowing how io generate the two prime
factors. Zero knowledge proofs are not intended to
leak any knowledge of this kind as well as any knowl-
edge of facts. While t,his notion of “knowing how”
has also been of great interest in Philosophy and AI
(SW [Moo%]), .t. d, 1 s m <lr(not#ions of knowlctlgc do not
rnpt.ure this aspect. of knowlcdgc. ‘1‘0 do so, we define
i1 not ion of linowiilg how to gcn~~t-al.~ a. ?/ satisfying a
relation n(.r, !I), wit.hin given rcsourcc I~o~it~tls.

The main cant ributioils of this pap~\r are:

l 1\:e capture t.he dcfinit.ion of an int,cractive proof
using knowledge and probability. We then show
how interactive proofs motivate the definition of
practical knowledge, and capture the definition of
an interactive proof in terms of practical knowl-
edge.

l Using practical knowledge, we prove that with
high probability the verifier in a zero knowledge
proof of x E L knows a fact cp at the end of the
proof iff it knows 2: E L > cp at the beginning of
the proof. Intuitively, this captures the idea that
zero knowledge proofs do not “leak” knowledge
of facts other than those t.hat follow from 2 E L.

l We define a notion of krlowillg 11ow to generate au
satisfying a relation R(z, y), and prove that with
high probability if the verifier in a zero knowl-
edge proof of CC E L knows how to generate a y
satisfying R(x, y) at the end of the proof, then it
knows how to do so at the beginning as well. This
captures our intuition that at the end of a zero
knowledge proof the verifier can not do anything
that it could not do at the beginning.

l We consider weak inleraclive proofs, in which the
prover is restricted to probabilistic, polynomial-

time computations (and hence is no longer in-
finitely powerful). This is the most relevant con-
text in practice. While interesting interactive
proofs for membership in a language do exist
(see [GMR85, GMW86]), we prove that any lan-
guage L having a weak interactive proof is COII-
tained in UPP, and hence the verifier can deter-
mine whcthcr 2: E L 011 its own without con-
sulting the prover. C0IlsftC~llfYltly, we iwe Ictl
to consider weak interactive proofs about the
prover’s initial state (that is, the prover’s knowl-
edge) rather than weak interactive proofs of lan-
guage membership. We then proceed to show
that, under natural conditions, the notions of in-
teractive proofs of knowledge defined in [FFS87]
and [TW87] are instances of weak interactive
proofs. Finally, we show that zero knowledge
weak interactive proofs guarantee the same type
of security with respect to the facts they prove as
zero knowledge interactive proofs guarantee with
respect to language membership.

We believe that this analysis provides a great deal
of insight into (and support for) the definitions in
[GM11851 and their extensions to the case of proocs
about knowledge in [FFS87, TW87]. None of the tech-
nical results is very deep; the difficulty was in Corning
up with the right notions. We hclicvc that our vicw-
point provides a good framework in which to think
about these definitions and their appropriateness.

Fischer and Zuck [FZ87] also consider notions of
knowledge appropriate for cryptographic protocols.
They give definitions that are related to the ones given
here (we discuss the relationship in the full paper) and
use their definitions to analyze an interactive proof of
quadratic residuousity.

The rest of the paper is organized as follows. In the
next section, we briefly review how to ascribe knowl-
edge to processors in a distributed system, how to ex-
tend the standard definition of knowledge to include
probability, and how to account for bounds on the pro-
cessors’ computational resources. In Section 3 we re-
view the definition of an interactive proof, and capture
this definition in terms of probabilistic knowledge. In
Section 4 we show how interactive proofs motivate the
definition of practical knowledge, and capture the dcf-
inition of an interactive proof system in terms of prsc-
tical knowledge. In Section 5 we define zero knowf-
edge. This definition of zero knowledge is a weaker
definition than that given in [GMR85], and hence our
results will hold for [GMR85] as well. In Section 5.1
we make precise (using knowledge) the intuition that
in a zero knowledge proof the verifier does not know
any more at the end than it did at the beginning. In
Section 5.2 we define the notion of “knowing how,”

133

and show that, in a precise sense, the verifier cannot
do any more at the end cd a zero knowledge proof
than it could at the beginning. Finally, Section 6 in-
troduces weak interactive proofs, relates them to the
proofs of knowledge of [Fl?S87, TW87], and proves
that zero knowledge weak interactive prool’s are se-
cure in the senses defined above.

2 Knowledge

Our analysis of interactive and zero knowledge proof
systems depends heavily OII the definitions of knowl-
edge, probabilistic knowledge, and resource-bounded
knowledge. We now briefl:y revie,w these definitions.
Since we will be considering only probabilistic proto-
cols running in synchronous systems, we will restrict
the generality of these definitions to this context.

We begin with a sketch of our formal model of com-
putation (cf. [DM86, MT88]). The distributed sys-
tems we consider consist of a finite collection of pro-
cessors, each pair of which is connected by a. twc+way
communication link. Processors share a global clock
that starts at time 0 and ,proceeds in discrete incre-
ments of one. Computation in the system proceeds in
rounds, round m lasting from time m - 1 to time m.
During a round, every processor first performs some
(possibly probabilistic) local computation, then sends
messages to other processors, ant1 then rcccivcs all
messages sent to it during the round. Each processor
begins with some initial local state at time 0. At any
given time, a processor’s local state consists of the
current time on the global clock, its initial :state, the
history of messages it has received from other pro-
cessors, and the history of coin flips it has used. A
global state is a tuple of local states, one for each
processor. We think of each processor as following a
protocol which specifies in any given state what mes-
sages each processor is required to send as well as
what actions it is required to perform as a (possibly
probabilistic) function of the processor’s local state.
An infinite execution of such a protocol (a.n infinite
sequence of global states) is called a mn. We define
a system to be a set of such runs, often the set of all
possible runs of a particular protocol. Given a run r
and a time m, we refer to (r,m) as a point, and we
say that (r,m) is a point of the system R if r E R.
We denote the global stat’e at the point (T*,TI~) (that
is, the global state at time rn in r) by r(m), and we
denote the local state of pr,ocessor q in r(m) by rq(m).

We now turn to the standard definition of knowl-
edge in distributed systems (cf. [CM86, FI86, HF85,
IIM84, PR85]). Th e intuition behind this definition
is that a processor can be said to I;now that a fact ‘p

is true if, based on its information about the current
state of affairs, ‘p must be true. Roughly speaking,
therefore, the processor q is said to know (o at a point
(r,m) if ‘p is true of all points q considers possible at
(r,m). Since a processor’s knowledge depends on the
set from which the points it considers possible may
be chosen, a pr Jcessor’s knowledge is always defined
with respect to a system a. We assume that we have
a collection of primitive facts about, the system, fact,s
such as “the value of the variable :c is a prime nurn-
be? that do not involve the proc.essors’ ktlowlcdgc.
Each fact cp is identified with a set I of poillt,s in-
terpretcd <as the set of points at which 9 holds. \\‘c sn\
that a point (r, m) in a system ‘72 snfisfies ,o, which
we denote by (‘R,r,m) I= cp, if (r,m) E T(P). L!‘e
often write (r, m) k cp rat.her than (72, r,m) k y
when the system 72 is clear from context. We say
that a fact cp is valid in Ihe syslem 72, which we de-
note by R b ‘p, if (r, m) + ‘p for all points (r,m)
of R. We extend this collection of primitive facts to
a logical language by closing under the usual boolean
connectives and several modal operators. Two modal
operators included are the linear t,emporal logic op-
erators 0 and 0: the formula •~ holds at a point
(r,m) iff the formula ‘p holds at all points (r, m’) with
m’ 2 m; and 0~ holds at (r,m) iff the formula cp
holds at some point (r, tn’) wit,11 171’ 2 1~. Most in-
teresting, however, are the modal operators Ii,, one
for every proc’ssor ,I, where tli<x forlllula I\‘,p is read
“17 klloWY cp.” As previously illdic*i~tcd, IY,(c is tlefirlcd
as follows: (I*, 771) b fi& iff (r’, m) k p for all p0iiit.s
(r’,m) of R such that r,(m) = r;(m). A processor
thercforc knows precisely t,hose fac(,s that. follow fro111
the information contained in it.s local state.

We are often interested in facts that, although they
do not hold in all the states that a processor con-
siders possible, do hold at a certain fraction of those
points. When reasoning about probabilistic systems,
it is important to be able to make statements such as
“according to q, the fact p holds with probability cr.”
Intuitively, such a statement might mean that (Y is
the conditional probability of cp, given q’s local state.
Fagin and Halpern formalize and generalize this intu-
ition in [FH88] as follows. Given a system R, they
associate with every processor q and every point c =
(r, 111) a probability space T(g, c) ‘= (Sy,e, Xq,(, /lu,e),
where S,,, is a. set of points, S,,, is it set 0F mrasurahlc
subsets of ,‘&, and P~,~ is a probability measllre. In-
tuitively, the set S,,, is a subset of t.11~ points q thinks
possible at c, and pq,c determines the prohabi1it.y with
which q considers a particular point in S,,, t,o be the
actual point c. The set S,,,(cp) is then defined to
consist of those points in S,,, at which cp holds. In
order to reason about probability, we allow formulas

134

of (#he form Pv~(Jo) 2 Q, with semantics defined by
c k Prqp 1 cy iff ~~,,(S,,,(cp)) 2 a.l We define I<fp
to be an abbreviation for K,(Pr,(cp) 2 a), which in-
tuitively says that processor q knows that cp must hold
with probability at least (Y. Finally, we define Eap to
IX au abbreviation for A~Z<~~, where the conjunction
is t,aken over all the processors in the system. Int.u-
it.ivc:ly, E”cp 111caus that c~ery processor knows tl~at. ‘p
n~nst hold with probability LY.

This definition of probabilistic knowledge lcaves
open a gtcat deal of flexibilit,y iu the choice of proba-
bilit,y spaces P(q, c). While it may seem at first that
the correct choice for S,,, is the set of all points q is
unable to distinguish from c, the analysis in this paper
has shown that, due to the subtle interaction between
the nondeterministic and probabilistic choices made
by processors, there are good reasons to choose S,,, to
be a subset of these points. Consider, for example, the
system determined by two processors q and q’ running
the following one-round protocol: processor q’ starts
with a one-bit. initial state, flips a fair coin, and per-
forms a particular action a iff the outco~nr of the coin
toss is equal to t.he bit, in it,s init#inl state. Clearly, this
system consist,s of four runs of t.bc forui Tb,f, where 6
is the value of t.lte bit. in (I”S initial st,ate and f is
the outcome of t,he coin flip. Now lc% us consider the
probability wit.11 which q knows at time 0 that q’ will
perform 0. Suppose t.hat. wit.11 cvcry tiillcx 0 point we
associat,e l,hc probabilit,y space coiisistiug of all time 0
point*s (not#ice that q considers all such points to be
possible at time 0). Since the only probability distri-
bubion we have is on the coin flipped by q’, the only
nontrivial event.s to which we can assign a probability
are ((rO,h, 0), (rl,hr 0)) (“the coin lands heads”) and
{(~o,*J%(n,t,O)} (“th e coin lands tails”); we cannot
assign a probability to the event “q’ performs a”! Sup-
pose, on the other hand, that with every time 0 point
we associate the probability space of time 0 points
having the same initial global state; that is, we can as-
sociate with a point of the form (~b,,, 0) the probabil-
ity space {(n,h, O), (rb,l, 0)). In this probability space,
we assign each of ((rb,h, 0)) and {(fb,l, 0)) probability
l/2. Conscquent,ly, at every poiut q considers possible
at time 0, the probability according to q that q’ per-
forms a is l/2, and it follows t1la.t q knows with prob-
nbi1il.y l/2 that q’ performs a, as we would expect,.
(This esamplc is discussed in great*er detail in [FII88].)

This observation leads us to choose the probabil-
ity space associated with the processor q and point

‘Fagin and Halpern actually write m,(v) 2 a instead of
Prp((p) > a, and in fact define a much richer language than we
do here. They also show how to deal with the possibility ofnon-
measurable sets. As our sets Sp,J’p) will always be measurable,
we omit these detaiIs here.

c = (r,m) as follows. We take SQlt to be the
set of points (r’,m) such that r’(m) = r(m) (that
is, the set of points (r’,m) having the same global
state as (~,m)). Notice that in our model, given a
global state at time m, each run having that global
state at time m is determined by the sequence of
coins flipped after time m in the run. Consequently,
t:ach set S,,,(cp) can be identified with a set of coil)
flips, which in this paper will always be measurable.
The probability measure pq,e therefore assigns to the
event S,,,(p) the probability of the set of coin fiips
identified with S,,,(v). Notice that having made this
choice of probability spaces, the operators Prq are
identical for all q, and hence we will omit subscripts
in the remainder of this works2

Returning to the standard definition of knowledge,
notice that a processor is said to know all facts that
follow from its local state, regardless of the compu-
tational complexity of determining that these facts
hold. When analyzing cryptographic protocols, where
the computational intractability of a problem is used
to keep secret certain pieces information, such a no-
tion of knowledge is clearly inappropriate. In [Mos88],
Moses introduces a notion of resource-bounded knowl-
edge that takes into account bounds on a processor’s
computational resources. The intuition behind this
notion is t,hat the only way a resource-bounded pro-
cessor can know a fact is if it can compute that it
knows this fact. In this work we are concerned with
the facts a processor can compute using a probabilis-
tic test running in time polynomial in some parameter
depending on its current state (usually that parame-
ter will be 121, where t is the common input). Thus,
we consider only BPP knowledge, which seems most
appropriate in the context of interactive proofs. Given
a system R, a probabilistic algorithm M is said to be
a BPP iest for K,cp in R if, for all points (P, m) of R,
M’s computation starting from r,(m) runs in time
polynomial in 1x1, accepts with probability at least 2/3
if (r,m) b K,cp, and rejects with probability at least
2/3 if (r, m) k K,cp. We say that q BPP-knows ‘p at
a point (r,m) of R, denoted by (r,m) ,I= II’,Bpp(p, iff

2We note that there are at least two notions of proba
bilistic knowledge that seem relevant in the context of cryp-
tographic protocols, the one given here and another outlined
in [FZSS] (the spirit of which can be captured in the frame-
work of [FMSB]). Each has its own philosophical advantages,
and we refer the reader to (FH88, FZ88] for extended discus-
sions. However, since the definitions of interactive proofs and
zero knowledge state conditions on the objective probability of
events at time 0, we will be concerned only with a processor’s
probabilistic knowledge at time 0, and at time 0 the two def-
initions of probabilistic knowledge coincide. We have chosen
the definition outlined here since the fact that the probabib
ity spaces are independent of the agent simplifies our analysis
slightly.

135

(r,m) k K,cp and there is a BPP test for fC,cp in ‘R.

Thus, a processor BPP-knows cp if it knows cp and
there is a BPP algorithm w&h which it can compute
that it knows cp. (Of course, there is nothing special
about the values 2/3 used in the definition of BPP
tesl;s. We could have used any value bounded away
from and above l/2.)

Similar notions of knowledge can be defined with re-
spect to other complexity classes. We refer the reader
to [Mos88] for a detailed discussion of a number of
interesting properties of these notions of knowledge.

3 Interactive Proof Systems

In this section, we first review the notion of an interac-
tive proof system (our definitions arc essentially those
of [GMR85]), and then show that the definition of an
interactive proof system can be captured in terms of
probabilistic knowledge.

An interactive protocol is an ordered pair (P, V)
of probabilistic Turing machines. P and I/ share
a read-only input tape; each has a private one-way,
read-only random tape; each has a private work tape;
and P and V share a pair oi one-way communication
tapes, one from P to V being write-only for P and
read-only for V, and the other from V to .P being
write-only for V and read-only for P. A run of the
protocol (P, V) is defined as follows. To begin with,
the input tape is initializedl with some common in-
put, say x; each random tape is initialized with an
infinite sequence of random bits; each work tape may
or may not be initialized wi.th an initial striug;3 and
the communication tapes ar’e initially blank. The run
then proceeds in a sequence of rounds. During any
given round, V first performs some internal computa
tion making use of its work tape and other .readable
tapes, and then sends a message to P by writing on
its write-only communication tape; P then performs
a similar computation. Eitlher P or V may halt the
interaction at any time by entering a halt state. V
accepts or rejects the interaction by entering an ac-
cepting or rejecting halt state, respectively, :in which
case we refer to the resulting run as either an accept-
ing or rejecting run. The running time of P and V
during a run of (P, V) is the number of ste,ps taken
by P and V, respectively, during the run. We as-
sume that V is a probabilistic Turing machine run-
ning in time polynomial in 1x1, and hence that it can

3The motivation for allowing initial values on the verifier’s
and prover’s work tapes can be found in [Ore87, TW87]. Allow-
ing initial information on the prover’s worktapc is particularly
important in the case of resource-bounded provers considered
in Section 6.

perform only probabilist,ic, I.‘olynoIlrinl-t.ime compu-
tations during each round. For now we make no as-
sumptions about the running t,ime 01’ P, although in
Section 6 we shall restrict attention to probabilistic,
polynomial-time provers.

The system corresponding to runs of the interactive
protocol (P, V) cdn be described in terms of the com-
putational model defined in Section 2 as follows. The
system consists of two processors, p and 21, running
the protocols P and V, respectively. A run is an infi-
nite sequence of global states, where each global state
consists of a local state for each of p and V. Proces-
sor p’s local state is a tuple consisting of a description
of the Turing machine P, the current round number,
the contents of the input tape, the finite prefix of its
random tape read up to this point, the contents of
its work tape, the contents of t4he t,wo communicat.ion
tapes, and the position of the t#ape heads on each of
these tapes; processor V’S local st,n.t.c is definc~l in R
similar fashion. We denote by P x t’ t,he syst.em con-
sisting of all possible runs of (P, \I), by P x W’ t,he
system consisting of the union of the systems P X V*
for all probabilistic, polynomial-time V” , by T x V t,he
system consisting of the union of t.he systems P’ x I:
for all Turing machines P’, and by ‘Pf’P x V the sys-
tem consisting of the union of the systems P’ x V
for all probabilistic, polynomial-time P’. Note that
we distinguish p and v, the “prover” iand the “verifier”
respectively, from the protocols that they are running.
In the system P x V, the verifier is always running the
same protocol (namely V) in all runs. In the system
P x VP, the verifier may be running different proto-
cols in different runs.

Let us denote by (P(,>,V(t))(x) the random vari-
abie assuming aa values the runs of (P, V) (according
to the probability distribution generated by the pro-
tocol (P, V)) in which the prover’s work tape is ini-
tialized with s, the verifier’s work tape is initialized
with t, and the input tape is initialized with c. An
interactive protocol (P, V) is said to be an inlernctizre
proof system for a language L if the following condi-
tions are satisfied:

0 Com~pleteness: For every k and suficiently
large 2, and for every s and t, if x E L then

Pr [(P(s), V(t))(x) accepts] 2 1 - Izlmk .

l Soundness: For every Ic and sufficiently large z:,
for every P’ , and for every s and t, if CC g! L then

Pr [(P*(s), V(t))(e) accepts] 5 IxlBk.

We refer to p as the “good prover” when it is run-
ning P, and to v ;1s the “good verifier” when it is

136

running V. The completeness condition is a guaran-
tee to both the good prover and the good verifier that
if 2 E L, then with overwhelming probability the good
prover will be able to convince the good verifier that
c E L. The soundness condition is a guarantee to
t.he good verifier that if c $ L, then the probability
that an arbitrary (possibly malicious) prover is able
to convince the good verifier that x E L is very low.

Notice that in our soundness condition, the “suffi-
cient.ly large 5” depends only on the value of L, and
not on t.he choice of P‘. In the original definition
of interactive proof given in [GMR85], it is not clear
whether the dependence is on k only or on both C and
I”. As Shafi Goldwasser pointed out to us, in the case
of iIt6 nit,cly powerful provers, it doesn’t nuatter what
clloicc we niakc. (More foruudly, an int8cractivc proof
syst.cnr (I’, V) is sound with respect to one choice ilf
it is sonnd with respect to t.he ot.ltcr; we prove this
in the futl paper.) However, the cltoicc does make a
difference in the case of resource-boundrd provers, as
we shall see in Section 6.

We can translate these completeness and soundness
conditions immediately into statements about proba-
bility in our language as follows. Let init be the fact
holding only at points at the beginning of a run, and
let. accept be the fact holding only at points at which
the verifier has accepted.

Propositiorr 1: An interactive protocol (P, V) is an
interactive proof system for a language L iIf the fol-
lowing conditions are satisfied:

0 Co7~tplcfc7tcss: For every $ t.hert exists c such
tt1a1.

l Soundr~ss: For every k there exists c such that

P x v + init 3

Pr [Oaccept 3 x E L] 2 1 - c 1321-k .

The constant c above is necessary due to the fact
that the probabilistic guarantees made by the defi-
nition of an interactive proof system hold only for
“sufficiently large 2 .” Notice that if 1 - c Iz\-~ is
negative, then Pi 2 1 - c 1~1~~ is equivalent to
Pi 2 0, which is valid for every fact cp. Conse-
quently, by choosing c so that 1 -c IzI-~ < 0 for insuf-
fic.iently large c we obtain a formula holding for all 2,
and hence valid at all points of the system. While this
constant, c does not appear in the formal definition of
nn interactive proof system, an equivalent definition

137

of interactive proof systems can be formulated making
use of such constants just as we do in Proposition 1.

Notice that, according to Proposition 1, a formula
such as Pr(x E L 3 Oaccep2) 1 1 - c Ixlmk holds
at time 0 but not necessarily at later points. After
the verifier has rejected, for example, it is clearly not
the case that with high probability the verifier will
eventually accept. In general, even before the verifier
has actually decided to accept or reject, a particularly
bad sequence of coin flips can significantly lower the
verifier’s chances of eventually accepting. Intuitively,
this is due to the fact that the verifier’s probability
space is changing with every step. (ln our case, the
probability space we associate with a point is the set4
of points having the same global state, a set that dc-
f-rf:asf:s iu six with every step.) Consequently, tile
antecedent ini is crucial in the formulas above.

Since the facts appearing in l’roposit.ion 1 are valid,
all processors know these facts at all points. Further-
more, all processors know the fact init whenever it
holds. Since from Kq ini and K,(inil > $) we can
deduce K,$, we can deduce the following corollary to
Proposition 1.

Corollary 2: An interactive protocol (P, V) is an in-
teractive proof system for a language L iff the follow-
ing conditions are satisfied:

l Completeness: For every k there exists c such
that

P x V k init > E’-“l”l-*(z E L r> Oaccept).

l Sowndne.ss: For every k there exists c such that

‘P x v l= ittit 3 fij-“~~~-*(Oaccept 3 x E L).

In ot,ln!r wortls, (f, V) is compl~:i.c! if both the good
prover and the good verifier know with high proba-
bility that if 2: E L, then the good prover will con-
vince the good verifier to accept; and (P, V) is sound
if the good verifier knows with high probability that,
no matter what protocol the prover is running, if the
verifier accepts x then 2 E L. It is actually the case
that if (P, V) is sound then every prover also knows
with high probability that if the verifier accepts z then

x E L (that is, we could have replaced K~-c’Z’-k by
E1-‘121-’ in the case of soundness above); we have
chosen this formulation since it is the good verifier’s
knowledge that is essential in the context of sound-
ness.

4 Practical Knowledge

As we have just seen, the definition of an interactive
proof system can be characterized in terms of prob-

abilistic knowledge. This characterization, h.owever,
is a slight reformulation of the original definition in
terms of very similar concepts. It does not capture,
for example, the intuition that at the end of a.n inter-
act#ive proof of z E L with tlhe good prover, the good
verifier knows that z E L despite its limited com-
pulational power. In this section we show how the
definition of an interactive proof system motivates a
new notion of pruc2ical knowledge which will enable us
to formalize this intuition. In later sections, practical
knowledge will play a crucial role in capturing the se-
curity provided by zero knowledge proof systems.

We have already argued that the notion of rsesource-
bounded knowledge introdu.ced in [Mos88] seems to
be a natural way of capturing the knowledge of a
resource-bounded processor, with RPP knowbedge be-
ing most relevant to the cryptographic setting. Un-
fortunately, there is a notion of “learning” of great
importance to cryptographic protocols (and, in par-
ticular, to interactive proof systems) that can not be
captured directly in terms of BPP knowledge. Con-
sider, for example, a fact cp such as “the input x has a
factor smaller than @. At. a point in which the pro-
cessor has the factorization of z available to it, say the
factorization happc:ns to be written 011 its work tape,
and x has a small factor, we might like to say that the
processor knows ‘p despite iits limited resources. Re-
call that a processor BPP-knows p iff it knows cp and
it has a BPP test for p. Assuming that there is no

BPP test for ‘p, our processor will never BPP-know ‘p.
This is true even when it has the fa.ctorization written
on its work tape. Thus, a naive use of the notion of
BPP knowledge does not seem to allow us to capture
the idea of learning.

Notice, however, that when a processor Ends the
factorization of t on its work tape and hence is able
to determine that ‘p holds, the processor learns a great
deal more than just the fact (o. It actually learns a
fact $ that implies cp, where $ is the fact “the fac-
torization of x is on the work tape, and it con ta.ins a
factor smaller than p. Since this fact 1,6 is clearly
BPP testable, the processor actually BPP-knows $J.
In other words, the processor learns cp as a result of
coming to BPP-know a stronger fact II, that implies cp.
In this sense, the notion of learning ‘p can bc captured
in terms of BPP knowledge.

At this point, one might be tempted to define a
notion of learning in whiclh a processor lea,rns cp at
a point if at this point it BPP-knows a fact $ that
implies ‘p. Unfortunately, this notion of learning is
not very useful to a resource-bounded processor. It
could be, for example, tha.t at every point the pro-
cessor BPP-knows a different fact II, implying ‘p (and
hence has “learned” cp everywhere) and yet is unable

to determine at a particular point which fact 1c, it
should test for in order to determine that, it knows cp.
Alternatively, one might be temptctl t,o define a no-
tion of knowing cp with respect to a particular test A{
where, informally, a processor knows cp wit#h respect,
to Al if with t,lie test. I%T the processor can dt’ft>rtninc
tha.t it. knows cp. Wc consider such notions t.o Ire uu-
satisfactory, however, since if knowledge is t,o be used
for protocol specification it must ba possible to ab-
stract the particular tests being used. We not,e t,hat
the definition of resource-bounded knowledge already
existentially quantifies over such tests (so these tests
do not appear in the notation used), and we do not
want to reintroduce them here.

We take an alternative (and more direct) approach
to capturing Iearning. The idea is to define a notion
of BPP knowledge of ‘p relative to a set A of points.
We can think of the points of A as the points at which
a processor learns cp. Roughly speaking, this means
that we have a BPP test for li’,cp that, correctly de-
termines whether Q knows v at all points of rl, hut
may only satisfy weaker requirements off ~1 [in par-
ticular, t,hc t,est. may not be required t,o accept, with
high probability at. poiut,s off .4 a.t. which li,p holds).”

More formally. we proceed ns follows. We say that.
a test A4 is SOUIIA for cp a.t, a point (I-, 171)~ dcllokd by
(r,m) I= sound(M, p), if (r,77)) i+ \? implies t.liat fir
rejects at. (r, 111) wit,11 probability a~:. least 2/X Sim-
ilarly, we say that lli is conzplefe for y’ at (r, 111).
denoted by (~,m) t= complete(M, \D), if (~,?II) + p
implies that M accepts at (~,m) with probabi1it.J
at least 2/3. Given a system R, a set A of points
in R, and a fact (p, we say that ‘$9 BPP-knours p
wiIh respect io A” at a point (r,m), denoted by
(~~771) /= K,BPPsAp, iff

(r,m) E A

(r,m) I= K,v, and

there is a probabilistic Turing machine A/r taking
as input, the local state of q and running in time
polynoniinl in 1~1 (where 1: is the common input.
ill the global state r(m)) such that,

(a) M is a sound test for K*p on ‘R;
that is, R b sound(M, K,,(p).

(b) A4 is a complete test for Ii,cp on A;
that is, R + ‘in A’ > complcte(M, A’,cp)

where ‘in A’ is the fact holding at precisely
those points in A.

138

The first condition is a technical one, which ensures
that knowledge with respect to A can hold only at
points of A. We restrict attention to points in A since
these are the only points of interest (and the only
ones where our test is guaranteed to be correct). The
second condition requires that cp actually be known,
as is required by BPP knowledge. The third condition
requires the existence of a test for (p that is sound on 7Z
a.nd complete on A.

It is clear that a processor BPP-knows ‘p iff it BPP-
knows \p with respect to the set of all points in R, and
hence that, the definition of UPP knowledge with re-
spect t.o a set. of points is a direct gcncrnlizat.ion of
111’1’ knowlctlg~. In fact,, it is c;lsy to see thal if tlrc
fad ‘in A’ is testable in BPP, thrn I<~“t’,A~ is equiv-
alent to KaPP(‘in A’ A cp). Furthernrorc, notice t.hnt , r
we are now able t#o ca.pt,ure the notion of a processor
learning a fact cp (as the result of its nncxpected ac-
quisition of information. Returning to our example,
let A be the set of points where q has the factorization
of z on its work tape. Let M be the test that rejects
if the factorization of x is not on the work tape or
if the factorization is on the worktape and there are
no small factors. This test M for ‘p is clearly sound
everywhere and complete on A. Thus, when Q learns
from the factorization of t on its work tape that cp
must. be t,rue, q knows cp with respect to the set A.

The reader may wonder at the asymmetry of our
definition. Why do we require soundness on all of
?2., but. complrt,eness only on A? Notice that if we
st,rcngt~llcn t,he definition to require soundness and
conrplct,c~ncss on all of 72, then WC hnvc csscnlially
ret.urtttd to 1.11~ tlcfmit.ion of I3I’I’ knowlcdgc. On the
otb~ hand, suppnse we weaken the definition to re-
quire soundnrss only on A. If membership in the set A
is caaily t.est.able. t,hen such a not,ion of knowledge may
be of interest. LVe will, however, be forced to consider
arbitrary sets A in this work, and in this context it
becomes rather uninteresting. For suppose that pro-
cessor q has access to an algorithm M that is guaran-
teed to be sound and complete only on A. Moreover,
suppose that when q runs M repeatedly on its state
Ye (nt) at some point (T, m), it finds that M almost
always accepts. In this case, q knows that if it is at
a point in A, then ‘p holds. But since it may be quite
dificult for q to determine whether it is at a point
in A, this may not be very useful information. With
our definition, q would know that K,cp (and hence ‘p)
holds at this point, regardless of whether the point
is in A (since, by our definition, if ‘K,cp holds, then
A4 reject,s with high probability). Of course, if A4 al-
most always rcjccts on input am, then q can say
nothing without, knowing whether (I’, tn.) is in A. We
could instead have required conlpleteness on all of R

and soundness on A. In cryptographic applications,
however, it tends to be more important to be able to
learn that cp is true than to learn that it is false. This
choice is a matter of taste.

Let us return, now, to the context of interactive
proof systems (P,V) for L. Let us say that a point
of the system P x V is a final point if at that point
the verifier has either accepted, rejected, or otherwise
halted. Consider the set A of final points of P x V,
and consider the test M that accepts at a point if the
verifier has accepted at that point and rejects other-
wise. Int)uitively, we would like to say that if x E L,
then the good verifier BPP-knows x E L with respect
to A at the end of a proof of z E L with the good
prover. IJnfortunately, the test M is not a sound test
for x E L since on rare occasions the verifier may
incorrectly accept when 3: $ L. In the context of
probabilistic computations, however, a test that fails
on a negligible portion of the cases is practically as
good as one that never fails. Since the soundness and
completeness conditions required by the definition of
knowledge with respect to a set A do not allow for
such freedom, we are led to the following notion of
practical knowledge where these conditions are some-
what relaxed. Practical knowledge plays an impor-
tant role in our analysis of interactive proofs and zero
knowledge.

Recall that M is a sound test for ‘p in R if it is
a sound test for ‘p at all points in the system R.
We would now like to consider such tests M that are
sound tests for ‘p at all points of most runs of 72. For-
mally, we say that, M is a praclicrrliy sound test for ‘p
if for all k there exist.s c such that

R k init 3

Pr(bwzd(M, K,cp)) 2 1 - c 1x1-k .

Similarly, if A is a set of points in 72, we say that M
is a practically complete test for K,cp on A if for all k
there exists c such that

R b init 3

Pr(a[‘in A’ > complete(M, K4(o)]) > 1 - c Iz~-” .

Notice that we have ensured that the probabili-
ties used in defining practical soundness and practical
completeness are taken at the beginning of the run
through the use of the antecedent init. This means
that we are effectively considering tests that behave
correctly on all but a small fraction of the runs. We
ro111d have instead considered tests with the stronger
property that they behave correctly at all but a small
fraction of the points considered possible at any point
(by deleting the antecedent inil). This latter notion

139

can lead to dramatically d.ifferent results, but does not
seem appropriate for most compmer science applica
tions (in particular, it is not appropriate for capturing
interactive proofs).

We now define “q practically BPP-knows ‘p with re-
spect to A” at a point (r,m), which we denote by
(r,m) (= k:PPyA (p, in precisely the same way as we
defined “q BPP-knows cp with respect to A,” except
that the soundness and completeness conditions are
replaced by practical soundness and practical com-
pleteness. This notion of knowledge may at first seem
rather strange. Most previously defined notions of
knowledge based on, say, polynomial-time tests have
said that a processor knows ‘p at a point if its test
for ‘p says that, it knows ‘p. Here, however, since the
tests allowed by tl~c definition of practical knowlcdgc
may bc in error on a small fraction of the rutis, it is
possible for a processor to have practical knowledge
of cp with respect to A at a point in A even though
its test for knowledge of ‘p may not indicate that it
knows cp. When a processor practically knows cp with
respect to A, it knows ‘p and has a test that quite
accurately approximates this knowledge on the set A.

Now, returning to the problem of capturing the in-
tuition that at the end of a proof of x E L with the
good prover the good verifier learns z E L, l.et us re-
consider the set A and test M defined above: let A
be the set of final points of P x V, and let 44 be the
test that accepts at a point if the verifier has accepted
at that point and rejects otherwise. Notice that while
the test M for ‘p is not sound everywhere and not
complete on A, it is praclical/y sound cverywhcrc and
practically complete on A. As a consequence: we have
the following. We d cnote by ‘y running P’ the fact
holding at a point ilf at that point the prover is run-

ning the protocol P.

Proposition 3: If (P, V) is an interactive proof sys-
tem for L, then

P x V i= (x f L A ‘p running P’) 3

OkBPPIA(Z E L), v

where A is the set of final :points of P x V satisfying
‘p running P’.

In fact, we can essentially prove the converse of this
proposition as well, which shows that we can charac-
terize the notion of an interactive proof system using
practical knowledge.

Proposition 4: If

P X V* b (z E L A ‘p running P’) 3

where A is the set of final points of P x V’ satisfy-
ing ‘p running P’, then we can effectively modify V’
to obtain V such that (P, V) is an interactive proof
system for L.

The protocol V is simply the protoccl V” at the end of
which the verihfr uses its test for pr.actical knowledge
of 2 E L to decide whether to accept or reject.

These results tell us that an interactive proof sys-
tem for L is precisely one that guarantees that if the
verifier is running against a good prover, then it will
practically know that 2: E L at the end of the proof,
and it will practically never be fooled (by nrry prover).

5 Zero Knowledge Proof Sys-
tems

Informally, an interactive proof syst,em (P, V) is zero
knowledge if, whenever t E L, the verifier is able to
generate on its own the conversations it could have
had with the prover during an interactive proof of
2: E L. Consequently, the verifier learns nothing as the
result of a conversation with the prover (other than
the fact that x E L) that it could not have learned on
its own by generating the conversation itself.

To make this precise, we first recall the no-
tion of polynomial indistinguishability (cf. [GAIR85,
GMW86, Ore87]). Suppose we have some domain
Dam. whose elcment,s are of the forni (1, IJ), where fi is
a vector of values. Further suppose for each (~,a) E
Dom we have two random variables IrX,g and \L,9 with

two associat,rd probability dist,ribut.ions. The families
{ uz,g : (t, y) E Dortr} and {l>,fl : (r, 5) E Darn} are
said to be polgnnmially itl.dislitlguislrnblr if for cvcry
probabilistic, polynomial-time algorithm h1 and ev-
ery constant t there exists a constant N,,,, such t,hat
for all t with]z] 2 N,,, and all & with (z, S) E Dam
we have

) Pr [M accepts I!J~,~] - Pr [M accepts Vz,~]I

It is important to notice that the probability is being
taken over both the coin flips of M and the distribu-
tions of Uz,V and Vz,g.

Other notions of indistinguishability are defined
in [GMR85] (i.e., perfect indislingvishabilily, slatis-
tical itldis2ingulshability, and computalional indislin-
guishability). Since polynomial indistinguishability is
implied by each of these notions, our results, which
are proven for polynomial indistinguishability, hold
for these other notions as well.

Finally, an interactive proof system (P, V) for L is
said to be X~YJ homlcdgc (cf. [GMR85, GMW8G]) if

140

for every verifier V’ there is a probabilistic Turing
machine M\I. such tllat

1.

2.

5.1

Mv.(t,~) runs in expected tiine polynomial
in IsI, and

the families ((P(s), V*(t))(x) : (x,s,t) E Dom)
and (Mv+(t,~) : (I, 6, t) E Dam} are polynomi-
ally indistinguishable, where (z,s,t) E Dom iff
x E L, s is a possible input for P, and i is a
possible input for I/*.

Knowledge and Zero Knowledge

In this section we formalize the intuition that if the
verifier can learu a fact ‘p at the end of a zero knowl-
edge proof of E E L, theu the verifier can deduce cp
frown 1: E L 011 its own at, the bcginrling of the proof.
First, we need a short definitiou. We say that ‘p
is a fact aloul ahe initial state (in a syst.em 7Z) if
(r, nz) b ‘p iff (Y’, ~1’) k ‘p for all points (r,ttl) and
(r’, m’) of 72 with r(0) = r*‘(O). Thus (o is a fact about
the initial state if its truth at a given point in a run
depends only on the initial state in that run.

The following theorem captures our intuition that
the prover does not leak any information to the verifier
during a zero knowledge proof of x E L other than the
fact E E L. Roughly speaking, it says that if + E L
and the verifier has a nontrivial chance of learning
10 at the end of a proof of z E L, then the verifier
can already deduce ‘p from z E L on its own without
interacting with the prover. Consequently, provided
.r E L, t,he only information that a prover leaks to the
verifier in a zero knowledge proof of z E L are facts
t.hat follow from T E L. The proviso that z E L is
crucial hcrc*. Thrrc is tml,hing in t.lrc tlcfnition of a
zero knowlcdgc proof lo stop tjlir provc>r fr0nI Icaking
all sor1.s of inforn&on when E $ I,.

Tlworcm 5: Let (I’, C’) be a zero kuowledgr: proof
system for L, let V’ be an arbitrary verifier, and let ‘p
be a fact about the initial state. For every set A of
final points in P x V’ and every k there exist constants
c and N such that

where B is the set of initial points in P x V” satisfying
z E L, 1~1 2 N, and Pr(OK~PP~A~) 2 IX/-~.

Proof: Fix a set A and a constant k. The definition
of knowing ‘p with respect to A ensures the existence
of a test M for cp that is sound everywhere and com-
plet,e on A. ‘i%~ deiinitioti of a zero knowledge proof

system (P, V) ensures the existence of a Turing ma-
chine Mv.(t, 2) that approximates (I-‘(s), V*(t))(x).
Informally, the proof proceeds as follows. Suppose
that from an initial point (r,O) the probability of
reaching a final point at which the test M indicates
that cp holds is at least 1~1~~. Suppose that from
this initial point we run Mv.(t, x) to generate a run
of (P(s), V*(t))(x) and apply the test M to its final
state. If we repeat this procedure roughly 1~1” times,
then with high probability we will generate a run at
whose final state the test M will succeed, and hence
with high probability we will learn that if t E L (and
hence the simulating Turing machine Mv. (i, Z) is ac-
curate), then p must hold. The details of the proof
are left to the full paper. cl

WC note that the same result holds when we replace
practical knowledge by knowledge with respect to a

set of points, but as we have seen in Section 4 the
notion of practical knowledge seems to be of greater
relevance to interactive protocols.

Stepping back and looking at the statement of The-
orem 5, we see that the result is slightly unsatisfac-
tory. Notice that in the system P x V” the verifier
protocol V* is fixed, and hence known to the prover.
The intuition behind zero knowledge proofs, however,
is that even though the prover does not know the iden-
tity of the verifier, the prover knows that the verifier
learns nothing at the end of the proof other than facts
that follow from x E L. That, is, our intuition suggests
that the statement of Theorem 5 should hold in the
system P x VPP. We cannot prove such a result due
to the order of quantification in the definition of zero
knowledge guaranteeing only that for every verifier V*
there is a Turing machine Mv*(l,~) approximating
the dist.rihut,iorr of (P(s), V*(t))(x). The prohlcrn is
that because the Turing m&line Mv. cannot, in get)-
eral bc choscu in some uniform way, and because the:
tests for knowledge we allow must be uniform irr V*,
we do not havc a lest for computing facts at the bcgin-
ning of all runs in P x PP. One solution to our prob-
lem is provided by the notion of black-box zero knowl-
edge. An interactive proof system (P, V) for L is said
to be strongly black-box zero knowledge [cf. [Ore87]) if
there is a probabilistic Turing machine M such that

1. M(V* , t, X) runs in expected time polynomial
in 1x1, and

2. {(P(s), V*(t))(x) : (x, V*,s,t) E Dom} and
{M(V*,t,x) : (x, V’, s, t) E Dom} are polynomi-
ally indistinguishable, where (2, V’, s, t) E Dom
iff 2 E L, V” is a possible verifier protocol, s is
a possible input for P, and f is a possible input
for V’.

141

If (P, V) is a strongly blac.k-box zero knowledge proof
system for L, then we can prove the analogue of The-
orem 5 in the system P x V” instead of P x V*.

‘Unfortunately, as the name suggests, the notion of
strongly black-box zero knowledge is too strong. The
problem is that in practice M(V”, t,z) runs V’ as
a subroutine on input x. Even if M runs V* only
once, the running time of iM is at least as great as
the running time of V’. Consequently, even if we re-
strict our attention to polynomial-time V’ as input to
M, since the polynomial bounding the running time
of I/* is different for every V*, the running time of
M will not be bounded by a single polynomial. Oren
avoids this problem in his definition of black-box zero
knowledge by charging only one time step for a call
to I/*. Thus, he is essentially viewing M as an or-
acle machine (rather than a purely polynomial-time
Turing machine). We could modify our definitions to
allow for knowledge with respect to oracle m,achines,
but a more natural solution is to modify the measure
we use of a test’s complexity. In particular, suppose
we consider tests for facts that run at a point (~,rn)
in time polynomial in 1x1, the running time of V’, and
the description of V’, where T is a run with input x in
which the verifier is running the protocol V’;. Then,
defining a notion of practical knowledge with respect
to such tests, the analogue of Theorem 5 follows with
precisely the same proof. We note that all zero knowl-
edge protocols we are aware of satisfy Oren’s notion
of black-box zero knowledge.

5.2 Generation and, Zero Knowledge

In the previous subsection we formalized the notion
that the verifier in a zero knowledge proof learns es-
sentially no fact other than what the prover explicitly
set out to prove. This is not, however, the strongest
notion of security one could hope for. It would also
be desirable to show that, as a result of interacting
with the prover, the verifier cannot do anything that
it could not do before the interaction. We abstract
the idea of the verifier bein,g able to do something its
knowing how to generate a y such that R(x,y). For
example, if R(z, y) holds prcecisely when y is a Hamil-
tonian circuit in a graph + on the input tape, then
being able to generate a y such that R(x, $1) means
being able to find a Hamilt~onian circuit in t,l~e graph
%. Notice that, as in tflc! ciu;c of lIitllliltolliilll circuits,
most natural relations R are testable in BPP. That
is, there is a probabilistic algorithm running in time
polynomial in 1x1, accepting (x, y) with probability at
least 2/3 if R(z, y), and rejecting (x, y) with probabil-
ity 2/3 if -R(x, y). We restrict our attention to such
BPP testable relations here to simplify our exposition.

Just as we have said that the verifier knows a fact ‘p
if it has an algorithm to test for ‘p, we would like to
say that the verifier knows how to generate a y satisfy-
ing R(x, y) if it has an algorithm to generate such y.
In previous sections we considered tests for facts ‘p
that were sound everywhere and correct on a set A of
points. Here, alLlough there are no Iconditions analo-
gous to soundness and completeness, we consider al-
gorithms that do a “good job” of generating y’s such
that R(x, y) on a set A of points, but may not, perform
so well off A. We say that the verifier L~~otrn hozu fo
BPP-generate a y satisfying R(x, y) with respect to a
se! .4 of points in a system R if there is a probabilis-
tic algorithm, that, at all points (1’,173) of -4, takrs
as input the verifier’s local stat,e and outputs with
probability at least 2/3 a string y satisfying R(x, y).
Formally, we write (r,m) /= GrPP8Ay.R(~, y) iff

1.

2.

(r,m) E A, and

there is a probabilistic Turing machine M that at,
points (r’, m’) E R takes the verifier’s local state
as input, runs in time polynomial in 1x1, and, if
(T’, m’) E A, outputs with probability at least
2/3 a string y satisfying R(z, y11.

We have the following analogue to Theorem 5:

TheoreIn 6: Let (P, V) be a zero knowledge proof
system for L, let V’ be an arbitrary verifier, and
let R(z, y) be a relation testable in BPP. For every
set A of final points in P x V’ and every k, t.here
exist c and N such that

P x V’ l= (x E LA init) >

K~-~~~‘-~[OG;~~~~~.R(X, y) > G;PPSBy.R(t, y)]
P

where B is the set of initial points in P x V’ satisfying
z E L, 121 > N, and Pr(OG~PP~Ay.R(x, y)) 1 1x1-k.

Intuitively, this theorem says that if the verifier has
a nonnegligible chance of being able to generate a y
satisfying R(x, y) by talking to the prover, then the
verifier can generate such a y on its own. We note that
this theorem has a number of natural extensions. One
simple extension is from generating a y satisfying re-
lations R(x, y) to generating a y satisfying facts p(y)
about the verifier’s entire initial state. Another sim-
ple extension is, along the linns of practicnd knowl-
edge, a notion of knowing flow to generate, dcmtctf
by G;;“PIAy.R(z, y), where the algorithm may on a
small fraction of the set A fail to generate y such
that R(x, y). A final extension, using black-box zero
knowledge, allows us to prove au a~mlogous result iu
the system I’ x VP. The details are left to the full
paper.

142

The ability to test the relation R in BPP is cru-
cial to the proof of Theorem 6. Recall that in the
proof of Theorem 5 the verifier tests for the fact* II,
by rcpcatcdly generating runs and testing for cp at
t,hc end of each run. Since this test for cp is sound,
t,lle verifier can accept as soon as this test, for ‘p ac-
ccpts. Here, however, since there is no notion anal@
~OIIS (,o SOIIII~II~~SS, UK* vc,rificbr hirs 110 way of kiIowing
wltirll of I,llc IllitTly y’s it gcwral~cs sat.ish IZ(x, y)

and should IX output unless the relation K(x, g) can
t)c I,ested in 13PP. We discuss annlogues of Theorem 6
when R(z, y) is not testable in BPP in the full paper.

6 Resource-bounded provers

In an interactive proof system as defined in [GMR85],
the prover is assumed to be infinitely powerful. In
practice, however, a prover is not infinitely powerful
and may have no more computational power than the
verifier. Fort,unately, a probabilistic, polynomial-time
prover with some “secret. information” on ifs work
tape is able t,o Cilrry out. many of blic iirl.crt3ling inter-
a.ct,ive prot,ocols. IO I,hc case of tlic graph isonrorplrism
protocol givcu in [GMW8G], for cxanlplc, this secret
informat,ion is an isomorphisnl bebwrcn the graphs
on t.tir input, tape. Since t.lir context of such weak
(I~olynolnial-t.inle) provers is actually t.hc context of
n~ost. pract.ical int,erest,, the type of security afforded
by zero knowledge protocols in this context is an im-
portant question, and the subject of our final section.

In order to study zero knowledge proofs in this con-
text, we define the notion of a weak interactive proof
system! a direct. modification of the definition of an
interactive proof system for L. We define a weak in-
teractive protocol to be an interactive protocol (P,V)
where both P and V run in probabilistic, polynomial-
time. IVe define a toeaL interactive proofsystem (P, V)
for (I lnngllngc L just as we defined an interactive
proof system for L except that we require (P, V) to bc
a weak interactive protocol and we restrict the quan-
t~iticat.iorl of P” in t.he soundness condition to be only
ov(‘r probabilistic, polynonlial-t.illke machines, rather
t,han over all machines. As the following lemma shows,
howevt>r, weak interactive proofs of language tncmber-
ship arc not very int,erestitig.

Lemnla 7: There is a weak interactive proof system
for L iff L is in BPP.

Thus, an interesting weak interactive proof cannot
be simply a proof of language membership; it must
reveal something about the prover’s local state, and
hence, since the prover’s knowledge is determined by
its local state, it must reveal something about the

prover’s knowledge. Consider the zero knowledge
proofs of graph isomorphism and three-colorability
given in [GMW86]. These proofs can be carried out
by a weak prover with the appropriate information
on its worktape. And in both cases, the verifier ob-
tains information about the prover’s knowledge as
well as about language membership. In the case
of gr;ipl1 isonlor~~l~isni, tli~ vcrifictr Icnrns tlti1.1, wil.tl
high prot~;&ility, IJlc prover can gcncratc: an isolator-
phistn between the graphs in question. Similarly, in
the case of three-colorability, the verifier learns that
with high probability the prover can generate a three
coloring of the graph in question. It is well-known
(see [HM84, MDH86]) that information about the
prover’s knowledge can dramatically affect the ver-
ifier’s knowledge about the world. For example, in
the case of three-colorability, information about the
prover’s knowledge may indicate to the verifier that
the prover has with high probability communicated
with the entity that generated the three-colorable
graph.

In order to study proofs of the prover’s knowledge,
we extend the definition of a weak interactive proof
of language membership to that of a weak interac-
tive proof about the prover’s initial state, where a
fat t R(I’*, c, s) is about the prover’s initial state if its
truth depends only on the prover’s protocol P’, its
initial work tape s, and the common input 2. The
definition of a weak interactive proof of R(P*, t, s) is
obtained simply by replacing all occurrences of x E L
by R(P*, t, s) in the definition of a weak interactive
proof of language membership. Formally, we define a
weak interactive proof system for a fact R about the
prover’s initial state to be a weak interactive protocol
(P, V) such that

Completeness: For every k and sufficiently
large I, and for every s and t, if R(P,z,s) then

PI- [(P(s), V(t))(z) accepts] 2 1 - 12(-k

Soundness: For every k and sufficiently large I,
for every probabilistic, polynomial-time P’, and
for every s and 2, if -JZ(P”, I, s) then

Pr [(P*(s), V(t))(r) accepts] 5 IX!-” .

The reader may wonder why we consider weak in-
teractive proofs of facts about the prover’s initial
state that depend on the prover’s protocol as well
as its worktape. Suppose R(t, s) is a fact about the
prover’s worktape and the common input; that is, the
truth of R(x, s) depends only on the prover’s work-
tape s and the common input z (and not on the

143

prover’s protocol). Let us define &m(R) to be the
set (x : R(z, s) for some s}.

Lemma 8: A weak interactive protocol (P, V) is a
weak interactive proof system for a fact R about the
prover’s worktape and the common input ifl

1. for all sufficiently large x and for all s, we have
R(x, s) iff x E dam(R); and

2. dam(R) is in BPP.

This lemma says that if there is a weak interactive
proof of a fact R about the prover’s worktape and the
com1non input, then R is essentially uninteresting. In
part,icular, with the exception of a few small values
of x, R(+, s) holds for so1ne s iff El(c, s’) for all s’.
Consequently, R is esselltially determined by do?n(IZ).
Since dam(R) is in BPP, the prover can determine
whether R holds (for sufflcienltly large z) without even
interacting with the prover. Consequently, a fact R
about the prover’s initial sta,te having only nontriv-
ial weak interactive proofs must necessarily be a fact
depending on the prover’s protocol, and hence on the
prover’s entire initial state. Since the prover’s knowl-
edge is determined by its local state, such ,3 weak
interactive proof may be viewed as a proof of the
prover’s knowledge. In fact, ‘we note that even in the
context of infinitely powerfud provers an interactive
proof oft E L is not just a proof of z E L but a proof
the prover knows z E L. Tlhe fact that all interest-
ing interactive proofs must be proofs of the prover’s
knowledge is obscured in the context, of infinitely pow-
erful provers since I E L holds iff the prover knows
x E L,. In the context of weak prover, however, these
facts are not equivaleut.

We have defirled a 11atural notio11 of i11toractive
proof in the cont,ext of wca,k provers, and VW have:
show11 that the o111y 11ontrivial interactive proofs i11
this context are proofs aboul; the prover’s knowledge.
While our definition is a direct modification of the
definition in the case of strotng provers, it is not ini-
tially clear that our definition is the most appropriate
in the context of weak provers, and hence that, our re-
sults are more than simply aztifacts of our definition.
As evidence supporting our definition, we now show
that, under certain natural conditions, bot:h inter-
active proof syste1ns FFS87, TW87) involving weak
provers that have appeared in the literature are in-
stances of weak interactive proofs. Not surprisingly,
in light, of our previous results, these proof systems
concern proofs of the prover’s knowledge.

WC focus here on [‘I‘W87]. and leave the di:icussion
of [F1?387] Lo the full paper. III [I’W87] we fir~tl the
following definition (modified slightly for the sake of
consistency with the rest ol‘ this a,bstract). Give11 a

binary relation 12, a weak interactive protocol (P, V)
is said to be an interactive proof thaf the prover can
generate some y satisfying R(z, y) if the following con-
ditions are satisfied:

l Completeness: For every k and sufficiently
large x, and ,or every s and t, if R(z,s), then

Pr [(P(s), V(t))(x) accepts] 2 1 - JxlVf .

l Soundness: For every probabilislic, polynomial-
time P’ t.here is a probabilistic Turing machine
h4~~ running in time polynon~iai in 1x1 sucli t.11a.f
for all /z and sufficiently large .r, and for all s
and 1,

PF[V accepts at (r,m) 3 R(r, AIf,. (7*p,(n1)))]

> 1 - 1.z1-1-

where the probability is taken over the runs of
(P*(s), V(t))(x) and the coin flips of niip. .5

While we would like to show that every int,eractive
proof that the prover can generate some y satisfying
R(;c, y) is a weak interactive proof, this is not quite
true. To see this, notice that the definition of a weak
interactive proof requires that (P(s), V(t))(z) accept
with probability very close to 0 or 1, while an interac-
tive proof of [TW87] allows (P(s), V(t))(z) to accept
with any probability as long as P is able to generate
a y satisfying R(t, y). We can prove, however, that
the following is a necessary and suf5cicnt. condit.ion
for a11 i11t.cr;rct.ivr proof of [TW87] t,o be a weak inter-
active proof:

0 Grrrcl71.cs.s: For every k and suificit~ntly large 6,
il.iicl for c’vcry s and t, if R(r, s) tloc3 noi. lroltl,
the11 Pp [(P(s), V(t))(x) accepts] 5 IzI-“.

In other words, the good prover succeeds in convincing
the good verifier to accept only when R(z,s) holds.
We note that the correctness condition can be satis-
fied ifl R(z, y) is testable in BPP. Since this seems to
be the most relevant context in practice, this seems to
be a natural restriction. We have seen that the cor-
rectness condition is necessary for an interactive proof

SWe note that the soundness condition in [TWS?‘] actu-
ally quantifies over all Turing machines P’ and 110t just over
polynomial-time P’. Since, however, Lhc motivatior~ for consid-
ering weak prowrs is that in practice at1 a(5crkt.s are restricted to
polynolnial-l.ilnf:, our restriction does not swn~ unnatural. Fur-
thennow, we nok that the macl~irre A!,>. is ~aIlowed in [‘r‘W87]
lo run ill ox pc~locl I,“lytlotlli:~l-tinI(~. In tlrc. cY-mt.c!xt cd HI’I’.
testable relat,iorls ti, however, the context WF find of most in-
terest, we can assume without loss of gewralily that the ma-
chine Mp* runs in polynomial-time.

144

of [TW87] to be a weak interactive proof. To see that
this condition is sufficient, let R’(P*, x, s) be the fact
“(p running P A R(z, s)) V (p running P’ # PA the
soundness condition holds for P*).” (Note that R’
depends on the prover’s protocol as well as the work
tape, and is a fact about the prover’s initial state.)
We now have the following.

Propositiorr 0: (p, V) is an int.eracbive proof satis-
fying t.he correctness condition that the prover can
generate a y such t,hat, R(x, y) ifl (I’, V) is a weak
interactive proof system for ZZ’.

We can show, in addition, that the proof systems
of [FFS87] satisfying the correctness condition above
are also instances of a weak interactive proof system.

Having shown that, in light of Proposition 9, our
definition of a weak interactive proof system seems to
be an appropriate definition, let us turn to the study
of the security afforded by such protocols. Our def-
inition of a weak interactive proof is a direct mod-
ification of the definition of an interactive proof of
language membership. We can also directly modify
the definition of a zero knowledge proof of language
membership t,o obtain a definition of a zero knowledge
weak irlteract,ive proof. Not surprisingly, arrnlogues of
all our previous resu1t.s for ilIt.criKt.ivc~ proofs hold in
the case of weak interactive proofs, with essentially
the same proofs. Rather than restnt,ing all the results
here, we focus on one of them, the analogue of Propo-
sition 1. If R is a fact about the prover’s initial state,
then we say (r, m) b R if R(P’, x, s), where P’ is the
protocol t.hat p is running in r, 2: is the common input
in the initial state r(O), and s is the contents of p’s
work tape in r(O).

Proposition 10: A weak interactive protocol (P, V)
is a weak interactive proof system for a fact R about
the prover’s initial state iff the following conditions
are satisfied:

l Completeness: For every /r there exists c such
that

l S0zlndnes.s: For every k thc:rr exists c such lhat,

F’x V /z itril > Pr [Oacccpl> R] 1 I-c (JJ(-~ .

Thus, we have replaced t.hc occurrences of .c E L in
Proposition 1 by 12, and used PPP rather than P in the
soundness condition since we are restricting to weak
provers. As we mentioned in our discussion in Sec-
tion 3, while the order of quantification in the state-
ment of soundness is irrelevant in the case of strong

provers, it does play a role in the case of weak provers.
In particular, if we had stated our soundness condi-
tion so that the choice of “sufficiently large Z” might
depend ou the protocol P’, all we would be able to
prove is that for every k and every protocol P’, there
exists c such that

Y* x V b init > Pr [Oaccepl> R] 2 1 - c]z]-~ .

We remark that the weak interactive protocols result-
ing from the interactive proofs and zero knowledge
proofs we are aware of satisfy the stronger notion of
soundness we have used in our definition.

In addition to proving the analogues of results hold-
ing in the context of strong provers, we can reason
about the interactive proofs of [FFS87, TW87] di-
rectly in terms of the notions of knowledge and gen-
eration we have defined in previous sections. For ex-
ample, we can characterize proofs that the prover can
generate some y satisfying R(z, y) just as we charac-
terized interactive proofs, in the case that R(x, y) is
testable in BPP.

Proposition 11: Given a relation R(x, y) testable in
BPP, a weak interactive protocol (P, V) is a weak in-
teractive proof that the prover can generate some y
satisfying /<(~,y) iff the following conditions are sat-
isfied :

l Compldeness: For every k there exists c such
that

P x v /= init >

Pr [R(+, s) > Oaccept] 3 1 - c]x]-~

l Sozrndness: For every probabilistic, polynomial-
time P’,

P’ x V + accepi I) ~~PPBAy.R(x, y)

where A is the set of points of P’ x V at which
the verifier has accepted.

Notice that in the soundness condition, we have
accept 3 Gp BPP~Ay.R(z,y) rather than Oaccepl >
GBPP,Ay.IZ(~, y). The first clar~sc says tha.t. the prover P
can generate some y such that R(x,y) at the point
when tlie verifier accepts, as required by [TW87], and
not at, the initial point as would be the case with the:
stxwrrd clause. This is one of the differences hetwecti
the definitions of [TW87] and [FFS87]. A second dif-
ference between the two definitions is that the sound-
ness condition of [FFS87] is such that we can state
the soundness condition above in terms of the system
PPP x V instead of P’ x V. We return to these points
in the full paper.

145

7 Conclusions References

The main contribution of this work lies in suggest-
ing notions of knowledge appropriate for interactive
proofs, characterizing interactive proofs in terms of
these notions, and proving, again in terms of these
notions, that the prover in a zero knowledge proof sys-
tem does not leak any information other than ,the fact
it set out to prove. Roughly speaking, we have shown
that a zero knowledge proof system for 2 E L satisfies
the following property, which we call knowledge secu-
rity: the prover is guaranteed that, with high proba
bility, if the verifier will practically know a fa.ct ‘p at
the end of the proof, it practically knows t E L, > cp at
the start. We have also formalized the notion of know-
ing how to generate, and shown that zero knowledge
proofs also satisfy an analogous property of geaeraiSon
seczlrily. (The precise formulations of knowledge and
generation security are provided by the statements of
Theorems 5 and 6.) It is currently an open question
whether either of these notions of security character-
izes zero knowledge (that is, say, whether an interac-
tive proof that satisfies the property of knowledge se-
curity is also a zero knowledge proof). We ca.n show,
however, that any protocol that satisfies the knowl-
edge security property is rel:ognilion zero knowledge,
as defined in [DS88]. We discuss this issue in greater
detail in the full paper.

We feel that these security results shed some light
on the type of security zero knowledge proofs pro-
vide. Our theorems provide support for the defini-
tions of interactive proofs and zero knowledge and
our model provides a good semantic setting for such
an analysis. Some of the definitions, chiefly that of
practical knowledge, are quite subtle. Many straight-
forward definitions one may try fail by being inap-
propriate for the cryptographic setting and not pro-
viding a useful sense in which zero knowledge proof
systems provide security. A;s Feige, Fiat, and Shamir
write in [FFS87], “the notil3n of “knowledge’ is very
fuzzy, and a-priori it is not c.lear what proofs of knowl-
edge actually prove.” We hope to have established a
framework within which such questions can now be
answered.

Acknowledgments

We would like to thank Rion Fagin, Alan Fekete, Oded
Goldreich, Moshe Vardi, and Jennifer Welch for their
useful comments on these ideas and their suggestions
on how to improve the presentation of this work.

[BC86]

(CM861

[DM86]

[DS88]

[FFS87]

[FII88]

[FI86]

[For871

[FZ87]

[FZ88]

G. Brassard and C. Crepeau, Non-
transitive transfer of confidence: A per-
fect zero-knowledge interactive protocol
for SAT and beyond, Proc. 27th IEEE
Symp. on Foundations of Computer Sci-
ence, 198f.3, pp. 188-195.

K. M. Chandy and J. Misra, How pro-
cesses learn, Distributed Computing l:l,
1986, pp. 40-52.

C. Dwork and Y. Moses, Knowledge and
common knowledge in a Byzantine envi-
ronment I: crash failures (extended ab-
stract), Theoretical Aspects of Reasoning
about Knowledge: Proceedings of the 198ti
Conference (J. Y. Halpern, ed.), Morgan
Kaufmann, 1986, pp. 149.-170. To appear
in Information and Computation.

C. Dwork and L. Stockmeyer, Interactive
proof systems with finite state verifiers
(extended abstract), 1988. Unpublished
manuscript.

U. Feige, A. Fiat, and A. Shamir, Zero
knowlcdgc proofs of idelll,it.y, Proc. 19111
A CM Symp. on Theorg of Compuling,
1987, pp. 210-217.

R. Fagin and J. Y. Halpern, Reasoning
about knowledge and probability: prelim-
inary report, Proceedings of IhP Secor~d
Conference on Theoretical Aspects of RN-
soning about Knowledge (hl. Y. Vardi, ed.).
Morgan Kaufmann, 1988, pp. 277-293.

M. J. Fischer and N. Immerman, Foun-
dations of knowledge for distributed sys-
tems, Theoretical Aspects of Reason,ing
about Knowledge: Proceedings of the 1986
Conference (J. Y. Halpern, ed.), Morgan
Kaufmann, 1986, pp. 171-186.

I,. Fortnow, The corrlplcxity of perf<>ct
z;c‘ro knowledge, Proc. /9/h AC’hf Symp. on
Theory uf Computing, 1987, lq’. 204 20!).

M. .I. Fischer and I,. D. XII&, Rclnlivt
Kn.o.wledge and Belief (Fztended A6sfruct),
‘I%c.hnical Report. YAl,~:IJ/r>CS~rI~-r,89,
Yale U.rriversity, December 1987.

M. J. Fischer and L. D. Zuck, Uncertain
Knowledge in Distributed Systems, Tech-
nical Report YALEU/DCS/TR-604, Yale
University, January 1988.

146

[GHY85] A. Gahl, S. Haber, and M. Yung, A private
interactive test of a boolean predicate and
minimum-knowledge public-key cryptosys-
terns, Proc. 26th IEEE Symp. on Founda-
tions of Computer Science, 1985, pp. 360-
371.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff,
The knowledge complexity of interactive
proof systems, PTOC. 17th ACM Symp. on
Theory of Computing, 1985, pp. 291-394.

[GMW8G] 0. G o c rcich, S. Mica.li, and A. Wigder- 1 I

[GS87]

[Had871

[H&37]

[ll F85]

[HM84]

[HZ871

son, Proofs that yield nothing but their va-
lidity and a methodology of crypotgraphic
design, Proc. 27th IEEE Symp. on Foun-
dations of Computer Science, 1986.

S. Goldwasser and M. Sipser, Privatr coins
versus public coins in interactive proof sys-
tems, Randomness and Computation (S.
Micali, ed.), JAI Press, 1987. Extended
Abstract available in Proc. 18th ACM
Symp. on Theory of Computing, 1986.

V. Hadzilacos, A knowledge-theoretic
ana.lysis of atomic commitment protocols,
Proc. 6th ACM Symp. on Principles of

Database Systems, 1987.

J. 1’. Halpern, Using reasoning about
knowledge to analyze distributed systems,
Annual lkvifw of Compalcr Science, Vol.
J A11nun.1 R.eviews Inc., l!)87, pp. 37-68. -1

J. Y. Halpern and R. Fagin, A formal
model of knowledge, action, and commu-
nicxt.ion in distributed systems: prelim-
inary report, Proc. 4th ACM Symp. on
Frinciples of Distributed Computing, 1985,
pp. 224-236.

J. Y. Halpern and Y. Moses, Knowledge
and common knowledge in a distributed
environment, PTOC. 3rd ACM Symp. on
Principles of Distributed Computing, 1984,
pp. 50-61. A revised version appears as
IBM Research Report RJ 4421, Aug., 1987.

J. Y. Halpern and L. D. Zuck, A lit-
tle knowledge goes a long way: simple
knowledge-based derivations and correct-
ness proofs for a family of protocols, Proc.
61h ACM Symp. on Principles of Dis-
tn’bnted Computing, 1987, pp. 269-280. A
revised version appears as IBM Research
Report RJ %57, Oct.., 1987.

[LR86J

[MDH86]

[Moo851

[Mos88]

[MT881

[NT871

[Ore871

PRw

[TW87]

R. Ladner and J. Reif, The logic of dis-
tributed protocols (preliminary report),
Theoretical Aspects of Reasoning about
Knowledge: Proceedings of the 1986 Con-
ference (J. Y. Halpern, ed.), Morgan Kauf-
mann, 1986, pp. 207-222.

Y. Moses, D. Dolev, and J. Y. Halpern,
Cheating husbands and other stories: a
case study of knowledge, action, and com-
munication, Dislribuled Computing 1:3,
1986, pp. 167-176.

R. C. Moore, A formal theory of knowl-
edge and action, Formal Theories of the
Commonsense World (J. Hobbs and 1~. C.
Moore, eds.), Ablex Publishing Corp.,
1985.

Y. Moses, Resource-bounded knowledge,
Proceedings of the Second Conference on
Theoretical Aspects of Reasoning alout
Knowledge (M. Y. Vardi, ed.), Morgan
Kaufmann, 1988, pp. 261-295.

Y. Moses and M. Tuttle, Programming si-
multaneous actions using common knowl-
edge, Algorithmica 3, 1988, pp. 121-169. A
preliminary version appeared in Proc. 27th
IEEE Symp. on Foundations of Computer
Science, 1986.

G. Neiger and S. Toueg, Substituting for
real titne and common knowledge in asyn-
chronous distributed systems, Proc. 6th
ACM Symp. on Principles of Distributed
Computing, 1987, pp. 281-293.

Y. Oren, On the cunning power of cheat-
ing verifiers: some observations about
zero knowledge proofs, PTOC. 28th IEEE
Symp. on Foundations of Computer Sci-
ence, 1987, pp. 462-471.

R. Parikh and R. Ramanujam, Distributed
processes and the logic of knowledge, PFOC.
of the Workshop on Logics of Programs,
1985, pp. 256-268.

M. Tompa and H. Wall, Random self-
reducibility and zero knowledge interactive
proofs of possession of information, Proc.
28th IEEE Symp. on Foundations of Com-
puter Science, 1987.

147

