A Knowledge-Based Analysis of Zero Knowledge

(Preliminary Report)

Joseph Y. Halpern
IBM Almaden Research Center
San Jose, CA 95120

Yoram Moses

Weizmann Institute
Rehovot, 76100

Israel

Abstract: While the intuition underlying a zero
knowledge proof system {GMR85] is that no “knowl-
cdge” is leaked by the prover to the verifier, re-
scarchers are just beginning to analyze such proof sys-
tems in terrus of formal notions of knowledge. In this
paper, we show how interactive proof systems mo-
tivate a new notion of practical knowledge, and we
capture the definition of an interactive proof system
in terms of practical knowledge. Using this notion of
knowledge, we formally capture and prove the intu-
ition that the prover does not leak any knowledge of
any fact (other than the fact being proven) during a
zero knowledge proof. We extend this result to show
that the prover does not leak any knowledge of how to
compute any information (such as the factorization of
anumber) during a zero knowledge proof. Finally, we
define the notion of a weak interactive proof in which
the prover is limited to probabilistic, polynomial-time
computations, and we prove analogous security results
for such proof systems. We show that, in a precise
sense, any nontrivial weak interactive proof must be
a proof about the prover’s knowledge, and show that,
under natural conditions, the notions of interactive
proofs of knowledge defined in [TW87] and [FFS87)
are instances of weak interactive proofs.

The work of the second author was supported in part by a Sir
Charles Chlore fellowship. The work of the third author was
supported in part by the Cffice of Naval Research under Con-
tract N00014-85-K-0168, by the National Science Foundation
under Grants DCR-83-02391 and CCR-8611442, and by the
Defense Advanced Research Projects Agency (DARPA) under
Contract N00014-83-K-0125.

RIGHTS

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM-0-89791-264-0/88/0005/0132 $1.50
i,

132

Mark R. Tuttle
MIT Laboratory for Computer Science
Cambridge, MA 02139

1 Introduction

The notions of interactive proof and zero knowl-
edge, introduced by Goldwasser, Micali, and Rack-
off in [GMRS85], have been the subject of extensive
research (see, for example, [BC86, FFS87, For87,
GHY85, GMW86, GS87, Ore87, TW87}). Informally,
an interactive proof is a two-party conversation in
which an infinitely powerful “prover” tries to con-
vince a polynomial-time “verifier” of the truth of some
fact ¢ (typically of the form z € L) through a se-
quence of interactions. Roughly speaking, such an
interactive proof is said to be zero knowledge if, when-
ever ¢ holds, the verifier is able to generate on its own
the conversations it could have had with the prover
during an interactive proof of ¢. Intuitively, the ver-
ifier does not learn anything from such conversations
with the prover (other than the fact ¢) that it could
not have learned on its own by generating these con-
versations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is
that which the prover initially set out to prove.

This informal discussion makes it quite clear that
our intuition concerning interactive proofs and zero
knowledge is intimately related to a notion of knowl-
edge. While this intuition is quite compelling, it is
based on an operational notion of being able 1o gen-
erate whose formal relationship to knowledge is not
immediately obvious. It is this relationship that is
the focus of our paper.

The formal notions of knowledge needed to cap-
ture our understanding of interactive proofs and zero
knowledge are far more subtle than the standard
information-theoretic notion of knowledge that has
been used successfully in the analysis of distributed
systems (see, for example, [CM86, DM86, FI86,
Had87, HM84, HZ87, LR86, MT88, NT87, PR85]; see
[Hal87] for an overview). Since both probability and
the computational power of the prover and verifier

RIGHTS

play crucial roles in the definition of zero knowledge,
the notions of knowledge used to reason about zero
knowledge must take these issues into account. It is
relatively straightforward to extend the standard no-
tion of knowledge to include probability. Qur defini-
tion of probabilistic knowledge is based on definitions
given by Fagin and Halpern in [FHI88]. Dealing with
complexity, however, is more difficult. The approach
we use is based on the notion of resource-bounded
knowledge introduced by Moses in [Mos88]. While a
number of extensions of resource-bounded knowledge
are possible, we believe ours are well-suited to the
context of cryptographic protocols, as well as other
contexts.

An issue related to the notion of knowing a fact is
that of knowing how to perform various operations.
For example, there is a difference between knowing
the fact that a certain number is a product of two
primes and knowing how fo generate the two prime
factors. Zero knowledge proofs are not intended to
leak any knowledge of this kind as well as any knowl-
edge of facts. While this notion of “knowing how”
has also been of great interest in Philosophy and Al
(see [Moo85]), standard notions of knowledge do not
capture this aspect of knowledge. To do so, we define
a notion of knowing how to generate a y satisfying a
relation R(r. y), within given resource bounds.

The main contributions of this paper are:

o \We capture the definition of an interactive proof
using knowledge and probability. We then show
how interactive proofs motivate the definition of
practical knowledge, and capture the definition of
an interactive proof in terms of practical knowl-
edge.

e Using practical knowledge, we prove that with
high probability the verifier in a zero knowledge
proof of # € L knows a fact ¢ at the end of the
proof iff it knows z € L O ¢ at the beginning of
the proof. Intuitively, this captures the idea that
zero knowledge proofs do not “leak” knowledge
of facts other than those that follow from = € L.

e We define a notion of knowing how to generate ay
satisfying a relation R(z,y), and prove that with
high probability il the verifier in a zero knowl-
edge proof of # € L knows how to gencrate a y
satisfying R(z,y) at the end of the proof, then it
knows how to do so at the beginning as well. This
captures our intuition that at the end of a zero
knowledge proof the verifier can not do anything
that it could not do at the beginning.

e We consider weak interactive proofs, in which the
prover is restricted to probabilistic, polynomial-

i,

133

time computations (and hence is no longer in-
finitely powerful). This is the most relevant con-
text in practice. While interesting interactive
proofs for membership in a language do exist
(see [GMR85, GMW86]), we prove that any lan-
guage L having a weak interactive proof is con-
tained in BPP, and hence the verifier can deter-
mine whether z € L on its own without con-
sulting the prover. Consequently, we are led
to consider weak interactive proofs about the
prover’s initial state (that is, the prover’s knowl-
edge) rather than weak interactive proofs of lan-
guage membership. We then proceed to show
that, under natural conditions, the notions of in-
teractive proofs of knowledge defined in [FFS87]
and [TW87] are instances of weak interactive
proofs. Finally, we show that zero knowledge
weak interactive proofs guarantee the same type
of security with respect to the facts they prove as
zero knowledge interactive proofs guarantee with
respect to language membership.

We believe that this analysis provides a great deal
of insight into (and support for) the definitions in
[GMR85] and their extensions to the case of proofs
about knowledge in [FF'S87, TW87]. None of the tech-
nical results is very deep; the difficulty was in coming
up with the right notions. We believe that our view-
point provides a good framework in which to think
about these definitions and their appropriateness.

Fischer and Zuck [FZ87] also consider notions of
knowledge appropriate for cryptographic protocols.
They give definitions that are related to the ones given
here (we discuss the relationship in the full paper) and
use their definitions to analyze an interactive proof of
quadratic residuousity.

The rest of the paper is organized as follows. In the
next section, we briefly review how to ascribe knowl-
edge to processors in a distributed system, how to ex-
tend the standard definition of knowledge to include
probability, and how to account for bounds on the pro-
cessors’ computational resources. In Section 3 we re-
view the definition of an interactive proof, and capture
this definition in terms of probabilistic knowledge. In
Section 4 we show how interactive proofs motivate the
definition of practical knowledge, and capture the def-
inition of an interactive proof system in terms of prac-
tical knowledge. In Section 5 we define zero knowl-
edge. This definition of zero knowledge is a weaker
definition than that given in [GMR85], and hence our
results will hold for [GMRS85] as well. In Section 5.1
we make precise (using knowledge) the intuition that
in a zero knowledge proof the verifier does not know
any more at the end than it did at the beginning. In
Section 5.2 we define the notion of “knowing how,”

RIGHTS

and show that, in a precise sense, the verifier cannot
do any more at the end cf a zero knowledge proof
than it could at the beginning. Finally, Section 6 in-
troduces weak interactive proofs, relates them to the
proofs of knowledge of [FFS87, TW8T7], and proves
that zero knowledge weak interactive proofs are se-
cure in the senses defined above.

2 Knowledge

Our analysis of interactive and zero knowledge proof
systems depends heavily on the definitions of knowl-
edge, probabilistic knowledge, and resource-bounded
knowledge. We now briefly review these definitions.
Since we will be considering only probabilistic proto-
cols running in synchronous systems, we will restrict
the generality of these definitions to this context.
We begin with a sketch of our formal model of com-
putation (cf. [DM86, MTE8]). The distributed sys-
tems we consider consist of a finite collection of pro-
cessors, each pair of which is connected by a two-way
communication link. Processors share a glcbal clock
that starts at time 0 and proceeds in discrete incre-
ments of one. Computation in the system proceeds in
rounds, round m lasting from time m — 1 to time m.
During a round, every processor first performs some
(possibly probabilistic) local computation, then sends
messages to other processors, and then reccives all
messages sent to it during the round. Each processor
begins with some initial local state at time 0. At any
given time, a processor’s local state consists of the
current time on the global clock, its initial state, the
history of messages it has received from other pro-
cessors, and the history of coin flips it has used. A
global state is a tuple of local states, one for each
processor. We think of each processor as following a
protocol which specifies in any given state what mes-
sages each processor is required to send as well as
what actions it is required to perform as a (possibly
probabilistic) function of the processor’s local state.
An infinite execution of such a protocol (an infinite
sequence of global states) is called a run. We define
a system to be a set of such runs, often the set of all
possible runs of a particular protocol. Given a run r
and a time m, we refer to (r,m) as a point, and we
say that (r,m) is a point of the system R if r € R.
We denote the global state at the point (#,m) (that
is, the global state at time m in r) by r(m), and we
denote the local state of processor ¢ in r(m) by »,(m).
We now turn to the standard definition of knowl-
edge in distributed systems (cf. [CM86, FI36, HF85,
1IM84, PR85]). The intuition behind this definition
is that a processor can be said to know that a fact ¢

1z

134

is true if, based on its information about the current
state of affairs, ¢ must be true. Roughly speaking,
therefore, the processor q is said to krnow @ at a point
(r,m) if ¢ is true of all points ¢ considers possible at
(r,m). Since a processor’s knowledge depends on the
set from which the points it considers possible may
be chosen, a processor’s knowledge is always defined
with respect to a system K. We assume that we have
a collection of primitive facts about the system, facts
such as “the value of the variable x is a prime num-
ber” that do not involve the processors’ knowledge.
Each fact ¢ is identified with a set 7(y) of points in-
terpretad as the set of points at which ¢ holds. We say
that a point (r,m) in a system R satisfies p, which
we denote by (R,r,m) |= ¢, if (r,m) € 7(p). We
often write (r,m) | ¢ rather than (R,r,m) = ¢
when the system R is clear from context. We say
that a fact ¢ is valid in the system R, which we de-
note by R k= ¢, if (r,m) k= ¢ for all points (r,m)
of R. We extend this collection of primitive facts to
a logical language by closing under the usual boolean
connectives and several modal operators. Two modal
operators included are the linear temporal logic op-
erators O and ©: the formula Oy holds at a point
(r,m) iff the formula ¢ holds at all points (r, m') with
m' > m; and Oy holds at (r,m) iff the formula ¢
holds at some point (r,m'} with m’ > m. Most in-
teresting, however, are the modal operators K, onc
for every processor ¢, where the formula K;p is read
“q knows ¢." As previously indicated, KNy is defined
as follows: (r,m) = Kgp iff (', m) = ¢ for all points
(r',m) of R such that r¢(m) = ri(m). A processor
therefore knows precisely those facts that follow from
the information contained in its local state.

We are often interested in facts that, although they
do not hold in all the states that a processor con-
siders possible, do hold at a certain fraction of those
points. When reasoning about probabilistic systems,
it is important to be able to make statements such as
“according to ¢, the fact ¢ holds with probability «.”
Intuitively, such a statement might mean that « is
the conditional probability of ¢, given ¢’s local state.
Fagin and Halpern formalize and generalize this intu-
ition in [FH88] as follows. Given a system R, they
associate with every processor ¢ and every point ¢ =
(r,m) a probability space P(q,¢) = (Sy,e, Xg.e» ftg,c)
where S, is a set of points, X . is a set of measurable
subsets of Sy ¢, and pg . 1s a probability measure. In-
tuitively, the set S, . is a subset of the points ¢ thinks
possible at ¢, and pg . determines the probability with
which ¢ considers a particular point in S; ¢ to be the
actual point ¢. The set S;.(¢) is then defined to
consist of those points in S; . at which ¢ holds. In
order to reason about probability, we allow formulas

RIGHTS

of the form Pr,(p) > «, with semantics defined by
¢ = Prop > a ifl pg o(Sq.o(p)) 2 @} We define K
to be an abbreviation for K(Pry(¢) > a), which in-
tuitively says that processor ¢ knows that ¢ must hold
with probability at least «. Finally, we define E%¢ to
be an abbreviation for Ag Ko, where the conjunction
is taken over all the processors in the system. Intu-
itively, % means that every processor knows that ¢
must. hold with probability a.

This definition of probabilistic knowledge leaves
open a great deal of flexibility in the choice of proba-
bility spaces P(g,c). While it may seem at first that
the correct choice for S, . is the set of all points ¢ is
unable to distinguish from ¢, the analysis in this paper
has shown that, due to the subtle interaction between
the nondeterministic and probabilistic choices made
by processors, there are good reasons to choose S to
be a subset of these points. Consider, for example, the
system determined by two processors ¢ and ¢’ running
the following one-round protocol: processor ¢’ starts
with a one-bit initial state, flips a fair coin, and per-
forms a particular action a iff the outcome of the coin
toss is equal to the bit in its mnitial state. Clearly, this
system consists of four runs of the form 7 7, where b
is the value of the bit in ¢"’s initial state and f is
the outcome of the coin flip. Now let us consider the
probability with which q knows at titne O that ¢’ will
perform a. Suppose that with every time § point we
assoctate the probability space consisting of all time 0
points (notice that ¢ considers all such points to be
possible at time 0). Since the only probability distri-
bution we have is on the coin flipped by ¢, the only
nontrivial events to which we can assign a probability
are {(ro.n,0),(r1,5,0)} (“the coin lands heads”) and
{(r0,+,0),(r1+,0)} (“the coin lands tails”); we cannot
assign a probability to the event “¢’ performs a”! Sup-
pose, on the other hand, that with every time 0 point
we associate the probability space of time 0 points
having the same initial global state; that is, we can as-
sociate with a point of the form (r ;,0) the probabil-
ity space {{rs 5,0), (s, 0)}. In this probability space,
we assign each of {(ry 4, 0)} and {(rs,0)} probability
1/2. Counsequently, at every point q considers possible
at time 0, the probability according to ¢ that ¢’ per-
forins a 1s 1/2, and it follows that ¢ knows with prob-
ability 1/2 that ¢’ performs a, as we would expect.
(This example is discussed in greater detail in [F1188].)

This observation leads us to choose the probabil-
ity space associated with the processor ¢ and point

!Fagin and Halpern actually write mq{¢) > « instead of
Pry(¢) > a, and in fact define a much richer language than we
do here. They also show how to deal with the possibility of non-
measurable sets. As our sets §g () will always be measurable,
we omit these details here.

i,

135

¢ = (r,m) as [ollows. We take S;. to be the
set of points (', m) such that r'(m) = »(m) (that
is, the set of points (r’,m) having the same global
state as (r,m)). Notice that in our model, given a
global state at time m, each run having that global
state at time m is determined by the sequence of
coins flipped after time m in the run. Consequently,
each set S, () can be identified with a set of coin
flips, which in this paper will always be measurable.
The probability measure p4 . therefore assigns to the
event S, .(¢) the probability of the set of coin flips
identified with S, (). Notice that having made this
choice of probability spaces, the operators Pr; are
identical for all ¢, and hence we will omit subscripts
in the remainder of this work.?

Returning to the standard definition of knowledge,
notice that a processor is said to know all facts that
follow from its local state, regardless of the compu-
tational complexity of determining that these facts
hold. When analyzing cryptographic protocols, where
the computational intractability of a problem is used
to keep secret certain pieces information, such a no-
tion of knowledge is clearly inappropriate. In [Mos88],
Moses introduces a notion of resource-bounded knowl-
edge that takes into account bounds on a processor’s
computational resources. The intuition behind this
notion is that the only way a resource-bounded pro-
cessor can know a fact is if it can compute that it
knows this fact. In this work we are concerned with
the facts a processor can compute using a probabilis-
tic test running in time polynomial in some parameter
depending on its current state (usually that parame-
ter will be |z, where z is the common input). Thus,
we consider only BPP knowledge, which seems most
appropriate in the context of interactive proofs. Given
a system R, a probabilistic algorithm M is said to be
a BPP test for K,p in R if, for all points (r,m) of R,
M’s computation starting from ry(m) runs in time
polynomial in [z|, accepts with probability at least 2/3
if (r,m) |= K, and rejects with probability at least
2/3if (r,m) £ K, . We say that ¢ BPP-knows ¢ at
a point (r,m) of R, denoted by (r,m) | Kfppgo, iff

2We note that there are at least two notions of proba-
bilistic knowledge that seem relevant in the context of cryp-
tographic protocols, the one given here and another outlined
in [FZ88] (the spirit of which can be captured in the frame-
work of [FH88]). Each has its own philosophical advantages,
and we refer the reader to [FH88, FZ88] for extended discus-
sions. However, since the definitions of interactive proofs and
zero knowledge state conditions on the objective probability of
events at time 0, we will be concerned only with a processor's
probabilistic knowledge at time 0, and at time 0 the two def-
initions of probabilistic knowledge coincide. We have chosen
the definition outlined here since the fact that the probabil-
ity spaces are independent of the agent simplifies our analysis
slightly.

(r,m) |= K, and there is a BPP test for K ¢ in R.
Thus, a processor BPP-knows ¢ if it knows ¢ and
there is a BPP algorithm with which it can compute
that it knows . (Of course, there is nothing special
about the values 2/3 used in the definition of BPP
tests. We could have used any value bounded away
from and above 1/2.})

Similar notions of knowledge can be defined with re-
spect to other complexity classes. We refer the reader
to [Mos88] for a detailed discussion of a number of
interesting properties of these notions of knowledge.

3 Interactive Proof Systems

In this section, we first review the notion of an interac-
tive proof system (our definitions are essentially those
of [GMR85]}, and then show that the definition of an
interactive proof system can be captured in terms of
probabilistic knowledge.

An interactive prolocol is an ordered pair (P,V)
of probabilistic Turing machines. P and V share
a read-only input lape; each has a private one-way,
read-only random tape; each has a private work tape;
and P and V share a pair of one-way communication
tapes, one from P to V being write-only for P and
read-only for V, and the other from V to P being
write-only for V and read-cnly for P. A run of the
protocol (P, V) is defined as follows. To begin with,
the input tape is initialized with some common in-
put, say r; each random tape is initialized with an
infinite sequence of random bits; each work tape may
or may not be initialized with an initial string;3 and
the communication tapes are initially blank. The run
then proceeds in a sequence of rounds. During any
given round, V first performs some internal computa-
tion making use of its work tape and other readable
tapes, and then sends a message to P by writing on
its write-only communication tape; P then performs
a similar computation. Either P or V may halt the
interaction at any time by entering a halt state. V
accepls or rejects the interaction by entering an ac-
cepting or rejecting halt state, respectively, in which
case we refer to the resulling run as either an accept-
ing or rejecting run. The running time of P and V
during a run of (P, V) is the number of steps taken
by P and V, respectively, during the run. We as-
sume that V is a probabilistic Turing machine run-
ning in time polynomial in |z|, and hence that it can

3The motivation for allowing initial values on the verifier's
and prover’s work tapes can be found in [Ore87, TW&7]. Allow-
ing initial information on the prover’s worktape is particularly
important in the case of resource-bounded provers considered
in Section 6.

RIGHTS L

perform only probabilistic, polynomial-time compu-
tations during each round. For now we make no as-
sumptions about the running time of P, although in
Section 6 we shall restrict attention to probabilistic,
polynomial-time provers.

The system corresponding to runs of the interactive
protocol (P, V) can be described in terms of the com-
putational model defined in Section 2 as follows. The
system consists of two processors, p and v, running
the protocols P and V, respectively. A run is an infi-
nite sequence of global states, where cach global state
consists of a local state for each of p and v. Proces-
sor p’s local state is a tuple consisting of a description
of the Turing machine P, the current round number,
the contents of the input tape, the finite prefix of its
random tape read up to this point, the contents of
its work tape, the contents of the two communication
tapes, and the position of the tape heads on each of
these tapes; processor v's local state is defined in a
similar fashion. We denote by P x 17 the system con-
sisting of all possible runs of (P, V), by P x VPP the
system consisting of the union of the systems P x V*
for all probabilistic, polynomial-time V*, by P x V the
system consisting of the union of the systems P* x V/
for all Turing machines P*, and by PFP x V' the sys-
tem consisting of the union of the systems P* x V
for all probabilistic, polynomial-time P*. Note that
we distinguish p and v, the “prover” and the “verifier”
respectively, from the protocols that they are running.
In the system P x V, the verifier is always running the
same protocol (namely V) in all runs. In the system
P x VPP the verifier may be running different proto-
cols in different runs.

Let us denote by (P(s), V(1))(z) the random vari-
able assuming as values the runs of (P, V) (according
to the probability distribution generated by the pro-
tocol (P,V)) in which the prover’s work tape is ini-
tialized with s, the verifier’s work tape is initialized
with ¢, and the input tape is initialized with z. An
interactive protocol (P, V) is said to be an inferactive
proof system for a language L if the following condi-
tions are satisfied:

o Completeness: For every & and sufliciently
large x, and for every s and t, if ¢ € L then

Pr[(P(s), V(1))(z) accepts) > 1 — |z|™* .

e Soundness: For every k and sufficiently large z,
for every P*, and for every s and ¢, if £ &€ L then
Pr(P*(s), V(1))(z) accepts] < |o]™*.

We refer to p as the “good prover” when it is run-
ning P, and to v as the “good verifier” when it is

RIGHTS

running V. The completeness condition is a guaran-
tee to both the good prover and the good verifier that
ifz € L, then with overwhelming probability the good
prover will be able to convince the good verifier that
x € L. The soundness condition is a guarantee to
the good verifier that if 2 ¢ L, then the probability
that an arbitrary (possibly malicious) prover is able
to convince the good verifier that z € L is very low.

Notice that in our soundness condition, the “suffi-
ciently large " depends only on the value of k, and
not on the choice of P*. In the original definition
of interactive proof given in [GMRRB5], it is not clear
whether the dependence is on £ only or on both k and
17*. As Shafi Goldwasser pointed out. to us, in the case
of infinitely powerful provers, it doesn’t matter what
choice we make. (More formally, an interactive proof
system (P2, V) is sound with respect to one choice iff
it is sound with respect to the other; we prove this
in the full paper.) However, the choice docs make a
difference in the case of resource-bounded provers, as
we shall see in Section 6.

‘We can translate these completeness and soundness
conditions immediately into statements about proba-
bility in our language as follows. Let init be the fact
holding only at points at the beginning of a run, and
let accept be the fact holding only at points at which
the verifier has accepted.

Proposition 1: An interactive protocol (P, V) is an
mteractive proof system for a language L ifl the fol-
lowing conditions are satisfied:

e Completencss: For every k there exists ¢ such

that

PxV EmitD
Prirel DOaccept} > 1 — ele]™.

e Soundness: For every & there exists ¢ such that

PxViimitd
Pr{Cacceptd z€ L] > 1~cle|7*.

The constant ¢ above is necessary due to the fact
that the probabilistic guarantees made by the defi-
nition of an interactive proof system hold only for
“sufficiently large z.” Notice that if 1 — c|2|7% is
negative, then Pr(p) > 1 — clxl'k is equivalent to
Pr(w) > 0, which is valid for every fact ¢. Conse-
quently, by choosing e sothat 1 —-¢ |:c|'k < 0 for insuf-

ficiently large & we obtain a formula holding for all z,

and hence valid at all points of the system. While this
constant ¢ does not appear in the formal definition of
an interactive proof system, an equivalent definition

i,

137

of interactive proof systems can be formulated making
use of such constants just as we do in Proposition 1.

Notice that, according to Proposition 1, a formula
such as Pr(z € L D accept) > 1 — c|z|~* holds
at time 0 but not necessarily at later points. After
the verifier has rejected, for example, it is clearly not
the case that with high probability the verifier will
eventually accept. In general, even before the verifier
has actually decided to accept or reject, a particularly
bad sequence of coin flips can significantly lower the
verifier’s chances of eventually accepting. Intuitively,
this is due to the fact that the verifier’s probability
space is changing with every step. (In our case, the
probability space we associate with a point is the set
of points having the same global state, a set that de-
creases in size with every step.) Consequently, the
antecedent init is crucial in the formulas above.

Since the facts appearing in Proposition 1 are valid,
all processors know these facts al all points. Further-
more, all processors know the fact tnit whenever it
holds. Since from K init and K (init D>) we can
deduce K ¢, we can deduce the following corollary to
Proposition 1.

Corollary 2: An interactive protocol (P, V) is an in-
teractive proof system for a language L iff the follow-
ing conditions are satisfied:

e Completeness: For every k there exists ¢ such
that

PxV kinitD EX1"" (2 € L D Oaccept).
e Soundness: For every k there exists ¢ such that
P x Vs initd K}~V (Oaccept D 2 € 1),

In other words, (P, V) is complete if both the good
prover and the good verifier know with high proba-
bility that if z € L, then the good prover will con-
vince the good verifier to accept; and (P, V) is sound
if the good verifier knows with high probability that,
no matter what protocol the prover is running, if the
verifier accepts = then € L. It is actually the case
that if (P, V) is sound then every prover also knows
with high probability that if the verifier accepts z then
z € L (that is, we could have replaced K,}—clx'—h by
E1-¢l=I™" in the case of soundness above); we have
chosen this formulation since it is the good verifier’s
knowledge that is essential in the context of sound-
ness.

4 Practical Knowledge

As we have just seen, the definition of an interactive
proof system can be characterized in terms of prob-

RIGHTS

abilistic knowledge. This characterization, however,
is a slight reformulation of the original definition in
terms of very similar concepts. It does not capture,
for example, the intuition that at the end of an inter-
active proof of ¢ € L with the good prover, the good
verifier knows that £ € L despite its limited com-
putational power. In this section we show how the
definition of an interactive proof system motivates a
new notion of practical knowledge which will enable us
to formalize this intuition. In later sections, practical
knowledge will play a crucial role in capturing the se-
curity provided by zero knowledge proof systems.

We have already argued that the notion of resource-
bounded knowledge introduced in [Mos88] seems to
be a natural way of capturing the knowledge of a
resource-bounded processor, with BPP knowledge be-
ing most relevant to the cryptographic setting. Un-
fortunately, there is a notion of “learning” of great
importance to cryptographic protocols (and, in par-
ticular, to interactive proof systems) that can not be
captured directly in terms of BPP knowledge. Con-
sider, for example, a fact ¢ such as “the input x has a
factor smaller than &/z”. At a point in which the pro-
cessor has the factorization of x available to it, say the
factorization happens to be written on its work tape,
and z has a small factor, we might like to say that the
processor knows ¢ despite its limited resources. Re-
call that a processor BPP-knows ¢ iff it knows ¢ and
it has a BPP test for ¢. Assuming that there is no
BPP test for ¢, our processcr will never BPP-know ¢.
This is true even when it has the factorization written
on its work tape. Thus, a naive use of the notion of
BPP knowledge does not seem to allow us to capture
the idea of learning,.

Notice, however, that when a processor finds the
factorization of z on its work tape and hence is able
to determine that ¢ holds, the processor learns a great
deal more than just the fact . 1t actually learns a
fact ¢ that implies ¢, where ¢ is the fact “the fac-
torization of z is on the work tape, and it contains a
factor smaller than \/z”. Since this fact ¥ is clearly
BPP testable, the processor actually BPP-knows .
In other words, the processor learns ¢ as a result of
coming to BPP-know a stronger fact ¢ that implies .
In this sense, the notion of learning ¢ can be captured
in terms of BPP knowledge.

At this point, one might be tempted to define a
notion of learning in which a processor learns ¢ at
a point if at this point it BPP-knows a fact ¢ that
imphes . Unfortunately, this notion of learning is
not very useful to a resource-bounded processor. It
could be, for example, that at every point the pro-
cessor BPP-knows a different fact ¢ implying ¢ (and
hence has “learned” ¢ everywhere) and yet is unable

i,

138

to determine at a particular point which fact ¢ it
should test for in order to determine that it knows ¢.
Alternatively, one might be tempted to define a no-
tion of knowing ¢ with respect to a particular test A/
where, informally, a processor knows ¢ with respect
to A if with the test M the processor can determine
that it knows ¢. We consider such notions to be un-
satisfactory, however, since if knowledge is to be used
for protocol specification it must be possible to ab-
stract the particular tests being used. We note that
the definition of resource-bounded knowledge already
existentially quantifies over such tests (so these tests
do not appear in the notation used), and we do not
want to reintroduce them here.

We take an alternative (and more direct) approach
to capturing learning. The idea is to define a notion
of BPP knowledge of ¢ relative to a set A of points.
We can think of the points of A as the points at which
a processor learns . Roughly speaking, this means
that we have a BPP test for K e that correctly de-
termines whether ¢ knows ¢ at all points of A4, but
may only satisfy weaker requirements off A (in par-
ticular, the test may not be required to accept with
high probability at points off A at which Ky¢ holds).?

More formally, we proceed as follows. We say that
a test M is sound for ¢ at a poiut (r,m), denoted by
(r,m) [= sound(M, @), if (r,m) ¥ ¢ inplies that Af
rejects at (r,m) with probability at least 2/3. Sim-
ilarly, we say that M is complete for ¢ at (r,m).
denoted by (r,m) E complete(M, o), if (r,m) & »
implies that M accepts at (r,m) with probability
at least 2/3. Given a system R, a set A of points
in R, and a fact ¢, we say that “¢ BPP-knows ¢
with respect to A” at a point (r,m), denoted by
(r,m) = K,?PP'Ago, iff

1. (r,m) € A,
2. (r,m) | K ¢, and

3. there is a probabilistic Turing machine M taking
as input the local state of ¢ and running in time
polynomial in |z| (where z is the common input
in the global state »(m)) such that

(a) M is a sound test for K, on R;
that is, R |= sound(M, K p).

(b) M is a complete test for N ¢ on A;
that is, R = ‘in A” D complete(M, K,p)
where ‘in A’ is the fact holding at precisely
those points in A.

4 We remark that Fischer and Zuck define in [FZ287] a notion
of knowing with respect to a Turing machine M which is in-
tended to deal with some of the same problems as our notion of
knowing with respect to a set A. We compare our definitions
with those of [FZ87] in detail in the full paper.

RIGHTS

The first condition is a technical one, which ensures
that knowledge with respect to A can hold only at
points of A. We restrict attention to points in A since
these are the only points of interest (and the only
ones where our test is guaranteed to be correct). The
second condition requires that ¢ actually be known,
as is required by BPP knowledge. The third condition
requires the existence of a test for ¢ that issoundon R
and complete on A.

It is clear that a processor BPP-knows ¢ iff it BPP-
knows ¢ with respect to the set of all points in R, and
hence that the definttion of BPP knowledge with re-
spect to a set of points is a direct gencralization of
BPP knowledge. In fact, it is casy to see that if the
fact ‘in A’ is testable in BPP, then I\':"Pp”‘(p is equiv-
alent to K?PP(‘in A’ A). Furthermore, notice that
we are now able to capture the notion of a processor
learning a fact ¢ as the result of its unexpected ac-
quisition of information. Returning to our example,
let A be the set of points where ¢ has the factorization
of z on its work tape. Let M be the test that rejects
if the factorization of z is not on the work tape or
if the factorization is on the worktape and there are
no small factors. This test M for ¢ is clearly sound
everywhere and complete on A. Thus, when ¢ learns
from the factorization of z on its work tape that ¢
must be true, ¢ knows ¢ with respect to the set A.

The reader may wonder at the asymmetry of our
definition. Why do we require soundness on all of
R., but completeness only on A7 Notice that if we
strengthen the definition to require soundness and
completeness on all of R, then we have essentially
returned to the definition of BI'P knowledge. On the
other hand, suppose we weaken the definition to re-
quire soundness only on A. If membership in the sei A
is casily testable, then such a notion of knowledge may
be of interest. We will, however, be forced to consider
arbitrary sets A in this work, and in this context it
becomes rather uninteresting. For suppose that pro-
cessor q has access to an algorithm M that is guaran-
teed to be sound and complete only on A. Moreover,
suppose that when ¢ runs M repeatedly on its state
re(m) at some point (r,m), it finds that M almost
always accepts. In this case, ¢ knows that if it is at
a point in A, then ¢ holds. But since it may be quite
difficult for ¢ to determine whether it is at a point
in A, this may not be very useful information. With
our definition, ¢ would know that K,¢ (and hence)
holds at this point, regardless of whether the point
is in A (since, by our definition, if ~K,¢ holds, then
M rejects with high probability). Of course, if M al-
most always rejeets on input r,(m), then ¢ can say
nothing without knowing whether (r,m) is in A. We
could instead have required completeness on all of R

i,

139

and soundness on A. In cryptographic applications,
however, it tends to be more important to be able to
learn that ¢ is true than to learn that it is false. This
choice is a matter of taste.

Let us return, now, to the context of interactive
proof systems (P, V) for L. Let us say that a point
of the system P x V is a final point if at that point
the verifier has either accepted, rejected, or otherwise
halted. Consider the set A of final points of P x V,
and consider the test M that accepts at a point if the
verifier has accepted at that point and rejects other-
wise. Intuitively, we would like to say that if « € L,
then the good verifier BPP-knows z € L with respect
to A at the end of a proof of # € L with the good
prover. Unfortunately, the test M is not a sound test
for * € L since on rare occasions the verifier may
incorrectly accept when z € L. In the context of
probabilistic computations, however, a test that fails
on a negligible portion of the cases is practically as
good as one that never fails. Since the soundness and
completeness conditions required by the definition of
knowledge with respect to a set A do not allow for
such freedom, we are led to the following notion of
practical knowledge where these conditions are some-
what relaxed. Practical knowledge plays an impor-
tant role in our analysis of interactive proofs and zero
knowledge.

Recall that M is a sound test for ¢ in R if it is
a sound test for ¢ at all points in the system R.
We would now like to consider such tests M that are
sound tests for ¢ at all points of most runs of R. For-
mally, we say that M is a practically sound test for ¢
if for all k there exists ¢ such that

R E init D
Pr(Dsound(M,K,p)) > 1—¢ |1‘|-k .

Similarly, if A is a set of points in R, we say that M
is a practically complete test for K, on A if for all &
there exists ¢ such that

R = initD
Pr(Dfin A’ D complete(M, K,0)]) > 1 —clz|™" .

Notice that we have ensured that the probabili-
ties used in defining practical soundness and practical
completeness are taken at the beginning of the run
through the use of the antecedent init. This means
that we are effectively considering tests that behave
correctly on all but a small fraction of the runs. We
could have instead considered tests with the stronger
property that they behave correctly at all but a small
fraction of the points considered possible at any point
(by deleting the antecedent init). This latter notion

RIGHTS

can lead to dramatically different results, but does not
seem appropriate for most computer science applica-
tions (in particular, it is not appropriate for capturing
interactive proofs).

We now define “q practically BPP-knows ¢ with re-
spect to A” at a point (r,m), which we denote by
(r,m) = KBPP44p, in precisely the same way as we
defined “¢ BPP-knows ¢ with respect to A,” except
that the soundness and completeness conditions are
replaced by practical soundness and practical com-
pleteness. This notion of knowledge may at first seem
rather strange. Most previously defined notions of
knowledge based on, say, polynomial-time tests have
said that a processor knows ¢ at a point if its test
for ¢ says that it knows . Here, however, since the
tests allowed by the definition of practical knowledge
may be in error on a small fraction of the runs, it is
possible for a processor to have practical knowledge
of ¢ with respect to A at a point in A even though
its test for knowledge of ¢ may not indicate that it
knows ¢. When a processor practically knows ¢ with
respect to A, it knows ¢ and has a test that quite
accurately approximates this knowledge on the set A.

Now, returning to the problem of capturing the in-
tuition that at the end of a proof of £ € L with the
good prover the good verifier learns ¢ € L, let us re-
consider the set A and test M defined above: let A
be the set of final points of P x V, and let M be the
test that accepts at a point if the verifier has accepted
at that point and rejects otherwise. Notice that while
the test M for ¢ is not sound everywhere and not
complete on A, it is praclically sound everywhere and
practically complete on A. As a consequence, we have
the following. We denote by ‘p running P’ the fact
holding at a point ifl at that point the prover is run-
ning the protocol P.

Proposition 3: If (P, V) is an interactive proof sys-
tem for L, then
P xV = (z € LA prunning P’) D
ORBPPA(s ¢ [),
where A is the set of final points of P x V satisfying

‘p running P’

In fact, we can essentially prove the converse of this
proposition as well, which shows that we can charac-
terize the notion of an interactive proof system using
practical knowledge.

Proposition 4: If

P x V* = (z € L A‘p running P’) D
ORBPP Ay e 1),

i,

140

where A is the set of final points of P x V™ satisfy-
ing ‘p running P’, then we can effectively modify V*
to obtain V such that (P, V) is an interactive proof
system for L.

The protocol V is simply the protoccl V* at the end of
which the verifier uses its test for practical knowledge
of z € L to decide whether to accept or reject.

These results tell us that an interactive proof sys-
tem for L is precisely one that guarantees that if the
verifier 1s running against a good prover, then it will
practically know that ¢ € L at the end of the proof,
and it will practically never be fooled (by any prover).

5 Zero Knowledge Proof Sys-
tems

Informally, an interactive proof system (P, V) is zero
knowledge if, whenever x € L, the verifier is able to
generate on its own the conversations it could have
had with the prover during an interactive proof of
z € L. Consequently, the verifier learns nothing as the
result of a conversation with the prover (other than
the fact that z € L) that it could not have learned on
its own by generating the conversation itself.

To make this precise, we first recall the no-
tion of polynomial indistinguishability (cf. [GMRS3,
GMW386, Ore87]). Suppose we have some domain
Dom whose elements are of the form (x,), where 7 is
a vector of values. Further suppose for each (x,3) €
Dom we have two random variables {7, g and V; 4 with
two associated probability distributions. The families
{Uzg : (2,9) € Dom} and {Vig:(x,§) € Dom} are
said to be pelynomially indistinguishable if for every
probabilistic, polynomial-time algorithm M and ev-
ery constant k there exists a constant NV, , such that
for all ¢ with |z| > Ny, and all § with (z,§) € Dom
we have

| Pr[M accepts Uz g] — Pr{M accepts V; g]|
Slal™.

It is important to notice that the probability is being
taken over both the coin flips of M and the distribu-
tions of Uz g and Vz g.

Other notions of indistinguishability are defined
in [GMRS85] (i.e., perfect indistinguishability, statis-
tical indislinguishability, and computational indistin-
guishability). Since polynomial indistinguishability is
implied by each of these notions, our results, which
are proven for polynomial indistinguishability, hold
for these other notions as well.

Finally, an interactive proof system (P, V) for L is
said to be zero knowledge (cf. [GMR85, GMWS8G6]) if

RIGHTS

for every verifier V* there is a probabilistic Turing
machine My . such that

1. My«(t,z) runs in expected timne polynomial
in |z}, and

2. the families {(P(s),V*(t))z): (z,s,t) € Dom}
and {Mv.(t,z) : (z,s,t) € Dom} are polynomi-
ally indistinguishable, where (z,s,t) € Dom iff
r € L, s is a possible input for P, and ¢ is a
possible input for V*.

5.1 Knowledge and Zero Knowledge

In this section we formalize the intuition that if the
verifier can learn a fact ¢ at the end of a zero knowl-
edge proof of x € L, then the verifier can deduce ¢
from 2 € L on its own at the beginning of the proof.
First, we need a short definition. We say that ¢
is a fact aboul the initial state (in a system R) il
(r,m) = ¢ iff (/,m) | ¢ for all points (r,m) and
(r',m') of R with r(0) = +'(0). Thus ¢ is a fact about
the initial state if its truth at a given point in a run
depends only on the initial state in that run.

The following theorem captures our intuition that
the prover does not leak any information to the verifier
during a zero knowiedge proof of £ € L other than the
fact £ € L. Roughly speaking, it says that if ¢ € L
and the verifier has a nontrivial chance of learning
@ at the end of a proof of x € L, then the verifier
can already deduce ¢ from z € L on its own without
interacting with the prover. Consequently, provided
r € L, the only information that a prover leaks to the
verifier in a zero knowledge proof of z € L are facts
that follow from x € L. The proviso that 2 € L is
crucial here. There is nothing in the definition of a
zero knowledge proof to stop the prover from leaking
all sorts of information when z ¢ 1.

Theorem 5: Let (P, V) be a zero knowledge proof
system for L, let V* be an arbitrary verifier, and let ¢
be a fact about the initial state. For every set A of
final pointsin P x V* and every k there exist constants
c and N such that

PxV*E(z€LAinit)D
KL= [ORBPPAy 5 KBFPB(z ¢ [5 o))

where B is the set of initial points in P x V* satisfying
z€L,|z| > N, and Pr(OKBPPAL) > |77,

Proof: Fix a set A and a constant k. The definition
of knowing ¢ with respect to A ensures the existence
of a test M for ¢ that is sound everywhere and com-
plete on A. The definition of a zero knowledge proof

1z

141

systemn (P, V) ensures the existence of a Turing ma-
chine My.(t,z) that approximates (P(s), V*())(z).
Informally, the proof proceeds as follows. Suppose
that from an initial point (r,0) the probability of
reaching a final point at which the test M indicates
that ¢ holds is at least |z|'k. Suppose that from
this initial point we run My-(¢,z) to generate a run
of (P(s), V*(t))(z) and apply the test M to its final
state. If we repeat this procedure roughly lr]k times,
then with high probability we will generate a run at
whose final state the test M will succeed, and hence
with high probability we will learn that if z € L (and
hence the simulating Turing machine My.(¢,z) is ac-
curate), then ¢ must hold. The details of the proof
are left to the full paper. 0O

We note that the same result holds when we replace
practical knowledge by knowledge with respect to a
set of points, but as we have seen in Section 4 the
notion of practical knowledge seems to be of greater
rclevance to interactive protocols.

Stepping back and looking at the statement of The-
orem 5, we see that the result is slightly unsatisfac-
tory. Notice that in the system P x V* the verifier
protocol V* is fixed, and hence known to the prover.
The intuition behind zero knowledge proofs, however,
is that even though the prover does not know the iden-
tity of the verifier, the prover knows that the verifier
learns nothing at the end of the proof other than facts
that follow from = € L. That is, our intuition suggests
that the statement of Theorem 5 should hold in the
system P x VPP, We cannot prove such a result due
to the order of quantification in the definition of zero
knowledge guaranteeing only that for every verifier V*
there is a Turing machine My.(t,z) approximating
the distribution of (P(s), V*())(x). The problem is
that becaunse the Turing machine My« cannot in gen-
eral be chosen in some uniform way, and because the
tests for knowledge we allow must be uniform in V*,
we do not have a Lest for computing facts at the begin-
ning of all runs in P x VPP, One solution to our prob-
lem is provided by the notion of black-box zero knowl-
edge. An interactive proof system (P, V) for L is said
to be strongly black-boz zero knowledge (cf. [Ore87]) if
there is a probabilistic Turing machine M such that

1. M(V*,t,2) runs in expected time polynomial
in |z}, and

2. {(P(s), V*(t))(z) : (2,V*,s,t) € Dom} and
{MV* t,z):(z,V*, s,t) € Dom} are polynomi-
ally indistinguishable, where (z,V™*,s,1) € Dom
ff £ € L, V* is a possible verifier protocol, s is
a possible input for P, and 1 is a possible input
for V*.

RIGHTS

If (P, V) is a strongly black-box zero knowledge proof
system for L, then we can prove the analogue of The-
orem 5 in the system P X VPP instead of P x V*,

Unfortunately, as the name suggests, the notion of
strongly black-box zero knowledge is too strong. The
problem is that in practice M(V*,t,z) runs V* as
a subroutine on input z. Even if M runs V* only
once, the running time of M is at least as great as
the running time of V*. Consequently, even if we re-
strict our attention to polynomial-time V* as input to
M, since the polynomial bounding the running time
of V* is different for every V*, the running time of
M will not be bounded by a single polynomial. Oren
avoids this problem in his definition of black-box zero
knowledge by charging only one time step for a call
to V*. Thus, he is essentially viewing M as an or-
acle machine (rather than a purely polynomial-time
Turing machine). We could modify our definitions to
allow for knowledge with respect to oracle machines,
but a more natural solution 1s to modify the measure
we use of a test’s complexity. In particular, suppose
we consider tests for facts that run at a point (r,m)
in time polynomial in |#], the running time of V*, and
the description of V*, where 7 is a run with input z in
which the verifier is running the protocol V*. Then,
defining a notion of practical knowledge with respect
to such tests, the analogue of Theorem 5 follows with
precisely the same proof. We note that all zero knowl-
edge protocols we are aware of satisfy Oren’s notion
of black-box zero knowledge.

5.2 Generation and Zero Knowledge

In the previous subsection we formalized the notion
that the verifier in a zero knowledge proof learns es-
sentially no fact other than what the prover explicitly
set out to prove. This is not, however, the strongest
notion of security one could hope for. It would also
be desirable to show that, as a result of interacting
with the prover, the verifier cannot do anything that
it could not do before the interaction. We abstract
the idea of the verifier being able to do something as
knowing how to generate a y such that R(z,y). For
example, if R(z,y) holds precisely when y is a Hamil-
tonian circuit in a graph z on the input tape, then
being able to generate a y such that R(z,y) means
being able to find a Hamiltonian circuit in the graph
z. Notice that, as in the case of Hamiltonian circuits,
most natural relations R are testable in BPP. That
is, there is a probabilistic algorithm running in time
polynomial in [z[, accepting (z,y) with probability at
least 2/3 if R(x,y), and rejecting (z, y) with probabil-
ity 2/3 if = R(z,y). We restrict our attention to such
BPP testable relations here to simplify our exposition.

i,

142

Just as we have said that the verifier knows a fact ¢
if it has an algorithm to test for ¢, we would like to
say that the verifier knows how to generate a y satisfy-
ing R(z,y) if it has an algorithm to generate such y.
In previous sections we considered tests for facts ¢
that were sound everywhere and correct on a set A:of
points. Here, altnough there are no conditions analo-
gous to soundness and completeness, we consider al-
gorithms that do a “good job” of generating y’s such
that R(z,y) on a set A of points, but may not perform
so well off A. We say that the verifier knows how to
BPP-generate a y satisfying R(z,y) with respect to a
sel A of poinis in a system R if there is a probabilis-
tic algorithm, that, at all points (»,m) of A, takes
as input the verifier’s local state and outputs with
probability at least 2/3 a string y satisfying R(z,vy).
Formally, we write (r,m) = GBPP 4y R(z,y) iff

1. (r,m) € A, and

2. there is a probabilistic Turing machine M that at
points (', m’) € R takes the verifier’s local state
as input, runs in time polynomial in |z|, and, if
(r',m’) € A, outputs with probability at least
2/3 a string y satisfying Rz, y).

We have the following analogue to Theorem 5:

Theorem 6: Let (P, V) be a zero knowledge proof
system for L, let V* be an arbitrary verifier, and
let R(x,y) be a relation testable in BPP. For every
set A of final points in P x V* and every k, there
exist ¢ and N such that

PxV* = (zx€LAinit)D
Ky~ 471 [0G T Ay R(z,) D GyTTPy.R(z,v)]

where B is the set of initial points in P x V* satisfying
z€L,|z|> N, and Pr(OGBPP Ay R(x,y)) > |z|~F.

Intuitively, this theorem says that if the verifier has
a nonnegligible chance of being able to generate a y
satisfying R(z,y) by talking to the prover, then the
verifier can generate such a y on its own. We note that
this theorem has a number of natural extensicns. One
simple extension is from generating a y satisfying re-
lations R(z,y) to generating a y satisfying facts o(y)
about the verifier’s entire initial state. Another sim-
ple extension is, along the lines of practical knowl-
edge, a notion of knowing how to generate, denoted
by C‘?”Pv“‘y.R(x,y), where the algorithm may on a
small fraction of the set A fail to generate y such
that R(z,y). A final extension, using black-box zero
knowledge, allows us to prove an analogous result
the system P> x YPP. The details are left to the full

paper.

RIGHTS

The ability to test the relation R in BPP is cru-
cial to the proof of Theorem 6. Recall that in the
proof of Theorem 5 the verifier tests for the fact i
by repeatedly gencrating runs and testing for ¢ at
the end of each run. Since this test for ¢ is sound,
the verifier can accept as soon as this test for ¢ ac-
cepts. Here, however, since there is no notion analo-
gous Lo soundness, the verifier has no way of knowing
which of the many y’s it generates satisfies H(e,)
and should be output unless the relation R(x,y) can
be tested in BPP. We discuss analogues of Theorem 6
when R(z,y) is not testable in BPP in the full paper.

6 Resource-bounded provers

In an interactive proof system as defined in [GMR85],
the prover is assumed to be infinitely powerful. In
practice, however, a prover is not infinmitely powerful
and may have no more computational power than the
verifier. Fortunately, a probabilistic, polynomial-time
prover with some “secret information™ on its work
tape is able to carry out many of the interesting inter-
active protocols. In the case of the graph isomorphism
protocol given in [GMWSG], for example, this secret
mformation is an somorphism between the graphs
on the mput tape. Since the context of such weak
(polynomial-tinme) provers is actually the context of
most practical interest, the type of security afforded
by zero knowledge protocols in this context is an im-
portant question, and the subject of our final section.

In order to study zero knowledge proofs in this con-
text, we define the notion of a weak interactive proof
system, a direct modification of the definition of an
interactive proof system for L. We define a weak in-
teractive protocolto be an interactive protocol (P,V)
where both P and V run in probabilistic, polynomial-
time. We define a weak interactive proof system (P, V)
for a language L just as we defined an interactive
proof system for L except that we require (P, V) to be
a weak interactive protocol and we restrict the quan-
tification of P* in the soundness condition to be only
over probabilistic, polynomial-time machines, rather
than over all machines. As the following lemma shows,
however, weak interactive proofs of language member-
ship are not very interesting.

Lemma 7: There is a weak interactive proof system
for L iff L is in BPP.

Thus, an interesting weak interactive proof cannot
be simply a proof of language membership; it must
reveal something about the prover’s local state, and
hence, since the prover’s knowledge is determined by
its local state, it must reveal something about the

1z

143

prover’s knowledge. Consider the zero knowledge
proofs of graph isomorphism and three-colorability
given in [GMWS86]. These proofs can be carried out
by a weak prover with the appropriate information
on its worktape. And in both cases, the verifier ob-
tains information about the prover’s knowledge as
well as about language membership. In the case
of graph isomorphism, the verifier learns that with
high probability, the prover can generate an isomor-
phism belween the graphs in question. Similarly, in
the case of three-colorability, the verifier learns that
with high probability the prover can generate a three
coloring of the graph in question. It is well-known
(see [HM84, MDHB86]) that information about the
prover’s knowledge can dramatically affect the ver-
ifier’s knowledge about the world. For example, in
the case of three-colorability, information about the
prover’s knowledge may indicate to the verifier that
the prover has with high probability communicated
with the entity that generated the three-colorable
graph.

In order to study proofs of the prover’s knowledge,
we extend the definition of a weak interactive proof
of language membership to that of a weak interac-
tive proof about thc prover’s initial state, where a
fact R(P*, x, s) is about the prover’s initial state if its
truth depends only on the prover’s protocol P*, its
initial work tape s, and the common input z. The
definition of a weak interactive proof of R(P*, z,s) is
obtained simply by replacing all occurrences of « € L
by R(P*,z,s) in the definition of a weak interactive
proof of language membership. Formally, we define a
weak interactive proof system for a fact R about the
prover’s initial state to be a weak interactive protocol
(P, V) such that

e Completeness: For every k and sufficiently
large z, and for every s and t, if R(P,z,s) then

Pri(P(s), V(0)(=) accepts) > 1~ 2| ™*.

e Soundness: For every k and sufficiently large z,
for every probabilistic, polynomial-time P*, and
for every s and ¢, if ~R(P*,z,s) then

Pr[(P*(s), V(t))(z) accepts] < || 7% .

The reader may wonder why we consider weak in-
teractive proofs of facts about the prover’s initial
state that depend on the prover’s protocol as well
as its worktape. Suppose R(z,s) is a fact about the
prover’s worktape and the common input; that is, the
truth of R(x,s) depends only on the prover’s work-
tape s and the common input z (and not on the

RIGHTS

prover’s protocol). Let us define dom(R) to be the
set {z : R(x, s) for some s}.

Lemma 8: A weak interactive protocol (P, V) is a
weak interactive proof system for a fact R about the
prover’s worktape and the common input iff

1. for all sufficiently large = and for all s, we have
R(z,s) iff ¢ € dom(R); and

2. dom(R) is in BPP.

This lemma says that il there is a weak interactive
proof of a fact R about the prover’s worktape and the
common input, then R is essentially uninteresting. In
particular, with the exception of a few small values
of z, R(z,s) holds for some s iff R(x,s") for all &'.
Consequently, R is essentially determined by dom(R).
Since dom(R) is in BPP, the prover can determine
whether I holds (for sufficiently large 2) without even
interacting with the prover. Consequently, a fact R
about the prover’s initial state having only nontriv-
ial weak interactive proofs must necessarily be a fact
depending on the prover’s protocol, and hence on the
prover’s entire initial state. Since the prover’s knowl-
edge is determined by its local state, such a weak
interactive proof may be viewed as a proof of the
prover’s knowledge. In fact, we note that even in the
context of infinitely powerful provers an interactive
proof of z € L is not just a proof of € L but a proof
the prover knows x € L. The fact that all interest-
ing interactive proofs must be proofs of the prover’s
knowledge is obscured in the context of infinitely pow-
erful provers since # € L hclds iff the prover knows
z € L. In the context of weak prover, however, these
facts are not equivalent.

We have defined a natural notion of interactive
proof in the context of weak provers, and we have
shown that the only nontrivial intcractive proofs in
this context are proofs aboul the prover’s knowledge.
While our definition is a direct modification of the
definition in the case of strong provers, it is not ini-
tially clear that our definition is the most appropriate
in the context of weak provers, and hence that our re-
sults are more than simply artifacts of our definition.
As evidence supporting our definition, we noew show
that, under certain natural conditions, both inter-
active proof systems [FFS87, TW87) involving weak
provers that have appeared in the literature are in-
stances of weak interactive proofs. Not surprisingly,
in light of our previous resuits, these proof systems
concern proofs of the prover’s knowledge.

We focus licre on [TW87]. and leave the discussion
of [F¥'S87] to the full paper. In [I'WB87] we find the
following definition (modified slightly for the sake of
consistency with the rest of this abstract). Given a

i,

144

binary relation R, a weak interactive protocol (P, V)
is said to be an nteractive proof that the prover can
generate some y satisfying R(z,y) if the following con-
ditions are satisfied:

o Compleleness: For every k and sufficiently
large x, and .or every s and ¢, if R(z,s), then

Pr{(P(s),V(t))(z) accepts] > 1 — le]=* .

e Soundness: For every probabilistic, polynomial-
time P* there is a probabilistic Turing machine
Mp. running in time polynomial in |z| such that
for all k and sufficiently large », and for all s
and ¢,

Pr{V accepts at (r,m) D R(x, Mp.(r,(m)))]
> 1o

where the probability is taken over the runs of
(P*(s),V(t))(z) and the coin flips of Mp..®

While we would like to show that every interactive
proof that the prover can generate some y satisfying
R(z,y) is a weak interactive proof, this is not quite
true. To see this, notice that the definition of a weak
interactive proof requires that (P(s), V(t))(z) accept
with probability very close to 0 or 1, while an interac-
tive proof of [TW87)] allows (P(s),V(t))(z) to accept
with any probability as long as P is able to generate
a y satisfying R(z,y). We can prove, however, that
the following is a necessary and sufficient condition
for an interactive proof of [TW8T] to be a weak intex-
active proof:

e Correctness: For every k and sulliciently large r,
and for every s and ¢, if ft(x,s) does not hold,
then Pr [(P(s), V()){(&) accepts] < “.L'I_k.

In other words, the good prover succeeds in convincing
the good verifier to accept only when R(z,s) holds.
We note that the correctness condition can be satis-
fied iff R(z,y) is testable in BPP. Since this seems to
be the most relevant context in practice, this seems to
be a natural restriction. We have seen that the cor-
rectness condition is necessary for an interactive proof

SWe note that the soundness condition in [TW87] actu-
ally quantifies over ¢!l Turing machines P* and not just over
polynomial-time P*. Since, however, the motivation for consid-
ering weak provers is that in practice all agents are restricted to
polynomial-time, our restriction does not seem unnatural. Fur-
therninore, we note that the machine Mp. is allowed in [TW87]
to run in expected polynomial-time. In the context of BPP-
testable relations 1, however, the context we find of mnost in-
terest, we can assume without loss of generality that the ma-
chine M pe+ runs in polynomial-time.

RIGHTS

of [TW8T] to be a weak interactive proof. To see that
this condition is sufficient, let R'(P*,z, s) be the fact
“(p running P A R(=,s)) V(p running P* # P A the
soundness condition holds for P*).” (Note that R’
depends on the prover’s protocol as well as the work
tape, and is a fact about the prover’s initial state.)
We now have the following.

Proposition 9: (P, V) is an interactive proof satis-
fying the correctness condition that the prover can
gencrate a y such that R(z,y) iff (P, V) is a weak
interactive proof system for R'.

We can show, in addition, that the proof systems
of [FFS87] satisfying the correctness condition above
are also instances of a weak interactive proof system.

Having shown that, in light of Proposition 9, our
definition of a weak interactive proof system seems to
be an appropriate definition, let us turn to the study
of the security afforded by such protocols. Our def-
inition of a weak interactive proof is a direct mod-
ification of the definition of an interactive proof of
language membership. We can also directly modify
the definition of a zero knowledge proof of language
membership to obtain a definition of a zero knowledge
weak interactive proof. Not surprisingly, analogues of
all our previous results for interactive proofs hold in
the case of weak interactive proofs, with essentially
the same proofs. Rather than restating all the resuits
here, we focus on one of them, the analogue of Propo-
sition 1. If R is a fact about the prover’s initial state,
then we say (r,m) | Rif R(P*, z,s), where P* is the
protocol that p is running in r, ¢ is the cominon input
in the initial state r(0), and s is the contents of p’s
work tape in r(0).

Proposition 10: A weak interactive provocol (P, V)
is a weak interactive proof system for a fact R about
the prover’s initial state iff the following conditions
are satisfied:

o Completeness: For every k there exists ¢ such
that

PxViEinitD Pr[RD Qaccept] > 1 — c|.1:|—’E

e Soundness: For every k there exists ¢ such that

PP xV k=it D Pr{Qacceptd R} > 1—¢ lJ)l_k .

Thus, we have replaced the occurrences of £ € L in
Proposition 1 by R, and used PFP rather than P in the
soundness condition since we are restricting to weak
provers. As we mentioned in our discussion in Sec-
tion 3, while the order of quantification in the state-
ment of soundness is irrelevant in the case of strong

i,

145

provers, it does play a role in the case of weak provers.
In particular, if we had stated our soundness condi-
tion so that the choice of “sufficiently large z” might
depend on the protocol P*, all we would be able to
prove is that for every k and every protocol P*| there
exists ¢ such that

P* x V = init D Pr{Oaccept D R} > 1 —clz|~".

We remark that the weak interactive protocols result-
ing from the interactive proofs and zero knowledge
proofs we are aware of satisfy the stronger notion of
soundness we have used in our definition.

In addition to proving the analogues of results hold-
ing in the context of strong provers, we can reason
about the interactive proofs of [FFS87, TW87] di-
rectly in terms of the notions of knowledge and gen-
eration we have defined in previous sections. For ex-
ample, we can characterize proofs that the prover can
generate some y satislying R(z,y) just as we charac-
terized interactive proofs, in the case that R(z,y) is
testable in BPP.

Proposition 11: Given a relation R(z,y) testable in
BPP, a weak interactive protocol (P, V) is a weak in-
teractive proof that the prover can generate some y
satislying R(x,y) iff the following conditions are sat-
isfied:

e Completeness: For every k there exists ¢ such
that

PxVEimitD
Pr[R(z,s) D Oaccept] > 1 —clz|™*

s Soundness: For every probabilistic, polynomial-
time P*,

P* x V |= accept D GRPP Ay R(z, y)

where A is the set of points of P* x V' at which
the verifier has accepted.

Notice that in the soundness condition, we have
accepl D GEPP'Ay.R(z, y) rather than Oaccepl D
GEPP'Ay.R(:r, y). The first clause says that the prover
can generate some y such that R(z,y) at the point
when the verifier accepts, as required by [TW87], and
not, at. the initial point as would be the case with the
second clause. This is one of the differences between
the definitions of [TW87] and [FFS87]. A second dif-
ference between the two definitions is that the sound-
ness condition of [FFS87] is such that we can state
the soundness condition above in terms of the system
PPP x V instead of P* x V. We return to these points
in the full paper.

RIGHTS

7 Conclusions

The main contribution of this work lies in suggest-
ing notions of knowledge appropriate for interactive
proofs, characterizing interactive proofs in terms of
these notions, and proving, again in terms of these
notions, that the prover in a zero knowledge proof sys-
tem does not leak any information other than the fact
it set out to prove. Roughly speaking, we have shown
that a zero knowledge proof system for z € L satisfies
the following property, which we call krowledge secu-
rity. the prover is guaranteed that, with high proba-
bility, if the verifier will practically know a fact ¢ at
the end of the proof, it practically knowsz € L D ¢ at
the start. We have also formalized the notion cf know-
ing how to generate, and shown that zero knowledge
proofs also satisfy an analogous property of generation
securily. (The precise formulations of knowledge and
generation security are provided by the statements of
Theorems 5 and 6.) It is currently an open question
whether either of these notions of security character-
izes zero knowledge (that is, say, whether an interac-
tive proof that satisfies the property of knowledge se-
curity is also a zero knowledge proof). We can show,
however, that any protocol that satisfies the knowl-
edge security property is recognition zero knowledge,
as defined in [DS88]. We discuss this issue in greater
detail in the full paper.

We feel that these security results shed some light
on the type of security zero knowledge proofs pro-
vide. Our theorems provide support for the defini-
tions of interactive proofs and zero knowledge and
our model provides a good semantic setting for such
an analysis. Some of the definitions, chiefly that of
practical knowledge, are quite subtle. Many straight-
forward definitions one may try fail by being inap-
propriate for the cryptographic setting and not pro-
viding a useful sense in which zero knowledge proof
systems provide security. As Feige, Fiat, and Shamir
write in [FFS8T7], “the notion of ‘knowledge’ is very
fuzzy, and a-priori it is not clear what proofs of knowl-
edge actually prove.” We hope to have established a
framework within which such questions can now be
answered.

Acknowledgments

We would like to thank Ron Fagin, Alan Fekete, Oded
Goldreich, Moshe Vardi, and Jennifer Welch for their
useful comments on these ideas and their suggestions
on how to improve the presentation of this work.

i,

146

References
[BC86] G. Brassard and C. Crepeau, Non-
transitive transfer of confidence: A per-

fect zero-knowledge interactive protocol
for SAT and beyond, Proc. 27th IEEE
Symyp. on Foundations of Computer Sci-
ence, 1986, pp. 188-195.

K. M. Chandy and }. Misra, How pro-
cesses learn, Distributed Computing 1:1,
1986, pp. 40-52.

[CM86]

[DM86] C. Dwork and Y. Moses, Knowledge and
comnmon knowledge in a Byzantine envi-
ronment I: crash failures (extended ab-
stract), Theoretical Aspects of Reasoning
about Knowledge: Proceedings of the 1986
Conference (J. Y. Halpern, ed.), Morgan
Kaufmann, 1986, pp. 149-170. To appear

in Information and Computation.

[DS88] C. Dwork and L. Stockmeyer, Interactive
proof systems with finite state verifiers
(extended abstract), 1983. Unpublished

manuscript,

[FFS87] U. Feige, A. Fiat, and A. Shamir, Zero
knowledge proofs of identity, Proc. 19th
ACM Symp. on Theory of Compuling,

1987, pp. 210-217.

[FH88) R. Fagin and J. Y. Halpern, Reasoning
about knowledge and probability: prelim-
inary report, Proceedings of the Second
Conference on Theoretical Aspects of Rea-
soning about Knowledge (M. Y. Vardi, ed.).

Morgan Kaufmann, 1988, pp. 277-293.

[F186] M. J. Fischer and N. Iramerman, Foun-
dations of knowledge for distributed sys-
tems, Theoretical Aspects of Reasoning
about Knowledge: Proceedings of the 1986
Conference (J. Y. Halpern, ed.), Morgan

Kaufinann, 1986, pp. 171-186.

[For87] L. Fortnow, The complexity of perfoct
rero knowledge, Proc. 19th ACM Symp. on
Theory of Computing, 1987, pp. 204-209.

M. J. Fischer and L. D. Zuck, Relative
Knowledge and Belief (Extended Abstract),
Technical Report YALEU/DCS/TR-589,
Yale University, December 1987,

M. J. Fischer and L. D. Zuck, Uncertain
Knowledge in Distributed Systems, Tech-
nical Report YALEU/DCS/TR-604, Yale
University, January 1988.

(FZ87)

[FZ88]

[GHYS5]

[GMRS&S5]

[GMWS6]

[GS87)

[Had87]

[Hal87]

[1F85)

[HM84)

[HZ87]

RIGHTS

A. Galil, S. Haber, and M. Yung, A private
interactive test of a boolean predicate and
minimum-knowledge public-key cryptosys-
tems, Proc. 26th IEEE Symp. on Founda-
tions of Computer Science, 1985, pp. 360~
371.

S. Goldwasser, 8. Micali, and C. Rackoff,
The knowledge complexity of interactive
proof systems, Proc. 17th ACM Symp. on
Theory of Compuling, 1985, pp. 291-304.

0. Goldreich, S. Micali, and A. Wigder-
son, Proofs that yield nothing but their va-
lidity and a methodology of crypotgraphic
design, Proc. 27th IKEE Symp. on Foun-
dations of Computer Science, 1986.

S. Goldwasser and M. Sipser, Private coins
versus public coins in interactive proof sys-
tems, Randomness and Computation (S.
Micali, ed.), JAI Press, 1987. Extended
Abstract available in Proc. 18th ACM
Symp. on Theory of Computing, 1986.

V. Hadzilacos, A knowledge-theoretic
analysis of atomic commitment protocols,
Proc. 6th ACM Symp. on Principles of
Database Systems, 1987.

J. Y. Halpern, Using reasoning about
knowledge to analyze distributed systems,
Annual Review of Compuler Science, Vol
2, Aunual Reviews Inc., 1987, pp. 37-68.

J. Y. Halpern and R. Fagin, A formal
mode!l of knowledge, action, and commu-
nication in distributed systems: prelim-
inary report, Proc. {th ACM Symp. on
Principles of Distributed Computing, 1985,
pp. 224-236.

J. Y. Halpern and Y. Moses, Knowledge
and common knowledge in a distributed
environment, Proc. 3rd ACM Symp. on
Principles of Distributed Computing, 1984,
pp. 50-61. A revised version appears as
I1BM Research Report RJ 4421, Aug., 1987.

J. Y. Halpern and L. D. Zuck, A lit-
tle knowledge goes a long way: simple
knowledge-based derivations and correct-
ness proofs for a family of protocols, Proc.
6th ACM Symp. on Principles of Dis-
tributed Computing, 1987, pp. 269-280. A
revised version appears as [BM Research
Report RJ 5857, Oct., 1987.

i,

147

[LR86]

[MDHS86)

[Moo85]

[Mos88]

[MT88]

[NT87]

[Ore87]

[PRS5)

[TW87]

R. Ladner and J. Reif, The logic of dis-
tributed protocols (preliminary report),
Theoretical Aspects of Reasoning about
Knowledge: Proceedings of the 1986 Con-
ference (J. Y. Halpern, ed.}, Morgan Kauf-
mann, 1986, pp. 207-222.

Y. Moses, D. Dolev, and J. Y. Halpern,
Cheating husbands and other stories: a
case study of knowledge, action, and com-
munication, Distributed Computing 1:3,
1086, pp. 167-176.

R. C. Moore, A formal theory of knowl-
edge and action, Formal Theories of the
Commonsense World (J. Hobbs and R. C.
Moore, eds.), Ablex Publishing Corp.,
1985.

Y. Moses, Resource-bounded knowledge,
Proceedings of the Second Conference on
Theoretical Aspects of Reasoning aboul
Knowledge (M. Y. Vardi, ed.), Morgan
Kaufmann, 1988, pp. 261-295.

Y. Moses and M. Tuttle, Programming si-
multaneous actions using common knowl-
edge, Algorithmica 3, 1988, pp. 121-169. A
preliminary version appeared in Proc. 27th
IEEE Symp. on Foundations of Computer
Science, 1986.

G. Neiger and S. Toueg, Substituting for
real time and common knowledge in asyn-
chronous distributed systems, Proc. 6th
ACM Symp. on Principles of Distributed
Computing, 1987, pp. 281-293.

Y. Oren, On the cunning power of cheat-
ing verifiers: some observations about
zero knowledge proofs, Proc. 28th IEEE
Symp. on Foundations of Computer Sci-
ence, 1987, pp. 462-471.

R. Parikh and R. Ramanujam, Distributed
processes and the logic of knowledge, Proc.
of the Workshop on Logics of Programs,
1985, pp. 2566-268.

M. Tompa and H. Woll, Random seif-
reducibility and zero knowledge interactive
proofs of possession of information, Proc.
28th IEEE Symp. on Foundations of Com-
puler Science, 1987.

