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Abstract: While the intuition underlying a zero 
knowledge proof system [GMR85] is that no “knowl- 
dge” is leaked by the prover to the verifier, re- 
bnarchers are just heginning to analyze such proof sys- 
~.crnu in herrm of formal notions of knowledge. III this 
paper, we show how interactive proof systems mo- 
tivate a new notion of praciical knowledge, and we 
capture the definition of an interactive proof system 
in terms of practical knowledge. Using this notion of 
knowledge, we formally capture and prove the intu- 
ition that the prover does not leak any knowledge of 
any fact (other than the fact being proven.) during a 
zero knowledge proof. We extend this result to show 
that the prover does not leak any knowledge of how to 
compute any information (such as the factorization of 
a number) during a zero knowledge proof. Finally, we 
define the notion of a weak interactive proof in which 
the prover is limited to probabilistic, polynomial-time 
computations, and we prove analogous security results 
for such proof systems. We show that, in a precise 
sense, any nontrivial weak interactive proof must be 
a proof about the prover’s knowledge, and show that, 
under natural conditions, the notions of interactive 
proofs of knowledge defined in [TW87] and [FFS87] 
are instances of weak interactive proofs. 

The work of the second author was supported in part by a Sir 
Charles Chlore fellowship. Tlhe work of the third author was 
supported in part by the Oflice of Naval Research under Con- 
tract NO001485-K-0168, by t.he National Science Foundation 
under Grants DCR83-02391 and CCR-8611442, and by the 
Defense Advanced Research F’rojects Agency (DA.RPA) under 
Contract N00014-83-K-0125. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish. requires a fee and/or speck 
permission. 

0 1988 ACM-O-89791-264..O/88/0005/0132 $1.50 

1 Introduction 

The notions of interactive proof and :evo knozrl1- 
edge, introduced by Goldwasser, Micah, and Rack- 
off in [GMR85], have been the subject, of ext,ensivc 
research (see, for example, [BC86, FFS87, F&37, 
GHY85, GM W86, GS87, Ore87, TW87]). Informally, 
an interactive proof is a two-party conversation in 
which an infinitely powerful “prover” tries to con- 
vince a polynomial-time “verifier” of the truth of some 
fact cp (typically of the form 3: E L) through a se- 
quence of interactions. Roughly speaking, such an 
interactive proof is said to be zero knowledge if, when- 
ever cp holds, the verifier is able to generate on its own 
the conversations it could have had with the prover 
during an interactive proof of cp. Intuitively, the ver- 
ifier does not learn anything from such conversations 
with the prover (other than the fact ‘p) that it could 
not have learned on its own by generating these con- 
versations itself. Consequently, the only knowledge 
gained by the verifier during an interactive proof is 
that which the prover initially set out to prove. 

This informal discussion makes it quite clear that 
our intuition concerning interactive proofs and zero 
knowledge is intimately related to a notion of knowl- 
edge. While this intuition is quite compelling, it is 
based on an operational notion of being able to gen- 
erate whose formal relationship to knowledge is not 
immediately obvious. It is this relationship that is 
the focus of our paper. 

The formal notions of knowledge needed to cap- 
ture our understanding of interactive proofs and zero 
knowledge are far more subtle than the standard 
information-theoretic notion of knowledge that has 
been used successfully in the analysis of distributed 
systems (see, for example, [CM86, DM86, FI86, 
Had87, HM84, HZ87, LR86, MT88, NT87, PR85]; see 
[Hal871 for an overview). Since both probability and 
the computational power of the prover and verifier 



play crucial roles in the definition of zero knowledge, 
the notions of knowledge used to reason about zero 
knowledge must take these issues into account. It is 
relatively straightforward to extend the standard no- 
l.ion of knowledge to include probability. Our defini- 
t ion of probabilist.ic knowledge is b,ased OIL definitions 
given by Fa.gin a.nd Halpern in [F1188]. Dealing with 
colnpI(~sity, however, is more difficult. ‘I‘hc approach 
wc uw is based on the notion of rc,so~ircc:-I)o~~ntlf:d 
knowlctlge introduced by Moses in [Mos88]. While a 
number of extensions of resource-bounded knowledge 
;tre possible, we believe ours are well-suihed to the 
context of cryptographic protocols, as well as other 
contexts. 

An issue related to the notion of knowing a fact is 
that of knowing how to perform various operations. 
For example, there is a difference between knowing 
the fact that a certain number is a product of two 
primes and knowing how io generate the two prime 
factors. Zero knowledge proofs are not intended to 
leak any knowledge of this kind as well as any knowl- 
edge of facts. While t,his notion of “knowing how” 
has also been of great interest in Philosophy and AI 
(SW [Moo%]), .t. d, 1 s m <lr( not#ions of knowlctlgc do not 
rnpt.ure this aspect. of knowlcdgc. ‘1‘0 do so, we define 
i1 not ion of linowiilg how to gcn~~t-al.~ a. ?/ satisfying a 
relation n(.r, !I), wit.hin given rcsourcc I~o~it~tls. 

The main cant ributioils of this pap~\r are: 

l 1\:e capture t.he dcfinit.ion of an int,cractive proof 
using knowledge and probability. We then show 
how interactive proofs motivate the definition of 
practical knowledge, and capture the definition of 
an interactive proof in terms of practical knowl- 
edge. 

l Using practical knowledge, we prove that with 
high probability the verifier in a zero knowledge 
proof of x E L knows a fact cp at the end of the 
proof iff it knows 2: E L > cp at the beginning of 
the proof. Intuitively, this captures the idea that 
zero knowledge proofs do not “leak” knowledge 
of facts other than those t.hat follow from 2 E L. 

l We define a notion of krlowillg 11ow to generate au 
satisfying a relation R(z, y), and prove that with 
high probability if the verifier in a zero knowl- 
edge proof of CC E L knows how to generate a y 
satisfying R(x, y) at the end of the proof, then it 
knows how to do so at the beginning as well. This 
captures our intuition that at the end of a zero 
knowledge proof the verifier can not do anything 
that it could not do at the beginning. 

l We consider weak inleraclive proofs, in which the 
prover is restricted to probabilistic, polynomial- 

time computations (and hence is no longer in- 
finitely powerful). This is the most relevant con- 
text in practice. While interesting interactive 
proofs for membership in a language do exist 
(see [GMR85, GMW86]), we prove that any lan- 
guage L having a weak interactive proof is COII- 
tained in UPP, and hence the verifier can deter- 
mine whcthcr 2: E L 011 its own without con- 
sulting the prover. C0IlsftC~llfYltly, we iwe Ictl 
to consider weak interactive proofs about the 
prover’s initial state (that is, the prover’s knowl- 
edge) rather than weak interactive proofs of lan- 
guage membership. We then proceed to show 
that, under natural conditions, the notions of in- 
teractive proofs of knowledge defined in [FFS87] 
and [TW87] are instances of weak interactive 
proofs. Finally, we show that zero knowledge 
weak interactive proofs guarantee the same type 
of security with respect to the facts they prove as 
zero knowledge interactive proofs guarantee with 
respect to language membership. 

We believe that this analysis provides a great deal 
of insight into (and support for) the definitions in 
[GM11851 and their extensions to the case of proocs 
about knowledge in [FFS87, TW87]. None of the tech- 
nical results is very deep; the difficulty was in Corning 
up with the right notions. We hclicvc that our vicw- 
point provides a good framework in which to think 
about these definitions and their appropriateness. 

Fischer and Zuck [FZ87] also consider notions of 
knowledge appropriate for cryptographic protocols. 
They give definitions that are related to the ones given 
here (we discuss the relationship in the full paper) and 
use their definitions to analyze an interactive proof of 
quadratic residuousity. 

The rest of the paper is organized as follows. In the 
next section, we briefly review how to ascribe knowl- 
edge to processors in a distributed system, how to ex- 
tend the standard definition of knowledge to include 
probability, and how to account for bounds on the pro- 
cessors’ computational resources. In Section 3 we re- 
view the definition of an interactive proof, and capture 
this definition in terms of probabilistic knowledge. In 
Section 4 we show how interactive proofs motivate the 
definition of practical knowledge, and capture the dcf- 
inition of an interactive proof system in terms of prsc- 
tical knowledge. In Section 5 we define zero knowf- 
edge. This definition of zero knowledge is a weaker 
definition than that given in [GMR85], and hence our 
results will hold for [GMR85] as well. In Section 5.1 
we make precise (using knowledge) the intuition that 
in a zero knowledge proof the verifier does not know 
any more at the end than it did at the beginning. In 
Section 5.2 we define the notion of “knowing how,” 

133 



and show that, in a precise sense, the verifier cannot 
do any more at the end cd a zero knowledge proof 
than it could at the beginning. Finally, Section 6 in- 
troduces weak interactive proofs, relates them to the 
proofs of knowledge of [Fl?S87, TW87], and proves 
that zero knowledge weak interactive prool’s are se- 
cure in the senses defined above. 

2 Knowledge 

Our analysis of interactive and zero knowledge proof 
systems depends heavily OII the definitions of knowl- 
edge, probabilistic knowledge, and resource-bounded 
knowledge. We now briefl:y revie,w these definitions. 
Since we will be considering only probabilistic proto- 
cols running in synchronous systems, we will restrict 
the generality of these definitions to this context. 

We begin with a sketch of our formal model of com- 
putation (cf. [DM86, MT88]). The distributed sys- 
tems we consider consist of a finite collection of pro- 
cessors, each pair of which is connected by a. twc+way 
communication link. Processors share a global clock 
that starts at time 0 and ,proceeds in discrete incre- 
ments of one. Computation in the system proceeds in 
rounds, round m lasting from time m - 1 to time m. 
During a round, every processor first performs some 
(possibly probabilistic) local computation, then sends 
messages to other processors, ant1 then rcccivcs all 
messages sent to it during the round. Each processor 
begins with some initial local state at time 0. At any 
given time, a processor’s local state consists of the 
current time on the global clock, its initial :state, the 
history of messages it has received from other pro- 
cessors, and the history of coin flips it has used. A 
global state is a tuple of local states, one for each 
processor. We think of each processor as following a 
protocol which specifies in any given state what mes- 
sages each processor is required to send as well as 
what actions it is required to perform as a (possibly 
probabilistic) function of the processor’s local state. 
An infinite execution of such a protocol (a.n infinite 
sequence of global states) is called a mn. We define 
a system to be a set of such runs, often the set of all 
possible runs of a particular protocol. Given a run r 
and a time m, we refer to (r,m) as a point, and we 
say that (r,m) is a point of the system R if r E R. 
We denote the global stat’e at the point (T*,TI~) (that 
is, the global state at time rn in r) by r(m), and we 
denote the local state of pr,ocessor q in r(m) by rq(m). 

We now turn to the standard definition of knowl- 
edge in distributed systems (cf. [CM86, FI86, HF85, 
IIM84, PR85]). Th e intuition behind this definition 
is that a processor can be said to I;now that a fact ‘p 

is true if, based on its information about the current 
state of affairs, ‘p must be true. Roughly speaking, 
therefore, the processor q is said to know (o at a point 
(r,m) if ‘p is true of all points q considers possible at 
(r,m). Since a processor’s knowledge depends on the 
set from which the points it considers possible may 
be chosen, a pr Jcessor’s knowledge is always defined 
with respect to a system a. We assume that we have 
a collection of primitive facts about, the system, fact,s 
such as “the value of the variable :c is a prime nurn- 
be? that do not involve the proc.essors’ ktlowlcdgc. 
Each fact cp is identified with a set I of poillt,s in- 
terpretcd <as the set of points at which 9 holds. \\‘c sn\ 
that a point (r, m) in a system ‘72 snfisfies ,o, which 
we denote by (‘R,r,m) I= cp, if (r,m) E T(P). L!‘e 
often write (r, m) k cp rat.her than (72, r,m) k y 
when the system 72 is clear from context. We say 
that a fact cp is valid in Ihe syslem 72, which we de- 
note by R b ‘p, if ( r, m) + ‘p for all points (r,m) 
of R. We extend this collection of primitive facts to 
a logical language by closing under the usual boolean 
connectives and several modal operators. Two modal 
operators included are the linear t,emporal logic op- 
erators 0 and 0: the formula •~ holds at a point 
(r,m) iff the formula ‘p holds at all points (r, m’) with 
m’ 2 m; and 0~ holds at (r,m) iff the formula cp 
holds at some point (r, tn’) wit,11 171’ 2 1~. Most in- 
teresting, however, are the modal operators Ii,, one 
for every proc’ssor ,I, where tli<x forlllula I\‘,p is read 
“17 klloWY cp.” As previously illdic*i~tcd, IY,(c is tlefirlcd 
as follows: (I*, 771) b fi& iff (r’, m) k p for all p0iiit.s 
(r’,m) of R such that r,(m) = r;(m). A processor 
thercforc knows precisely t,hose fac(,s that. follow fro111 
the information contained in it.s local state. 

We are often interested in facts that, although they 
do not hold in all the states that a processor con- 
siders possible, do hold at a certain fraction of those 
points. When reasoning about probabilistic systems, 
it is important to be able to make statements such as 
“according to q, the fact p holds with probability cr.” 
Intuitively, such a statement might mean that (Y is 
the conditional probability of cp, given q’s local state. 
Fagin and Halpern formalize and generalize this intu- 
ition in [FH88] as follows. Given a system R, they 
associate with every processor q and every point c = 
(r, 111) a probability space T(g, c) ‘= (Sy,e, Xq,(, /lu,e), 
where S,,, is a. set of points, S,,, is it set 0F mrasurahlc 
subsets of ,‘&, and P~,~ is a probability measllre. In- 
tuitively, the set S,,, is a subset of t.11~ points q thinks 
possible at c, and pq,c determines the prohabi1it.y with 
which q considers a particular point in S,,, t,o be the 
actual point c. The set S,,,(cp) is then defined to 
consist of those points in S,,, at which cp holds. In 
order to reason about probability, we allow formulas 
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of (#he form Pv~(Jo) 2 Q, with semantics defined by 
c k Prqp 1 cy iff ~~,,(S,,,(cp)) 2 a.l We define I<fp 
to be an abbreviation for K,(Pr,(cp) 2 a), which in- 
tuitively says that processor q knows that cp must hold 
with probability at least (Y. Finally, we define Eap to 
IX au abbreviation for A~Z<~~, where the conjunction 
is t,aken over all the processors in the system. Int.u- 
it.ivc:ly, E”cp 111caus that c~ery processor knows tl~at. ‘p 
n~nst hold with probability LY. 

This definition of probabilistic knowledge lcaves 
open a gtcat deal of flexibilit,y iu the choice of proba- 
bilit,y spaces P(q, c). While it may seem at first that 
the correct choice for S,,, is the set of all points q is 
unable to distinguish from c, the analysis in this paper 
has shown that, due to the subtle interaction between 
the nondeterministic and probabilistic choices made 
by processors, there are good reasons to choose S,,, to 
be a subset of these points. Consider, for example, the 
system determined by two processors q and q’ running 
the following one-round protocol: processor q’ starts 
with a one-bit. initial state, flips a fair coin, and per- 
forms a particular action a iff the outco~nr of the coin 
toss is equal to t.he bit, in it,s init#inl state. Clearly, this 
system consist,s of four runs of t.bc forui Tb,f, where 6 
is the value of t.lte bit. in (I”S initial st,ate and f is 
the outcome of t,he coin flip. Now lc% us consider the 
probability wit.11 which q knows at time 0 that q’ will 
perform 0. Suppose t.hat. wit.11 cvcry tiillcx 0 point we 
associat,e l,hc probabilit,y space coiisistiug of all time 0 
point*s (not#ice that q considers all such points to be 
possible at time 0). Since the only probability distri- 
bubion we have is on the coin flipped by q’, the only 
nontrivial event.s to which we can assign a probability 
are ((rO,h, 0), (rl,hr 0)) (“the coin lands heads”) and 
{(~o,*J%(n,t,O)} (“th e coin lands tails”); we cannot 
assign a probability to the event “q’ performs a”! Sup- 
pose, on the other hand, that with every time 0 point 
we associate the probability space of time 0 points 
having the same initial global state; that is, we can as- 
sociate with a point of the form (~b,,, 0) the probabil- 
ity space {(n,h, O), ( rb,l, 0)). In this probability space, 
we assign each of ((rb,h, 0)) and {(fb,l, 0)) probability 
l/2. Conscquent,ly, at every poiut q considers possible 
at time 0, the probability according to q that q’ per- 
forms a is l/2, and it follows t1la.t q knows with prob- 
nbi1il.y l/2 that q’ performs a, as we would expect,. 
(This esamplc is discussed in great*er detail in [FII88].) 

This observation leads us to choose the probabil- 
ity space associated with the processor q and point 

‘Fagin and Halpern actually write m,(v) 2 a instead of 
Prp((p) > a, and in fact define a much richer language than we 
do here. They also show how to deal with the possibility ofnon- 
measurable sets. As our sets Sp,J’p) will always be measurable, 
we omit these detaiIs here. 

c = (r,m) as follows. We take SQlt to be the 
set of points (r’,m) such that r’(m) = r(m) (that 
is, the set of points (r’,m) having the same global 
state as (~,m)). Notice that in our model, given a 
global state at time m, each run having that global 
state at time m is determined by the sequence of 
coins flipped after time m in the run. Consequently, 
t:ach set S,,,(cp) can be identified with a set of coil) 
flips, which in this paper will always be measurable. 
The probability measure pq,e therefore assigns to the 
event S,,,(p) the probability of the set of coin fiips 
identified with S,,,(v). Notice that having made this 
choice of probability spaces, the operators Prq are 
identical for all q, and hence we will omit subscripts 
in the remainder of this works2 

Returning to the standard definition of knowledge, 
notice that a processor is said to know all facts that 
follow from its local state, regardless of the compu- 
tational complexity of determining that these facts 
hold. When analyzing cryptographic protocols, where 
the computational intractability of a problem is used 
to keep secret certain pieces information, such a no- 
tion of knowledge is clearly inappropriate. In [Mos88], 
Moses introduces a notion of resource-bounded knowl- 
edge that takes into account bounds on a processor’s 
computational resources. The intuition behind this 
notion is t,hat the only way a resource-bounded pro- 
cessor can know a fact is if it can compute that it 
knows this fact. In this work we are concerned with 
the facts a processor can compute using a probabilis- 
tic test running in time polynomial in some parameter 
depending on its current state (usually that parame- 
ter will be 121, where t is the common input). Thus, 
we consider only BPP knowledge, which seems most 
appropriate in the context of interactive proofs. Given 
a system R, a probabilistic algorithm M is said to be 
a BPP iest for K,cp in R if, for all points (P, m) of R, 
M’s computation starting from r,(m) runs in time 
polynomial in 1x1, accepts with probability at least 2/3 
if (r,m) b K,cp, and rejects with probability at least 
2/3 if (r, m) k K,cp. We say that q BPP-knows ‘p at 
a point (r,m) of R, denoted by (r,m) ,I= II’,Bpp(p, iff 

2We note that there are at least two notions of proba 
bilistic knowledge that seem relevant in the context of cryp- 
tographic protocols, the one given here and another outlined 
in [FZSS] (the spirit of which can be captured in the frame- 
work of [FMSB]). Each has its own philosophical advantages, 
and we refer the reader to (FH88, FZ88] for extended discus- 
sions. However, since the definitions of interactive proofs and 
zero knowledge state conditions on the objective probability of 
events at time 0, we will be concerned only with a processor’s 
probabilistic knowledge at time 0, and at time 0 the two def- 
initions of probabilistic knowledge coincide. We have chosen 
the definition outlined here since the fact that the probabib 
ity spaces are independent of the agent simplifies our analysis 
slightly. 
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(r,m) k K,cp and there is a BPP test for fC,cp in ‘R. 

Thus, a processor BPP-knows cp if it knows cp and 
there is a BPP algorithm w&h which it can compute 
that it knows cp. (Of course, there is nothing special 
about the values 2/3 used in the definition of BPP 
tesl;s. We could have used any value bounded away 
from and above l/2.) 

Similar notions of knowledge can be defined with re- 
spect to other complexity classes. We refer the reader 
to [Mos88] for a detailed discussion of a number of 
interesting properties of these notions of knowledge. 

3 Interactive Proof Systems 

In this section, we first review the notion of an interac- 
tive proof system (our definitions arc essentially those 
of [GMR85]), and then show that the definition of an 
interactive proof system can be captured in terms of 
probabilistic knowledge. 

An interactive protocol is an ordered pair (P, V) 
of probabilistic Turing machines. P and I/ share 
a read-only input tape; each has a private one-way, 
read-only random tape; each has a private work tape; 
and P and V share a pair oi one-way communication 
tapes, one from P to V being write-only for P and 
read-only for V, and the other from V to .P being 
write-only for V and read-only for P. A run of the 
protocol (P, V) is defined as follows. To begin with, 
the input tape is initializedl with some common in- 
put, say x; each random tape is initialized with an 
infinite sequence of random bits; each work tape may 
or may not be initialized wi.th an initial striug;3 and 
the communication tapes ar’e initially blank. The run 
then proceeds in a sequence of rounds. During any 
given round, V first performs some internal computa 
tion making use of its work tape and other .readable 
tapes, and then sends a message to P by writing on 
its write-only communication tape; P then performs 
a similar computation. Eitlher P or V may halt the 
interaction at any time by entering a halt state. V 
accepts or rejects the interaction by entering an ac- 
cepting or rejecting halt state, respectively, :in which 
case we refer to the resulting run as either an accept- 
ing or rejecting run. The running time of P and V 
during a run of (P, V) is the number of ste,ps taken 
by P and V, respectively, during the run. We as- 
sume that V is a probabilistic Turing machine run- 
ning in time polynomial in 1x1, and hence that it can 

3The motivation for allowing initial values on the verifier’s 
and prover’s work tapes can be found in [Ore87, TW87]. Allow- 
ing initial information on the prover’s worktapc is particularly 
important in the case of resource-bounded provers considered 
in Section 6. 

perform only probabilist,ic, I.‘olynoIlrinl-t.ime compu- 
tations during each round. For now we make no as- 
sumptions about the running t,ime 01’ P, although in 
Section 6 we shall restrict attention to probabilistic, 
polynomial-time provers. 

The system corresponding to runs of the interactive 
protocol (P, V) cdn be described in terms of the com- 
putational model defined in Section 2 as follows. The 
system consists of two processors, p and 21, running 
the protocols P and V, respectively. A run is an infi- 
nite sequence of global states, where each global state 
consists of a local state for each of p and V. Proces- 
sor p’s local state is a tuple consisting of a description 
of the Turing machine P, the current round number, 
the contents of the input tape, the finite prefix of its 
random tape read up to this point, the contents of 
its work tape, the contents of t4he t,wo communicat.ion 
tapes, and the position of the t#ape heads on each of 
these tapes; processor V’S local st,n.t.c is definc~l in R 
similar fashion. We denote by P x t’ t,he syst.em con- 
sisting of all possible runs of (P, \I), by P x W’ t,he 
system consisting of the union of the systems P X V* 
for all probabilistic, polynomial-time V” , by T x V t,he 
system consisting of the union of t.he systems P’ x I: 
for all Turing machines P’, and by ‘Pf’P x V the sys- 
tem consisting of the union of the systems P’ x V 
for all probabilistic, polynomial-time P’. Note that 
we distinguish p and v, the “prover” iand the “verifier” 
respectively, from the protocols that they are running. 
In the system P x V, the verifier is always running the 
same protocol (namely V) in all runs. In the system 
P x VP, the verifier may be running different proto- 
cols in different runs. 

Let us denote by (P(,>,V(t))(x) the random vari- 
abie assuming aa values the runs of (P, V) (according 
to the probability distribution generated by the pro- 
tocol (P, V)) in which the prover’s work tape is ini- 
tialized with s, the verifier’s work tape is initialized 
with t, and the input tape is initialized with c. An 
interactive protocol (P, V) is said to be an inlernctizre 
proof system for a language L if the following condi- 
tions are satisfied: 

0 Com~pleteness: For every k and suficiently 
large 2, and for every s and t, if x E L then 

Pr [(P(s), V(t))(x) accepts] 2 1 - Izlmk . 

l Soundness: For every Ic and sufficiently large z:, 
for every P’ , and for every s and t, if CC g! L then 

Pr [(P*(s), V(t))(e) accepts] 5 IxlBk. 

We refer to p as the “good prover” when it is run- 
ning P, and to v ;1s the “good verifier” when it is 
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running V. The completeness condition is a guaran- 
tee to both the good prover and the good verifier that 
if 2 E L, then with overwhelming probability the good 
prover will be able to convince the good verifier that 
c E L. The soundness condition is a guarantee to 
t.he good verifier that if c $ L, then the probability 
that an arbitrary (possibly malicious) prover is able 
to convince the good verifier that x E L is very low. 

Notice that in our soundness condition, the “suffi- 
cient.ly large 5” depends only on the value of L, and 
not on t.he choice of P‘. In the original definition 
of interactive proof given in [GMR85], it is not clear 
whether the dependence is on k only or on both C and 
I”. As Shafi Goldwasser pointed out to us, in the case 
of iIt6 nit,cly powerful provers, it doesn’t nuatter what 
clloicc we niakc. (More foruudly, an int8cractivc proof 
syst.cnr (I’, V) is sound with respect to one choice ilf 
it is sonnd with respect to t.he ot.ltcr; we prove this 
in the futl paper.) However, the cltoicc does make a 
difference in the case of resource-boundrd provers, as 
we shall see in Section 6. 

We can translate these completeness and soundness 
conditions immediately into statements about proba- 
bility in our language as follows. Let init be the fact 
holding only at points at the beginning of a run, and 
let. accept be the fact holding only at points at which 
the verifier has accepted. 

Propositiorr 1: An interactive protocol (P, V) is an 
interactive proof system for a language L iIf the fol- 
lowing conditions are satisfied: 

0 Co7~tplcfc7tcss: For every $ t.hert exists c such 
tt1a1. 

l Soundr~ss: For every k there exists c such that 

P x v + init 3 

Pr [Oaccept 3 x E L] 2 1 - c 1321-k . 

The constant c above is necessary due to the fact 
that the probabilistic guarantees made by the defi- 
nition of an interactive proof system hold only for 
“sufficiently large 2 .” Notice that if 1 - c Iz\-~ is 
negative, then Pi 2 1 - c 1~1~~ is equivalent to 
Pi 2 0, which is valid for every fact cp. Conse- 
quently, by choosing c so that 1 -c IzI-~ < 0 for insuf- 
fic.iently large c we obtain a formula holding for all 2, 
and hence valid at all points of the system. While this 
constant, c does not appear in the formal definition of 
nn interactive proof system, an equivalent definition 
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of interactive proof systems can be formulated making 
use of such constants just as we do in Proposition 1. 

Notice that, according to Proposition 1, a formula 
such as Pr(x E L 3 Oaccep2) 1 1 - c Ixlmk holds 
at time 0 but not necessarily at later points. After 
the verifier has rejected, for example, it is clearly not 
the case that with high probability the verifier will 
eventually accept. In general, even before the verifier 
has actually decided to accept or reject, a particularly 
bad sequence of coin flips can significantly lower the 
verifier’s chances of eventually accepting. Intuitively, 
this is due to the fact that the verifier’s probability 
space is changing with every step. (ln our case, the 
probability space we associate with a point is the set4 
of points having the same global state, a set that dc- 
f-rf:asf:s iu six with every step.) Consequently, tile 
antecedent ini is crucial in the formulas above. 

Since the facts appearing in l’roposit.ion 1 are valid, 
all processors know these facts at all points. Further- 
more, all processors know the fact init whenever it 
holds. Since from Kq ini and K,(inil > $) we can 
deduce K,$, we can deduce the following corollary to 
Proposition 1. 

Corollary 2: An interactive protocol (P, V) is an in- 
teractive proof system for a language L iff the follow- 
ing conditions are satisfied: 

l Completeness: For every k there exists c such 
that 

P x V k init > E’-“l”l-*(z E L r> Oaccept). 

l Sowndne.ss: For every k there exists c such that 

‘P x v l= ittit 3 fij-“~~~-*(Oaccept 3 x E L). 

In ot,ln!r wortls, (f, V) is compl~:i.c! if both the good 
prover and the good verifier know with high proba- 
bility that if 2: E L, then the good prover will con- 
vince the good verifier to accept; and (P, V) is sound 
if the good verifier knows with high probability that, 
no matter what protocol the prover is running, if the 
verifier accepts x then 2 E L. It is actually the case 
that if (P, V) is sound then every prover also knows 
with high probability that if the verifier accepts z then 

x E L (that is, we could have replaced K~-c’Z’-k by 
E1-‘121-’ in the case of soundness above); we have 
chosen this formulation since it is the good verifier’s 
knowledge that is essential in the context of sound- 
ness. 

4 Practical Knowledge 

As we have just seen, the definition of an interactive 
proof system can be characterized in terms of prob- 



abilistic knowledge. This characterization, h.owever, 
is a slight reformulation of the original definition in 
terms of very similar concepts. It does not capture, 
for example, the intuition that at the end of a.n inter- 
act#ive proof of z E L with tlhe good prover, the good 
verifier knows that z E L despite its limited com- 
pulational power. In this section we show how the 
definition of an interactive proof system motivates a 
new notion of pruc2ical knowledge which will enable us 
to formalize this intuition. In later sections, practical 
knowledge will play a crucial role in capturing the se- 
curity provided by zero knowledge proof systems. 

We have already argued that the notion of rsesource- 
bounded knowledge introdu.ced in [Mos88] seems to 
be a natural way of capturing the knowledge of a 
resource-bounded processor, with RPP knowbedge be- 
ing most relevant to the cryptographic setting. Un- 
fortunately, there is a notion of “learning” of great 
importance to cryptographic protocols (and, in par- 
ticular, to interactive proof systems) that can not be 
captured directly in terms of BPP knowledge. Con- 
sider, for example, a fact cp such as “the input x has a 
factor smaller than @. At. a point in which the pro- 
cessor has the factorization of z available to it, say the 
factorization happc:ns to be written 011 its work tape, 
and x has a small factor, we might like to say that the 
processor knows ‘p despite iits limited resources. Re- 
call that a processor BPP-knows p iff it knows cp and 
it has a BPP test for p. Assuming that there is no 

BPP test for ‘p, our processor will never BPP-know ‘p. 
This is true even when it has the fa.ctorization written 
on its work tape. Thus, a naive use of the notion of 
BPP knowledge does not seem to allow us to capture 
the idea of learning. 

Notice, however, that when a processor Ends the 
factorization of t on its work tape and hence is able 
to determine that ‘p holds, the processor learns a great 
deal more than just the fact (o. It actually learns a 
fact $ that implies cp, where $ is the fact “the fac- 
torization of x is on the work tape, and it con ta.ins a 
factor smaller than p. Since this fact 1,6 is clearly 
BPP testable, the processor actually BPP-knows $J. 
In other words, the processor learns cp as a result of 
coming to BPP-know a stronger fact II, that implies cp. 
In this sense, the notion of learning ‘p can bc captured 
in terms of BPP knowledge. 

At this point, one might be tempted to define a 
notion of learning in whiclh a processor lea,rns cp at 
a point if at this point it BPP-knows a fact $ that 
implies ‘p. Unfortunately, this notion of learning is 
not very useful to a resource-bounded processor. It 
could be, for example, tha.t at every point the pro- 
cessor BPP-knows a different fact II, implying ‘p (and 
hence has “learned” cp everywhere) and yet is unable 

to determine at a particular point which fact 1c, it 
should test for in order to determine that, it knows cp. 
Alternatively, one might be temptctl t,o define a no- 
tion of knowing cp with respect to a particular test A{ 
where, informally, a processor knows cp wit#h respect, 
to Al if with t,lie test. I%T the processor can dt’ft>rtninc 
tha.t it. knows cp. Wc consider such notions t.o Ire uu- 
satisfactory, however, since if knowledge is t,o be used 
for protocol specification it must ba possible to ab- 
stract the particular tests being used. We not,e t,hat 
the definition of resource-bounded knowledge already 
existentially quantifies over such tests (so these tests 
do not appear in the notation used), and we do not 
want to reintroduce them here. 

We take an alternative (and more direct) approach 
to capturing Iearning. The idea is to define a notion 
of BPP knowledge of ‘p relative to a set A of points. 
We can think of the points of A as the points at which 
a processor learns cp. Roughly speaking, this means 
that we have a BPP test for li’,cp that, correctly de- 
termines whether Q knows v at all points of rl, hut 
may only satisfy weaker requirements off ~1 [in par- 
ticular, t,hc t,est. may not be required t,o accept, with 
high probability at. poiut,s off .4 a.t. which li,p holds).” 

More formally. we proceed ns follows. We say that. 
a test A4 is SOUIIA for cp a.t, a point (I-, 171)~ dcllokd by 
(r,m) I= sound(M, p), if ( r,77)) i+ \? implies t.liat fir 
rejects at. (r, 111) wit,11 probability a~:. least 2/X Sim- 
ilarly, we say that lli is conzplefe for y’ at (r, 111). 
denoted by (~,m) t= complete(M, \D), if (~,?II) + p 
implies that M accepts at (~,m) with probabi1it.J 
at least 2/3. Given a system R, a set A of points 
in R, and a fact (p, we say that ‘$9 BPP-knours p 
wiIh respect io A” at a point (r,m), denoted by 
(~~771) /= K,BPPsAp, iff 

(r,m) E A 

(r,m) I= K,v, and 

there is a probabilistic Turing machine A/r taking 
as input, the local state of q and running in time 
polynoniinl in 1~1 (where 1: is the common input. 
ill the global state r(m)) such that, 

(a) M is a sound test for K*p on ‘R; 
that is, R b sound(M, K,,(p). 

(b) A4 is a complete test for Ii,cp on A; 
that is, R + ‘in A’ > complcte(M, A’,cp) 

where ‘in A’ is the fact holding at precisely 
those points in A. 
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The first condition is a technical one, which ensures 
that knowledge with respect to A can hold only at 
points of A. We restrict attention to points in A since 
these are the only points of interest (and the only 
ones where our test is guaranteed to be correct). The 
second condition requires that cp actually be known, 
as is required by BPP knowledge. The third condition 
requires the existence of a test for (p that is sound on 7Z 
a.nd complete on A. 

It is clear that a processor BPP-knows ‘p iff it BPP- 
knows \p with respect to the set of all points in R, and 
hence that, the definition of UPP knowledge with re- 
spect t.o a set. of points is a direct gcncrnlizat.ion of 
111’1’ knowlctlg~. In fact,, it is c;lsy to see thal if tlrc 
fad ‘in A’ is testable in BPP, thrn I<~“t’,A~ is equiv- 
alent to KaPP(‘in A’ A cp). Furthernrorc, notice t.hnt , r 
we are now able t#o ca.pt,ure the notion of a processor 
learning a fact cp (as the result of its nncxpected ac- 
quisition of information. Returning to our example, 
let A be the set of points where q has the factorization 
of z on its work tape. Let M be the test that rejects 
if the factorization of x is not on the work tape or 
if the factorization is on the worktape and there are 
no small factors. This test M for ‘p is clearly sound 
everywhere and complete on A. Thus, when Q learns 
from the factorization of t on its work tape that cp 
must. be t,rue, q knows cp with respect to the set A. 

The reader may wonder at the asymmetry of our 
definition. Why do we require soundness on all of 
?2., but. complrt,eness only on A? Notice that if we 
st,rcngt~llcn t,he definition to require soundness and 
conrplct,c~ncss on all of 72, then WC hnvc csscnlially 
ret.urtttd to 1.11~ tlcfmit.ion of I3I’I’ knowlcdgc. On the 
otb~ hand, suppnse we weaken the definition to re- 
quire soundnrss only on A. If membership in the set A 
is caaily t.est.able. t,hen such a not,ion of knowledge may 
be of interest. LVe will, however, be forced to consider 
arbitrary sets A in this work, and in this context it 
becomes rather uninteresting. For suppose that pro- 
cessor q has access to an algorithm M that is guaran- 
teed to be sound and complete only on A. Moreover, 
suppose that when q runs M repeatedly on its state 
Ye (nt) at some point (T, m), it finds that M almost 
always accepts. In this case, q knows that if it is at 
a point in A, then ‘p holds. But since it may be quite 
dificult for q to determine whether it is at a point 
in A, this may not be very useful information. With 
our definition, q would know that K,cp (and hence ‘p) 
holds at this point, regardless of whether the point 
is in A (since, by our definition, if ‘K,cp holds, then 
A4 reject,s with high probability). Of course, if A4 al- 
most always rcjccts on input am, then q can say 
nothing without, knowing whether (I’, tn.) is in A. We 
could instead have required conlpleteness on all of R 

and soundness on A. In cryptographic applications, 
however, it tends to be more important to be able to 
learn that cp is true than to learn that it is false. This 
choice is a matter of taste. 

Let us return, now, to the context of interactive 
proof systems (P,V) for L. Let us say that a point 
of the system P x V is a final point if at that point 
the verifier has either accepted, rejected, or otherwise 
halted. Consider the set A of final points of P x V, 
and consider the test M that accepts at a point if the 
verifier has accepted at that point and rejects other- 
wise. Int)uitively, we would like to say that if x E L, 
then the good verifier BPP-knows x E L with respect 
to A at the end of a proof of z E L with the good 
prover. IJnfortunately, the test M is not a sound test 
for x E L since on rare occasions the verifier may 
incorrectly accept when 3: $ L. In the context of 
probabilistic computations, however, a test that fails 
on a negligible portion of the cases is practically as 
good as one that never fails. Since the soundness and 
completeness conditions required by the definition of 
knowledge with respect to a set A do not allow for 
such freedom, we are led to the following notion of 
practical knowledge where these conditions are some- 
what relaxed. Practical knowledge plays an impor- 
tant role in our analysis of interactive proofs and zero 
knowledge. 

Recall that M is a sound test for ‘p in R if it is 
a sound test for ‘p at all points in the system R. 
We would now like to consider such tests M that are 
sound tests for ‘p at all points of most runs of 72. For- 
mally, we say that, M is a praclicrrliy sound test for ‘p 
if for all k there exist.s c such that 

R k init 3 

Pr( bwzd( M, K,cp)) 2 1 - c 1x1-k . 

Similarly, if A is a set of points in 72, we say that M 
is a practically complete test for K,cp on A if for all k 
there exists c such that 

R b init 3 

Pr(a[‘in A’ > complete(M, K4(o)]) > 1 - c Iz~-” . 

Notice that we have ensured that the probabili- 
ties used in defining practical soundness and practical 
completeness are taken at the beginning of the run 
through the use of the antecedent init. This means 
that we are effectively considering tests that behave 
correctly on all but a small fraction of the runs. We 
ro111d have instead considered tests with the stronger 
property that they behave correctly at all but a small 
fraction of the points considered possible at any point 
(by deleting the antecedent inil). This latter notion 
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can lead to dramatically d.ifferent results, but does not 
seem appropriate for most compmer science applica 
tions (in particular, it is not appropriate for capturing 
interactive proofs). 

We now define “q practically BPP-knows ‘p with re- 
spect to A” at a point (r,m), which we denote by 
(r,m) (= k:PPyA (p, in precisely the same way as we 
defined “q BPP-knows cp with respect to A,” except 
that the soundness and completeness conditions are 
replaced by practical soundness and practical com- 
pleteness. This notion of knowledge may at first seem 
rather strange. Most previously defined notions of 
knowledge based on, say, polynomial-time tests have 
said that a processor knows ‘p at a point if its test 
for ‘p says that, it knows ‘p. Here, however, since the 
tests allowed by tl~c definition of practical knowlcdgc 
may bc in error on a small fraction of the rutis, it is 
possible for a processor to have practical knowledge 
of cp with respect to A at a point in A even though 
its test for knowledge of ‘p may not indicate that it 
knows cp. When a processor practically knows cp with 
respect to A, it knows ‘p and has a test that quite 
accurately approximates this knowledge on the set A. 

Now, returning to the problem of capturing the in- 
tuition that at the end of a proof of x E L with the 
good prover the good verifier learns z E L, l.et us re- 
consider the set A and test M defined above: let A 
be the set of final points of P x V, and let 44 be the 
test that accepts at a point if the verifier has accepted 
at that point and rejects otherwise. Notice that while 
the test M for ‘p is not sound everywhere and not 
complete on A, it is praclical/y sound cverywhcrc and 
practically complete on A. As a consequence: we have 
the following. We d cnote by ‘y running P’ the fact 
holding at a point ilf at that point the prover is run- 

ning the protocol P. 

Proposition 3: If (P, V) is an interactive proof sys- 
tem for L, then 

P x V i= (x f L A ‘p running P’) 3 

OkBPPIA(Z E L), v 

where A is the set of final :points of P x V satisfying 
‘p running P’. 

In fact, we can essentially prove the converse of this 
proposition as well, which shows that we can charac- 
terize the notion of an interactive proof system using 
practical knowledge. 

Proposition 4: If 

P X V* b (z E L A ‘p running P’) 3 

where A is the set of final points of P x V’ satisfy- 
ing ‘p running P’, then we can effectively modify V’ 
to obtain V such that (P, V) is an interactive proof 
system for L. 

The protocol V is simply the protoccl V” at the end of 
which the verihfr uses its test for pr.actical knowledge 
of 2 E L to decide whether to accept or reject. 

These results tell us that an interactive proof sys- 
tem for L is precisely one that guarantees that if the 
verifier is running against a good prover, then it will 
practically know that 2: E L at the end of the proof, 
and it will practically never be fooled (by nrry prover). 

5 Zero Knowledge Proof Sys- 
tems 

Informally, an interactive proof syst,em (P, V) is zero 
knowledge if, whenever t E L, the verifier is able to 
generate on its own the conversations it could have 
had with the prover during an interactive proof of 
2: E L. Consequently, the verifier learns nothing as the 
result of a conversation with the prover (other than 
the fact that x E L) that it could not have learned on 
its own by generating the conversation itself. 

To make this precise, we first recall the no- 
tion of polynomial indistinguishability (cf. [GAIR85, 
GMW86, Ore87]). Suppose we have some domain 
Dam. whose elcment,s are of the forni (1, IJ), where fi is 
a vector of values. Further suppose for each (~,a) E 
Dom we have two random variables IrX,g and \L,9 with 

two associat,rd probability dist,ribut.ions. The families 
{ uz,g : (t, y) E Dortr} and {l>,fl : (r, 5) E Darn} are 
said to be polgnnmially itl.dislitlguislrnblr if for cvcry 
probabilistic, polynomial-time algorithm h1 and ev- 
ery constant t there exists a constant N,,,, such t,hat 
for all t with ]z] 2 N,,, and all & with (z, S) E Dam 
we have 

) Pr [M accepts I!J~,~] - Pr [M accepts Vz,~]I 

It is important to notice that the probability is being 
taken over both the coin flips of M and the distribu- 
tions of Uz,V and Vz,g. 

Other notions of indistinguishability are defined 
in [GMR85] (i.e., perfect indislingvishabilily, slatis- 
tical itldis2ingulshability, and computalional indislin- 
guishability). Since polynomial indistinguishability is 
implied by each of these notions, our results, which 
are proven for polynomial indistinguishability, hold 
for these other notions as well. 

Finally, an interactive proof system (P, V) for L is 
said to be X~YJ homlcdgc (cf. [GMR85, GMW8G]) if 
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for every verifier V’ there is a probabilistic Turing 
machine M\I. such tllat 

1. 

2. 

5.1 

Mv.(t,~) runs in expected tiine polynomial 
in IsI, and 

the families ((P(s), V*(t))(x) : (x,s,t) E Dom) 
and (Mv+(t,~) : ( I, 6, t) E Dam} are polynomi- 
ally indistinguishable, where (z,s,t) E Dom iff 
x E L, s is a possible input for P, and i is a 
possible input for I/*. 

Knowledge and Zero Knowledge 

In this section we formalize the intuition that if the 
verifier can learu a fact ‘p at the end of a zero knowl- 
edge proof of E E L, theu the verifier can deduce cp 
frown 1: E L 011 its own at, the bcginrling of the proof. 
First, we need a short definitiou. We say that ‘p 
is a fact aloul ahe initial state (in a syst.em 7Z) if 
(r, nz) b ‘p iff (Y’, ~1’) k ‘p for all points (r,ttl) and 
(r’, m’) of 72 with r(0) = r*‘(O). Thus (o is a fact about 
the initial state if its truth at a given point in a run 
depends only on the initial state in that run. 

The following theorem captures our intuition that 
the prover does not leak any information to the verifier 
during a zero knowledge proof of x E L other than the 
fact E E L. Roughly speaking, it says that if + E L 
and the verifier has a nontrivial chance of learning 
10 at the end of a proof of z E L, then the verifier 
can already deduce ‘p from z E L on its own without 
interacting with the prover. Consequently, provided 
.r E L, t,he only information that a prover leaks to the 
verifier in a zero knowledge proof of z E L are facts 
t.hat follow from T E L. The proviso that z E L is 
crucial hcrc*. Thrrc is tml,hing in t.lrc tlcfnition of a 
zero knowlcdgc proof lo stop tjlir provc>r fr0nI Icaking 
all sor1.s of inforn&on when E $ I,. 

Tlworcm 5: Let (I’, C’) be a zero kuowledgr: proof 
system for L, let V’ be an arbitrary verifier, and let ‘p 
be a fact about the initial state. For every set A of 
final points in P x V’ and every k there exist constants 
c and N such that 

where B is the set of initial points in P x V” satisfying 
z E L, 1~1 2 N, and Pr(OK~PP~A~) 2 IX/-~. 

Proof: Fix a set A and a constant k. The definition 
of knowing ‘p with respect to A ensures the existence 
of a test M for cp that is sound everywhere and com- 
plet,e on A. ‘i%~ deiinitioti of a zero knowledge proof 

system (P, V) ensures the existence of a Turing ma- 
chine Mv.(t, 2) that approximates (I-‘(s), V*(t))(x). 
Informally, the proof proceeds as follows. Suppose 
that from an initial point (r,O) the probability of 
reaching a final point at which the test M indicates 
that cp holds is at least 1~1~~. Suppose that from 
this initial point we run Mv.(t, x) to generate a run 
of (P(s), V*(t))(x) and apply the test M to its final 
state. If we repeat this procedure roughly 1~1” times, 
then with high probability we will generate a run at 
whose final state the test M will succeed, and hence 
with high probability we will learn that if t E L (and 
hence the simulating Turing machine Mv. (i, Z) is ac- 
curate), then p must hold. The details of the proof 
are left to the full paper. cl 

WC note that the same result holds when we replace 
practical knowledge by knowledge with respect to a 

set of points, but as we have seen in Section 4 the 
notion of practical knowledge seems to be of greater 
relevance to interactive protocols. 

Stepping back and looking at the statement of The- 
orem 5, we see that the result is slightly unsatisfac- 
tory. Notice that in the system P x V” the verifier 
protocol V* is fixed, and hence known to the prover. 
The intuition behind zero knowledge proofs, however, 
is that even though the prover does not know the iden- 
tity of the verifier, the prover knows that the verifier 
learns nothing at the end of the proof other than facts 
that follow from x E L. That, is, our intuition suggests 
that the statement of Theorem 5 should hold in the 
system P x VPP. We cannot prove such a result due 
to the order of quantification in the definition of zero 
knowledge guaranteeing only that for every verifier V* 
there is a Turing machine Mv*(l,~) approximating 
the dist.rihut,iorr of (P(s), V*(t))(x). The prohlcrn is 
that because the Turing m&line Mv. cannot, in get)- 
eral bc choscu in some uniform way, and because the: 
tests for knowledge we allow must be uniform irr V*, 
we do not havc a lest for computing facts at the bcgin- 
ning of all runs in P x PP. One solution to our prob- 
lem is provided by the notion of black-box zero knowl- 
edge. An interactive proof system (P, V) for L is said 
to be strongly black-box zero knowledge [cf. [Ore87]) if 
there is a probabilistic Turing machine M such that 

1. M(V* , t, X) runs in expected time polynomial 
in 1x1, and 

2. {(P(s), V*(t))(x) : (x, V*,s,t) E Dom} and 
{M(V*,t,x) : (x, V’, s, t) E Dom} are polynomi- 
ally indistinguishable, where (2, V’, s, t) E Dom 
iff 2 E L, V” is a possible verifier protocol, s is 
a possible input for P, and f is a possible input 
for V’. 
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If (P, V) is a strongly blac.k-box zero knowledge proof 
system for L, then we can prove the analogue of The- 
orem 5 in the system P x V” instead of P x V*. 

‘Unfortunately, as the name suggests, the notion of 
strongly black-box zero knowledge is too strong. The 
problem is that in practice M(V”, t,z) runs V’ as 
a subroutine on input x. Even if M runs V* only 
once, the running time of iM is at least as great as 
the running time of V’. Consequently, even if we re- 
strict our attention to polynomial-time V’ as input to 
M, since the polynomial bounding the running time 
of I/* is different for every V*, the running time of 
M will not be bounded by a single polynomial. Oren 
avoids this problem in his definition of black-box zero 
knowledge by charging only one time step for a call 
to I/*. Thus, he is essentially viewing M as an or- 
acle machine (rather than a purely polynomial-time 
Turing machine). We could modify our definitions to 
allow for knowledge with respect to oracle m,achines, 
but a more natural solution is to modify the measure 
we use of a test’s complexity. In particular, suppose 
we consider tests for facts that run at a point (~,rn) 
in time polynomial in 1x1, the running time of V’, and 
the description of V’, where T is a run with input x in 
which the verifier is running the protocol V’;. Then, 
defining a notion of practical knowledge with respect 
to such tests, the analogue of Theorem 5 follows with 
precisely the same proof. We note that all zero knowl- 
edge protocols we are aware of satisfy Oren’s notion 
of black-box zero knowledge. 

5.2 Generation and, Zero Knowledge 

In the previous subsection we formalized the notion 
that the verifier in a zero knowledge proof learns es- 
sentially no fact other than what the prover explicitly 
set out to prove. This is not, however, the strongest 
notion of security one could hope for. It would also 
be desirable to show that, as a result of interacting 
with the prover, the verifier cannot do anything that 
it could not do before the interaction. We abstract 
the idea of the verifier bein,g able to do something its 
knowing how to generate a y such that R(x,y). For 
example, if R(z, y) holds prcecisely when y is a Hamil- 
tonian circuit in a graph + on the input tape, then 
being able to generate a y such that R(x, $1) means 
being able to find a Hamilt~onian circuit in t,l~e graph 
%. Notice that, as in tflc! ciu;c of lIitllliltolliilll circuits, 
most natural relations R are testable in BPP. That 
is, there is a probabilistic algorithm running in time 
polynomial in 1x1, accepting (x, y) with probability at 
least 2/3 if R(z, y), and rejecting (x, y) with probabil- 
ity 2/3 if -R(x, y). We restrict our attention to such 
BPP testable relations here to simplify our exposition. 

Just as we have said that the verifier knows a fact ‘p 
if it has an algorithm to test for ‘p, we would like to 
say that the verifier knows how to generate a y satisfy- 
ing R(x, y) if it has an algorithm to generate such y. 
In previous sections we considered tests for facts ‘p 
that were sound everywhere and correct on a set A of 
points. Here, alLlough there are no Iconditions analo- 
gous to soundness and completeness, we consider al- 
gorithms that do a “good job” of generating y’s such 
that R(x, y) on a set A of points, but may not, perform 
so well off A. We say that the verifier L~~otrn hozu fo 
BPP-generate a y satisfying R(x, y) with respect to a 
se! .4 of points in a system R if there is a probabilis- 
tic algorithm, that, at all points (1’,173) of -4, takrs 
as input the verifier’s local stat,e and outputs with 
probability at least 2/3 a string y satisfying R(x, y). 
Formally, we write (r,m) /= GrPP8Ay.R(~, y) iff 

1. 

2. 

(r,m) E A, and 

there is a probabilistic Turing machine M that at, 
points (r’, m’) E R takes the verifier’s local state 
as input, runs in time polynomial in 1x1, and, if 
(T’, m’) E A, outputs with probability at least 
2/3 a string y satisfying R(z, y11. 

We have the following analogue to Theorem 5: 

TheoreIn 6: Let (P, V) be a zero knowledge proof 
system for L, let V’ be an arbitrary verifier, and 
let R(z, y) be a relation testable in BPP. For every 
set A of final points in P x V’ and every k, t.here 
exist c and N such that 

P x V’ l= (x E LA init) > 

K~-~~~‘-~[OG;~~~~~.R(X, y) > G;PPSBy.R(t, y)] 
P 

where B is the set of initial points in P x V’ satisfying 
z E L, 121 > N, and Pr(OG~PP~Ay.R(x, y)) 1 1x1-k. 

Intuitively, this theorem says that if the verifier has 
a nonnegligible chance of being able to generate a y 
satisfying R(x, y) by talking to the prover, then the 
verifier can generate such a y on its own. We note that 
this theorem has a number of natural extensions. One 
simple extension is from generating a y satisfying re- 
lations R(x, y) to generating a y satisfying facts p(y) 
about the verifier’s entire initial state. Another sim- 
ple extension is, along the linns of practicnd knowl- 
edge, a notion of knowing flow to generate, dcmtctf 
by G;;“PIAy.R(z, y), where the algorithm may on a 
small fraction of the set A fail to generate y such 
that R(x, y). A final extension, using black-box zero 
knowledge, allows us to prove au a~mlogous result iu 
the system I’ x VP. The details are left to the full 
paper. 
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The ability to test the relation R in BPP is cru- 
cial to the proof of Theorem 6. Recall that in the 
proof of Theorem 5 the verifier tests for the fact* II, 
by rcpcatcdly generating runs and testing for cp at 
t,hc end of each run. Since this test for cp is sound, 
t,lle verifier can accept as soon as this test, for ‘p ac- 
ccpts. Here, however, since there is no notion anal@ 
~OIIS (,o SOIIII~II~~SS, UK* vc,rificbr hirs 110 way of kiIowing 
wltirll of I,llc IllitTly y’s it gcwral~cs sat.ish IZ(x, y) 

and should IX output unless the relation K(x, g) can 
t)c I,ested in 13PP. We discuss annlogues of Theorem 6 
when R(z, y) is not testable in BPP in the full paper. 

6 Resource-bounded provers 

In an interactive proof system as defined in [GMR85], 
the prover is assumed to be infinitely powerful. In 
practice, however, a prover is not infinitely powerful 
and may have no more computational power than the 
verifier. Fort,unately, a probabilistic, polynomial-time 
prover with some “secret. information” on ifs work 
tape is able t,o Cilrry out. many of blic iirl.crt3ling inter- 
a.ct,ive prot,ocols. IO I,hc case of tlic graph isonrorplrism 
protocol givcu in [GMW8G], for cxanlplc, this secret 
informat,ion is an isomorphisnl bebwrcn the graphs 
on t.tir input, tape. Since t.lir context of such weak 
(I~olynolnial-t.inle) provers is actually t.hc context of 
n~ost. pract.ical int,erest,, the type of security afforded 
by zero knowledge protocols in this context is an im- 
portant question, and the subject of our final section. 

In order to study zero knowledge proofs in this con- 
text, we define the notion of a weak interactive proof 
system! a direct. modification of the definition of an 
interactive proof system for L. We define a weak in- 
teractive protocol to be an interactive protocol (P,V) 
where both P and V run in probabilistic, polynomial- 
time. IVe define a toeaL interactive proofsystem (P, V) 
for (I lnngllngc L just as we defined an interactive 
proof system for L except that we require ( P, V) to bc 
a weak interactive protocol and we restrict the quan- 
t~iticat.iorl of P” in t.he soundness condition to be only 
ov(‘r probabilistic, polynonlial-t.illke machines, rather 
t,han over all machines. As the following lemma shows, 
howevt>r, weak interactive proofs of language tncmber- 
ship arc not very int,erestitig. 

Lemnla 7: There is a weak interactive proof system 
for L iff L is in BPP. 

Thus, an interesting weak interactive proof cannot 
be simply a proof of language membership; it must 
reveal something about the prover’s local state, and 
hence, since the prover’s knowledge is determined by 
its local state, it must reveal something about the 

prover’s knowledge. Consider the zero knowledge 
proofs of graph isomorphism and three-colorability 
given in [GMW86]. These proofs can be carried out 
by a weak prover with the appropriate information 
on its worktape. And in both cases, the verifier ob- 
tains information about the prover’s knowledge as 
well as about language membership. In the case 
of gr;ipl1 isonlor~~l~isni, tli~ vcrifictr Icnrns tlti1.1, wil.tl 
high prot~;&ility, IJlc prover can gcncratc: an isolator- 
phistn between the graphs in question. Similarly, in 
the case of three-colorability, the verifier learns that 
with high probability the prover can generate a three 
coloring of the graph in question. It is well-known 
(see [HM84, MDH86]) that information about the 
prover’s knowledge can dramatically affect the ver- 
ifier’s knowledge about the world. For example, in 
the case of three-colorability, information about the 
prover’s knowledge may indicate to the verifier that 
the prover has with high probability communicated 
with the entity that generated the three-colorable 
graph. 

In order to study proofs of the prover’s knowledge, 
we extend the definition of a weak interactive proof 
of language membership to that of a weak interac- 
tive proof about the prover’s initial state, where a 
fat t R( I’*, c, s) is about the prover’s initial state if its 
truth depends only on the prover’s protocol P’, its 
initial work tape s, and the common input 2. The 
definition of a weak interactive proof of R(P*, t, s) is 
obtained simply by replacing all occurrences of x E L 
by R(P*, t, s) in the definition of a weak interactive 
proof of language membership. Formally, we define a 
weak interactive proof system for a fact R about the 
prover’s initial state to be a weak interactive protocol 
(P, V) such that 

Completeness: For every k and sufficiently 
large I, and for every s and t, if R(P,z,s) then 

PI- [(P(s), V(t))(z) accepts] 2 1 - 12(-k 

Soundness: For every k and sufficiently large I, 
for every probabilistic, polynomial-time P’, and 
for every s and 2, if -JZ( P”, I, s) then 

Pr [(P*(s), V(t))(r) accepts] 5 IX!-” . 

The reader may wonder why we consider weak in- 
teractive proofs of facts about the prover’s initial 
state that depend on the prover’s protocol as well 
as its worktape. Suppose R(t, s) is a fact about the 
prover’s worktape and the common input; that is, the 
truth of R(x, s) depends only on the prover’s work- 
tape s and the common input z (and not on the 
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prover’s protocol). Let us define &m(R) to be the 
set (x : R(z, s) for some s}. 

Lemma 8: A weak interactive protocol (P, V) is a 
weak interactive proof system for a fact R about the 
prover’s worktape and the common input ifl 

1. for all sufficiently large x and for all s, we have 
R(x, s) iff x E dam(R); and 

2. dam(R) is in BPP. 

This lemma says that if there is a weak interactive 
proof of a fact R about the prover’s worktape and the 
com1non input, then R is essentially uninteresting. In 
part,icular, with the exception of a few small values 
of x, R(+, s) holds for so1ne s iff El(c, s’) for all s’. 
Consequently, R is esselltially determined by do?n( IZ). 
Since dam(R) is in BPP, the prover can determine 
whether R holds (for sufflcienltly large z) without even 
interacting with the prover. Consequently, a fact R 
about the prover’s initial sta,te having only nontriv- 
ial weak interactive proofs must necessarily be a fact 
depending on the prover’s protocol, and hence on the 
prover’s entire initial state. Since the prover’s knowl- 
edge is determined by its local state, such ,3 weak 
interactive proof may be viewed as a proof of the 
prover’s knowledge. In fact, ‘we note that even in the 
context of infinitely powerfud provers an interactive 
proof oft E L is not just a proof of z E L but a proof 
the prover knows z E L. Tlhe fact that all interest- 
ing interactive proofs must be proofs of the prover’s 
knowledge is obscured in the context, of infinitely pow- 
erful provers since I E L holds iff the prover knows 
x E L,. In the context of weak prover, however, these 
facts are not equivaleut. 

We have defirled a 11atural notio11 of i11toractive 
proof in the cont,ext of wca,k provers, and VW have: 
show11 that the o111y 11ontrivial interactive proofs i11 
this context are proofs aboul; the prover’s knowledge. 
While our definition is a direct modification of the 
definition in the case of strotng provers, it is not ini- 
tially clear that our definition is the most appropriate 
in the context of weak provers, and hence that, our re- 
sults are more than simply aztifacts of our definition. 
As evidence supporting our definition, we now show 
that, under certain natural conditions, bot:h inter- 
active proof syste1ns FFS87, TW87) involving weak 
provers that have appeared in the literature are in- 
stances of weak interactive proofs. Not surprisingly, 
in light, of our previous results, these proof systems 
concern proofs of the prover’s knowledge. 

WC focus here on [‘I‘W87]. and leave the di:icussion 
of [F1?387] Lo the full paper. III [I’W87] we fir~tl the 
following definition (modified slightly for the sake of 
consistency with the rest ol‘ this a,bstract). Give11 a 

binary relation 12, a weak interactive protocol (P, V) 
is said to be an interactive proof thaf the prover can 
generate some y satisfying R(z, y) if the following con- 
ditions are satisfied: 

l Completeness: For every k and sufficiently 
large x, and ,or every s and t, if R(z,s), then 

Pr [(P(s), V(t))(x) accepts] 2 1 - JxlVf . 

l Soundness: For every probabilislic, polynomial- 
time P’ t.here is a probabilistic Turing machine 
h4~~ running in time polynon~iai in 1x1 sucli t.11a.f 
for all /z and sufficiently large .r, and for all s 
and 1, 

PF[V accepts at (r,m) 3 R(r, AIf,. (7*p,(n1)))] 

> 1 - 1.z1-1- 

where the probability is taken over the runs of 
(P*(s), V(t))(x) and the coin flips of niip. .5 

While we would like to show that every int,eractive 
proof that the prover can generate some y satisfying 
R(;c, y) is a weak interactive proof, this is not quite 
true. To see this, notice that the definition of a weak 
interactive proof requires that (P(s), V(t))(z) accept 
with probability very close to 0 or 1, while an interac- 
tive proof of [TW87] allows (P(s), V(t))(z) to accept 
with any probability as long as P is able to generate 
a y satisfying R(t, y). We can prove, however, that 
the following is a necessary and suf5cicnt. condit.ion 
for a11 i11t.cr;rct.ivr proof of [TW87] t,o be a weak inter- 
active proof: 

0 Grrrcl71.cs.s: For every k and suificit~ntly large 6, 
il.iicl for c’vcry s and t, if R(r, s) tloc3 noi. lroltl, 
the11 Pp [(P(s), V(t))(x) accepts] 5 IzI-“. 

In other words, the good prover succeeds in convincing 
the good verifier to accept only when R(z,s) holds. 
We note that the correctness condition can be satis- 
fied ifl R(z, y) is testable in BPP. Since this seems to 
be the most relevant context in practice, this seems to 
be a natural restriction. We have seen that the cor- 
rectness condition is necessary for an interactive proof 

SWe note that the soundness condition in [TWS?‘] actu- 
ally quantifies over all Turing machines P’ and 110t just over 
polynomial-time P’. Since, however, Lhc motivatior~ for consid- 
ering weak prowrs is that in practice at1 a(5crkt.s are restricted to 
polynolnial-l.ilnf:, our restriction does not swn~ unnatural. Fur- 
thennow, we nok that the macl~irre A!,>. is ~aIlowed in [‘r‘W87] 
lo run ill ox pc~locl I,“lytlotlli:~l-tinI(~. In tlrc. cY-mt.c!xt cd HI’I’. 
testable relat,iorls ti, however, the context WF find of most in- 
terest, we can assume without loss of gewralily that the ma- 
chine Mp* runs in polynomial-time. 
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of [TW87] to be a weak interactive proof. To see that 
this condition is sufficient, let R’(P*, x, s) be the fact 
“(p running P A R(z, s)) V (p running P’ # PA the 
soundness condition holds for P*).” (Note that R’ 
depends on the prover’s protocol as well as the work 
tape, and is a fact about the prover’s initial state.) 
We now have the following. 

Propositiorr 0: (p, V) is an int.eracbive proof satis- 
fying t.he correctness condition that the prover can 
generate a y such t,hat, R(x, y) ifl (I’, V) is a weak 
interactive proof system for ZZ’. 

We can show, in addition, that the proof systems 
of [FFS87] satisfying the correctness condition above 
are also instances of a weak interactive proof system. 

Having shown that, in light of Proposition 9, our 
definition of a weak interactive proof system seems to 
be an appropriate definition, let us turn to the study 
of the security afforded by such protocols. Our def- 
inition of a weak interactive proof is a direct mod- 
ification of the definition of an interactive proof of 
language membership. We can also directly modify 
the definition of a zero knowledge proof of language 
membership t,o obtain a definition of a zero knowledge 
weak irlteract,ive proof. Not surprisingly, arrnlogues of 
all our previous resu1t.s for ilIt.criKt.ivc~ proofs hold in 
the case of weak interactive proofs, with essentially 
the same proofs. Rather than restnt,ing all the results 
here, we focus on one of them, the analogue of Propo- 
sition 1. If R is a fact about the prover’s initial state, 
then we say (r, m) b R if R(P’, x, s), where P’ is the 
protocol t.hat p is running in r, 2: is the common input 
in the initial state r(O), and s is the contents of p’s 
work tape in r(O). 

Proposition 10: A weak interactive protocol (P, V) 
is a weak interactive proof system for a fact R about 
the prover’s initial state iff the following conditions 
are satisfied: 

l Completeness: For every /r there exists c such 
that 

l S0zlndnes.s: For every k thc:rr exists c such lhat, 

F’x V /z itril > Pr [Oacccpl> R] 1 I-c (JJ(-~ . 

Thus, we have replaced t.hc occurrences of .c E L in 
Proposition 1 by 12, and used PPP rather than P in the 
soundness condition since we are restricting to weak 
provers. As we mentioned in our discussion in Sec- 
tion 3, while the order of quantification in the state- 
ment of soundness is irrelevant in the case of strong 

provers, it does play a role in the case of weak provers. 
In particular, if we had stated our soundness condi- 
tion so that the choice of “sufficiently large Z” might 
depend ou the protocol P’, all we would be able to 
prove is that for every k and every protocol P’, there 
exists c such that 

Y* x V b init > Pr [Oaccepl> R] 2 1 - c ]z]-~ . 

We remark that the weak interactive protocols result- 
ing from the interactive proofs and zero knowledge 
proofs we are aware of satisfy the stronger notion of 
soundness we have used in our definition. 

In addition to proving the analogues of results hold- 
ing in the context of strong provers, we can reason 
about the interactive proofs of [FFS87, TW87] di- 
rectly in terms of the notions of knowledge and gen- 
eration we have defined in previous sections. For ex- 
ample, we can characterize proofs that the prover can 
generate some y satisfying R(z, y) just as we charac- 
terized interactive proofs, in the case that R(x, y) is 
testable in BPP. 

Proposition 11: Given a relation R(x, y) testable in 
BPP, a weak interactive protocol (P, V) is a weak in- 
teractive proof that the prover can generate some y 
satisfying /<(~,y) iff the following conditions are sat- 
isfied : 

l Compldeness: For every k there exists c such 
that 

P x v /= init > 

Pr [R(+, s) > Oaccept] 3 1 - c ]x]-~ 

l Sozrndness: For every probabilistic, polynomial- 
time P’, 

P’ x V + accepi I) ~~PPBAy.R(x, y) 

where A is the set of points of P’ x V at which 
the verifier has accepted. 

Notice that in the soundness condition, we have 
accept 3 Gp BPP~Ay.R(z,y) rather than Oaccepl > 
GBPP,Ay.IZ(~, y). The first clar~sc says tha.t. the prover P 
can generate some y such that R(x,y) at the point 
when tlie verifier accepts, as required by [TW87], and 
not at, the initial point as would be the case with the: 
stxwrrd clause. This is one of the differences hetwecti 
the definitions of [TW87] and [FFS87]. A second dif- 
ference between the two definitions is that the sound- 
ness condition of [FFS87] is such that we can state 
the soundness condition above in terms of the system 
PPP x V instead of P’ x V. We return to these points 
in the full paper. 
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7 Conclusions References 

The main contribution of this work lies in suggest- 
ing notions of knowledge appropriate for interactive 
proofs, characterizing interactive proofs in terms of 
these notions, and proving, again in terms of these 
notions, that the prover in a zero knowledge proof sys- 
tem does not leak any information other than ,the fact 
it set out to prove. Roughly speaking, we have shown 
that a zero knowledge proof system for 2 E L satisfies 
the following property, which we call knowledge secu- 
rity: the prover is guaranteed that, with high proba 
bility, if the verifier will practically know a fa.ct ‘p at 
the end of the proof, it practically knows t E L, > cp at 
the start. We have also formalized the notion of know- 
ing how to generate, and shown that zero knowledge 
proofs also satisfy an analogous property of geaeraiSon 
seczlrily. (The precise formulations of knowledge and 
generation security are provided by the statements of 
Theorems 5 and 6.) It is currently an open question 
whether either of these notions of security character- 
izes zero knowledge (that is, say, whether an interac- 
tive proof that satisfies the property of knowledge se- 
curity is also a zero knowledge proof). We ca.n show, 
however, that any protocol that satisfies the knowl- 
edge security property is rel:ognilion zero knowledge, 
as defined in [DS88]. We discuss this issue in greater 
detail in the full paper. 

We feel that these security results shed some light 
on the type of security zero knowledge proofs pro- 
vide. Our theorems provide support for the defini- 
tions of interactive proofs and zero knowledge and 
our model provides a good semantic setting for such 
an analysis. Some of the definitions, chiefly that of 
practical knowledge, are quite subtle. Many straight- 
forward definitions one may try fail by being inap- 
propriate for the cryptographic setting and not pro- 
viding a useful sense in which zero knowledge proof 
systems provide security. A;s Feige, Fiat, and Shamir 
write in [FFS87], “the notil3n of “knowledge’ is very 
fuzzy, and a-priori it is not c.lear what proofs of knowl- 
edge actually prove.” We hope to have established a 
framework within which such questions can now be 
answered. 
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